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INTRODUCAO

Parte I — Introdugado historica

I 1.1 Os dois conceitos basicos do calculo

O notavel progresso conhecido pela ciéncia e tecnologia, durante o ultimo século, foi
devido em grande parte ao desenvolvimento da Matematica. O ramo da Matematica conhe-
cido por Calculo integral e diferencial € um instrumento natural e poderoso para atacar uma
variedade de problemas que aparecem na Fisica, Astronomia, Engenharia, Quimica, Geolo-
gia, Biologia e noutros campos, incluindo mais recentemente alguns das Ciéncias Sociais.

Para dar a o leitor uma ideia dos muito diversos tipos de problemas que podem ser trata-
dos pelos métodos do Calculo, expoe-se a seguir uma pequena amostra de questoes seleciona-
das dos exercicios que aparecem em capitulos posteriores deste livro.

Com que velocidade deve ser langado um foguetao, para que nao volte a tombar na Terra?
Qual ¢ o raio do menor disco circular que cobre todo o triangulo isosceles de perimetro L?
Qual ¢ o volume do material extraido de uma esfera de raio 2r, se for atravessada por um
orificio cilindrico, de raio r, e cujo eixo passa pelo centro da esfera? Se uma cultura de bacté-
rias cresce proporcionalmente a quantidade que existe em cada instante, e se a populagao
duplica ao fim de uma hora, quanto tera aumentado ao fim de duas horas? Se uma forca de
dez quilos faz esticar de um metro uma corda eldstica, qual o trebalho necessirio para
esticar a corda de quatro metros?

Estes exemplos, escolhidos em varios dominios, ilustram algumas das questoes técnicas
que podem ser resolvidas por aplicagoes mais ou menos rotinadas do Calculo.

O Calculo é mais do que um instrumento técnico — ¢ uma compilagao de ideias atraentes e
excitantes, que interessaram o pensamento humano durante séculos. Estas ideias estdo rela-
cionadas com velocidade, drea, volume, taxa de crescimento, continuidade, tangente a uma
curva ¢ com outros conceitos dizendo respeito a uma variedade de dominios. O Calculo
obriga-nos a nao ir além, antes de pensarmos cuidadosamente acerca do significado destes
conceitos. Outro aspecto notavel do Calculo € o seu poder de sintese. Muitos destes conceitos
podem ser formulados de maneira que se reduzam a dois outros problemas, mais especializa-



2 Célculo

dos, de natureza puramente geométrica. Passamos em seguida a uma breve descrigao destes

problemas. . o
Consideremos uma curva C situada acima duma reta horizontal (base), como se indica na

fig. I.1. Suponhamos que esta curva goza da propriedade de ser intersetada por cada verti-
cal, no maximo, uma vez. A parte sombreada da figura ¢ formada pelos pontos situados
abaixo da curva C, acima da horizontal, e entre dois segmentos verticais paralelos que unem
C com a horizontal. O primeiro problema fundamental do Calculo € o seguinte: Determinar
um numero que dé a medida da area da parte sombreada da figura.

Consideremos em seguida uma reta tangente a curva C, como se mostra na fig. I.1. O
segundo problema fundamental pode enunciar-se do modo seguinte. Determinar um nimero
que dé o declive desta reta.

A

Linha tangente a C

Fig. .1

Fundamentalmente o Calculo ocupa-se da formulagao exata e da resolugdo destes dois
problemas particulares. Permite-nos definir os conceitos de area e tangente, e calcular a area
de uma dada regiao, ou o declive de tangente a uma curva dada. O Calculo Integral ocupa-
se do problema da area e sera discutido neste primeiro capitulo. O Calculo Diferencial
ocupa-se do problema da tangente e sera analisado no Capitulo 4.

O estudo do Calculo requer uma certa preparagao matematica. O presente capitulo trata
desses conceitos basicos ¢ esta dividido em quatro partes: a primeira parte da uma perspec-
tiva historica; a segunda refere a notagao e terminologia da teoria dos conjuntos; a terceira
trata do sistema dos numeros reais; e finalmente a quarta parte trata da indu¢ao matematica
e da notagao somatoria. Se o leitor esta familiarizado com estes temas pode abordar directa-
mente o desenvolvimento do Calculo integral, no capitulo 1. Caso contrario devera
familiarizar-se com as matérias contidas nesta introdugao, antes de iniciar o estudo do Capi-
tulo.
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I 1.2 Introdugdo historica

A origem do Calculo integral remonta a mais de 2000 anos, quando os gregos tentavam
resolver o problema da determinagao de areas por um processo que designaram de método de
exaustao. As ideias fundamentais deste metodo sao elementares e podem descrever-se, suma-
riamente, do modo seguinte: dada uma regiao cuja area pretende determinar-se, inscrevemos
nela uma regiao poligonal que se aproxime da regiao dada e cuja area seja de calculo facil.
Em seguida, escolhemos outra regiao poligonal que dé uma melhor aproximagao e continua-
mos o processo tomando /inhas poligonais com cada vez maior numero de lados, de modo a
cobrir a regiao dada. O método esta ilustrado na fig. 1.2 para o caso duma regiao semicircu-
lar. Este método foi usado com éxito por Arquimedes (287-212 a. C.), para estabelecer for-
mulas exactas das areas do circulo e de algumas outras figuras particulares.

Depois de Arquimedes, o desenvolvimento do método de exaustdo teve que esperar quase
18 séculos até que o uso de simbolos e técnicas algébricas se tornaram parte usual da mate-
matica. A Algebra elementar, que hoje é familiar 2 maioria dos alunos dos ultimos anos do
ensino secundario, era completamente desconhecida no tempo de Arquimedes, fato que tor-
nava impossivel estender o método a qualquer classe de regides, sem se conhecer um modo
adequado de expressar os extensos calculos numa forma compacta e simplificada.

AR, £ R

Fig. .2 O método de exaustdao aplicado a uma regido semicircular.

Uma mudanga lenta, mas revclucionaria, no desenvolvimento das notagées matematicas
teve inicio no século xvi. O complicado sistema de numeragdo romana foi gradualmente
substituido pelos cardteres arabicos utilizados ainda hoje, os sinais + ¢ — foram introduzi-
dos pela primeira vez e comegaram a reconhecer-se as vantagens da notagdao decimal.
Durante este mesmo periodo, os brilhantes resultados dos matematicos italianos Tartaglia,
Cardano e Ferrari na determinagao de solugdes algébricas para as equagoes cubica e do
quarto grau estimularam o desenvolvimento da Matematica e encorajaram a aceitagao da
nova e superior linguagem algébrica. Com a larga introdugao dos bem escolhidos simbolos
algebricos ressuscitou o interesse pelo antigo método de exaustio, e grande numero de resul-
tados parciais foram descobertos no século Xv1 por pioneiros tais como Cavalieri, Toricelli,
Roberval, Fermat, Pascal ¢ Wallis.

Gradualmente, o0 método de exaustao foi transformado no que hoje se designa por Calculo
Integral, nova e poderosa disciplina com uma grande variedade de aplicagoes nao s6 em pro-
blemas geométricos respeitantes a areas e volumes, mas também em problemas de outras
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ciéncias. Este ramo da Matematica, que conservou alguns dos aspetos originais do método
de exaustao, recebeu o seu maior impulso no século xvii, devido principalmente aos esforgos
de Isaac Newton (1642-1727) e Gottfried Leibniz (1646-1716) e o seu desenvolvimento conti-
nuou até ao século x1x, data em que matematicos como Augustin-Louis Cauchy (1789-1857)
e Bernhard Riemann (1826-1866) lhe deram uma base matematica solida. Posteriores aper-
feicoamentos e extensoes da teoria estdo ainda a ser levados a cabo na Matematica contem-
poranea.

I 1.3 O método de exaustio para a area de um “segmento parabolico”

Antes de passarmos ao estudo sistematico do Calculo integral, sera instrutivo aplicar o mé-
todo de exaustdo directamente a uma das figuras particulares estudadas pelo proprio Arqui-
medes. A regido em questdo esta representada na figura 1.3 e pode descrever-se do modo
seguinte: se escolhermos um ponto arbitrario na base da figura e designarmos por x a sua dis-
tancia a 0, a distancia vertical deste ponto a curva € x*. Em particular, se 0 comprimento da
base € b a altura da figura é b%. A disténcia vertical de x a curva designa-se por “ordenada”
de x. A curva assim descrita € uma parabola e a regiao limitada pela curva e pelos dois seg-
mentos de recta chamar-se-a segmento parabolico.

O —————————————

Aproximagao por defeito.  Aproximagao por excesso.

Fig. I.3 Segmento Fig. 1.4
parabolico

Esta figura pode ser contida num retangulo de base b e altura b?, como se vé na fig. 1.3.
Observando a figura ¢é evidente a afirmagdo de que a area do segmento parabélico é menor
que metade da area do retdngulo. Arquimedes fez a descoberta surpreendente de que a
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3

area do segmento parabolico ¢ exactamente um tergo da area do retangulo, isto ¢, 4 = 5

representando 4 a area do segmento parabolico. Mostremos como se chega a este resultado.

’ n b . b
area do rectangulo = e k* . —
' n

N\

0o b 26 kb nb

Fig. 1.5 Calculo da area dum segmento parabolico.

Deve notar-se que o segmento parabolico desenhado na fig. 1.3 ndo é exactamente o que
Arquimedes considerou, ¢ que os pormenores dos calculos que se seguem ndo siao exata-
mente os utilizados por ele. Contudo as ideias essencias sao as de Arquimedes; o que apre-
sentamos aqui pode considerar-se 0 metodo de exaustdao exposto com uma notagao moderna.

O meétodo consiste simplesmente no seguinte: divide-se a figura num certo namero de ban-
das e obtém-se duas aproximagoes da area da regido, uma por defeito € a outra por excesso,
usando dois conjuntos de retangulos como se indica na fig. .4 (utilizam-se retangulos, em
vez de poligonos quaisquer, para simplificar os calculos). A area do segmento parabolico ¢
maior que a area total dos retangulos interiores, mas ¢ menor que a dos retangulos exterio-
res. Se cada banda se subdivide, para se obter uma nova aproximag¢ao com maior nimero de
bandas, a area total dos retangulos interiores aumenta, enquanto a area total dos retangu-
los exteriores diminui. Arquimedes compreendeu que se podia obter a area com qualquer
grau de aproximagao desejado, bastando para tanto tomar um numero suficiente de bandas.

O calculo efetivo efectua-se como a seguir se indica. Com o objectivo de simplificar os
calculos divide-se a base em n partes iguais, cada uma de comprimento b/n (ver fig. [.5). Os
pontos de divisao correspondem aos seguintes valores de x.
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b 2b 3b (n—1b nb _,
n ] ? *

n n n

- e a kb :
A expressao geral dum ponto de divisao € x = —, onde k& toma os valores sucessivos k = 0.

1, 2, 3, ..., n. En cada ponto kb/n constroi-se o retangulo exterior de altura (kb/n)’, como se
indica na fig. 1.5. A area deste retangulo é o produto da base pela altura e € igual a

Designando por S, a soma das areas de todos os retangulos exteriores, uma vez que a area

do k-enésimo retangulo ¢é (b*/n?)k?, obtem-se
b? 2
Sy=—=(P+ 22+ 34 +nY. (1.1)
n

Do mesmo modo se obtém a expressdo da soma S, dos rectangulos interiores:

B . e \
s,,=n—3[l"+3"+32+"'+("—])']- (1.2)

A forma destas somas € de grande importancia no calculo. Note-se que o fator que mul-
tiplica b*/n’® na equagao (I.1) € a soma dos quadrados dos n primeiros inteiros positivos

12+22+...+’12‘

[O fator correspondente na equagao (I.2) é analogo, apenas a soma tem unicamente n-1
parcelas). O calculo desta soma por adigao directa das parcelas, para um grande valor de n, &
fastidioso, porém existe uma identidade interessante que torna possivel calcula-la dum modo
mais simples; a identidade ¢

3 2
B 22 2=1 L2 B
1+ 27 + + n 3+2+6' (L.3)

E valida para todo o inteiro n >1 e pode provar-se do modo seguinte: Considere-se a igual-
dade (k+1) = k* + 3k*> + 3k + 1 escrita na forma

32 4 3k + 1 ="(k + 1)* — &%
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Fazendo k = 1, 2, ..., n — 1, obtém-se as n — 1 formulas

3-1243-14+1=22~=13
3-224+3-241=3-28

n—12+3n—1)+1=n—@n— 1)

Somando as igualdades, membro a membro, todos os termos do segundo membro se elimi-
nam, excepto dois, resultando

4224k =12+ 3 +24 -+ =]+ —1)=n — 15,

A expressdo do segundo paréntesis reto € a soma dos termos de uma progressao aritme-

tica, cujo valor e -5 n(n — 1). Por conseguinte a tltima igualdade da-nos

2 a% ...y e _n_n
P42t - =T =T (14)

n
"

Somando n? a ambos os membros obtemos (1.3).
As expressoes exactas dadas nos segundos membros de (I.3) e (1.4) ndo sdo necessarias ao
objectivo que se persegue. Tudo o que necessitamos é a dupla desigualdade

3
12+22+---+(n—1)2<%<12+22+-“+n2 (L5)

valida para todo o inteiro n 2> 1. Esta dupla desigualdade pode ser deduzida facilmente de (1.3)
e (I.4), ou direitamente por indugdo (ver Seccao I.4.1).
Multiplicando (1.5) por b*/n® e considerando (I.1) e (I.2) obtém-se

bs
<3< Sa (1.6)

para todo o n inteiro e positivo. A dupla desigualdade (I1.6) exprime que, para todo o n inteiro
e positivo, o nimero b°/3 esta compreendido entre 5, ¢ S . Podemos agora provar que b'/3 &

0 unico numero que goza desta propriedade, isto €, que se A € um nimero qualquer que veri-
fica
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5, <ALS, (L.7)
para todo o inteiro e positivo n, entdo 4 = b*/3. Foi devido a este fato que Arquimedes
concluiu que a area do segmento parabolico € b%/3.

Para provar que A = b*/3 utiliza-se uma vez mais a dupla desigualdade (1.5).Somando n* a
ambos os membros da desigualdade da esquerda em (1.5) obtém-se:

3
1ﬁ+?+-~+nh<%+n?
Multiplicando por b*/n®, e considerando (I.1), pode escrever-se

< T+ . (1.8)

Analogamente, subtraindo n*> a ambos os membros da desigualdade da direita em (1.5) e mul-
tiplicando por b%/n?®, obtém-se:

3 3
b——b—<s. (1.9)

Porém, qualquer numero A verificando (I.7) deve igualmente verificar

3 3 3 3
b__2_<A<b_+b— (I1.10)
3 n 3 n

para todo o inteiro n > 1. Existem, entdo, unicamente trés possibilidades:

b® b* b®
A>_’ A<_’ A=—.
3 3

Se provarmos que as duas primeiras conduzem a contradigOes, entao necessariamente tera
k!
que ser A = ——, uma vez que, no estilo de Sherlock Holmes, se esgotam assim todas as possi-

3
bilidades.

Suponhamos que a desigualdade 4 > 5%/3 era verdadeira. Da segunda desigualdade em
(I.10) obtém-se

3 3
A_%<% (L11)
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para todo o inteiro n > 1. Uma vez que A — b*/3 € positivo, podemos dividir ambos os mem-
bros de (L.11) por A — b%/3 e multiplicar em seguida por n para obter a desigualdade

ba
n ————————
<A—Eﬁ

para todo o n ja referido. Mas esta desigualdade € evidentemente falsa para n >&%/(4-b"/3).
Portanto a desigualdade 4 > b*/3 conduz a uma contradigao. De maneira analoga se pode

y : - : .
provar que 4 < 3 conduz igualmente a uma contradi¢ao e por conseguinte devera ser

A = b’/3, como ja se afirmara.

*I 1.4 Exercicios

1. (a) Modificar a regido indicada na fig. 1.3 supondo que a ordenada, para cada valor de x,
é 2x? em vez de x?. Desenhar a nova figura. Repetir para este caso os passos principais da
anterior se¢ao e determinar o efeito desta modificagao no calculo da area. Fazer o mesmo

se a ordenada, para cada x, € (b) 3x%, (c) —}‘-— x3,(d) 2x% + 1,(e) ax? + c.

2. Modificar a regido na fig. 1.3, supondo que a ordenada, para cada x, é x' em vez de x°.
Desenhar a nova figura.
(a) Usar uma construgao analoga a indicada na fig. 1.5 ¢ mostrar que as somas exterior
e interior S, e s, sdo dadas por

[(1B+22 4 +(n=1)).

bt b
Jr— a 3 " ow - —
S"_n‘(l +2°+ +n), s, o

(b) Usar a dupla desigualdade (que pode ser demonstrada por indugao; ver Secgao
1.4.2).

4
n
B4+2 4+ bt =1P<—-—<134+24--4n (1.12)

4
para provar que s, < b*/4 < S, para todo o n e provar que b*/4 € o unico numero com-
preendido entre 5, ¢ S, para qualquer 7.

(c) Que valor substitue 4*/4 se a ordenada, para cada x, for ax’ + ¢?
3. As desigualdades (1.5) e (I.12) sdo casos particulares da dupla desigualdade mais geral

k+1

par TS L Ak R (113)

¥ 4284+ (=1 <
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valida para todo o inteiro n > 1 e todo o inteiro k > 1. Suposta (1.13) verdadeira, generali-
zar os resultados do Exercicio 2.

I 1.5 Analise critica do método de Arquimedes

Mediante calculos analogos aos feitos na Secgao I 1.3, Arquimedes concluiu que a area do
segmento parabolico considerado € b%/3. Este facto foi aceite como um teorema matematico,
até que, passados cerca de 2000 anos, se pensou que deviam ser analisados os resultados
dum ponto de vista mais critico. Para compreender as razoes porque houve quem puzesse em
davida a validade da conclusao de Arquimedes, € necessario conhecer algo acerca das impor-
tantes mudangas que tiveram lugar na historia recente da Matematica.

Cada ramo do conhecimento ¢ um conjunto de ideias descritas por intermedio de palavras
e simbolos, e ndo se podem compreender estas ideias sem um conhecimento exacto do signifi-
cado das palavras e dos simbolos utilizados. Alguns ramos do conhecimento, conhecidos por
sistemas dedutivos, sao diferentes de outros pelo facto de que um certo numero de conceitos
“nao definidos” sdo escolhidos a priori e todos os restantes conceitos no sistema sao defini-
dos a partir daqueles.

Certas afirmagoes acerca destes conceitos nao definidos toman-se como axiomas ou pos-
tulados e outras relacoes que podem deduzir-se destes axiomas sao chamadas reoremas. O
exemplo mais familiar de um sistema dedutivo € a Geometria euclidiana estudada por toda a
pessoa culta desde a época da Grecia Antiga.

O espirito da primitiva matematica grega, seguindo o método de postulados e teoremas
como na Geometria dos Elementos de Euclides, dominou o pensamento matematico até a
época do Renascimento. Uma nova e vigorosa fase no desenvolvimento da Matematica
comegou com a apari¢do da Algebra no sec. Xvi, e os 300 anos que se seguiram foram teste-
munhas de grande quantidade de importantes descobertas. O raciocinio logico, preciso,do me-
todo dedutivo, com o uso de axiomas, definigOes e teoremas, esteve manifestamente ausente
durante este periodo. Em vez disso, 0s pioneiros nos séculos Xvi, XvVil € XVIII recorriam a uma
mistura de raciocinio dedutivo combinado com intuigdo, mera conjectura ¢ misticismo, € nao
surpreendera que se tenha visto mais tarde que alguns dos seus resultados eram incorrectos.
Contudo, um numero surpreendentemente grande de importantes descobertas ocorreram
neste periodo e uma grande parte deste trabalho sobreviveu a prova da Historia — um prémio
a destreza e engenho daqueles cientistas.

Quando o caudal de novas descobertas comegou a diminuir, um novo e mais critico
periodo apareceu. Pouco a pouco os matematicos viram-se forgados a voltar as ideias classi-
cas do método dedutivo, numa tentativa de colocar a nova Matematica numa base firme.
Esta fase de desenvolvimento, que comega em principios do século Xix e continuou até o
momento presente, alcangou um grau de abstracgao e pureza logica que ultrapassou todas as
tradigdes da ciéncia Grega. Simultdneamente proporcionou uma compreensao mais clara dos
fundamentos, ndo so do Calculo, mas de todos os ramos da Matematica.

Existem varias formas de estruturar o Calculo como sistema dedutivo. Uma maneira possi-
vel é tornar os numeros reais como conceitos nao definidos. Algumas das regras que regem
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as operagOes com 0s numeros reais podem entao ser tomadas como axiomas. Um tal con-
junto de axiomas esta indicado na Parte 3 desta Introdugao. Novos conceitos, como integral,
limite, continuidade, derivada devem entao ser definidos em termos de numeros reais. As pro-
priedades destes conceitos sao, em seguida, deduzidas como teoremas a partir dos axiomas.

considerando o calculo como uma parte do sistema dedutivo, o resultado de Arquimedes
para a area do segmento parabolico nao pode ser aceite como um teorema se nao for dada
antecipadamente uma definicao satisfatoria de area. Nao esta provado que Arquimedes
tivesse formulado, alguma vez, uma defini¢ao precisa do que entendia por area. Parece ter
tornado como presuposto que cada regidao possui uma area que lhe esta associada. Com esta
hipotese ocupou-se a calcular areas de regioes particulares. Nos seus calculos utilizou certas
propriedades da area que nao podem ser provadas enquanto nao se souber o que se entende
por area. Por exemplo, supds que, sendo uma regiado interior a outra, a area da regiao menor
nao pode exceder a area da maior. Do mesmo modo, se uma regiao é dividida em duas ou
mais partes, a soma das areas das partes € igual a area de toda a regiao. Estas propriedades &
desejavel que a area as possua, e, insistimos, qualquer definicao de area deve implicar estas
propriedades. E perfeitamente possivel que o proprio Arquimedes considerasse a area como
um conceito nao definido e entao tivesse utilizado as propriedades que mencionamos como
axiomas da area.

Actualmente considera-se a obra de Arquimedes importante nao tanto pelo que nos auxilia
no calculo de areas de figuras particulares, mas sim porque sugere uma via razoavel para
definir o conceito de area para figuras mais ou menos arbitrdarias. Acontece que o metodo de
Arquimedes sugere uma maneira de definir um conceito muito mais geral que e o de integral.
O integral, por sua vez, é usado para calcular ndo somente areas, mas também quantidades
tais como comprimentos de arco, volumes, trabalhos e outras.

Antecipando-nos a posteriores desenvolvimentos, e utilizando a terminologia do calculo
integral, o resultado do calculo efectuado na Secg¢ao I.1.3 para o segmento parabolico € mui-
tas vezes expresso como segue:

“O integral de x*> de O a b é b'/3”

e escreve-se, simbolicamente,

b 3
fxzdx=b—.
0 3

O simbolo f (um S alongado) € chamado sinal de integral e foi introduzido por Leibniz em
1675. O processo que determina o numero b°/3 diz-se integragdo. Os niumeros O e b que
afetam o sinal de integral designam-se por limites de integragdo. O simbolo - x*dx deve ser
considerado como um todo. A sua definicao devera apresentar-se tal como o dicionario des-
creve a palavra “conferir” sem fazer referéncia a “con” e “ferir”.

O simbolo de Leibniz para o integral foi prontamente aceite por muitos matematicos, que o
entendiam como uma espécie de “processo de somagao” que lhes permitiria somar infinitas
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“quantidades infinitamente pequenas”. Por exemplo, no caso do segmento parabolico
concebia-se a area como uma soma de uma infinidade de retangulos infinitamente pequenos,
de altura x? e base dx. O sinal de integral representava o processo de adigao das areas de
todos esses retangulos. Este tipo de raciocinio € sugestivo e frequentemente util, mas nao e
facil atribuir um significado preciso de conceitos de “quantidade infinitamente pequena”.
Hoje em dia o integral é definido em termos da nogao de numero real, sem recorrer a concei-
tos como “infinitesimais”, Esta definicao sera dada no Capitulo I.

I 1.6 A introdugao ao calculo utilizada neste livro

Uma exposigao rigorosa e completa, quer do Calculo integral, quer do Calculo diferencial,
depende em ultima analise de um estudo cuidadoso do sistema dos numeros reais. Este
estudo, quando levado a cabo na sua totalidade, € um tema interessante, mas algo extenso de
modo a exigir um pequeno volume para a sua exposi¢ao completa. O meétodo utilizado neste
livro consiste em introduzir 0os nameros reais como conceitos nao definidos (elementos primi-
tivos) e tomar simplesmente algumas das suas propriedades fundamentais como axiomas.
Estes axiomas, e alguns dos teoremas mais simples que podem deduzir-se a partir deles, sao
discutidos na Parte 3 deste Capitulo. Muitas das propriedades dos numeros reais aqui toma-
das como axiomas sao, concerteza, familiares ao leitor pelo seu estudo da Algebra elementar.
Porém existem algumas propriedades dos numeros reais que habitualmente nao sao conside-
radas na algebra elementar, mas que desempenham um papel importante no Calculo. Estas
propriedades sdo consequéncia do chamado axioma do extremo superior (conhecido igual-
mente por axioma da continuidade) que se estudara aqui com algum pormenor. O leitor
podera, se o deseja, estudar a Parte 3 na sequéncia do texto, ou entdo deixar esta matéria
para mais tarde, quando entrar no estudo daquelas partes da teoria que utilizam propriedades
do axioma do extremo superior. As matérias dependentes do axioma do extremo superior
estardao claramente assinaladas.

Para desenvolver o Calculo como uma teoria matematica completa seria necessario expor,
em complemento dos axiomas do sistema de numeros reais, os varios “métodos de demons-
tragao” que permitirdo deduzir os teoremas a partir dos axiomas. Cada afirmagao, na teoria,
teria que ser justificada quer como “uma lei estabelecida™ (isto €, um axioma, uma definigao,
ou um teorema previamente demonstrado), ou como o resultado da aplicagao de um dos me-
todos de demonstragao considerados a uma lei estabelecida. Um programa desta natureza
resultaria extremamente longo e enfadonho e ndo compensaria na ajuda a compreensao do
assunto por um principiante. Felizmente nao e necessario proceder desta maneira para chegar
a uma boa compreensao e utilizagao do Calculo. Neste livro o assunto ¢ introduzido duma
maneira informal, fazendo-se um amplo uso da intuigao geomeétrica sempre que isso € consi-
derado conveniente. Simultaneamente procura-se que a exposi¢ao das mateérias goze da preci-
sao e clareza de pensamento proprias da ciéncia moderna. Todos os teoremas importantes
estao explicitamente expostos e rigorosamente demonstrados.

Para evitar interromper a sucessdao de ideias, algumas das demonstragoes aparecem em
secoes separadas assinaladas com um asterisco. Pela mesma razao, alguns capitulos sao
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acompanhados de secgoes suplementares, nos quais se tratam, com pormenor, alguns temas
importantes relacionados com o Calculo. Alguns deles estao também assinalados com um
asterisco para indicar que podem ser omitidos, ou deixados para mais tarde, sem que assim se
interrompa a continuidade da exposigao. A medida em que se devem tomar em consideragao
as secgoes com asterisco depende, em parte, da preparagao do leitor e em parte do seu inte-
resse. O leitor interessado fundamentalmente nas ideias basicas e na pratica pode suprimir as
secgoes com asterisco. Aquele que deseje um curso completo de Calculo, tanto teorico come
pratico, devera ler algumas dessas segoes.

Parte 2— Conceitos Fundamentais da Teoria dos Conjuntos

I 2.1 Introdugdo a teoria dos conjuntos

No estudo de qualquer ramo da Matematica, seja Analise, Algebra ou Geometria, é \itil o
uso da notagao e terminologia da teoria dos conjuntos. Esta teoria, desenvolvida por Boole e
Cantor (+) no final do século xix, teve uma profunda influéncia no desenvolvimento da
Matematica no século xx. Unificou muitas ideias aparentemente desconexas e contribuiu
para reduzir grande numero de conceitos matematicos aos seus fundamentos logicos, dum
modo elegante e sistematico. Um estudo completo da teoria dos conjuntos exigiria uma
ampla discussao que consideramos fora do alcance deste livro. Felizmente as nogoes basicas
sdao em numero reduzido e € possivel desenvolver um conhecimento pratico dos métodos e
ideias da teoria dos conjuntos, através duma discussao informal. Na realidade nao vamos dis-
cutir tanto a moderna teoria, como indicar de modo preciso a terminologia que desejamos
aplicar a ideias mais ou menos familiares.

Na Matematica a palavra “conjunto” € usada para representar uma colegao de objectos
considerados como uma identidade unica. As cole¢des designadas por nomes como
“rebanho™, “tribu”, “multidio”, “equipe” e “eleitorado” sdo todas exemplos de con-
juntos. Os objetos que constituem a cole¢io chaman-se elementos ou membros do
conjunto, e dizem-se que pertencem ou estdo contidos no conjunto. O conjunto, por sua
vez, diz-se conter ou ser composto dos seus elementos.

Ocupar-nos-emos. principalmente de conjuntos de entes matematicos: conjuntos de nume-
ros, conjuntos de curvas, conjuntos de figuras geométricas, etc. Em muitas aplicagoes con-
vem considerar conjuntos em que nenhuma hipotese se faz acerca da natureza dos seus ele-
mentos. Tais conjuntos dizem-se abstratos. A teoria dos conjuntos abstratos foi desenvol-
vida para tratar com tais cole¢oes de objectos arbitrarios e precisamente a essa generalidade
se fica a dever o grande alcance da teoria.

(+) George Boole (1815-1864) foi um logico-matematico inglés. O seu livro “Investigagio das leis do pensamento™, publicado
em 1854, assinala a criagdo do primeiro sistema praticavel de logica simbolica.
George F. L. P. Cantor (1845-1918) ¢ a sua escola criaram a moderna Teoria dos Conjuntos no periodo 1874-1895.

APOSTOL — 2
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I 2.2 Notagoes para representar conjuntos

Os conjuntos designam-se, geralmente, pelas letras maiusculas: 4, B, C, ..., X, Y, Z; e 0s
elementos pelas letras minusculas: a, b, ¢, ..., X, p, z. Utilizamos a notagao.

xeS

para indicar que “x € um elemento de S™ ou “x pertence a §”'. Se x nao pertence a S escreve-
mos x ¢ S. Quando conveniente, designaremos os conjuntos especificando os seus elementos
entre os simbolos | |; por exemplo, o conjunto dos inteiros positivos pares, inferiores a 10,
representa-se por |2, 4, 6, 8, enquanto o conjunto de fodos os inteiros positivos pares se
representa por {2, 4, 6, 8, ...}, sendo os trés pontos a representagao matematica de “e assim
sucessivamente”. Os trés pontos usar-se-ao apenas quando o significado de *“‘e assim sucessi-
vamente” for claro. Este método de representagdo dos conjuntos é muitas vezes de-
signado por representacao em extensdo.

O primeiro conceito fundamental que relaciona um conjunto com outro € a igualdade de
conjuntos:

DEFINICAO DE IGUALDADE DE CONJUNTOS: Dois conjuntos A e B dizem-se iguais (ou idén-
ticos) se constam exactamente dos mesmos elementos e, nesse caso, escrevemos A = B. Se um
dos conjuntos contém algum elemento que ndo pertence ao outro, dizemos que os dois conjun-
tos sao distintos e escrevemos A # B.

ExemMpLO 1. De acordo com esta defini¢ao, os dois conjuntos {2, 4, 6, 8| e |2, 8, 6, 4] sdo
iguais, uma vez que ambos sao constituidos pelos quatro elementos 2, 4, 6 e 8. Entao, usada a
represeniagao em extensao para designar um conjunto, a ordem pela qual sao referidos os
seus elementos é irrelevante.

ExempLO 2. Os conjuntos |2, 4, 6, 8] e (2, 2, 4, 4, 6, 8] sdo iguais, apesar de no segundo os
elementos 2 e 4 aparecerem repetidos. Ambos contém os quatro elementos 2, 4, 6, 8 e apenas
esses, pelo que a definigao impoe que se considerem iguais esses conjuntos.

Este exemplo pOe em evidéncia que nao € necessario exigir que os elementos dum conjunto,
na representagao em extensao, sejam todos distintos. Um exemplo andlogo € o conjunto das
letras da palavra Mississipi que € igual ao conjunto (M, i, s, p| formado pelas quatro letras
distintas M, i, s, p.

I 2.3 Subconjuntos

Dado um conjunto S podemos formar novos conjuntos, chamados subconjuntos de S.
Por exemplo, o conjunto dos inteiros positivos menores que 10 e divisiveis por 4 (o conjunto
{4, 8}) € um subconjunto do conjunto de todos os inteiros positivos pares inferiores a 10. Em
geral da-se a seguinte definigao.
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DEFINICAO DE SUBCONJUNTO. Um conjunto A diz-se um subconjunto dum conjunto B, e
escreve-se

A< B,

quando todo o elemento de A pertence a B. Diz-se também que A estd contido em B ou que B
contém A. O simbolo < utiliza-se para representar a relagdo de inclusao de conjuntos.

A afirmagdo A < B nao exclui a possibilidade de B € A. Com efeito, podemos ter ambas
as relagoes A < B e B < A, mas isto acontece unicamente se A ¢ B tém os mesmos elemen-
tos. Por outras palavras,

A=B se e somente se A< BeBcCA.

Este teorema € uma consequéncia imediata das definicoes anteriores de igualdade e inclusao.
Se A < B, mas A # B, entdo dizemos que A € um subconjunto proprio de B; expressamos
isto escrevendo A < B.

Em todas as nossas aplicagoes da teoria dos conjuntos, temos um conjunto S fixado “a
priori”’ e sO nos interessam subconjuntos daquele. O conjunto fundamental S pode variar de
uma aplicagdo para outra; sera considerado o conjunto universal de cada teoria particular. A
notagao

{(x|xe S e xsatisfaza P)

designara o conjunto de todos os elementos x de S que satisfazem a propriedade P. Quando o
conjunto universal, a que nos estamos a referir, se subentende, omitimos a referéncia a S e
escrevemos simplesmente {x|x satisfaz a P, que se I&é “o conjunto de todos os x tais que x
satisfaz a P”. Os conjuntos designados deste modo sdo caracterizados por uma propriedade
definidora. Por exemplo, o conjunto de todos os nameros reais e positivos pode representar-
-se por {x|x > 0}; o conjunto universal S neste caso subentende-se que € o conjunto
dos numeros reais. Do mesmo modo, o conjunto de todos 0s numeros pares positivos
{2, 4, 6, ...} pode representar-se {x|x inteiro par positivo}. Evidentemente, a letra x pode
ser substituida por outro simbolo adequado. Assim, podemos escrever

x[x>0={y|y>0={|1>0}

etc.

Pode acontecer que um conjunto nao contenha qualquer elemento. Designa-se, entio, por
conjunto vazio e representa-se pelo simbolo &. Considera-se & subconjunto de qualquer con-
Jjunto. Se imaginarmos, por facilidade, um conjunto analogo a um recipiente (tal como uma
bolsa ou uma caixa) que contém certos objectos, os seus elementos, entdo o conjunto vazio
sera analogo a um recipiente vazio.
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Para evitar dificultades logicas, devemos fazer distingao entre o elemento x e 0 conjunto
{x| cujo unico elemento € x. (Uma caixa com um chapéu dentro € conceitualmente distinta do
proprio chapéu). Em particular o conjunto vazio & ndo é o mesmo que o conjunto {J}. Com
efeito, o conjunto vazio @ nao contém elementos, enquanto que o conjunto {&} contém um
elemento, @. (Uma caixa que contém uma caixa vazia nao esta vazia). Os conjuntos forma-

dos de um so elemento dizem-se conjuntos de um elemento ou singulares.
Muitas vezes recorre-se ao auxilio de diagramas para tornar intuitivas relagoes entre conjun

tos. Por exemplo, podemos considerar o conjunto S uma regiao do plano e cada um dos seus
elementos um ponto. Os subconjuntos de S podem entdo ser imaginados como colegoes de
pontos interiores a S. Por exemplo, na fig. 1.6(b) a parte sombreada ¢ um subconjunto de 4 e
também um subconjunto de B. As ajudas graficas deste tipo, chamadas diagramas de Venn,
sao uteis para comprovar a validade de teoremas na teoria dos conjuntos ou para sugerir me-
todos de demonstragao dos mesmos. Naturalmente tais demonstragoes baseiam-se nas defi-
nigoes e conceitos € a sua validade dependera de um raciocinio correcto e nao dos diagramas.

1 2.4 Reunioes, interse¢oes, complementos

A partir de dois conjuntos dados 4 ¢ B, podemos formar um novo conjunto chamado reu-
nido de A e B. Este novo conjunto representa-se pelo simbolo

A U B (ler: “A reunido com B"),

" JoXoL

(a) AUB (b) AnB CANB=gO

Fig. 1.6 Reunioes e intersegoes

e define-se como o conjunto dos elementos que pertencem a 4 ou a B ou a ambos. Quer isto
dizer que A U B € o conjunto de todos os elementos que pertencem, pelo menos, a um dos
conjuntos A, B. Na fig. 1.6(a) a parte sombreada representa 4 U "B.

Analogamente a intersecgdo de A e B, representada por

AN B (ler: “A intersecgao com B"),

€ definida como o conjunto dos elementos comuns a 4 e a B. Na fig. 1.6(b) a parte sombreada
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representa a intersecgao de 4 e B. Na fig. 1.6(c) os conjuntos 4 ¢ B ndo tém qualquer ele-
mento comum; neste caso a intersecgao € o conjunto vazio @. Dois conjuntos 4 e B dizem-se
disjuntos se A N B = @.

Dados os conjuntos A ¢ B, a diferenga A- B (também chamada complementar de B em
relagdo a A) ¢ definida pelo conjunto de todos os elementos de 4 que ndo pertencem a B.
Entao, por definigao

A—B={x|xeAd e¢ x¢B}.

Na fig. 1.6(b) a parte ndo sombreada de 4 representa A — B; a parte nao sombreada de B
representa B — A.

As operagoes de reunido e intersecgao possuem varias analogias formais com a adigao e
multiplicagdo de numeros reais. Por exemplo, uma vez que a ordem pela qual se consideram
0s conjuntos nao intervém nas definigoes de reunido e intersecgao, resulta que AUB = BUA
eque A N B =B A, o que significa serem a reuniao e intersecgao operagoes comutati-
vas. As definigoes sao dadas de tal modo que as operagOes sao associativas:

(AUB)UC=AU(BUC) e (ANB)NC=ANBNC).

Estes e outros teoremas relativos a *“algebra dos conjuntos™ sdo apresentados como exerci-
cios na Sec¢ao I 2.5. Uma das melhores maneiras para o leitor se familiarizar com a termino-
logia e notagoes aqui introduzidas é estabelecer as demonstragoes de cada uma destas pro-
priedades. Uma amostra do tipo de argumentagao que & necessaria aparece imediatamente
apos os Exercicios.

As operagdes de reunido e intersecg¢do podem estender-se a colegdes finitas ou infi-
nitas de conjuntos do modo seguinte: Seja #F uma classe (+) ndo vazia de conjuntos. A
reunido de todos os conjuntos de $ define-se como o conjunto de todos aqueles ele-
mentos que pértencem pelo menos a um dos conjuntos de S ¢ representa-se pelo
simbolo

UA.

AeF

Se & ¢ uma colecgao finita de conjuntos, por exemplo & = {4, 4,, ..., A,,| escrevemos

n
Uda=U4d=4uUd,uUu---UA4d,.
AeF k=1

De modo analogo, a intersecgao de todos os conjuntos de 5 define-se com o conjunto de

(+) Para comodidade de linguagem chamamos classe a uma colecgao de conjuntos. Para representar as classes utilizamos letras
maiusculas em cursivo. A terminologia e notagio usuais da teoria dos conjuntos aplicam-se, naturalmente, as classes. Por exem-
plo 4E Fsigm’ﬁca que A é um dos conjuntos da classe F esf < 4 significa que cada conjunto de & pertenece ad, ¢ assim
sucessivamente.
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todos aqueles elementos que pertencem a todos os conjuntos de # ¢ representa-se por

MNA.

AeF

Para colecgoes finitas (como acima) escrevemos

n

NA=NA. =4, NA, N NA,.

AeF k=1

As operagoes reuniao ¢ intersec¢ao definiram-se de modo tal que a propriedade associativa
¢ verificada automaticamente. Daqui resulta que nao havera ambiguidade quando escreve-
mos A, VA, U+ - VA4, 0ud, NA;, N NA,.

1 2.5 Exercicios

1. Utilizar a representagdo em extensao para designar os seguintes conjuntos de numeros
reais

A={x|x*-1=0}. D ={x|x*=2x* +x =2},
B ={x|(x = 1) =0}, E = {x|(x + 8) = 9%,
C={x|x+8=09}. F={x|(x*+ 16x)* = 17%}.
2. Para os conjuntos do Exercicio 1, observe-se que B & A. Indicar todas as relagoes de
inclusao < que sao validas entre os conjuntos A, B, C, D, E, F.

3. Seja A = {1}, B = [1, 2|. Discutir a validade das seguintes afirmagdes (provar que al-
gumas sao verdadeiras e explicar porque sao as outras falsas).

(a) A < B. (d) 1€ A.
(b) A < B. (e) 1 < A.
(c) A€ B. (fy 1 < B.

4. Resolver o Exercicio 3 se 4 = {1l e B = ||1}, 1.

5. Dado o conjunto S = {1, 2, 3, 4}, expressar todos os subconjuntos de S. Existem 16 no

total, incluindo @ e S.
6. Dados 0s quatro conjuntos seguintes

A= {]v 2}’ B = {{l}, {2}}o C= {{l}r {l’ 2}}1 D = {{1}: {2}v {19 2}}-

discutir a validade das afirmagdes seguintes (provar que algumas sdo verdadeiras e

explicar porqué as outras nao o $ao)
(@) A=B. (d) AeC. (g B< D.
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(b)AcB. () A<D. (h) BeD.

¢ A=C. (f) Be=C. (i) A€ D,

Demonstrar as propriedades seguintes da igualdade de conjuntos:
(a) {a,a} = {a}.

(b) {a, b} = {b, a}.

(c) {a} = {b,c} seesOmentese a =b=c

Demonstrar o conjunto de relagoes dos Exercicios 8 ao 19 (Exemplos dessas demons-
tragoes sao dados no final desta Sec¢ao).

8.
9

10.
11.
12.
13.

14.
15.

16.
17.

18.
19.

20.

Propriedade comutativa A \J B = B U A, A N B =B N A.

Propriedade associativaA U (B (U C)=(A U B) U C,AN (BN C)=(AN B)NC.
Propriedade distributiva A N (B U C)=(A N B UANC), Av B nC)=
= (AU B)N (A v ().

AUA=A, ANA=A,

ACAUB, ANBCA.

AVvg =A, ANng =g,
AV(ANB)=A, AN(AVUB)=A.
Sed c CeB< C,entaio 4 U B C
SeCcAeC < B,entaio C < A N
(a) Sed « Be B — C, prove que 4 < C.

(b) Sed € BeB < C, prove que 4 < C.

(c) O que pode concluir-se se 4 <« Be B < C?

(d) Se xe AeA < B,verificar-se-a necessariamentex € B?
(¢) Se x€ AeA € B,verificar-se-a necessariamente que x € B?
A—-BNC=((A-B)uU @A - C).

Seja & uma classe de conjuntos. Entdo

C.
B.

B-=UJA=N(B-A e B—-NA4=U(B-A.
AeF AeF DF ,E-EJJS )

(a) Provar que uma das duas formulas seguintes ¢ sempre correcta e que a outra alguma
vez ¢ falsa

(i()4A—(B—-C)=(4—-B)VvC,
(i) A —(BVC)=(4 - B) - C.

(b) Estabelecer uma condigao necessaria e suficiente adicional para que a formula
que algumas vezes € incorreta passe a ser sempre valida.

Demonstragao da propriedade comutativa A \U B = B U A.

Sejam X = A U Be Y =B U A. Para provar que X = Y demonstra-se que X < Y e
Y < X. Suponhamos que x € X. Entao x pertence pelo menos a A ou a B. Logo x pertence
pelo menos a B ou a A; logo x € Y. Deste modo todo o elemento de X pertence igualmente a

Yo

que implica X < Y. Analogamente encontramos que ¥ < X, logo X = Y.
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Demonstragdo de A " B< A. Se x €4 N B, entido x pertence a A ¢ a B. En particular,
X € A. Portanto todo o elemento de 4 N B pertence a A e por conseguinte A N B S A.

Parte 3—Um Conjunto de Axiomas para o Sistema dos Numeros Reais

I 3.1 Introdugao

Ha varias maneiras de introduzir o sistema dos nimeros reais. Um meétodo corrente con-
siste em comegar com 0s inteiros e positivos 1, 2, 3, ... e utiliza-los como base para construir
um sistema mais amplo, possuindo as propriedades desejadas. Em resumo, a idéia deste me-
todo consiste em tomar os inteiros e positivos como conceitos nao definidos, estabelecer rela-
tivamente a estes alguns axiomas e, em seguida, utiliza-los para construir o sistema mais
amplo dos nimeros racionais (cociente de inteiros positivos). Os nimeros racionais positi-
vos utilizam-se, por sua vez, como uma base para construir 0s numeros irracionais positivos
(numeros reais como V2en que nao sao racionais). A fase final consiste na introdugao dos
numeros reais negativos e do zero. A parte mais dificil de todo este processo ¢ a transigao
dos numeros racionais para 0s numeros irracionais.

Embora a necessidade de introdugao dos numeros irracionais fosse ja clara para os mate-
maticos da Grécia antiga nos seus estudos de Geometria, métodos satisfatorios de construgao
dos numeros irracionais, a partir dos numeros racionais, so foram introduzidos muito mais
tarde, no século xix. Nesta época foram delineadas trés teorias respectivamente por Karl
Weierstrass (1815-1897), Georg Cantor (1845-1918) e Richard Dedekind (1831-1916). Em
1889 o matematico italiano Giuseppe Peano (1858-1932) apresentou cinco axiomas para os
inteiros e positivos que podem ser utilizados como ponto de partida para a construgao total.
Uma exposi¢ao detalhada desta construgao, comegando com os axiomas de Peano e utili-
zando o método de Dedekind para introduzir os numeros irracionais, encontra-se no livro de
E. Landau, Foundations of Analysis (New York, Chelsea Pub. Co., 1951).

O ponto de vista adotado aqui € ndo construtivo. Iniciamos o processo num ponto bas-
tante avangado, considerando os numeros reais como conceitos primitivos verificando um
certo numero de propriedades que se tomam como axiomas, isto &, supomos a existéncia dum
conjunto R de elementos, chamados numeros reais, que verificam os dez axiomas que apre-
sentamos nas se¢oes que se seguem. Todas as propriedades dos numeros reais se podem
deduzir desses axiomas. Quando os numeros reais se definem por um processo construtivo,
as propriedades que aqui se apresentam como axiomas sao consideradas como teoremas a
demonstrar.

A menos que se afirme o contrario, nos axiomas que apresentamos a seguir as letras a, b, ¢,
... X, ¥, Z representam numeros reais arbitrarios. Os axiomas dividem-se, duma maneira natu-
ral, em trés grupos que designamos por axiomas de corpo, axiomas de ordem e axioma do
extremo superior (também chamado axioma de continuidade ou axioma de completude).
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I 3.2 Axiomas de corpo

Juntamente com o conjunto R dos numeros reais, admitimos a existéncia de duas ope-
ragoes chamadas adi¢do e multiplicagado, tais que para cada par de nimeros reais x e y pode-
mos formar a soma de x e y, que € outro numero real representado por x + y, € 0 produto de
X e y representado por xy ou x . y. Supde-se que x + y e o produto xy sao wnivocamente
determinados por x e y. Por outras palavras, dados x e y, existe um € um s6 numero real x +
y e um e um so numero real xy. Nao atribuimos significado especial aos simbolos + e além
do contido nos axiomas.

AXIOMA 1. PROPRIEDADE COMUTATIVA X + y =y + X, Xy = X
AXIOMA 2. PROPRIEDADE ASSOCIATIVA X + (¥ + 2z) = (x + y) + 2, x(vz) = (xy)z
AXIOMA 3. PROPRIEDADE DISTRIBUTIVA X(V + z) = Xy + Xz

AXIOMA 4. EXISTENCIA DE ELEMENTOS NEUTROS. Existem dois mimeros reais distintos,
que se indicam por 0 e 1, tais que para cada nuimero real x se tem x + 0 =xe I+ x = x.

AXIOMA 5. EXISTENCIA DE NEGATIVOS. Para cada mimero real x existe um nimero real y
tal que x + y = 0.

AXIOMA 6. EXISTENCIA DE RECIPROCOS. Para cada mimero real x = 0, existe um niimero

real y tal que xy = 1.

Nota: os numeros 0 e | dos Axiomas 5 ¢ 6 sdo 0os do Axioma 4.

Dos axiomas anteriores podemos deduzir todas as regras usuais da algebra elementar. As
mais importantes sao apresentadas a seguir como teoremas. Nestes teoremas os simbolos a,
b, ¢, d representam numeros reais arbitrarios.

TEOREMA I.]1 REGRA DE SIMPLIFICACAO PARA A ADICAO. Sea + b =a + c, entdo b = c.
(Em particular isto prova que o numero 0 do axioma 4 é unico.)

TEOREMA |.2 POSSIBILIDADE DA SUBTRACCAO. Dados a e b existe um e um so x tal que
a+ x = h. Este numero x representa-se por b—a. Em prrticular, 0-a escreve-se simples-
mente —a e chama-se o simétrico de a.

TEOREMA L3, b —a = b + (—a)

TEOREMA 1.4 —(—a) = a.
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TEOREMA L5 a(b — ¢) = ab — ac.
TEOREMA LG O ra=a -0 = 0.

TEOREMA 1.7 REGRA DE SIMPLIFICACAO PARA A MULTIPLICACAO. Se ab=acea + 0,
entdo b = c. (Em particular, isto mostra que o numero I do Axioma4 € unico).

TEOREMA 1.8. POSSIBILIDADE DA DIVISAO. Dados a e b com a + 0, existe um e um s6

b :
x tal que ax = b. Este x representa-se por b/a ou - ¢ chama-se o coeciente de b por a. Em

particular 1/a, que rambéem se escreve a”', chama-se o reciproco de a.
TeOREMA 1.9. Se a # 0, entdo bla = b - a™'.
TeOREMA 1.10. Se a # 0, entdo (a')' = a.
TeorReMA LL11. Se ab = 0, entao ou a = 0 ou b = 0.
TEOREMA 1.12. (—a) b = — (ab) e (—a) (—b) = ab.
TEOREMA L.13. (a/b) + (c¢/d) = (ad + bc)/(bd) se b + 0 e d + 0.
TeoOREMA 1.14. (a/b) (¢/d) = (ac)/(bd) se b = 0 e d # 0.

Teorema 1.15. (a/b)/(c/d) = (ad)/(bc) se b # 0, c # 0, e d # 0.

Para ilustrar como estes teoremas podem ser obtidos como consequéncia dos axiomas

apresentaremos as demonstragoes dos Teoremas 1.1 até I.4. Sera instrutivo para o leitor ten-
tar demonstrar os restantes.

Demonstragao de 1.1. Dado a + b = a + ¢. Pelo axioma 5 existe um numero y tal que
¥ + a = 0. Porque a soma ¢ univocamente determinada, temos y + (a + b) = y + (a + ¢). Uti-
lizando a propriedade associativa obtemos (v + @) + b=(y + @) + ¢,ou0 + b =0 + ¢. Mas
pelo axioma 4 temos que 0 + b = b e 0 + ¢ = ¢, ou seja b = ¢. Repare-se que este teorema
mostra que existe um so numero real tendo a propriedade do 0 no axioma 4. Com efeito se 0
e 0’ possuissem ambos essa propriedade, entaoC + 0' =0e 0+ 0 =0e portanto0 + 0' =0
+ 0 e, pela regra de simplificagao, 0 = 0.

Demonstragdo de 1.2. Dados a e b, escolhemos y de modo que @ + y = 0 e seja x = y+b.
Entdioa + x=a + (y + b) = (a + y) + b =0 + b= b. Por conseguinte existe pelo menos um

x, tal que a+x = b. Mass em virtude do teorema I.1 existe quando muito um tal x. Portanto
existe um e um so nessas condigoes.
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Demonstragdo de 1.3. Sejam x=b-a e y=b+(-a). Desejamos provar que x =y,
Por definicao de b — a, x+a=be

y+a=[b+(—a)+a=b+[(—a)+al=b+0=b.
Consequentemente x + @ = y + a e, pelo Teorema L.1, x = y.

Demonstragio de 1.4. Temos a +(—a)=0 por definicgio de —a. Mas esta igualdade
diznos que a € o simétrico de —a, isto €, a = - —a) como se pretendia demonstrar.,

*] 3.3 Exercicios
1. Demonstrar os teoremas 1.5 ate 1.15, utilizando os axiomas 1 a 6 e os teoremas 1.1 a [.4.

Nos exercicios 2 a 10 demonstrar as proposi¢oes formuladas, ou estabelecer as igualdades
dadas. Utilizar os axiomas 1 a 6 e os teoremas 1.1 a L.15.

—0=0.

14=1],

Zero nido admite reciproco.
—(a+b)=—-a-b.
—(a—-b)=—a+b.

@=b+b-c)=a-c.
Sea#0eb+#0,entdo(ab)' =a'b.

—(a/b) = (—a/b) = a/(—=b)seb + 0.

(a/b) — (c/d) = (ad — be)/(bd) se b + 0 e d + 0.

SCEAALAWN

f—

I 3.4 Axiomas de ordem

Este grupo de axiomas diz respeito a um conceito pelo qual se estabelece uma ordenagao
entre os numeros reais. Esta ordenagao permitir-nos-a afirmar se um nimero real € maior ou

menor que outro. Introduzem-se as propriedades de ordem com um conjunto de axiomas
referentes a um novo conceito nao definido dito positividade, para depois definirmos os con-

ceitos de maior que e menor que em termos de positividade.
Admitiremos a existéncia dum certo subconjunto R* < R, chamado conjunto dos nume-

ros positivos, que verifica os trés axiomas de ordem seguinte:
AXIOMA 7. Se x e y pertencem a R, o mesmo se verifica com x + v e xv.,
AXIOMA 8. Paracadarealx+#0,oux e R* ou—xe R*,mas naoambos.

AXIOMA 9. 0 ¢ R*.

Podemos agora definir os simbolos <, >,< e>, chamados respectivamente menor que,
maior que, igual ou menor que e igual ou maior que, da maneira seguinte:
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x < y significa que y — x € positivo;
y > x significa que x < y;
x < ysignifica que ou x < y ou x=y;

» = x significa que x < y.

Assim temos x > 0 se e sO se x € positivo. Se x < 0,dizemos que x € negativo; se x 20 dize-

mos que x & ndo negativo. Um par de desigualdades simultaneas tais como x < y, y < z
escreve-se frequentemente de forma mais abreviada x < y < z; interpretagdes semelhantes

sao dadas as desigualdades compostas x= y < z, x < y <z, X< y < 2.
A partir dos axiomas de ordem podem deduzir-se todas as regras usuais do calculo com
desigualdades. As mais importantes sao apresentadas a seguir como teoremas.

TEOREMA 1.16. Propriedaae tricotomica. Para a e b nimeros reais e arbitrarios verificar-
se-d uma e s6 uma das trés relagoes a < b, b < a ou a = b.

TeEOREMA 1.17. Propriedade transitiva. Sea < be b < cé a < c.

TEOREMA I.18. Sea < béa +c < b+ c

TEOREMA I.19. Sea < bec > 0 é ac < be.

TeEOREMA 1.20. Se a + 0 é a* > 0.

TEOREMA 1.21. 1 > 0.

TEOREMA L.22. Sea < bec < 0 é ac > be.

TeEOREMA 1.23. Se a < b é —a > —b. Em particular, se a < 0, é —a > 0.
TEOREMA 1.24. Se ab > 0, entdo a e b sao ambos positivos, ou ambos negativos.
TEOREMA 1.25. Sea < ce b < d, entaoa + b < ¢ + d.

Também aqui se demonstram apenas alguns teoremas como amostra do processo de
demonstragdo. Os restantes sdo deixados ao leitor como exercicio.

Demonstragao de 1.16. Seja x = b — a. Se x = 0, entdo b — a = a — b = 0 e por conse-
guinte, pelo axioma 9, ndo pode ser nem a > b, nem b > a. Se x # 0, o axioma 8 diz-nos que
ou x > 0 ou x < 0, mas ndao ambos; e portanto ou @ < b ou b < a, mas nao ambos. Em con-
clusao verifica-se uma e so0 uma das trés relagoes a = b, a < b, a < b.
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Demonstragdo de 1.17.Sea < be b < c,entiob—a > 0 e ¢ — b > 0. Em virtude do
axioma 7, podemos somar e escrever (b — a) + (¢ — b) > 0, donde resulta ¢ — a > 0 e por-
tanto a < c.

Demonstragao de 1.18. Sejax =a+c,y=b +c.Entioy—x=b—a.Mas b —a > 0,
pois que b > a. Resulta pois y — x > 0, o que significa que x < y.

Demonstragao de 1.19. Se a < b, entao b — a > 0. Se ¢ > 0, pelo axioma 7 podemos multi-
plicar ¢ por (b — a) e obter (b —a) c > 0. Mas (b—a)c=bc—aceporissobc—ac > 00
que significa que ac < be, como se pretendia demonstrar.

Demonstrag¢ao de 1.20. Se a > 0, entao a » a > 0 pelo axioma 7. Se a < 0, entdo —a > O e
daqui (—a).(—a) > 0 pelo mesmo axioma. Em ambos os casos tem-se a? > 0.

Demonstra¢ao de 1.21. Aplicar o teorema 1.20 com a = 1.
*I 3.5 Exercicios

I. Demonstrar os teoremas [.22 a 1.25, utilizando os teoremas anteriores € 0s axiomas

1 ao9.
Nos exercicios 2 a 10, demonstrar as proposi¢oes ou estabelecer as desigualdades dadas.
Devem utilizar-se os axiomas 1 a 9 e os teoremas 1.1 a [.25.

2. Nao existe nenhum numero real x tal que x? + 1 = 0.

3. A soma de dois nimeros negativos € um numero negativo.

4. Sea > 0,entdao 1/a > 0, se a < 0, entdo 1/a < 0.

5.8 0<a<bentiod<b'<al.

6. Sea<beb<centaioa < c.

7.8eaSbeb<cea=c entao b = c.

8. Para numeros reais a e b quaisquer tem-se @’ + b*> 2 0. Se a e b nao sao ambos 0,
entao a’* + b* > 0.

9. Nido existe nenhum numero real a tal que x < a para todo o real x.

10. Se x verifica 0 € x < h para todo o numero real positivo h, entdo x = 0.

I 3.6 Numeros inteiros ¢ numeros racionais

Ha certos subconjuntos de R que se distinguem porque possuem propriedades especificas
de que nao gozam todos os nameros reais. Nesta sec¢do trataremos de dois destes subconjun-
tos, o dos numeros inteiros € o dos numeros racionais.

Para introduzir os inteiros positivos comegamos com o numero 1, cuja existéncia & garan-
tida pelo axioma 4. O numero 1 + 1 representa-se por 2, 0 nimero 2 + 1 por 3 e assim suces-
sivamente. Os nameros 1, 2, 3, . . . obtidos deste modo pela adi¢ao repetida de 1 sao todos
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positivos e chamam-se inteiros positivos. Em rigor, esta descri¢ao dos numeros inteiros positi-

vos nao € inteiramente completa, porque nao explicamos em pormenor qual o significado
das expressoes “e assim sucessivamente”, ou “adigdo repetida de 1”. Embora o signifi-

cado destas expressoes pareca evidente, num estudo rigoroso do sistema dos numeros reais
torna-se necessario dar uma definigdo mais precisa dos inteiros positivos. Ha varias maneiras
de o fazer. Um método conveniente consiste em introduzir primeiro a nogao de conjunto
indutivo.

DEFINICAO DE UM CONJUNTO INDUTIVO. Um conjunto de mimeros reais diz-se um conjunto
indutivo se possui as propriedades seguintes:

(a) O numero 1 pertence ao conjunto.

(b) Para cada x pertencente ao conjunto, o numero x + 1 também pertence ao conjunto.

Por exemplo, R € um conjunto indutivo. Igualmente o € o conjunto R*. Podemos agora definir
os inteiros positivos como aqueles numeros reais que pertencem a todo o conjunto indutivo.

DEFINICAO DE INTEIROS POSITIVOS. Um mimero real diz-se inteiro positivo se pertence a
todo o conjunto indutivo.

Seja P o conjunto de todos os inteiros positivos. Entao P € um conjunto indutivo porque (a)
contem 1, e (b) contém x + 1 sempre que contenha x. Uma vez que os elementos de P perten-
cem a todo o conjunto indutivo, referimo-nos a P como o menor conjunto indutivo. Esta pro-
priedade do conjunto P constitue a base logica de um tipo de raciocinio que 0s matematicos
chamam demonstragao por indugdo, que se expora, em pormenor, na Parte 4 desta Intro-
dugao.

Os simétricos dos inteiros positivos chamam-se inteiros negativos. Os inteiros positivos
conjuntamente com os inteiros negativos e o zero formam um conjunto Z designado muito
simplesmente por conjunto dos numeros inteiros.

Num estudo completo do sistema dos numeros reais seria necessario, ao chegar a este
ponto, demonstrar certos teoremas acerca dos inteiros. Por exemplo a soma, diferenga ou
produto de dois inteiros € um inteiro, mas o cociente de dois inteiros nao € necessariamente
inteiro. Nao entraremos, todavia, nos pormenores de tais demonstragoes.

O cociente de inteiros a/b (com b # 0) define os numeros racionais. O conjunto dos nime-
ros racionais, representado por Q, contém Z como subconjunto. O leitor podera comprovar
que Q verifica todos os axiomas de corpo e de ordem. Por esta razao dizemos que o conjunto
dos numeros racionais é um corpo ordenado. Os numeros reais que ndo pertencem a Q
chamam-se irracionais.

I 3.7 Interpretagao geométrica dos nimeros reais como pontos de uma recta

O leitor esta, com certeza, familiarizado com a representagao geométrica dos nimeros reais
por meio de pontos de uma reta. Escolhe-se um ponto para representar o 0 e outro, a direita
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de O, para representar 1, como se mostra na figura 1.7. Esta escolha define a escala. Se se
adapta um conjunto apropriado de axiomas para a Geometria euclidiana, entao cada nimero
real corresponde a um ¢ um s6 ponto de reta e, inversamente, cada ponto da reta co-
rresponde a um ¢ um sO numero real. Por este motivo, a reta chama-se frequentemente re-
ta real ou eixo real, ¢ € habitual usarem-se as palavras numero real ¢ ponto como sinonimos,
dizendo-se por isso, muitas vezes, ponto x em vez de ponto correspondente ao numero real x.

A relagdo de ordem entre os numeros reais tem uma interpretagao geometrica simples. Se
x < y, 0 ponto x esta a esquerda de y, como se mostra na fig. .7. Os numeros positivos estao
a direita do 0 e os nimeros negativos a esquerda. Se @ < b, um ponto x satisfaz aa < x < b se
e sO se x esta entre a ¢ b.

Esta possibilidade de representar geometricamente os numeros reais € um poderoso auxi-
liar, pois permite descobrir € compreender melhor estas propriedades dos nimeros reais. O
leitor deve, porém, ter presente que todas as propriedades dos numeros reais apresentadas
como teoremas devem poder deduzir-se dos axiomas, sem qualquer recurso a Geometria. Isto
nao significa que nao se possa fazer uso da Geometria no estudo das propriedades dos nume-
ros reais. Pelo contrario, a Geometria sugere frequentemente o método de demonstragao de
um teorema particular e, algumas vezes, um argumento geomeétrico € mais sugestivo que a
demonstragao puramente analitica (dependente exclusivamente dos axiomas para os nume-

Fig. .7 Numeros reais representados geométricamente sobre uma recta.

ros reais). Neste livro, os argumentos geométricos serdo usados em larga extensdo para
auxiliarem, motivarem ou clarificarem discussdes especificas. Apesar disso, as de-
monstra¢des dos teoremas importantes serdo apresentadas na forma analitica.

I 3.8 Limite superior dum conjunto, elemento maximo, extremo superior (supremo).

Os nove axiomas ja enunciados contém todas as propriedades dos numeros reais tratadas
na algebra elementar. Existe outro axioma, de importancia fundamental no Calculo, que habi-
tualmente nao é tratado nos cursos de algebra elementar. Este axioma (ou algumas proprie-
dades que lhe sio equivalentes) € necessdrio para se estabelecer a reoria dos numeros
irracionais.

Os numeros irracionais aparecem na algebra elementar quando pretendemos resolver cer-
tas equagoes quadraticas. Por exemplo, pretende-se determinar o numero real x tal que
x? = 2. A partir dos nove axiomas ja referidas nao podemos provar que um tal x existe em R,
porque esses nove axiomas sao também satisfeitos por Q, e nao existe nenhum numero racio-
nal x cujo quadrado seja 2. (No Exercicio 11 da Secgao 1. 3.12 esboga-se uma demonstragao
desta afirmagdo). O axioma 10 vai permitir-nos introduzir os numeros irragionais no sistema
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dos numeros reais e, simultineamente, atribuir a este sistema dos nimeros reais uma proprie-
dade de continuidade que é a chave mestra na estrutura logica do Calculo.

Antes de expor o axioma 10, ¢ conveniente introduzir mais alguma terminologia e
notagdes. Suponhamos S um conjunto de numeros reais nao vazio ¢ admitamos que existe
um numero B tal que

x< B

para todo o x de S. Entdo S diz-se limitado superiormente por B. O numero B diz-se um
limite superior de S. Dizemos um limite superior, porque qualquer nimero maior que B sera
também un limite superior de. S. Se um limite superior B pertence a §, entdo B chama-se
elemento mdximo de S. Existira, quando muito, um tal elemento B. Se existir, escrevemos

B=max S.

Entdo B = max S se B € S e x <B para todo 0 x € S. Um conjunto sem limite superior
diz-se nao limitado superiormente.
Os exemplos seguintes ilustram o significado destes termos.

ExempLO 1. Seja S o conjunto de todos os numeros reais positivos. E um conjunto nido
limitado superiormente. Nao tem limite superior nem possui elemento maximo.

EXeEmMPLO 2. Seja S o conjunto de todos os numeros reais x, tais que 0 < x < /. Este con-
Junto e limitado superiormente por 1. Com efeito 1 é o seu elemento maximo.

ExempLO 3. Seja T o conjunto de todos os numeros reais x, tais que ¢ £ x < 1. T € um
conjunto parecido com o do Exemplo 2, excepto que 1 ndo pertence a 7. Este conjunto € limi-
tado superiormente por 1, mas nao possui elemento maximo.

Alguns conjuntos, semelhantes ao do Exemplo 3, sdao limitados superiormente, mas nao
possuem elemento maximo. Para estes conjuntos existe um conceito que substitui o de ele-
mento maximo. Chama-se extremo superior do conjunto ¢ define-se como segue:

DEFINICAO DE EXTREMO SUPERIOR. Um numero B diz-se extremo superior dum conjunto S
nao vazio, se B possui as propriedades seguintes:

(a) B é um limite superior para S.

(b) Nenhum numero menor que B é um limite superior para S.

Se S tem um elemento maximo, este € também o extremo superior de S. Mas se S nao tem
elemento maximo, pode ainda ter um extremo superior. No exemplo 3 dado atras, o numero |
¢ extremo superior de 7, embora 7 nao tenha elemento maximo (Ver fig. 1.8).
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imi i limites superiores de T
s Y limites superiores de S - / p
/ . /7
0 1 \ 0 1< '
maior elemento de S extremo superior de T
(a) S tem elemento maximo: (b) T nao possui elemento maximo, mas tem
max § = 1 extremo superior: sup 7 = 1

Fig. I.8 Limite superior, elemento maximo, supremo.

TEOREMA 1.26. Dois niumeros distintos nao podem ser extremos superiores dum mesmo
conjuntio.

Demonstragao. Sejam B e C dois extremos superiores para um conjunto S. A propriedade
(b) implica que C 2 B, uma vez que B ¢ extremo superior; analogamente, B 2 C jaque C ¢
extremo superior. Logo temos B = C.

Este teorema diz-nos que se existir um extremo superior para um conjunto S, ele € unico e

podemos por isso falar de o extremo superior.
E habitual designar o extremo superior de um conjunto pelo termo mais conciso su-

premo, abreviadamente sup. Adoptando esta convengido escrever-se-a
B=supS

para significar que B € o extremo superior, ou supremo, de S.

I 3.9 O axioma do extremo superior (axioma de compledos titude)

Estamos agora em condigoes de estabelecer o axioma do extremo superior para o sistema
dos numeros reais.

AXI0MA 10: Todo o conjunto nao vazio S de numeros reais, que é limitado superiormente,
tem supremo, isto €, existe um numero real B tal que B = sup S.

Insistimos, uma vez mais, em que o supremo de S ndo pertence necessariamente a S. Com
efeito, sup S pertence a § se e so se S possui elemento maximo, caso em que max S = sup S.
As defini¢oes de limite inferior, limitado inferiormente, elemento minimo formulam-se de
forma semelhante. O leitor devera fazé-lo como exercicio. Se S tem um elemento minimo
. escrevemos min S.
Um numero L diz-se infimo de S se (a) L ¢ um limite inferior de S, e (b) nenhum numero
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maior que L ¢ limite inferior de S. O infimo de S, quando existe, € unico e representa-se
por inf S. Se S possui um elemento minimo entdo min S = inf §.

Recorrendo ao axioma 10 podemos demonstrar o seguinte:

TeOREMA 1.27. Todo o conjunto ndo vazio S que é limitado inferiormente tem infimo, isto
€, existe um numero real L tal que L = inf S.

Demonstragdo. Seja —S o conjunto dos simétricos dos numeros de S. Entao —S € nao
vazio e limitado superiormente. O axioma 10 diz-nos que existe um numero B que € supremo
de —S§. E facil verificar que —B = inf S.

Consideremos uma vez mais os exemplos da Secgao anterior. No Exemplo 1, o conjunto
de todos os numeros reais positivos possui o0 numero 0 como infimo. Este conjunto nao pos-
sui elemento minimo. Nos Exemplos 2 e 3 o numero 0 ¢ o elemento minimo.

Nestes exemplos foi facil determinar se o conjunto S € ou nao limitado superiormente, ou
inferiormente, e foi igualmente facil determinar os numeros sup S e inf S. O exemplo seguinte
mostra que pode ser dificil averiguar da existéncia de limites superiores ou inferiores.

EXEMPLO 4: Seja S o conjunto de todos os nimeros da forma (1 + 1/n)", onde n = 1, 2,
, 9 64
3,... Por exemplo, fazendo n = 1, 2 e 3, encontramos que 0s numeros 2, YRET] pertencem a

S.Todo o numero do conjunto € superior a 1 e assim o conjunto esta limitado inferiormente
e portanto possui infimo. Com um pequeno esforgo pode provar-se que 2 € o0 menor elemento
deS, de modo que inf § = min § = 2. O conjunto S é também limitado superiormente embo-
ra este facto nao seja tao facil de provar (Tente o leitor!). Uma vez sabido que S ¢ limitado
superiormente, 0 axioma 10 assegura-nos que existe um numero que € o supremo de S. Neste
caso nao é facil determinar o valor de sup S a partir de defini¢ao do conjunto S. No capitulo
seguinte aprenderemos que o sup S é um namero irracional, aproximadamente igual a 2,718.
E um nimero importante no Calculo chamado o nimero de Euler e.

I 3.10 A propriedade arquimediana do sistema dos nimeros reais.

Esta sec¢ao contém algumas propriedades importantes do sistema dos numeros reais, as
quais sao consequéncia do axioma do extremo superior.

TeOREMA 1.28. O conjunto P dos niimeros inteiros positivos 1, 2, 3, ... é ilimitado superior-
mente.

Demonstragdo. Suponhamos P limitado superiormente. Vamos mostrar que tal hipotese
conduz a uma contradigao. Uma vez que P € nao vazio, o axioma 10 garante-nos que P pos-
sui supremo, seja b. O numero b — 1 sendo menor que b nao pode ser limite superior de P.
Logo existe pelo menos um inteiro positivo n, tal que n > b — 1. Paraeste ntemosn + 1 > b.
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Uma vez que n + 1 pertence a P, esta conclusao contradiz o fato de que b ¢ um limite supe-
rior de P.

Como corolario do Teorema 1.28 obtém-se imediatamente as consequéncias seguintes:

TeOREMA L.29. Para qualquer real x existe um inteiro positivo n tal que n > x.

Demonstragao. Se assim nao acontecesse, algum x seria um limite superior de P, contradi-
zendo deste modo o Teorema 1.28.

TeEOREMA 1.30. Se x > 0 e se y é um numero real arbitrdrio, existe um inteiro positivo n tal
que nx > y.

Demonstragdo. Aplicar o Teorema 1.29 com x substituido por y/x.

A propriedade enunciada no Teorema [.30 denomina-se frequentemente propriedade
arquimediana do sistema dos numeros reais. Geometricamente significa que cada segmento
de reta, de comprimento arbitrariamente grande, pode ser coberto por um numero finito de
segmentos de reta de comprimento (positivo) dado, tdo pequeno quanto se queira. Por
outras palavras, uma pequena régua, usada um numero suficiente de vezes, pode sempre
medir quaisquer distancias arbitrariamente grandes. Arquimedes considerou esta como uma
propriedade fundamental da reta e estabeleceu-a explicitamente como um dos axiomas da
geometria. Nos séculos XIX e XX construiram-se geometrias nao arquimedianas nas quais este
axioma € rejeitado.

A partir da propriedade arquimediana, podemos demonstrar o seguinte teorema, que nos
sera util no Calculo integral.

TEOREMA 1.3.1. Se trés numeros reais a, x e y verificam as desigualdades

a<x<a+? (L14)

para todo o inteiro n = |, entdo x = a.

Demonstragao. Se x > a, o teorema I.30 garante-nos que existe um inteiro € positivo n para
o qual n (x — a) > y, contradizendo (I.14). Logo, nao podendo ser x > a, teremos x = a.

13.11 Propriedades fundamentais do supremo e do infimo

Nesta secgao analisam-se trés propriedades fundamentais do supremo ¢ infimo que utiliza-
remos mais tarde neste livro. A primeira propriedade estabelece que qualquer conjunto de nu-
meros, possuindo supremo, contém pontos tao proximos quanto se queira do referido supre-
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mo; analogamente, um conjunto possuindo infimo contém pontos arbitrariamente proximos
desse infimo.
TEOREMA 1.32. Seja h um numero positivo dado e seja S um conjunto de numeros reais.
(a) Se S tem supremo, entao para algum x de S serd
x> sui;) S—h.
(b) Se S tem infimo, entdo para algum x de S serd
x<infS+h.

Demonstragao de (a). Se tivessemos x <sup S — h para todo o x € S, entao sup § — A
seria um limite superior de S menor que o seu supremo. Por conseguinte deve ser x > sup
S — h para, pelo menos, um x € §, o que demonstra (a). A demonstragao de (b) é semelhante.

TEOREMA 1.33. PROPRIEDADE ADITIVA. Dados dois subconjuntos ndo vazios A e B de R,
seja C o conjunto

={a+blacA beB}.
(a) Se A e B tém supremo, entdo C tem supremo e
supC=sup A4 + sup B.
(b) Se A e B possuem infimo, entdo C possui infimo e

infC=infA4 + inf B.

Demonstragao. Suponhamos que 4 e B tém supremo. Sec € C,entdo c=a+bcomac A
e b € B. Portanto ¢ Ssup A + sup B; deste modo sup A + sup B € um limite superior de C.

Isto prova que C tem supremo € que
sup C < sup 4 + sup B.

Seja agora n um inteiro e positivo qualquer. Segundo o teorema I 32 (com h = 1/n) existe um
aem A e um b em B, tais que

, b>supB-—%.

|

a>sup A —
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Somando estas desigualdades obtemos a + b > sup 4 + sup B — —’2-!—, ou sup A + Sup B <

2
<a+b+ — < Sup C + —i—, uma vez que a + b < sup C. Temos portanto demons-

trado que

supCﬁsupA+supB<supC+%

para todo o inteiro n 2 ' Em virtude do teorema [.31 devemos ter sup C = sup A4 + sup B,
0 que prova (a); a demonstragdo de (b) é analoga.

TeOREMA 1.34. Dados dois subconjuntos nao vazios, S e T de R tais que

s<t

para todo s de S e t de T, entao S tem supremo e T tem infimo e verifica-se
sup S <inf T

Demonstragao.Cada ¢t de T € um limite superior para S. Portanto § tem supremo que
satisfaz a desigualdade sup S < ¢ para todo o 7 de 7. Daqui resulta que sup S € um limite infe-
rior para T, e assim 7 tem um infimo que nao pode ser*'menor que sup S. Por outras palavras,
temos sup S < inf 7, como se queria provar.

*I 3.12 Exercicios

]. Se x e y sao numeros reais quaisquer com x < y, provar que existe pelo menos um
numero real z tal que x < z < .

2. Se x € um numero real arbitrario, provar que existem inteiros m € n tais que m < x < n.

. Se x > 0, provar que existe um inteiro positivo » tal que 1/n < x.

4. Se x ¢ um numero real arbitrario, provar que existe um inteiro n unico que verifica as
desigualdades n € x < n + 1. Este n € chamado a parte inteira de x e representa-se
por [x].

Por exemplo [5] = 5, [5/2] = 2, [ -8/3] = 3.

5. Se x € um numero real arbitrario, provar que existe um inteiro n unico que verifica as
desigualdades x £ n < x + L

6. Se x e y sao numeros reais arbitrarios, com x < y, provar que existe pelo menos um
numero racional r satisfazendo a x < r < y, e deduzir daqui que existem infinitos. Esta

L7 ]
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propriedade exprime-se dizendo que o conjunto dos nimeros racionais ¢ denso no sis-
tema dos numeros reais.
7. Se x é racional, x # 0, e y irracional, provar que x + y, x — y, xy, x/y, y/x sao todos
irracionais.
. A soma ou o produto de dois nimeros irracionais ¢ sempre um numero irracional?
9. Se x e y sdo nimeros reais arbitrarios, com x < y, provar que existe pelo menos um
numero irracional z tal que x < z < y e deduzir que existem infinitos.
10. Um inteiro diz-se par se n = 2m para algum inteiro m e impar se n + | & par.
Provar as afirmagoes seguintes:
(a) Um inteiro ndao pode ser simultaneamente par e impar.
(b) Todo o inteiro ou € par ou impar.'.
(c) A soma ou o produto de dois inteiros pares ¢ par. Que se pode dizer acerca da
soma ou produto de dois inteiros impares?
(d) Se n® ¢ par, também n o é. Se @’ = 2 b?, com a e b inteiros, entdao a e b sao
ambos pares.
(e) Todo o numero racional pode expressar-se na forma a/b, com a e b inteiros, um
dos quais pelo menos € impar.
1. Provar que nao existe nenhum numero racional cujo quadrado seja 2.

oo

| Sugestao: Seguir um raciocinio de redugao ao absurdo. Supoe-se (a/b)’ = 2, coma e
b inteiros, um dos quais, pelo menos, é impar. Utilizar partes do Exercicio 10 para
reduzir o raciocinio ao absurdo.]

12. A propriedade arquimediana do sistema dos numeros reais foi deduzida como con-
sequéncia do axioma do extremo superior. Demonstrar que o conjunto dos numeros
racionais satisfaz a propriedade arquimediana, mas nao ao axioma do extremo
superior. Isto prova que a propriedade arquimediana nao implica o axioma do
extremo superior.

*I 3.13. Existéncia de raizes quadradas para os nimeros reais nao negativos

Foi apontado anteriormente que a equagao x’ = 2 nao tem solugdes entre 0s nimeros
racionais. Com auxilio do axioma 10, podemos demonstrar que a equagio x> = & tem
solugOes entre os numeros reais se a > 0. Cada tal x chama-se raiz quadrada de a.

Em primeiro lugar vejamos algumas consideragoes relativas a raiz quadrada, sem ter em
conta o axioma 10. Os numeros negativos nao podem ter raiz quadrada, porque se x* = a,
entao a, sendo um quadrado, deve ser nao negativo (pelo teorema 1.20). Além disso se a = 0,
x = 0 ¢ a unica raiz quadrada (pelo teorema I.11). Suponhamos, entao, que @ > 0. Se x* = a,
entdo x # 0 e (—x)* = @ e assim x ¢ 0 seu simétrico sdo ambos raizes quadradas. Por outras
palavras, se a tem uma raiz quadrada, entao tem duas raizes quadradas, uma positiva e outra
negativa. Além disso, tem quando muito duas porque se x* = a e y* = a, entdo x* = y’ e
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(x — y) (x + y) = 0 e, deste modo, pelo teorema I.11 ou x = y ou x = — y. Portanto, se @ tem
uma raiz quadrada tem exactamente duas.

A existéncia de pelo menos uma raiz quadrada pode ser deduzida por recurso a um impor-
tante teorema do calculo, mas ¢ instrutivo ver como pode essa existéncia ser provada direta-
mente, a partir do axioma 10.

TEOREMA 1.35. Todo o numero real ndo negativo a tem uma raiz quadrada nao negativa
unica.

Nota: Se a > 0, representamos a sua raiz quadrada ndo negativa por a'? ou por va.
Sejaa > 0, a raiz quadrada negativa ¢ —a'? ou-\/a.

Demonstragdo. Se a = 0, entdo 0 € a unica raiz quadrada. Suponhamos, entéo, que a > 0.
Seja S o conjunto de todos 0s numeros x reais positivos taisque x? £ a.Uma vez que (1l + a)’
> a, 0o nimero |1 + a € um limite superior de S. Mas S & ndo vazio porque o numero a/(1 + a)
pertence a S; com efeito a? £ a(l + a)? e daqui a*/(1 + a)’ £ a. Pelo axioma 10, S tem
supremo que designaremos por b. Repare-se que b 2 a/(1 + a) e portanto b > 0. Existem uni-
camente trés possibilidades: b* > 2, b < a ou b* = a.

1 - 2 9
Suponhamos &* > aesejac=b-(b*-a)/(2b) = =N (b +a/b).Entaio0 < c<bec® = —

—(b* — a) + (b* — a)*/(4b*)= a + (b* — a)*/(4h*) >a. Portanto ¢*> x’ para cada x de S, isto é,
¢ > x para cada x de S, esta conclusao significa que ¢ € um limite superior de S. Uma vez que
¢ < b, estamos perante uma contradi¢ao porque b era o menor limite superior de S. Portanto
a desigualdade b > a é impossivel.

Suponhamos & < a. Se b > 0, podemos escolher um nimero positivo ¢ tal que ¢ < be
¢ < (a — b*)/(3b) e entdo pode escrever-se

b+c)P=b24tc2b+c)<bP+3bc<bP+(a—b)=a.
Quer dizer, b + ¢ pertence a S. Porque b + ¢ > b, isto contradiz o fato de b ser um limite

superior de S, e a desigualdade b* < a € impossivel, restando como tUnica hipotese possivel
b? = a.

*I 3.14 Raizes de ordem superior. Poténcias racionais

O axioma do extremo superior pode utilizar-se para mostrar também a existéncia de raizes
de ordem superior. Por exemplo, se n € um inteiro positivo impar, entdo para cada real x
existe um € um so real y tal que yn= x. Este y denomina-se raiz n-enésima de x e re-
presenta-se por

y=x"  ou y=VXx. (L15)
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Se n é par, a situagao ¢ um pouco diferente. Neste caso, se x € negativo nao existe nenhum
real y tal que " = x, porque " > 0 para todo o real y. Porém, se x € positivo pode
demonstrar-se que existe um e um so positivo y tal que y"= x. Este y denomina-se a
n-enésima raiz positiva de x e representa-se pelos simbolos (1.15). Sendo n par (—y)"= y"
e portanto cada x > O tem duas raizes n-enésimas reais, y ¢ —y. Contudo os simbolos
xVne Q/\_ reservam-se para a n-enesima raiz positiva. Nio expomos as demonstra-
¢Oes destas afirmagdes aqui, porque elas deduzir-se-io, mais adiante, como conse-
quéncias do teorema de valor intermédio para fungdes continuas (Ver Secgdo 3.10).

Se r € um nimero racional positivo, r = o com m e n inteiros positivos, definimos ¥ como

(x™'" isto € a n-enésima raiz de x™ sempre que exista. Se x # 0 definimos x™ = 1/x’ sem-
pre que x” seja definido. A partir destas definigdes ¢ facil verificar que as propriedades usuais

das poténcias sio validas para expoentes racionais: x"-x* = x5 (xX) =x" e (xy)" = x)".

*I 3.15 Representagao dos niimeros reais por meio de decimais

Um numero real da forma

r=dt 0 o 10"

onde g, ¢ um inteiro nao negativo € a,, a,, ..., @, sao inteiros verificando 0 <g; < 9, escreve-se
mais abreviadamente da maneira seguinte:

r=ay ayay," " da,.

Esta é a representacdo décimal finita de r. Por exemplo

7+2+5 7,25
- 10 108 7T

o)
S _ 0,5, 1_2
10 50 10°

= 0,02,

B |-
=13

Numeros reais deste tipo sdo necessariamente racionais ¢ todos eles sio da forma r = a/10”
com a inteiro. Porém, nem todos 0s numeros racionais podem exprimir-se por meio duma

e . - - l - - l
representagao décimal finita. Por exemplo, se 3 pudesse ser expresso assim teriamos 3=

=a/10", ou 3a=10" para algum inteiro a. Mas isto é impossivel, uma vez que 3 nio é divisor
de nenhuma poténcia de dez.

Apesar disso, podemos representar um numero real qualquer x > 0, com um grau de apro-
ximag¢ao desejado, por uma soma da forma (I.16), tomando n suficientemente grande. A
razao disto pode ver-se mediante 0 seguinte argumento geometrico: se x nao € inteiro esta
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compreendido entre dois inteiros consecutivos, sejam a, < x < a, + 1. O segmento definido
por a, € a, + 1 pode dividir-se em dez partes iguais. Se x ndo coincide com nenhum dos pon-

tos de divisao, estara compreendido entre dois pontos consecutivos. Isto da lugar ao par de
desigualdades da forma

. - - . - - - a
onde a, € um inteiro (0 € a, £ 9). Subdivide-se em seguida o segmento definido por a, + 1—(‘)
e a, + (a, + 1)/10 em dez partes iguais (cada uma de medida 107*) e continua-se o processo.
Se depois de um numero finito de divisdes um dos pontos coincide com x, x € um numero
da forma (I-16). Se tal nao se verifica, o processo continua-se indefinidamente e gera-se um
conjunto infinito de inteiros a,, a,, a,, .... Neste caso diz-se que x tem a representagao décimal

infinita

x - ao.alaza3 ke a

Depois de n subdivisoes, x verifica as desigualdades

a a, a a, + 1
G+ 2+ <x<a+ 24+ 22—,
T 10" ottt T e

as quais nos dao duas aproximagdes de x, uma por excesso e a outra por defeito, por
decimais finitos que diferem de 10", Portanto podemos obter um grau de aproximagao dese-
Jado, bastando para tanto tomar n suficientemente grande.
| PP I .
Quando x = 3¢ facil verificar que g, =0 e a, = 3 pararn 21 e portanto a aproximagao
decimal correspondiente é

§=0333---.

Cada numero irracional tem uma representagao decimal infinita. ror exemplo, quando
x=v2 podemos calcular por tentativas tantos digitos quantos os desejados da sua represen-
tagdo decimal. Com efeito /2 esta compreendido entre 1,4 ¢ 1,5, ja que (1,4) < 2 < (1,5).
Do mesmo modo, quadrando e comparando com 2 obtém-se as seguintes aproximagoes
sucessivas

L4l < V2 <142, 1414<V2< 1,415, 14142 < V2 < 1,4143.

Note-se que o processo anterior gera uma sucessao de intervalos de comprimento 107",
1072, 1077, ..., cada um contido no anterior ¢ conténdo o ponto x. Este ¢ um exemplo do que
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se designa por encaixe de intervalos, um conceito que se utiliza algumas vezes como base
para construir 0s numeros irracionais a partir dos racionais.

Uma vez que neste livro pouco uso se fara dos numeros decimais, nao desenvolveremos
com pormenor as suas propriedades e apenas mencionamos como se podem definir analitica-
mente desenvolvimentos decimais com auxilio do axioma do extremo superior.

Se x e um numero real positivo dado, seja a, o maior inteiro £ x. Escolhido a,, seja a, o
maior inteiro tal que

4
g+ — < x.
10
Em geral, determinados a,, a,, ..., @ ne1? seja a,o maior inteiro tal que

a,

a, dg ,
LR Ry 1.17)
%+ 0T 100 10" (
Seja S o conjunto de todos 0s numeros
ay a a,
aG+—+—=+""""+-= (I1.18)
"0 10 10"

obtidos desta maneira para n = 0, 1, 2, ... Entdo S € ndo vazio e limitado superiormente e ¢
facil verificar que o supremo coincide com x. Os inteiros ag, a,, @,, ... assim obtidos podem
utilizar-se par definir uma representagao decimal de x, pondo

X = @y.0,0x03 " " *

onde o digito a,, que ocupa o n-enésimo lugar, € 0 maior inteiro que satisfaz a (1-17). Por

I .
exemplo, se x = 3 encontramos @, =0, a, =1, a,=2,a,=5 e a,=0 para n 2 4. Portan-

to podemos descrever

= 0,125000 - - - .

Se em (I.17) substituimos o sinal < por < obtemos uma defini¢ao ligeiramente diferente da
expressao decimal. O exwremo superior de todos os numeros da forma (1.18) é igualmente x,
embora os inteiros a,, 4,, a,, ... N30 sejam necessariamente 0s mesmos que satisfazem (1.17).

- . 1
Por exemplo se esta segunda definigao se aplica a x = R encontramos a, = 0, a, = 1,
a,=2,a,=4e a,= 9 para n 2 4. Isto conduz-nos a representacao decimal infinita.

1=0,124999 - - - .
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O fato de que um nimero real possa ter duas representagdes decimais diferentes ¢é
simplesmente o reflexo de dois conjuntos diferentes de nimeros reais poderem ter o
mesmo supremo.

Parte 4. Indugao matemadtica, simbolo somatorio e questoes afins

14.1 Um exemplo de demonstragdo por indugdo matematica

Uma vez que somando | ao inteiro k se obtém & + | que € maior do que k., ndo existe ne-
nhum inteiro que seja o maior de todos. Contudo, partindo do nimero 1, podemos alcangar
qualquer inteiro positivo depois dum nimero finito de operagdes, passando sucessivamente
de k a k + 1 em cada uma. Esta ¢ a base de um tipo de raciocinio que os matematicos cha-
mam demonstragao por indugdo. llustraremos a aplicagao deste método, demonstrando a
dupla desigualdade usada na Segao I.1.3 para o calculo da area dum “segmento paraboli-
co”, a saber

3
l'+22+'--+(n—1)2<%<12+2“+--*+nz. (1.19)

Consideremos em primeiro lugar a desigualdade da esquerda, formula que abreviadamente se
designara por A(n) (afirmagdo respeitante a n). E imediata a verificagdo direta desta
assergao para os primeiros valores de n, pois que se por exemplo » tomar os valores 1,2¢e 3 a
afirmagao vira

18 23 33
A(I):0<;, A(2):lz<;, A(3):I’+2’<;,

supondo que se interpreta a soma do primeiro membro como 0 para n = 1.

E nosso objetivo provar que A(n) é verdadeira para todo o inteiro positivo n. O processo
consiste no seguinte: suponhamos a afirmagdo ja provada para um valor particular de n.,
digamos n = k. Quer isto dizer que supomos provada

3
A(k):l’+2’+---+(k—l)2<%

para um k 2 |. Entdio utilizando agora A(k). devemos provar o correspondente resultado
para k + 1:

- 13
A(k-i-l):l"+22+...+k2<(k-|;1) -
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Somando k* a ambos os membros de A(k) obtém-se

.3
12+2*+---+k2<%+k2.

e para obter A(k + 1),como consequéncia daquela, basta mostrar que

ks
—+ k<
3

(k +1)°
Mas isto resulta imediato da igualdade

, 3 3 2 . 3
(k+ 1 _ K+ +3k+1 K e 1
3 3 3 3

Portanto provamos que A(k + 1) ¢ uma consequéncia de A(k). Agora, uma vez que
A(1) foi verificada directamente, concluimos que A(2) ¢ também verdadeira. Sabendo que
A(2) e verdadeira concluimos que A(3) é verdadeira e assim sucessivamente. Considerando
que cada inteiro pode alcangar-se por este processo, A(n) € verdadeira para todo o z inteiro e
positivo. Esta assim provada a desigualdade da esquerda em (I.19). A desigualdade da direita
pode provar-se do.mesmo modo.

1 4.2 O principio da indu¢cao matematica

O leitor deve ficar seguro de que compreendeu o esquema da demonstragdo anterior. Em
primeiro lugar provou-se a afirmagdo A(n) para n = 1. Em seguida mostrou-se que se a afir-
magao & verdadeira para um inteiro dado, entdo é também verdadeira para o inteiro seguinte.
A partir daqui conclui-se que a afirmagao € verdadeira para todos os inteiros positivos.

A ideia de indugao pode ilustrar-se com muitos exemplos ndo matematicos. Assim, imagi-
nemos uma fila de soldados de chumbo, numerados consecutivamente e suponhamos que
estao colocados de tal modo que se um deles cai, por exemplo o assinalado com o simbolo %,
ele choca com o seguinte, assinalado com & + 1. Entao qualquer pessoa pode imaginar o que
acontecerda se 0 soldado numero ! ¢ tombado pura tras. Também ¢ evidente que se
fosse tombado para tras um soldado que ndo o primeiro, por exemplo o assinalado com
n,, todos os soldados depois dele cairiam. Este exemplo ilustra uma generalizagio do
método de indugio, a qual pode ser descrita do modo seguinte.

Meétodo de demonstragdo por indugao. Seja A(n) uma afirmacgao referente a um inteiro n.
Concluimos que A(n) é verdadeira para cada n > n, se € possivel:

(a) Provar que A(n,) e verdadeira.

(b) Provar que, suposta A(k) verdadeira com k um inteiro positivo fixo > n,, A(k + 1) ¢
verdadeira.
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Na pratica n, ¢ geralmente 1. A justificagao logica deste método de demonstragao € o
seguinte teorema relativo a numero reais.

TEOREMA 1.36. PRINCIPIO DE INDUCAO MATEMATICA. Seja S um conjunto de inteiros
positivos que goza das seguintes propriedades:

(a) O numero 1 pertence ao conjunto S

(b) Se o numero k pertence a S também k + 1 pertence a S.

Logo todo o inteiro positivo pertence ao conjunto S.

Demonstragao: As propriedades (a) e (b) dizem-nos que S € um conjunto indutivo. Mas os
inteiros positivos foram definidos como sendo os nimeros reais que pertencem a todo o con-
junto indutivo (Ver Segdo I 3.6). Portanto S contém todo o inteiro positivo.

Quando efetuamos a demonstragdo de uma afirmagao A(n) para todo n 2 1 por indugao
matematica, estamos a aplicar o teorema 1.36 ao conjunto S de todos os inteiros para os
quais a afirmagao € verdadeira. Se desejamos provar que A(n) € verdadeira unicamente para
n 2 n,, aplicamos o teorema 1.36 ao conjunto dos numeros n para os quais ¢ verdadeira
A(r + n, — 1)

*1 4.3 O principio de boa ordenacido

Existe uma outra importante propriedade dos inteiros positivos, chamada o principio de
boa ordenagdo que é também usada como base para demonstragdes por indugio. Pode
ser estabelecido como segue.

TEOREMA 1.37. PRINCIPIO DE BOA ORDENACAO. Todo o conjunto ndo vazio de mime-
ros inteiros positivos contém um elemenio que € o menor. ‘

Note-se que o principio refere-se a conjuntos de inteiros positivos. O teorema nao € verda-
deiro para conjuntos de inteiros quaisquer. Por exemplo, o conjunto de todos os inteiros nao
tém um elemento que seja 0 menor.

O principio de boa ordenag¢lio pode deduzir-se a partir do principio de indugdo, ¢
isso sera demonstrado na Seg¢do 1.4.5. Concluimos esta se¢io com um exemplo, no
qual se mostra como s¢ pode aplicar o principio de boa ordenag¢io para demonstrar
teoremas relativos a inteiros positivos.

Represente A(n) a seguinte afirmagao:
An): 24+ 22 4 -+ n* =

De novo se observa que A(1) é verdadeira, uma vez que

=4+ 3+3.
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Ha agora somente duas possibilidades. Ou

(i) A(n) € verdadeira para todo o inteiro positivo n, ou

(i1) ha pelo menos um inteiro positivo n para o qual A(n) € falsa.

Trata-se de provar que a alternativa (ii) conduz a uma contradi¢do. Suponhamos (ii)
verdadeira. Entdo pelo principio de boa ordenagido existira um inteiro e positivo menor
que todos os outros, digamos k, para o qual A(k) ¢ falsa. (Estamos a aplicar o principio ao
conjunto de todos os inteiros positivos n para os quais A(n) é falsa. A alternativa (ii) garan-
te que este conjunto ¢ ndo vazio.) Este k deve ser maior que |, porque verificamos que
A(1) era verdadeira. Igualmente a afirmagdo deve ser verdadeira para k-1, uma vez que
¢ k 0 menor inteiro para o qual A(k) € falsa; portanto podemos escrever

(k=12 (k—1®  k—1
3 + 2 + 6

Ak —1): 124224+ 4 (k=1)}=

Adicionando k* a ambos os membros e simplicando o segundo membro encontramos

3 -2
rery = KLk
32 6

Mas esta igualdade prova que A(k) € verdadeira; deste modo estamos perante uma contra-
digao, porque k € um inteiro para o qual A(k) era falsa. Por outras palavras, a alternativa (ii)
conduz a uma contradigao. Quer isto dizer que (i) se verifica, o que prova que a identidade
em questao ¢ valida para n 2 1. Uma consequéncia imediata desta identidade ¢ a desigual-
dade da direita em (1.19).

Uma demonstragao na qual, como no exemplo apresentado, se faga uso do principio da
boa ordenagiio, pode substituir-se por uma demonstragio por indugio. Sem duvida,
que se poderia ter feito a demonstragdo na forma mais usual, verificando A (1) e depois
passando de A(k)a A(k + 1).

1 4.4 Exercicios

1. Demonstrar por indugdo as relagoes seguintes:
@ 1+2+4+3+- - +n=nn+1)2.
143454+ +4+@2n—-1)=n%
© 1PP+224+3F¥ 4+ +nl=>01+2+3+" - +n
P+24+ =1l <nfda<PP+2+ - +n

2. Observar que
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| —4=—(1+2),
1 —4+9=1+2+3,
1 —449—-16=—(1+2+3 +4).

Inferir a expressao geral e prova-la por indugao.
. Observar que

1+4=2-1,
l+3+i=2-1,
l+3+3+3=2-4}.

Inferir a expressao geral e demonstra-la por indugdo.
. Observar que

1—1=1,
(1 -=Ha -4 =
a-Ha-Ha -H =1.

s GO R

Inferir a expressao geral e demonstra-la por indugao.
. Inferir a expressao geral que exprime de modo simplificado o produto

(=08 (-

¢ demonstra-la por indugao.
. Seja A(n) aproposigao: | + 2 + ... + n= —é— (2n + 1)L

(a) Provar que se A(k) € verdadeira para um inteiro k, entao A(k + 1) € também verda-
deira.

(b) Criticar a afirmagao: “Por indugao resulta que 4A(n) é verdadeira para todo o n”.

(¢) Modificar A(n), mudando a igualdade numa desigualdade que seja verdadeira para
todo o inteiro positivo n.

. Seja n, o menor inteiro positivo n para o qual a desigualdade (1 + x)" > 1 + nx + nx?
¢ verdadeira, qualquer que seja x > 0. Determinar n, e provar que a desigualdade ¢
verdadeira paratodoointerron 2 n,.

. Dados os numeros reais positivos a,, a,, ..., tais que a, < ca, , para todo o n 2 2, com

¢ um numero positivo fixo, aplicar o método de indugao para provar que a, < a, "'
para todo o n 2 1.
. Provar, por indugao, a seguinte afirmagao: Dado um segmento de comprimento uni-
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dade, entdo o segmento de comprimento v/ pode construir-se com régua e compasso,
para cada inteiro e positivo n.

10. Seja b um inteiro positivo. Demonstrar por indugao a proposigao seguinte: Para cada
inteiro n 2 0, existem infeiros ndao negativos ¢ e r tais que

n=gb+r, 0<r<hb.

1T Sejum n e d inteiros. Diz-se que d ¢ um divisor de nse n = ¢d para algum inteiro ¢. Um
inteiro n diz-se primo se n > 1 e se os unicos divisores positivos de n sao n e 1. Provar,
por indugdo, que cada inteiro n > 1 ou € primo, ou € um produto de fatores primos.
12. Explicar o erro na seguinte “demonstragao” por indugao:

Proposigao: dado um conjunto de n raparigas loiras, se pelo menos uma delas tem
olhos azuis, entdo as n tém olhos azuis.

Demonstragdo: A proposigao € verdadeira para n = 1. A passagem de k a k + 1 pode
exemplificar-se passando de 3 a 4. Suponhamos para isso que a proposigao ¢ verdadeira
para n = 3 e sejam G,, G,, G,, G, quatro raparigas loiras tais que uma delas, pelo menos,
tenha olhos azuis, por exemplo a G,. Tomando G,, G,, G, conjuntamente ¢ fazendo uso
da proposi¢do verdadeira para n = 3, resulta que também G, ¢ G, tém olhos azuis. Repe-
tindo o processo com G,, G, e G, conclui-se igualmente que G, tem olhos azuis, isto &, as
quatro tem olhos azuis. Um raciocinio analogo permite a passagem de k a k + / em
geral.

Corolario: Todas as raparigas tém olhos azuis.

Demonstragao. Uma vez que existe efetivamente uma rapariga com olhos azuis, pode
aplicar-se o resultado precedente ao conjunto formado por todas as raparigas loiras.

Nota: Este exemplo deve-se a G. Pdlya que sugere ao leitor que comprove experimen-
talmente a validade da proposigao.

*I 4.5 Demonstracio do principio de boa ordenacio

Passamos agora & dedug¢do do principio de boa ordenagdo, a partir do principio de
indugdo. Seja T um conjunto ndio vazio de inteiros positivos. Desejamos provar que T
possul um numero que ¢ 0 menor, isto €, que existe em 7 um inteiro positivo ¢, tal que
ly < t para qualquer r de T.

Admitamos que tal nao se verificava. Devemos provar que isto conduz a uma contradigao.
O inteiro 1 ndo pode estar em 7 (caso contrario, seria ele o menor elemento de 7). Represente
S o conjunto de todos os inteiros positivos n, tais que n <  para todo o ¢ de T. Por conse-
guinte | esta em S porque 1 < ¢ para todo o ¢ de 7. Em seguida, seja k um inteiro positivo de
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S. Entao k < t para todo o ¢ de T. Devemos provar que k + 1 esta também em S. Se tal ndo
se verificasse, entdo para algum ¢, em 7T teriamos#, £ k + |. Uma vez que T nilo possui ne-
nhum elemento minimo, existird um inteiro 7, em 7T talquet, < t, edaquit, < k + 1. Mas isto
significa que ¢, < k,contradizendo o fato de que k < t para todo o t em 7. Portanto k + 1
esta em §. Pelo principio de indugac, S contém tedos os inteiros € positivos. Uma vez que T é
nao vazio, existe um inteiro positivo / em 7. Mas este ¢ devera também pertencer a S (pois
que S contéem todos os inteiros). Resulta da defini¢do de S que 7 < ¢, 0 que & absurdo. Por-
tanto a hipotese de que 7" nao possui nenhum elemento menor que todos os outros conduz a
uma contradi¢ao. Resulta pois que 7" deve ter um elemento minimo e, por sua vez, isto prova
que o principio de boa ordenagiio ¢ uma consequéncia do principio de indugio.

14.6 O simbolo somatorio

No cilculo da drea do “segmento parabdlico™ encontrdmos a soma
124224324 -+« 4 n*. (1.20)

Repare-se que o termo geral da soma € da forma A ¢ que se¢ obtém todos os termos
fazendo k variar de 1 até n. Ha um simbolo muito util e conveniente, o qual nos permite
escrever somas semelhantes a esta numa forma mais compacta, designando simbolo somato-
rio e representado pela letra grega X. Fazendo uso do simbolo somatorio podemos escrever a
soma (1.20) como segue:

Este simbolo 1é-se: “Soma de k?, para k variando de 1 a n”. Os nimeros aparecendo em
baixo e por cima de L dao-nos a série de valores assumidos por k. A letra k designa-se por
indice de somagdo. Sem duvida que nao tem significado especial o uso da letra k; qualquer
outra letra pode ocupar o seu lugar. Por exemplo em vez de X _, k? poderemos escrever

o E};] J4EN _ m?, etc., sendo todas as expresdes alternativas de representagio duma

mesma coisa. As letras i, j, k, m, etc., utilizadas na notagao anterior sao indices mudos. Nao
seria muito conveniente ter utilizado n como indice mudo neste exemplo particular, porque 7
ja estava a ser usado para o numero de termos.

Mais geralmente, quando desejamos formar a soma de varios numeros reais, por exemplo
a,, a,, ..., a, representamos a soma por

a+a+--+a, (1.21)

a qual, usando o simbolo somatorio, se pode escrever
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2 a. (1.22)
Por exemplo, temos
a. = a, + a, + az + a,,

X; = X; + Xg + X3 + Xy + X5.

Por vezes ¢ necessario iniciar a soma por 0 ou por algum valor superior a | do indice.
Por exemplo, temos

4
le = X +x, +.\'2 +x3+ Xygs
=0

2n“=23+33+43+53.

D=1
1

I
+
ra
+
)
4
N
+
N
.+_
N

[
Jo=
Para dar, uma vez mais, énfase a importancia da escolha do indice mudo, note-se que a ul-
tima soma pode escrever-se em qualquer uma das seguintes formas:

6 5 5 6 -
2(.r~-l — 2r — 25—:1 — 2 o '.
qgl fg'o Z kgl

=0

Nota: Dum ponto de vista estrictamente logico, os simbolos em (1.21) e (1.22) nao apare-
cem entre os primitivos simbolos para o sistema dos numeros reais. Dum ponto de vista mais
rigoroso, dever-se-iam definir estes novos simbolos a partir dos primitivos simbolos nao defi-
nidos nesse sistema. Pode fazer-se isto recorrendo a um processo designado definigdo por
indugdo, o qual, tal como a demonstragdo por indugdo, consta de duas partes:

(a) Define-se

1
z(fk - “’] .
k=1
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(b) Admitindo definida >7_, a, para um n > 1 fixo, define-se

n+1 " A
D a. = (Zak) + a,., .-
k=1
Por exemplo, pode-se tomar n = 1 em (b) e utilizar (a) para se obter
2 1
Sa,=Ya, +a,=a, +a,.
k=1 k=1
Definida Z‘.;‘:: | @;» pode aplicar-se novamente (b) agora com n = 2 para se obter

3 2
Zak=zak+a3=(al+ag)+a3.
k=1 k=1

Pela propriedade associativa da adigao (Axioma 2), a soma (a, + a,) + a, € a mesma que
a, + (a, + a,) e, portanto, podem suprimir-se os paréntesis sem perigo de confusio e escrever
simplesmente

@, + a, + ag para X _, a.
Analogamente:

a 3
Zak =Za,, + ay =(a, + a, + a3) + a,.
k=1 P

Neste caso pode provar-se que a soma (a, + a, + a;) + a, ¢ a mesma que (a, + a,) + (a; +
+ a,) ou a, + (a, + a, + a,) e, portanto, o paréntesis pode ser eliminado também sem perigo
de ambiguidade e escrever-se : '

4
Ddag=a, +ay+ay +a,.

k=1

Prosseguindo deste modo, encontra-se que (a) e (b) conjuntamente dao-nos uma definigao
completa do simbolo (I.22). A notagao em 1.21 é uma outra forma de escrever (1.22). Tal
notagao esta justificada por uma propriedade associativa geral da adi¢ao, a qual ndao sera
nem enunciada nem demonstrada aqui. Deve notar-se que a definigdo por indugdo e a
demonstragao por indugdo encerram a mesma ideia fundamental. Uma defini¢ao por indugao
diz-se também uma definigdo por recorréncia.
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14.7 Exercicios

1. Achar os valores numericos das seguintes somas:

3 3
@Sk @32, (©3@i+1),
k=1

r=0 =0

n=2 =1

3 4 5 l
y A d n f .
G322 (@Y, ()Zk(k+l)
2. Estabelecer as seguintes propriedades do simbolo somatorio,

(a) i (ap + by) = i a, + i b, (propriedade aditiva)
k‘l

k=1 k=1

(b) i (cay) = ¢ Zn: a; (propriedade homogénea)
k=1 k=1

(c) i (@, — ay_y) = a, — a, (propriedade telescopica)
k=1

Utilizar as propriedades do Exercicio 2, sempre que possivel, para deduzir as formulas

dos Exercicios 3 a 8.

3. ¥ 1 =n. (Isto signitica Y -, @ , quando cada a, = 1),
k=1
4. 3@k —1) = nt. (Sugestdo: 2%k — 1 =k* — (k — 1)?].
k=1
S n” n
5 k =3 +3. [Sugestdo: Utilizar os exercicios 3 ¢ 4].
k=1
§ n nt
. ?=— 4+ —4+-. [Sugestgo: k¥ — (k — 1) = 3k* — 3k + 1L
6 Zk 7ty tg. [Suge ( y
z o nt
I — —
7 ;k =372 73
n l _ pntl -
8. (a) Zx“ = T  sex # 1. Nota: Por definigao, x° = 1
& 1 — x

[Sugestdo: Aplicar o Exercicio 2 a (1 — x) )22:0 ]

(b) A que ¢ igual a soma, quando x = 1?
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9. Provar, por indugao, que a soma Eﬁ'_l_l (—l)k (2k + 1) e proporcional a n e determinar a
constante de proporcionalidade.
10. (a) Dar uma definigdo aceitavel do simbolo X" " a,

(b) Provar, por indugao, que para n 2 | se tem

2n 2n

— 141
2 1= 2

k=n+1 me1

11. Dizer se cada uma das afirmagoes seguintes € verdadeira ou falsa. Para cada caso justi-
ficar a resposta.

100 100 100 99
@)X nt=3>n @>GE+1D=3"

n=>0 n=1 i=1 i=0

100 100 100 A 100
(b)Y 2 = 200. (e)zk3=(§k)-(§k=).

J=0 k=1 k=1 Je=1 .

100 100 100 100 3
©FQ+k) =2+ >k (f)zk==(zk).

k=0 k=0 k=0 k=0

12. Induzir e demonstrar uma regra geral que simplifique a soma

u 1
gk(k+l)'

< 2(\/;—\/11 — 1) se n 2 1. A partir do

- 1
13. Demonstrar que 2(y/n + 1 — \/;) < 7

n
resultado anterior provar que

m

1
2\/7n—2<2—,_<2\/5—1

n=1 V1
se m > 7 Em particular quando m = 10%, a soma esta compreendida entre 1998 e 1999.

I 4.8 Valores absolutos e desigualdade triangular

Os calculos com desigualdades sio frequentes. Sdo de particular importancia as que se rela-
cionam com a nogao de valor absoluto. Se x € um numero real, o valor absoluto de x é um nu-
mero real ndo negativo, designado por |x| e definido do modo seguinte:
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X se x>0,
—-x s x<0.

| x| =

Notemos que — |x| € x <|x|. Quando os nimeros reais sido representados geometricamente
sobre o eixo real, o nimero |x| representa a distdncia de x a 0. Se a > 0 e se um ponto x esta
entre —a e a, entdo |x| esta mais proximo de 0 do que de a. A tradugéo analitica deste fato €
dada pelo seguinte teorema.

TeOREMA 1.38. Se a > 0, entdo |x| < a se e s6 se —a < x < a.

Demonstragdo: Ha que provar duas afirmagdes: primeiro, que a desigualdade |x| < a
implica a dupla desigualdade —a < x < a e, inversamente, que —a < x < a implica |x| < a.

Suponhamos |x| <a. Entdo temos, do mesmo modo, —a < — |x} Mas ou x =|x|,oux =
~{x| e portanto — a < — |x|] < x < |x| < a, 0 que prova a primeira afirmagao.

Para provar o reciproco, supomos —a < x <a. Entao se x 2 0, temos |x| = x <a, ao passo
que se x £ 0, temos le = — x £ a. Em qualquer dos casos ter-se-a |x| < a, o que completa a
demonstragao.

A fig. 1.9 ilustra o significado geometrico deste teorema

/— |x| € a neste intervalo

4

Fig. 1.9 — Interpretagdo geométrica do teorema I.38.

Como consequéncia do Teorema 1.38 ¢ facil derivar uma importante desigualdade, a qual
estabelece que o valor absoluto da soma de dois nimeros reais nao pode exceder a soma dos
valores absolutos desses numeros.

TEOREMA 1.39. Para x e y numeros reais arbitrdrios tem-se
lx + y| < Ix] + [yl
Nota: Esta propriedade ¢ vulgarmente designada por desigualdade triangular, porque
quando ¢ generalizada a vetores significa que o comprimento de qualquer lado de um trian-

gulo € igual ou menor do que a soma dos outros dois.

Demonstragdo: Somando as desigualdades — |x| < x < [x] e — |y| € y < |y| obtemos
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(x| + D) < x+ 3y < x| + Iy,

e daqui, pelo Teorema 1.38, concluimos que |x + y| < |x| + |y
Se fizermos x =a —cey =c — b, entdao x + y = a — b e a desigualdade triangular vem

la —bl < |la—c|+ |b—c].

Esta forma da desigualdade triangular ¢ usada frequentemente na pratica.
Por indugao matematica, podemos generalizar a desigualdade triangular do modo
seguinte:

TeOREMA 1.40. Para os numeros reais arbitrarios a,, a, ..., a,, tem-se

< Z|akl .
k=1

n
2.4
k=1

Demonstragao: Para n = 1 a desigualdade é trivial e para n = 2 € a desigualdade triangu-
lar. Suponhamos, entdo, que é verdadeira para n numeros reais. Para n + 1 numeros reais
@y, @y, -y @, | Vira

n+1l

+ |a,l $2[al.[ + @yl = Z lay] .
k=1 k=1

n+1

D ay <
k=1

n
2.4,
k=1

n
z 2 + an+1
k=1

Portanto o teorema é verdadeiro para n + | numeros reais se for verdadeiro para n; logo,
pelo principio de indugdo, é verdadeiro para todo o inteiro positivo n.

O teorema seguinte estabelece uma importante desigualdade, que usaremos mais adiante,
em ligagdo com o estudo da Algebra vetorial.

TEOREMA I.41. A DESIGUALDADE DE CAUCHY-SCHWARZ. Sea,, ...,a,eb,.b,,...b,
sao mimeros reais arbitrdrios, tem-se

(300 5 (34)(35)

k=1

O sinal de igualdade verifica-se se e so se existe um nimero real x tal que a, x + b, = 0 para

cada valorde k=1, 2, ..., n.

Demonstragao: Temos E:=1 (ak X+ b‘,‘)2 2 0 para todo o real x, porque uma soma de

quadrados nunca pode ser negativa. A desigualdade anterior pode escrever-se
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Ax*+2Bx+ C 2> 0, (1.24)
onde

A=Ya;, B=Xab,, C=3b
k=1 k=1 =

k=1

Desejamos demonstrar que B’ < 4AC. Se 4 = 0, cada a = 0 e deste modo B = 0 e o resultado
e trivial. Se 4 # 0, podemos escrever

Ax® + 2Bx +C=.4(x+§)-+ A8
A A

O segundo membro € minimo quando x = —B/A. Fazendo x = —B/A em (1.24) obtemos
B? £ AC o que demonstra 1.23. O leitor deve verificar que o sinal de igualdade € valido se e s0
se existir um x tal que ax + bk = 0 para cada k.

1 4.9 Exercicios

1. Provar cada uma das propriedades seguintes dos valores absolutos.

(a) |x|=0se e s6 se x=0. (f) lxyl = x| [yl.

(b) | —x| = |x]. (&) |x/yl = |x|/ly| se y #0.
©) |[x =yl =y — xl. (h) |x =yl < x| + [yl

(d) |x[* =% (i) x| =y £lx =y

(e) |x| = Vi G |lxl =yl £ lx =yl

2. Cada desigualdade (a,), escrita a seguir, ¢ equivalente exactamente a uma desigualdade
(b;). Por exemplo, x| < 3seesose—3 < x< 3eportanto (a,) ¢ equivalente a (b,). Estabe-
lecer todos os pares equivalentes.

(@) |x| <3. (b)) 4 <x <6.

(a;) |x —1] <3. (b)) =3 <x <3.

(ag) |13 —2x| < 1. (by) x >3 ou x < ~1,

(a)) |1 +2x] L 1. (by) x> 2.

(az) [x—1] > 2, (by) -2 <x <4,

(ag) |x +2| >5. (b) —V3i<x<-—1ou l<x< V3,
(@) I5—-x1 <1 (b)) 1 <x <2

(ag) |x = 35| <|x +1]. (bg) x £ —7 ou x >3.

(ag) |x*=2| < 1. (by) § <x <.

(@) x < x* — 12 < 4x. (byy) —1 < x<0.

3. Dizer se cada uma das afirmagGes seguintes é verdadeira ou falsa. Em qualquer dos
casos justificar a resposta.
(a) x < 5 implica |x| < 5.
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(b) |x — 5| < 2 implica 3 < x < 7.

(c) |1 + 3x| <l implica x = — %

(d) Ndo ha nenhum real x para o qual |x — 1| = |x — 2|
(¢) Para cada x > 0 existe um y > O tal que |2x + y| = 5.
4. Demonstrar que o sinal de igualdade, na desigualdade de Cauchy-Schwarz, se mantém
se e 8O se existe um numero real x tal que @ x+b =0 para todo o k=1, 2, .., n

*1 4.10 Exercicios varios referentes ao método de indugao

Nesta Secgdo reunem-se um certo numero de enunciados cujas demonstragoes sao boas
aplicagoes do método de indugao matematica. Alguns destes exercicios podem servir de base
para discussoes suplementares entre professor e alunos.

Coeficientes factorial e binomial. O simbolo n! (l&-se n factorial) pode definir-se, por
indugao, do modo seguinte: 0! = I, n! =(n — 1)!nsen 2 1. Note-sequen! = 1.2.3.4... n.

Se 0 <k < n o coeficiente binomial ( "k) define-se

n n!
(k) Tk =kt

n » .
Nota: Algumas vezes escreve-se Ck em vez de (:). Estes numeros aparecem como coeficien-
tes no desenvolvimento da poténcia do binomio. (Ver Exercicio 4 e seguintes).

1. Calcular os valores dos seguintes coeficientes binomiais:
@@E, MG @G, @O, @G O Q.
2. (a) Demonstrar que: ( z) = ( " " k)' (c) Sabendo que ( ';) = klf4), calcular k.
(b) Sabendo que (%) = (%), calcular . (d) Existira um k tal que ('2) = (,'2)?
3. Demonstrar que (";l) = () + (}). Esta ¢ a chamada lei do tridngulo de Pascal que

permite um calculo rapido dos sucessivos coeficientes binomiais. O triangulo de Pascal
¢ dado a seguir, paran < 6.

1 5 10 10 § 1
1 6 15 20 15 6 1

4, Usar o método de indugao para provar a formula do desenvolvimento do binomio
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y n
(@ +b)" = ( )a“’b"“‘.
2k

4

Em seguida utilizar a formula para estabelecer as igualdades

Z(:) =2 e zn:(—l)"(:) =0, se n>0.
k=0

O simbolo produto. O produto de n numeros reais a,, @,, 4;, ..., @, representa-se pelo simbo-
lo H:: | @;» 0 qual pode ser definido por indu¢do. A notagdo a,a,...a, ¢ outra forma de es-

crever o mesmo produto. Notemos que

5. Dar uma defini¢ao, por indugao, do produto l'I;:= | G-

Demonstrar, por indugao, as seguintes propriedades dos produtos:

LY

6. ﬁ-(aalh—) = ( ﬁ' ak) ( ]ﬂ]' bk) (propriedade multiplicativa)
k=1 k=1 k=1

Um caso importante é a relagdo: | [/, (cap) = ¢" [ [i.; ap.

n_. a; a . ¢ =
7. T[— =—= secadaa,#0 (propriedade telescopica)
k=19%-1 Go

8. Se x # | mostrar que

n an

. 1 — 2
TTa + 7Y = —2

k=1 I —x

Qual ¢ o valor do produto quando x = 1?

9. Se a; < b, para cada valor de k = 1, 2, ..., n € facil demonstrar por indugdo que
n n

19, <X, _ b,

Discutir a desigualdade correspondente para produtos

i n
-rTak‘<-rTbk.
k=1 k=1
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Algumas desigualdades notavelis.

10. Se x > 1, provar por indugdo que X" > x para todo o inteiro n 2 2. Se 0 < x < | provar
que x" < x para todo o inteiro n 2 2.

11. Determinar todos os inteiros positivos n para o quais 2" < n!
12. (a) Usar o teorema de bindOmio para provar que, para n inteiro positivo, se tem’

(ol -2)

des

13. (a) Seja p um inteiro positivo. Provar que

b? — g = (b — a)(bp 1 4 pP 2 4 pr—3,2 4+ 0 + ba? 2 + apfl) .

[Sugestdo: usar a propriedade (A) pag. 48].

(b) Sejam p e n inteiros e positivos. Recorrendo a parte de (a) mostrar que

n + 1)1l — pil
n"<( p+1 <(n+1)r.

(c) Demonstrar, por indugdo, que:

S nPtl -
kP < <z k.
k=1 P + 1 k=1

A alinea (b) auxiliara a passar, na indugao,denan + 1.
14. Sejam a,, a,, ..., a, n nimeros reais, todos do mesmo sinal e todos maiores que —1. Apli-

car o método de indugao para demonstrar que:

(l +a1)(1 +a2)-.-(| +aﬂ)2] +a1+a2+...+an.

Em particular, quando a, = @, = a, = ... = a, = x, onde x > — |, transforma-se em
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(1 +x)" > 1+ nx (desigualdade de Bernoulli). (L.25)

Provar que se n > |, o sinal de igualdade se apresenta em (I.25) somente para x =0..

1 . : -
15. Se n > 2, provar que n!/n" < (—2—)k. onde & € o enteiro maximo < n/2.

16. Os numeros 1, 2, 3, 5, 8, 13, ..., 21, tais que cada um, depois do segundo, ¢ a soma

17.

18.

19.

dos dois anteriores, designam-se por mumeros de Fibonacci. Podem definir-se por
indu¢do da maneira seguinte:

a1=l, a2=2, a,,+1=a,‘+a,,_.1 S€ n22.

Demonstrar que

para todoon 2 1.

Desigualdades que relacionam diferentes tipos de médias.
Sejam x,, x,, ..., X, n numeros reais positivos. Se p € um inteiro nao nulo, a média das
poténcias de ordem p, Mp, define-se do modo seguinte:

x{!+...+x:1/9
M, = - :

O numero M, define a média aritmética, M, a média quadrdtica e M_, a média har-
monica.
Se p > 0 provar que Mp < sz quando x;, X,, ..., X ndo forem todos iguais.

[ Sugestdo: Aplicar a desigualdade de Cauchy-Schwarz com g, = .\f eh =1.]

Aplicar o resultado do exercicio anterior para demonstrar que
a + b+t > %

seal +b*+c*=8ea>0,b>0,¢>0.

Sejam a,, ..., a, n numeros reais positivos cujo produto € igual a 1.

Provar que @, + ... + a, 2 n e que o sinal de igualdade se verifica inicamente quando
cada a, = 1

| Sugestdo: Considerar dois casos: (a) todo a = 1; (b) nem todo a, = 1. Usar o método

de indugdo. No caso (b) reparar que se a,, a, ... a. =1 entao pelo menos um fator,

-
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seja a,, excedera 1 e pelo menos um fator, seja a. € menor do que 1. Seja b, = aa, .
e aplique-se a hipdtese de indugdo ao produto b, a, ... a , tendo em conta que (a,—1)-
(@, ,—1D<0.]

20. A média geométrica G de n numeros reais positivos x,, ..., x, esta definida pela formula

G = (x,X, ... xn)u".

(a) Representando-se a média das poténcias de ordem p por Mp, demonstrar que G <M,
e que G = M, unicamente quando x, = x, = ... = X, .

(b) Sejam p e ¢ inteiros, g< 0 < p. A partir de (a) deduzir que Mq < G< Mp S€ X,y Xy
ey Xp nao sao todos iguais.

21. Servindo-se dos resultados do exercicio 20 provar a seguinte proposigao: Se a, b, e ¢ sao
numeros reais positivos tais que abc =8, entao a+b+c 26 e ab+ ac + bc 2 12.
22. Sex;, X;, ey X, $30 NUMeros positivos e se YV = l/xk demonstrar que

(5)(8)

kel k=1

23. Se a, b, ¢ sao positivosese a + b + ¢ = 1, demonstrar que (1 —a) (1 — b) (1 — ¢) 2 8abc.



| 1
OS CONCEITOS DO CALCULO INTEGRAL

Neste capitulo sdo expostas a defini¢ao de integral e algumas das suas propriedades funda-
mentais. Para compreender a defini¢@o, é necessario ter conhecimento do conceito de fungao;
algumas das segOes seguintes sao pois dedicadas a uma exposigao deste conceito e de outras
nogoes com ele relacionadas.

1.1 As ideias fundamentais da geometria cartesiana

Como foi referido anteriormente, uma das aplicagdes do integral é o cdlculo de dreas.
Geralmente, ndo tem significado falar de area em si mesma, bem.pelo contrario fala-se
de drea de alguma coisa o que quer dizer que nds temos certos objetos (regides poligonais,
regides circulares, segmentos parabdlicos, etc.), cujas dreas desejamos medir. Se preten-
demos chegar a um conhecimento da drea que nos possa habilitar a tratar com diferentes
espécies de objetos, devemos primeiramente encontrar uma maneira efetiva de descri¢io
desses objectos.

O método mais simples de o conseguir, consiste em desenhar as figuras, como foi feito na
Grécia antiga. Uma via muito mais profunda foi sugerida por René Descartes (1596-1650), ao
introduzir em 1637 as bases de Geometria Analitica (também conhecida por Geometria car-
tesiana). A ideia fundamental de Descartes consistia em representar pontos geomeétricos por
numeros.

O método, para pontos do plano, consiste no seguinte:

Escolhem-se duas retas de referéncia perpendiculares (chamadas eixos coordenados), uma.
horizontal (chamada o eixo dos xx) e a outra vertical (chamada o eixo dos yy). O seu ponto de
intersecgao, representado por 0, diz-se a origem. Sobre o eixo 0.X, e a direita de 0, escolhe-se um
ponto de modo que a sua distancia a O represente a unidade de comprimento. As disténcias ver-
ticais, correspondentes ao eixo 0Y, medem-se com a mesma unidade de comprimento. Entéo, a
cada ponto do plano (algumas vezes chamado plano X0Y) ¢ atribuido um par de nimeros, ditas
as suas coordenadas, as quais nos dizem como localizar o ponto e representam as distancias do
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ponto aos eixos. Na figura 1.1, apresentam-se alguns exemplos. O ponto com coordenadas (3,2)
esta trés unidades para a direita do eixo 0Y e duas unidades acima do eixo 0X. O niumero 3
chama-se a coordenada x e 0 nimero 2 a coordenada y. Pontos a esquerda do eixo 0Y tém a
coordenada x negativa, os situados abaixo do eixo 0X tém a coordenada y negativa. A coorde-
nada x de um ponto chama-se também a sua abcissa e a coordenada y a sua ordenada.

Quando escrevemos um par de nimeros, tais como (a,b), para representar um ponto, con-
vencionamos que a abcissa, ou a coordenada x, se escreve em primeiro lugar. Por este motivo, o
par (a, b) ¢ muitas vezes designado por par ordenado. E evidente que dois pares ordenados
(a, b) e (c, d) representam 0 mesmo ponto se € sO se tivermos a = ¢ € b = d. Pontos (a, b) com
a e b positivos dizem-se situados no primeiro quadrante; se a < 0y b > 0 estdo no segundo
quadrante; se a < 0 e b < 0 estdo no terceiro quadrante, e finalmente, sea > 0 e b < 0 estdo
no quarto quadrante. Na fig. 1.1 representa-se um ponto de cada quadrante.

O processo para pontos no espaco é semelhante. Tomam-se trés eixos, dois a dois perpendi-
culares e que se intersetem num ponto 0 (a origem). Estas retas definem trés planos, dois a dois
perpendiculares, e cada ponto do espago pode ser completamente determinado por trés nimeros
que, com os sinais adequados, definem as distancias aos planos referidos. A Goemetria car-
tesiana tridimensional sera apresentada, com mais pormenor, mais tarde; de momento fixamos
a nossa atengdao na Geometria analitica plana.

Uma figura Geomeétrica, por exemplo uma curva plana, € um conjunto de pontos satisfazendo
uma ou mais condigoes especiais. Traduzindo estas condigoes por expressoes contendo as coor-
denadas x e y, obtemos uma ou mais

eixo QY y

Fig. 1.1 Fig. 1.2. A circunferéncia re-

presentada pela equagao car-
tesiana x* + y? = .
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equagoes que caraterizam a figura em questdo. Por exemplo, consideremos uma circunfe-
réncia de raio r com o centro na origem, como se indica na fig.1.2. Seja P um ponto arbitrario
da circunferéncia e suponhamos que P tem coordenadas (x, y). Entao OP ¢ a hipotenusa dum
tridngulo retiangulo cujos catetos tém comprimentos | x| e | y| € por conseguinte, em virtude
do teorema de Pitagoras:

x? + },2 = r?,

Esta equagdo, a equagdo cartesiana da circunferéncia, € satisfeita por todos os pontos (x, y)da
circunferéncia e apenas esses, de modo que a equagao carateriza completamente esta curva.
Este exemplo pde em evidéncia o modo como a geometria analitica € usada para reduzir propo-
sigoes geométricas relativas a pontos, a proposigoes analiticas com numeros reais.
Durante os seus respetivos desenvolvimentos historicos, o calculo e a geometria analitica

estiveram intimamente ligados. Novas descobertas em um dos assuntos deram lugar a progres-
sos no outro. O tratamento em conjunto do calculo e da geometria analitica neste livro é
semelhante ao respetivo desenvolvimento historico. Contudo, o nosso proposito fundamental &
desenvolver os conceitos do calculo, pelo que os conceitos de geometria analitica requeridos a
esta finalidade serao expostos quando for necessario. De momento, apenas um reduzido numero
de conceitos elementares de Geometria analitica plana sdo necessarios a compreenséo dos rudi-
mentos do Calculo. Um estudo mais aprofundado de geometria analitica so € necessario para
estender o alcance e aplicagoes do calculo e esse estudo sera feito nos ultimos capitulos, usando o
Calculo vetorial. Até la,tudo o que necessita conhecer-se da Geometria analitica sao rudimen-
tos sobre o tragado de graficos de fungoes.

1.2 Fungoes. Ideias gerais ¢ exemplos

Sdo diversos os campos de atividade humana a apresentar relagdes que existem entre uma
colegdo de ums objetos e outra colegdo de outros objetos. Graficos, mapas, curvas, tabelas,
formulas, sondagens Gallup sdo familiares a toda a pessoa que leia os jornais. Estes sdo simples
esquemas usados para descrever relagoes especiais, numa forma quantitativa. Os matematicos
consideram certos tipos destas relagGes como fungées. Nesta Segao apresentamosideias gerais
do conceito de fungdo. Uma definigdo rigorosa de fungdo sera dada na segao 1.3.

EXeEMPLO 1. A forga F necessaria para esticar uma mola de ago de uma distancia x, além do
seu comprimento normal, € proporcional a x, isto &, F = c¢x com ¢ um numero independente de x,
chamado a constante da mola. Esta formula, descoberta por Robert Hooke em meados do sé-
culo xvi1, € a chamada lei de Hooke e diz-se exprimir a for¢ga como uma fun¢do do desloca-
mento.

EXEMPLO 2. O volume de um cubo é uma fun¢do do comprimento da sua aresta. Se a aresta
tiver comprimento x, o volume ¥ é dado pela formula V = x°.
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EXeEMPLO 3. Um numero primo é qualquer inteiro n > 1 que nao pode ser expresso na
forma n = ab, com a e b inteiros e positivos, ambos menores do que 7. Os primeiros nimeros
primos sao: 2, 3, 5,7, 11, 13, 17, 19. Dado um numero real x > 0, é possivel contar quantos
sd0 os numeros primos menores do que x. Este numero diz-se ser uma fungdo de x, muito
embora ndo se conheg¢a uma formula algébrica simples para o determinar (sem necessidade
de os contar) quando x ¢ conhecido.

A palavra “fungido” foi introduzida na Matematica por Leibniz, que usou o termo, inicial-
mente, para designar certo tipo de formulas matematicas. Mais tarde compreendeu-se que
a ideia de fungdo de Leibniz tinha um alcance muito restrito ¢ o significado da palavra
correspondeu, desde entido, a muitas fases de generalizagdo. Hoje o significado de fungdo
¢ essencialmente este: Dados dois conjuntos, digamos X e Y, uma fungdo é uma correspon-
déncia que associa a cada elemento de X um e um so elemento de Y. O conjunto X € o do-
minio da fungido. Os elementos de Y associados com os elementos de X formam um con-
junto dito o contradominio da fungido. (Este pode ser todo o conjunto Y, mas tal ndo ¢
necessario.)

Letras dos alfabetos latino e grego sao muitas vezes usadas para representar fun¢oes. Em par-
ticular usam-se muito frequentemente com essa finalidade as letras £,g,h,F,G,H e 7. Se f'é uma
dada fungdo e x € um elemento do seu dominio, a notagao f{’x) utiliza-se para designar o elemento
do contradominio que esta associado a x pela fungao f'e chama-se valor da fungdo fem x ou a
imagem de x por f. O simbolo f{x) 1&-se “f de x.

A nogao de fungao pode ilustrar-se esquematicamente de muitas maneiras. Por exemplo,
na fig. 1.3(a) os conjuntos X e Y sao conjuntos de pontos € com uma seta indica-se como se
emparelha um ponto arbitrario x de X com o ponto imagem f{x) de Y. Outro esquema ¢ apre-
sentado na fig. 1.3(b), onde a fungdo f se imagina ser semelhante a uma maquina, na qual
os elementos do conjunto X se transformam para produzir elementos do conjunto Y. Quan-
do um elemento x € transformado pela maquina, o elemento produzido & f{(x).

- e

@) ®) J(x)

Fig. 1.3 — Representagdo esquematica do conceito de fungéo.
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Embora o conceito de fungdo ndo ponha qualquer restrigdo na natureza dos elementos do
dominio X e contradominio Y, no calculo elementar estamos principalmente interessados em
fungdes cujos dominio e contradominio sdo conjuntos de numeros reais. Tais fungdes dizem-se
Jungdes de varidvel real ou mais abreviadamente fungdes reais ¢ podem ser representadas, geo-
metricamente, mediante um grafico no plano X0Y. Representa-se o dominio X no eixo 0X e, a
partir de cada x € X, representa-se o ponto (x, y), onde y = f{x). O lugar geométrico dos pon-

tos (x, y) define o grafico da fungao.
Consideremos ainda mais alguns exemplos de fungdes reais.

EXEMPLO 4. A fungao identidade. Suponhamos que f{x) = x para todo o valor real de x. Esta
fungdo €, muitas vezes, chamada fungdo identidade. O seu dominio € o eixo real, isto &, o con-
junto de todos os numeros reais. Para cada ponto (x,y), do grafico def, ¢ x = y. O grafico ¢ uma
reta que faz angulos iguais com os eixos coordenados (Ver fig. 1.4). O contradominio de f€ o

conjunto de todos 0s numeros reais.

EXEMPLO 5. A fung¢do valor absoluto. Consideremos a fungao que faz corresponder a cada
nimero real x, o niimero nio negativo|x|. Uma parte da sua representagéo grafica é dada na fig.
1.5. Designando esta fungiio por ¢, tem-se ¢(x)=|x| para todo o real x. Por exemplo

I\
-1.
b Px) = | x|
X 0 - X
Fig. 1.4 — Grafico da fung¢éo identi- Fig. 1.5 — Fungao valor absoluto
dade f1x) = x o(x) = x|

9(0) =0, ¢(2) =2, ¢(-3) = 3. Com esta notagdo podem apresentar-se algumas proprie-
dades dos valores absolutos

(@) ¢(—x) = ¢(x). (d) gle(x)] = ¢(x) .
(b) ¢(x?) = x*. (€) ¢(x) = V2.
(©) p(x + y) < p(x) + ¢(y) (desigualdade triangular).
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EXEMPLO 6. 4 fungao numero primo. Para todo x > 0, represente n(x) o nimero de nume-
ros primos menores ou iguais a x. O dominio de n é o conjunto dos niimeros reais positivos.
O seu contradominio € o conjunto dos inteiros ndo negativos {0, 1, 2, 3, 7, ...}. Na fig. 1.6
apresenta-se uma parte do grafico de n.

}!
A
6+ —
54 —
44 . n| n! n n!
| 1{] 6 720
T — 2 27 5040
2+ — 3] 6l 8 40 320
A a | 24| 9] 362880
2 3 5 7 11 13
Fig. 1.6 — A fun¢do numero primo. Fig. 1.7 — A fungdo fatorial.

(Nos eixos 0X e 0Y sao usadas escalas diferentes). Quando x aumenta, a fungao n(x) perma-
nece constante até que x seja igual a um numero primo, ponto em que o valor da fungao apre-
senta um salto igual a unidade. Quer dizer que o grafico de n consiste de segmentos de reta
paralelos a 0OX. Este € um exemplo de uma classe de fungoes chamadas fungoes em escada;
desempenham um importante papel na teoria do integral.

EXEMPLO 7. A fungdo fatorial. Para cada inteiro n define-se f(n) porn!=1-2-3...n.
Neste exemplo, o dominio de /'€ o conjunto dos inteiros positivos. Os valores da fungdo cres-
cem tao rapidamente que é preferivel apresentar a fungao na forma tabulada em vez da repre-
sentagao grafica. A fig. 1.7 ¢ uma tabua apresentando os pares (n, n!) paran= 1, 2, 3, ..., 10.

Chama-se a atengao do leitor para dois aspectos caracteristicos comuns aos exemplos
apresentados atras.

(1) Para cada x do dominio X existe uma e uma so imagem y que forma um par com
aquele valor particular de x.

(2) Cada fungao gera um conjunto de pares (x, y), onde x € o elemento genérico do
dominio X e y € o unico elemento de Y que corresponde a x.

Em muitos dos exemplos referidos, apresentaram-se os pares (x, y) geometricamente como
pontos de um grafico. No exemplo 7 apresentaram-se como entradas numa tabela. Em qual-
quer dos casos conhecer a fungao € conhecer, duma maneira ou de outra, fodos os pares (X,
¥) que ela gera. Esta observagdo simples ¢ a origem da defini¢ao formal do conceito de
fungao que se expoe na Segao seguinte.
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*1.3 Fungoes. Defini¢do formal como um conjunto de pares ordenados

Na discussao informal da segdo anterior, uma fungao foi apresentada como uma corres-
pondéncia que associa a cada elemento dum conjunto X um ¢ um so elemento dum con-
junto Y. As palavras “correspondéncia” e “associa a” podem nao assumir 0 mesmo signifi-
cado para toda a gente, razao pela qual devemos reformular a ideia dum modo diferente,
baseando-a no conceito de conjunto. Em primeiro lugar necessitamos da nogao de par orde-
nado de dois elementos.

Na defini¢ido de igualdade de conjuntos nio se faz referéncia a ordem pela qual aparecem
os elementos. Assim, os conjuntos {2, 5} ¢ {5, 2} sdo iguais porque contém exactamente 0s
mesmos elementos. Algumas vezes, porém, a ordem ¢ importante. Por exemplo, na Geome-
tria analitica plana, as coordenadas (x, y) dum ponto representam um par ordenado de name-
ros. O ponto com coordenadas (2, 5) ndo ¢ o mesmo que o ponto com coordenadas (5, 2),
muito embora os conjuntos {2, 5| e {5, 2| sejam iguais. Do mesmo modo, se temos um par
ordenado de objectos a ¢ b (nao necessariamente distintos) ¢ desejamos designar um dos
objetos, seja a, como o primeiro elemento e o outro, b, como o segundo, encerramo-los num
paréntesis (a, b) e consideramos que formam um par ordenado. Dizemos que dois pares
ordenados (a, b) e (¢, d) sao iguais se e sO se 0s seus primeiros elementos sao iguais e se sao
também iguais os segundos elementos. Quer isto dizer que temos

(a,b) =(c,d) seesdse a=c e b=d.

Podemos agora estabelecer a definicao de fungao.

DEFINICAO DE FUNCAO. Uma fungdo f é um conjunto de pares ordenados (x, y), nenhum
dos quais tem o mesmo primeiro elemento que outro.

Se /¢ uma fungido, o conjunto de todos os elementos x que aparecem como primeiros ele-
mentos dos pares (x, y) de f chama-se o dominio de f. O conjunto dos segundos elementos y €
o contradominio de f, ou o conjunto de valores de f.

Intuitivamente, uma fungdo pode imaginar-se como uma tabela formada por duas colunas.
Cada entrada na tabela ¢ um par ordenado (X, y); a coluna dos x € o dominio de f, ¢ a coluna
dos y, o contradominio. Se duas entradas (x, y) e (x, z) aparecerem na tabela com o0 mesmo

valor de x, entdo para a tabela representar uma fungao € necessario que y = z. Por outras
palavras, uma fungdo nio pode tomar dois valores distintos num dado ponto x. Portanto, para

cada x do dominio de f existe um é s6 um y tal que (x, y) € /. Uma vez que este y esta univo-
camente determinado desde que se conheg¢a x, podemos introduzir para ele um simbolo espe-
cial. E costume escrever

y = f(x)

em vez de (x, y) € f para indicar que o par (x, y) pertence ao conjunto f.
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Outra alternativa a descrigao da fungao f especificando explicitamente os pares que con-
téem, e que € usualmente preferivel, consiste em descrever o dominio de f/ e para cada x do
dominio indicar como se obtém o valor de fun¢do f{x). Em relagdio com isto, temos o
seguinte teorema cuja demonstragiio € deixada ao leitor como exercicio.

TeoOReMA 1.1. Duas fungdes [ e g sdo iguais se e so se
(a) [ e g tém o mesmo dominio e
(b) f(x) = g(x) para todo o x do dominio de f.

E importante ter presente que os objetos x e f{x) que aparecem nos pares ordenados (X,
Jf(x)) de uma fun¢ao nao sao necessariamente numeros, mas sim objetos de natureza qual-
quer. Em certas ocasioes faremos uso deste grau de generalidade, mas para a maior parte dos
problemas ficaremos confinados a fungoes reais, isto é, fungdes cujo dominio € contradomi-
nios sdo subconjuntos da reta real.

Algumas das fungoes que aparecem no Calculo sdao definidas em alguns exemplos que se

seguem.

1.4. Mais exemplos de fungoes reais

1. Fungoes constantes. Uma fungao em que o contradominio consiste dum unico nimero
diz-se uma fungao constante. Na fig. 1.8 apresenta-se um exemplo em que f{x) = 3 para
todo o x real. A representagao grafica ¢ uma reta paralela a 0X, intersetando o eixo
0Y no ponto (0,3).

>

g(x) = 2x - 1
flx) = x*

- X

4

o

Fig. 1.8 — Fungado constante Fig. 1.9 — Fungao linear  Fig. 1.10 — Fungao quadratica
Jtx) =3 g(x) = 2x — 1 f(x) = x?

2. Fungoes lineares. Uma fungao g definida, para todo o real x, por uma formula da forma
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glx)=ax+5b

diz-se fungao linear porque o seu grafico é uma reta. O nimero b é a ordenada na ori-
gem; € a coordenada y do ponto (0, b) em que a reta intersecta o eixo 0Y. O nimero a
€ o declive da recta. Um exemplo, g(x) = x, esta representado na fig. 1.4. Outro exem-
plo, g(x) = 2x — 1, esta representado na fig. 1.9.

3. Fungao poténcia. Para um determinado inteiro positivo n, seja f a fungdo definida por

Jf(x) = x" para todo o real x. Quando n = 1, é a fungdo identidade referida na fig. 1.4.
Para n =2 o grafico ¢ uma parabola, parte do qual esta desenhado na fig. 1.10. Para
n = 3 o grafico € uma curva cubica e tem a forma apresentada na fig. 1.11 (pg. 68).

4. Fungoes polinomiais. Uma fungao polinomial P é definida, para todo o valor real de x,
por uma relagao da forma

P(x)=co+ c,x + - + ¢,x" =D ¢ x".

k=0

Os numeros ¢,, ¢, ..., ¢» $30 0s coeficientes do polindmio e o inteiro ndo negativo n é o
seu grau (se c,# 0). As fungoes deste tipo incluem as fungGes constantes e as poténcias
com casos particulares. Os polinomios de graus 2 e 3 denominam-se polindmios quadrd-
ticos e cubicos respetivamente. A fig. 1.12 representa uma parte do grafico duma fungio

polinomial P do 4.° grau, definida por P(x) = % xt=2x2,

5. A circunferéncia. Voltemos a equagao cartesiana da circunferéncia x> + y* = r? e

resolvamo-la relativamente a y. Existem duas solugoes dadas por
y= V rP— X ¢ y=— \m '

(Lembramos que se a > 0, o simbolo V a representa a raiz quadrada positiva de a. A
raiz quadrada negativa € — v/a). Houve uma época em que os matematicos diziam que
y era uma fungéo bivalente de x definida por y ==/ r* — x2. Porém, modernamente,
nao se admite a “bivaléncia” como propriedade de fungoes. A definigao de fungao exige
que a cada x do dominio, corresponda um e um so valor de y do contradominio. Geo-
metricamente isto significa que retas paralelas a 0Y, que intersectam o grafico, o
fazem num tnico ponto. Por conseguinte para tornar o exemplo anterior compativel
com a teoria, dizemos que as duas solugoes para y definem duas fungoes, /e g, sendo

f(x)=Vrt—x* e glx) = —Vr? — x*

para todo o x satisfazendo a —r < x < r. Cada uma destas fungoes tem por dominio o
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intervalo estendido de —r a r. Se |x| > r, ndo existe nenhum valor real para y e tal que ‘
x? + y* = r? e dizemos que as fungoes f'e g ndo estdo definidas para tal valor de x. Uma ‘
vez que f{x) € a raiz quadrada positiva de r* — x?, o grafico de /¢ a semi-circunferéncia
superior representada na fig. 1.13. Os valores da fungdo g sdo = 0 ¢ por isso o grifico
de g ¢ a semi-circunferéncia inferior representada na mesma figura.

6. Somas, produtos e cocientes de fungdes. Sejam f e g duas fungdes reai§ que tém 0 mesmo
dominio D. A partir de f ¢ g podemos construir novas fungdes por adigao, multiplicagao
ou divisdo dos seus valores. A fungao u definida por

u(x) = f(x) + g(x) se xeD 1

diz-se soma de f'e g e representa-se por f + g. De modo analogo, o produto v=f-geo ‘
cociente w = flg siio definidos pelas formulas

v(x) = f(x)g(x) se xeD, w(x) = f(x)/g(x) se xeD e g(x)#0.

4 P(x) = Ix* — 2x*

P(x) = x*

’ T
1\ ]
\ ’
\ !
AN 7’

Fig. 1.11 A fungdo cubica Fig. 1.12 A fungdo polinomial  Fig. 1.13. Graficos das fungoes

P =3 de 4° — 2 _ el
(x) e 4° grau | j(g): _—\/rr2 _xx2
P(x) = -5 xt —2x? & V

Com o conjunto de exercicios que a seguir se apresentam pretende-se que o leitor se
familiarize com o uso da notagido utilizada para as fungdes.
1.5 Exercicios

. Seja fix)=x+1, para todo o x real. Calcular: f(2), f(=2), -f(2), f(1/2), //(2),
fla + b), fla) + f1b). fla)f(b).
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. Sejam fix) = 1 + x e g(x) = 1 — x, para todo o real x. Calcular: f12) + g(2),
N2) — g(2), 2)g(2), N2)/g(2), fle(2)], g(A2)), fla) + g(—a), A)g(—1).

. Seja @(x) = |x — 3| + |x — 1 para todo o x real. Calcular: ¢(0), ¢(1), (2), 9(3), 9(—1),
@(—2). Determinar os valores de 7 para os quais @7 + 2) = @(2).

. Seja f(x) = x? para todo o real x. Provar cada uma das seguintes igualdades. Em cada
caso determinar o conjunto dos reais x, y, 7, etc. para os quais a formula correspondente
¢ valida.

@) f(—=x) = f(x). (d) f2y) = 4f(»).

®) ) —f) =@ =2y +x). () f(*) = f()*

© fx +h) = f(x) =2xh + k% (1) Vf(a) = |al.

. Seja g(x) = V/4 — x* para |x| € 2. Provar cada uma das igualdades seguintes e indicar
para que valores de x, y, s ¢ ¢ sao elas validas.

(@) g(—x) = g(x). (d) gla = 2) = V4a — a*

(b) g(2y) =2VT — )2 () g(%) = 1V16 — &,
T V4t -1 1 2 —g(x)

= g(.?,) T 03 +g)

. Seja f definida do modo seguinte: f{x) = l para0 € x S 1;fix) =2paral < x <2. A
fungdo nao é definida para x < O ou x > 2.

(a) Tragar o grafico de f.

(b) Seja g(x) = f(2x). Definir o dominio de g e tragar o respetivo grafico.

(¢) Seja h(x) = f(x — 2). Definir o dominio de 4 e tragar o seu grafico.

(d) Seja k(x) = f2x) + f(x—2). Definir o dominio de k e tragar o seu grafico.

. Os graficos das duas fungdes polinomiais g(x) = x e f{x) = x* intersetam-se em trés
pontos. Tragar partes suficientes dos respectivos graficos para mostrar como se intersec-
tam.

. Os graficos de duas fungdes quadraticas f{(x) = x> — 2 e g(x) = 2x* + 4x + 1 interse-
tam-se em dois pontos. Tragar as partes dos dois graficos entre os pontos de interse¢ao.
. Este exercicio desenvolve algumas propriedades fundamentais dos polinomios. Seja

Sx) = Ez: o€y X" um polindmio de grau n.

Provar:

(@) Sen 21 ¢ fl0) =0, fix) = x g(x) sendo g(x) um polinomio de grau n — 1.

(b) Para cada real a, a fungdo p definida por p(x) =f(x + a) € um polinomio de grau n.
(c) Se n 21 e f{a) = 0 para um certo valor real a, entao f(x) = (x — a) h(x), sendo h(x)
um polinomio de grau n — 1. [Sugestdo: Considere-se p(x) = f(x + a)|.

(d) Sef(x)= 0 paran + 1 valores reais ¢ distintos de x todos os coeficientes ¢, sao nulos
e f(x) = 0 para todo o real x.

(e) Sejag(x) = 2;:’_10 bkf um polinomio de grau m, m > n. Se g(x) = f(x) param + 1
valores reais e distintos de x, entao m = n, bk = ¢, para todos os valores de %, e f(x) =
= g(x) para todo o real x.
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10. Em cada caso, determinar todos os polinomios p de grau S 2 que satisfazem as con-
digoes dadas.
(a) p(0) = p(1) =p2) = 1. (c) p(0) =p(1) = 1.
(b) p(0) =p(1) =1,p(2) =2.  (d) p(0) = p(1).

11. Em cada caso, determinar todos os polinomios p de grau < 2 que verificam as con-
digoes dadas, para todo o x real.
(@) p(x) =p(1 —x). (c) p(2x) = 2p(x).
(b) p(x) = p(1 + x). (d) p(3x) = p(x + 3).

12. Demonstrar que as expressoes seguintes sao polinomios, escrevendo-se na forma

ZZLOa ,_;rkpara um valor de m conveniente. Em cada exemplo n € um inteiro e positivo.
1 — x"tl

x # 1. (c) ﬁ-(l + x).

*
l_x kw0

(@ (1 +x)*. (b

1.6 O conceito de area como uma fungéo de conjunto

Quando um matematico tenta desenvolver uma teoria geral que abarque muitos conceitos
diferentes, tenta isolar propriedades comuns que paregam ser fundamentais para cada uma
das aplicagOes particulares que tem em mente. Utiliza entao essas propriedades como pedras
fundamentais da sua teoria. Euclides serviu-se deste processo, ao desenvolver a geometria ele-
mentar como um sistema dedutivo baseado num conjunto de axiomas. Nos utilizamos o
mesmo processo no tratamento axiomatico do sistema dos numeros reais e vamos usa-lo,
uma vez mais, na nossa discussdo do conceito de area.

Quando atribuimos uma area a uma regiao plana, asociamos um numero a um conjunto S
do plano. De um ponto de vista puramente matematico, isto significa que temos uma fungao
a (a fungao area) que atribui um numero real a(S) (a area de S) a cada conjunto S de uma
certa colecgao de conjuntos dada. Uma fungao deste tipo, cujo dominio € uma colecgao de
conjuntos e cujos valores sao numeros reais, chama-se fungdo de conjunto. O problema fun-
damental € o seguinte: Dado um conjunto plano S, que area a(S) devamos atribuir a S?

O nosso método para abordar este problema consiste em partir com um certo numero de
propriedades que se admite serem atributos da area, ¢ toma-las como axiomas para a area.
Qualquer fungdo de conjunto que satisfaga a estes axiomas designar-se-a por fungio area. E
necessario provar que existe realmente uma fungao area, para estarmos certos de que nao
estamos a discutir uma teoria vazia. Nao o faremos aqui: Em vez disso admitimos a existén-
cia duma fungdao area e deduzimos novas propriedades a partir dos axiomas. Uma cons-
trugao elementar duma fungao area encontra-se nos Capitulos 14 ¢ 22 de Edwin E. Moise,
Elementary Geometry From an Advanced Standpoint, Addison-Wesley Pub. Co., 1963.

Antes de estabelecermos os axiomas para a area, fagamos algumas observagoOes acerca da
colegdo de conjuntos no plano aos quais pode ser atribuida uma area. Estes conjuntos
chamar-se-ao0 mensuraveis; a colegao de todos 0s conjuntos mensuraveis representa-se por
4. Os axiomas contém suficiente informagao acerca dos conjuntos de .4, de modo a
permitirem-nos demonstrar que todas as figuras geomeétricas que aparecem nas aplicagoes
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usuais do calculo estdo em . e que as respetivas areas podem ser calculadas por inte-
gragao.

Um dos axiomas (axioma 5) estabelece que todo o retangulo € mensuravel ¢ que a sua
area € o produto dos comprimentos dos lados. O termo “‘retangulo”, quando usado aqui,
significa qualquer coujunto congruente (*) a um conjunto da forma

{(x, )]0 x<h 0L y<Lk}

onde & 2 0 e k 2 0. Os numeros 4 € k sdo os comprimentos dos lados do retangulo. Conside-
ramos um segmento ou um ponto casos particulares de retangulos supondo A ou k (ou
ambos) nuios.

s /\T/

(4
: |
Uma regiao em escada. (a) Conjunto de (b) Regiao em  (c) Regiao em
ordenadas escada interior escada exterior
Fig. 1.14. Fig. 1.15. Conjunto de ordenadas “contido” por

duas regioes em escada.

A partir de retangulos podemos construir conjuntos mais complicados. O conjunto repre-
sentado na fig. 1.14 é a reunido de uma colegao finita de retangulos adjacentes com as
bases no eixo OX e chama-se uma regido em escada. Os axiomas implicam que cada regiao
em escada € mensuravel e que a sua area € a soma das areas dos retangulos componentes.

A regido Q, representada na fig. 1.15(a), € um exemplo de um conjunto de ordenadas. O
seu contorno superior € o grafico duma fun¢do nao negativa. O axioma 6 permite-nos-a
demonstrar que muitos conjuntos de ordenadas sao mensuraveis e que as suas areas podem
ser calculadas aproximando tais conjuntos por regioes em escada interiores e exteriores,
como se indica na fig. 1.15(b) e (c).

Enunciemos agora os axiomas referidos.

DEFINIGAO AXIOMATICA DE AREA. Admite-se que existe uma classe # de conjuntos men-
surdveis no plano e uma fungao de conjunto a, cujo dominio é #, com us seguintes proprieda-
des:

(*) Congruéncia ¢ usada aqui no mesmo sentido gue na geometria cuclidiana. Dois conjuntos dizem-se congruentes se os scus
pontos podem por-se em correspondeéncia um a um de tal modo que as distincias sejam conservadas, isto €, se dois pontos pe g
num conjunio correspondem a p’e ¢ no outro a distineia de p a g deve ser igual a distincia de p’a ¢"devendo isto verificar-se
para um par p ¢ ¢ qualquer
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. Propriedade de ndo negatividade. Para cada conjunto S de M, tem-se a(S} 2 O.

Propriedade aditiva. Se S e T estdo em M . também estao em M, SO TeS O Tetem-
-5

aSuT)=aS)+ aT)—a(SNT).

. Propriedade da diferen¢a. Se S e T estao en .# com S < T, entdo T-S estd em MH e

tem-seal(T-S)=a(T)-a(S).

. Invaridncia por congruéncia. Se um conjunto S estd em M e se T é congruente com S,

entdo T esta também em M e tém-se a(S) = a(T).

Escolha de escala. Todo o retangulo R estd em # . Se os lados de R tém comprimen-
tos h ek, entdo a(R) = hk.

. Propriedade de exaustdo. Seja Q um conjunto que pode ser contido entre duas regioes

em escada S e T, de maneira que

ScQceT. (1.1)
Se existe um e um s6 numero C que verifica as desigualdades

a(S) £ ¢ < a(T)

para todas as regioes em escada S e T que satisfagam a (1.1), entdo Q é mensuravel e

alQ)=C.

O axioma 1 estabelece simplesmente que a area de um conjunto plano mensuravel € um
numero positivo ou nulo. O axioma 2 diz-nos que, quando um conjunto € formado por duas
regioes (as quais podem sobrepor-se), a area da reunido é a soma das areas das duas partes,
menos a area da sua interse¢ao. Em particular, se a intersegao tem area nula, a area do
todo ¢ a soma das areas das duas partes.

Se removemos um conjunto mensuravel S dum conjunto mensuravel maior 7, o axioma
3 estabelece que a parte restante 7 — S é mensuravel e a sua area obtém-se por subtragao
a(T) — S) = A(T) — a(S). Em particular, este axioma implica que o conjunto vazio & € men-

suravel e tem area nula. Uma vez que a(T — §) 2 ), o axioma 3 também implica a proprie-

dade de monotonia:

a(s) < a(1), para conjuntos Se Tem #comS < T.

Por outras palavras, um conjunto que € parte de outro nao pode ter area maior.
O axioma 4 atribui areas iguais a conjuntos tendo o mesmo tamanho e forma. Seria trivial
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a verificagao dos primeiros quatro axiomas se atribuissemos o nimero zero como area de
cada conjunto de 4. O axioma 5 atribui uma area ndo nula a certos retangulos e portanto
exclui aquele caso trivial. Finalmente o axioma 6 incorpora o método de exaustio; permite-
nos estender a classe dos conjuntos mensuraveis das regides em escada a regides mais gerais.

O axioma 5 atribui area nula a todo o segmento de reta. O uso repetido da propriedade
aditiva mostra que cada regido em escada € mensuravel e que a sua area é a soma das areas
dos retangulos componentes. Outras consequéncias elementares dos axiomas sdo examina-
das no conjunto de exercicios que a seguir se apresentam.

1.7 Exercicios

Neste conjunto de exercicios deduzem-se as propriedades da area a partir dos axiomas
enunciados na Segao anterior.

1. Provar que cada um dos seguintes conjuntos € mensuravel e tem area nula: (a) Um con-
junto formado por um unico ponto; (b) Um conjunto consistindo dum numero finito de
pontos no plano; (¢) A reunido duma colegao finita de segmentos de reta num plano.

2. Toda a regido em forma de triangulo retangulo é mensuravel, porque pode ser obtida por
interse¢cdo de dois retdngulos. Provar que toda a regido triangular € mensuravel e que a
sua area ¢ metade do produto da base pela altura.

3. Provar que todo o trapézio e todo o paralelogramo sao mensuraveis e derivar as formulas
usuais para calcular essas areas.

4. Um ponto (x, y) no plano diz-se um ponto de uma rede se ambas as coordenadas x ¢ y sao
inteiras. Seja P um poligono cujos vértices sdo pontos de uma réde. A area de P ¢

1 . . . .
1 +—2—B — 1, onde 7 ¢ o numero de pontos da rede interiores a P, ¢ B 0 numero de

pontos da fronteira.

(a) Provar que esta formula é correta para retdngulos de lados paralelos aos eixos coor-
denados.
(b) Provar que a formula € correta para triangulos retangulos e paralelogramos.
(¢) Usar o método de indugdo sobre o numero de lados, para construir uma demons-
tragdo para poligonos gerais.

5. Provar que um triangulo cujos vértices sao pontos da rede ndao pode ser equilatero.

[Sugestdao: Supor que existe um tal triangulo e calcular a sua area de duas maneiras distin-
tas, servindo-se dos exercicios 2 e 4.]

6. Seja A = {1, 2, 3, 4, 5| e A a classe de todos os subconjuntos de 4. (Sdo 32 no total, con-
tando o proprio 4 e o conjunto vazio ). Para cada conjunto S em .4 seja n('S) o numero
de elementos distintos de S. Se § = {1, 2, 3,4} e T = |3, 4, 5|, calcular n(S U T7),
n(S N T), n(S — T) e n(T — S). Provar que a fungdo de conjunto n verifica os trés primei-
ros axiomas da area.
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1.8 Intervalos e conjuntos de ordenadas

Na teoria da integragao trabalha-se fundamentalmente com fungdes reais, cujos dominios
sao intervalos do eixo OX. Algumas vezes € importante distinguir entre intervalos que
incluem os seus pontos extremos € os que os nao incluem. Esta distingao faz-se pela intro-
dugao das seguintes definigoes:

= * O o O e o 0
a b a b a b a b
as<x=<b a<x<b a<x=<bh a<x<b

fechado aberto fechado a direita fechado a esquerda

Fig. 1.16 — Exemplos de intervalos.

Se a < b, reoresentamos por |a, b] o conjunto de todos os pontos x satisfazendo as desi-
gualdades a < x <) e referimo-nos a este conjunto como o intervalo fechado de a a b. O cor-
respondente intervalo aberto, representado por (a, b) € o conjunto de todos 0s pontos x satis-
fazendo a @ < x < b. O intervalo fechado [a, b] inclui os pontos a e b, enquanto que o corres-
pondente intervalo aberto nado. (Ver Fig. 1.16). O intervalo aberto (a, b) diz-se também inte-
rior de [a, b]. Os intervalos (a, bl, [a, b), que incluem um dos pontos extremos, dizem-se semi-
-abertos e sdo definidos pelas desigualdadesa < x £ bea £ x < b.

Seja fuma fungao nao negativa cujo dominio € o intervalo fechado [a, b]. A regido do
plano compreendida entre o grafico de fe o eixo OX chama-se o conjunto de ordenadas de f.
Mais precisamente, o conjunto de ordenadas de f ¢ o conjunto de todos os pontos (X, y) que
satisfazem as desigualdades

a<x<b, 0LZy<Lf(.

Em cada um dos exemplos representados na fig. 1.17 a parte sombreada representa o con-
junto de ordenadas da fungao correspondente.

Fig. 1.17 — Exemplos de conjuntos de ordenadas.
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Os conjuntos de ordenadas sao os entes geométricos cujas areas desejamos calcular por
intermédio do calculo integral. O conceito de integral vai ser definido em primeiro lugar para
fungdes em escada e depois utilizar-se-a esse conceito para formular a definigao de integral
para fun¢des mais gerais. A teoria de integragdo para fungdes em escada € extremamente
simples e conduz, dum modo natural, a teoria correspondente a fungdes mais gerais. Para
realizar este plano € necessdrio dar uma defini¢do analitica de fung¢do em escada, o que
se consegue facilmente em termos do conceito de partigdo que passamos a tratar.

1.9 Parti¢oes e fungoes em escada

Suponhamos um intervalo fechado [a, 4] dividido em n subintervalos pela fixagao de n — 1
pontos de subdivisao x,, X, «., X 1’ sujeitos unicamente a restrigao

a<x <x,<..<x _, <b. (1.2)

E conveniente designar o ponto a por x, € o ponto b por x,. Um conjunto de pontos satisfa-
zendo (1.2) diz-se uma partigdo P de |a, b] e representa-se por

P = {xl]:xl’- . -»xn}-
A partigao P determina n subintervalos fechados
[Xo, X1), [X1, Xa] 5o - s [Xpoas Xa] -

Um subintervalo fechado genérico € [x,_,, x ] e designa-se por subintervalo fechado de
ordem k de P, na fig. 1.18 apresenta-se um exemplo. O correspondente intervalo aberto
(x4_ys x;) diz-se o subintervalo aberto de ordem k de P.

Estamos agora em condigdes de formular uma defini¢@o analitica duma fungdo em escada.

/ subintervalo de ordem &, |x, |, X, .

- >~——o- - - °

X 0 X -1 Xn=b

a= X, X, Xy o Xk -

Fig. 1.18. Um exemplo duma partigao de [a, b].

DEFINICAO DE FUNGAO EM ESCADA. Uma fungdo s, cujo dominio é um intervalo fechado
la, bl, diz-se uma fungdo em escada, se existe uma partigdo P = |x,, x,, ..., x, | de |a, b] tal
que seja constante em cada subintervalo fechado de P. Quer isto dizer que para cada k=1,
2, ..., n existe um numero real s tal que



76 Célculo

s(x) = 5 se X < X< X,

Fungdes em escada sdo algumas vezes chamadas fungdes constantes por intervalos.

Nota: Em cada um dos extremos x, _, e x, a fungdo deve ter um valor bem definido, mas
este ndo sera necessariamente 0 mesmo que sy .

ExempPLO. Um exemplo conhecido de fungao em escada € a “fun¢ao franquia postal” cujo
grafico é apresentado na fig. 1.19. Tendo em conta que a taxa de uma carta € 4500 por cada
20 gr, ou fracgao até 100 grs., o grafico desta fungao em escada é formado por intervalos
semiabertos que contém o seu extremo direito. O dominio desta fungao é o intervalo [0, 100]
e o grafico mostra o numero de selos de 4300 necessarios para selar cartas até 100 grs.

A partir de uma dada parti¢do P de |a, bl podemos sempre formar uma nova partigido P,
juntando novos pontos de divisdo aos pontos que ja estavam em P. Uma tal partigdo P’ diz-se
um refinamento de P, ou que P’ é mais fina que P. Por exemplo. P = {0, 1, 2, 3, 4] é uma
particao do intervalo [0, 4]. Se lhe juntarmos os pontos 3/4, V2, e 7/2 obtemos uma nova
partigio P’ de [0, 4], a saber, P’ = |0, 3/4, 1,4/2, 7/2, 4 a qual é um refinamento de P. (Ver
fig. 1.20). Se uma fung¢do em escada é constante nos subintervalos abertos de P, € também
constante nos subintervalos abertos de cada refinamento P’

51 .
— > 4 * —
4+ —_— P. 0 I 2 3 4
KR o —e
24 —_—
| 4=
. & s 4 —
; , ' b " P: 0 31 V2 2 37 4
0 I 2 3 4 5 3 2
Fig. 1.19. A fungao franquia postal. Fig. 1.20. A partigcao P de

[0, 4] e um refinamento P’



Os conceitos do célculo integral 77

1.10 Soma ¢ produto de fungOes em escada

Somando os valores correspondentes de fungOes em escada, podem formar-se novas
fungdes do mesmo tipo. Por exemplo, suponhamos que s e ¢ sao fungoes em escada definidas
ambas no mesmo intervalo (g, b]. Sejam P, e P, partigoes de [a, b], tais que s € constante nos
subintervalos abertos de P, e ¢ constante nos subintervalos abertos de P,. A partir de s e ¢
pode definir-se uma nova fung@o em escada u = s +

u(x) = s(x) + 1(x) se a<x<hb.

Grafico de s + ¢

Grafico de s Grafico de ¢ —
—
——l —
————
-———
1 Il 1 ! ' 1 | — L
T T T T |' 1 1 1’ 1 L
a X, b a x b a x5 Xx b

Fig. 1.21. Soma das duas fungOes em escada.

Para se provar que « ¢ ainda uma fungao em escada, deve construir-se uma parti¢ao P tal que
u seja constante nos subintervalos abertos de P. Para formar esta nova parti¢ao P tomam-se
todos os pontos de P, juntamente com todos os pontos de P,. Esta parti¢ao, a reunidao de P,
com P,, diz-se o refinamento comum de P, e P,. Uma vez que tanto s como ¢ sao constantes
nos subintervalos abertos do refinamento comum, o mesmo se verifica para u. Na fig. 1.21
mostra-se um exemplo. A partigao P, ¢ {a, x,, bl, a partigao P, € {a, x;, b| e o refinamento
comum é {a, x,, x,, b}.

Analogamente, o produto v = st de duas fungoes em escada é outra fungao em escada. Um
caso especial importante ocorre quando um dos factores, por exemplo ¢, € constante em todo
o intervalo |a, b]. Se #(x) = ¢ para todo o x de [a, b], entdo cada valor da fungdo v(x) obtém-
se multiplicando pela constante ¢ o valor da funcdao em escada s(x).

1.11 Exercicios

Neste conjunto de exercicios | x| representa 0 maior inteiro < x,
1. Sejam f{x) = [x] e g(x) = [2x], para todo o x real. Tragar, para cada caso, o grafico da
fungdo / definida no intervalo [—1, 2] pelas formulas seguintes:

(@) h(x) = f(x) + g(x). (©) h(x) = f(x)g(x).
(b) h(x) = f(x) + g(x/2). (d) h(x) = }f(2x)g(x/2).

APOSTOL — 4
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2. Em cada uma das alineas, /' ¢ uma fungao definida no intervalo [—2, 2| pelas formulas
dadas a seguir. Desenhar o grafico de /. Se ffor uma fun¢ao em escada, determinar a par-
tigdo P de [—2, 2], tal que f seja constante nos subintervalos abertos de P.

(@) f(x) =x +[x]. (d) f(x) = 2[x].
(b) f(x) =x = [x]. () f(x) =[x + }l].
(©) f(x) =[—x]. (f) f(x) =[x] + [x + 3].

3. Tragar os graficos das fung¢des definidas pelas formulas seguintes:

(@ f(x) =[Vx] para 0<x<10. () f(x) =V[x] para 0 <x <10.
(b) f(x) =[x*]  para 0<x<3. @) f(x) =[x  para 0<x<3.

4. Demonstrar que a fungao parte inteira goza das propriedades seguintes:
(a) [x + n] = [x] + n para todo o inteiro n.
(—=[x] sexéum inteiro.

(b) [—x] = |=[x] =1 sex nio é inteiro.

© [x+yl=[x]1+[y] ou [x]+[y] +1
(d) [2x] = [x] + [x + 1]
(e) [3x] = [x] + [x + 3] + [x + §).

Exercicios facultativos

5. As formulas dos Exercicios 4(d) e 4(e) sugerem uma generalizagao para |nx|. Estabele-
cer e provar tal generalizagao.

6. Recorda-se que um ponto (x, ) duma rede no plano € aquele cujas coordenadas sao
inteiras. Seja f uma fung¢do ndo negativa, cujo dominio € o intervalo la, bl coma e b
inteiros € a < b. Seja S o conjunto de pontos (x, y) verificando a Sx < 5,0 < ) < f(x).
Provar que o numero de pontos da rede em S é igual a soma

I‘J
S 1)),

E=4a

7. Se a e b sao inteiros positivos entre si, tem-se a formula

b—1

na (@a—=1)b-=1)
3[5]-e=e=2

n=1

Quando b = 1, a soma do primeiro membro supde-se ser 0.

(a) Estabelecer este resultado geometricamente, contando os pontos da réde num triangulo
retangulo.

(b) Estabelecer o mesmo resultado analiticamente do modo seguinte: variando o indice

. b—1 —~ .
do somatorio, notar que I, [na/b] = Ef::ll la(b — n)/b]. Aplicar agora os Exercicios

4(a) e 4(b) ao paréntesis do segundo membro.
8. Seja § um conjunto de pontos da reta real. A fungdo carateristica de S é, por defini-
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¢ao, a fungdo xs tal que zg(x) = 1 paratodo o x de S e xs(x) =0 para todo o x nao per-
tence a S. Seja fuma fungdo em escada que toma o valor constante C, no subintervalo
aberto de ordem k, I,, de determinada parti¢do dum intervalo [a, b]. Provar que, para
cada x elementode [, U I, U ... U I setem

f(x) =2 ek (%)

k=1

Esta propriedade significa que toda a fungao em escada ¢ uma combinagao linear de fun-
goes carateristicas de intervalos.

1.12 A definicdo de integral para fungdes em escada

Apresentamos a seguir a defini¢ao de integral para fungdes em escada. A definigao deve
ser construida de modo que o integral duma fung@o em escada, nao negativa, seja igual a
area do respetivo conjunto de ordenadas.

Seja s uma fungdo em escada definida em [a, b] e seja P = {x,, x;, X5, <. xn] a partigao de
la, b] tal que s seja constante nos subintervalos abertos de P. Designemos por 5 O valor cons-
tante de s no subintervalo aberto de ordem k, ou seja

s(x) = s, s Xy < x < xg, k=1,2,...,n.

DEFINICAO DO INTEGRAL DE FUNCOES EM ESCADA. O integral de s de a a b. representado
pelo simbolo Ig s(x)dx, é definido pela formula

_‘:: s(x) dx =ki1 St (X — Xpe1) - (1.3)

Quer isto dizer que, para obter o valor do integral, multiplicamos cada valor constante s, pela
medida do subintervalo correspondente (x,—x, ), obtendo-se o produto s (x,—x, ;) €
somam-se, em seguida, todos os produtos obtidos.

Observe-se que os valores de s nos pontos extremos dos subintervalos sdo sem significado,
uma vez que nao aparecem no segundo membro de (1.3). Em particular, se s é constante no
intervalo aberto (a, b), isto €, s(x) = ¢ se a < x < b, entao tem-se

n

J; sty dx = e 30 = %) = b — @),

independentemente dos valores sfa) e s(b). Se ¢ > 0 e s/{x) = ¢ para todo o x do intervalo
fechado |a, bl, o conjunto de ordenadas de s é um rectangulo de base b — a e altura c; o inte-
gral de s & o(b — a), a area desse retangulo. Mudando os valores de s em um ou ambos 0s
extremos a e b do intervalo, o conjunto de ordenadas varia, mas nao altera o integral de s ou
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a area do respectivo conjunto de ordenadas. Por exemplo, os dois conjuntos de ordenadas da
fig. 1.22 tém areas iguais.

24 2
L
]-- S ————— ] il e ———————
«
—- : H— | + e X
1 2 3 0 1 2 3
Fig. 1.22. Mudangds nos valores da fungio Fig. 1.23. O conjunto de ordenadas
nos dois extremos ndo alteram a area do duma fungdo em escada.

conjunto de ordenadas.

O conjunto de ordenadas de qualquer fun¢do em escada ndo negativa s ¢ formado porum
numero finito de retangulos, um por cada intervalo em que a fungio € constante; ao conjunto
de ordenadas podem tambem pertencer ou faltar certos segmentos verticais, dependendo do
modo como s esta definida nos pontos de subdivisao. O integral de s ¢ igual a soma das areas
de cada um dos retangulos, independentemente dos valores de s nos pontos de divisao. Esta
afirmagao é coerente com o fato de os segmentos verticais terem area nula e nao darem
qualquer contribuigao para a area do conjunto de ordenadas. Na fig. 1.23, a fung¢ao em
escada s toma os valores constantes 2, 1 e 9/4 nos intervalos abertos (1, 2),(2, 5) e (5, 6), res-
pectivamente. O seu integral ¢ igual a

f:s(x)dx=2'(2— D+1-(5=2)+3-(6—5 =22,
Deve observar-se que a formula (1.3) para o integral ¢ independente da escolha da partigao
P, contanto que s seja constante nos subintervalos abertos de P. Por exemplo, se substitui-
mos P por uma parti¢ao mais fina P’, introduzindo um novo ponto de divisao ¢, com x, < f <

< x,, entdao o primeiro termo do segundo membro de (1.3) sera substituido pelos dois termos
$,.(t — x,) e s,.(x, — t), e os restantes termos ndo se alteram. Uma vez que

S0t —Xo) + 51 (xy = 1) =5, (x; — x0),
o valor da soma completa mantém-se. Podemos passar de P a qualquer outra parti¢do mais

fina P’, inserindo novos pontos de divisdo, um de cada vez. Em cada fase, a soma em (1.3)
permanece inalterada, e portanto o integral € o mesmo para todos os refinamentos de P.

1.13 Propriedades do integral duma fungdao em escada

Nesta secdao apresentamos um certo numero de propriedades fundamentais do integral
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duma fungao em escada. Muitas destas propriedades parecem evidentes quando se faz a sua
interpretagao geométrica e algumas delas podem mesmo parecer trivias. Todas elas sao vali-
das para integrais de fungoes mais gerais ¢ sera uma questao simples a sua demonstragao
naquela hipotese de generalidade, uma vez estabelecidas para as fungoes em escada. As pro-
priedades sao apresentadas na forma de teoremas e de cada uma faz-se a respetiva interpre-
tagdo geomeétrica, para fungoes em escada nao negativas, em termos de areas. As demons-

tragoes analiticas dos teoremas serao feitas na Sec¢ao 1.15.

sS4 1

a b a b a b

Fig. 1.24 — A propriedade aditiva do integral.

A primeira propriedade estabelece que o integral da soma de duas fun¢des em escada ¢
igual 2 soma dos integrais dessas fungdes. Designa-se por propriedade aditiva e esta re-
presentada na fig. 1.24.

TEOREMA 1.2 — PROPRIEDADE ADITIVA.
[* [s(x) + 1(x)] dx = f: §(x) dx +L ® 1(x) dx .

A propriedade seguinte, representada na fig. 1.25, denomina-se propriedade homogenea ¢
estabelece que, multiplicando os valores da fungdo por uma constante ¢, o integral vem

multiplicado por c.

2s

Fig. 1.25 — A propriedade homogénea do integral para ¢ = 2.
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TEOREMA 1.3 — PROPRIEDADE HOMOGENEA. Para todo o numero real c, tem-se

'.b c.s(x)dx = ¢ I.b s(x) dx .

Y a va

Estes dois teoremas podem combinar-se numa tnica formula, conhecida por propriedade
de linearidade.

TEOREMA 1.4 — PROPRIEDADE DE LINEARIDADE. Para todo o par de mimeros reais c, e c,
tem-se

'.b [cys(x) + cat(x)] dx = ¢, l: s(x) dx + ¢, J: t(x)dx .

A proposi¢io seguinte ¢ um teorema de comparagdo, o qual estabelece que se uma
fungiio em escada toma, em todo o intervalo |a, bl, valores superiores aos de outra fun-
¢io, o seu integral estendido ao mesmo intervalo ¢ tambeém maior.

TEOREMA 1. 5 — TEOREMA DE COMPARAGAO. Se s(x) < {(x) para todo o x de |a, b, entdo
|” s(x) dx < |” t(x) dx .

A interpretagao geométrica deste teorema indica que, se um conjunto de ordenadas esta con-
tido noutro, a area da regido menor nao pode exceder a da regiao maior.

As propriedades apresentadas até agora referem-se todas elas a fungoes em escada defini-
das num intervalo comum. O integral goza de outras propriedades importantes que relacio-
nam integrais definidos em intervalos distintos.

Entre elas temos as seguintes:

TEOREMA 1.6 — ADITIVIDADE COM RESPEITO AO INTERVALO DE INTEGRACAO.
: b b
fr s(x) dx + I s(x)dx = l. s(x) dx se a<c<hb.
a Ul “a

Este teorema exprime a propriedade aditiva da drea, apresentada na fig. 1.26. Se o conjunto de
ordenadas se decompde em dois, a soma das dreas das duas partes é igual a drea total.

Outro teorema exprime a invaridn¢a relativa a uma translagdo. Se o conjunto de ordena-
das de uma fungac em escada é “deslocado” de ¢, o conjunto de ordenadas resultante é o de
outra fung¢ao em escada t, relacionada com s pela equagao #(x) = s(x — ¢). Se s é definida em
[a, bl, entdo ¢ ¢ definida em [a + ¢, b + ¢] e os respetivos conjuntos de ordenadas, sendo
congruentes, tém areas iguais. Esta propriedade ¢ expressa analiticamente do modo seguinte:
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o o
: e
S iy
: i
a ( b
Fig. 1.26 — Aditividade com respeito Fig. 1.27 - Invarianciado integral sob
ao intervalo de integragao. translagiot(x) = s(x—c).

TEOREMA 1.7 — INVARIANCIA SOB TRANSLACAO

J‘b s(x)dx = J-b:c s(x —c¢)dx  para cada real c.

A interpretagao geometrica é dada na fig. 1.27 para ¢ > 0. Quando ¢ < 0 o conjunto de orde-
nadas ¢ “deslocado” para a esquerda.
A propriedade homogeénea (Teorema 1.3) indica como varia um integral quando se efetua

uma mudang¢a de escads no eixo 0Y. O teorema que se segue refere-se a uma mudanga de
escada na dire¢io OX multiplicando cada abcissa x por um fator k > 0, o novo grifico

é outra fungdo em escada ¢, definida no intervalo [ka, kb, e relacionada com s por meio da
equagao:

X
H(x) = s(;) se ka<x<kb.

A fig. 1.28 mostra um exemplo com k = 2 e sugere que a figura modificada tem uma area
duas vezes a da figura original. Em geral, um factor positivo k tem como efeito multiplicar

2a %, 2%
FiGURe 1.28 Cambio de escada no eixo x: #(x) = s(x/2).

o integral por k. Analiticamente a propriedade exprime-se da forma seguinte:

TEOREMA 1.8 — DILATACAO OU CONTRACCAO DO INTERVALO DE INTEGRACAO.

-1 Ly b
f s(;) dx = kj s(x)dx para cada k > 0.

ka
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Ate agora, quando utilizamos o simbolo f: , subentendeu-se que o hmite inferior a era me-
nor que o limite superior b. E, contudo, conveniente generalizar um pouco mais as ideias e
considerar integrais com o limite inferior maior que o limite superior. Tal é possivel definindo

[*sxyax=—["sxyax s a<b. (1.4)

Igualmente se define
[“ s(x)dx =0,

o0 que € sugerido por (1.4), fazendo a = b. Estas convengoes permitem-nos concluir que o teo-
rema 1.6 é valido ndao somente quando ¢ esta entre a e b, mas também para qualquer permu-
tagao dos pontos a, b, ¢. O teorema 1.6 traduz-se muitas vezes, pela formula

[Fsdx + ["sxdx + [ stx)dx =0.

Analogamente, podemos estender o campo de validade do teorema 1.8 ao caso em que a
constante k seia negativa. Em particular, quando k = —1, o teorema 1.8 e a igualdade (1.4)
dao-nos

J‘: s(x) dx = '_—: s(—x) dx.

A by
5 i(x)=s(-x)
e ey
* -»
- T > X T + - X
0 a b ~b -a 0

Fig. 1.29 — Propriedade dé reflexao do integral.

Designamos esta por propriedade de reflexdo do integral, uma vez que o grifico da
fungdo r dado por #(x) = s(-x) obtém-se do de s por reflexdo relativamente a OY. A fig.

1.29 representa um exemplo.
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1.14 Outras notagOes para os integrais

A letra x que aparece no simbolo f: s(x)dx nao desempenha nenhum papel fundamental
na definigao do integral. Qualquer outra letra servira do mesmo modo. As letras ¢, u, v, z sao
frequentemente utilizadas com a mesma finalidade, pelo que em vez de f: s(x)dx, podemos

escrever J: s(v)dt, fg s(u)du, etc. sendo considerados todos como notagoes diferentes duma

mesma coisa. Os simbolos x, ¢, u, etc, que se utilizam desta maneira dizem-se “variaveis
mudas”. Sao analogas aos indices mudos usados na notagao do somatorio.
Ha uma tendéncia entre alguns autores de livros de Calculo para omitirem simultanea-

mente a variavel muda e o simbolo d e escreverem simplesmente f: s para o integral. Uma

boa razao para usar este simbolo abreviado € que ele sugere muito fortemente que o integral
depende unicamente da fungdo s e do intervalo |a, b]. Aléem disso, certas formulas aparecem

mais simplificadas nesta notagao. Por exemplo, a propriedade aditiva vem J:’ (s +1)= _ﬁ’ 5+

+ j':t. Por outro lado resulta, todavia, mais complicado escrever algumas formulas, tais

como as dos teoremas 1.7 e 1.8, na notagdo abreviada. Mais importantes que estes fatos
sdo, sem duvida, as vantagens praticas que a notacgdo original de Leibriz apresenta, como
veremos mais adiante.O simbolo dx, que nos parece quase supérfluo nesta altura, apresen-
tar-se-a4 como um instrumento extremamente util na pratica de calculo de integrais.

1.15 Exercicios

1. Calcular o valor de cada um dos seguintes integrais, podendo fazer-se uso dos teoremas da
Se¢io 1.13, sempre que isso seja conveniente. A notagdo [ x] representa o maior inteiro < x.

(a) ﬁl (x] dx. (d) J’jl 2(x] dx.
(b) J': [x + 31dx. (&) J’jl [2x] dx.
O [* @A +1x+8Ddx. © [° (=xldx.

2. Dar um exemplo dum fungio em escada s, definida no intervalo fechado [0, 5], a qual tem
as seguintes propriedades: [2s(x)dx = 5, [$s(x)dx = 2.
3. Mostrar que [°[x] dx + [2 [—x] dx=a - b.

n—1
4. (a) Se n € um inteiro positivo, provar que f 3 (fldt = n-(—z—).

(b) Se f(x) = [§ [¢] dtparax 20, tragar o grafico defrelativo aointervalo (0, 4].

5. (a) Provarque (2 [2]dt=5—/2—/3.
(b) Calcular [}[¢*] dr

6. (a) Se néum inteiro positivo, provar que [7 [1]? dt = n(n — 1)(2n - 1)/6.
(b) Sef(x)= f(; [£]? dtparax = 0, tragar o grafico defrelativo ao intervalo [0, 3].
(c) Determinar todos os valores de x > 0 para os quais [ [¢]* df = 2(x — 1).
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10.

1.

12.

Célculo

. (a) Caleular [? (v/7] dr.

(b) Se n é um inteiro positivo, provar que [* [\/11dr = n(n — 1)(4n + 1)/6.

. Mostrar que a propriedade de translagao (teorema 1.7) pode ser expressa na forma

equivalente
“bicf(x) dx = f”f(_: + ¢)dx.
Mostrar que a seguinte propriedade € equivalente ao teorema 1.8:

:° fe)dx =k|® flkx)dx .

Dado o inteiro positivo p, define-se a fungao em escada s no intervalo [0, p| como segue:
s(x) =(—1)"n se x esta no intervalo n <x<n+ l,onde n=0, 1, 2, ..., p— 1; s(p) = 0.
Seja f(p) = |§ s(x)dx.

(a) Calcular f13),/(4) ¢ fU/(2)).

(b) Para que valor (ou valores) de p é|fip)| = 7?

Se, em vez de definir integrais de fungdes em escada pela formula (1.3), usarmos a definigiio

b n

[ s(x)dx = 3 s3-(x; = x34) .
v 3 k=1

pode resultar uma nova e diferente teoria de integragdo. Quais destas propriedades

permaneceriam validas na nova teoria?

™

NIRTIREE Off e

v a a

5.

® [ s+n="s+["= @ ["stxyde = [ stx + o) dx.
va va va Jate v a

(e) Se s(x) < t(x) para cada x em |a, b}, entdo fﬁ 5 < .1'2 .
Resolver o Exercicio 11, utilizando a definigao

~h n
' s(x)dx =3 5. (x} = xi_y) .
a k=1

-

No exercicios seguintes pedem-se as demonstragdes analiticas das propriedades do
integral dadas na Sec¢do 1.13. As demonstracdes dos teoremas 1.3 ¢ 1.8 sio apresen-
tadas como exemplos e sdo dadas sugestdes para as restantes.

Demonstragdo do teorema 1.3: _f: c.s(x)dx=c J'f: s(x)dx para todo o real c.
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Seja P = {xg, x,, ..., x| uma parti¢do de [a, b], tal que s seja constante nos subintervalos
abertos de P. Suponhamos s(x) = Spsex;_; <x< x(k=12,.., n). Entdo ¢ - s(x) =
=c.s,sex, < x<x, edaqui, pela defini¢do de integral. temos

i

- ﬂ
’c - s(x) dx = Serspxe =x ) = 5 (0 —xy) =¢ [bdx)dx.
a =1 k=1 Ja

Demonstragao do teorema 1.8.

kb /) *b
f s(—)dx = kJ s(x) dx s¢e K>0.,
ka k.‘

a

Seja P = {xy, X,y veus xn} uma parti¢ao do intervalo [a, b], tal que s seja constante nos
subintervalos abertos de P. Suponhamos que s(x) =s;se x;_, < x < X,. Seja 1(x) = s(x/k)
se ka < x < kb. Entado 1(x) = §; se x pertence ao intervalo aberto (kx‘._ 1 kX ); por conse-
guinte P* = {kxg, kx,, ..., kx | € uma parti¢do de [ka, kb] e ¢ é constante nos subintervalos
abertos de P". Portanto 7 ¢ uma fungao em escada cujo integral é

Iﬂ:‘b Hx)dx =3 s, (kx, — kx, ) =k i S (X = x) =k l-h s(x) dx .
Jka i=1 i=1 "

13. Demonstrar o teorema 1.2 (propriedade aditiva).
[Sugestdo: Aplicar a propriedade aditiva para somas:
i@y +b) =30 a + IR by )
14. Demonstrar o teorema 1.4
[Sugestao: Aplicar a propriedade aditiva e a propriedade homogénea.|
15. Demonstrar o teorema 1.5

[Sugestdo: Aplicar a propriedade correspondente para somas E;=I a < Z;zl b se
a, < b, parak = 1,2,..,n.]

16. Demonstraroteorema 1.16

[ Sugestdo: Se P, é uma partigdo de [a, c] e P, uma partigdo de [c, b], os pontosde P, jun-
tamente com os de P, formam uma partigao de [a, bl.]
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17. Demonstrar o teorema 1.7

[ Sugestdo: Se P = 1Xy, X,, ..., X, | € uma partiéo de [a, bl,entdo P' = {x, + ¢, X, + C, ...,
x, + ¢} éuma partigdode[a+ ¢, b +cl.]

1.16 O integral de fungdes mais gerais

O integral J': s(x)dx foi definido quando s é uma fung@o em escada. Nesta segdo devemos

formular uma definigao de J'f J(x)dx que seja aplicavel a fungdes [ mais gerais. A definigao

devera ser estabelecida de tal modo que o integral dela resultante goze de todas as proprieda-
des referidas na Segao 1.13.

P aproximagao por excesso

________ rel
__________ - 5. aproximagao por defeito

Fig. 1.30 Aproximagao duma fungao f por defeito e por excesso, por meio de fungdes
em escada

O metodo sera inspirado no de Arquimedes, que foi desenvolvido na Secgao I 1.3. A ideia é
simplesmente esta: comegamos por aproximar, por defeito e por excesso, a fungao fpor inter-
medio de fungdes em escada, como se sugere na fig. 1.30. Para isso escolhemos uma fungio em
escada arbitraria s, cujo grafico esteja abaixo do def, e uma fungdo em escada arbitraria ¢, cujo
grafico esteja acima do de f. Em seguida consideramos o conjunto de todos
0S NUMEros J': s(x)dxe _[: t(x)dx obtidos escolhendo s e ¢ de todas as maneiras possiveis. Pelo
teorema de comparagao teremos

s dx < | 1) dx

Se o integral de f'ha-de verificar o mesmo teorema, entdo deve ser um numero compreendido
entre fé’ s(x)dxe J: t(x)dx, para cada par s e ¢ de fungoes de aproximagao. Se existir um unico
numero gozando desta propriedade, definimos o integral de fcomo sendo esse numero.
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Ha somente um pormenor que pode dificultar este processo, e que se apresenta logo desde
inicio: infelizmente nem sempre € possivel aproximar toda a fungdo por defeito ou por ex-
cesso, por intermédio de fungdes em escada. Por exemplo, a fungio fdada por

ﬂn=§ se x#0, f(0)=0,

¢ definida para todo o x real, mas em nenhum intervalo (g, b] que contenha a origem se pode “en-
quadrar” f por fungoes em escada. Deve-se tal situagao ao fato de ftomar valores arbitraria-
mente grandes nos vizinhangas da origem ou, por outras palabras, f ndo ser limitada nas
vizinhangas da origem (Ver fig. 1.31). Portanto devemos em primeiro lugar restringir-nos
aquelas fungdes que sdo limitadas em |a, bl, quer dizer, fungdes f para as quais existe um
namero M > 0 tal que

-M<f() <M, (1.5)

qualquer que seja x em [a, b]. Geometricamente o grafico de tais fungoes esta situado entre os
graficos de duas fungoes em escada constantes, s e 7, que tomam os valores —M e M, respectiva-
mente. (Ver fig. 1.32). Neste caso diz-se que festa

y
o 7 SO— f(x) = M
' 7
} 4t
—— X 0 a b
o s(x)= -M
Fig. 1.31 — Uma fung@o ndo limitada. Fig. 1.32 — Uma fungao limitada.

limitada por M. As duas desigualdades em 1.5 podem também escrever-se

/()< M.

Salvaguardado este ponto, podemos continuar a realizar o plano descrito atras e formular a
defini¢ao de integral.

DEFINICAO DE INTEGRAL DUMA FUNCAO LIMITADA. Seja f definida e limitada em [a, b].
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Sejam s e t fungoes em escada arbitrdrias definidas em |a, b] e tais que
s(x) < f(x) < 1(x) (1.6)

para cada x em |a, b). Se existir um e um s6 numero I, tal que
b b
|"s(xydx <1< |"t(x) dx (1.7)

para cada par de fungoes em escada s e t satisfazendo a (1.6), entao este numero 1 chama-se
o integral de f de a a b e representa-se pelo simbolo J': f(x)dx ou ,Ig f. Quando um tal numero
I existe, a fung¢do f diz-se integrdvel em |a, b).

Se a < b, definimos [ £ f(x)dx = — [ f(x) dx, suposta f{x) integravel em [a, b]. Definimos

também | ‘;f(x)dx = 0. Se f{(x) ¢ integravel em |a, b], dizemos que o integral jz f(x)dx existe.
A fungao f chama-se fung¢do integranda, os numeros a e b sao os limites de integragdo e o
intervalo la, b] o intervalo de integragao.

1.17 Integrais superior e inferior

Suponhamos a fungdo f limitada em [a, b]. Se s e ¢ sdo fungOes em escada satisfazendo a
(1.6), dizemos que s € inferior a f e t superior a f e escreve-se s< f <.
Seja S o conjunto de todos os numeros [%(x)dx obtidos quando s passa por todas as fungdes

em escada inferiores a f; e seja T o conjunto de todos 0s numeros J:’ t(x)dx obtidos ao tomar
para f todas as fungOes em escada superiores a f, ou seja

S=U:s(x)dx[sgf}, T={J:’r(x)dx|fgr .

Ambos os conjuntos S e 7T sao nao vazios, uma vez que f € limitada. Assim sendo
fg s(x)dx < fi’ I(x)dx se s < f <t, pelo que todo o numero de S € menor que qualquer numero
de T. Portanto, pelo Teorema 1.34, S tem um supremo e 7 um infimo que verificam as de-
sigualdades

f: s(x)dx <supS<infT< J.b 1(x) dx

-

para quaisquer s e ¢ verificando s< f <t. Isto mostra que ambos os nimeros sup S e inf T’
satisfazem a (1.7). Portanto féintegravel em [a, b] se e somente se sup S = inf 7', caso em que se
tem
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'ﬁbf(x) dx =supS =inf T,

O nimero sup S chama-se o integral inferior de fe representa-se por J{f). O nimero 7 cha-
mase integral superior de f ¢ representa-se por /(f). Entdo tem-se

I(f) = sup {': s(x) d,\" 5 Sf} s I(f) = inf {': ((x) dx lf < ‘} .

O raciocinio precedente prova o teorema seguinte.

TEOREMA 1.9. Toda a fungao f limitada em \a, b| tem um integral inferior [(f) e um integral
superior I(f) que satisfazem as desigualdades

_"b s(x)dx < I(f) L I(f) < ':’ 1(x) dx

para todas as fungoes em escada s e t tais que s < f < 1. A fungdo [ é integrdvel em |a, b) se e so-
mente se os seus integrais superior e inferior sdo iguais, e nesse caso serd

[" 1 dx = 105 = 1)

1.18 A area de um conjunto de ordenadas expressa por um integral

O conceito de area foi introduzido axiomaticamente na Seg¢ao 1.6 como uma fungéo de con-
junto que goza de certas propriedades. A partir destas propriedades provou-se que a area do
conjunto de ordenadas, duma fungao em escada nao negativa, € igual ao integral da fungao.
Agora mostramos que o mesmo ¢ verdadeiro para qualquer fungdao nao negativa integravel.
Lembramos que o conjunto de ordenadas duma fungdo nao negativaf, relativa a um intervalo
la, b], & o conjunto de todos os pontos (x, y) verificando as desigualdades 0<y <
< fix),asx<h.

TEOREMA 1.10. Se f é uma funcdo ndo negativa, integravel num intervalo \a, b\, e Q o con-
Junto de ordenadas de f a respeito de |a, b], entdo Q é mensurdvel e a sua drea é igual ao

integral [® f(x) dx.

Demonstragdo: Sejam S e T duas regides em escada verificando § < Q < 7. Existem
entdo duas fungdes s e ¢ satisfazendo a s < f <t em [a, b], tais que

a(s) = J.b s(x) dx e a(T) = ]: H(x) dx .

Uma vez que f ¢ integravel em |a, b| 0 nimero / =j :ﬁx)dxé o unico verificando as de-
sigualdades
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b b
|"s(x)dx <1< J 1(x) dx

para todas as fungdes em escadasezcom s< f <. Portanto, esse ¢ também o unico numero veri-
ficando a(S) < I £ a(T) para todas as regides em escada S e T, com S € Q < T. Pela proprie-
dade de exaustdo, a conclusdo anterior prova que Q € mensuravel e que a(Q) = I.

Represente Q o conjunto de ordenadas do teorema 1.10 e seja Q0 o conjunto que resulta
de subtrairmos a Q os pontos do grafico de f, isto &,

Q0 ={xy|a<x<b,0<y<f(¥)}.

O argumento usado para demonstrar o teorema 1.10 mostra que Q " & mensuravel e que
a(Q") = a(Q). Portanto, pela propriedade da diferenga para a area, o conjunto Q@ — Q"¢
mensuravel e

a(Q — Q') =a(Q) —a(Q0’) =0.
Provamos, pois, o seguinte teorema.

TeoOrReMA 1.11. Sejafuma fungdo ndo negativa, integravel num intervalo|a, b|. O gradfico de
[, ou seja, o conjunto

{, |a<x<by=fx)},
€ mensuravel e tem drea igual a 0.
1.19 Observagoes relativas a teoria e técnica de integracao

Chegados a este ponto apresentam-se duas questoes fundamentais: (1) Quais as fungoes limi-
tadas que sao integraveis? (2) Sabido que uma fungdo f ¢ integravel, como calcular o integral de
f?

A primeira questdo encontra-se resposta na “Teoria da Integra¢do” e a segunda no capitulo
intitulado “Técnica de Integragao”. Uma resposta completa a questao (1) ultrapassa o nivel de
um curso preliminar e nao sera estudada neste livro. Em vez disso, daremos respostas parciais as
quais exigirao apenas ideias elementares.

Em primeiro lugar introduzimos uma classe importante de fungoes, as fungoes monotonas.
Apresentamos a seguir a sua defini¢ao e damos alguns exemplos. Demonstramos depois que
todas as fungoes monotonas limitadas sao integraveis. Felizmente, muitas das fungdes que apa-
recem na pratica sao ou monotonas ou somas de fungGes monotonas, de maneira que os resulta-
dos desta teoria reduzida de integragao sdo suficientemente amplos.

A discuss@o da “Técnica de Integragao” comega na Segdo 1.23 onde calculamos o inte-
gral |® x? dx, quando p & um inteiro positivo. Em seguida desenvolvemos propriedades gerais
do integral tais como linearidade e aditividade e mostramos como estas propriedades nos aju-
dam a alargar os nossos conhecimentos a integrais de fungdes especificas.
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1.20 Fungoes mondtonas e mondtonas por partes. Definigoes e exemplos

Uma fungio f diz-se crescente num conjunto S se fl x )= fly) para todo o par de pontos x ¢ yde
S com x <y. Se a desigualdade f{x) < fly)se verifica paratodoso x < yde S, diz-se que a fun-
¢do [ € estritamente crescente em S. De modo andlogo, f diz-se decrescente em S se f[x)2
> fly) para todo o x < yem S. Sef[x) > fly), quaisquer que sejam x < yde S, entdo fdiz-se es-
tritamente decrescente em S. Uma fungdo chama-se mondrona em S se for crescente ou de-
crescente em S. A designagio estritamente monotona significa que a fungido ou € estritamente
crescente ou estritamente decrescente em S. Regra geral, o conjunto S € quer um intervalo
aberto, que um intervalo fechado. Na fig. 1.33 representam-se alguns exemplos.

)

S8 G
PN

_~
-

N

S G

-
b
crescente estritamente crescente estritamente decrescente

Fig. 1.33. FungGes monotonas.

Uma fungao diz-se “mondtona por partes”, num intervalo, se o grafico € formado por um nu-
mero finito de partes monotonas. Quer dizer, /¢ monétona por partes em [a, b) se existe uma par-
ticao P de [a, b], tal que f seja

X2
\_:/
|
|
- I
o Fig. 1.34. Fungdao monotona por partes.

monotona em cada um dos subintervalos de P. Em particular, fungdes em escada sao monoto-
nas por partes, bem como todos os exemplos figurados nas figs. 1.33 e fig. 1.34.

EXEMPLO 1. A fungdo poténcia. Se p € um inteiro positivo, temos a desigualdade
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xP < _1-1’ se 0 S x < ¥V,

a qual pode ser facilmente demonstrada por indugao. Implica este fato que a fungao
poténcia f, definida para todo o real x pela equagio flx) = x7, € estritamente crescente no
eixo real nao negativo. A mesma fungdao € monotona em sentido restrito no eixo real nega-
tivo (e decrescente se p € par e crescente se p € impar). Por conseguinte /€ monotona por
partes, em cada intervalo finito.

EXeMpPLO 2. A fungdo raiz quadrada. Seja f(x) = Vx para x 2 0. Esta fungao € estrita-
mente crescente no eixo real nao negativo. Com efeito se 0 < x < y, temos

~ y — X
}

Vy=—VX=—"FZ""T"23

Vy+ Vs
logo vy — Vx>0
ExempLo 3. O grafico da fungdo g definida por

gy=Vrt—x* se —r<x<r

¢ uma semicircunferéncia de raio r. Esta fungao ¢ estritamente crescente no intervalo
—r £ x S0 e estritamente decrescente no intervalo 0 < x < r. Por conseguinte g € mondtona
por partes em |—r, r|.

1.21 Integrabilidade de fun¢oes monoétonas limitadas

A importancia das fungdoes monotonas na teoria da integragao € devida ao seguinte
teorema:

TeOREMA 1.12. Se fé mondtona no intervalo fechado |a, b|, entao f é integravel em |a, b|.

Demonstragao. Demonstramos o teorema para fungoes crescentes. A demonstragao para
fungoes decrescentes é analoga. Suponhamos fcrescente e sejam /(f) e /(f) os seus integrais infe-
rior e superior, respectivamente. Devemos provar que [(f) = I(/).

Designemos por n um inteiro e positivo ¢ construamos duas fungdes de aproximagiao em
escada, s, e 7, do modo seguinte: Seja P = {x,, x,, X;, ..., X,| uma particao de |a, b] em n
subintervalos iguais, isto €, subintervalos [x, _, x|, tais que x,—x, , = (b-a)/n, para todo
0 k. Definamos agora s, e ¢, pelas formulas

5.(x) = flxy) t.(x) = f(x,) € X <X < X

Nos pontos de divisao, definem-se s, e f, de modo que se mantenham as relagdes s, (x) < f(x) <
<1,x) em todo [a, b]. Na fig. 1.35 (a) apresenta-se um exemplo. Para esta escolha de fun-
¢oes em escada temos
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b b n n
J. - "J‘ Sn =k§1f(xk)(xk - Xpy) —kglf(xk—l)(xk - Xj—1)
b — (b — a)[f(b) — f(a)]

n n

2D V) = fxen)] =

k=1

onde a ultima expressdo € uma consequéncia da propriedade (A) fig. 48 das somas finitas.
A igualdade da primeira com a Gltima expressdo € susceptivel duma interpretagio geome-
trica simples. A diferenca ,I';’ L, — J;f' s, € igual a soma das areas dos retangulos sombreados
na fig. 1.35 (a). Deslocando estes rectangulos para a direita de modo a que fiquem com
uma base comum, como na fig. 1.35 (b), vemos que eles completam um retangulo de base

(b-a)/n e altura fib)-fla);
= T

— /(b) - fla)

() (®) n

FIGURE 1.35 Prova de integrabilidade duma fungéo crescente.

Podemos agora escrever de novo a relagao anterior na forma

b b
[:,,—f -y (1.8)
Ja a n

J Os integrais superior e inferior de f verificam as desigualdades

[Psa<in<n e [s<ing[.

o

Multiplicando o primeiro conjunto de desigualdades por (—1) e somando o resultado ao segundo
conjunto, obtemos

1= IN< [t = ["s..

q Servindo-nos de (1.8) e da relagao I(f) < I(f), obtemos
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osw)—f(f)sf

para todo o inteiro » > 1. Portanto pelo teorema 1.3 1, devemos ter I(f) = I(f), o que provaque fé
integravel em |[a, b].

1.22 Calculo do integral de uma fun¢ao monétona limitada

A demonstragao do teorema 1.12 nao so prova que o integral de uma fun¢ao limitada cres-
cente existe, como também sugere um método de calculo do valor do integral. E o que se prova
pelo seguinte teorema.

TEOREMA 1.13. Seja [ crescente no intervalo fechado \a, bl e x, =a + k{b—a)/n para
k=0,1,2, .., n. Selé qualquer numero que verifica as desigualdades

b—a

n

?_lf(xg <r<? : = zf(m (1.9)

para todo o inteiron > 1, entdo I = ff: f(x)dx.

Demonstragdo. Suponhamos que s, e 7, sdo duas fungGes em escada, obtidas por divisao

do intervalo [a, b] em n partes iguais, como foi referido na demonstragao do teorema 1.12.
Deste modo a desigualdade (1.9) estabelece que

I's.<1< |1,

para n2 1. Mas o integral f: J(x)dx verifica as mesmas desigualdades que /. Utilizando (1.8)
vemos que

0<L \ I — r)f(,r) dx

C

S -

J n
para todo o inteiro n = 1. Portanto, pelo teorema 1.31, temos / = J'i/(‘x}dx como se queria

demonstrar. Um argumento analogo permite a demonstragdo do teorema correspondente
para fungoes decrescentes.

TeOREMA 1.14. Seja f uma fungdo decrescente em |a, b e X, =a+ k(b—a)/n para k = 0,
1,2,...,n.Sel é um mimero qualquer que verifica as desigualdades

b—ax b—ad .,
- zf(x;..) SI<>— gnf(.xk)

para todo o inteiron 21, entao I = _ff: S(x)dx.
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1.23 Calculo do integral .I'g ¥ dx quando p é um inteiro positivo

Para exemplificar o uso do teorema 1.13 vamos calcular o integral _I'g X’ dx,comb>0ep

um inteiro positivo qualquer. O integral existe porque a fungdo integranda ¢ limitada e cres-
cente em [0, b].

TEOREMA 1.15. Se p é um inteiro positivo e b > 0, tem-se

XPdx = ——

* b b? 1
'0 p+1

-

Demonstra¢ao: Comecemos com as desigualdades

-

-1 pl

S ke << Z k?
;:I l k=1

validas para todo o inteiro n 21 e todo inteiro p 2 1. Estas desigualdades podem ser facilmen-
te demonstradas por indugao matematica. (No Exercicio 13 da Sec¢do I 4.10 esboga-se a

demonstragao). Multiplicando as desigualdades por 57*!/n”*! obtemos

b (kby b (Lb
n%(._n).<p+1<n = )

Se fizermos f{x) =x" e X, = kb/n,parak =0,1,2,...,n, estasdesigualdades vém

b s < -”—— <2 me)

n
k=0

Portanto, as desigualdades (1.9) do teorema 1.13 sdo satisfeitas com fix)=x", a=0¢

I =br*Y(p + 1). Resulta pois que [} x” dx = b**/(p + 1).

1.24 Propriedades fundamentais do integral

A partir da definigao de integral € possivel deduzir as seguintes propriedades, cujas demons-
tragoes serao dadas na Secgao 1.27.

TEOREMA 1.16. LINEARIDADE RELATIVA A FUNCAO INTEGRANDA. Se fe g sao fungoes

integraveis em |a, b, o mesmo se verifica para ¢ f + ¢,g qualquer que seja o par das constantes
reais c, e c,. Alem disso, tem-se

[ e + cag@ldx = ¢, [ S dx + ¢ || g(0) v
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Nota: Utilizando o método de indugio matematica, a propriedade da linearidade pode
generalizar-se do modo seguinte: se f,, ..., f, sdo integriveis em |a. bl. entio também o ¢
ey + ... + ¢,f,, quaisquer que sejam as constantes reais ¢,, ¢, ..., €

m €

J;b‘gf’kfk(-‘f) dx =§.1ck Lb fux) dx .

TEOREMA 1.17. ADITIVIDADE COM RESPEITO AO INTERVALO DE INTEGRACAO. Se dois dos
trés integrais seguintes existem, o terceiro também existe e tem-se

_’:f () dx + [ f( dx = [ f(x) dx.

Nota: Em particular, se /¢ mondtona em la, bl ¢ também em |b, cl, entiio ambos os inte-
grais j'i’ fe [ fexistem e assim [ fexiste também e € igual & soma dos dois outros integrais.

TEOREMA 1.18. INVARIANCIA SOB TRANSLACAO. Se [ € integrdvel em |a, b), entdo qualquer
que seja o numero real ¢ tem-se

e

J::’f(.\'_) dx = ': :f(.'( —¢)dx.

TEOREMA 1.19. D:LATAcKo OU CONTRACAO DO INTERVALO DE INTEGRACAO. Se fé inte-
gravel em |a, bl, entao para todo o real k # 0 tem-se

b lJ'kb ’x)
x)dx = - =) dx.
Jorea=g) )4

Nota: Em ambos os teoremas 1.18 e 1.19, a existéncia de um dos integrais implica a existéncia do
outro. Quando k = —1, o teorema 1.19 chama-se propriedade de reflexdo.

TEOREMA 1.20. TEOREMA DE COMPARACAO. Se [ e g sao ambas integraveis em la, bl e se
gix) < fix) para todo o x @ la, b tem-se

_';b gx)dx < _|;b f(x)dx.

Um caso particular importante do teorema 1.20 ocorre quando g(x) = 0 para todo o x.
Neste caso o teorema estabelece que se f{x) 2 0 em todo o intervalo |a, b], entdo Jf f(x)dx > 0.
Por outras palavras, uma fungao nao negativa tem um integral nao negativo. Pode tambem
demonstrar-se que se tivermos a desigualdade g(x) < f{x) para todo o x em [a, b], entdo a
mesma desigualdade e valida para os integrais, mas a demonstragao nao € facil de dar nesta
altura.

No capitulo 5 discutiremos varios métodos de calculo do valor de um integral sem
necessidade de aplicar em cada caso a definigao de integral. Estes métodos, porém, sdo aplica-
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veis unicamente a um numero reduzido de fungoes e para a maior parte das fungGes integraveis o
valor numeérico do integral pode apenas ser calculado aproximadamente; isto faz-se, habitual-
mente, aproximando a fungao integranda superior ¢ inferiomente por fungoes em escada, ou por
outras fungoes simples cujo integral se pode calcular de maneira exata. O teorema de compa-
ragao utiliza-se para se obterem as aproximagoes correspondentes para o integral da fungao em
questao. Esta ideia sera analisada mais completamente no capitulo 7.

1.25 Integragao de polindmios

Na Sec¢ao 1.23 estabelecemos a formula de integragao

b bp':-l
f @ dx = (1.10)
0 p+1

para b > 0 e p um inteiro positivo qualquer. A formula é também valida se b = 0, uma vez que
ambos 0s membros sao nulos. Podemos servir-nos do Teorema 1.19 parademonstrar que(1.10)

também é valida para b negativo. Fazemos simplesmente k = —1 no teorema 1.19 e obtemos
- b [ (— b)’“
J x?dx = —f (—x)”dx=(—1)"‘"J. x®? dx = *——,
0 0 0 p+1

ue nos mostra que (1.10) € valida para b negativo. A propriedade aditiva {®x"dx = [x"dx -
q a 0

J3 x* dx conduz-nos agora a formula mais geral

valida para quaisquer reais a ¢ b e qualquer inteirop 20.
Algumas vezes usa-se o simbolo

P(x)

b
para designar a diferenga P(b) — P(a). Assim sendo, a formula anterior pode igualmente

€sCrever-se

b pptl _ gl

a p+1

Esta formula, simultaneamente com a propriedade da linearidade, permite-nos integrar qual-
quer fung@o polinomial. Por exemplo, para calcular o integral |3 (x? — 3x + 5)dx determina-
mos o integral de cada termo e depois adicionamos os resultados obtidos. Assim, temos
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+ 5x
1

3 2 3
X
— 3=
1

3 3 3 3 xs
J.(xz—-3x+5)dx =J. x"'dx—JJ.xdx+SJ. dx = —
1 1 1 3 2

1

1

PP P12, F—1' 26 20
= -3 5 =2 -n4+10==,
3 > 0T 3 + 3

Mais geralmente, para calcular o integral de qualquer polinomio integramos termo a termo:

b n " b n pkHL _ gkl
e x¥dx = .| X*dx= > ¢, — .,
J;,‘:Zo"x Z“a Z" k+1

k=0 k=0

Podemos ainda integrar fungoes mais complicadas desdobrando-as em varios polinomios.
Por exemplo, consideremos o integral [}|x(2x — 1)|dx. Devido ao sinal de valor absoluto, a

fungao integranda nao ¢ um polinomio. Porém, considerando o sinal de x(2x — 1), podemos
dividir o intervalo [0, 1] em dois subintervalos, em cada um dos quais a fun¢ao integranda seja
um polinomio. Quando x varia de 0 a I, o produto x(2x — 1) muda de sinal no ponto x =

I . . 1 -
=5 negativo se 0 < x < 5 ¢ positivo se 1/2 < x < 1. Portanto, podemos usar a pro-

priedade aditiva e escrever

.‘: Ix(2x — 1)} dx = _.':}1;2 x(2x — 1)dx + f; x(2x — 1) dx
- J;”(x — 2x% dx + J:,,_,(Zx"' — x)dx
==+ Gt = =1.
1.26 Exercicios

Calcular cada um dos integrais seguintes

L[ a2, 8. [' (5x1 — 4x)d.
. w =1
2. l.na.\.'a dx. 9, 'ﬁ‘! (,2 + 1) dr.
T J=1
3. '-: 4,1-3 dx. 10. "? (3.\'2 — 4x + 2) d.\'.
4. |7, axax. . [V288 + 62 = 21 + 5)dr.
S. Iol 5 dr. 12, j“lr_ (u — D(u — 2) du.
1 1 0 f 9
6. |_, 3. 13. |7 (x + D
7. [o] (5x* — 4x7) dx. 4. ' ! (x + 1)*dx.
h SO



Os conceitos do calculo integral 101

15. |0 (x — 1)3x — 1) dx. 18. [ (x2 — 3 d.
‘ J-3
16. [ I(x = (3 = D dx. 19. [*x(x = 5)tdx.
17. |: (2% = 57 dx. 20. ]_I (x + 4)"°dx. [Sugestdo: Teorema 1.18]

21. Determinar todos os valores de ¢ para os quais
@ [“x(1 = x)dx =0, () [“[x(1 = x)|dx =0.
JO v 0

22. Calcular cada um dos seguintes integrais e tragar o grafico de f para cada caso.

2 _ LS se 0 <x <1,
(a) Jof(x) dx onde f(x) = 2-x sel<x<2
X se 0 <x<e,

®) [f(x)dx  onde f(x)=1{ 1
/0 ‘T se c<x < 1;

¢ € um numero real fixo, 0 < ¢ < 1.

23. Calcular um polinémio do 2.° grau P para o qualP(0) = P(1) = 0 e [JP(x)dx = 1.

24. Determinar um polinomio do 3.° grau P para o qual P(0) = P(=2) = 0, P(1) = 15, ¢
3(9,P(x)dx = 4.

Exercicios facultativos.

25. Seja fuma fungdo cujo dominio contém —x sempre que contém x. Diz-se que fé uma
fungao par se f{(—x) = f(x) e uma fungao impar se f(—x)= —f(x), para todo o x no do-
minio de /. Se f ¢ integravel em [0, b] demonstrar que:

@ [ fydx =2"f(x)dx s fé par;
(b) |_"b f(x)dx =0  sefé impar.

26. Utilizar os teoremas 1.18 e 1.19 para deduzir a formula

I"f)dx = (b — a) [:_f[a + (b — a)x) dx .

27. Os teoremas 1.18 ¢ 1.19 sugerem uma generalizagdo para o integral _sz(Ax + B)dx.
Inferir a formula sugerida e demonstra-la com auxilio dos teoremas 1.18 e 1.19. Discutir
também o caso 4 = 0.

28. Utilizar os teoremas 1.18 e 1.19 para estabelecer a formula

.Df(c - x)dx = ’.c—:f(x) dx .

-

1.27 Demonstragao das propriedades fundamentais do integral

Nesta se¢do vamos ocupar-nos da demonstragiio das propriedades fundamentais do inte-
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gral referidas nos teoremas 1.16 ¢ 1.20da Segao 1.24. Paratal fazemos repetidousodo fato de
que toda a fungdo f'que é limitada num intervalo [ a, ] tem um integral inferior /(f) e um integral
superior /(f), definidos por

"b (b
If)=supl| s|s<f], Tg=infl| t|r<1f,

onde s e ¢ representam fungdes em escada arbitrarias inferior e superior a f, respetivamente.
Sabemos, pelo teorema 1.9, que f ¢ integravel se e s0 se J(f) = I{f), caso em que o valor do
integral de /¢ o valor comum do integral superior e do integral inferior.

Demonstracao da propriedade de linearidade ( Teorema 1.16). Descomponhamos essa pro-
priedade em duas partes:

[u+o=]r+]e. (A)
['ef=c[r1. (B)

Para provar (A), fagamos I(f) = _f:fe I(g) = _I‘z g. Interessa-nos provar que I(f+ g) = I(f +
+g)=1(f) + I(g).

Sejam s, e 5, fungOes em escada arbitrarias inferior a fe g respectivamente. Uma vez que fe g
sa0 integraveis, temos

_ *h [ “ b |
() =sup|] silsi<f].  He)y=sup|) s:|s<gl.

Pela propriedade aditiva do supremo (Teorema 1.33) temos também

b * b N l
1)+ =sup || s+ | s:|s<fis< g (1.11)

i

Mas se 5, < fe s, <g,entdo asomas=s, + s, € uma fungdo em escada inferior af + g e resulta
que

*

s+ n=]s<IU+0.

LT

Portanto, o numero /(f + g) € um limite superior para o conjunto que figura no segundo membro
de (1.11). Este limite superior nao pode ser menor que o supremo do conjunto, pelo que conclui-
mos

)+ <If+g). (1.12)

De modo semelhante, se usamos as relagoes
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1) = inf ||’ | it [ [° l
(f)=inf{| 1 If<ty, (g =inf l.'., | g < tyf

onde ¢, e t, representam fungOes em escada arbitrarias superiores a f e g, respetivamente,
obtemos a desigualdade

If+ 9 <I(f)+ I(g). (1.13)

As desigualdades (1.12) e(1.13)em conjunto mostram que I(f+ g) = I(f + g) = I(f) + I(g). Por-
tanto /' + g ¢ integravel e a relagao (A) ¢ valida.

A relagdo (B) é trivial se ¢ = 0. Se ¢ > 0, observemos que cada fungao em escada s, inferior a¢f
¢ daforma s, = ¢s, onde s € uma fungao em escada inferiora /. Do mesmo modo, cada fungao em
escada ¢, superior a ¢f'é da forma 1, = ct, onde 1 € uma fun¢do em escada superior a f. Portanto
temos

b | b
I(cf) = sup :II 51| 51 Scf: = sup {c L s|s gf} = cl(f)

Ieh)=inf{| t|ef<uf=infle| t]f <1 =cl(f).

e em conclusdo I(¢f) = I(cf) = cI(f). Aqui utilizamos as seguintes propriedades do supremo e do
infimo:

sup {c.\'|.\'eA} = csup {.\'|.\‘EA}. inf{cx|.\'EA}=cinf{x].\'EA}, (1.14)
as quais sao validas se ¢ > 0. Esta assim demonstrada (B), se ¢ > 0.

Se ¢ < 0, a demonstragao de (B) ¢ fundamentalmente a mesma, exceto que cada fungao em
escada s, inferior a ¢f é da forma s, = ct, com ¢ uma fun¢do em escada superior a f, e toda a
fungao em escada ¢, superior a ¢f'é da forma ¢, = cs, onde s € uma fungao em escada inferior a f.
Além disso, em vez de (1.14) usamos as relagoes

sup {ex | xe A} = cinf {x | xE A}, inf {('.r| x €A} = csup {x | xe A},

que sao validas se ¢ < 0. Temos pois
[[® \ [ [ Y I"’ | _
1(cf)=supLL 5:|51_<_"f] = sup IC.L I‘fﬁ!l —(‘mfl-a t|f< t)=cl(f).

Analogamente se prova que I{¢f) = cl(f). Por conseguinte (B) é verdadeira para qualquer
valor real ¢.

Demonstragao da aditividade com respeito ao intervalo de integracdo (Teorema 1.17).
Suponhamos que a < b < ¢ e que os dois integrais |” fef; [ existem. Representemos por
I(f) el(f) os integrais superior ¢ inferior de f no intervalo |a, ¢|. Interessa-nos provar que



104 Célculo
b

n=In=["r+7r. (1.15)

Se s ¢ uma fun¢ao em escada qualquer inferior afem [a, ¢, temos

J:s=J:s+J:s.

Inversamente,se s, € 5,530 fungoes emescada inferiores a fem [a,b] eem [b,c], respetivamente,
entao a fungao s,que éigual a s, em [a, b] eigual a s, em [, c], é uma fungdo em escada inferior af
em |a, c| para a qual temos

.[: = .[.b S1+ ,r S2 -

Por conseguinte, pela propriedade aditiva do supremo (teorema 1.33), temos

-

bcf'

B {'t‘ ]— I'-D l ["c ]— "b
Iy =sup ) s[s<fi=supi)| s[si<fj+supi} sa|sa<fj=] f+

De modo analogo se prova
o A b .r
in=r+[7r.

0 que nos demonstra (1.15) quando a < b < ¢. A demonstragido é semelhante para qual-
quer sequéncia dos pontos a, b, c.

Demonstragao da propriedade de transiagao ( Teorema 1.18). Seja g a fungao definida no
intervalo [a + ¢, b+ ¢] por g(x) = f(x — ¢). Designemos por I(g) e I(g) os integrais superior e infe-
rior de g no intervalo [a + ¢, b + ¢]. Queremos provar que

" b
Ig)=Ig) = | f(x)dx. (1.16)

Seja s uma fungao em escada arbitraria inferior a g no intervalo |a + ¢, b + ¢|. Entao a fungao s,
definida em [a, b] pela equagdo s,(x) = s(x + ¢) é uma fun¢ao em escada inferior a fem |a, b].
Além disso, toda a fungao em escada s, inferior a fem [a, 5] tem esta forma para uma determi-
nada s inferior a g. Também

fbﬂ (x)dx = l: s(x + ¢)dx = J: sy(x) dx .

S
Yate

Por conseguinte tem-se

Analogamente, encontramos I(g) = _f: f(x)dx o quedemonstra(1.16).
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Demonstragao da propriedade de dilatagdo ou contracgdo ( Teorema 1.19). Suponhamos

k > 0 e definamos g no intervalo [ka, kb] pela equagdo g(x) =f(x/k). Sejam I(g) ¢ I(g) os inte-
grais inferior e superior de g em [ka, kb]. Interessa-nos provar que

I(g) = Kg) = k || 1) dx. (1.17)

Seja s qualquer fungdo em escada inferior a g em [ka, kb). Entdo a fungao s,, definida em [a, 5]
pela igualdade s,(x) = s(kx), ¢ uma fungdo em escada inferior a f'em [a, b]. Além disso, cada
fung@o em escada s, inferior a f'em [a, b] tem esta forma. Também, em virtude do teorema de
dilatagao para integrais de fungdes em escada, temos

kb b b
.L s(x)dx = k Ja s(kx)dx = k Ju sy(x) dx .
Portanto temos,
([x | ([ | _ o [
I =sup (| s|s<g =suplk| si|s<sf|=k]| fexax.

Analogamente, encontramos /(g) = kf: Jf(x)dx, o que demonstra (1.17) se kK > 0. O mesmo
tipo de demonstragao pode ser utilizadose k < 0.

Demonstracao do teorema de comparagdo ( Teorema 1.20). Suponhamos g < fno intervalo
[a, bl. Seja s qualquer fungdao em escada inferior a g, e r qualquer fungao em escada superior

a f. Entao temos f:s < f:tepelo teorema [.34 resulta
] L . ‘b b
[Pe=sup{['s|s<el <infl[ 1[r<q =7,

0 que nos permite concluir que _fgg < j:’f como desejavamos demonstrar.
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ALGUMAS APLICACOES DA TEORIA DA
INTEGRACAO

2.1 Introdugao

Na Secgao 1.18 representamos, por meio dum integral, a area dum conjunto de ordenadas
de uma fung¢do nido negativa. Neste capitulo mostraremos que dreas de regides mais gerais
podem também ser expressas por integrais € analisaremos ainda outras aplicagdes do inte-
gral a conceitos tais como volume e trabalho. Também, no final do capitulo, estudaremos
propriedades de fungdes definidas por integrais.

2.2 A area de uma regiao compreendida entre dois graficos representada por um integral
Se duas fungoes f'e g estao relacionadas pela desigualdade f(x) < g(x) para qualquer x do

intervalo |a, b], escrevemos f < g em [a, b]. A fig. 2.1 mosta dois exemplos. Se f <gem [a, b], 0
conjunto S formado por todos os pontos (x, y) que verificam as desigualdades

()< y<glx), a<x<b,

diz-se aregido entre os graficos de fe g. O teorema seguinte ensina-nos como exprimir a areade S
por meio de um integral.

TeOREMA 2.1 Sejamfe g fungdes integrdveis e verificando f < g em |a, bl. A regido S entre os
respetivos grdficos é mensurdvel e a sua drea, a(S), é dada pelo integral

a(s) = | [8(x) = (0] dx. (2.1)

Demonstragdo. Suponhamos primeiramente que f e g sdo ndo negativas, como se indica
na fig. 2.1(a). Sejam F e G os seguintes conjuntos

F={x»|a<x<b0<y<fix)}, GCG={x)]|as<x<bh0<y<gx)}.

107
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N/

(a) (b)

Fig. 2.1 — A area da regido entre dois graficos representada por um integral :
a(s) = |? [g(x) — fi)\dx.

quer dizer G ¢ o conjunto de ordenadas de g ¢ F € o conjunto de ordenadas de f, menos o graficode
/- A regido S entre os graficos de fe g € a diferenga S = G — F. Devido aos teoremas 1.10¢e 1.11,
ambos F e G sao mensuraveis e uma vez que F € G, adiferenga S = G — F é também mensuravel
e temos

a($) = a(G) — a(F) = | g)dx = ["f(x) dx = ["[g() = o) dx

Esta assim provada (2.1) quando f e g sdo nao negativas.

Consideremos agora o caso geral quando f < g em [a, b, mas fe g nao sao necessariamente
nao negativas, Na fig. 2.1(b) apresenta-se um exemplo. Podemos reduzir este caso ao anterior
deslocando a regido para uma outra (translagdo paralela a 0Y) que fique situada acima do
eixo 0X, isto ¢, escolhemos um nimero positivo ¢ suficientemente grande, para nos garan-
tir que 0 < fix) + ¢ < glx) + ¢ para todo o x em |a, bl. Por aquilo que ji se demonstrou, a
nova regido T entre os graficos de f+ ¢ € g + ¢ € mensuravel e a sua drea ¢ dada pelo integral.

aT) = | [(8() + ©) = (f() + O dx = | [8(x) = f(0)] dx .

Mas T ¢ congruente com S e portanto S é também mensuravel e temos

a($) = a(T) = [ [&(x) = f(x)] dx,

0 que completa a demonstragao.
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2.3 Exemplos resolvidos

EXEMPLO 1. Calcular a drea da regido S entre os graficos de fe g no intervalo (0, 2], se
fix)=x(x-2)eglx)=x/2.

Resolugao: Os dois graficos estdo representados na fig. 2.2. A parte sombreada represen-
ta §. Uma vez que f £ g no intervalo (0, 2|, servimo-nos do Teorema 2.1 para escrevermos

a(S) =J:[g(x) — f(x)] dx =_r(§x - x’) dx = g 2 2, é’

Fig. 2.2 — Exemplo 1. Fig. 2.3 — Exemplo 2.
ExeEmpLO 2. Calcular a area da regido S entre os graficos de f e g no intervalo [—/, 2] se

J(x) = xe g(x) = x*/4.

Resolugao: A regido S esta representada na fig. 2.3. Aqui ndo se verifica f <g para todo
o intervalo |- 1, 2]. Contudo tem-se f < g no subintervalo (-1, 0] e g £ f no subintervalo
|0, 2|. Aplicando o teorema 2.1 a cada subintervalo temos

a(s) =|" [gx) — f() dx + [ [f(x) — g dx

APOSTOL — 5
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[

0 /.3 2/ a)
’. (f- — .\‘) dx + [ (x -—i) dx
-1\4 o

LS / <0

Dt =t 2 12t 23
4 4 2 2 44 16

Em exemplos semelhantes a este, em que o intervalo [a, b] pode ser dividido um numero finito
de subintervalos em cadaumdos quaisouéf <goug < f,aformula(2.1)do teorema 2.1 escreve-
se

a(s) = | " lg(x) — f(x)l dx

EXEMPLO 3. Area do circulo. Um circulo de raio r ¢ o conjunto de todos os pontos
sobre uma circunferéncia de raio r e todos os que lhe sdo interiores. Um tal circulo € con-
gruente com a regido compreendida entre os graficos de duas fungdes f e g definidas no
intervalo |—r, r| pelas formulas

glx) =vVrt—x? ¢ f(x) = =Vr?—x2.

Cada uma das fungdes € limitada e monotona em [—r, r] de modo que cada uma delas é inte-
gravel em [—r, r]. O teorema 2.1 diz-nos que a regiao entre os graficos ¢ mensuravel e que a
sua drea € [ [g(x)—fix)ldxy. Representemos por A(r) a drea do circulo. Vamos provar que

A(r) = r2A(1).

iSto €, que a area do circulo de raio r € igual ao produto da area de um circulo unitdrio (circulo
de raio 1) por r*,

Uma vez que g(x) — fix) = 2g(x), o teorema 2.1 da-nos
A(r) = |_r 2g(x) dx = 2 |‘Ir Vit — x*dx.

v

Em particular, quando r = 1, temos a formula

v ——
A)=2| V1 —x*dx.

V1

Modificando a escala no eixo 0X, e utilizando o teorema 1.19 com k = 1/r, obtem-se

-

AP =2 |" glx)dx = 2r |"] grx) dx = 2r [ Vi = (rx)? dx

=hﬂ1\i—xwx=#mn,

0 que prova que A(r) = r’A(1) como se tinha afirmado.
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DEFINICAO. Define-se o nimero m como a drea de um circulo unitario.
A formula que acabamos de demonstrar escreve-se entdo
A(r) = =r.

O exemplo anterior elucida-nos sobre o comportamento da area perante a dilatagao ou con-
tracao de regioes planas. Suponhamos que S é um dado conjunto de pontos do plano e conside-
remos um novo conjunto de pontos obtidos por multiplicagdo das coordenadas de cada
ponto de S por um fator constante k > 0. Representamos este novo conjunto por kS e dize-
mos que ¢ semelhante a S. O processo que produz kS a partir de S chama-se transformagao por
semelhanga. Cada ponto desloca-se, ao longo de uma reta que passa pela origem, de um
segmento k vezes a sua distincia inicial aquela origem. Se k > | atransformacdo diz-se tam-
bém em alongamento ou dilatagdo (a partir da origem) e esse 0 < k < | diz-se um encolhimento

ou uma contragao (em diregio a origem).

Por exemplo, se S ¢ a regido limitada por uma circunferéncia de raio unidade ¢ centro na ori-
gem, entdo kS € uma regido circular concéntrica com a anterior e cujo raio € k. No exemplo 3
mostrou-se que, para regioes circulares, a area de kS é k* vezes a areade S. Vamos provar agora
que esta propriedade da area é valida para qualquer conjunto de ordenadas.

ExXempLO 4. Comportamento da drea de um conjunto de ordenadas perante uma transfor-
magao por semelhanga. Seja fuma fungdo ndo negativa e integravel em [a, b] e S 0 seu conjunto
de ordenadas. Na fig. 2.4(a) apresenta-se um exemplo. Se aplicarmos uma transformagao por
semelhanga com um fator positivo k, entao kS € o conjunto de ordenadas de uma nova fungao,
seja g, sobre o intervalo [ka, kb] (Ver fig. 2.4(b)). Um ponto (x, y) pertence ao graficode g se € s0
se o ponto (x/k, y/k) pertencer ao grafico de f. Logo y/k = f(x/k) e portanto y = kf{(x/k). Por

outras palavras, a nova fungdo g esta relacionada com f pela formula

g\x) = kf(x/k)

|4

f %

kS

(a) (b)

Fig. 2. 4 — A area de kS ¢ k? vezes a area de S.

para cada x em [ka, kb]. Por conseguinte, a area de kS é dada por
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a(kS) = j: g(x) dx = k j:: F(x/k) dx = k* j " f(x)dx ,

onde, na ultima passagem, se utilizou a propriedade de dilatagao para os integrais (teorema
1.19). Uma vez que _I‘::_’ f(x)dx = a(S), isto prova que a(kS) = k®a(S). Por outras palavras, a
areade kS é k* vezesaareade S.

ExXeMpLO 5. Calculo do integral fgx"Z dx. O integral para a area € uma espada de dois

gumes. Embora usualmente se faga uso do integral para calcular areas, algumas vezes pode-
mos servir-nos dos nossos conhecimentos relativos a area para calcular o integral. Pomos
este fato em evidéncia calculando o valor do integral fg x"2dx, com a > 0. (O integral existe
uma vez que a fungdo integranda é crescente e limitada em [0, a].).

A fig. 2.5 representa o grafico da fungdo f dada por f{(x) = x'? no intervalo [0, al. O res-
pectivo conjunto de ordenadas S tem uma area dada por

a(S) = J., XV dx .

Vamos calcular esta area dum outro modo. Observamos muito simplesmente que na fig. 2.5
a regidao S e a parte sombreada T completam um retangulo de base a e altura a'”%. Portanto
a(S) + a(T) = a** e assim temos

a(S) = a¥2 — a(T).

X (a‘ aan)

Fig. 2.5 — Calculo do integral fg x'2dx.
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Mas T é o conjunto de ordenadas de uma fungio g definida no intervalo[0, a'*]do eixo 0Y pela
relagao g(v) = y*. Entdo temos

s 1/2 « 12

a(T) = |U g(y) dy = |u

ydy = 3a**,

Dt — g2

e por conseguinte a(S) = 3

2, Isto prova que

= 2a
= 34

/s o 3/2
x'*dx = 35a"".
<0

Mais geralmente, se a > 0 e b > 0, podemos aplicar a propriedade aditiva do integral para
obter a formula

] ‘ - 2 3/
x"dx = :'l(b"’ *—ad? ).
L/

O argumento anterior pode também ser aplicado para calcular o integral .I'z X/n dx, se n for
um inteiro positivo. Estabelecemos o resultado em forma de teorema.

TEOREMA 2.2. Para a > 0, b > 0 e n um inteiro positivo, tem-se

*b f.'l 1/n
ln d\ -

va 'l + ]f" l

+1/
_ “1 /n

(2.2)

A demonstragio € tdo semelhante a do Exemplo 5 que a deixamos ao cuidado do leitor.,

2.4 Exercicios

Nos exercicios 1 a 14, calcular a area daregidao S compreendida entre os graficos das fungoes
e g definidas no intervalo [a, b] especificado em cada caso. Tragar os graficos e sombrear a parte
que define S.

. f(x) =4 — x%, g(x) =0, a= —2, b = 2.
2.f(x_)=4—.\'2, (\)-8—-—2\ a= -2 b =2.

3. f(x) = x* + X%, g(\.) + 1, a= —1, b =1,

4. f(x) = x — X%, g(x) = —x, a =0, b =2.

5. f(x) = x1/3, glx) = x13, a=0, b=1.

6. f(x) = x'/3 g(x) = x12, a=1, b =2.

7. f(x) = x1/3, glx) = x12, a=0, b =2.

8. f(x) = x/2, glx) = x3%, a =0, b =2. ~
9. f(x) = x%, glx) =x+1, a= -1, b=(1 +V5)2
10. f(x) = x(x* — 1), g(x) = x, a=—l, b =12

1. f(x) = [x], glx) = x* =1, a=—1, b =1.

12. f(x) = |x — 1], glx) =x*=2x, a=0, b=2.

13. f(x) = 2 x|, glx)=1-=3x* a=-V33 b=

14, f(x) = x| +x = 1], glx) =0, a= —1, b =2.

15. Os graficos de f{x)= x* e g(x)=cx?, com ¢ > 0, intersetam-se nos pontos (0, 0) e (l/c,
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1/¢*). Determinar ¢ de maneira que a regido limitada por esses graficos ¢ sobre o inter-
valo [0, 1/c) tenha drea 2/3.

16. Seja fix) = x — x*, g(x)=ax. Determinar @ de maneira que regido acima do grafico
de g ¢ inferior de ftenha area 9/2.

17. Definiu-se 7 como a drea dum circulo de raio unidade. No Exemplo 3 da Segio 2.3 provou-
se que 7t = 2/} 2/ 1 — x?dx. Fazendo uso das propriedades do integral calcular, em termos

de n:
(a) faaxfg “xtdx; (o) | VI = afdx; (@ |, (x = 3VEA - xdx

18. Calcular as areas dos dodecagonos regulares (poligonos de doze lados) inscritos
e circunscritos numa circunferéncia de raio unidade e provar as desigualdades 3 <
<M< 122 —4/3).

19. Seja C a circunferéncia de equagao cartesiana x*> + y* = 1. Seja E o conjunto dos pontos
obtidos por multiplicagiio da abcissa x de cada ponto (x, y)de C por um fator constan-
te a >0 e a ordenada y por um fator constante b > 0. O conjunto £ chama-se uma
elipse. (Quando a = b, a elipse ¢ outro circulo.)

a) Mostrar que cada ponto (x, y) de E satisfaz a equagio cartesiana (x/a)* + (y/b) = .
b) Aplicando propriedades do integral, demonstrar que a regido limitada pela elipse é
mensuravel e que a sua area € wab.

20. O Exercicio 19 ¢ uma generalizagio do Exemplo 3 da Se¢ido 2.3. Estabelecer e de-
monstrar uma generalizagio correspondente ao exemplo 4 da Se¢io 2.3

21. Usar um argumento analogo ao do Exemplo 5 da Secdo.2.3 para demonstrar o
teorema 2.2.

2.5 As fungoes trigonomeétricas

Antes de prosseguirmos nas aplicagoes da teoria da integragao, vamos fazer uma breve
disgressao de comentario as fungoes trigonometricas. Supomos que o leitor tem algum conheci-
mento das propriedades das seis fungoes trigonométricas seno, cosseno, tangente, cotangente,
secante e cossecante, e das suas fungdes inversas arco seno, arco cosseno, arco tangente, etc.

Estas fungoes sdo estudadas nos cursos de trigonometria elementar, em ligagao com proble-
mas variados de resolugao de triangulos. As fungGes trigonometricas sao importantes no calculo
nao so pelas suas relagoes com os lados e §ngulos dum triangulo, mas principalmente pelas pro-
priedades que possuem como fungdes. As seis fungoes trigonometricas tém em comum uma
propriedade importante conhecida por periocidade.

Uma fungao fdiz-se periodica de periodo p # 0, se 0 seu dominio contém x + p sempre que
contenha x e se f{x + p) = f(x) para todo o x do dominio de /. As fungoes seno e cosseno sao
periodicas de periodo 2, com = a area do disco circular de raio unidade. Muitos problemas de
fisica e engenharia tratam com fenomenos periodicos (tais como vibragées, movimento planeta-
rio e movimento ondulatorio) e as fungoes seno e cosseno formam a base para a analise matema-
tica de tais problemas.

As fungoes seno e cosseno podem ser definidas de maneiras diferentes. Por exemplo, ha defi-
nigoes geometricas que relacionam as fungoes seno e cosseno com os angulos e ha definigoes
analiticas que apresentam estas fungoes sem qualquer referéncia a geometria. Umas e outras sdao
equivalentes, no sentido de que conduzem as mesmas fungoes.

Geralmente, quando trabalhamos com o seno € 0 cosseno nao nos importam tanto as respeti-
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vas defini¢oes como as propriedades que podem ser deduzidas a partir delas. Algumas destas
propriedades, importantes no Calculo, sao enunciadas a seguir. Como habitualmente, represen-
tamos os valores das fungoes seno e cosseno em x por sen x, COS X respetivamente.

PROPRIEDADES FUNDAMENTAIS DO SENO E DO COSSENO

1. Dominio de definigdo. As fungoes seno e cosseno sdo definidas em toda a reta real.
. n

2. Valores particulares. Tem-se cos 0 = sen 5= l,cosm=—1.

3. Cosseno de uma diferen¢a. Para todo o par x e y, tem-se

cos (y — x) = cOs y COs X + sen y sen X. (2.3)

4. Desigualdades fundamentais. Para 0 < x < —;— tem-se

sen x |
Y < (2.4)

0<cosx < .
X COS X

Destas quatro propriedades podemos deduzir todas as propriedades do seno e do cosseno que
sao importantes no Calculo. Isto sugere-nos a introdugao das fungGes trigonométricas axiomati-
camente, isto €, podemos tomar as propriedades | a 4 como axiomas relativos ao seno € cosseno
e deduzir todas as restantes propriedades como teoremas. Para estarmos seguros que nao esta-
mos a discutir uma teoria vazia, & necessario mostrar que existem fungoes satisfazendo as pro-
priedades atras referidas. Poremos, contudo, de parte a analise desta questao para ja. Em pri-
meiro lugar supomos que existem fung¢oes que verificam aquelas propriedades fundamentais e
vamos, pois, demonstrar como podem deduzir-se outras propriedades. Depois, na Secgao 2.7,
apresentaremos um processo geométrico de defini¢ao do seno e cosseno com as propriedades
desejadas. No capitulo 11 esbogaremos igualmente um metodo analitico para definir o seno e
COSSeno.

TEOREMA 2.3. Se duas fungoes sen e cos satisfazem as propriedades | a 4, satisfazem tam-
bém as seguintes:

(a) Formula fundamental (identidade de Pitdgoras), sen’x + cos’x = | para qualquer X.

(b) Valores particulares, sen 0 = cas% = sen n = (.

(c) O cosseno é uma fungdo par e o seno € uma fungao impar, isto €, para todo o x tem-se
cos (—x) = cos x, sen{—x) = —senx,
(d) Para todo o x, tem-se

sen (37 + x) = cos x, cos (im + x) = —sen x.
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(¢) Periodicidade. Para todo o x,tem-se sen (x + 27)=sen X, cos (x + 27) = cos Xx.
(f) Formulas de adi¢cao. Para x e y quaisquer tem-se

cos (x 4+ y) = cos xcos y —Ssen xseny,

sen(x + y) =senxcos y + cosxseny .

(g) Formulas de diferenga. Para todos os valores de a e b tem-se

s a—b a+b

senu —senb = 2sen cos s
a—»b a+b
cosa — cos b= —2seén 3 sen Bk

. . n » . , .
(h) Monotonia. No intervalo | 0, > |, 0 seno é estritamente crescente e 0 cosseno e estri-

tamente decrescente.
Demonstracao: A parte (a) deduz-se imediatamente se fizermos x = y em (2.3) e usarmos

n -
cos 0 = 1. A propriedade (b) resulta de (a) fazendo x = 0, x = 5 X = 1 ¢ usando a relagao

sen 3= = 1. Que o cosseno ¢ par resulta também de (2.3), fazendo y = 0. Deduzimos a

igualdade

cos (3w — x) =senx, (2.5)

|
fazendo y = —-mem (2.3). Utilizando a igualdade anterior e (2.3) verificamos que o seno €

impar, uma vez que
K m I
sen(—x) = cos (;— - .\') = COS§ |:-:r — (7— — x)] =
m ‘ JT!
= COS ncos(: — x) + sennsen(g — x) = —Senx.

0 que prova (c). Para provar (d), usamos mais uma vez (2.5), substituindo primeiramente x
por 7—; + x e depois x por —x. O uso repetido de (d) da-nos entiio as relagdes de periodici-

dade (e).
Para provar a formula de adigao para o cosseno, basta substituir x por —x em (2.3) e ter em

conta a paridade ou nao paridade da fungao. Utilizando (d) e a formula de adigao para o cosseno
obtemos
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sen(x + y) = —cos(x + v+ :}75) = —COS X cos(_\' + :—r) -+ sen xsen(y-}- ;—T)=
= COS XSe€n y +sen x cos y .

o que prova (f). Para deduzir as formulas de diferengas (g), substituimos primeiro y por —y na
formula de adigao para sen (x + y) para obtermos

sen (x — y) =sen x cos y — Ccos xseny.

Subtraindo esta da formula para sen (x + y) e fazendo o mesmo para a fungao cosseno, obtemos
sen (x + y) — sen(x — y) = 2seny cos X,

cos (x 4+ y) — cos(x — y) = —2senysenx.

Fazendo x =(a + b)/2, y = (a—-b)/2 deduzimos das igualdades anteriores as formulas (g)
de diferenca.

As propriedades de (a) a (g) foram deduzidas unicamente a partir das propriedades 1, 2, 3.
A propriedade 4 serve para provar (h). As desigualdades (2.4) mostram que cos X e sen x sao

L Se0<h<a< —

5 5~ 08 numeros (a + b)/2 e (a — b)/2 estao no inter-

positivos se 0 < x <

valo (0, %) e as formulas de diferengas (g) mostram quesen a >sen b e cos a < cos b. Isto

completa a demonstragao do teorema 2.3.

Outras propiedades das fungoes seno e cosseno sao analisadas no conjunto de exercicios que
serdo apresentados a seguir (pg. 126 ). Mencionamos, em particular, duas formulas que se usam
frequentemente no calculo. Sao as chamadas formulas do dngulo duplo ou formulas de dupli-
cagado, a saber

sen 2x = 2 S€nx cos x cos 2x = cos®* x —sen®* x = | — 2sen® x,

Elas sdo evidentemente, simples casos particulares das formulas de adi¢lio ja obtidas, fazendo-
-se y=x. A segunda formula para cos 2x resulta da primeira pelo uso da férmula
fundamental. Esta (a identidade de Pitagoras) mostra também que |cos x| < 1 e |sen x| <1
para x qualquer.

2.6 Formulas de integragao para 0 seno € 0 cosseno

As propriedades de monotonia na alinea (h) do teorema 2.3, juntamente com u pro-
priedade (d) (pg. 115) e as propriedades de perioodicidade, mostram que as fungdes seno ¢
cosseno sdo “monotonas por partes”. Portanto, pelo uso repetido do teorema 1.12, vemos
que as fungdes seno e cosseno sdo integraveis em qualquer intervalo finito. Passamos, em
seguida, ao cdlculo desses integrais, por aplicagio do teorema 1.14. Esse cdlculo utiliza
duas desigualdades que nds enunciamos como um teorema:
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TEOREMA 2.4. Se0<acx —g- eln 21, tem-se
n n—1
EZcosﬁ<sena<£ZcosH. (2.6)
ni n n n

Demonstragao: As desigualdades (2.6) serao deduzidas da identidade

2senix icos kx =sen(n + })x —senjx, (2.7)

k=1

a qual ¢ valida para n 2 1 e todo o x real. Para provar (2.7), fazemos uso das formulas de dife-
rengas (g) do teorema 2.3 para escrevemos

2senjxcos kx =sen(k + })x —sen(k — })x.

Tomando Xk = 1, 2, ..., n e somando estas equagoes, encontramos que na soma do segundo mem-
bro ha termos que se reduzem, obtendo-se (2.7).

Se § x ndo € um miltiplo inteiro de 7, podemos dividir ambos os membros de (2.7) por
2 sen { x obtendo-se

sen(n + 3)x —senix
Zcoskx= ( $) gy
2senix

k=1

Substituindo n por n — I e somando 1 a ambos 0s membros obtemos também

L sen (n — })x + sen ix

cos kx =
2senix
k=0 =

Ambas as formulas sdo validas se x # 2m, onde m € um inteiro. Tomando x = a/n, com

1 . .
0<a< - % encontramos que o par de desigualdades em (2.6) € equivalente ao par

sen(n+£)2—sen(i) sen(n—;)‘—'-#scn(—“—)
a n 2n; a n 2n
- - < sena < - .
n Zsen(i) n 2sen(£—)

2n. 2n

Este par, por sua vez, € equivalente ao par
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sen(—)

sen(n + | )E —sen(;:]) ( 20 ena < sen(n — ,)’f:- + sen( ) (2.8)
2n!

Portanto, demonstrar (2.6) ¢ equivalente a demonstrar (2.8). Devemos provar que se tem

sen(2n + 1) —sen 0 < Sﬁréﬁsen 2nf < sen(2n — 1) 4-sen 0 (2.9)

para 0 < 2nf < % Quando 0 = a/(2n) estas desigualdades reduzem-se a (2.8).

Para demonstrar a desigualdade da esquerda em (2.9), servimo-nos da formula de adigao
para o seno, escrevendo

sen (2n + 1)0 =sen 2nf cos O + cos 2nfisen § < sen 2nb sen § +senf, (2.10)

tendo ainda utilizado as desigualdades

c050<50%6. O0<cos2nf <1, senff > 0,

as quais sao todas validas uma vez que 0 < 216 < % A desigualdade (2.10) ¢ equivalente a

desigualdade daesquerdaem(2.9).
Para demonstrar a desigualdade da direita em (2.9), utilizamos novamente a formula de
adigao para o seno e escrevemos

sen(2n — 1)0 = sen 2nbl cos 0 — cos 2nl sen b .

Adicionando sen #/ a ambos 0s membros, obtemos

sen(2n — 1)0 4+ sen f = sen 2::0((:05 6 +sen @ !-ﬂz—"q), (2.11)
. sen 2nf

Mas uma vez que se tem

1 — cos 2nb 2sen® nf sen nf

sen2nf 2sennfl cos nfi  cos nb

o segundo membro de (2.11) € igual a
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i

' 7] 6 6 =
sen ?.nﬂ(cos 6 + sen 6 sennf ) — sen 2nf) cos 0 cos nf 4 sen fisenn
. cos nfl cos nfl
—sen 2508 (n = DI

cos nfl
Portanto, para completar a demonstragao de (2.9), necessitamos mostrar somente que

cos(n — 1) >sen6. (2.12)
cos nfl 0

Mas nos temos

cos nfl = cos (n — 1)f cos 6 —sen(n — 1)fisenf <
0

— — 1o ,
L cos(n—1)0cosb <cos(n—1) sn 0

onde, mais uma vez, usamos a desigualdade fundamental cos 0 < 6/(sen ). Esta ultima relacao
implica (2.12) e assim a demonstragao do teorema 2.4 fica completa.

TEOREMA 2.5. Se duas funcoes sen e cos verificam as propriedades fundamentais desde | a 4,
entao para todo o real a tem-se

l: cos x dx = sena , (2.13)

-

:senx dx=1—cosa. (2.14)

Demonstragao. Vamos em primeiro lugar demonstrar (2.13) e, em seguida, utiliza-la para
demonstrar (2.14). Suponhamos que 0 < a < —;— Uma vez que o cosseno € decrescente em
[0, a], podemos aplicar o teorema 1.4 em conjungdo com as desigualdades do teorema 2.4
para se obter (2.13). A formula também é valida (trivialmente) para a = 0, ja que ambos os
membros sao nulos. Usando as propriedades gerais do integral, podemos agora estender a
sua validade para todo o real a.

1 - 1 . .
Por exemplo, se — -7 fas0,entao0<—a < 5 n, e a propriedade reflexiva da-nos

-

a —a “—a
| cos x dx = — [0 cos(—x)dx = — |0 cos x dx = —sen(—a) =sena .
Jo N .

- Y . | 1
Entao (2.13) é valida no intervalo [——2— n, Tnl. Suponhamos agora que %n <a s%n.

N | 1 .
Entao —2—n <a—mn < 5 T, € assim temos
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_[“ cos x dx = J.'“cos x dx + J.a cos x dx =sen im + J."_' cos(x + m) dx =
0 0

=1 — J.a—“cosxdx =1 —sen(a — 7) + sen(—3}#) = sena .
-
Deste modo se conclui que (2.13) é valida para todo o a pertencente ao intervalo [— —nz—,

%n]. Mas este intervalo tem medida 2n, pelo que a formula (2.13) é valida para todo o a

uma vez que ambos os membros sdo periddicos em a com periodo 2.

Usamos agora (2.13) para deduzir (2.14). Em primeiro lugar provamos que (2.14) é vali-
da quando a = n/2. Aplicando sucessivamente, a propriedade de translagdo, a igualdade
sen (x + = ) = cos x ¢ a propriedade reflexiva, encontramos

0 w2
f senx dx = f (x + lr) dx =f cos x dx =J cos (—x) dx .
-—vf'2 2 —zl2 0

Considerando que cos (- x) = cos x ¢ a igualdade (2.13), obtém-se

2
J:f senxdx = 1.

Por conseguinte, para qualquer real a podemos escrever

T/2 a a-w/2
fsenxdx—f sen x dx f senxdx=1+f sen(x+2£) dx =
w2 0

—u/2
=1+f cosxdx=1+sen(a—;—r)=1—cosa.
0

0 que mostra que (2.13) implica (2.14).

ExempLO 1. Considerando (2.13) e (2.14) em conjungdao com a propriedade aditiva

[, 1 dx = [[fCodx = [(f(0 dx.

obtemos formulas de integragao mais gerais

"B
cos x dx = senb — sena
va

‘bsenx dx =(1 —cosb) — (1 —cosa) = —(cosb — cosa).
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Se utilizarmos aqui o simbolo especial f(~“)|2 para representar f(b) — f(a), podemos escrever

'b b '.fl
| cos x dx =sen x } 2 | sen x dx = —cos x
i

i -a 1

b

ExempLO 2. Com os resultados do exemplo anterior e a propriedade

* b *ch
| frdx =2 | f(xle)ax,

o il

obtemos as seguintes formulas, validas para ¢ # 0:

h L[ |
J cos cx dx = Z'J cos x dx = - (sencb —senca),
©a

a

*b 1 *ch 1
’ sencx dx = -J sen x dx = — E(cos cb — cos ca).
¢ ca

N 1
EXEMPLO 3. A identidade cos 2x = 1 — 2 sen? x implica sen’ x = > (1 — cos 2x) e deste
modo, a partir do Exemplo 2, obtemos

J sen® x dx = lf (1 — cos 2x) dx = sen2a .
0 2Jo

1
4

(S B~

Uma vez que sen® x + cos’ x = I, obtemo$ tambem

J- cos® x dx =f (1 —sen®*x)dx =a —jsen’xdx =24 1—sana.
0 0 2 4

0
2.7 Descrigao geométrica das fungdes seno e cosseno

Nesta Segao apresentamos um meétodo geometrico para definir as fungoes seno e cosseno e
dar uma interpretagao geomeétrica das propriedades fundamentais enunciadas na Segao 2.5.

Consideremos uma circunferéncia de raio r e centro na origem. Designemos o ponto (r,0) por
A e por P qualquer outro ponto da circunferéncia. Os dois raios 04 e 0P determinam uma figura
geométrica chamada angulo, a qual se designa pelo simbolo / AOP, e se representanafig. 2.6. E.
conveniente atribuir a este angulo um numero real nao negativo x, o qual possa ser usado como
exprimindo a medida da sua grandeza. A maneira mais corrente de o fazer é tomar uma circunfe-
réncia de raio unidade e chamar x o comprimento do arco 4 P, descrito no sentido contrario ao
do movimento dos ponteiros dum relogio e dizer que a medida de /~ AOP ¢ x radianos. Dum
ponto de vista logico, isto nao € satisfatorio para ja, uma vez que nao se discutiu o conceito de
comprimento dum arco. Este conceito serd analisado no capitulo 14. Uma vez que o con-
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dobro da area do setor
r:l

Fig. 2.6 — Um angulo 2 AOP medindo x Fig. 2.7 - Interpretagiio geométrica de sen x
radianos. € COos X.

ceito de drea ja foi discutido, preferimos usar a drea do setor circular AOP,de prefe-
réncia ao comprimento de arco AP.como uma medida da grandeza de / AOP. Subenten-
de-se que o sector AOP ¢ a menor das duas partes do circulo, quando P esta situado aci-
ma do eixo real e ¢ a maior quando P esta situado abaixo do mesmo eixo.

Mais adiante, quando o conceito de comprimento de arco tiver sido discutido, veremos que o
comprimento do arco A P é exactamente o dobro da area de sector AOP. Portanto, para se obter
a mesma escala de medida para angulos por ambos os métodos, devemos usar o dobro da area
do setor AOP como medida do angulo/ A OP. Contudo, para se obter uma medida de angulos
independente da unidade de comprimento do sistema de coordenadas utilizado, definimos a
medida de /A OP como sendo o dobro da drea do setor AOP dividida pelo quadrado do raio.
Este cociente ndo varia se dilatarmos ou contrairmos o circulo, e portanto nao ha perda de gene-
ralidade em restringirmos as nossas consideragoes a uma circunferéncia de raio unidade. A uni-
dade de medida assim obtida é o radiano. Entao diremos que a medida de um angulo ZAOPéx
radianos se x/2 € a drea do sector A OP determinado num circulo de raio unidade.

Ja introduzimos o simbolo 7 para designarmos a drea dum circulo unitario. Quando

T
2
circulo completo ¢ um setor de 2x radianos. Se P, inicialmente em (1,0), se move ao
longo da circunferéncia no sentido positivo (contrario ao do movimento dos ponteiros do
relogio), a area do sector AOP crescede 0 a =n, tomando todos os valores do intervalo
{0, 7| uma vez e s6 uma. Esta propriedade, que é geometricamente aceitdvel, pode de-
monstrar-se exprimindo a area como um integral, mas ndo faremos essa demonstragio.

P =(-1,0), o setor AOP ¢ um semicirculo de area = e subtende um angulo de 7 radianos. O

O passo seguinte & definir o seno e o cosseno de um angulo, sendo ae momento preferivel
falar de seno e cosseno de um numero em vez de um dngulo, de modo que o seno e o cosseno
sejam funcoes definidas sobre a reta real. Procedemos do modo seguinte: escolhemos um ni-
mero x tal que 0 < x < 27 eseja P o ponto da circunferéncia unitaria, tal que a area do setor
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AOP seja igual a x/2. Sejam (a, b) as coordenadas de P. Na fig. 2.7 considera-se um exemplo.
Os nimeros a e b estao completamente determinados por x. Definem-se o seno e o cosseno de

X por:

cosx=a, senx =b.

Por outras palavras, cos x ¢ a abcissa de P, sen x € a sua ordenada.

Por exemplo, quando x = n temos P = (—1,0) de modo que cos n = —1 e sen n = 0. Analo-
% temos P = (0,1) e portanto cos % =0, sen % = 1. Este meétodo
descreve o seno e o cosseno como fungoes definidas no intervalo aberto (0,2 ). Generalizam-
-se as definigOes a todo o eixo real por meio das egualdades:

gamente, quando x =

sen(0 =0, cos0 =1, sén (x + 27) =senx, cos (x + 27) = cos x.

As outras quatro fungdes trigonométricas podem definir-se em fungao do seno e do cosseno
mediante as formulas
sen x COs X 1 1

tgx= : cotx = " S€C X = ' CSC X = .
Cos X s€nx COs5 X senx

Estas fun¢des sdo definidas para todo o real x, exceto para certos pontos isolados onde
os denominadores podem anular-se. Todas verificam a propriedade da perioodicidade
f(x + 27) = f(x). A tangente ¢ a cotangente tém o mais pequenho periodo .

Apresentamos a seguir argumentos geometricos que provam como estas defini¢oes condu-
zem as propriedades fundamentais enunciadas na Secgado 2.5. As propriedades 1 e 2 ja foram
tidas em consideragao pelo modo como definimos o seno e o cosseno. A formula fundamental
resulta evidente, perante a fig. 2.7. O segmento OP ¢ a hipotenusa de um triangulo retangulo
cujos catetos tém comprimentos |cos x| e |sen x| e o teorema de Pitagoras, para triangulos
retangulos, conduz a identidade cos®* x + sen’? x = 1.

Utilizamos, mais de uma vez, o teorema de Pitagoras para dar uma demonstragao geome-
trica de (2.3) para cos (y — x). Consideremos os dois triangulos retangulos PAQ e PBQ
tragados na fig. 2.8. No triangulo PAQ, o comprimento do lado AQ ¢ sen y-sen x|, o valor
absoluto da diferen¢a das ordenadas de Q e P. Do mesmo modo, AP tem um comprimento
]cos X —cosy | Se d representa o comprimento da hipotenusa PQ teremos, segundo o teo-

rema de Pitagoras,

d* = (seny —sen x)* + (cos x — cos y)*.

Por outro lado, no tridngulo retangulo PBQ o cateto BP tem um comprimento | 1-cos (y—x)|e
BQ o comprimento |sen (3~x)| . Portanto, o teorema de Pitagoras da-nos

d?*=[1 —cos(y — x)]* +sen’*(y — x).

Igualando as duas expressoes de d? e resolvendo relativamente a cos (y — x) obtemos a for-
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Q = (cos y,sen y) B

s€nx
COos X

P = (cos x,Senx)

Fig. 2.8 — Demonstragao geométrica da  Fig. 2.9 — Demonstragao geometrica das
formula cos (y —x). desigualdades.

seénx 1
0 <cosx <T <

cos x

mula (2.3) para cos (y — x) como pretendiamos.

Finalmente, as demonstragoes geomeétricas das desigualdades fundamentais da
propriedade 4 podem ser feitas sobre a figura 2.9. Muito simplesmente comparamos a area
do setor AOP com as dos triangulos OQP e OA B. Devido ao modo como definimos medida

do dngulo, a area do sector OAP ¢ :I,- x. O tridgulo AOB tem base | e altura A, por exemplo.

Pela semelhanga de triangulos, encontramos A/1 = (sen x)/(cos x), pelo que a area do triangule

.1 | ) - , . .
OAB e — h = — (sen x)/(cos x). Por conseguinte, a comparagao das areas da-nos as desi-

2,
gualdades.
1 senx

1
senxcosx < - x < - .
2 2¢Cos x

b =

1 . . .
Dividindo por 5 sen x e tomando 0s reciprocos obtemos as desigualdades fundamentais (2.4).

Lembramos ao leitor, uma vez mais, que era proposito desta Se¢ao dar uma interpretagao
geomeétrica do seno e do cosseno e das suas propriedades fundamentais. Um tratamento
analitico destas fungOes, sem recorrer a nogoes de geometria, sera apresentada na Segao
11.11.

En muitos manuais de Matematica aparecem tabelas de valores do seno, cosseno, tangente
e cotangente. Na fig. 2.10 (pag. 129) estao tragados os graficos das seis fungoes trigonometri-
cas correspondentes ao intervalo de amplitude um periodo. Servindo-nos dua perioodicida-
de, é imediato o tragado do grafico completo para cada caso.
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2.8 Exercicios

Neste conjunto de Exercicios podem utilizar-se as propriedades do seno e do cosseno apre-
sentadas das Segoes 2.5 a 2.7.
I. (a) Provar que sen nr = 0 para todo o inteiro n e que estes sdo os unicos valores de
X para os quais sen x = 0,
(b) Determinar todos os valores reais de x tais que cos x = 0.
2. Determinar todos os valores reais de x tais que (a) sen x = 1; (b) cos x = 1;(c) sen x =
= —1;(d) cos x = —1.

3. Provar que sen (n + x) = —sen x e cos (1 + X).= —cos x para x qualquer.
4. Provar que sen 3x = 3 sen x — 4 sen’x e cos 3x = cos x — 4 sen’x cos x para todo o
real x.
Provar também que cos 3x = 4cos’ x — 3cos x.
n 1 n /3 . .
5. a) Provar que sen — = 3 cos <= —Lz—.[Suge.vrao.' Recorrer ao Exercicio 4]
T3 n 1
b) Provar que sen — = ——,C0§ — = —.
) g 3 2 32
V2

¢) Provar que sen T = COS n =
1 s T T2

6. Provar que tg(x — y) = (tg x — tg ¥)/(1 + tg x tg y) para todo o par de valores de x e y,
tais que tg x tg y # — 1. Obter as correspondentes formulas para tg(x + y) e cotg(x + y).

n

3

8. Demonstrar que se C e « sdo numeros reais dados, existem numeros reais A e B tais que
Csen(x + ) = A sen x + B cos x para todo o x.

9. Provar que se A e B sao numeros reais dados, existem numeros C ¢ «, com C 2 0, tais
que a formula do Exercicio 8 € valida.

10. Determinar C e «, com C > 0, tais que Csen (x + «) = —2sen x — 2 ¢cos x para
todo o x. _

11. Provar que se A e B sao numeros reais dados, existem dois numeros C e «, com C 20
tais que C cos(x + 2) = 4 sen x + B cos x. Determinar C e x se A = B = 1.

12. Determinar todos 0s numeros reais x tais que sen X = COS x

13. Determinar todos 0s numeros reais x tais que senx — cosx = 1.

14. Provar que as igualdades seguintes sdo validas para todos os pares x e y.
(a) 2cos xcosy = cos(x = y) + cos (x + y).
(b) 2senx seny = cos (x — y) — cos (x + y).
(c) 2senxcosy =sen(x — y) + sen(x + y).

I5. Se h # 0, demonstrar que as identidades seguintes sdo validas para todo o x:

7. Determinar os numeros A e B tais que 3 sen(x + ——) = A sen x+B cos x, para qualquer x.

sen (x + h) —sen x sen(h/2) ! h)
h T (x *3)

h - hj2
Estas formulas serdo usadas no calculo diferencial.

cos(x + h) —cos x sen(h/2) ! h)
sen (x +3)-
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17.

18.
19.
20.
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Dizer se sao ou nao corretas as afirmagoes seguintes:

(a) Para todo o0 x ## 0 tem-se sen 2x # 2 sen X.

(b) Para todo o x, existe um y tal que cos(x + y) = cos x + COs ).
(c) Existe um x tal que sen(x + y) = sen x + sen y para todo y.

(d) Existe um y + 0 tal que [} sen x dx =sen y.

Calcular o integral [’ senx dx para cada um dos seguintes valores de a e b. Em cada
caso interpretar o resultado geometricamente em termos de areas.

(a) a =0,b = =/6. () a=0,b ==

(b) a =0,b = =/4. (f) a=0,b =2a.

(c) a =0,b =n3. (g)a=—1,b=1.

(d) a =0,b = /2. (h) @ = —=/6, b = =/a.

Calcular os integrais dos Exercicios 18 a 27.

[7 (x +senx) dx. 23. ("1} + cos | dr.

[ (x* + cos x) dx. 2. [ 1} +cosrldr, si 0<x<m
J;"z (senx — cos x) dx. 35. [ (2 + senn) dr.

rels

6. '0‘ sen 2x dx.

L ]

r/2
L |senx — cos x| dx.

T tx/3 X
f (3 + cos 1) dt. 27. J cos = dx.
0 o 2

Demonstrar as seguintes formulas de integragao, validas para b # 0.

. 1
J cos(a + br)dt = p [sen(a + bx) —sen 4],
0

z 1
f sen(a + br)dr = —B[cos(a 4+ bx) — cos a].
0

. (a) Fazer uso da identidade sen 37 = 3 sent—4 sen® t para deduzir a formula de inte-

gracio

- |
'0 sen®tdt =% — }(2 +sen®x)cos x.

(b) Demonstrar a identidade cos 3¢ = 4 cos’ t — 3 cos ¢ e usa-la para demonstrar que

"z
L cos®rdt = §(2 + cos* x)senx.,

Se uma fungao f € periodica com periodo p > 0 e integravel em [0, p|, provar que
J.‘gf(x)dx = fﬁ""f(x)dx para todo o a.

(a) Provar que fg“ sen nxdx = _f(z)" cos nxdx = 0 para todo o inteiro n # 0.
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(b) Usando a alinea (a) ¢ as formulas de adicio para o seno € o cosseno, estabelecer
as seguintes formulas, validas para os inteiros m e n, tais que m* # n’.

“2r " 2r 2r
l l sen nx sen mx dx = lo cosnxcosmxdx =0,

o sen nx cos mx dx =
J0

"I Eis .
| sen® nx dx = L cos*nxdx =m, si n#0.
Jo .

Estas sdo as formulas de ortogonalidade para o seno e para o cosseno.
32. A partir da identidade

X
2

x x
2 sen = cos kx =sen (2k + l)i —sen (2k — l)i

¢ da propriedade A (pg. 48) das somas finitas, provar que se x # 2mm (m inteiro) se tem

n

sen ynx cos §(n + 1)x
Z cos kx = - .
sen §x

kw1

33. Se x # 2mn (m inteiro), provar que

n

Zsen P Inxsen §(n + 1)x .
sen §x

k=1

34. Utilizando a fig. 2.7, provar, por comparagao da area do triangulo OAP com a do setor
circular OAP, que sen x < x se 0 < x < n/2. Usar entdo o fato de que sen(—x) = —sen x

|
para provar que [sen x| < |x|se 0 < |x| < 5 T

2.9 Coordenadas polares

Ateé aqui localizamos os pontos no plano por intermédio das coordenadas retangulares.
Podemos também localiza-los recorrendo as coordenadas polares, como se indica a seguir.
Seja P um ponto distinto da origem. Suponhamos que o segmento de reta definida por P e
pela origem tem um comprimento r > 0 e forma um angulo 6 com o semi-eixo positivo 0X,
como se representa na fig. 2.11. Os dois nameros r e § chamam-se coordenadas polares de P.
Estao relacionadas com as coordenadas retangulares (x, y) pelas igualdades

x=rcosl, y = rsen0. (2.15)

O numero positivo r chama-se distdncia radial ou raio vector de P, ¢ 0 um dngulo polar ou
argumento. Dizemos um angulo polar, em vez de o angulo polar, porque se # satisfaz (2.15) o
mesmo se verifica para 0 + 2nwcom n inteiro qualquer. Chamam-se coordenadas polares de
P todo o par de numeros reais (r, f) que verificam (2.15) com r > 0, e por isso, um dado
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L

)"ncosx/_

I 2»

T

™ X

— e —— ] ——————— T ———

y=1g x

- X

-X

——— — o —

Fig. 2.10-Grificos das fungdes trigonométricas, correspondentes ao intervalo dum

periodo.
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y
[}
n
O = 3
T
x
f = 3
P=(x,y)
r —- X
y=rsenf
0 - X
0 x =rcosf
Fig. 2.11 — Coordenadas polares Fig. 2.12 — Curva em forma de oito
cuja equagao em coordenadas polares
e r =1"|sen0|.

ponto tem mais do que um par de coordenadas polares. A distancia radial r esta univoca-
mente determinada por r =4/ x? + y%, mas o angulo polar # ¢ determinado a menos de multi-
plos inteiros de 2n.

Quando P estd na origem, as equagdes (2.13) sdo verificadas com r = 0 ¢ § qualquer. Por
este motivo atribuimos a origem a distancia radial » = 0 e convencionamos que gualquer
real § pode ser usado como o respectivo angulo polar.

Seja f'uma fungdo nao negativa definida no intervalo [a, b). O conjunto de todos os pontos
com coordenadas polares (r, 0), satisfazendo a r = f16), chama-se o grafico de f'em coordena-
das polares. A equagao r = f16) chama-se a equagao polar dessa curva. Para algumas curvas
as equagoes polares podem ser mais simples e de uso mais conveniente que as equagoes carte-
sianas. Por exemplo, a circunferéncia com a equagao x* + y* = 4 tem a equagao polar muito

mais simples 7 = 2. As equagoes (2.15) mostram como se pode passar de coordenadas carte-
sianas a polares. '

EXEMPLO. A fig. 2.12 representa uma curva com a forma de um oito e cuja equagao carte-
siana € (x? + »?)* = p2 Por intermeédio de (2.15) encontramos x? + y? = r*, e assim
as coordenadas polares dos pontos desta curva verificam a equagao r® = r? sen’ 0, ou r* =
= |sen 6], r = //|sen 6]. Nio é dificil tragar esta curva a partir da equagéo polar. Por exemplo,
no intervalo 0 £6'<n/2, sen # aumenta de 0 a 1 e portanto r também cresce de 0 a 1. Mar-
cando alguns pontos que sejam faceis de determinar, por exemplo, os correspondentes a § =
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= n/6, n/4, —;—. quase se pode desenhar a parte da curva do primeiro quadrante. A parte res-

tante da curva obtém-se tendo em conta a simetria da equagao cartesiana, ou a simetria ¢
periodicidade de |sen 6|. Seria bastante mais trabalhoso tracar a curva a partir unica-
mente da equagdo cartesiana.

2.10 O integral para a area em coordenadas polares

Seja fuma fungao nao negativa definida num intervalo |a, b], onde 0 s 0 — a < 2n. O con-
junto de todos os pontos com coordenadas polares (r, ), verificando as desigualdades

0<r<fltf), a<b<b,

chama-se conjunto radial de f sobre |a, bl. A regido sombreada indicada na fig. 2.13 € um
exemplo. Se /¢ constante em |a, b] o seu conjunto radial ¢ um setor circular correspon-

/0 =b
r= /()
0
Fig. 2.13 — O conjunto radial de f'rela- Fig. 2.14-0 conjunto radial de uma
tivo a um intervalo [a, b]. fungdo em escada S ¢ uma unido de

setores circulares. A sua Aarea
b2
1/2 jas(ﬂ)dﬂ.

dendo a um angulo de b-a radianos. A fig. 2.14 mostra o conjunto radial S de uma fun-
¢d0 em escada s. Em cada um dos n subintervalos abertos (6, _, 6,) de la, bl no qual s é
constante, s(0) = s,, o grafico de s, em coordenadas polares, ¢ um arco de circunferéncia
de raio s, e o respetivo conjunto radial € um setor circular correspondendo a um angulo
de 0,-0, , radianos. Atendendo ao modo como se definiu a medida angular, a drea deste

setor ¢ %(U,‘—O,‘_,) 53- Uma vez que b-a = 27 nenhuns destes setores se sobrepoem e

pela aditividade do integral, a area do conjunto radial de s correspondente ao intervalo
la, bl ¢ dada por
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n b
aS)=1 35 O~ 0.0=1] s0)a0,
k=1

onde s%(f) representa o quadrado de s(f). Deste modo, para fungoes em escada, a area do
conjunto radial foi expressa por um integral. Vamos demonstrar a seguir que esta formula
integral ¢ susceptivel de maior generalidade.

TEOREMA 2.6-Seja R o conjunto radial de uma fungdo nao negativa [ num intervalo
la, bl, onde 0 < b-a < 2n, e suponha-se que R é mensuravel. Se [* ¢ integravel em |a, b|, a
area de R ¢ dada pelo integral

a(R) =1} [ f%6)do .
Demonstragao. Escolhamos duas fungdes em escada s e 1 verificando.

0 < s(6) < f(0) < 1(6)

para todo o 0l em [a, b] e sejam S e T os respetivos conjuntos radiais. Posto que s< f'<t em
la, b], os conjuntos radiais satisfazem as relagdes de inclusao § < R < T. Daqui resulta, pela
propriedade de monotonia da area, que a(S) Sa(R) <a(T). Mas S ¢ T sao conjuntos radiais

de fungoes em escada, pelo que a(S) = -%—- J;f s*(0) db e a(T) = % _f: 2 (0) db. Por conseguin-

te temos as desigualdades

1* s%6) db < 2a(R) < MGOYE

~a

para todas as fungOes em escada s e t satisfazendo a s< /<t em [a, b]. Mas s? e ¢* sdo
fungoes em escada arbitrarias que verificam s?< 2 < ¢? em |a, b] e por isso, uma vez que f? é

integravel, devemos ter 2a(R) = _[2 S?(6) dfi, o que demonstra o teorema.

Nota: Pode provar-se que a mensurabilidade de R é uma consequéncia da hipotese que /2
seja integravel, mas ndo apresentaremos a demonstragao.

EXeEmpPLO. Para calcular a area do conjunto radial R interior a curva en forma de oito,
apresentada na fig. 2.12, calculamos a area da porgéo situada no primeiro quadrante e mul-
tiplicamos por quatro. Para esta curva tem-se f?(0) =|sen & ¢ uma vez que sen 0 = 0
para0 < 0 < n/2, encontramos

-
T/

*x/2 /2 {
a(R) =4 i r3(0) :!6=2f sen 0 df = 2(cosO—cos
JO \

) =2.
w0

SIED
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2.11 Exercicios

Em cada um dos Exercicios | a 4 provar que o conjunto de pontos cujas coordenadas
retangulares (x, y) satisfazem a equagdo cartesiana dada € igual ao conjunto de todos os
pontos cujas coordenadas polares (r, @) verificam a correspondente equagao polar.

L(x=12+)y*=1,; r=2cosf, cosf >0.

2.0+ —x=Vx2+y4  r=1+cosh.

3. (x4 y?)R = x% = 2y < X r=1/cos20, cos20 > 0.
4. (x* + y¥)? = |x* — ), r =1V |cos 26|.

Em cada um dos Exercicios 5 a 15 tragar o grafico de fem coordenadas polares e calcular
a area do conjunto radial de / no intervalo especificado. Deve supor-se que cada conjunto €
mensuravel.

5. Espiral de Arquimedes: f(6) =6, 0560 < 2m.

6. Circunferéncia tangente a 0Y: f(6) = 2cos 6, — % S6s —;—

7. Duas circunferéncias tangentes a 0Y: f0) = 2|cos 0|,0 < 0 < 2n.
8. Circunferéncia tangente a 0X: l0) =4sen0,0< 6 < 7.
9. Duas circunferéncias tangentes a 0X: f(6) = 4 [sen 6|, 0 < 6 < 2m.
10. Pérala de rosa: f(0) = sen 26, 0 < 6 < 2m.
11. Rosa de quatro folhas: f(6) = |sen 26|, 0 < 6 < 2n.
12, Oito achatado: f(6) =/ |cos6|, 0 < 6 < 2nm.
13. Trevo de quatro folhas: f(6) = V|cos26], 0 < 6 < 2nm.
14. Cardioide: fl6)=1+cos 6, 0 < 6 < 2n.
15. Caracol: f(6) =2 +cos 6,0 < ¢ < 2n.

2.12 Aplicagao da integragdo ao calculo de volumes

Na Secao 1.6 introduzimos o conceito de area como uma fungao de conjunto verificando
certas propriedades que foram tomadas como axiomas. Depois, nas Segoes 1.18 e 1.22,
mostramos que as areas de muitas regioes podiam ser calculadas por integragao. O mesmo
caminho vai ser adoptado para discutir o conceito de volume.

Suponhamos que existem certos conjuntos S de pontos no espago tridimensional, aos quais
chamamos conjuntos mensurdveis, e uma fungao de conjunto » chamada fungdo volume que
atribui a cada conjunto mensuravel $ um namero v(S), chamado o volume de S. Representa-
mos a classe de todos os conjuntos mensuraveis do espago tridimensional por /e a cada con-
junto S de.s/chamamos sélido.

Tal como no caso da area, enunciamos um certo numero de propriedades carateristicas
do volume ¢ consideramo-las como axiomas. A escolha dos axiomas permite-nos demonstrar
que os volumes de muito solidos podem ser calculados por integragao.

Os trés primeiros axiomas, semelhantes aos da area, referem-se as propriedades de nao
negatividade, aditividade e da diferenga. Em vez do axioma de invariancia sob congruéncia,
enunciamos um axioma de tipo diferente, chamado o principio de Cavalieri. Este atribui volu-
mes iguais a solidos congruentes e também a certos solidos que, embora nao sendo congruen-
tes, tem secdes de dreas iguais ao serem intersetados por planos perpendiculares a uma



134 Calculo

dada reta. Mais precisamente, suponhamos que S é um solido dado e L uma determinada
reta. Se um plano F ¢ perpendicular a L, a intersecgdao F M § diz-se uma segao plana per-
pendicular a L. Se cada segdo plana perpendicular a L ¢ um conjunto mensuravel no seu
proprio plano, dizemos que S € um sélido de Cavalieri. O principio de Cavalieri define volu-
mes iguais para dois solidos de Cavalieri, S e T, se a(S M F) = a(T M F), para todo o plano
F perpendicular a uma reta dada L.

O principio de Cavalieri pode interpretar-se intuitivamente como segue. Imaginemos um
solido de Cavalieri como sendo uma pilha de laminas materiais delgadas, semelhantes a um
baralho de cartas, cada uma perpendicular a uma reta dada L. Se deslizamos, cada lamina
no seu proprio plano, podemos alterar a forma do solido, mas ndao o seu volume.

O axioma seguinte estabelece que o volume de uma paralelipipedo retangulo € o produto
dos comprimentos das suas arestas. Um paralelipipedo retangulo € qualquer conjunto con-
gruente a um conjunto da forma

(5, ,2)]0€x<a 0<y<h 0Lz}, (2.16)
Utilizaremos a palavra mais curta “caixa” de preferéncia a “paralelipipedo retangulo”. Os
numeros nao negativos a, b, ¢ em (2.16) sao os comprimentos das arestas da caixa.

Finalmente, incluimos um axioma que estabelece que cada conjunto convexo é mensuravel.
Um conjunto diz-se convexo se, para todo o par de pontos P e Q do conjunto, o segmento de
reta unindo P a Q pertence também ao conjunto. Este axioma, conjuntamente com as pro-
priedades aditiva e de diferenga, asseguram-nos que todos os solidos elementares que apare-
cem nas aplicagoes usuais do calculo sao mensuraveis.

Os axiomas para o volume podem enunciar-se do modo seguinte:

DEFINICAO AXIOMATICA DE VOLUME. Supde-se que existe uma classe </ de sélidos e uma
fungdo de conjunto v, cujo dominio é o/, com as propriedades seguintes:
1. Propriedade de ndo negatividade. Para todo o conjunto S de cf tem-se v(S) 2 0.
2. Propriedade aditiva. Se S e T pertencem a <7, entao S U T e S N T pertencem a </
e tem-se

(SVUT)=v(S)+ov(T)—o(SNT).

3. Propriedade subtractiva. Se. S e T estdo em ofcom S < T, entdo T — S estd em g e
tem-se (T — S) = o(T) — v(S).

4. Principio de Cavalieri. Se S e T sdo dois solidos de Cavalieri em o/ com a(S N F)
al T N F) para todo o plano F perpendicular a uma reta dada, entdo v(S) < v(T).

5. Escolha de escala. Toda a caixa B pertence o/ . Se as arestas de B tem comprimento a,
b, c entao v(B) = abe.

6. Todo o conjunto convexo pertence a .

O axioma 3 assegura que 0 conjunto vazio @ pertence a /e tem volume zero. Uma vez que
o(T — §) 20, o Axioma 3 implica também a seguinte propriedade de monotonia.

(S) < ©(T), para conjuntos S e 7T em o/ com § < T.
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A propriedade de monotonia, por sua vez, mostra que todo o conjunto limitado plano S de &/
tem volume zero. Um conjunto plano diz-se limitado se ¢ um subconjunto de certo quadrado

no plano. Se consideramos uma caixa B, de altura ¢, tendo este quadrado por base, entao
S < B, de modo que temos v(S), S v(B) = a’c, onde a € o comprimento do lado do quadrado
base. Se tivermos ('S) > 0, poderemos escolher ¢ de tal maneira que ¢ < v(.S)/a?, contradi-
zendo a desigualdade 1('S) < a?c. Isto prova-nos que ¢(S) ndo pode ser positiva logo ¢(S) = 0,
como se afirmara.

Note-se que o principio de Cavalieri foi estabelecido na forma de desigualdades. Se
a(S N F) = a(T N F), para todo o plano F perpendicular a uma reta dada, podemos aplicar
o Axioma 5 duas vezes para deduzir v(S) < v(T) e o(T) < v(S) e portanto concluir-se que v(7)
= v(S).

Em continuagdo vamos provar que o volume de um solido cilindrico reto de revolugao é
igual a area da base multiplicada pela altura. Por solido cilindrico de revolugao entende-se um
conjunto congruente a um conjunto S da forma

S={x,p2|(xpeB a<z<Lb},

com B um conjunto plano mensuravel limitado. As areas das Seg¢oes planas de S, perpen-
diculares ao eixo OZ, determinam uma fungdo drea se¢do plana a, a qual torna o valor

constante a(B) no intervalo a < z < b, e o valor 0 fora desse intervalo [a, b].

Seja agora T uma caixa com a fungdo area segao plana aigual aag. O axioma 5 diz-nos
que v(T) = a(B) (b — a), com a(B) a area da base de T e b — a a sua altura. O principio de
Cavalieri estabelece que ©(S) = ©v(T) e assim o volume de S € a area da sua base, a(B), multi-
plicado pela respetiva altura, b — a. Notemos que o produto a(B) (b — a) ¢ o integral da
fungao a ¢ estendido ao intervalo [a, b]. Por outras palavras, 0 volume dum cilindro de revo-

lugao é igual ao integral da sua fungao area segao plana
v(sS) = 'b ag(z)dz.

Podemos generalizar esta formula a solidos de Cavalieri mais gerais. Seja R um solido de
Cavalieri com se¢oes mensuraveis perpendiculares a uma reta dada L. Consideremos um
eixo coordenado coincidente com L (chamado eixo ), e seja a, (u) a area da se¢ao produzi-

da por um plano perpendicular a L no ponto u. O volume de R pode calcular-se, devido ao
teorema seguinte:

TeOREMA 2.7. Seja R um solido de Cavalieri de </, cuja fungdo drea seg¢do plana a, e

integravel em |a, b) e é nula fora do mesmo intervalo. Entdo o volume de R é igual ao inte-
gral da fungao drea seg¢ao plana:

(R) = |-b ap(u)du.

Demonstragao. Escolhamos fungoes em escada s € £, tais que s < ap.Stemla blecomse
¢ nulas no exterior de [a, b]. Para cada subintervalo de [a, b], no qual s é constante, podemos
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imaginar um solido de forma cilindrica (por exemplo um cilindro circular reto) construido de
tal modo que a sua area segao plana, neste subintervalo, tem 0 mesmo valor constante que s.
A unido destes cilindros sobre todos os intervalos em que s € constante € um solido S cujo

volume «(S) ¢,pela propriedade de aditividade, igual ao integral fz s(u) du. Analogamente,

existe um solido 7, uma reunidao de cilindros, cujo volume »(7) = J'f; t(u)du. Mas as(u) =
=s(u) Sap(w) S t(u) = a,(u) paratodo os u de [a, b], de maneira que o principio de Cavalieri
implica que v(S) < vfR) < v(T). Por outras palavras, v(R) verifica as desigualdades

J‘b s(u)du < v(R) < J.b t(u) du

para todas as fungoes em escada s e ¢ satisfazendo a s <ag< rem la, b]. Uma vez que ag

integravel em [a, b], resulta que v(R) = fﬂ ag (u)du.

ExempLO. Volume de um solido de revolugdo. Seja f uma fungao nao negativa e integravel
num intervalo [a, b]. Se o conjunto de ordenadas dessa fungao roda em torno do eixo 0X,
gera um solido de revolucao. Cada secao determinada por um plano perpendicular ao eixo
0X é um circulo. A area do circulo correspondente ao ponto x € nf/?(x), onde /?(x) representa
0 quadrado de f(x). Deste modo, pelo teorema 2.7, o volume do solido (se o solido pertence

a o é igual ao integral f: nf*(x)dx, caso exista. Em particular, se f(x) =/ r* — x? para
—r < x £, o conjunto de ordenadas de f'é um semi circulo de raio r e o solido gerado ¢ uma
esfera do mesmo raio. A esfera é convexa. O seu volume ¢ igual a

-

Jrr nf*(x)dx = = l_r (r* — x*) dx = 2= l;r(r2 — X dx = §mr*.

Mais geralmente, admitamos que temos duas fungdes nao negativas, f e g, que sao integra-
veis em [a, b] e satisfazem a f'< g em [a, b]. Quando a regido entre os seus graficos roda em
torno do eixo 0X gera um solido de revolugao, tal que cada se¢ao produzida por um plano
perpendicular ao eixo 0X, no ponto x, € uma coroa circular (regido limitada por duas circun-
feréncias concéntricas) cuja area é ng*(x) — nf?(x). Por conseguinte, se g2 — f* ¢ integravel, o
volume de um tal solido (se o solido pertence a of ) € dada pelo integral

| #lgtx) = £ dx.

2.13 Exercicios

1. Usar a integragao para calcular o volume dum cone circular reto gerado pela revolugao,
em torno de 0X, do conjunto de ordenadas de uma fungao linear f{x) = cx, relativo ao
intervalo @ € x < b. Mostrar que o resultado € igual u uma terga parte da drea da base
do cone a multiplicar pela sua altura.
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Em cada um dos Exercicios 2 a 7, calcular o volume do solido gerado pela revolugédo, em
torno de 0X, do conjunto de ordenadas de uma fungdo f no interrvalo indicado. Dese-
-nhar cada um dos conjuntos de ordenadas

2. f(x) = Vx, 0<x <. 5. f(x) =senx, 0 <x <m
3fx)y=x", 0<x<. 6. f(x) =cosx, 0<x <n/2.
4. f(x) = x*%, -1 €<x <2 7. f(x) =senx +cosx, 0 <x <m

Em cada um dos Exercicios 8 a 11, desenhar a regiao entre os graficos de f¢ g e calcular o
volume do solido obtido por revolugao da referida regido em torno de 0X.

8. f(xX) =Vx, glx)=1, 0<x<I.

9. f(x) = \-“’;, glx) = x% 0<x <.

10. f(x) = senx, g£(x) = cos x, 0 < x £ /4.

1L f(x) =vV4—x% gx)=1, 0<x<V3.

12. Tragar os graficos de f{x) = \--"; e g(x) = x/2 referentes ao intervalo [0, 2]. Determinar
um namero £, | <t < 2, tal que quando a regido entre os grificos de fe g, relativa a
[0, 7], roda em torno do eixo OX, gera um sélido de revolugio cujo volume € nr'/3.

13. Que volume de material se remove de uma esfera de raio 2r quando se atravessa por um
orificio cilindrico de raio r, cujo eixo passa pelo centro de esfera?

14. Uma argola de guardanapo obtém-se fazendo um furo cilindrico numa esfera, de modo
que o centro desta esteja sobre o eixo daquele. Se o comprimento do furo € 2A, provar
que o volume da argola e nah’, com @ um numero racional.

15. Um solido tem uma base circular de raio 2.Cada se¢do plana feita por um plano perpen-
dicular a um diametro fixo € um triangulo equilatero. Calcular o volume do solido.

16. As segOes planas de um solido determinadas por planos perpendiculares ao eixo 0X sao
quadrados cujos centros estao sobre aquele eixo. Se o quadrado obtido pela segao no
ponto x tem o lado igual a 2x?, determinar o volume do solido entre x = 0 ¢ x = a.
Tragar um esbogo.

17. Determinar o volume do solido cuja se¢ac plana, determinada por um plano perpendicu-
lar ao eixo OX, tem a area ax? + bx + ¢ para todo o x pertencente intervalo 0 <'x < A.
Explicitar o volume em fungdo das areas B,, M e B, das segOes correspondentes a
x =0, x = h/2 e x = h respetivamente. A formula resultante é conhecida pela formula
do prismoide.

18. Tracgar a regiao do plano XOY formada de pontos (x, y) verificando simultaneamente as

desigualdades 0 < x <2,¥ <y < 1.Calcular o volume do solido obtido por rotagio desta

regiao em torno (a) do eixo OX: b) do eixo OY; (c) da paralela OY passando pelo ponto
(2, 0): (d) da paralela a OX passando pelo ponto (0, 1).

2.14 Aplicagao da integra¢do ao conceito de trabalho

Até aqui aplicamos a teoria da integragio ao cdlculo de dreas e volumes. Analisaremos,
em seguida, uma aplicagdo ao conceito fisico de trabalho.

O trabalho é a medida da energia dispendida por uma forga ao deslocar uma particula de
um ponto para outro. Nesta Se¢do, consideramos unicamente o caso mais simples do movi-
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mento retilineo, isto €, supomos que o movimento do ponto se faz ao longo duma reta (que
tomamos para eixo 0X), desde um ponto x = a até outro ponto x = b ¢ que a forga atua
sobre o ponto ao longo da reta. Admitimos que pode ser ou b < @ ou a < b. Supomos, além
disso, que a forga atuando sobre a particula ¢ uma fungdo da posigio desta. Se a particula se
encontra em Xx, representamos por f{x) a for¢ga que atua sobre ela, com f{x) > 0 se a forga
atua no sentido positivo de 0X e f{x) < 0 se atua no sentido contrario. Quando a forga é
constante, por exemplo f{x) = ¢, para todos os valores de x entre a e b, definimos o trabalho
feito pela forga f como sendo o numero ¢ - (b — a), isto &, a for¢a multiplicada pelo desloca-
mento. O trabalho pode ser positivo ou negativo.

Se a forga esta medida em dines e a distancia em centimetros (sistema cgs), o trabalho
exprime-se em dines por centimetro. Um dine-centimetro de trabalho chama-se erg. Se a
forga se mede em newrons ¢ a distincia em metros (sistema mks), o trabalho exprime-se em
newtons por metro. O trabalho de um newron-metro chama-se joule. Um newton equivale a
10* dines e um joule a 107 ergs. Se a forga se mede em libras e a distincia em pés, o trabalho
mede-se em libras-pés.

ExempLO. Uma pedra de 3 libras de peso langa-se para cima, verticalmente, ate a altura de

15 pés e volta a cair no solo. Tomamos o eixo 0X coincidente com a vertical e orientado posi-

tivamente para cima. A forga constante da gravidade actua de cima para baixo, de modo que

f(x) = —3 libras para cada x, 0 <x <15. O trabalho efectuado pela gravidade ao mover-se,

por exemplo, a pedra de x = 6 até x = 15 € —3(15 —6) = —27 libras-pé. Quando a mesma

pedra cai desde x = 15 até¢ x = 6, o trabalho efectuado pela gravidade ¢ —3(6 —15)= 27
libras-pe.

Suponhamos agora que a for¢a nao € necessariamente constante, mas sim uma dada
fungao de posigao definida no intervalo [a, 4]. Como definir o trabalho produzido pela forga /'
ao deslocar uma particula de a até b? Para obter uma resposta procederemos de modo ana-
logo ao seguido para a area e para o volume. Estabeleceremos certas propriedades, que sao
impostas ao trabalho por exigéncias fisicas e, em seguida, provamos que para qualquer defi-
nicao de trabalho que admita essas propriedades, o trabalho realizado por uma fungao

forga /, integravel, é igual ao integral J;f' f(x)dx.

PROPRIEDADES FUNDAMENTAIS DO TRABALHO. Represente W (f) o trabalho realizado

por uma forga fungao para deslocar uma particula de a até b. Tal trabalho goza das seguintes
propriedades:

1. Propriedade aditiva. Sea < ¢ < b,entao W'(f) = WI(f) + W /).

2. Propriedade mondtona. Se f < g em |a, bl, entdo W;’ () < Wf: (g), isto é, a forga maior
produz um trabalho maior.

3. Formula elementar. Se f é constante, por exemplo f(x) = ¢, para qualquer x no intervalo
aberto (a, b), entao W; (f)=c-(b—a).

A propriedade aditiva pode generalizar-se por indugao a qualquer numero finito de interva-
los, quer dizer, se a = x, < X, < ... x = b, tem-se
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Walf) =2 W,
k=1

sendo W) o trabalho realizado por fdesde x, | a x;. Em particular, se a forga é uma fungdo
em escada s que toma o valor constante s, no intervalo aberto (%, _,>%.), a propriedade 3 es-
tabelece que Wk = k(xk — X ) e assim tem-se

ZOED RRYCESAN =J:s(.\') dx .

Entdo para fungGes em escada o trabalho foi expresso por um integral. E agora facil provar
que tal € ainda possivel em casos mais gerais.

TEOREMA 2.8 Admita-se que o trabalho se definiu para uma classe de fungées for¢a f de
modo que satisfaga as propriedades 1, 2 e 3. Entdo o trabalho realizado por uma fun¢do
Jorga integravel f, ao deslocar a particula de a até b ¢ igual ao integral de f,

W) = | f(x) dx.

Demonstragao. Sejam s e t duas fungoes em escada satisfazendo a s < f<r em la, b].
A propriedade monotona do trabalho estabelece que Wi’ (s) £ Wg = W::_’ (1). Mas W;’ (s)

= fg s(x)dxe W:(:) = f;’ t(x)dx e portanto Hf (/) satisfaz as desigualdades

[*s(x)dx < Wi < [ i(x) dx

para todas as fungOes em escada s e ¢ satisfazendo s< /<t em [a, b]. Porque f ¢ integravel
em |2, b] resulta que W:’ f) = _f: f(x)dx.

Nota: Muitos autores definem simplesmente trabalho como sendo o integral da fungao
for¢a. A demonstragao anterior pode considerar-se como uma justificagao de tal definigao.

ExempLO. Trabalho necessdario para esticar uma mola. Suponhamos que a forga f{(x)
necessaria para esticar uma mola de ago de um comprimento x,aléem do seu comprimento
normal, € proporcional a x (lei de Hooke). Definindo o eixo 0X ao longo da mola, temos
Jf(x) = cx, onde a constante da mola c € positiva. (O valor de ¢ pode determinar-se desde que se
conhega a forga f(x) para um valor particular de x # 0). O trabalho necessario para esticar

a mola de umia disténcia a & [{ f{x)dx = [ cxdx = ca’/2, um numero proporcional ao qua-
drado do deslocamento.

NoVolume II e mediante a introdugao de integrais curvilineos, sera feito um estudo do tra-
balho para o movimento do ponto ao longo de curvas.
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2.15 Exercicios

Nos Exercicios 1 e 2 supoe-se que a forga atuando sobre a mola obedece a lei de Hooke.

1. Se uma forga de 10 libras estica uma mola elastica de uma polegada, qual € o trabalho
necessario para esticar a mola de um pé?

2. Uma mola tem normalmente um comprimento de | metro(m). Uma forga de 100 newtons
comprime-a para 0,9 m. Quantos joules de trabalho sao necessarios para a comprimir
para metade do seu comprimento normal? Qual € o comprimento da mola quando ja tive-
rem sido realizados vinte joules de trabalho?

3. Uma particula move-se ao longo do eixo 0X, por acao duma forga f{x) = 3x* + 4x new-
tons. Calcular quantos joules de trabalho sao realizados pela forga para deslocar a parti-
cula(@)dex=0ax=Tm;(b)de x =2max="Tm.

4. Uma particula desloca-se ao longo de 0X por acgao da forga f{x) = ax? + bx dines. Cal-
cular a e b de maneira que se realize um trabalho de 900 ergs para deslocar a particula 10
cm da origem, se a forga vale 65 dines quando x = § cm.

5. Um cabo com 50 pés de comprimento e 4 libras de peso por pé esta pendente dum
sarilho. Calcular o trabalho efetuado ao enrolar 25 pés de cabo. Considerar apenas a
forga da gravidade.

6. Resolver o exercicio 5 se for ligado a extremidade do cabo um peso de 50 libras.

7. Um peso de 150 libras esta ligado a extremidade de uma longa cadeia flexivel, pesando 2
libras/pé. Inicialmente o peso esta suspenso com 10 pés de cadeia sobre o bordo de um
edifico com 100 pes de altura. Considerando unicamente a for¢a da gravidade, calcular o
trabalho realizado quando se desce até uma altura de 10 pés do solo.

8. No Exercicio 7, supor que a cadeia so tem 60 pés de comprimento € que o peso e a cadeia
se deixam cair para o solo, partindo da mesma posigao inicial que antes. Calcular o tra-
balho realizado pela for¢a da gravidade quando o peso atinge o solo.

9. Seja Vg)a voltagem requerida para estabelecer uma carga ¢ nas placas de um condensador.
O trabalho necessario para carregar um condensador desde g = a até ¢ = b define-se me-

diante o integral _I‘g V(q)dq. Se a voltagem ¢é proporcional a carga, provar que o trabalho

.
efetuado para colocar a carga Q num condensador descarregado € > oV(Q).

2.16 Valor médio de uma fungio

Na investigagdo cientifica torna-se muitas vezes necessario realizar varias medigoes em
condigdes analogas e depois calcular uma média, com a finalidade de resumir os dados. Ha
diferentes tipos de médias, sendo a mais usual a média aritmética. Se a,, a,, ...,a sao nnume-

ros reais, a sua media aritmetica a ¢ definida por

n

o
a=;2(1,‘_. (2.17)

k=1

Se os numeros a
entao o0 numero

, 880 os valores de uma fungdo f em n pontos distintos, isto ea =flx)
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1 n
; Zf (Xx)
k=1

¢ a media aritmética dos valores f(x,), /(x,), ..., f(x,) da fungdo. Pode generalizar-se este con-
ceito para calcular um valor médio nao somente para um namero finito de valores de f(x),

mas para todos os valores de f(x) quando x percorre todo um intervalo dado. A defini¢do que
apresentamos a seguir tem esta finalidade.

DEFINICAO DE VALOR MEDIO DE UMA FUNCAO NUM INTERVALO. Se f ¢ integrdvel em |a, b),
define-se A(f), valor médio de f em |a, b), pela formula

1
b—a

Af) = f J(x)dx. (2.18)

Quando f € ndo negativa, esta formula é suscetivel duma interpretagdo geométrica
simples. Escrita na forma (b — a) A(f) = j' : f(x)dx estabelece que o retangulo de altura 4 (f)
e base (a, b] tem uma area igual a do conjunto de ordenadas de f sobre [a, b].

Podemos agora provar que a formula (2.18) € realmente uma extensao do conceito de mé-
dia aritmética. Seja /' uma fungao em escada, que € constante em cada um dos n subin-
intervalos iguais de [a, b]. Seja x,=a+ k(- a)/ncom k =0, 1, 2, ..., n e suponhamos que

Jx) =f(x})sex, _,<x<x, Entdox, —x,_, =(b—a)/nedesta maneira tem-se

N Y R~ b—a 1N
A(f)—b_GLf(x)dx—b_a;f(xk) = 20,

Quer dizer, para fungdes em escada a meédia A(f) ¢ a mesma que a meédia aritmética dos
valores f(x,), ..., f(x )» tomados nos intervalos em que a fungao é constante.
Muitas vezes utilizam-se médias aritmeticas pesadas, em vez da média aritmética ordindria
(2.17). Se wy, wy, ..., W, sdo0 n numeros ndo negativos (chamados pesos), nao todos nulos, a
média aritmética pesada @ de a,, a,, ..., @, define-se pela formula

Weay
k=1

a="1—

n
Z Wi
k=1

Quando os pesos sdo todos iguais este valor coincide com a média aritmética ordinaria.
A generalizagdo deste conceito a fungdes integraveis ¢ feita pela formula

["w(x)f (x) dx
A(f) = FF7— ; (2.19)
l w(x) dx

APOSTOL — &6
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onde w ¢ uma fung¢ido peso ndo negativa com j:u{xkix # 0. As médias pesadas sdo mui-

to utilizadas na fisica e engenharia, bem como na matematica. Consideremos, por exemplo,
uma vara retilinea de comprimento a feita de um material de densidade variavel. Coloque-se
a vara ao longo do semi-eixo positivo 0.X, com uma extremidade coincidindo com a origem 0,
e seja m(x) a massa da parte da vara de comprimento x, medida a partir de 0. Se m(x) =

= \op(t)dt para certa fun¢do integravel p ¢ a densidade {de massa) de vara. Uma vara

uniforme ¢ a que tem densidade constante, O integral J";xp( x )Jdx chama-se primeiro momen-

mento (ou momento de primeira ordem) da vara relativamente a O ¢ o centro de massa € o
ponto cuja abcissa x € definida por

mep(x_) dx

X = Fa .
I, p(x) dx

Este ¢ um exemplo de média ponderada. Estamos a calcular a média da fungdo distanci:
J(x) = x, com a densidade de massa p como fung¢ao peso.

O integral [{x*p(x) dx chama-se segundo momento (momento de segunda ordem) ou mo-
mento de inércia da vara relativamente a 0, e o nimero positivo r dado pela formula

J:xzp(x) dx

j:p(x) dx

r? =

¢ 0 raio de giragdo da vara, igualmente relativo a 0. Neste caso a fungido de que estd a ser
calculada a média é o quadrado da fungdo distancia f{x) = x?, com a densidade de massa
como fungao peso.

Médias pesadas analogas a estas aparecem também no Calculo das Probabilidades, onde
os conceitos de esperanga e varidncia desempenham o mesmo papel que centro de gravidade

o momento de inércia.

2.17 Exercicios

Nos exercicios 1 a 10, calcular a média 4 (f) para a fungao dada /, no intervalo correspon-
dente.

1. fix) =x* a<x<b. 6. f(x) =cosx, —n2<x<nf2
2. flx) = x* + X%, 0<x< 1. 7. f(x) = sen 2x, 0 <x <=2

3. f(x) =x12, 0 <x <4 8. f(x) =senxcosx, 0 <x <n/4
4. f(x) = x1/3, I <x <8 9. f(x) =sen®x, 0 < x <n/2.

5. f(x) =senx, 0 <x <72 10. f(x) =cos*x, O0<Lx <

11. (a) Se f{x) = x? para 0 < x < g, determinar um numero c¢ satisfazendo a 0 < ¢ < a tal
que f{c) seja igual a meédia de fem [0, al. (b) O mesmo problema da alinea anterior se
S(x) = X", com n um inteiro positivo qualquer.
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12. Seja f(x) = x* para 0< x <1.0 valor médio de f'em [0, 1] & 1/3. Determinar uma fungo
peso w, ndo negativa, tal que a media pesada de fem [0, 1], quando definida por (2.19),
seja (a) 1/2: (b) 3/5; (¢) 2/3.

13. Seja A(f) a média de f sobre um intervalo |a, b]. Provar que a média tem as seguintes
propriedades:

(a) Propriedade aditiva: A(f + g) = A(f) + A(g)
(b) Propriedade homogénea: A(cf) = cA(f) se ¢ & qualquer numero real.
(¢) Propriedade monotona: A(f) SA(g) se f<gem |a, bl.

14. Quais as propriedades do Exercicio 13 que sao validas para a média pesada, definida por
(2.19)?

15. Designe-se por A(f)a meédia de f em [a, b].

(a) Se a < ¢ < b, provar que existe um numero f, 0 < 1 < 1, tal queAf: (f) = IA: o +
+(1-nA4 f_’(f}. Deste modo, Aj(f} € uma média aritmética pesadade A'(f) e A :(fJ.
(b) Provar que o resultado da alinea anterior € igualmente valido para médias pesadas

definidas por (2.19).

Cada um dos Exercicios 16 e 21 refere-se a uma vara de comprimento L, colocada sobre
OX e com uma extremidade na origem 0. Para a densidade de massa p definida em cada caso,

calcular (a) o centro de massa da vara, (b) o momento de inércia relativamente a 0, e (¢) o
raio de giragao
16. p(x) =1 para 0 < x < L.

L L
17. p(x) =1 para g < x < 3 p(x) =2  para 3 <x <L.
18. p(x) =x Para o <x < L.

L L L
19. p(x) = x paraOSXSE. p(X)=§ para ESISL.
20. p(x) =x* Para 0 <y < L.
. L 2 L
21. p(x) = x“ para 0<x < E y p(.t’) = ':i- para —2 < x £ L.

22. Determinar uma densidade de massa p de maneira que o centro de massa da varade
comprimento L esteja a uma distancia L/4 duma das extremidades da vara.

23. Num circuito elétrico, a voltagem efr) no instante ¢ é definida pela formula e(7) = 3
sen 2t. Calcular: (a) a voltagem média no intervalo de tempo |0, 7/2]; (b) a raiz média
quadratica da voltagem,isto é, a raiz quadrada da média da fungio €* no intervalode tempo

8
0, =-1.

24. Num circuito elétrico, a voltagem e(1) ¢ a intensidade da corrente if7) num instante ¢
sd0 dadas pelas formulas e(t) = 160 sen v, i(t)= 2sen(t —7/6). A poténcia média define-se por

1 {7
7 e(ni(r)dr,

0

onde 7" ¢é o periodo da voltagem e da intensidade. Determinar 7 e calcular a poténcia me-
dia.
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2.18 O integral como fungao do limite superior. Integrais indefinidos

Nesta Segao vamos supor que /"¢ uma fungdo tal que o integral .f: J(t)dt existe para cada

x do intervalo [a, b]. Conservando a e f fixos, vamos estudar o integral como uma fungdo
de x. Representamos o valor do integral por 4 (x), de modo que temos

AX) = ["fydt  se a<x<b. (2.20)

Uma equagao como esta permite-nos construir uma nova fungdo 4 a partir duma dada
fungao f, sendo o valor de 4 em cada ponto de [a, b] determinado por (2.20). A fungdo A4 ¢é
algumas vezes designada como um integral indefinido de f e diz-se ser obtida de f por inte-
gragdo. Nos dizemos um integral indefinido, em vez de o integral indefinido, porque 4 tam-
bém depende do limite inferior a. Diferentes valores de a conduzirdo a diferentes fungoes 4.
Se utilizamos um limite inferior diferente, por exemplo ¢, ¢ designamos outro integral indefi-
nido F por

F(x) = | f(t) dt ,
entao a propriedade aditiva diz-nos que
A) = F(x) = | "f(nde = |"fdi = [ f(0) d,

e por isso a diferenga 4(x) — F(x) é independente de x. Portanto dois quaisquer integrais
indefinidos da mesma fungdo diferem unicamente por uma constante (a constante depende da
escolha de a e ¢).

Quando se conhece um integral indefinido de f, o valor de um integral tal como _[z Jdt

pode ser calculado mediante uma simples subtragdo. Por exemplo, se n € um inteiro ndo
negativo, temos a formula do teorema 1.15.

£ er—l
fr"d!= ,
0 n+1

e a propriedade aditiva implica que

n+1 +1
f:dr-—frdr fzd: b —a™ .
n+1

Em geral, se F(x) = fﬁ f(vdt, temos

- J:’ f(t) dt — J f(t) dt = F(b) — F(a). (2.21)
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Uma escolha diferente de c altera unicamente F(x) por um valor constante, o qual ndo altera
a diferenga F(b) — F(a), porque a constante se anula na subtragdo.
Se utilizamos o simbolo

F(x)|
para representar a diferenga F(b) — F(a), a igualdade (2.21) pode escrever-se
f:f(x) dx = F(x)|, = F(b) — F(a).

Existe uma relagao geométrica simples entre uma fungao f'e os seus integrais indefinidos.
Na fig. 2.15(a) considera-se um exemplo; /¢ uma fungao nao negativa e o numero A(x) é
igual a area da parte sombreada, situada abaixo do grafico de f'desde a até x. Se ftoma valo-
res positivos e negativos, como na fig. 2.15(b), o integral A(x) da-nos a soma das areas das
regioes acima do eixo 0X menos a soma das areas abaixo deste eixo.

Muitas das fungoes que ocorrem em varios ramos da ciéncia aparecem exatamente deste
modo, como integrais indefinidos de outras fungdes. Esta € uma das razdes pela qual uma
grande parte do calculo esta dedicada ao estudo de integrais indefinidos.

As vezes o conhecimento duma propriedade particular de f implica uma correspondente
propriedade particular do integral indefinido. Por exemplo, se f/ é ndo negativa em |a, b],
entdao o integral indefinido A € crescente, uma vez que se tem

Ay) = A = ["foydi = [*gwar = [ sy ar 2 0,

Ax) = Llf(g) di J:}(:) dr = soma algebrica das areas

~

(a) (b)

Fig. 2.15 — Integrais indefinidos interpretados geometricamente em termos de area.

sempre que a < x< ¥ < b. Interpretado geométricamente, isto significa que a area limitada
pelo grdfico de uma fungdo ndo negativa de a e x nao pode descrever quando x aumenta.

Vamos em seguida analisar outra propriedade que nao ¢ imediatamente evidente geomeétri-
camente. Suponhamos f crescente em |a, b| Pode entdo provar-se que o integral indefinido A
possui uma propriedade chamada convexidade. O seu grafico curva-se para cima, como se
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g(x)+ gy
2

gy

gx) +g(y)
g(x) 2
X X + ) y x X+y y
2 2
(a) Fungao convexa (b) Fun¢ao concava

Fig. 2.16 — Interpretagao geometrica da convexidade e concavidade.

indica na fig. 2.16 (a), isto &, a corda unindo dois pontos quaisquer do grafico fica sempre
acima deste. Pode definir-se analiticamente a convexidade do modo seguinte:

DEFINICAO DE FUNCAO CONVEXA. Uma fungdo g diz-se convexa num intervalo a, b se,
para todo o par x e y de |a, b| e para qualquer « tal que 0 < « < 1, se tem

2(z) < agl(y) + (1 — x)g(x), onde z=ay+ (I —a)x. (2.22)
Diz-se que g é concava em |a, b] se é valida a desigualdade em sentido contrario,
g(z) 2 ag(y) + (I — x)g(x), onde z=ay + (1 —a)x,

Estas desigualdades sao suscetiveis duina interpretagao geométrica simples. O ponto
z=uay + (I —a)xverifica z — x = a(y — x). Se x < y, esse ponto divide o intervalo [x, y] em
dois subintervalos [x, z] e [z, y|, sendo a amplitude de |x, zl 0 produto da de [x, y| por «.
Quando « varia de 0 a 1, o ponto «g(y) + (1 — 2)g(x) descreve o segmento de reta que une

os pontos [x, g(x)] e [y, g(v)] do grafico de g.A desigualdade (2.22) estabelece que o grafico

. 1
de g nunca passa acima daquela reta. A fig. 2.16(a) representa um exemplo com « = 5

Para uma fungao concava, o grafico nunca desce abaixo do segmento de reta, como se vé
no exemplo da fig. 2.16(b).

TEOREMA 2.9. Seja A(x) = .|§ f(ydt. A fungao A é convexa em cada intervalo em que f é
crescente, e concava em todo o intervalo em que f € decrescente.

Demonstragao. Suponhamos f crescente em |a, b, seja x < yez =ay + (1 — a)x. Vamos
demonstrar que A(z)<aA(y) + (1 —a)A(x) e uma vez que A(z) =« A(z) + (1 — a)A(2),
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serd 0 mesmo demonstrar que aA4(z) + (1 — a)A(z) < aA4(y) + (1 — a)A(x), ou que

(I = )[4(z) — A(x)] < a[4(y) — A(2)].

PorserA(z) —A(x) = ,f:f( t)dt e A(y) —A(z) = _IE: f(1)dt, temos que demonstrar que

(- fd<a [“rwyar. (2.23)

Mas f é crescente, de modo que sao verificadas as desigualdades f(1) < f(z) se x <t <z, e
S sfl)sezst < y.

Integrando estas desigualdades encontramos
[[roda<re==», e f@0-<] foa.
Mas (1 — «)(z — x) = a(y — z) e deste modo as desigualdades dao-nos

(1 =) @) dt < (1 = f(Dz — 0) = of Ny — ) < | f@ at,

0 que prova (2.23). Isto demonstra que 4 € convexa quando f{7) € crescente. Quando f é
decrescente, podemos aplicar a —f o resultado acabado de demonstrar.

ExeMPLO. A fungdo cosseno decresce no intervalo [0, n]. Uma vez que sen x = fg cos ¢ dt,

o grafico da fungdo seno ¢ concavo no intervalo [0, n]. No intervalo [, 2n] o cosseno € cres-
cente ¢ a fungdo seno € convexa.

A fig. 2.17 representa outras propriedades dos integrais indefinidos. O grafico da esquer-
da é o da fungdo parte inteira, f{x) = [X]; o grafico da direita é o do integral indefinido

[
— | f(x) = |x] ! x
i FA(x) = dt
_: i, i(Jc} jo.lfl
4 : - :
0 1
-~ l 0 X

Fig. 2.17 — O integral indefinido de uma fungao em escada & linear por intervalos.
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A(x) = J'g [z]dt. Nos intervalos em que f € constante, a fungdo A é linear. Exprime-se isto
dizendo que o integral da fungdo em escada é linear por intervalos.

Observe-se que o grafico de f € constituido por segmentos de reta “desligados”. Existem
pontos do grafico de /" onde uma pequena mudanga em x provoca um salto no valor da
fungdo. Note-se, porém, que o correspondente integral indefinido nao se comporta do mesmo
modo. Uma pequena variagao de x produz unicamente uma pequena variagao em A(x). Isto &
assim porque o grafico de A nao é formado de partes desligadas. Exprime-se nesta argumen-
tagao uma propriedade dos integrais indefinidos conhecida por continuidade. No capitulo que
se segue discutiremos o conceito de continuidade com algum pormenor € provaremos que o
integral indefinido € sempre uma fungao continua.

2.19 Exercicios

Calcular os integrais dos Exercicios 1 a 16.

1. ‘-:(l + t + %) dt. 9. j cos t dt.
f2y z:

2 |+ + mar, 10. [ @ +cosar.
2r =8

3T A+ +ma. 1. [7 @ —senna.
~l—zx z

4. [0 -2 +3)a 12. ] (a2 +sen 3u) d.
- 21

5. ';'2('2 + 1) dr. 13. L (v* +sen 3v) dv.

6. ’.:' (12 + 1) dt. 14. J.:(scn’x + x)dbx.

7. ‘: (V2 4+ 1)d, x>0. 15. j (scn 2w + cos %)dw.
- (1]

8. |-_z‘ (12 4 114 dt, x > 0. 16. J‘j (3 + cosr)*d.

17. Achar todos os valores reais de x para os quais
|‘z(r“ —0dt = 5[2,. (t —3)dr.
JO J4/2
Tragar uma figura adequada e interpretar geometricamente a igualdade.

18. Seja f(x) =x— [x] — % se x nao € inteiro, ¢ f{x) = 0 se x € inteiro. (Como habitualmen-

te [x] representa o maior inteiro < x). Defina-se uma nova fungao P como se indica:
xr
P(x) = [0 f()dt paratodo o x real.

(a) Tragar o grafico de f relativo ao intervalo [—3, 3] e provar que f é periodica com
periodo 1: fix + 1) = f{x) para todo o x.



19.

20.

21.
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(b) Demonstrar que P(x) = -%— (x*—x),se 0 < x €1 e que P ¢ periddica do periodo 1.

(c) Exprimir P(x) em fungdo de [x].

(d) Determinar uma constante ¢ tal que | (P(1) + c)dt = 0.

(e) Para a constante ¢ da alinea (d) seja Q(x) = Jg (P(1) + c)dt. Provar que Q ¢ periodica
com periodo 1 e que

3 xe

_—x 2
A =% -7 %)

| =

se 0<x<1.

b2

E dada uma fungio impar /, definida para todo o valor de x, com periodo 2, ¢ inte-
gravel em qualquer intervalo. Seja g/x) = _|' ',‘,fff}dt.

(a) Demonstrar que g(2n) = 0 para todo o inteiro n.

(b) Demonstrar que g € par e periodica de periodo 2.

Seja fuma fungao definida para todo o x, periodica de periodo 2 e integravel em qualquer
intervalo. Seja g(x) = [} /(D) dt e seja A = g(1).

(a) Provar que g € par e que g(x + 2) — g(x) = g(2).

(b) Calcular g(2) e g(5) em termos de A.

(c) Para que valor de 4 sera g periddica de periodo 2?

Sé@o dadas duas fungGes f e g, integraveis em qualquer intervalo e com as propriedades
seguintes: /¢ impar, g € par, f(5) = 7, f/(0) = 0, g(x) = f(x + 5),f(x) = J"S g(t)dt paratodo
0 x. Demonstrar que (a) f(x — 5) = — g(x) para todo o x; (b) fg f()dt=17;(c) lg Sfdt =
= g(0) — g(x).



3
FUNCOES CONTINUAS

3.1 Ideia intuitiva de continuidade

Neste capitulo analisa-se o conceito de continuidade, uma das mais importantes e também
das mais fascinantes ideias de toda a Matematica. Antes de apresentarmos uma defini¢ao
rigorosa de continuidade, discutiremos resumidamente o conceito duma maneira informal e
intuitiva para dar ao leitor alguma sensibilidade sobre o seu significado.

Falando sem preocupagao de rigor, a situagao € a seguinte: Suponhamos uma fungao f'que
toma o valor f{p) num certo ponto p. Entio f diz-se continua em p se em todo o ponto x
vizinho de p a fung¢iio toma o valor f{x) proximo de fip). Outra maneira de apresentar a
questdo € a seguinte: Se x se move para p, o correspondente valor da fungio f/x) deve
aproimar-se de f{p) tanto quanto se queira, independentemente do modo segundo o qual
se aproxima de p. Quando uma fungio ¢ continua, niio podem verificar-se saltos nos va-
lores da fungdio, como se mostra na fig. 3.1,

LISl LN

-3 -2 -1 0 | 2 3 4

(a) Discontinuidade em salto para (b) Uma discontinuidade infinita em 0.
cada inteiro

Fig. 3.1 — Duas formas de discontinuidade.

A fig. 3.1 (a) representa o grafico de uma fungao / definida pela equagao f{x) = x — [x],
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onde [x] representa o maior inteiro < x. Em cada valor inteiro de x tem-se o que se chama
uma discontinuidade em salto. Por exemplo f(2) = 0, mas quando x se aproxima de 2 por
valores a esquerda, f(x) aproxima-se do valor 1, que nao coincide com f{2). Portanto temos
uma discontinuidade em 2. Observe-se porém que f{(x) tende para f(2) quando x tende para 2
por valores a direita, mas isto nao é suficiente para estabelecer a continuidade em 2. Num
caso como este, a fungao diz-se continua a direita de 2 e descontinua a esquerda de 2. A con-
tinuidade num ponto exige a continuidade a esquerda e a direita.

No desenvolvimento primitivo do calculo, a maior parte das fungoes com que se lidava
eram continuas ¢ nao havia, naquele tempo, necessidade real de penetrar no significado
exacto de continuidade. Foi ja no século xvii que as fungoes descontinuas comegaram a apa-
recer em conexao com diferentes tipos de problemas fisicos. Em particular, os trabalhos de J.
B. J. Fourier (1758-1830) sobre a teoria do calor forgaram os matematicos do inicio do seé-
culo XIX a examinar com mais cuidado o significado exato de conceitos tais como fun-
¢do ¢ continuidade. Embora o significado da palavra “continuo™ parega intuitivamente
claro a muita gente, ndo ¢ facil formular uma boa desta ideia. Um diciondrio popular
da a seguinte defini¢io de continuidade:

Continuidade: qualidade de ser continuo.

Continuo: que tem continuidade entre as partes.

Tentando apreender o significado de continuidade unicamente a partir destas duas definigoes
¢ 0 mesmo que tentar aprender chinés somente com um dicionario chines. Uma definigao
matematica satisfatoria de continuidade, expressa unicamente em termos de propriedades do
sistema dos numeros reais.foi primeiramente formulada em 1821 pelo matematico frances
Augustin-Louis Cauchy (1789-1857). A sua definigdo, que € ainda usada hoje, pode expor-se
mais facilmente recorrendo ao conceito de limite que analisaremos a seguir.

3.2 Defini¢ao de limite de uma fungao

Seja fuma fung¢ido definida num intervalo aberto contendo um ponto p, embora niio se
exija que fseja definida no proprio ponto p. Sendo A um namero real, a igualdade
Iim f(x) = A4
I—+p

le-se: **O limite de f(x), quando x tende para p, ¢ igual a A” ou “f{x) tende para A quando x
tende para p”. Também se escreve, sem recurso ao simbolo de limite:

f(x}-—> A quandox — p.

Este simbolismo implica a ideia de que fix) pode fazer-se tdao proximo de 4 quanto se
queira, contanto que se escolha x suficientemente proximo de p.

A nossa primeira tarefa consiste em expor o significado destes simbolos inteiramente em
termos de numeros reais, 0 que se fard em duas etapas. Em primeiro lugar introduzimos o
conceito de vizinhanga de um ponto, e em seguida definimos limites recorrendo a esse concei-
to de vizinhanga.

DEFINICAO DE VIZINHANCA DE UM PONTO. Qualquer intervalo aberto contendo um ponto
p como seu ponto medio diz-se uma vizinhanga de p.
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Notagdo. Representamos as vizinhangas por N(p), N,(p), N,(p), etc. Uma vez que uma
vizinhanga N(p) ¢ um intervalo aberto simétrico relativamente a p, é formada por todos os
numeros reais x satisfazendo a p—r < x < r 4+ p para um certo r > 0. O numero positivo r é
chamado o raio da vizinhanga. Designamos N(p) por N(p; r) se desejarmos especificar o
seu raio. As desigualdades p—r < x < p + r sdo equivalentesa —-r< x-p<r,ea|x-p/<
< r. Deste modo, N(p; r) € formado por todos os pontos x cuja distancia a p € menor que r.

Na defini¢do dada a seguir, supomos que 4 € um numero real e que f ¢ uma fungao defi-
nida numa certa vizinhanga de um ponto p (excepto possivelmente em p). A fungao f pode
também ser definida em p, mas este pormenor € sem significado para a definigao.

DEFINICAO DE LIMITE DE UMA FUNCAO. O simbolismo

limf(x)=A4 [ou f(x)—> A quando x — p]

r—p
significa que para toda a vizinhanga N,(A) existe numa vizinhanga N,(p) tal que

f(x) e Ny(4) sempre que x € Ny(p) e Xx#Fp. 3.1)

O primeiro ffato a ter em consideragio acerca da definigio € que ela inclui duas vizi-
nhangas, N,(4) e N,(p). A vizinhanga N (A ) é referida em primeiro lugar; diz-nos quanto dese-
jamos que f{x) esteja proxima do limite 4. A segunda vizinhanga, N,(p), diz-nos quanto x
deve aproximar-se de p, de maneira que f{x) seja interior a primeira vizinhanga N,(4). A
parte fundamental da definigdo € que, para cada N,(4), por pequeno que seja, existe uma
certa vizinhanga N,(p) que satisfaz a (3.1). Em geral, a vizinhanga N,(p) dependera da

vizinhanga N,(4) vizinhanga N,|/(p)|
'/ 74—"‘““ TRERT A
s
A fip) p===---1 -
------- b
o
| | |
A
| ' |
1
I | I
-
/S p
vizinhanga N,(p) vizinhanga N,(p)
Fig. 3.2 — Existe lim f{x) = A, mas nada se Fig. 3.3 — festa definida em p e lim f{x) =
xX—=p X—p

diz de f em p. = flp), e portanto f é continua em p.
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escolha de N,(4). Uma vizinhanga N,(p) que sirva para um N (A), servira também, sem du-

vida, para qualquer vizinhanga maior que N,(4), mas pode nio ser adequada para qualquer
vizinhanga menor que N,(4).

A definigao de limite pode ilustrar-se geometricamente como se indica na fig. 3.2. No eixo
0Y esta marcada uma vizinhanga N,(4). A vizinhanga correspondente N,(p) esta represen-
tada no eixo 0X. O retiangulo sombreado ¢ formado por todos os pontos (x, y) para os
quais x ENy(p)e yEN,(A). A defini¢io de limite assegura que o grafico de f correspon-
dente ao intervalo N,(p) € interior ao retangulo, excepto possivelmente para o ponto do
grafico relativo ao proprio p.

A defini¢ao de limite pode também formular-se em termos dos raios das vizinhangas N, (4)
e N,(p). E habitual representar o raio de N,(A) por ¢ (letra grega epsilon) e o raio de N,(p)
por & (letra grega delta). A afirmagdo f(x) € N,(A) & equivalente a desigualdade |f(x) — 4 |<
< ¢, e a afirmagao x € N,(p), x # p, é equivalente as desigualdades 0 < |x — p| < 4. Portan-
to, a definicao de limite pode também ser expressada como segue:

O simbolo I‘ig} f(x) = A significa que para todo o € > 0, existe um 6 > 0 tal que
| f(x) — A| < e sempre que 0 < |x — p| < 9. (3.2)

Observamos que as trés afirmagoes

limf(x) = A4, lim(f(x)— A) =0, lim |f(x) — A| =0,

r—=p r—=p r—=p

sao equivalentes. Esta equivaléncia torna-se evidente quando escrevemos cada uma delas na
terminologia €, 4 usada em (3.2).

Ao considerar limites quando x — p, algumas vezes encontra-se ser conveniente represen-
tar a diferenga x—p por um novo simbolo, por exemplo h ¢ fazer h-0. Tal implica sim-

plesmente uma mudan¢a na notagdo, porque, como pode facilmente verificar-se, as duas
afirmagdes seguintes sdo equivalentes:

limf(x) = A, limf(p+ h)=A.
h=0

T=+p

EXEMPLO 1. Limite de uma fungdo constante. Seja f(x) = ¢ para x qualquer. E facil provar
que para cada p, temos lim f(x) = ¢. Com efeito, dada qualquer vizinhanga N, (c), a verifi-

cagao de (3.1) € trivial para qualquer escolha de N,(p) porque f(x) = ¢ para todo o x e
¢ € Ny(c) para todas as vizinhangas N,(c). Na notagdo de limite, escrevemos

Iime=c.

r—+p

EXemMpLO 2. Limite da fungdo identidade. Seja f{x) = x para x qualquer. Prova-se facil-
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mente que hm,_. , f(x)= p. Escolhamos qualquer vizinhanga N, (p) e fagamos N,(p) = N,(p).
Entao, a relagao (3.1) € trivialmente satisfeita. Na notagao de limite, escremos

Iimx = p.

r=p

Os “limites laterais” podem ser definidos duma maneira semelhante. Por exemplo, se
J(x) = A quando x — p por valores maiores que p, dizemos que 4 € o limite a direita de fem p
¢ exprimimo-lo analiticamente escrevendo

limf(x) = A.

&L= p+

Na terminologia de vizinhangas isto significa que para cada vizinhanga N,(4) existe uma
certa vizinhanga N,(p) tal que

f(x)EN((A) sempre que xENf(p) € x>p. (3.3)

Os limites a esquerda, que se representam escrevendo x — p—, definem-se do mesmo modo,
apenas restringindo x a valores menores que p.

Se [ possui limite 4 em p, entdo também possui limites a esquerda e a direita de p, sendo
ambos iguais a 4. Mas uma fungdo pode ter em p o limite a direita diferente do limite a
esquerda, como se refere no exemplo que se segue.

ExeMPLO 3. Seja f{x) = [x] para todo o x e seja p um inteiro qualquer. Para x vizinho de p,
x < p, tem-se f{x) = p — 1, e para x vizinho de p, x > p, tem-se f{x) = p. Portanto conclui-se

que

lim f(x)=p—1 e lim f(x)=p.

z=p— z=p+

Num exemplo como este, em que os limites a esquerda e a direita existem mas sao distintos, o
limite de f em p nao existe.

ExempLO 4. Seja f(x) = 1/x* se x # 0 e fl0) = 0. O grafico de f'nas vizinhangas da origem
esta representado na fig. 3.1(b). Neste exemplo ftoma valores arbitrariamente grandes nas
proximidades de 0 e assim ndo tem limite a direita nem limite a esquerda, no ponto 0. Para
provarmos rigorosamente que ndo existe qualquer nimero real 4 tal quelim _ fix)= 4,

argumentamos do modo seguinte: Suponhamos que existia um tal A, por ejemplo 4 =0.

Escolhamos uma vizinhanga N,(A4) de raio 1. No intervalo 0 < x < temos f(x)

1
A+2
1/x2> (4 + 2)* > A + 2, pelo que f(x) ndo pode estar na vizinhanga N,(4). Consequente-
mente, cada vizinhanga N(0) contém pontos x > 0 para os quais f(x) € exterior a N,(4), e
assim (3.3) nio se verifica para esta escolha de N,(A4 ). Portanto f ndo tem limite a direita

emO.
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ExXEMPLO 5. Seja flx) = 1 se x # 0 e fl0) = 0. Esta fungao toma o valor constante 1 para
todos os valores reais de x, excepto para x = 0 em que o seu valor ¢ 0. Ambos os limites a
esquerda e a direita sao 1 para cada ponto p, pelo que o limite de f{x), quando x tende para p,
existe ¢ € igual a 1. Chama-se a atengao de que o limite de £ € 1 no ponto 0, muito embora

N0) = 0.
3.3 Defini¢gao de continuidade de uma fungao

Na definigao de limite ndo se faz qualquer afirmagao relativa ao comportamento de f/ no
proprio ponto p. A afirmagao (3.1) refere-se aos pontos x # p que pertencem a N,(p), de
maneira que nao € necessario que f seja definida em p. Além disso, mesmo se f'é definida em
P, oseu valor nao necessita ser igual aolimite 4. Contudo, se acontecer que f'seja definida em p
e se acontecer igualmente que f{p) = A, entao dizemos que a fungao /€ continua em p. Por
outras palavras, temos a seguinte definigdo.

DEFINICAO DE CONTINUIDADE DE UMA FUNCAO NUM PONTO. Uma fungdo f diz-se ser
continua num ponto p se

(a) f é definida em p, e
(b) lim f(x) = f(p).

Esta definicio pode igualmente ser dada recorrendo ao conceito de vizinhanga. Uma
fungdo f'€ continua em p se para cada vizinhanga N,(/{p)] existe uma vizinhanga N,(p) tal que

f(x) € Ny[f(p)] sempre que x e Ny(p). (3.9
Uma vez que f{p) pertence a N ,[f(p)], ndo & necessaria a condi¢ao x # p em (3.4). Na ter-

minologia J e €, em que se especificam os raios das vizinhangas, a defini¢do de continuidade
por ser dada novamente como segue:

Uma fungdo f € continua em p se para cada ¢ > 0, existe um & > 0 tal que

| f(x) — f(p)] < € sempre que |x — p| < 4.
A defini¢do de continuidade é ilustrada geometricamente na fig. 3.3. Esta é semelhante a
fig. 3.2, excepto em que o valor limite 4 ¢ igual ao valor da fungdo f{(p), de modo que o gra-
fico completo de f relativo a N,(p) esta no retingulo sombreado.

EXEMPLO 1. Fungdes constantes sdo continuas. Se f{x) = ¢ para todo o x, entdo

lim f(x) = lim ¢ = ¢ = f(p)

Tr—p Tr=p

qualquer que seja p, e portanto f é sempre continua.
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EXEMPLO 2. A fungao identidade é continua para todo o x. Se f{x) = x para todo o x,
tem-se

lim f(x) = limx = p = f(p)

T=p r—p

para p qualquer, e portanto a fungdao identidade &€ sempre continua.

EXEMPLO 3. Seja fix) = | x| para qualquer x. Esta funcio é continua em cada ponto p que
ndo seja inteiro. Para p inteiro ela € descontinua, uma vez que o limite de fndo existe, pois os
limites a esquerda e a direita sao diferentes. Uma descontinuidade deste tipo, em que os limites
a esquerda e a direita existem mas s@o diferentes, chama-se descontinuidade em salto (des-
continuidade de primeira espécie). Contudo, uma vez que o limite a direita ¢ igual a f{p) para
todo o inteiro p, diz-se que f € continua a direita de p.

ExXeMPLO 4. A fungédo fpara a qual f{x) = 1/x? para x +# 0 e f{0) = 0, € descontinua em 0.
[Ver fig. 3.1(b)). Diz-se que existe uma descontinuidade infinita em 0 porque a fungéo torna
valores arbitrariamente grandes proximo de 0.

ExeEmPLO 5. Seja f{x) = | para x # 0, f(0) = 0. Esta fungao € continua por toda a parte,
excepto em 0. E descontinua em 0 porque f{0) ndo é igual ao limite de f{x) quando x — 0.
Neste exemplo, a discontinuidade pode ser eliminada, definindo a fun¢do em 0 de modo a
ter o valor 1 em vez de 0. Por esta razao, uma descontinuidade deste tipo chama-se uma des-
continuidade elimindvel. Repare-se que as descontinuidades em salto, tais como as que apre-
senta a fungao maior inteiro, ndao podem eliminar-se por simples mudanga do valor de f num
ponto.

3.4 Teoremas fundamentais sobre limites. Mais exemplos de fun¢Oes continuas

O calculo com limites' pode muitas vezes ser simplificado pelo uso do seguinte teorema que
fornece regras basicas para operar com limites.

TEOREMA 3.1 Sejam f e g duas fungdes tais que
Iimfix)=A, limg(x)=8B
X=p x=+p

Tem-se entdo:
(i) lim [f(x) + g(x)] = 4 + B,

—=p

(i) lim[f(x) — g(x)] =4 — B,

r—p

(i) limf(x)-g(x)=A"B,

r=p

T—p

(iv) lim f(x)/g(x)=A/B se B # 0.
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Nota: Um caso particular importante de (iii) ocorre quando f ¢ constante, por exemplo
J(x) = A para todo o x. Neste caso, (iii) escreve-se lim A4 + g(x) = A B.
X—p

A demonstragdo do teorema 3.1 ndo ¢ dificil, mas & bastante extensa, pelo que a
apresentamos numa Secdo separada (Segao 3.5). Apresentamos aqui algumas consequén-
cias simples do teorema.

Em primeiro lugar observamos que as afirmagoes do teorema podem apresentar-se de
maneira ligeiramente diferente. Por exemplo, (i) pode escrever-se:

lim [f(x) + g(x)] = lim f(x) 4+ lim g(x) .

r—p r—+p r=+p

que significa ser o limite da soma igual a soma dos limites das parcelas.
E costume representar por / + g,/ — g, /- g e f/g as fungOes cujos valores para cada x sao

f(x) + glx), f(x)=gx), flx) glx), e f(x)/g(x),

respectivamente. Estas fun¢des sio chamadas a soma, diferenca, produto e quociente de fe g.
Subentende-se que o quociente de f/g so sera definido nos pontos em que g(x) # 0. O seguinte
corolario do teorema 3.1 esta formulado com esta terminologia e notagao e refere-se a
fungoes continuas.

TEOREMA 3.2 Sejam f e g duas fungoes continuas num ponto p. A soma f + g, a diferenga
f— g e o produto [-g sdao também continuas em p. Se g(p) # 0, também o quociente f|g é con-
tinuo em p.

Demonstragao. Uma vez que f e g sao continuas em p, temos lin& f(x)=f(p)e
lim_  g(x)= g(p). Portanto podemos aplicar as formulas para os limites dadas no Teore-
ma 3 | com A4 = f(p) e B = g(p) para demonstrar o Teorema 3.2.

Ja vimos que a fungao identidade e fungdes constantes sdao continuas para qualquer valor
de x. Usando estes exemplos e o teorema 3.2, podemos construir muitos mais exemplos de

fungdes continuas.

ExempLo 1. Continuidade de polinomios. Se tomarmos f(x) = g(x) = x, o resultado
sobre a continuidade do produto prova a continuidade em cada ponto para a fung¢ao cujo
valor em cada x, ¢ x*. Por indugao matematica, resulta que para todo o real ¢ e todo o inteiro

e positivo n, a fungdo fpara a qual f(x) = cx” & continua para todo o x. Uma vez que a soma
de duas fungoes continuas é, ela propria, uma fung¢do continua, por indugao resulta que o
mesmo ¢ verdadeiro para a soma de qualquer numero finito de fungdes continuas. Portanto

qualquer polindmio p(x) = JI_, c,x* € continuo em todos os pontos.

ExempLo 2. Continuidade de fungoes racionais. O cociente de dois polinomios chama-se
uma fungdo racional. Se r ¢ uma fungao racional, entdo tem-se
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p(x)

X)) =—,
Ae q(x)

com p ¢ g polindmios. A fungdo r ¢ definida para todo o real x, para oqual ¢ (x)# 0. Uma vez
que quocientes de fungdes continuas sio fungdes continuas, vemos que cada fungio racional é
continua sempre que esteja definida. Um exemplo simples € r(x) = 1/x se x # 0. Esta fungao
é continua para todo o x excepto para x = 0, em que nao esta definida.

O teorema seguinte mostra que se uma fungao g esta enquadrada entre duas outras
fungdes que tem limites iguais quando x — p, entdo g tem também o mesmo limite quando
X = D

TeOREMA 3.3. Principio de enquadramento. Sejam f(x) < g(x) < h(x) para todo o x # p,
numa certa vizinhanga N(p). Suponhamos também que

lim f(x) = lim h(x) = a..
r=p r—=p

Tem-se entao lim - g(x)=a.

Demonstragdo. Sejam G(x) = g(x) — f(x) e H(x) = h(x) — f(x).
As desigualdades f<g < h implicam 0Sg — f<h — f, ou

0 < G(x) < H(x)

para todo o x # p em Np). Para provar o teorema basta mostrar queG (x)-+0quando x - p,
dado que H(x)-0 quando x-p.

Seja N,(0) qualquer vizinhanga de 0. Uma vez que H(x)-0 quando x - p, existe uma
vizinhanga N,(p) tal que

H(x) € N,(0) sempre que x e Ny(p) e X#Fp.

Podemos supor que N,(p) < N(p). Entao a desigualdade 0 SG < H estabelece que G(x) nao
esta mais longe de 0 que H(x) se x esta em N,(p), x # p. Por conseguinte G(x) € N,(0) para
tal valor de x e portanto G(x) — 0 quando x — p, o que demonstra o teorema. A mesma
demonstragao € valida se todos os limites sdo limites laterais.

O principio de enquadramento € util na pratica porque ¢ muitas vezes possivel determinar
fungOes tais como fe h enquadrando g e para as quais € mais facil analisar a continuidade.
Usaremos este principio para demonstrar que cada integral indefinido € uma fungao continua.

TEOREMA 3.4. CONTINUIDADE DE INTEGRAIS INDEFINIDOS. Seja f integrdvel em | a, x| para
todo o x pertencente a |a, b] e seja

A(x) = | f()dt .
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O integral indefinido A é uma fungdo continua em cada ponto de |a, bl. (Em cada extremo a
e b temos continuidade a direita e a esquerda, respectivamente).

Demonstragao. Escolhamos p em [a, b]. Temos que provar que A(x)—A(p) quando x — p.
Temos

A(x) — A(p) = _I':f(:) dt . (3.5)

Calculemos agora o valor deste integral. Uma vez que festd limitada em |a, b|, existe uma
constante M > 0 tal que —M < f{1) < M, qualquer que seja ¢ de [a, b|. Se x > p, integramos
estas desigualdades ao longo do intervalo [p, x| para obtermos

—M(x — p) < A(x) — A(p) < M(x — p).

Se x < p, obtemos as mesmas desigualdades com x — p substituido por p — x. Portanto, em
qualquer caso podemos fazer x — p e aplicarmos o principio de enquadramento para encon-
trar que A(x)—~A(p). Isto prova o teorema. Se p ¢ um ponto extremo de |a, bl, fazemos
x - p por valores pertencentes ao intervalo, e ai os limites sido laterais.

EXEMPLO 3. Continuidade do seno e do cosseno. Uma vez que a fungdo € um integral inde-
finido, sen x = [ cos ¢ dt, o teorema anterior diz-nos que o seno ¢ continuo para todo o valor

’ . v . X
de x. De modo analogo, o cosseno € continuo para todo o x, pois que cos x = 1 — | sen rdl.

A continuidade destas fungdes pode também ser provada sem recorrer aos integrais indefi-
nidos. Essa demonstragiio é apresentada no exercicio 26 da Segdo 3.6.

EXEMPLO 4. Neste exemplo demonstramos uma importante formula sobre limites:

lim 2% = 1, (3.6)

=0 X

a qual serd necessaria mais tarde, no estudo do calculo diferencial. Uma vez que o denomi-
nador do quociente (sen x)/x tende para 0 quando x— 0, ndo podemos aplicar o teorema
do quociente de limites para provar (3.6). Em vez déste utilizamos o principio de enqua-
dramento. Da Segdo 2.5 resultam as desigualdades fundamentais

0<senx< 1 .

X COs Xx

T
5 -

-

vialidas para 0 < x < Sdo igualmente verdadeiras para —%r <x <0 uma vez que
cos(—x) = cos x € sen(—x) = —x ¢ assim sdo validas para todo 0 x # 0 numa vizinhanga
N(O; %‘). Quando x -0, ¢ncontra-se cos x— 1, uma vez que o cosseno € continuoem x =0

e portanto l/(cos x)— |. Portanto, pelo principio do enquadramento, deduzimos (3.6). Se
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definimos f{x) = (sen x)/.x para x # 0, f10) = 1, entdo f ¢ continua para todo o valor real de x.
O seu grafico esta representado na fig. 3.4.

“"[}f(-t‘) =1=f(0)
X/r 0 T S 27 —

Fig. 3.4  f(x) = (sen x)/x, se x # 0, f10) = 1. Esta fungao & continua para todo o x.

EXEMPLO 5. Continuidade de f quando f(x) = X', para x > 0, com r um mimero racional e
positivo.
Do teorema 2.2 resulta a seguinte formula de integragao

*r . .\,l'lﬂ
tVdt = —— \
Jo I + 1/n

valida para todo o x > 0 e todo o inteiro n 2 1. Usando os teoremas 3.4 e 3.1, verificamos
que a fungio A dada por A(x)= x'"*'"" ¢ continua em todos os pontos p > 0. Seja agora
glx)=x""=A(x)/x para x > 0. Uma vez que g ¢ o quociente de duas fungdes continuas,
¢ igualmente continua em todos os pontos p > 0. Mais geralmente se flx) = x™" onde m ¢
um inteiro positivo, entdo /'€ um produto de fungoes continuas e assim € continua em todos
os pontos p > 0. Prova-se assim a continuidade da poténcia de ordem r, f(x) = X', quando r é
qualquer numero racional positivo, em todos os pontos p > 0. Em p = O define-se a continui-
dade a direita.

A continuidade da fungao poténcia de expoente r para r racional, pode também deduzir-se
sem recorrer a integrais. Na secgao 3.13 sera dada outra demonstragao.

3.5 Demonstragoes dos teoremas fundamentais sobre limites

Nesta Se¢do demonstramos o teorema 3.1, o qual nos da as regras fundamentais para o
calculo de limites de somas, produtos e quocientes. As principais nogdes algébricas usadas
na demonstragio sdo duas propriedades dos valores absolutos que foram mencionados nas
Secdes 14.8 ¢ 14.9. Sio elas (1) a desigualdade triangular que estabelece que|a + b| < |a| +
+ b para todos os reais a e b e (2) a igualdade \ab| = |a||b| que estabelece que o valor absoluto
de produto ¢ o produto dos valores absolutos.
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Demonstracdes de (i) e (ii). Visto que as duas igualdades

lim f(x) = A e lim [f(x) — A] =0

sdao equivalentes e ainda porque
Sx) + glx) = (4 + B) = [f(x) — 4] + [g(x) — B],
basta demonstrar a alinea (i) do teorema quando os limites A ¢ B sdo ambos nulos.
Suponhamos, entdo, que f{x) — 0 e g(x) - 0 quando x — p. Devemos provar que f(x) +

+ g(x) - 0 quando x — p. Significa isto ter que demonstrar-se que para cada « > 0 existe
um 6 > 0 tal que

f(x) + g(x)| < e sempre que 0 <|x —p|<0. (3.7)

Seja ¢ dado. Uma vez que f{x) — 0 quando x — p, existe um 8, > U tal que
Lf(x)] < -f; sempre que 0 <|x — p| <9,. (3.8)

De modo analogo, uma vez que g(x) —» 0 quando x — p, existe um 9, > 0 tal que

|g(x)] <§ sempre que 0 < |x — p| < 9,. (3.9)

Se representarmos pord o menor de dois nimerosd, ¢d,, entio ambas as desigualdades (3.8)
e (3.9) sio validas se 0 < |x-p| < & e portanto, pela desigualdade triangular, temos que

=€,

oo € €
1f(x) + g(x)| < [f()] + [g(x)] < 7 + 3
Provamos (3.7) a qual, por sua vez, demonstra (1). A demonstragdo de (ii) € inteiramente
semelhante, excepto em que na ultima fase da demonstragdo usamos a desigualdade
|f(x) = g(0)] < [ f(x)] + |g(x)].

Demonstragao de (iii). Suponhamos que provamos (iii) no caso particular em que um dos
limites ¢ 0. Entao o caso geral resulta facilmente deste caso particular, como se conclui da
seguinte igualdade

f(x)g(x) — AB = f(x)[g(x) — B] + B[f(x) — A].
O caso particular implica que cada termo no segundo membro tende para 0 quando x — p e,

pela propriedade (i), a soma dos dois termos tambem tende para 0. Portanto resta provar (jii)
no caso especial em que um dos limites, por exemplo B, ¢ 0.
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Suponhamos que f{x) -+ 4 e g(x) — 0 quando x — p. Trata-se de provar que f{x) g(x) -+ 0
quando x — p. Para tal devemos mostrar que dado um numero positivo €, existe em d > 0 tal
que
| f(x)g(x)| < ¢ sempre que 0 < |x —p|<9. (3.10)
Uma vez que f{x) - A quando x — p, existe um 0§, tal que
| f(x) — A <1 sempre que 0 < |x —p|<9,. (3.11)
Para tal x, temos [f{x)| = |[fix) — 4 + 4| <|fix) — 4| + |[4] < 1 + |4 e daqui
| f(x)g(x)| = |f(x)| 1g(o)] < (1 + |4]) [g(x)]. (3.12)
Ja que g(x) -+ 0 quando x — p, para todo o ¢ > 0 existe um 0, tal que

€

1 + [A]

lg(x)| < sempre que 0 < [x — p| < 9,. (3.13)

Portanto, se designamos por & o menor dos dois numeros 3, e §,, entdo ambas as desigualda-
des (3.12) e (3.13) s@o validas sempre que 0 < |x — p| < 8, e para tal valor de x, deduzimos
(3.10), o que completa a demonstragao de (iii).

Demonstragao de (iv). Sendo o quociente f{x)/g(x) o produto de f/x)/ B por B/g(x) basta pro-
var que B/g(x) — 1 quando x — p e depois aplicar (iii). Seja h(x) = g(x)/B; entdo h(x) - 1
quando x — p e desejamos provar que 1/h(x) - 1 quando x — p.

Dado € >0, necessita demonstrar-se que existem um & > 0 tal que

L_1’<e sempre que 0 < |x — p| < 4. (3.14)

h(x)

A diferenga do primeiro membro pode escrever-se

h(x) [h(x)]

Uma vez que 4(x) - 1 quando x — p, podemos escolher um & > 0 tal que ambas as desigual-
dades

|h(x) — 1] <§ e lh(x) — 1] <% (3.16)

sejam satisfeitas quando 0 < |x — p| < 8. A segunda destas desigualdades implica que k(x) >
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> —;— e deste modo 1/|h(x)|= 1/h(x) < 2 para tal valor de x. Utilizando esta conclusdo em

(3.15) juntamente com a primeira desigualdade em (3.16) obtemos (3.14), o que completa a
demonstragao de (iv).

3.6 Exercicios

Nos Exercicios 1 a 14 calcular os limites e explicar quais os teoremas utilizados na
resolugao de cada um.

1 xt —a°

L:T;x_" 8':2x2+2ax+02' a ¥ 0.
253 + 2 .
2. zln‘;m. 9. }Lﬂ;tg I,
. x*—4 .
3. lim 5" 10. lim (sen 2f + £* cos 51).
ze2 4 t—0
2x* —3x + 1 X
4, Iim p— 11. lim 9
x -1 - -0+
t + h)? —¢*
5 |m( ) 12. Iim ]—l
B0 h 20— X
6. lim # 0 3. tim Y
'ZT:,x2+Za.r+az’ a ' 'xl_',‘.L x
x* —a* ‘\/;2
. him — , 0. i —
7,,l_'::.w'+2a.1|r+a2 X 14 :I_T,_ X

Servir-se da relagao lim _ , (sen x)/x = 1 para establecer as igualdades dos Exercicios
15 a20.

sen 2x —
15. lim =2 18, limnoX —sendx
=0 X 20 X
tan 2x -
16. lim ——— — 2, 19, lim —nX* —sena s
z-—+0 SEN X z—-0 X —a
sen § —
17. lim —— = 5. 20. lim =258 % _ 3.
z—0 SENX z-0 X
. l - l —xz l -
21. Mostrar que h-r?o vx’ = | Sugestao: (1 — Va1 + V) =1 —ul)
X

22. A fungao fdefine-se do modo seguinte

‘senx s¢e x <c,

f(X)=lax+b ¢ x>,

onde «, b, ¢ sdo constantes. Se b e ¢ sao dados, encontrar todos os valores de a (se existir
algum) para os quais / ¢ continua no ponto x = c.



23.

24
25.

26.

27.
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Resolver o Exercicio 22 se f'¢ definida como segue

[?.cosx se x <c,
—lax'"'+b se x >c.

J(x)
Em que pontos sao fungdes continuas a tangente € a cotangente ?
Seja flx) = (tg x)/x com x # 0. Tragar o grafico de / relativo aos intervalos semi-abertos

[——;-—rr, 0) e (0, —-i—:n:]. O que acontece a f{x) quando x — 0? Pode definir-se f10) de tal

modo que f'venha continua em 0?
Este exercicio esboga uma outra demonstragao da continuidade do seno e do cosseno.

(a) A desigualdade|sen x|< |x/|, valida para 0 < |x|< —;— foi demonstrada no Exercicio

34 da Segao 2.8. Utilizar esta desigualdade para provar que a fungao ¢ continua em 0.
(b) Servir-se da alinea (a) e da identidade cos 2x = 1 — 2 sen’x para demonstrar que o
cosseno ¢ continuo em 0.

(c) Usar as formulas de adigao para sen(x + /) e cos(x + k) para provar que o seno e o
cosseno sao continuas para qualquer real x.

A fig. 3.5 mostra uma parte do grafico da fungao f definida por

1
f(x)=scn; se x#0.

1 S -
Para x = S COm 1 um inteiro, temos sen(1/x) = sen(nn) = 0. Entre dois tais pontos, a

fungao cresce até atingir o valor + 1, decresce até tomar o valor zero e anula até —1, e
volta a crescer ate atingir 0. Por conseguinte entre um qualquer desses pontos e a ori—
gem, a curva tem um numero infinito de oscilagoes. Isto sugere-nos que os valores da
fungao nao se aproximam de nenhum valor fixo quando x — 0.

Fig. 3.5 — f(x) = sen(1/x) se x # 0. Esta fungdo é descontinua
em 0 embora se defina f{0).
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Provar que niio existe nemhum valor real 4 tal que flx)—+ A quando x —0. Istomos-
tra que nio ¢ possivel definir f(0) de modo que fseja continua em 0.

[Sugestao: supor que existe um tal 4 e concluir com uma contradigao.|

28. Para x # 0, seja f{x) = [ 1/x], designando por [¢] 0 maior inteiro < . Tragar o grafico de
. 1 1 .

fpara os intervalos [—2, _T] e[—s—. 2]. Que se verifica para f{x) quando x— 0 por

valores positivos? e por valores negativos? Podera definir-se f{0) de tal modo que f seja

continua em 07?
29. O mesmo que no Exercicio 28, quando f{x) = (—1)!"/#]) para x # 0.

30. O mesmo que no Exercicio 28, quando f{(x) =(—1)["/*] para x # 0.

31. Dar um exemplo de uma fungao que € continua num ponto de um intervalo e des-
continua em todos os outros pontos do intervalo, ou provar que ndo existe uma tal
fungao.

32. Seja flx) = x sen(l/x)se x # 0. Definir A0) de tal modo que f seja continua em 0.

33. Seja fuma fungdo tal que|f(«) — f(v)|<|u — v|para todos os valores de u ¢ v no intervalo
[a, b].

(a) Provar que f é continua em cada ponto de [a, b].
(b) Supor que f ¢ integravel em [a, b]. Provar que

(b — a)?
—

<

b
‘ J.f(.r) dx — (b — a)f(a)

(c) Demonstrar a propriedade mais geral de que, qualquer que seja ¢ € |a, b] se tem

(b — a)
< 2

b
[f(.r) dx — (b = a)f(c)

3.7 Fungoes compostas e continuidade

A partir de fun¢des dadas vimos ja que podem definir-se novas fung¢des por adigio, sub-
tragdo, multiplicagdo e divisdo. Veremos a seguir novo processo de construir fungdes por
meio de uma operagao conhecida por composi¢ao. Comegaremos por ilustrar o método com
um exemplo.

Seja f{x) = sen(x?). Paracalcular f{x), quadramos em primeiro lugar x e em seguida deter-
minamos o seno de x2. Entdao f{x) obtém-se pela combinagao de duas outras fungoes, a
fung¢do poténciade x de expoente dois ca fungdo seno. Se fizermos v(x)= x* eu(x) = senx,
podemos exprimir f{x) em termos de u € v escrevendo

f(x) = ufe(x)].
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Dizemos que [ € a composi¢ao de u ¢ v (por esta ordem). Se compomos « ¢ v pela ordem
inversa, obtemos um resultado diferente, vlufx)| = (sen x)?, isto €, para calcular vlafx)|
tomamos o seno de v em primeiro lugar ¢ em seguida quadramos sen x.

Podemos agora desenvolver este processo com mais generalidade. Sejam u e v duas
fungoes quaisquer. A fungao composta de u e v (por esta ordem) define-se como sendo a
fungao f para a qual

f(x) = ufv(x)] (leia-se “u de v de x").

Quer dizer, para calcular o valor de fem x calculamos primeiramente v(x) ¢ em seguida cal-
culamos u no ponto v(x). Sem duvida que tal pressupoe que faz sentido calcular ¥ em v(x) e
portanto f sera definida unicamente naqueles pontos x para os quais v(x) pertence ao
dominio de u. B

Por exemplo, se u(x) =V x e v(x) = 1 — x?, entdo a fungdo composta f ¢ definida por
S1x) =/ 1 — x%. Notar que v ¢ definida para todo o real x, enquanto que u ¢ definida unica-
mente para x 20. Portanto a fungao composta f ¢ definida unicamente para aqueles valores
de x satisfazendo a 1 — x? 2 0.

Formalmente, f{x) obtém-se substituindo x por v(x) na expressao u(x). Por esta razao, a
funcgdo /¢ algumas vezes representada pelo simbolo /= u(v) (leia-se *“u de »”). Outra notagao
usada para representar a composi¢lio € f= u © v (leia-se “u comporta com ¢"). Esta no-
tagdo ¢ semelhante a do produto # “v e veremos a seguir que a operagio de composigio
tem algumas das propriedades possuidas pela multiplicagdo.

A composi¢ao de trés ou mais fungoes pode efetuar-se compondo duas, o resultado com a
terceira e assim sucessivamente. Deste modo, a fungao f dada por

SIx) = cos [sen (x?)]

€ uma composi¢ao, / = u o (v o w), onde

u(x) = cos x, v(x) = sen x, e w(x) = x2.

Observe-se que o mesmo f pode ser obtido compondo « € v em primeiro lugar ¢ depois
compondo « * vcom w ou seja: [ = (u » ¢) » w. Concluimos, por este exemplo, ser vilida a
propriedade associativa para a composi¢do, a qual estabelece que

ue(vew)=(uerv)ew (3.17)

para todas as fungdes u, v, w desde que as diferentes composigdes em questdo formem sen-
tido. Deixa-se ao leitor o cuidado de verificar que a demonstracgio de (3.17) é imediata.
Deve por-se em destaque que a propriedade comutativa u »v = v »u nem sempre € vialida
para a composigio de fungdes. Por exemplo, se u(x) = sen x ev(x) = x* a fungdo composta
f=u v ¢ dada por flx) = sen x* (que significa sen(x?)), enquanto que a fun¢do compos-
ta g = v ~u € dada por g(x) = sen’x [que significa (sen x)*].
Demonstramos a seguir um teorema que nos diz que a propriedade de continuidade se
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mantém face a operagdo de composigdao. Mais exatamente temos o

TEOREMA 3.5. Seja v continua em p e u continua em q, com q = v(p). A fungao composta
S = u o v é continua em p.

Demonstragdo. Uma vez que u € continua em g, para toda a vizinhanga N,[u(g)] existe
uma vizinhanga N,(g) tal que

u(y) € N,[u(q)] sempre que y € Ny(g). (3.18)

Mas g = ¢(p) e vé continua em p, de maneira que a vizinhanga N,(g) corresponde outra N,(p)
tal que

v(x) € Ny(q) sempre que x € Ny(p). (3.19)

Se escrevemos y = v(x) e combinamos (3.18) e (3.19), encontramos que para cada vizinhanga
N,(ulv(p))) existe uma vizinhanga N,(p) tal que

ulv(x)] € Ny(u[v(p)]) sempre que x € Ny(p),
ou, por outras palavras, uma vez que f{x) = ulo(x)],
f(x)e Ny[f(p)] sempre que x € Ny(p).
0 que significa que f ¢ continua em p, como se pretendia provar.

ExEMPLO 1. Seja f(x) = sen x*. Esta € uma fungdo composta de duas fungGes continuas
para todo o valor da variavel, pelo que f é continua.

ExeMPLO 2. Seja f(x) =V 1 — x*= ulv(x)], com u(x) =Vx,ev(x) = 1—x% A fungio v é
continua para todo o valor da variavel, mas ¥ € continua unicamente para pontos x > 0.
Daqui /¢ continua naqueles pontos x para os quais v(x) 2 0, isto é todos os pontos verifican-
do x* £ L.

3.8 Exercicios

Nos Exercicios | a 10 as fungdes f e g sdo definidas pelas formulas dadas. A menos que
seja dito o contririo, os dominios de f e g sdo o conjunto dos numeros reais. Seja
hix)= flg(x)] sempre que g/ x) pertence ao dominio de £ Em cada caso, definir o dominio
de h e dar uma ou mais formulas determinando h(x).

1. f(x) = x* = 2x, gx)=x+1.
2. f(x) =x +1, glx) = x* = 2x.
3. f(x) = VvV se x>0, g(x) = x>

4. f(x) =Vx se x20, gx) = —x2.
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f(x) = 2, gx)=Vx se x>0
fx) = =2, gx)=Vx s x20

. [(x) = sen x. gx)=Vx se x>0
S =Vx s x20, g(x) = sen x,

.f(x)=\/;: se x >0, g(x)=x+\f/;r se x>0,

10. f) =Vx+vVx se x>0, gx)=x+Vx se x>0

Calcular os limites nos Exercicios 11 a 20 e explicar que teoremas se utilizam para cada

exemplo
x* 4+ 8 x? —1

1. lim —— . 16. tim 0% — 1

z-—2X —4 1 X =1

1

12. lim V1 + /% . 17. lim x sen— .

x4 z=+0 X

tg 1 1 — 2x

13, lim <280 18. lim ———— .

o Sent e X

/ /
sen(cos x /1 +x=V1 -

14, fim Sn{C0sX) 19, lim X"V TX

z—z/2 COsS x z—+0 b 4

t — — AT —ax2

15, lim SR =™ 20. lim L Z V1 — 47

toy =7 z—0 x*®
21. Sejam f e g duas fungoes definidas por:

x + x| [x para x <0,
fx) = 2 para todo x,  g(x) = lx2 for x> 0.

22.

23.

Determinar uma formula (ou formulas) para o calculo da fungdo composta A(x) =
= flg(x)]. Para que valores de x é h continua?
Resolver o Exercicio 21 quando f e g sao definidos por:

1 se |x|] <1, 2 — xt se |x| <2,
fO=1 s x>1, E¥=| se |x| >2.

Resolver o Exercicio 21 quando A(x) = gl/f(x)l.

3.9 Teorema de Bolzano para fungoes continuas

Ateé final do capitulo discutiremos certas propriedades especiais das fun¢oes continuas que

serao usadas frequentemente. Muitas destas propriedades parecem triviais quando interpreta-

do

s geometricamente, e, em consequéncia, muitas pessoas se inclinam a aceita-las como

evidentes. Contudo ¢ importante por em destaque que estas afirmacdes ndo sdo mais evi-
dentes do que a propria definigdo de continuidade e portanto devem ser demonstradas se
pretendemos utilizd-las com qualquer grau de generalidade. A demonstragio de muitas
destas propriedades fazem apelo ao axioma da completude para o sistema dos numeros
reais.

Bernardo Bolzano (1781-1848), sacerdote catdlico que deu importante contribuigdo a
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Matematica na primeira metade do século XiX, foi um dos primeiros a reconhecer que muitas
afirmagdes “evidentes™ acerca das fung¢des continuas necessitavam de demonstragdo. Assuas
observagoes acerca da continuidade foram publicadas posteriormente, em 1850, num livro
notavel “Paradoxien des Unendlichen”. Um destes resultados, actualmente conhecido como
o teorema de Bolzano, esta representado na fig. 3.6, no qual se mostra o grafico duma fungao
continua. O grafico esta situado abaixo de 0X para x = a e acima deste eixo para x = b. O
teorema de Bolzano afirma que a curva ha-de intersetar algures este eixo entre a e b. Esta
propriedade, publicada pela primeira vez por Bolzano em 1817, pode ser enunciada rigorosa-
mente do modo seguinte.

TeEOREMA 3.6. TEOREMA DE BoLzANO. Seja [ uma fun¢do continua em cada ponto do
intervalo fechado |a, b|, a qual toma valores fla) e fib) de sinais contrdrios. Entdo existe pelo
menos um ¢ no intervalo aberto (a, b), tal que fic) = 0.

Basearemos a demonstragao do teorema de Bolzano na seguinte propriedade das fungoes
continuas que sera aqui apresentada como um teorema.

TEOREMA 3.7. CONSERVACAO DO SINAL DAS FUNGOES CONTINUAS. Seja f continua em c e
admita-se que flc) # 0. Existe entao um intervalo (¢ — 8, ¢ + 8) no qual f tem o mesmo sinal

que f{(c).

Demonstragao do teorema 3.7. Suponhamos f(c¢) > 0. Devido a continuidade, para cada
€> 0 existe um & > 0 tal que

fle) —e<f(x)<f(c)+ € sempreque c—d0<x<c+9. (3.20)
Se tomamos 0 & correspondente a € = fl¢)/ 2 (Isto €, € positive), entdo (3.20) vem
o) <f(x) < if(c) sempreque c —d<x<c+9.

Portanto f{x) > 0 neste intervalo e por isso f{x) e f{c) tém o mesmo sinal. Se f{¢) < 0, toma-se

1 . =
d correspondente a ¢ = — > f(c) e chega-se a mesma conclusao.

Y105 ) pemnremm
V0 e

T

c -6

=

SEE—

T

C+ 0

Fig. 3.6. Teorema de Bolzano Fig. 3.7. Aqui f(x) > 0 para x proximo de
¢ porque f{c) > 0.
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Nota: Se existe continuidade lateral em ¢, entio existe um intervalo semi-fechado |¢,
¢+ é)ou(c-4é,c] noqual ftem 0 mesmo sinal que fic).

Demonstragao do teorema de Bolzano. Para fixar ideias suponhamos f{a) < 0 e f{b) > 0,
tal como se mostra na fig. 3.6. Podem existir diferentes valores de x entre a e b para os quais
fx) = 0. O nosso problema € encontrar um e isto sera feito determinando o maior x para o
qual f{x) = 0. Com esta finalidade, designamos por § o conjunto de todos os pontos x do
intervalo [a, b] para os quais f{x) < 0. Existe pelo menos um desses pontos em S porque
fla) < 0. Por conseguinte S € ndo vazio. Também § é limitado superiormente, uma vez que
todos os elementos de S pertencem a [a, b] e deste modo S tem supremo. Seja sup S = c. Pre-
tendemos provar que flc) = 0.

Existem unicamente trés hipoteses: fic) > 0, fle) < 0 ou flc) = 0.Se flc) > 0 ha um inter-
valo (¢ — 8, ¢ + & ), ou (¢ — §, c] se ¢ = b, no qual f¢ positiva. Portanto nenhum ponto de S
pode estar a direita de ¢ — d e deste modo ¢ — & € um limite superiorde S. Masc—8 < cecé
o menor limite superior de S, o que nos leva a concluir ser impossivel a desigualdade f{c) > 0.
Se flc) < 0, existe um intervalo (¢ — §, ¢ + 8) ou [¢, ¢ + §) se ¢ = a, no qual /'€ negativa. Por-
tanto f{x) < 0 para algum x > ¢, o que contradiz o fato de que ¢ € o supremo de S, logo f{c)

< 0 ¢ também impossivel ¢ a unica possibilidade e a hipotese restante flc) = 0. Além disso
a < ¢ < bporque fla) <0e f(b) > 0. Estd pois demonstrado o teorema de Bolzano.

3.10 O teorema do valor intermédio para fungOes continuas

Uma consequéncia imediata do teorema de Bolzano é o teorema do valor intermédio para
fungOes continuas (fig. 3.8).

TeEOREMA 3.8. Seja f continua em cada ponto do intervalo fechado |a, b). Se x, e x, sdo
dois pontos arbitrdrios de [a, bl com x, < x, e tais que fix,) + fix,), a fungdo f toma todos os
valores compreendidos entre f{x,) e flx,), pelo menos uma vez, no intervalo (x,, x,).

Demonstragdo. Suponhamos fx,) < f{x,) e seja k um valor qualquer compreendido entre
fx,) e fix,). Seja g uma fungdo definida em [x,, x,] por

g(x) = f(x) — k.
-------- =X S0 = &
. | ~_
! : . a? b
a X, Xy b f(a)_-‘
Fig. 3.8 Teorema do valor intermeédio Fig. 3.9 Um exemplo de fungdo para a

qual nao é aplicavel o teorema de Bol-
zano.
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Entdao g ¢ continua no intervalo [x,, x,] e temos
'.':(\1} =j."\-l) - /\ < l) . "..‘:(.\-2) =f(\'-_y) - k > 0 .

Aplicando a fungao g o teorema de Bolzano, temos g(c) = 0 para certo ¢ entre x, ¢ x,. Mas
isto significa que f{c) = k., como se pretendia demonstrar.

Nota: Quer no teorema de Bolzano, quer no teorema do valor intermédio supoe-se que /¢
continua em cada ponto de |a, bJ, incluindo os pontos extremos. Para se compreender porque
¢ necessaria a continuidade nestes pontos chamamos a atengao para o grafico da fungao
representado na fig. 3.9. Aqui /¢ continua em todo o intervalo[a, b] exceto no ponto a.
Embora f(a) seja negativa e f(b) positiva, ndo existe nenhum x em[a, b]para o qual seja

f(x) = 0.

Concluimos esta Se¢ao com uma aplicagao do teorema do valor intermeédio na qual
demonstramos que cada numero real € positivo possui uma raiz n-enesima positiva, como ja
fora referido nu Segdo | 3.14. O enunciado rigoroso desta propriedade € o seguinte:

TEOREMA 3.9. Se n € um inteiro positivo e se a > 0, existe um e um so numero positivo b tal
que b" = a.

Demonstragdo. Seja ¢ > 1 ¢ tal que 0 < a < ¢ e consideremos a fungdo f definida no
intervalo [0, ¢! por flx) = x". Esta fungdo ¢ continua em |0, ¢| € nos pontos extremos tem-se
f(0)=0,f(c)=c".Umavez que 0 < a < ¢ < ¢, o nimero dado a esta compreendido entre os
valores f(0) e f(c) da fungao f. Portanto, pelo teorema do valor intermédio, tem-se f{(x) = a
para algum x em (0, ¢), por exemplo x = b. Isto prova a existéncia de pelo menos um positivo
b tal que b” = a. Nao existira mais do que um tal numero b, porque f € estritamente cres-
cente em [0, ¢] e o teorema esta, pois, demonstrado.

3.11 Exercicios

I. Seja fum polinomio de grau n, fix)=¥7 e, x* tal que o primeiro ¢ o ultimo dos coeficien-

les, ¢, ¢ ¢,. tenham sinais opostos. Provar que fix) = 0 para, pelo menos, um valor po-

sitivo de x.

Um numero real x, que verifique f{x,) = 0 chama-se uma raiz real da equagao f{x) = 0.

Diz-se que uma raiz real de uma equagao foi separada quando se determinou um intervalo

la, bl contendo esta raiz e nenhuma outra. Recorrendo ao teorema de Bolzano, separar as

raizes reais de cada uma das seguintes equagoes (cada uma tem quatro raizes reais).

(a) 3x* —2x% — 36x* + 36x — 8 = 0.

(b) 2x* — 14x? + 14x — | =0,

() X} +4x7 + x2 —6x +2 =0.

3. Se n € um inteiro positivo para ¢ a < 0, provar que existe um e um sO numero negativo b
tal que b" = a.

2



Fungoes continuas 173

4. Seja f(x) = tg x. Embora f(f:—) = 1 e fI3n/4) = —1 nao existe nenhum x no intervalo

[n/4, 3;_11] para o qual f{x) = 0. Explicar qual o motivo porque esta afirmagio nio contra-

diz o teorema de Bolzano.

5. Dada uma fungao f de valores reais ¢ continua no intervalo fechado [0, 1], suponha-se que
0 € fix) £ 1 para todo o x em [0, 1]. Provar que existe pelo menos um ponto ¢ em [0, 1]
para o qual f{c) = c. Tal ponto chama-se um ponto fixoe de f. O resultado deste Exercicio
um caso particular do teorema do ponto fixo de Brouwer. | Sugestdo: Aplicar o teorema de
Bolzano a gfx) = flx)-x|.

6. Dada a fungao real f, continua no intervalo fechado |a, b], admita-se que f(a) < a ¢
JS(b) = b. Provar que f/ tem um ponto fixo em [a, b]. (Ver Exercicio 5).

3.12 O processo de inversao

A seguir apresentamos um outro importante método muitas vezes utilizado para construir
novas fungdes a partir de fungoes dadas. Antes de descrevermos o método em pormenor,
vamos ilustra-lo com um exemplo simples.

Consideremos a fungdo f definida no intervalo [0, 2] por f{x) = 2x + 1. O contradominio
de /¢ o intervalo [ 1, 5]. Cada ponto x em [0, 2] é transformado por fem um unico ponto y de
[1, 5], a saber

y=2x+ I. (3.21)

Inversamente, para cada y do intervalo [ 1, 5], existe um unico x de [0, 2] para o qual y = f{x).
Para determinar este x resolvemos (3.21) relativamente a x, obtendo

x=§y—=1).

Esta equagio define x como uma fungdo de y. Se representarmos esta fungio por g, temos

gy =iy—=1

para todo o y pertencente a [1, 5]. A fungdo g chama-se a inversa de f. Notemos que
gl/x)] = x para todo o x pertencente a [0, 2] e que f[g(»)]= y para todo o y de [1, 5].

Consideremos agora uma fungao mais geral f com dominio A e contradominio B. Para
todo o x de A, existe um e um so y de B tal que y = f{(x). Para cada y de B existe pelo menos
um x de 4 tal que f{x) = y. Admitamos que existe um so x. Entdao podemos definir uma nova
fungao g em B do modo seguinte:

g(y) = x significa y = f(x).

Por outras palavras, o valor de g em cada ponto y de B é o unico x de 4 tal que f{x) = y. Esta
nova fungao g chama-se a inversa de f. O processo segundo o qual se obtém g de f'¢ chamado
inversdo. Note-se que g[f(x)] = x, para todo o x de 4 e que flg(y)] = y para todo o y de B.

APOSTOL — 7
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O processo de inversdao pode aplicar-se a qualquer fungao f gozando da propriedade de
para cada y no contradominio de fexistir um s6 x no dominio de ftal que ffx) = y. Em par-
ticular, uma fun¢dio continua e estritamente monotona no intervalo |a, b| goza dessa proprie-
dade. Na fig. 3.10 apresenta-se um exemplo de uma fungao deste tipo. Seja ¢ = f(a),
d = f(b). O teorema do valor intermeédio para fungdes continuas diz-nos que, no intervalo [a,
bl, ftoma todos os valores compreendidos entre ¢ ¢ d. Além disso fndo pode tomar 0 mesmo
valor duas vezes porque f{x,) # f(x,) sempre que x, # x,. Portanto, toda a fungao continua
estritamente monotona admite fungio inversa.

A relagao entre uma fungao fe a sua inversa g pode também explicar-se de modo simples
com a formulagdo do conceito de fungao por pares ordenados. Na Segao 1.3 definimos uma
fungao f como um conjunto de pares ordenados (x, y) nao podendo dois quaisquer deles pos-
suir 0 mesmo primeiro elemento. A fungdo inversa g ¢ formada pelos pares (x, y) de f, tro-
cando entre si os elementos x ¢ y. Quer dizer (y, x) € gse € sOse(x,y) €[ Se fé estritamente
monotona, dois pares quaisquer ftambém nao tém o mesmo primeiro elemento. Deste modo
g €, na verdade, uma fungao.

EXEMPLO. Fungdo raiz n-enesima. Se n ¢ um inteiro positivo, fagamos f/x) = x"parax = 0.
Entdo [ ¢ estritamente crescente para todo o intervalo |a, bl como 0 £ a £ b. A fungio in-
versa g € a fungdo raiz n-enesima, defininda paray = O por

g(};) — -}.l,‘ n .

3.13 Propriedades de funcoes preservadas por inversio

Muitas das propriedades duma fungdo fsdo transmitidas a inversa g. Na figura 3.11 da-
mos uma ideia da relagdo entre os respetivos graficos. Um deles pode ser obtido do outro por
simples simetria a respeito da reta y = x, porque o ponto (u, v) esta situado sobre o grafico
de f se e somente se o ponto (v, u) esta sobre o grafico de g.

]L I\ YPonto (t,w) com u = g(v)
Jb) =dfp-=—-mmmm e —m .
E
S(xX)=yppe————————— ; : N,
' i
' I
l : Ponto (.2) com v = f(u)
f(a) = Cp=———— : : i f
L 4 L - —x
a X
Fig. 3.10 Uma fun¢do continua estrita- Fig. 3.11. Representagao do processo de

mente crescente. inversao.
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As propriedades de continuidade ¢ monotonia possuidas por f transmitem-se a fungao
inversa g, da maneira que a seguir se indica.

TEOREMA 3.10. Seja [ estritamente crescente e continua no intervalo |a, bl. Sejam
¢ =fla) ed = f{b) e g a inversa de f, isto é, para cada y em |c, d| seja g(y) aquele x de |a, b)
tal que y = f(x). Entdo

(a) g € estritamente crescente em |c, d|.

(b) g é continua em [c, d).

Demonstragdo. Escolhamos y, < y, em [c, d| e sejam x, = g(v,), x, = g(yy). Entao
y, = fx,) e yy=fix,). Uma vez que [ ¢ estritamente crescente, a relagio y, < y, implica x, <
X,, a qual, por sua vez, implica ser g estritamente crescente em |[c, d]. Esta assim demons-
trada (a).

A demonstragao de (b) esta representada na fig. 3.12. Escolhamos um ponto y, no inter-
valo aberto (¢, d). Para provar que g ¢ continua em y,, devemos provar que para todo
0 € > 0 existe um & > O tal que

g(y,) — € < g(y) < g(y,) + ¢ sempre que y, — 6 < y < yo+ 0. (3.22)
Fagamos x, = g(¥,), de modo que y, = f(x,). Suponhamos ¢ dado. (Nao ha perda de generali-

dade considerando unicamente aqueles valores de ¢ de tal maneira pequenos que ambos
X\-€ € X, + € € estejam em |a, b]). Seja & o menor dos dois numeros.

f(xo) "‘f('-"o — €) ¢ f(.xo + €) _f(-\‘o) .
E facil provar que com este  se verifica (3.22). Uma ligeira modificagdo no raciocinio conduz
a demonstragao de que g é continua a direita de ¢ e a esquerda de d.

Existe um teorema analogo para fungGes decrescentes, isto €, a inversa duma fungdo

b

8(yo) + €

8 ¢ a menor das duas distancias

g(»o)

g(yo) — ¢

Q..___-.___._.,____..,_ —-—

[, Pp—

/ Yo \ d

Yo — 8 Yo+ 8

Fig. 3.12. Demonstragdao da continuidade da fungado inversa.
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continua estritamente decrescente f ¢ estritamente decrescente e continua. Para se provar-
isto, basta aplicar o teorema 3.10 a-/.

EXEMPLO. Continuidade da fungdo raiz n-enesima. A fungio g, raiz n-enesima, definida
para y = 0 por g(y) = y''" é estritamente crescente e continua em cada intervalolc, d) com
0 € ¢ < d, uma vez que ¢ a fungdo inversa duma fun¢do continua estritamente crescente.
Este fato permite-nos outra demonstragio da continuidade da fungdo raiz n-enesima
independentemente da teoria de integragdo. Visto que o produto de fun¢des continuas €
uma fun¢io continua, deduzimos a continuidade da fungdo poténcia, Afy) = )”, sendo
r = m/n um namero racional positivoe y > 0.

3.14 Inversas de funcdes monotonas por partes (ou “por intervalos™)

Suponhamos que desejamos aplicar o processo de inversao a uma fungao que nao € mono-
tona em [a, b]. Por exemplo admitamos f{x) = x? definida num intervalo [—¢, ¢] do eixo 0X.
Cada ponto x deste intervalo ¢ transformado por / num s6 ponto y do intervalo [0, ¢*], a
saber,

Ry (3.23)

Podemos resolver (3.23) relativamente a x, mas existirao dois valores de x correspondendo a
cada y em |0, &1, a saber.

x=Vy e xX=—=Vy
Como ja referimos anteriormente, tempos houve em que os matematicos diziam que a fungao
inversa g, neste caso, era uma fung¢do bivalente definida por

g(y) = -_4:\'}.

Uma vez, porem, que 0 moderno ponto de vista ndo admite a bivaléncia como uma proprie-
dade de fungGes, num caso semelhante a este dizemos que o processo de inversdo da lugar a
duas novas fungoes, g, ¢ g,, com

200 = Vy e giy) = —V'y para cada y em[0, c?]. (3.24)
Para ajustar isto com a nogdo de inversa, tal como foi exposta atras, podemos considerar a
equagao y = x* como definindo nao uma fungao f, mas duas fungoes f, e f,, a saber

Silx) = x* se 0<x<Lc e folx) = ¥* s¢ —c<x<L0.

Estas podem considerar-se como fungoes distintas porque tém diferentes dominios. Cada
uma delas € monotona no respetivo dominio e cada uma admite uma fungao inversa, sendo
g, a inversa de f, e g, a inversa de f,, com g, e g, definidas por (3.24).

O que acabamos de referir elucida-nos acerca do modo como o processo de inversao pode
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ser aplicado a fungGes monotonas “por intervalos”. Consideramos muito simplesmente uma
tal fungdo como uma unido de fungoes mondtonas e invertemos por cada intervalo.
Faremos largo uso deste processo de inversao no Cap. 6.

3.15 Exercicios

Em cada um dos Exercicios | a 5, mostrar que f ¢ estritamente monotona em todo o eixo
real. Representando g a fungiio inversa de fdefinir, em cada exemplo, odominiode g. Escre-
ver y = flx) e deduzir x em fungao de y; determinar ainda uma formula (ou formulas) para o
calculo de g(»), para cada y no dominio de g.

L f(x) =x+ 1. 4. f(x) = x°,

2. f(x) =2x + 5. x se x <1,
.f(x)=1—x. 5. f(x) = {x* se 1 <x <4,
8x't  se x > 4.

Valores medios. Seja fuma fungio continua e estritamente monotona em todo o semi-
-eixo real positivo e represente ga fungio inversade/f Seaa, < a, < ... < a, sio n niameros

reais positivos dados, chama-se valor médio (ou média) com respeito a f ao nimero Aﬂ. defi
nido por:

T
M, =g(;r Zf(a,-)) .
\ i=1 J

Em particular quando flx) = x” para p # 0, M, chama-se média de poténcias de ordem p(Ver

também a Seg¢io! 1 4.10). Os exercicios que se seguem referem-se a propriedades dos va-

lores médios.

6. Provar que f(Mf' = (1/n) Z;’= | f(a‘.). Por outras palavras, o valor de f para a média A@. e a
média aritmética dos valores da fungdo f(a,), ... f(a ).

7. Provar que a, < Mf< a . Por outras palavras, a média de a,, a,, ..., a_esta entre 0 maior e
o menor dos valores a,.

8. Se h(x) = af(x) + b com a # 0, mostrar que Mh = Mj. Prova este fato que diferente:

fungoes podem conduzir ao mesmo valor médio. Interpretar este teorema geometrica-
mente, comparando os graficos de & e f.

3.16 O teorema dos valores extremos para fun¢des continuas

Seja f'uma fungdo real definida num conjunto S de nimeros reais. Diz-se que a fungdo f
possui um maximo absoluto no conjunto S se existe pelo menos um ponto ¢, em S, tal que

f(x) < f(c) para cada x em S.

O nimero flc) ¢ o maximo absoluto de fem S. Dizemos que ftem um minimo absoluto
em S se existe um ponto d em § tal que

f(x) > f(d) para cada x em S.
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, Nao existe maximo

i absoluto
v
maximo
absoluto minimo absoluto
I .
minimo absoluto
* / — | + * - |
0 L] r 0 | 2
minimo absoluto
fx)=senx, 0< x < x f(x) = '; 50 < x <2, f(0) = |

(a) (b)

Fig. 3.13. Valores maximos ¢ minimos de fungoes.

Estes conceitos estdao representados na fig. 3.13. Na figura 3.13(a), S ¢ o intervalo fechado
[0,n] e f{x) = sen x. O minimo absoluto, que & atingido em ambos 0s extremos do intervalo,

¢ 0. O maximo absoluto é j(—;—) = 1.

Na fig. 3.13(b), S é o intervalo fechado [0, 2] e fix) = 1/x se x > 0, f0) = 1. Neste
exemplo, /admite um minimo absoluto em x = 2, mas nao tem maximo absoluto, isto devido
a uma discontinuidade num ponto de S.

Desejamos provar que se S € um intervalo fechado e se f'é continua em S, entao f admite
um maximo ¢ um minimo absolutos em S. Este resultado conhecido como o teorema dos valo-
res extremos para funcgOes continuas sera apresentado como simples consequéncia do
seguinte teorema

TEOREMA 3.11. TEOREMA DE MAJORACAO DO MODULO PARA FUNCOES CONTINUAS. Seja
J uma funcao continua no intervalo fechado- [a, b). Entao f é limitada em |[a, b), isto €, existe
um numero C = 0 tal que | f(x)| = C para todo o x pertencente a [a, b].

Demonstragao. Raciocinamos por redugio ao absurdo, servindo-nos duma ténica, cha-
mada o método da bisse¢io. Admitimos que f¢ ilimitada (ndo limitada) em [a, b]. Seja co
ponto médio de [a, b]. Visto que f¢ ilimitada em [a, b)é ilimitada em pelo menos um dos sub-
intervalos [a, cjou(c, b).Sejala, , b,] a metade de [a, b]em que f¢é ndo limitada. Se f¢é ilimitada
em ambas as metades seja [a, , b,] a metade esquerda, [a, c]. Continuamos agora o proces-
so de bisseg¢do repetidamente, designando pora, ., , b,,.,Juquela metade de [a,, b, ] na qual
f ¢ ilimitada, subentendendo-se que escolhemos a parte da esquerda se for ilimitada em am-
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bas. Uma vez que a medida de cada intervalo ¢ metade da medida do precedente, conclui-
mos que amedidade[a,. b, ]é(b—a)/2".

Designe 4 o conjunto dos extremos esquerdosa, a,, a,, ... dos intervalos assim construidos
e seja « o supremo de A. Entdo = esta em [a, b]. Pela continuidade de f'em « existe um inter-
valo da forma (« — 9, « + 0) no qual

lf(x) —fl)] < 1. (3.25)

Se « = a este intervalo tem a forma [a, @ + &) e se o = b tem a forma (b — 9§, b. A desigual-
dade (3.25) implica

) <14+ [f(a)],

de modo que f°¢ limitado por 1 +| /()| neste intervalo. Porém o intervalo [an, bﬂ] esta contido
em (x — 8, = + 8) quando n ¢ suficientemente grande para que (b — a)/2" < 3. Portanto f ¢
também limitada em [a , b, ], 0 que contradiz a hipotese admitida de que f € ilimitada em
la,, b ]. Esta contradigéo completa a demonstragao.

Se f'¢ limitada em [a, b], entdo o conjunto de todos os valores de f{x) € limitado superior-
mente e inferiormente. Por conseguinte, este conjunto tem supremo € infimo que representa-
mos por sup f e inf f, respectivamente. Quer dizer que podemos escrever

supf=sup {f(x)|a < x < b}, inf f = inf { f(x) | a< x<b}.

! Para qualquer fungao limitada temos inf /< f{x) < supfparatodoo xem |a, b]. Demonstra-
mos a seguir que uma fungao continua assume ambos os valores inf /e sup f'em pontos de
[a, b].

TEOREMA 3.12. TEOREMA DOS VALORES EXTREMOS PARA FUNCOES CONTINUAS. Se f é
uma fungdo continua num intervalo fechado |a, bl, existem pontos ¢ e d em |a, b tais que

fleoy=supf e f(d) = inff.

Demonstragdo. Basta provar que f assume o seu supremo em [a, b]. A demonstragao para
o infimo ¢ uma consequéncia da anterior porque o infimo de f € o supremo de —f.

Seja M = sup /. Suponhamos que nao existe nenhum x em [a, b] para o qual fix) =M e
chegaremos a uma contradi¢ao. Seja g(x) = M — f{x). Entao g(x) > 0 para todo o x em
[a, bl, de modo que a fungdo reciproca 1/g é continua em [a, b]. Pelo teorema 3.11, 1/g ¢
limitada em |a, bl, isto € 1/gfx) < C para todo o x em |a, bl, com C > 0. Isto implica que
M~fix)> 1/C, de tal modo que fix) < M —1/C para todo o x em |a, bl, 0 que contradiz o
fato de que M ¢ o menor limite superior de fem a, b. Por conseguinte, f{ x) = M para, pelo
menos, um x em |[a, b].

Nota: Este teorema mostra que se f'é continua em [a, b], entdo sup /€ o seu maximo abso-
luto e inf /'€ o seu minimo absoluto. Logo pelo teorema do valor intermédio o contradominio
de f ¢ o intervalo fechado [inf f, sup f1.
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3.17 Teorema da continuidade uniforme

Seja f'uma fungao real e continua num intervalo fechado |a, bl e sejam M(f) e m(f) respe-
tivamente os valores maximo ¢ minimo de f em [a, b]. Chamamos a diferenga

M(f) — m(f)

a oscilagdo de f no intervalo [a, b]. Alguns autores usam o termo extensao em vez de osci-
lagdo ja que esta palavra tem a desvantagem de sugerir fungdes ondulantes ou do tipo
onda. Em textos antigos aparece saltus, palavra latina que significa salto; por ser a de uso
mais generalizado conservaremos o termo oscilagao. Observe-se que a oscilagdo de fem
qualquer subintervalo de |a. b] ndo pode exceder a oscilagido de fem la, bl.

Provamos a seguir que o intervalo [a, b] pode subdividir-se de tal maneira que a oscilagao
de f'em cada subintervalo seja arbitrariamente pequena. Mais precisamente temos o seguinte
teorema, que chamamos o teorema da continuidade uniforme.

TeoreMmA 3.13. Seja f uma fungdo continua num intervalo fechado |a, bl. Para todo o
e > 0 existe uma partigao de |a, b] num nimero finito de subintervalos tais que a oscilagdo
de f em cada subintervalo é menor que .

Demonstracdo. Seguiremos o método de reduglo ao absurdo, utilizando o método das
bisse¢des sucessivas.  Admitamos que o teorema € falso, isto €, admitamos que para um
certo €, por exemplo € = ¢, 0 intervalo [a, b] ndo pode ser subdividido em um namero finito
de subintervalos em cada um dos quais a oscilagdo de f'é menor que ¢,. Seja ¢ o ponto médio
de |a, b]. Entao para aquele ¢,, o teorema ¢ falso em pelo menos um dos dois subintervalos
[a, ¢] ou [c, b]. (Se o teorema fosse verdadeiro nos dois subintervalos |a, ¢] e ¢, b] seria tam-
bém verdadeiro no intervalo completo [a, b]). Seja [a,, b,] aquela metade de [a, b] na qual o
teorema é falso para ¢,. Se for falso em ambos os subintervalos, designamos por (a,, b,] a
metade esquerda, la, ¢l. Continuamos repetidamente o processo de bissegio, representando
por la,, ,, b, ! aquela metade de |a,, b,| na qual o teorema ¢ falso para €,, subentendendo
que escolhemos a metade da esquerda se o teorema for falso em ambas as metadesde(a,, b, ].
Note-se que a oscilagio de f em cada subintervalo [a,,, b, ] assim construido €, pelo menos, €,,.

Seja A o conjunto dos (pontos) extremos esquerdos a, a,, a,, ..., dos intervalos atras referi-
dos e seja o o supremo de A. Entdo « esta em |[a, b]. Devido a continuidade de /'em =, existe
um intervalo (= — §, = + &) no qual a oscilagao de f'é menor que ¢,. (Se = = «, este intervalo
¢la,a +8),ese x=b,eleé(b—5,bl.). Todavia, o intervalo [a,, b, | ¢ interior a (x — &, & + §)
quando » ¢ suficientemente grande para que (b — a)/2" < d, de maneira que a oscilagao de f
em [a, , b, ] ¢ também menor que ¢€,, contradizendo a hipotese de que a oscilagdo de f¢€, pelo
menos, €, em [a, , b, ]. Esta contradigdo completa a demonstragiio do teorema 3.13.
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3.18 Teorema da integrabilidade para fungoes continuas

O teorema da continuidade uniforme pode utilizar-se para provar que uma fungao que €
continua em [a, b] € também integravel nesse intervalo.

TEOREMA 3.14. INTEGRABILIDADE DE FUNCOES CONTINUAS, Se uma fungdo f é continua
em todos os pontos dum intervalo fechado |a, b), entdo f € integrdvel em |a, b).

Demaonstragao. O teorema 3.11 prova que f¢é limitada em |a, bl, e assim ftem un integral
superior J{f) e um integral inferior J(f). Pretendemos provar que J(f) = X(f).

Escolhamos un inteiro N 2 1 e seja ¢ = 1/N. Pelo teorema da continuidade uniforme, para
esta escolha de € existe uma partigao P = {x,, x,, .., xﬂl de [a, b) em n subintervalos tais que

a oscilagao de f'em qualquer subintervalo € menor que ¢. Designemos por M, (f) e m, (f), res-
pectivamente, 0 maximo € 0 minimo absolutos de f no subintervalo de ordem k, Ix, _,, x,].
Temos entao

M(f) — m(f) < «

para cada k = 1, 2, ..., n. Sejam s, el duas fungos em escada definidas em [a, b] do modo
seguinte:

S,,().') = '"l.'(f) s€ Ay <x ..<_ xt ’ Sn(a) = n’l(f)'
1,(x) = M(f) € X, < x<x;, 1,(b) = M (f).

Temos pois sﬂ(x) <Jf(x) < 1.(x), para todo o x de [a, b]. Temos ainda

P Spn = imx-(f)(xt — X;_y) ¢ J;b 1, = iMk(f)(xt — Xp_y)-

g k=1

A diferenga destes integrais é

[ 1= [! 50 = SIM) = ma DI — xe9) < €300 = 34) = elb — a).

k=1 =1

Uma vez que ¢ = 1/N, a desigualdade anterior pode escrever-se

b b b_a
f. 1, — f Sn < (3.26)

Por outro lado, os integrais superior e inferior de f verificam as desigualdades

[fso<in<[n e [s.<in<[.
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Multiplicando o primeiro conjunto de desigualdades por (-1) ¢ somando ao segundo con-
junto obtemos

.
)

ify—1H<) t.—]s..

T

Considerando (3.26) e a relagdo I(f) < I(f), temos
- . b — a
0< l(f)—!{f)<T

para todo o inteiro N > 1. Por conseguinte, pelo teorema 1.31, deve ser /(f) = I(f), o que
prova ser f integravel em [a, b].

3.19 Teoremas da média para integrais de fungOes continuas

Na Sec¢ido 2.16 definimos o valor médio A(f) de uma fun¢do f num intervalo [a, b]
como sendo o quociente ff,’f(x)dx/(b — a). Quando f ¢ continua, podemos provar que este
valor médio ¢ igual ao valor de fem certo ponto de la, b].

TEOREMA 3.15. TEOREMA DA MEDIA. Se f € continua em |a, b\, entdo para um determi-
nado c de |a, b) tem-se

_'::if(x_) dx = f(c)(b — a).

Demonstragdo. Sejam m e M, respetivamente, os valores minimo e maximo de f'em [a, bl.
Entao m < f{x) < M para todo o x de [a, b]. Integrando estas desigualdades e dividindo por

b — a, encontramos m <A(f) < M,onde A(f) = _[zf(x) dx/(b — a). Mas o teorema do valor in-
termédio assegura-nos que A (f) = f(¢) para certo ¢ de |a, b], 0 que completa a demonstragao.

Para valores médios pesados € possivel um resultado equivalente.

TEOREMA 3.16. TEOREMA DA MEDIA PESADA. Sejam [ e g fungbes continuas em la, b).
Se g nunca muda de sinal em |a, bl, entdo, para certo c em |a, b), tem-se

J" f)g(x) dx = f(c) I” g(x) dx . (3.27)

Demonstragao. Uma vez que g nunca muda de sinal em [a, b], g € sempre nao negativa ou
sempre nao positiva em [a, b]. Admitamos que g € nao negativa em [a, b). Entao ¢ valido o
raciocinio feito na demonstragao do teorema 3.15, exceto que as desigualdades a integrar
sao mg(x) < fix)g(x) < Mg(x), obtendo-se

m ]‘}'g(.\") dx < ’if (X)g(x)dx < M ]:F"Q_(.\‘) dx. (3.28)
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Se _[f;g(.ﬂd.r =0, esta desigualdade mostra que jf/f.\')g(xldx = 0. Neste caso (3.27) verifi-
ca-se para qualquer ¢, uma vez que ambos os membros sio nulos. Por outro lado o integral de
g € positivo, e podemos dividir por este integral em (3.28) e aplicar o teorema do valor inter-
meédio, como anteriormente, para completar a demonstragdo. Se g € nao positiva, aplicamos o
mesmo raciocinio a —g.

Este teorema da média pesada conduz algumas vezes a calculos uteis para o integral dum
produto de duas fungdes, especialmente se o integral dum dos fatores € facil de calcular.
Nos exercicios que se seguem dio-se alguns exemplos disto.

3.20 Exercicios

1. Com auxilio do teorema 3.16 estabelecer as seguintes desigualdades:

| 1 xY ]
- < ' ——dx < —.
10v2  Jo v +x 10

2. Notar que /1 — x? = (1 — x¥)/\/ 1 — x? e usar o teorema 3.16 para obter as desigualda-
des

“< l‘m I —x*d <” /1
%= Y VA SaN 3

3. Servir-se da identidade 1 + x® = (1 + x*)(1 — x* + x*) e do teorema 3.16 para provar que,
para a > 0, se tem

*a (!", < a:l +
-<a—-—=—+—.
o 1 + x* 3 5

| a a’

. <
l+a\“ "3 75)=

1 . .. .
Tomar a = 10 e calcular o valor do integral até a sexta casa decimal.

4. Uma das duas afirmagdes seguintes € incorreta. Explicar porque esta errada.
(a) O integral | ;g{scn! )/t dr >0 porque | g;( sent)/r dr > | ;:zsen t\/r dt.

(b) O integral J‘;z(scn 1)/t dr =0 porque, segundo o teorema 3 16, para um certo ¢ entre 27
e 4n se tem

cos (2=) — cos (4n)
sen tdr = =
¢

dr =

vl virz

| 17 sen ¢ 1 (47
- ¢

5. Se n € um inteiro positivo, usar o teorema 3.16 para demonstrar que

Vgl (—1)" — e ———
’ sen(r°)dt = —— onde Vv nr €c <\v(n+ 1),

¢
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6. Supondo que f ¢ continua em [a, b], € que J'z/(x)dx = 0, provar que fic) = 0 para, pelo
menos, um cde [a, b).

7. Supondo que f ¢ integravel e ndo negativa em [a, b] e que j: f(x)dx = 0, provar que
f(x) = 0 em cada ponto de continuidade de f. [Sugestdo: Se f{(c) > 0 num ponto de conti:

nuidade ¢, existe uma vizinhanga de ¢ na qual f{(x) > % Sl

8. Supor fcontinua em [a, b]. Supor também que J: f(x)g(x)dx = 0 para cada fung¢ao g que
¢ continua em [a, b]. Provar que f{x) = 0 para todo o x de [a, b].



4
CALCULO DIFERENCIAL

4.1 Introdugao historica

Newton e Leibniz, independentemente um do outro, foram largamente responsaveis pelo
desenvolvimento das ideias do calculo integral, a tal ponto que problemas até ai irresoluveis
passaram a ser resolvidos por métodos mais ou menos rotineiros. A auspiciosa realizagao
destes homens foi devida principalmente ao fato de terem sido capazes de fundir o Calculo
integral com o segundo ramo importante do Calculo, o Calculo diferencial.

A ideia central do Calculo diferencial & a nogao de derivada. Tal como o integral, a deri-
vada foi originada por um problema de geometria — o problema da determinagao da tangente
a uma curva num dos seus pontos. Contrariamente ao integral, porém, a nogao de derivada
desenvolveu-se muito tarde na historia da Matematica. O conceito nilo tinha ainda sido
formulado até ao inicio do séc. XVII, quando o matematico frances Pierre de Fermat pro-
curou determinar os maximos ¢ minimos de certas fungdes especiais.

Fig. 4.1 — A curva admite tangentes paralelas a 0X nos pontos x, € x,.

185
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A ideia de Fermat, basicamente muito simples, pode ser melhor compreendida se nos refe-
rirmos a curva da fig. 4.1. Supde-se que em cada um dos seus pontos esta curva tem uma
diregao determinada, a qual pode ser definida pela tangente a curva. Algumas dessas tangen-
tes estao indicadas na figura por linhas a tracejado. Fermat notou que em certos pontos, em

que a curva tem um maximo ou um minimo, tais como os representados na figura com
abcissas x, e x,, a tangente sera paralela a OX. Deste modo o problema de localizar
tais valores extremos parece depender da resolugdo de outro problema, o da localizagio
de pontos da curva cuja tangente ¢ paralela a OX.

Este, por sua vez, conduz a questio mais geral da determinagdo da direcdo da tangente
um ponto arbitrario da curva. Foi a intengido de resolver este problema geral que conduziu
Fermat a descoberta de algumas das ideias rudimentares relativas a nogao de derivada.

A primeira vista parece que nao havera qualquer ligagdo entre o problema do calculo da
area de determinada regidao limitada por uma curva e o problema da determinagao da tan-
gente a curva num dos seus pontos. O primeiro a descobrir que estas duas questoes, aparente-
mente sem conexao, estavam intimamente ligadas parece ter sido o professor de Newton,
Isaac Barrow (1630-1677). Contudo Newton e Leibniz foram os primeiros a compreender a
verdadeira importancia desta relagao e a explora-la tao completamente que iniciaram uma
era sem precedente no desenvolvimento da Matematica.

Embora a derivada tivesse sido inicialmente formulada para estudar o problema das tan-
gentes a curvas, logo se verificou que também conduzia a um modo de calculo da velocidade
e, mais geralmente, ao estudo da variagdo de uma fungdao. Na se¢do seguinte consideramos
um problema particular implicando o calculo de uma velocidade. A resolugao deste problema
contém todos os aspectos essenciais do conceito de derivada e pode auxiliar-nos no estabele-
cimento da definigao geral de derivada que sera dada na Segdao 4.3.

4.2. Um problema relativo a velocidade

Suponhamos um projétil? langado do solo, verticalmente, com uma velocidade inicial
de 144 pés por segundo. Desprezando o atrito, admitamos que o projétillesta sujeito unica-
mente a acldo da gravidade, de tal modo que ele se move para cima e para baixo ao longo de
uma reta. Seja fir)a altura, em pés, que o projétil alcangd ao fim de ¢ segundos depoisdo
langamento. Se a forga da gravidade ndlo estivesse a atuar sobreele, o projétil continuaria
a4 mover-se sempre com movimento ascendente e com velocidade constante, percorrendo
uma distiancia de 144 pés em cada segundo, ¢ ao fim do tempo ¢ teria percorrido fir) = 144¢,
Mas, devido a gravidade, o projétil vairetardando o seu movimento até que a velocidade se
anula e a partir desse instante inicia a queda para o solo. Experimentalmente constata-se
que enquanto o projétil sobe, a sua altura f/r) ¢ definida por

f(t) = 1441 — 1612, (4.1)

O termo —164* ¢ devido a influéncia da gravidade. Note-se que f{t) = O quando r = 0 ¢
quando ¢ = 9. Quer isto dizer que o projetil volta a terra depois de 9 segundos e portanto
(4.1) so ¢ valida para 0 € r < 9.

O problema que pretendemos resolver ¢ este: Determinar a velocidade do projetil em cada
instante do seu movimento. Antes que possamos compreender este problema, devemos preci-
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sar o que se entende por velocidade em cada instante. Para o fazer, introduzimos em primeiro
lugar a nogao de velocidade média durante um intervalo de tempo, por exemplode rat + h.
Esta define-se pelo quociente

variagao da distancia no intervalo de tempo  f{(1 + h) — f(1)
medida do intervalo de tempo N h

Este quociente, chamado razao incremenial, € um nimero que pode ser calculado sempre que

ambos 7 e 1 + h pertengam ao intervalo[0, 9. O nimero k pode ser positivo ou negativo, mas
nao nulo. Fixemos 7 e vejamos o que acontere a razao incremental quando tomamos valores

de & com cada vez menor valor absoluto.
Por exemplo, consideremos o instante ¢ = 2. A distancia percorrida depois de 2 segundos é

f(2) = 288 — 64 = 224.
No instante 7 = 2 + h a distidncia percorrida é
f(2 4+ h) = 1442 + h) — 16(2 + h)* = 224 + 80h — 16A4*.
Portanto a velocidade média durante o intervalode t =2 ar=2+hé

2
2+ ’2 —J(2) _ 80h — 16h" _ o _ 16 .

Quando tomamos valores de h com cada vez menor valor absoluto esta velocidade media
aproxima-se cada vez mais de 80. Por exemplo, se & = 0,1 obtemos uma velocidade meédia de
78,4; quando A = 0,001, obtemos 79,984; quando h = 0,00001, obtemos o valor 79,99984; ¢
quando & = — 0,00001, obtemos 80,00016. O fato importante € que nés podemos fazer a
velocidade média tdo proxima de 80 quanto o desejarmos, tomando para tal |A| suficiente-
mente pequeno. Por outras palavras, a velocidade media aproxima-se de 80 como limite
quando 4 tende para zero. Parece natural chamar este valor limite a velocidade instantanea
no instante 1 = 2.

O mesmo tipo de calculos pode ser efetuado para outro instante. A velocidade media para
um intervalo de tempo arbitrario de f a r + h & dada pelo quociente

S+ h) —f(t) (1440 + h) — 16(1 + h)*] — [1441 — 161°]
h B h

= 144 — 32t — 16h .

Quando 4 tende para zero a expressio do segundo membro tende para 144321 ¢ este
limite define a velocidade instantdanea no instante 1. Se representarmos a velocidade ins-

tantanea por v(r), podemos escrever

(1) = 144 — 321 4.2)

A formula (4.1) para a distancia f{7) define uma fung@o /" que nos diz a que altura esta o



188 Calculo

projetil em cada instante do seu movimento. Podemos referir-nos a f como fungao posicao
ou lei do movimento. O seu dominio é o intervalo fechado[0, 9) e o seu grafico esta tragado na
fig. 4.2(a). |A escala sobre o eixo vertical foi modificada, quer na fig. 4.2(a), quer na fig.
4.2(b)). A formula (4.2) para a velocidade (1) define uma nova fungao r que nos define a
rapidez com que o projétil esta a mover-se em cada instante. Esta ¢ chamada fungao veloci-
dade e o seu grafico esta tragado na fig. 4.2(b). Quando ¢ cresce de 0 a 9, (1) decresce cons-
tantemente de 1(0) = 144 a ¢(9) = — 144. Para determinar o instante { para o qual (1) = 0,
resolvemos a equagao 144 = 32 e obtemos ¢ = 9/2. Portanto, no instante médio do movi-
mento a influéncia da gravidade reduz a velocidade a zero e o projéctil esta ai momentanea-
mente em repouso. A altura neste instante € f(9/2) = 324. Quando r > 9/2 a velocidade é
negativa indicando que a altura esta a decrescer.

O processo segundo o qual ¢(7) ¢ obtida pelo limite da razao incremental escreve-se simbo-
licamente:

o) = lim U+ "; —J) (4.3)

L=0

Esta expressao ¢ usada para definir a velocidade nao somente para este exemplo particular
mas, mais geralmente, para qualquer particula movendo-se ao longo duma dada reta, desde
que a lei do movimento f seja tal que a razdo incremental tenda para um limite definido

quando k tende para zero.

}o(n)

I
|
|
I
!
)

2004 !
: + — |
: 9

1004 !
: - 50+
|
I
|

4 L t
0 ; 9 - 100+

(a) (b)

Fig. 4.2 — (a) Grafico da fungao de posigao f{1) = 144r — 161, (b) Grafico da fungao veloci-
dade v(1) = 144 — 321,
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4.3 A derivada duma fungao

O exemplo descrito na segao precedente aponta um meétodo para introduzir o conceito de
derivada. Comegamos com uma fungao fdefinida, pelo menos, num dado intervalo aberto (a,
b). Escolhe-se um ponto fixo x nesté intervalo e formamos a raziao incremental

f(x + h) — f(x)
h L]

onde o numero h, que pode ser positivo ou negativo (mas nao nulo), é tal que x + h também
pertence a (a, b). O numerador da fracao mede a variacao da fungido quando x varia de x
a x + h. O quociente representa a variagao média de f no intervalo definido por x e x + A.

Seguidamente fazemos tender h para zero e analisamos o que se verifica para este quociente.
Se o quociente tende para algum valor limite definido (o que implica que o limite € 0 mesmo
qualquer que seja o modo como h tende para zero), entao este limite chama-se a derivada de
/S no ponto x e representa-se pelo simbolo f"(x) (Ié-se “f linha de x™). Deste modo a definigao
formal de f“(x) pode ser estabelecida no modo seguinte:

DEFINIGAO DE DERIVADA. 4 derivada f"(x) define-se pela igualdade

£(x) = lim 1+ =S (4.4)

h—0 h

desde que o limite exista. O numero f'(x) chama-se também a coeficiente de variagao de f
com X.

Comparando (4.4) com (4.3), vemos que o conceito de velocidade instantanea é simples-
mente um exemplo do conceito de derivada. A velocidadeofr)éigual a derivadaf(1)quando
J € afuncio que define a posicido, pelo que muitas vezes se dizque a velocidade é aderivada
da posigdo relativamente ao tempo. No exemplo apresentado na Segdo 4.2, a fungio po-
sicdo f¢€ dada pela equagio

f(1) = 1441 — 1612,
e a sua derivada /” é uma nova fungdo (velocidade) dada por

Si(1) =144 — 321

Em geral, o processo de passagem ao limite segundo o qual se obtém f(x) a partir de
fix) define um modo deobtengio de uma nova fungido f a partir de uma dada fungio f.
Este processo chama-se derivacdo e [ é chamada a primeira derivada de f. Se f°, por sua
vez, estda definida num intervalo aberto, pode calcular-se a sua primeira derivada, repre-
sentada por /7 ¢ chamada a segunda derivada de . De modo analogo a derivada de ordem
n de f, representada por [/, define-se como o sendo a (primeira) derivada de /™' Con-
venciona-se que '’ = f| isto €, derivada de ordem zero € a propria fungdo.
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No caso do movimento, a primeira derivada da velocidade (segunda derivada da fungao de
posi¢do) chama-se aceleragdo. Por exemplo para calcular a aceleragao no exemplo da Seg¢ao
4.2 podemos utilizar (4.2) para formar a razao incremental.

ot + h) — o(r) _ [144 — 320t + h)) — [144 — 321] _ —32h _ —37
h h h

Uma vez que a razao incremental tem o valor constante —32, para qualquer valor de A +# 0, 0
seu limite quando A — 0 é também —32. Entao, neste problema a aceleragao € constante e
igual a —32. Este resultado diz-nos que a velocidade decresce na razao de 32 pés por segundo
em cada segundo. Em 9 segundos o decréscimo total da velocidade € 9 x 32 = 288 pés por
segundo. Isto esta de acordo com o fato que durante os 9 segundos do movimento a veloci-
dade varia de ©»(0) = 144 a v(9) = — 144.

4.4 Exemplos de derivadas

ExempLO 1. Derivada duma fungdo constante. Suponhamos f'uma fungao constante, por
exemplo flx) = ¢ para todo o x. A razao incremental &

f(x 4+ h) — f(x) _t=c
h h

=0.

Uma vez que a razao incremental é zero para todo o h # 0, o seu limite, /"(x), € também zero
para todo o x. Por outras palavras, uma fungdo constante tem derivada nula para todo o
valor de x.

ExXempLO 2. Derivada de uma fungdo linear. Suponhamos f linear, isto € f{x) = mx + b
para todo o real x. Se & # 0, tem-se

fix+h) —f(x) _mx+h+b—(mx+b) _ mh _ n
h h h

Uma vez que a razao incremental ndo varia quando h tende para zero, concluimos que
f'(x) =m para cada x.
Entdo a derivada duma fungao linear ¢ uma fungdo constante.

EXempPLO 3. Derivada de uma fungdo poténcia de expoente inteiro e positivo. Considere-
mos a seguir o caso f{x) = x"', com n inteiro e positivo. A razio incremental vem

flx 4+ h) — f(x) _ (x 4+ h)" — x"
h h '

Para estudar o limite deste cociente,quando h tende para zero, podemos proceder de duas
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maneiras: ou pela decomposi¢do fatorial do numerador considerado como diferenga de
duas poténcias de grau n, ou utilizando o \eorema do bindmio para o desenvolvimento de

(x + h)". Seguiremos o primeiro método e deixaremos o segundo ¢omo exercicio para o leitor
(Ver Exercicio 39 da Segao 4.6). Na algebra elementar tem-se a identidade™®

n-1

ari _ brr = (a — b)zakbu—l—k )
k=0

Se fizermos a = x + h e b = x e dividirmos ambos 0os membros por A, a identidade escrever-se

(X‘l'h)n "Z“(Y_'_h)i n—1— L

A soma tem n termos. Quando h tende para zero, (x + hJ* tende para x* ¢ o termo de or-
dem k tende para x* x"'*# = x"! ¢ portanto a soma de todos os n termos tende para

nx"'. Daqui resulta que

f'(x) = nx"' paratodo o x.

ExempLO 4. Derivada da fungdo seno. Seja s(x) = sen x. A razao incremental

s(x 4+ h) — s(x) _ sen(x 4+ h) —senx
h h '

Para transformar o numerador de modo que seja possivel calcular o limite quando 4 — 0
vamos utilizar a identidade

— X Osy+x
2

sen y —sen x = 2sen %

com y = x + h. Isto conduz-nos a formula

sen(x + h) —sen x sen(h/2) (x N ﬁ) '
h hj2

1 . - .
Quando & — 0 o fator cos(x + — h) — cos x devido a continuidade do cosseno. Também,

2
porque

* Esta identidade ¢ uma consequéncia imediata da propriedade A (pg. 48) das somas finitas. Com efeito, multiplicando cada
termo da soma por (a-b) vem

-1
(a — b) Z akbr—1-% = Z (@E+1pn-1k41) — ghhn-k) = g% — p*,
k=0
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sénx

Iim —=1,

z—=0 X
como se demonstrou na Seg¢do 3.4, temos que

sen(h/2)
h/2

— 1 quando h-0. (4.5)

Portanto o limite da razio incremental quando 4 -0 € cos x. Por outras palavras s7x) = cos x
para todo o x; a derivada da fungio seno ¢ a fungdo cosseno.

EXEMPLO 5. A derivada da fungdo cosseno. Seja c(x) = cos x. Vamos provar que ¢ '(x) =
= —sen X, isto €, que a derivada da fung¢ao cosseno € menos a fungao seno. Consideremos a
identidade

y—xseny+x
2

COS y — COs X = —25sen

e facamos » = v + h. Da identidade anterior podemos passar a formula

cos(x + h) —cosx _ sen(h/2) sen(x + !1_) ’
h h/2 2

A continuidade do seno implica que sen(x 4+ h/2)-sen x quando h-0; a partir de (4.5)
obtemos ¢7x) = —sen x.

EXEMPLO 6. Derivada da fungdo raiz n-enésima. Se n € um inteiro e positivo seja fix) = x!"”
para x > 0. A razdo incremental para /¢

f(x 4+ h) — f(x) _ (x + h)lr’n — xl/n
h h ‘

Fagamos u = (x + h) /" e v=x"/". Temos entdo u" = x + he v" = x, peloque h=u" —1"e
a razao incremental escreve-se

fx+h) —fx) _ u—v _ 1
h un_vn un—l+un2+ +uun2+v —1°

A continuidade da fungio raiz n-enésima prova queuﬂ* quando & - 0. Portanto cada termo

no denominador do segundo membro tem o limite »" quando h — 0. Existem n termos no

total, de modo que a razio incremental admite o limite »' ~"/n. Uma vez que v = x'/*, isto

prova que
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fix) = Lt

n

ExempLO 7. Continuidade das fungoes que admitem derivada. Se uma fungao f admite
derivada num ponto x, entdo também € continua nesse ponto x. Para provar esta afirmagao
utilizamos a identidade

f(x + h) —f(x))_

fx+h)=f(x)+h .

a qual ¢ valida para & + 0. Se fazemos tender # — 0, a razao incremental do segundo membro
tende para f(x) e, uma vez que esta razao incremental esta multiplicada por um fator que
tende para 0, o segundo termo do segundo membro tende para 0. f°(x) = 0. Tal fator prova
que f{x + h) - f(x) quando h — 0 e por isso f €& continua em Xx.

Este exemplo da-nos uma nova possibilidade de provar a continuidade de fungoes. Cada
vez que estabelecemos a existéncia de derivada f(x), estabelecemos, a0 mesmo tempo, a con-
tinuidade de fem x. Deve observar-se, contudo, que a inversa nio € verdadeird. A conti-
nuidade de uma fun¢do em x ndo significa, necessariamente que a derivada /7 x) exista. Por
exemplo, quando f{x) =|x{, o ponto x =0 € um ponto de continuidade de flvisto que fix) -0
quando x-0|, mas ndo existe derivada nesse ponto (Ver fig. 4.3). A razio incremental
/O + h)—f(0)I/h ¢ igual a |hl/h e vale + 1 se h >0 e ~1 se h <0 e por conseguinte nido
tende para um limite quando - 0.

J(x) = | x|

Fig. 4.3. A fungao € continua em 0 mas f“(0) ndo existe

4.5 A algebra das derivadas

Tal como os teoremas sobre limites da Se¢io 4.3 nos ensinam a calcular-limites da soma,
diferenga, produto e quociente de duas fungdes, do mesmo modo o teorema seguinte nos
permitird o estabelecimento dum conjunto de regras para o calculo de derivadas.

TEOREMA 4.1. Sejam f e g duas fungoes definidas num mesmo intervalo. Em cada ponto
em que [ e g admitem derivadas, também admitem derivadas a soma f + g, a diferenga [ — g,
o produto [-g e o quociente flg (Para flg ha que juntar a condi¢ao suplementar de que g seja
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ndo nula no ponto em questdo). As derivadas destas fungdes sdo definidas pelas seguintes for-
mulas:

0 (f+8) =f+¢,
i) (f—g'=f"—¢g,
(i) (f-g) =/"8 +gf,
(iv) (f)’=g'f'—2f'g'

¥ g

nos pontos x onde g(x)+# 0.

Antes de demonstrarmos este teorema € interessante referir algumas das suas consequen-
cias. Um caso particular de (iii) ocorre quando uma das duas fungoes € constante, por exem-
plo g(x) = ¢, para qualquer valor de x do intervalo em que a fungao se define. Neste caso, (iii)
vém (¢ . f)' = ¢ - /", por outras palavras, a derivada do produto duma constante por uma
fungdo € igual a constante vezes a derivada da fungao. Combinando este resultado com o
fato de que a derivada da soma ¢ a soma das derivadas [propriedade (i)], tem-se para todo o
par de constantes ¢, e ¢, tem-se

(cof + c28) = e f + g’

Esta é chamada propriedade de linearidade da derivada e ¢ analoga a propriedade de lineari-
dade do integral. Por indugdao matematica podemos generalizar a propriedade de linearidade
a somas dum numero finito de parcelas:

(Becnf=Feore

com ¢,, ¢, ..., ¢, constantes e f, f;, ..., /; fungdes cujas derivadas sao f,", /y', ... [,

Cada formula relativa a derivadas pode escrever-se de duas maneiras: ou como uma
igualdade entre duas fungées ou como uma igualdade entre mumeros. As propriedades do
Teorema 4.1, tal como foram escritas atras, sdo igualdades entre fungdes. Por exemplo, a

propriedade (i) afirma que a derivada da fungdo f + g € a soma de duas fungoes [ e g".
Quando estas fungdes sdo calculadas num ponto x, obtém-se formulas referentes a numeros;
assim a formula (i) implica

(f+ 2)(x) = f'(x) + g'(x).
Passamos agora a demonstragdao do Teorema 4.1.

Demonstragado de (i). Seja x um ponto no qual existem as derivadas f(x) e g'(x). A razao
incremental para f + g €
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x4+ ) + gx + W] = () + &) _flx + 1) = f(x) | glx + h) — g(x)
h h h '

Quando k-0, o primeiro quociente do segundo membro tende para f'(x) ¢ o segundo quociente
tende para g'x), e portanto a soma tende para f(x) + g(x). Esta assim demonstrada (i),
sendo analoga a demonstragao de (ii).

Demonstragao de (iii): A razao incremental para o produto f-g ¢

f(x + h)g(x 4+ h) — f(x)g(x) -
h

(4.6)

Para estudar o limite deste cociente quando & — 0, somamos e subtraimos ao numerador um
termo conveniente que nos permita escrever (4.6) como uma soma de dois termos nos quais
aparegam as razoes incrementais relativas a f'e g. Somando e subtraindo g(x)f(x + h), (4.6)
pode escrever-se

Jf(x + h)g(x -:h) — f(x)g(x) _ g(x)f(x + h}: —f(x) +f(x + h) glx + hh) - R(x').

Quando & — 0 o primeiro termo do segundo membro tende para g(x)f’(x). Uma vez que f'é
continua em Xx, temos que f{x + &) - f{x) e o segundo termo tende para f{x)g(x), ficando
assim demonstrada (iii).

Demonstragao de (iv). Um caso particular de (iv) verifica-se quando f{x) = 1 para todo o x.
Neste caso f(x) = 0 para todo o x e (iv) reduz-se a formula

-~

desde que g(x) # 0. A partir deste caso particular podemos deduzir a formula geral (iv) consi-
derando f/g como um produto e usando (iii), pois que

(f,_"=__f +f_('1)'=f_’_f'g'=g'f’—f'g'_
g/ g g/ g g g’

Portanto resta provar (4.7). A razéo incremental para 1/g é

[l/gx + M) — [1/e(x)) _ _gx+m—g) 1 1
h h g(x) glx + h)

(4.8)

Quando h-0, o primeiro quociente do segundo membro tende para g7x) e o terceiro fator

l r - - L4 3 . -
para ——. E necessaria a hipotese de continuidade de g em x para que possamos concluir

g(x)
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que g(x + h)-g(x) quando A-0. Deste modo o quociente em (4.8) tende para ————i(i);)z ,

ficando assim demonstrada (4.7).

Nota: Para se poder escrever (4.8) € necessario supor que g(x + h) # 0, para todo o A sufi-
cientemente pequeno. Isto resulta do teorema 3.7.

O Teorema 4.1, quando usado em conjungao com os exemplos expostos na Seg¢do 4.4,
permite-nos deduzir novas formulas de derivagao.

EXEMPLO 1. Polinémios. No Exemplo 3 da Segdo 4.4 mostramos que se f(x) = x" quando
n € um inteiro positivo, entao f(x) = nx"~!. Sera interessante que o leitor estabelega de novo
este resultado como uma consequéncia do caso particular n = 1, usando o método de
indugao matematica em conjungdo com a formula de derivagao do produto.

Combinando este resultado com a propriedade de linearidade, podemos derivar qualquer
polinomio calculando a derivada de cada termo e adicionando as derivadas. Assim, se

T
f(x) = Zc&.x"',
Je=0
entao, derivando termo a termo, obtemos

fi(x) =3 kex* 1.
k=0

Observe-se que a derivada de um polinomio de grau n € um novo polinomio de grau n — 1.
Por exemplo, se flx) = 2x* + 5x? — 7x + 8, entao f(x) = 6x* + 10x — 7.

EXEMPLO 2. Fungoes racionais. Se r ¢ o quociente de dois polindmios, seja r/x) = p{x)/g(x),
entao a derivada r’(x) pode calcular-se pela formula (iv) do Teorema 4.1. A derivada r'(x)
existe para todo o x que nao anule g(x). Repare-se que a fungao r’(x) assim definida ¢ ela pro-
pria uma fungio racional. Em particular, quando rx) = |/x™com m um inteiro positivo e
x # 0, temos

o X" 0 —mx™' —m
r('\}_ 2m - cml

X X

Escrevendo este resultado na forma r{x)= —mx~™! obtem-se uma generalizagio, para
expoentes negativos, da formula de derivagio de poténcias de grau n, com n positivo.

EXEMPLO 3. Poténcias de expoente racional. Seja f{x) = x" com x > 0, onde r € um numero
racional. Ja demonstramos a formula de derivagao
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f'(x) = rx™? (4.9)

1 . " ., “ .
para r= "y com n inteiro e positivo. Vamos agora generaliza-la a todas as poténcias de

expoente racional. A formula de derivagao de um produto mostra que a igualdade (4.9) &
também valida para r = 2/n e, por indugdo, para r = m/n com m um inteiro positivo
qualquer (O raciocinio por indug@o refere-se a m). Deste modo a igualdade (4.9) é valida
para qualquer racional positivo r. A formula de derivagdo do quociente mostra-nos que (4.9)

também ¢é valida para r racional negativo. Assim, se f(x) = x*°, tem-se f'(x) = —;—x‘”’;

- 1 . . .
se f{x) = x""2, entao f(x) = —Tx‘m. Em qualquer dos casos ¢ necessario que x > 0.

4.6 Exercicios

1. Sef{x) =2 + x — x?, calcular f(0), f'}), f(1), f(—10).

2. Sef(x)= —;—xJ + —;:,—x’ — 2x, determinar todos os valores de x para os quais (a) f(x) =

= 0; (b) f'(x) = —2; (¢) f'x) = 10.

Nos Exercicios 3 a 12 determinar f'(x) se fix) ¢ a fungdo que se indica.

3 f(x) = +3x +2. 8./ =——, x#L
1
4.f(x)=x‘+senx. gf(x)=2_'iTOSI
x? +3x +2
S.f(x)—x‘scnx. ]0.f(l)=m.
1 2 — senx
6.f(x)=m, x # -1, 1|.f(.\’)=m.
. L X senx
7. f(x) = E 1 + x9cos x. 12. f(x) = T

13. Supde-se que a altura f{7) de um projétil, t segundos depois de ter sido langado vertical-
mente para cima a partir do solo com uma velocidade inicial v, pés/seg, € definida por

[(1) = vyt — 1622,

(a) Seguir o método descrito na Se¢ao 4.2 para mostrar que a velocidade média do pro-
jétil, no intervalo de tempo (¢, ¢ + k], € v, — 32t — 16h pés/seg., e que a velocidade
instantanea no instante ¢, € v, — 10 ¢ pés/seg.

(b) Calcular (em fungao de v,) o tempo necessario para que a velocidade se anule.
(c) Qual ¢ a velocidade de regresso a Terra?

(d) Qual deve ser a velocidade inicial do projétil para que este volte a Terra ao fim de 1



198 Calculo

segundo? Ao fim de 10 segundos? Ao fim de T segundos?
(e) Provar que o projétil se move com aceleragao constante.
(f) Dar um exemplo de outra féormula para a altura, que origine uma aceleragio de
=20 pés/seg./seg.

14. Qual ¢é o coeficiente de variagdo do volume dum cubo em fungio do comprimento
da aresta?

15. (a) A area de um circulo de raio r € nr? e o perimetro da correspondente circunferéncia €
2nr. Mostrar que o coeficiente de variagao da area relativamente ao raio ¢ igual ao peri-
metro da circunferéncia correspondente.

. . 4 , .
(b) O volume de uma esfera de raio r é 3 n r’ e a sua area € 4n >, Mostrar que o coefi-

ciente de variagdo do volume da esfera a respeito do raio é igual a sua area.

Nos Exercicios 16 a 23 calcular f(x) para a fungao f(x) que se indica.

16. f(x) = \.f;. x > 0. 20. f(x) = x'2 + X173 4 X1/, x > 0.
1
17. j(.\') = x>0, 21. f(x) = y~1/2 + x-—l/-’l N x-—l;’-l' x> 0.
I +Vvx

18 X3/ - - Wx o

LX) =x*2 x> 0. S =, x>0
19. f(x) =x7%,  x >0. x

23. f(x) = , x>0
4 I+ Vx

24. Sejam f,, ..., f, n fungées admitindo derivadas f;,...,/, . Enunciar uma regra para a

derivagdo do produto g = f, ... f, € demonstra-la por indugdo matematica. Mostrar que
para aqueles pontos x para os quais nenhum dos valores f,(x), ..., f (x] é zero, se tem

g0 L L oW

gx)  filx) fux)

25. Verificar a tabela de derivadas que a seguir se apresenta. Subentende-se que cada for-
mula ¢ valida para aqueles valores de x para us quais f{x) esta definida.

Jf(x) f(x) Sx) f(x)
tg x sec® x sec x tg xsec x
cotg x cosec® x | osex —cotg x COsec x

Nos Exercicios 26 a 35 calcular a derivada f’(x).Subentende-se que cada formula é vali-
da para os valores de x para os quais f{ x) estd definida.
1 2 3
—_ 9 PR —_— —
26. f(x) = tg x sec x. 28. f(x) ctata
2x
| — 2%

27. f(x) = xtg x. 29. f(x) =
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o

20 _I+x—x~ 33 ___ax+b
SO =TT PSS
sen Xx COS Xx
31. = —, . f(x) = .
S == WS =553
2. f(x) = ] 35, £(x) _a.!."z + bx 4+ ¢
- - x 4+ senx’ 3. fx " senx + Cos x|

36. Se fix) = (ax + b) sen x + (cx + d)cos x, determinar os valores das constantes a, b, ¢, d
tais que f(x) = Xcos x.

37. Se g(x) = (ax* + bx + ¢) sen x + (dx* + ex + f)cos x, determinar os valores das constan-
tes a, b, ¢, d, e, [ tais que g'(x) = x? sen x.

38. Dada a formula

x" =

L+ x 42+ +x" =
x -1
(valida para x # 1), determinar, por derivagdo, formulas para as seguintes somas:
(@) 1 + 2x + 3x% + - -+ + nx"7,
(b) 1%x 4 2%x% 4+ 3233 4 - -+ 4+ w*x™,

39. Seja f(x) = x", com n inteiro positivo. Utilizar o teorema do bindmio para desenvolver
(x + h)" e deduzir a formula

(x +h = f(x) nin — 1)
AS J, / =nx""1 d ——— X" + o+ nxh"E + AL
h 2

Exprimir a soma do segundo membro recorrendo ao simbolo somatorio. Faga-se h-0e
concluir que f7x)= nx™'. Indicar os teoremas relativos a limites que se utilizaram. (Este
resultado foi derivado doutro modo no Exemplo 3 da Segio 4.4).

4.7 Interpretagao geométrica da derivada como um declive

O processo utilizado para definir a derivada é susceptivel duma interpretagio geomé-
trica, a qual conduz duma maneira natural a ideia de tangente a uma curva. Na fig. 4.4
estd representada uma parte do grafico duma dada fungdo /. Nele se consideram dois
pontos P e Q, com as coordenadas (x, fix))e(x + h, flx + h)) respectivamente. No tridngu-
lo retingulo de hipotenusa PQ, a altura mede fix + h)—flx) e representa a diferenca das
ordenadas dos dois pontos Q ¢ P. Deste modo a razio incremental

f(x 4+ h) — f(x)
h

(4.10)

representa a tangente trigonométrica do dngulo @ que QP faz com OX. O numero real
tg « chama-se o declive da |retu} passando por P e Q e da um caminho para medir a “incli-
na¢lio” desta reta. Por exemplo, se f ¢ uma fungdo linear, f/x) = mx + b, a raziio incremental
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/ Vertical (ndo tem declive)

0,/ "~

3

m

m=10
| | Horizontal
| |
| I
/ | |
[ [
| [
1 1
X x+h m representa o declive
Fig. 4.4. Interpretagao geométrica da Fig. 4.5. Retas de diferentes declives.

razao incremental como a tangente de
um angulo.

(4.10) vale m e portanto € m o declive da reta.
Na fig. 4.5 estdo representados alguns exemplos de retas com diferentes declives. Para
uma reta paralela a 0X o =0 ¢ o declive, 1g «, ¢ também 0. Se « estd compreendido

T " . . . . .
entre 0 ¢ 5 a reta ¢ ascendente quando percorrida da esquerda para a direita e o declive €

4]
]

-

positivo. Se « estda compreendido entre = ¢ 7 a reta ¢ descendente quando percorrida da

. . . | .
esquerda para a direita ¢ o declive € negativo. Uma reta para a qual o« = 37 tem declive

T ‘ .
5+ 1g « cresce indefinidamente ¢ as correspondentes retas

. Quando « crescede0a =

* p . . . T ~ ’ - .
cujo declive € tg « aproximam-se do eixo OY. Uma vez que g 5 nido € definida, dizemos que
paralelas a OY nao tém declive.

Suponhamos agora que /" admite derivada no ponto x. Quer isto dizer que a razao incre-
mental tende para um certo limite f(x) quando & tende para 0. Quando isto € interpretado
geometricamente diz-nos que, quando 4 se aproxima de 0, permanecendo o ponto P fixo, o
ponto Q se move para P ao longo da curva, e a reta passando por P e Q muda de diregao
de tal modo que o seu declive, a tangente do angulo x«, tende para o limite f’(x). Por esta
razdo, parece natural definir o declive da curva em P como sendo o numero f’(x). A reta
pasando por P e tendo este declive ¢ a rangente a curva em P.

Nota: O conceito de tangente a uma circunferéncia (e a algumas outras curvas especiais) ja
tinha sido estabelecido pelo antigos matematicos gregos. Eles definiram a tangente a uma cir-
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cunferéncia como sendo a reta que tinha um ponto comum com a circunferéncia e todos os
outros fora dela. A partir desta definicao podem deduzir-se muitas das propriedades das re-
tas tangentes a circunferéncia. Por exemplo, pode demonstrar-se que a tangente a circunfe-
réncia em qualquer dos seus pontos € perpendicular ao raio dirigido para esse ponto. Con-
tudo, esta defini¢ao de tangente dada pelos matematicos gregos para a circunferéncia nao se
pode facilmente generalizar para curvas mais gerais. O método descrito atras, em que a tan-
gente € definida em termos de derivada, provou ser muito mais satisfatorio. Usando esta defi-
nigdo, pode provar-se que, para uma circunferéncia, a tangente possui todas as proprieda-
des que lhe eram atribuidas pelos gedmetras gregos. Conceitos tais como perpendiculari-
dade e paralelismo podem ser expostos muito facilmente em termos analiticos recorrendo
ao declive de retas. Por exemplo, da identidade trigonométrica

lgm—lgﬁ
I +tgatgp

tg(x — f) =

resulta que duas retas, ndo paralelas a 0Y, com o mesmo declive sdo paralelas. De igual
modo, da identidade

1+t
lga —1gg

concluimos que duas retas cujo produto dos declives € igual a —1, sem que nenhuma delas
seja paralela a 0Y, sdao perpendiculares.

O sinal da derivada duma fun¢ao da-nos completa informagao acerca do correspondente
grafico da fungao. Por exemplo, se num ponto x de um intervalo aberto a derivada é positiva,
entdo a curva, na vizinhanga de x, é ascendente quando percorrida da esquerda de x para a
sua direita. E o que acontece no ponto x; da fig. 4.6. Uma derivada negativa num intervalo
significa que a por¢do do grafico correspondente € descendente como se exemplifica em x,,
enquanto que uma derivada nula num ponto significa que a tangente € paralela a 0X. Num
maximo ou minimo, tal como se exemplifica em x,, x, e x,, 0 declive da tangente ha-de ser
nulo. Fermat foi o primeiro a observar que pontos tais como x,, X € X,, ém que /' €¢ maxima
ou minima, hdo-de encontrar-se entre as raizes da equagdo f(x) = 0. E importante ter pre-
sente que f (x) pode igualmente anular-se em pontos em que ndo existe maximo ou minimo tal
como, por exemplo, em x,. Repare-se que neste caso particular a tangente interseta a curva,
0 que constitui um exemplo de uma situagao nao incluida na defini¢ao de tangéncia dada
pelos gregos.

As observagoes anteriores respeitantes ao sinal da derivada podem considerar-se como evi-
dentes se interpretadas geometricamente. As respectivas demonstragdes analiticas, baseadas
nas propriedades gerais das derivadas, serdo apresentadas na Segéo 4.16.

4.8. Outras notagoes para as derivadas

As notagdes sempre desempenharam um papel extremamente importante no desenvolvi-
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f(x) =0

L/ -
“*1

~
A
=)

f’(-\_‘l) >0

:f(xo)zo

f(\') =0

P ——————— I

b - - —— - - -

b A ———
.

M ——— - ———

P

-

-
=]
bl
@

Fig. 4.6. Significado geometrico do sinal de derivada.

mento da Matematica. Alguns simbolos matematicos, tais como X' ou n!sdo simples
abreviagOes que permitem escrever longas proposicoes ou formulas duma maneira com-

pacta. Outras, tais como o simbolo de integragao _!'g f(x)dx, nao so nos lembram o processo

que representam, mas igualmente nos ajudam a efetuar o seu calculo.

Algumas vezes usam-se diferentes notagoes para um mesmo conceito, dependendo a pre-
feréncia, por uma ou outra,das circunstancias que acompanham a utilizagao do simbolo. Isto
¢ particularmente notavel no calculo diferencial, onde diferentes notagoes sao usadas para
as derivadas. A derivada duma fungao / representou-se, nas anteriores Segoes, pelo sim-
bolo /7, notagdo introduzida por J. L. Lagrange (1736-1813) no final do século Xviil. Esta
notagao faz ressaltar o fato de que /” ¢ uma nova fungao obtida por derivagao de f, indi-
cando-se o seu valor em x por f(x). Cada ponto (x, y) do grafico de / tem as respetivas
coordenadas relacionadas por y = f(x) e, por isso, o simbolo y “ utiliza-se também para re-
presentar a derivada f“(x). De modo analogo, y", ..., y(") representam as derivadas de or-
dens superiores f7(x), ..., f™(x). Por exemplo, se y=senx, entio y = cosx, y =
= — sen x, etc. A notagao de Lagrange nao caiu em desuso, tal como aconteceu com a utili-
zada por Newton que escrevia y' e )’ em vez de y“ e y”. Os pontos de Newton, contudo, sdo
ainda usados por alguns autores, especialmente para representar a velocidade e a aceleragao.

Outro simbolo foi introduzido em 1800 por L. Arbogast (1759-1803),0 qual representava a
derivada de f/ por Df, um simbolo com largo uso hoje em dia. O simbolo D chama-se opera-
dor derivagao e sugere-nos que Df ¢ uma nova fungao obtida de f'pela operagao de derivagao.

As derivadas de ordem superior /7, ", ..., f "' escrevem-se, respetivamente, D*f, D%, ...,
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D"f, e os valores destas derivadas no ponto x representam-se por D3f{x), D*fix), ..

D"x). Deste modo, escrevemos Dsenx = cosx e D?senx = Dcosx = —sen  X.
A regra para a derivagao da soma de duas ou mais fungGes vem, na notagao D, D(f + g) =
Df + Dg e o calculo das derivadas no ponto x exprime-se por [D(f + g)l(x) = Dfix) + Dg(x),
a qual pode também escrever-se na forma D|f{x) + g(x)] = Df{x) + Dg(x). Deixa-se ao leitor
a formulagao das regras de derivagao do produto e do quociente na notagio D.

Entre os pioneiros da analise matematica, Leibniz, mais do que qualquer outro, compreen-
deu a importdncia da conveniente escolha dos simbolos. Estabelecida uma notacio,
experimentava-a largamente e trocava extensa correspondéncia com outros matematicos
debatendo os méritos ou inconvenientes daquela. O formidavel impacto que o calculo teve no
desenvolvimento da matematica moderna deveu-se em parte a escolha adequada e sugestiva
dos simbolos, muitos deles devidos a Leibniz.

Leibniz desenvolveu para as derivadas uma notagao completamente diferente das referidas
atras. Utilizando y em vez de f{x), escreveu a razao incremental

J(x 4+ h) — f(x)
h

na forma
_ﬂ
Ax

em que A x (leia-se “delta x”’) aparece em vez de he Ay em vez de flx + h) — f(x). O simbolo
A chama-se operador diferenga. Para o limite da razao incremental, isto €, para a derivada

f'(x), Leibniz escreveu % Nesta notagao a definigdo de derivada escreve-se
dy . Ay
— = |im —.
dx ar—0AXx

Nao somente a notagao de Leibniz para a derivada era diferente, como era diferente a sua
ideia relativa a derivada, pois Leibniz considerava o limite dy/dx como um quociente de
quantidades “infinitesimais™ dy e dx chamadas “diferenciais™ e referia-se a derivada dy/dx
como um “quociente diferencial”. Leibniz considerava os infinitesimais como um novo tipo
de numeros que, embora ndo nulos, eram menores que qualquer nimero real positivo.

Muito embora Leibniz nédo tivesse sido capaz de dar uma defini¢cao satisfatoria de infinite-
simais, ele proprio e os seus discipulos usaram-nos livremente na seus estudos do calculo. Em
consequéncia disso, muitos consideraram o Calculo como algo de misterioso dando-se inicio
a questao da validade dos métodos que se utilizavam. Os trabalhos de Cauchy e outros, no
SéculoXxIx, operaram a substituigdo gradual dos infinitesimais pela teoria classica dos limites.
Contudo, muita gente considera util continuar a raciocinar, como Leibniz o fez, em termos de
infinitesimais. Este tipo de raciocinio ¢ dotado duma atragdo intuitiva e nao raras vezes
conduz facilmente a resultados, os quais por sua vez podem ser demonstrados de maneira
rigorosa por métodos adequados.
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Recentemente Abraham Robinson mostrou que o sistema dos nimeros reais pode ser alar-
gado de forma a incorporar os infinitesimais tal como Leibniz os concebeu. Uma discussao
deste alargamento e o seu impacto em muitos ramos da Matematica encontra-se no livro de
Robinson Non-standard Analysis. North-Holland Pub., Amsterdam, 1966.

Embora algumas ideias de Leibniz ndo tivessem passado a posteridade, 0 mesmo nao

- . d . .
se pode dizer das suas notagoes. O simbolo Ey para a derivada tem a vantagem evidente de
resumir todo o processo de formagdo da razdo incremental e passagem ao limite. Mais
adiante mostrar-se-a evidente a vantagem de que certas formulas sdo mais facilmente
memorizaveis e operaveis auando as derivadas que nelas intervém se escrevem na notagao
de Leibniz.

4.9. Exercicios
. 1
1. Sejaf(x)= Tx’ — 2x + 3x + 1 para todo o x. Determinar os pontos do grafico de f

para 0os quais a tangente € paraléla' a OX.

s

. 2 1
2. Sejaflx) = —3—x’ + T.ﬁ — x — | para todo o x. Determinar os pontos do grafico de f

para os quais o declive €: (a) 0; (b) —1;(c) 5.

3. Seja f{x) = x + sen x para todo o x. Determinar todos os pontos x para 0s quais o gra-
fico de f em (x, f{x)) tem declive nulo.

4. Seja flx) = x* + ax + b para todo o x. Determine os valores de tais que a reta
y = 2x seja tangente a curva de f no ponto (2, 4).

5. Determinar os valores das constantes a, b e ¢ para os quais os graficos dos dois polino-
mios flx) = x* + ax + b e g(x) = x* — ¢ se intersectem no ponto (1, 2) e admitam a
mesma tangente naquele ponto.

6. Considerar o grafico da fungao f definida pela equagao f{x) = x* + ax + b,em queaeb
sao constantes.

(a) Determinar o declive da corda unindo os pontos do grafico para os quais x = x, €
X = X,

(b) Determinar, em fungdo de x, e x,, todos os valores de x para as quais a tangente em
(x, fix)) tem o mesmo declive que a corda da alinea (a).

7. Mostrar que areta y = — x é tangente a curva definida pela equagao y =x* — 6x? + 8x.
Determinar o ponto de tangéncia. Intersectara esta tangente a curva em qualquer outro
ponto?

8. Tragar o grafico do polinomio f{x) = x — x’, relativo ao intervalo —2 < x < 2. Determi-
nar as constantes m e b de modo que a reta y = mx + b seja tangente a curva de f no
ponto (—1, 0). Uma segunda reta que passa por (—1, 0) € também tangente ao grafico
de / no ponto (a, ¢). Determinar as coordenadas a e c.

9. A fungao f é definida do modo seguinte:

[.r2 se x <o,

(a, b, ¢ constantes) .
lax + 6 se x >¢,

f() =

Achar os valores de @ e b (em fungdo de ¢) de modo que f{(c) exista.



10.

11.

12.
13.

14.

13.

16.
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Resolver o exercicio anterior para a fungao

1

fx) = { Il
a + bx* se |x| €¢.

se |x| > ¢,

Resolver o Exercicio 9 quando f ¢ definida por:

senx se x <rc,

ﬂx)=llax+b se x> c.

Se fix) = (1 — /x)(1 +/X) para x > 0, determinar Df{x), D*f(x) e D*fix).

O polinomio P(x) = ax® + bx* + ecx + deétal que P(0) = P(1) =— 2, P(0)=—le
P(0) = 10. Determinar a, b, ¢, d.

Duas fungoes /e g admitem primeira e segunda derivada em 0 e verificam as relagoes

£0) =2/g(0),  f10) =2g'(0) =4g(0),  £(0) = 5{"(0) = 6£(0) =3 .

(a). Se h(x) = fix)/g(x) calcular h1(0).

(b). Se k(x) = fix)g(x) sen x calcular k70).

(c) Calcular o limite de g'(x)/f(x) quando x — 0.

Supondo que a derivada f,(a) existe, estabelecer quais das seguintes igualdades sao ver-
dadeiras e quais as falsas. Justificar a resposta dada para cada caso.

0 - f o — ¢
(a) f[a) = |im M) ) (©) f(a) _ llmf(a + 21) j(a) ’
hi—~a I —a {— I}

—_ -} %) —
fla) — f(a 1)' @ fa) = Iimf(ar +2t) —f(a + 1) ‘

3
h 10 2t

(b) f(a) = lim
Ji—=0

Suponhamos que em vez da defini¢ao usual de derivada Df{x), se defina nova espécie de
derivada, D*{x), pela formula

fHx + W) — fAx)
h ’

D*f(x) = hm’

h -l

onde f?(x) significa [ flx)]*.

(a) Derivar formulas para o calculo da derivada D* da soma, diferenga, produto e
quociente de duas fungdes.

(b) Exprimir D*f{x) em fungao de Df{x).

(c) Para que fungOes sera D* = Df?

4.10. A regra de derivacao de fun¢des compostas

Com as formulas de derivagao ja deduzidas, podemos calcular derivadas de fungdes f'para

as quais f/x) ¢ uma soma finita de produtos ou quocientes de constantes multiplicadas por

APOSTOL — 8
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sen-x, cos x ¢ x’(r racional). Até agora, contudo, ainda nio aprendemos a tratar com fun-
¢oes tais como f(x)= sen(x?), sem aplicar diretamente a defini¢io de derivada. Nesta Se-
¢do vamos estudar um teorema que nos permitira derivar fungdes compostas tais como f{x) =
= sen(x?), 0 que aumentara substancialmente o nimero de fungdes que poderemos derivar.

Lembramos que se u e v sao fungdes tais que o dominio de u inclui o contradominio de »
podemos definir a fungdo composta / = u- v mediante a igualdade

f(x) = ufv(x)] .

A regra da dervagdo de fungoes compostas diz-nos como exprimir a derivada de fem fungao
das derivadas u" e ¢’

TEOREMA 4.2. REGRA DE DERIVAGAO DE FUNCOES COMPOSTAS. Seja f a fungdo composta
de duas fungoes u e v, f =u - v. Se existirem as derivadas v'(x) e u'(y), com y = v(x), entao a
derivada f(x) existe e é dada pela formula

f(x)=u'(y) v'(x). (4.11)

Quer isto dizer que para caleular a derivada de v © v em x, calculamos em primeiro lugar a
derivada de u no ponto y, com y = ¢(x), ¢ multiplicamos esta por v’ x).

Antes de demonstrarmos o Teorema 4.2 vamos apresentar outras maneiras de exprimir

esta regra de derivagdo. Se escrevermos (4.11) referida unicamente a varidvel x, obtemos
a formula

f(x) = u'[v(x))] - v'(x) .

Expressada como uma igualdade entre fungdes de preferéncia a uma igualdade entre nume-
ros, a regra da derivagdao toma a forma seguinte

(uevY =W ov) v,

Na notagao u(v), se u(v) representa a derivada da fungdao composta wuv), e u'(v) a derivada
para a composigao u - v, entdao a formula anterior escreve-se

u(v) = u'(v) - v'.

Demonstragao do teorema 4.2. Passamos agora a demonstragao de (4.11). Admitimos que
v possui derivada em x e que u possui derivada em v(x) e pretendemos provar que / admitira
derivada em x definida pelo produto u'[v(x)] - ¢'(x). A razdo incremental para f é

f(x 4+ h) — f(x) _ ulvdx 4+ h)] — ufv(x)]
h h .

(4.12)

E conveniente introduzir agora a seguinte notagao: Sejam y = v(x) e k = v(x + h) — v(x).
(E importante ter presente que k depende de /). Entdo temos v(x + h) = y + k e (4.12) vem
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f(x+ h) — f(x) _uy + k) — u(y)
h h '

(4.13)

O segundo membro de (4.13) é semelhante a razao incremental cujo limite define u'(y),
exceto que no denominador aparece k em vez de h. Se k # 0 ¢é facil completar a demons-
tragao, bastando para tanto multiplicar e dividir o segundo membro de (4.13) por %, pelo que
de (4.13) se escreve

uly + k) —u(y) k _uly + k) = u(y) vlx +h) = v(x)
k h k h '

(4.14)

Quando 4 — 0, a ultima razao incremental do segundo membro tende para v'(x). Uma vez
que k = u(x + h) — v(x) e v &€ continua em x , entdao ao tender A — 0 também k — 0; deste
modo a primeira razdo incremental do segundo membro de (4.14) tende para 4’(y) quando
h—0 e portanto fica demonstrada (4.11).

Embora o raciocinio anterior parega ser o caminho mais natural para a demonstragao,
ele nao &, contudo, completamente geral. Posto que k& = v(x + h) — v(x), pode acontecer que
k = 0 para infinitos valores de & quando 4 — 0, e neste caso a passagem de (4.13) a (4.14) ndo
¢ valida. Para ultrapassar esta dificuldade, é necessaria uma ligeira modifica¢gao na demons-
tragao.

Voltemos de novo a (4.13) e exprimamos o quociente do segundo membro de modo que &
nao aparega em denominador, bastando para tanto introduzir a diferenga entre a derivada
u’(y) e a razao incremental cujo limite € u’(y). Quer dizer, nos definimos uma nova fungdo g
do modo seguinte:

a1 — ulv
gty = 2T D= U)oy e 10, (4.15)
I

Esta igualdade define g(7) somente se ¢ = 0. Multiplicando por 7 e transpondo termos, pode-
mos escrever (4.15) na forma

u(y + 1) — u(y) = t[g(t) + u'(y)]. (4.16)

Embora (4.16) tenha sido estabelecida sob a hipotese de 1 # 0, é igualmente valida paraz=0
desde que se atribua algum valor definido a g(0). Uma vez que g(¢) —» 0 quando ¢ — 0, & con-
veniente que o valor atribuido a g(0) seja 0. Isto assegura-nos a continuidade de g em 0. Se
substituimos agora ¢ em (4.16) por k, com k = v(x + h) — v(x), e substituimos o segundo
membro de (4.16) em (4.13), obtemos

% — f(x) k _ 'y :
f(x + h’) J(x) _ !-[g(k_) +u'()], (4.17)
1 1

formula que ainda é valida se k =0. Quando h-0 o quociente k/h-r'(x) e glk)-0 e deste
modo o segundo membro de (4.17) tende para o limite u'(y) « v'(x), ficando assim demons-
trada (4.11) com toda a generalidade.
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4.11 Aplicacdes da regra de derivacdo duma fungio composta. Coeficientes de variagio liga-
dos e derivacio implicita

A regra de derivagao da fungao composta é um excelente exemplo para ilustrar a utilidade
da notagdo de Leibniz para as derivadas, pois que (4.11) nesta notagao toma o aspecto de
uma identidade algebrica trivial. Em primeiro lugar introduzimos novos simbolos, a saber

V= v(x) e z=u(y).
Entdo, escrevendo % para a derivadav'(x) e j—; para u(y), a fungdo composta fica repre-

sentada por

2 = u(y) = ulr(x)] = (%),

dz . - S .
e representando ™ a derivada f"(x), entdo a regra de derivagao tal como estava expressa

em (4.11) escreve-se agora
dz dzdy

dx d_\' dx ' )

O grande poder sugestivo desta formula € evidente, sendo especialmente atrativa quando se
aplica o Calculo a problemas fisicos. Por exemplo, suponhamos que o anterior simbolo z
representa uma quantidade fisica medida em fungao de outras quantidades fisicas x e y. A
igualdade z = fx) indica como determinar z dado o x e z = u(y) indica como determinar z
dado o y. A relagao entre x e y € expressa por y = v(x). A regra de derivagdo, tal como foi
expressa em (4.18), diz-nos que o coeficiente de variagao de z com respeito a x € igual ao pro-
duto do coeficiente de variagio de z a respeito de y pelo coeficiente de variagdo de y com
respeito a x. O exemplo seguinte mostra como se pode aplicar a regra de derivagdo (4.18)
a um problema fisico particular

ExEmpPLO 1. Suponhamos que um gas ¢ bombeado para dentro de um baldo esférico na
razao de 50 c.c. por segundo. Admitamos que a pressdo do gas no interior permanece cons-
tante e que o baldo conserva sempre a forma esférica. Como varia com o tempo o raio do
balao quando medir 5 cm?

Resolugdo. Representemos por r o raio € ¥ o volume do balao num instante . Conhece-

v . . _ - :
mos D7 1sto €, a variagao com o tempo do volume do balao e pretendemos determinar

dr : - : . - .
a ou seja a variagao com o tempo do raio do balao esferico, no instante em que r = 5. A
regra de derivagdao (4.18) da-nos a ligagao entre o dado e o pedido. Com efeito, temos

A _ dvdr (4,19)

dt dr dt
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Vo .. 4
Para calcularmos % utilizamos a formula V = Tnﬁ que define o volume da esfera em

fungao do raio. Derivando, obtemos = 4nr’ e portanto (4.19) pode escrever-se

dr

dv = 41rr2d—r

dt dr

V
Fazendo %—t_ =50er=35, obtemos di:- = 1/(2n). Quer isto dizer que o raio aumenta de

1/(2n) centimetros por segundo no instante em que r = 5 cm.

O exemplo precedente corresponde ao tipo de problemas ditos de coeficientes de varia-
¢ao ligados. Chama-se a atengdo para o fato que ndo € necessario exprimir » em fungédo de

) dr .

¢ para se poder calcular a derivada @ E precisamente este aspecto que torna a regra de
derivagao da fungdo composta especialmente util em problemas sobre coeficientes de va-
riagao ligados.

Os dois exemplos que se seguem sdo destinados a mostrar como pode utilizar-se a regra
(4.18) para se estabelecerem novas férmulas de derivagio.

ExempLO 2. Dada f{x) = sen(x?) calcular /(x).

Resolugao. A fungdo f é uma composigao, f{x) = u[v(x)]. com v(x) = x? e u(x) = sen x.
Para aplicar a regra necessitamos determinar u'[v(x)] = «'(x*). Uma vez que u’(x) = cos x,
temos u'(x?) = cos(x?) e portanto de (4.11) resulta

f'(x) = cos (x*) - v'(x) = cos (x?) - 2x .
Podemos também resolver o problema usando a notagao de Leibniz. Se escrevermos y = x*

ez=f(x),entdoz=senye dz = f(x). A regra de derivagao (4.18) permite escrever

dx

dz dzd) 2

— = — —— = (cos y}2x) = cos (x°) - 2x,
dx dydx (cos yX2x) )

que coincide com a expressdo obtida anteriormente para f(x).

ExeMPLO 3. Se f{x) = [1v(x)]" com n inteiro positivo, calcular f (x) em fungdo de v(x) e v'(x).

Resolugdo. A fungdo fé uma composigio, f(x) = u[v(x)], onde u(x) = x". Uma vez que
u'(x) = nx""L, temos u’[v(x)] = nle(x))"" !, e a regra de derivagdo da fungd@o composta
conduz-nos a

f'(x) = n[v(x)]" '(x) .
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Se omitirmos a referéncia a x e escrevermos a igualdade anterior como referente a fungoes,
obtemos a importante formula

@) = no" W'

que nos diz como derivar a poténcia de grau n de v quando v" existe. A formula ¢ igualmente

verdadeira para poténcias racionais se v" e v"' estdo definidas. Para resolver o problema na
notagdo de Leibniz, fazemos y = v(x) e z = f(x). Assim z = y", g% = f"(x) e a regra (4.18)
da-nos

E = ﬁ ;}? = !l__l'n_][‘-'(x) = n[[?(,\')]"' IU'(:() ,

que esta de acordo com a primeira solugao.

EXEMPLO 4. A equagao x? + y? = r? representa uma circunferéncia de raio r e centro na
origem. Se resolvermos a equagdao em ordem a y, obtemos duas solugdes as quais servem
para definir duas fungoes f e g dadas no intervalo [—r, r] pelas formulas

f(x) = VrE— x? N g(x) = —\Vr?— x2%.

O grafico de f ¢ a semi-circunferéncia superior ¢ o de g a semi-circunferéncia inferior).
Podem calcular-se as derivadas de f e g pela regra de derivagiao da fungdo composta. Para
S servimo-nos do resultado do Exemplo 3, com tfx)=r* — x* e n= 1/2, e obtemos

f(x) =3 = ) V(=2x) = ——— = =2 (4.20)
Ve - xr f(x)
sempre que f{x) # 0. O mesmo método, aplicado a g, da-nos
gx) = — — = =X (4.21)

Vi gx)

sempre que g(x) # 0. Observe-se que se y indicar quer f{x), quer g(x), ambas as formulas
(4.20) e (4.21) podem fundir-se numa so, a saber,

X
y)=— se p#0. (4.22)
. y . .
Outra aplicagdo util da regra de derivagdo da fun¢io composta encontra-se na regra de
derivagao implicita. Vamos explicar o método e por em evidéncia as suas vantagens, resol-
vendo novamente o Exemplo 4 duma maneira mais simples.

EXempLO 5. Derivagao implicita. A formula (4.22) pode deduzir-se diretamente da
equagdo x? + y? = r?, sem necessidade de resolver esta relativamente a y. Tendo presente que
» € uma fungdo de x [quer seja y = f{x) ou y = g(x)] e supondo que y’ existe, derivamos
ambos os membros da equagdo x? + y? = r? e obtemos
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v 4+ 2y =0. (4.23)

(O termo 2yy’ resulta da derivagao de y* conforme exposto no Exemplo 3). Resolvendo (4.23)
relativamente a y’ obtém-se (4.22).

A equagdo x? + y? = r? diz-se que define y implicitamente como fungao de x (no caso pre-
sente define duas fungdes), e 0 processo segundo o qual se obteve (4.23) a partir daquela
equagdo € designado por derivagdo implicita. O resultado final é valido para ambas as
fungoes /e g assim definidas. Observe-se que num ponto (x, y) da circunferéncia com x # O e
y # 0 o declive da tangente ¢ —x/y, enquanto que o raio dirigido para (x, y) tem o declive y/x.
O produto dos dois declives € — 1, pelo que a tangente é perpendicular ao raio dirigido para o
ponto de tangéncia.

4.12 Exercicios

Nos Exercicios 1 a 14, calcular a derivada f (x). Em cada caso subentende-se que x toma
unicamente os valores para os quais a formula que define f{x) tem significado.

X x
I, f(x) = cos 2v — 2sen oy, 8. f(x) =1g5 — cotg <.
2. f(x) =\ 1+ a7 9. f(x) = sec® x + cse? x,
3. f(x) = (2 = xF)cos aF + 2vsen 10. f(x) =x\ 1 + X2,
- ] 0 - -\‘
4. f(x) = sen (Cos® x) - COS (sen- X). 1 f(x) = ——.
V4 -2
i I 4 X313
5. f{x) =sen” x - COs nx. 12, f(x) = ( I 3)
- X
. _ |
6. f(x) = sen [sen(senx)). 13. fix) = .
V4 X (x+\Vv 1+ 29
_scn*x B y—
7. f(x) “on 14. f(x) = ,,/x + Vx +Vvax
15. Calcular f(x)se f(x) = (I + xN2 + x¥)VH3 + a)V8 x3¥ # =3,

1€. Seja f(x)= sex # 0,¢e s letglx) = Calcularf'(x) e g'(x).

I+ 1/x I+ 1/f(x)

17. A seguinte tabela de valores calculou-se para um par de fungdes fe g e suas derivadas
f'e g’. Construir a correspondente tabela para as duas fungdes compostas k e k defini-
das por h(x) = f lg(x)], kix) = gl fix)l.

X J(x) | f(x) | o yix) } y'(x)
0 P 5 2 | =5
i 3 | =2 0 : 1
2 0 2 3 ' 1
3 2 + 1 . -6
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18. Uma fungdo f e suas derivadas das duas primeiras ordens foram tabuladas como se

indica a seguir. Sendo g(x) = xf{x?), construir uma tabela para g e suas derivadas das
duas primeiras ordens, para x = 0, 1, 2.

x S0 [(x) f(x)
0 0 | 2
1 I 1 |
2 3 2 [
4 6 3 0

19. Determinar a derivada g'(x) em fungao de f(x) se:

(a) g(x) = f(x%); (©) glx) = fIf];
(b) g(x) = f(sen’x) + f(cos* x); (d) g(x) = fUf[f ()]}

Coeficientes de variagao ligados e derivagao implicila.

20. Cada aresta dum cubo dilata-se na razao de | centimetro por segundo. Qual sera a

21.

22,

23.

24.

25.

26.

variagao do volume com o tempo quando o comprimento de cada aresta ¢ (a) 5 cm?; (b)
10 em?; (¢) x cm?

Um aviao desloca-se em voo horizontal, 8 milhas acima do solo (sup6r que a Terra € pla-
na). A rota do voo passa sobre um ponto P do solo. A distancia entre o aviao ¢ o ponto
P decresce na razao de 4 milhas por minuto, no instante em que essa distancia ¢ de 10
milhas. Determinar a velocidade do aviao em milhas por hora.

Um campo de baseball ¢ um quadrado cujo lado mede 90 pés. Uma bola ¢ langada pelo
batedor ao longo de uma linha que passa pela terceira base com uma velocidade cons-
tante de 100 pés por segundo. Qual € a rapidez com que varia a distancia da bola a pri-
meira base, (a) quando a bola se encontra a metade do caminho da terceira base? (b)
quando a bola alcanga a terceira base?

Um barco navega paralelamente a costa, suposta retilinea, com uma velocidade de 12
milhas por hora e a uma distancia da costa de 4 milhas. Qual ¢ a sua velocidade de apro-
ximagao a um farol da costa no instante em que diste 5 milhas do farol?

Um recipiente tem a forma de cone circular reto. A altura e 10 pes e o raio da base 4
pés. Langa-se agua no recipiente, na razao de 5 pés cubicos por minuto. Com que veloci-
dade se eleva o nivel da agua quando a profundidade da agua é de 5 pés se (a) o vértice
do cone esta para cima? (b) o vértice do cone esta para baixo?

Um recipiente de agua tem a forma dum cone circular reto com o veértice para baixo. A
altura mede 10 pés e o raio da base 15 pés. A agua sai pelo fundo a razao de 1 pé cubico
por segundo. Por outro lado langa-se agua no deposito a razao de ¢ peés cubicos por
segundo. Calcular ¢ de modo que o nivel da agua suba com uma velocidade de 4 pés
por segundo no instante em que a profundidade da agua e de 2 pes.

A agua corre para um tanque de forma hemisférica com 10 pés de raio (a parte plana
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para cima). Em qualquer instante seja 4 a altura da agua medida do fundo, r o raio da
superficie livre da agua, e ¥ o volume da agua no tanque. Calcular d¥/dh no instante em
que h = 5 pés. Se a agua corre na razio de 5/3 pés cubicos por segundo, calcular dr/dt
no instante f em que A = 5 pés.

Um tridngulo retangulo variavel ABC no plano XOY tem o angulo reto no vértice B, o
vertice 4 fixo na origem e o terceiro vértice C obrigado a permanecer sobre a parabola y

7 .

=14+ Ex’-. O ponto B parte do ponto (0,1) no instante ¢ = 0 e desloca-se no semi-eixo
positivo OY com uma velocidade constante de 2 cm/seg. Com que rapidez varia a area
do triangulo quando ¢ = 7/2 segundo?

28. O raio dum cilindro circular reto cresce segundo um coeficiente de variag@o constante.

29.

30.

3l

32.

33.

34.

A sua altura € uma fungao linear do raio e aumenta trés vezes mais rapidamente que
este. Quando o raio mede 1 pé, a altura mede 6 pés. Quando o raio mede 6 pés, o volume
esta aumentando na razdo de 1 pé cubico por segundo. Quando o raio mede 36 pés, o
volume aumenta na razao de n pés cubicos por segundo, com n inteiro. Determinar 7.

Uma particula é obrigada a mover-se ao longo duma parabola de equagdo y = x2. (a)
Em que ponto da curva estarao a abcissa e a ordenada variando com o tempo do mesmo
modo? (b) Determinar esse coeficiente de variagao se 0 movimento € tal que no instante ¢
setem x = sen f ey = sen’t.

A equagdo x? + y* = | define y como uma ou mais fungdes de x. (a) Supondo que a deri-
vada y’ existe, ¢ sem resolver a equagao relativamente a y, provar que y’ verifica a
equagao x* + y?y" = 0. (b) Supondo que a segunda derivada y” existe, mostrar que
¥y = =2xy=* sempre que y # 0.

Se 0 < x <35, a equagdo x"* + y"? = 5 define y como uma fung¢do de x. Sem a resolver
em ordem a y, mostrar que a derivada y’ tem um sinal fixo. (SupOe-se que y” existe).
A equagdo 3x? + 4y? = 12 define y implicitamente como duas fungdes de x se |x| < 2.
Admitindo que a segunda derivada y” existe, mostrar que ela satisfaz a equagao 4y°y” =
= -0,

A equagao x sen xy + 2x? = 0 define y implicitamente como uma fungédo de x. Admi-
tindo que a derivada y” existe, mostrar que ela satisfaz a equagao y’x?cos xy + xycos xy
+ sen xy + 4x = 0.

Se y = x', com r um namero racional, r = m/n, entdo y" = x™. Admitindo a existéncia da

. ’ . ‘ ¢ —1 . ~ s e .
derivada y’ derivar a formula y’= rx" ' usando a derivagio implicita e a correspondente
formula para expoentes inteiros.

4.13. Aplicagoes da derivagdao a determinagdo dos extremos de fungoes

A derivagao pode servir para localizar os maximos e minimos de fungdes. Na realidade,
existem no Calculo dois significados diferentes da palavra “maximo”, e distinguem-se um do

outro mediante os qualificativos absoluto e relativo. O conceito de maximo absoluto foi anali-
sado no capitulo 3. Lembramos que uma fungao real f diz-se possuir um maximo absoluto
num conjunto S se existe pelo menos um ponto ¢ em S tal que

f(x) < f(c¢) para todo x em S.
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O conceito de maximo relativo define-se do modo seguinte:

DEFINACAO DE MAXIMO RELATIVO. Uma fungdo f, definida num conjunto S admite um md-
ximo relativo num ponto ¢ de S, se existe um certo intervalo aberto I que contém c¢ tal que

f(x) £ f(e) para todo xem / N S.

O conceito de minimo relativo define-se do mesmo modo, com o sentido da desigualdade
invertido.

Por outras palavras, um maximo relativo em ¢ ¢ um maximo absoluto numa certa vizin-
hanga de ¢, embora nao seja necessariamente um maximo absoluto em todo o conjunto S. Na
fig. 4.7 apresentam-se alguns exemplos. Evidentemente cada maximo absoluto €, em particu-

lar, um maximo relativo.

A . .
maximo
A absoluto
maximo
/ absoluto o
maximo
relativo
L . . -
0 T * _ 2
» xS : -
minimo  “ minimo minimo
absoluto absoluto relativo
flx)=senx, 0<x<r _
Jx)=x(1 —x)}, - <=x<?2

minimo absoluto

Fig. 4.7. Extremos de fungoes.

DEFINICAO DE EXTREMO. Um niimero que é ou um mdximo relativo ou um minimo relativo
de uma fungao f, chama-se valor extremo ou extremo de f.

O teorema seguinte, ilustrado na fig. 4.7, relaciona os extremos de uma fungao com as
tangentes ao respetivo grafico paralelas a OX.

TEOREMA-4.3. ANULAMENTO DA DERIVADA NUM PONTO EXTREMO INTERIOR. Seja [ defi-
nida num intervalo aberto I e admita-se que f tem um mdximo relativo ou um minimo relativo
num ponto interior ¢ de I. Se a derivada f{(c) existe, entdo f(c) = 0.

Demonstragao. Definamos em / uma fungdo Q do modo seguinte:
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O(x) ='M) se X F# ¢, Q(c) = f(¢).

N=—¢C

Uma vez que f{c) existe, Q(x) = Q(c) quando x — ¢, de modo que Q & continua em ¢. Quere-
mos provar que Q(c) = 0, o que se conseguira demonstrando que cada uma das desigualda-
des Q(c) > 0 e Q(c) < 0 conduz a uma contradigao.

Admitamos Q(c) > 0. Pela propriedade de conservagao do sinal das fungoes continuas,
existe um intervalo que contém ¢ no qual Q(x) é positiva. Deste modo o numerador do
quociente Q(x) tem o mesmo sinal que o denominador para todo x # ¢ neste intervalo. Quer
isto dizer que f{x) > flc) quando x > ¢ e f{x) < f{c) quando x < ¢. Esta conclusao contradiz.
porém, a hipotese de que /'tem um extremo em c¢. Por conseguinte, a desigualdade Q(c) > 0 ¢
impossivel. Um argumento semelhante mostra que nao pode ser Q(c) < 0 e portanto sera
Q(c) = 0, como afirmamos. Uma vez que Q(c) = f(c), esta o teorema demonstrado.

E importante notar que uma derivada nula em ¢ ndo implica a existéncia dum extremo
nesse ponto. Por exemplo, seja fx) = x°. O grafico de festa representado na fig. 3.8. Porque
f(x) 3x*, resulta que f(0) = 0. Contudo esta fungéo é crescente em todo o intervalo contendo
0, pelo que ndo existe extremo neste ponto. Este exemplo mostra que o anulamento da
derivada em ¢ ndo € condigao suficiente para a existéncia dum extremo.nesse ponto.

Outro exemplo, f{x) = |x, mostra que nem sempre num extremo a fungdo apresenta deri-
vada nula. Neste caso existe um minimo relativo em 0, como se mostra na fig. 4.9, mas

y
'

Fig. 4.8. f/'(0) = 0, porém Fig. 4.9. Existe um
nao existe extremo em 0. extremo em 0, mas f'(0)
nao existe.

naquele ponto 0 o grafico apresenta um vértice e ndo existe derivada. O teorema 4.3 pres-
supde que a derivada /(c) existe num extremo, quer dizer, o Teorema 4.3 diz-nos que, na
auséncia de pontos angulosos, a derivada sera necessariamente nula num extremo, se este
ocorre no interior dum intervalo.

Numa se¢do posterior descreveremos um critério para a determinagdo de extremoso, o
qual ¢ suficientemente amplo para incluir ambos os exemplos da fig. 4.7 e também o da fig. 4.9,

Este critério, exposto atraves do Teorema 4.8, diz-nos que um extremo ocorrera num ponto
sempre que a derivada muda ai de sinal. Embora este fato possa parecer geometricamente
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evidente, nao é facil demonstra-lo com os conhecimentos adquiridos até aqui. Estabelecere-
mos este resultado como uma consequéncia do teorema do valor médio para derivadas que
estudamos a seguir.

4.14. O teorema dos acréscimos finitos

O teorema dos acréscimos finitos ¢ importante no cileulo, porque muitas propriedades
de fungdes podem facilmente deduzir-se a partir dele. Antes de estabelecermos o teorema,
analisuremos um dos seus casos particulares a partir do qual se poderad estabelecer o teo-
rema mais geral. Este resultado particular foi estabelecido em 1690 por Michel Rolle
(1652-1719), matematico frances.

TEOREMA 4.4. TEOREMA DE ROLLE. Seja f uma fungao continua em todos os pontos de

um intervalo fechado |a, b) e derivdvel em cada ponto do intervalo aberto (a, b). Admita-se
tambeém que

Sla) = f(b).
Entdo existe pelo menos um ponto ¢ no intervalo (a, b) tal que f'(c) = 0.
O significado geométrico do teorema de Rolle esta representado na fig. 4.10. O teorema

afirma muito simplesmente que a curva de f{x) deve admitir pelo menos uma tangente para-
lela a OX em algum ponto entre a ¢ b.

f(e)=0

/

(¢,f(0))
\

A
I
| |
I B |
A + - l B
i I
) A :
1
H H
¢ ¢ \_/ b a ¢ b a ¢ ¢ b
(a) (b)
Fig. 4.10. Interpretagao geo- Fig. 4.11. Interpretagao geométrica do teorema do
metrica do teorema de Rolle. valor medio.

Demonstragao. Admitindo que f(x) # 0 para todo o x no intervalo aberto (a, b) chegaremos
a uma contradigao: segundo o teorema do valor extremo para fungdes continuas f deve
alcangar o0 seu maximo absoluto M, e o minimo absoluto m, algures no intervalo fechado
la, b]. Pelo Teorema 4.3 nenhum valor extremo pode ser alcangado em qualquer ponto inte-
rior (caso contrario a derivada seria ai nula). Por conseguinte, ambos os valores extremos
serao assumidos nos pontos extremos a e b do intervalo. Mas,uma vez que f{a) = f{b), isto
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significa que serd m = M ¢ portanto f constante em la. b]. Todavia esta conclusdo vai con-
tra a hipotese de que f7x) # 0 para todo o x de (a, b). Resulta pois que f{¢) = 0 para pelo
menos um ¢ satisfazendo a a < ¢ < b, 0 que demonstra o teorema.

Podemos usar o teorema de Rolle para demonstrar o teorema do valor médio. Porém,
antes de o demonstrarmos, sera util examinar o seu significado geométrico. Cada uma das
curvas tragadas na fig. 4.11 € o grafico de uma fungao continua / admitindo tangente em
cada ponto do intervalo aberto (a, b). No ponto (¢, fic)) representado na fig. 4.11 (a) a
tangente ¢ paralela a corda A B. Na fig. 4.11 (b) existem dois pontos onde a tangente € para-
lela & corda A B. O teorema dos acréscimos finitos garante a existéncia de pelo menos um
ponto com esta propriedade.

Para traduzir analiticamente esta propriedade geométrica, necessitamos unicamente ter
presente que o paralelismo de duas retas implica a igualdade dos respetivos declives. Uma
vez que o declive da corda AB é o quociente [ f{b) — fla)l/(b — a) e ainda porque o declive da
tangente a curva no ponto ¢ é definido pela derivada f{c), a afirmagao anterior significa que

e (4.24
b—a
para algum ¢ no intervalo aberto (a, b).

Para por ainda mais em destaque a evidéncia intuitiva de (4.24), podemos imaginar f{7)
como definindo a distancia percorrida por uma particula em movimento, no tempo ¢. Entdo o
quociente do primeiro membro de (4.24) representa a velocidade média durante o intervalo de
tempo [a, b], e a derivada f (?) representa a velocidade instantanea no instante 7. A igualdade
significa que deve existir um instante para o qual a velocidade instantanea iguala a velocidade
média. Por exemplo, se a velocidade média dum automodvel durante um curto trajeto € de
45 km/hora, entdo o velocimetro deve registar 45 km/hora pelo menos uma vez durante a
viagem.

O teorema pode enunciar-s¢ do modo seguinte:

TEOREMA 4.5. TEOREMA DOS ADRESCIMOS FINITOS® Se f € uma fungao continua no inter-

valo fechado |a, b) tendo derivada em todo o ponto do intervalo aberto (a, b), entdao existe
pelo menos um ponto interior c de (a. b) para o qual

f(b) — fla) = f'(e)b — a). - (4.25)

Demonstragao. Para se poder aplicar o teorema de Rolle necessitamos duma fungido que
tenha valores iguais nos pontos extremos a e b. Afim de construirmos uma tal fungao, modifi-
camos f da maneira seguinte:

h(x) = f(x)(b — a) — x[f(b) — f(a)] .

*Frequentemente designado por teorema de Lagrange,
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Entdo h(a) = h(b) = bfla) — af(b). Além disso h € continua em |a, b] ¢ admite derivada no
intervalo (a, b). Aplicando o teorema de Rolle a A, encontramos que Afc)= 0 para um
certo cem (a, b). Mas

W(x) = f'(x)}b—a)— [f(b) — fla)].

e quando x = ¢, obtem-se a igualdade (4.25).

Observe-se que o teorema nio faz qualquer afirmagiio acerca da localizagio exata de
um ou mais valores ¢, afirmando apenas que eles existem algures entre a ¢ b. Para algumas
fungdes a posicio desses valores pode ser especificada com rigor, mas em muitos casos €
muito dificil efetuar uma determinagido precisa desses pontos. Contudo, o interesse real
do teorema reside no fato de que muitas conclusdes podem ser extraidas do mero conhe-
cimento da existéncia de, pelo menos, um tal valor c.

Nota: E importante referir que a conclusio do teorema anterior pode deixar de verifi-
car-se se existe algum ponto entre a ¢ b no qual ndo exista derivada. Por exemplo, a
fungdo f definida pela equagao f{x) = |x| € continua em todo o eixo real e tem derivada em
todos os pontos do mesmo, exceto em 0. Sejam 4 = (—1,A—1)) e B = (2, f2)). O declive da
corda unindo A a B ¢

[ —f(=1) 2-1 1
2—-(=1) 3 3

L]

: - .. 1
mas a derivada nao ¢ igual a — em nenhum ponto.

3
E frequentemente util a seguinte generalizagdo:

TEOREMA 4.6. TEOREMA DE CAUCHY. Sejam [ e g duras fungoes continuas no intervalo
fechado \a, b e derivaveis no intervalo aberto (a, b). Entdo para um certo ¢ em {c'r. b), tem-se
certo ¢ em (a, b), tem-se

S (©)[gb) — gl@)] = g'(c)[ f(b) — fla)].
Demonstragdo. A demonstragdo ¢ semelhante a do teorema 4.5. Fagamos
h(x) = f(x)[g(h) — gla)] — g(x)[f(b) — fla)].

Entao h(a) = h(b) = fla)g(b) — g(a)f(b). Aplicando o teorema de Rolle a 4, encontramos que
h'(c) = 0 para algum c em (a, b). Calculando h'(c) a partir da formula que define 4 encontra-
mos o teorema de Cauchy. O Teorema 4.5 ¢ um caso particular deste fazendo gfx) = x.
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4.15. Exercicios

1. Mostrar que no grafico de qualquer polinomio quadratico, a corda unindo os pontos para
a+b
5
2. Usar o teorema de Rolle para demonstrar que, qualquer que seja b, existe no maximo um
ponto x no intervalo —1 < x < | para o qual x*-3x+ 5 = 0.
3. Definida a fungao f do modo seguinte:

0s quais x = a e x = b & paralela a tangente a curva no ponto em que x =

3 -2 _ ]
f(x) = 3 se x <1, /(x)=; s¢e x> 1,

(a) Tragar o grafico de f para x no intervalo 0 < x < 2.
(b) Mostrar que f verifica as condigdes do teorema de Lagrange no intervalo [0, 2] e
determinar todos os pontos dados pelo teorema.
4. Seja flx) = 1 — x¥3, Mostrar que f{1) =f{—1) = 0, mas que f (x) nunca se anula no inter-
valo [—1, 1]. Explicar como é isto possivel, em face do teorema de Rolle.

| 5. Mostrar que x* = x sen x + cos x se verifica exatamente para dois valores reais de x.
6. Provar que o teorema de Cauchy pode escrever-se na forma

f(x + h) = f(x) + hf (x + 0h) onde 0<6O<1.

Determinar 6 em fungdo de x e & quando: (a) f{x) = x?; (b) fix) = x*. Fixar x, x # 0, e
calcular, em cada caso, o limite de 6§ quando A — 0.

7. Seja f um polindbmio. Um numero = diz-se um zero de multiplicidade m se f{x) =
= (x—a)™g(x), com g(=) # 0.

(a) Se f'tem r zeros no intervalo [a, b], provar que /“tem pelo menos r — 1 zeros e que,

1 em geral, a derivada de ordem k, /¥/, tem pelo menos r — k zeros em [a, bl. (Cada zero €
contado tantas vezes quantas as unidades do seu grau de multiplicidade.)

(b) Se a derivada de ordem k, f'*/, tem exactamente r zeros em |[a, b], 0 que se pode con-
cluir relativamente ao niumero de zeros de f em la, b]?

8. Utilizar o teorema de Lagrange para deduzir as seguintes igualdades:
(a) Isen x — sen y| <|x — y|
b)ymy* (x—y)<x" =y <nx*' (x—y)se0<y<<x,n=1,2,3,...

9. Uma fungao f; continua em [a, b], admite segunda derivada /" em todo o ponto do inter-
valo aberto (a, b). O segmento de reta que une (a, f{a)) e (b, f{b)) interseta o grafico de
J num ponto (¢, f{c)), sendo a < ¢ < b. Provar que f7(t)= 0 para pelo menos um ponto ¢
em (a, b).

10. Neste Exercicio esta delineada uma demonstragao do teorema do valor intermédio para
derivadas. Admitamos que f possui derivada em todo o ponto do intervalo aberto I.
Escolhamos a < b em I: Entao a derivada f’toma todos os valores compreendidos entre
f(a) e f(b) em (a, b).

(a) Definir uma nova fungao g em [a, b] do modo seguinte:
S = fla)
- —a

X

g(x) € x #a, gla) = fa).
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Demonstrar que g toma qualquer valor compreendido entre f{a) e g(b) no intervalo
aberto (a, b). Utilizar o teorema de Lagrange, para demonstrar que /' toma qualquer
valor compreendido entre f{a) e g(b) no intervalo aberto (a, b).

(b) Definir em [a, b] uma nova fun¢ido A do modo seguinte

h(x) =[(xz+j;(b) se x#b,  hb) =[(b).

Raciocinando de forma analoga a que seguiu na alinea (a), demonstrar que /" toma
qualquer valor compreendido entre fb) e hfa) em (a. b). Uma vez que hfa)= g(b)..
fica demonstrado o teorema.

4.16. Aplicacoes do teorema de Lagrange a propriedades geométricas das fungdes

O teorema de Lagrange pode utilizar-se para deduzir propriedades duma fungdo a par-
tir do conhecimento do sinal da respetiva derivada. E o que se prova pelo teorema seguinte.

TEOREMA 4.7. Se f é uma fungdo continua num intervalo fechado |a, b) e admitindo déri-
vada [ em cada ponto do intervalo aberto (a, b), entao tem-se:

(a) Se f'(x) > 0 para todo o x de (a, b), f é estritamente crescente em la, b);

(b) Se f'(x) < 0 para todo o x de (a, b), f é estritamente decrescente em |a, b);

(c) Se f'(x) = 0 para todo o x de (a, b), f é constante em [a, b].

Demonstragao. Para demonstrar (a) temos que provar que f{x) < f{y) sempre que a < x <
<y < b. Por conseguinte, suponhamos x <y e apliquemos o teorema de Lagrange ao
subintervalo fechado [x, y|. Obtemos

f(») = f(x) = f(e)Ny = x), onde x<c<y. (4.26)

Uma vez que f(c) e y — x sdo positivos, 0 mesmo se verifica para f{y) — f{x), e isto significa
que f{x) < f{y), como se afirmara. Esta assim demonstrada a alinea (a) sendo a demonstragio
de (b) semelhante. Para demonstrar (c), utilizamos a igualdade (4.26) com x = a. Visto que
fe) = 0, temos f{y) = fla) para todo o x de [a, b] e portanto f é constante em la, b).

O Teorema 4.7 pode servir para demonstrar que a fungdo admite um extremo sempre que
a derivada muda de sinal.

TEOREMA 4.8. Seja fuma fungao continua num intervalo fechado |a, b] a qual admite deri-
vada f' em todo o ponto do intervalo aberto (a, b).excepto possivelmente num ponto c.
(a) Se f(x) é positiva para todo 0 x < c e negativa para todo o x > c, entdo f tem um
maximo relativo em c.
(b) Se, pelo contrario, f (x) é negativa para todo o x < c e positiva para todo x > c, entdo
[ tem um minimo relativo em c.

Demonstragao. Para a alinea (a), o Teorema 4.7(a) permite-nos concluir que / ¢ estrita-
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mente crescente em [a, c] e estritamente decrescente em [¢, b]. Portanto f{x) < f{c) para todo
0 x # cem (a, b) e assim ftem um maximo relativo em ¢, ficando demonstrada (a); a demons-
tragao de (b) ¢ completamente analoga. Na fig. 4.12 representam-se as duas hipoteses.

!
I
!
ﬂ
|
I
1
!
|
l
|
!
t
I
i
i

B P —ee————— -
e

|
|
I
|
I
I
1
e

n e - — — - ——
'~ R ——

¢

(a) Maximo relativo em ¢ (b) Minimo relativo em c.
Fig. 4.12. Os extremos da fungdao ocorrem quando a derivada muda de sinal.
4.17. Critério da derivada de segunda ordem para a determinagao de extremos

Se uma fungdo f ¢ continua no intervalo fechado [a, bl, o teorema dos valores extremos
diz-nos que ela possui um maximo absoluto e um minimo absoluto algures em |a, b]. Se f
admite derivada em cada ponto interior, entao os unicos pontos em que podem aparecer os
extremos sao:

(1) os extremos a ¢ b do intervalo.

(2) aqueles pontos interiores x para os quais f'(x) = 0.

Os pontos do tipo (2) chamam-se frequentemente ponto criticos de f. Para decidir se um
ponto criticoc corresponde a um maximo ou um minimo (ou nem um nem noutro) necessita-
mos de mais informagdo acerca da fungao f. Habitualmente o comportamento de / num
ponto critico pode estudar-se a partir do sinal da derivada de f'na vizinhanga de c. O teorema
que apresentamos a seguir mostra que o estudo do sinal da segunda derivada, nas proximida-
des de ¢, pode também ser de utilidade como critério para a existéncia de extremos.

TEOREMA 4.9. CRITERIO DA SEGUNDA DERIVADA PARA A EXISTENCIA DE EXTREMOS NUM
PONTO CRITICO. Seja ¢ um ponto critico de f num intervalo aberto (a, b), isto é, f'(c) = 0, com
a < ¢ < b. Se f admite segunda derivada " em (a, b) tem-se:

(a) Se f” é negativa em (a, b), f tem um mdximo relativo em c.

(b) Se f” é positiva em (a, b), f tem um minimo relativo em c.

As duas hipoteses estdo representadas na fig. 4.12.
Demonstragao. Consideremos o caso da alinea (a), /" < 0 em (a, b). Pelo Teorema 4.7

(aplicado a f’), a fungdo f’ € estritamente decrescente em (a, b). Mas f’(c) = 0 e, consequente-
mente. f muda de sinal, passando de positiva a negativa, em ¢, como se indica na fig. 4.12(a).
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Portanto, segundo o Teorema 4.8, ftem em ¢ um maximo relativo. A demonstragao da alinea
(b) e inteiramente analoga.

Se /" ¢ continua em ¢, e /"(c) # 0, existira uma vizinhanga de ¢ na qual f~ tem 0 mesmo
sinal que /(). Por conseguinte, se f(c) = 0, a fungdo f admite um maximo relativo em c se
f'(c) é negativa, e um minimo relativo se / (c) € positiva. Este critério é suficiente para muitos
exemplos que aparecem na pratica.

O sinal da segunda derivada esta também relacionado com a concavidade e convexidade
de /. O teorema que apresentamos a seguir mostra que a fung@o € convexa nos intervalos em
que /" & positiva, como € o caso da fig. 4.12(b). Na fig. 4.12(a) /' ¢é concava e /" € negativa.
Basta discutir o caso da convexidade, porque se f € convexa entao —f é coOncava.

TEOREMA 4.10. CRITERIO DA DERIVADA PARA A CONVEXIDADE. Seja f continua no inter-
valo fechado |a, b) e admitindo derivada em todo o ponto do intervalo aberto (a, b). Se [~
é crescente em (a, b) entdo f é convexa em |a, bl. Em particular, f é convexa se [ existe e é
nao negativa em (a, b).

Demonstragdo. Consideremos x < yem [a, bl esejaz =ay + (I —a)x,com0 < a < 1.
Descjamos provar que f{z) < affy) + (1 — a) f{x), mas visto que f{z) = aflz) + (1 — a) f{z),
entdo € 0 mesmo que demonstrar

.

(1 = 2)[f(z) = f(x)] < «2[f(y) = f(2)].

Pelo teorema do valor médio (aplicado duas vezes), existem pontos ¢ e d verificando x < ¢ <
<zez<d<ytas que

f(z) = flx) = fi(e)z — x), e fO) = flz) =f(d)Ny —z).

Ja que /¢ crescente, temos f (¢) < f(d). Temos igualmente (1 — a) (z — x) = a (y — z), e deste
modo podemos escrever

(1 = 2)[f(2) = f()] = (1 = 2)f (eNz — x) S af (dAy — 2) = «[f(y) = f(2)],
0 que demonstra a desigualdade exigida para a convexidade.
4.18. Tragado de curvas

A informagao reunida nos teoremas das ultimas segdes € muitas vezes util nc tragado de
curvas. Ao desenhar o grafico de uma fungao /f, devemos determinar em primeiro lugar o
dominio de /[0 conjunto dos pontos x para os quais esta definida f{x)] e, se for facil fazé-lo,
devemos determinar o contradominio de f{lo conjunto dos valores assumidos por /). O conhe-
cimento do dominio e do contradominio dao-nos uma ideia da extensao da curva y = f{x),
uma vez que tal conhecimento especifica a porgdo do plano XOY em que esta situada a
curva. Seguidamente ¢ aconselha vel determinar os pontos (se existirem) em que a curva inter-
seta os eixos coordenados. O ponto de intersecgao com OY é simplesmente (0, f0)), admi-
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tindo que O pertence ao dominio de f'¢ as intersegoes com 0X sao os pontos (x, 0) para os
quais f{x) = 0. O calculo destes pontos pode ser dificil na pratica e, por vezes, teremos que
contentar-nos com valores aproximados.

Devemos igualmente determinar os intervalos em que f'é monotona pela analise do sinal de
f, e determinar os intervalos de convexidade e concavidade pela analise do sinal de f”,
devendo merecer atengao especial a determinagao dos pontos em que as tangentes ao grafico
sao paralelas a 0X.

EXEMPLO 1. O grdfico de y = flx), com fix) = x + 1/x com x # 0.
Neste caso nao existem pontos de intersecao com 0s €ixos. As duas primeiras derivadas
sao dadas por

S)=1=1/x*, [f"(x)=2/x*.

Si
wl | =
«|
w}_-
r

Fig. 4.13. Grifico de fix) = x + 1/x. Fig. 4.14. Grafico de fix) = 1/(x* + 1).

A primeira derivada é positiva para x* > 1, negativa para x* < 1, e nula se x> = 1. Daqui se
conclui que existe um minimo relativo em x = 1 € um maximo relativo em x = — 1. Para
x > 0 a segunda derivada é positiva pelo que a primeira derivada é estritamente crescente.
Para x < 0, a segunda derivada ¢ negativa e portanto a primeira derivada € estritamente
decrescente. Para x proximo de 0, o termo x € pequeno comparado com 1/x e a curva
comporta-se como o grafico de y = 1/x (Ver fig. 4.13). Por outro lado, para grandes valores
de x(positivos ou negativos), o termo 1/x é pequeno comparado com x, € a curva € muito
semelhante a reta y = x. Neste exemplo a fungdo € impar f{—x) = — f{x), pelo que o grafico é
simétrico relativamente a origem.

No exemplo anterior a reta y = x € uma assintota da curva. Em geral uma reta, nao
paralela a 0Y, de equagao y = mx + b diz-se assintota do grafico de y = f{x) se a diferenga
fix)—(mx + b)tende para 0 quando x toma valores arbitrariamente grandes quer positivos,
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quer negativos. Uma paralela a 0Y, x = a, diz-se assintota “vertical”™ se | f{x)| toma valores
arbitrariamente grandes quando x—a por valores a esquerda ou a direita de a. No exem-
plo anterior 0Y ¢ uma assintora “vertical”.

EXEMPLO 2. O grdfico de y = fix), com fix) = 1/(x* + 1).
Esta ¢ uma fungao par, positiva para todo o valor de x e admite o eixo 0X como assintota.
A primeira derivada é dada por

-y
f,(\) = 0 = 9 ?
(x*+ 1)

e assim f(x) < 0sex > 0,f(x) > 0sex <0, ef(x) =0 quando x = 0. Portanto a fungao
cresce para valores de x negativos e decresce para valores de x positivos € tem um maximo
relativo em x = 0. Derivando segunda vez encontramos

f(x) = (x* 4+ DH(=2) = (=2x)2(* + D2x) _ 203x* = 1)
o (" + 1)’ (x* 4 1)

Entdo /"(x) > 0se 3x* > 1, e ['(x) < 0 se 3x* < 1. Consequentemente a primeira derivada

’ 1 1 . .
cresce quando x* > 3 ¢ decresce quando x? < 3 Esta informagao basta para tragar a

curva da fig. 4.14. Os dois pontos do grafico correspondentes a x> = ——, onde a segunda de-

‘J-Jl--

rivada muda de sinal, chamam-se pontos de inflexao.

4.19. Exercicios

Nos exercicios que se seguem: (a) determinar todos os pontos x tais que f (x) = 0; (b) ana-
lisar o sinal de /e determinar os intervalos em que f'é monotona; (c) analisar o sinal de /" e
determinar os intervalos em que / & monotona; (d) tragar o grafico de /. Em cada caso, a
fungao esta definida para todos os valores de x para os quais a formula de f{x) € provida de
significado. _

N . T | -‘_______l_____.
. f(x) = x 3x + 2. 8. f(x) = g vy
2. f(x) = x* — 4x. 9. f(x) = x/(1 + x%).
3. f(x) = (x — 1)*(x + 2). 10. f(x) = (x* — 4)/(x* - 9).
4. f(x) = x* — 6x* + 9x + 5. 11, f(x) =sen?x,
5. flx) =2 4+ (x = D4 12. f(x) = x — senx.
6. f(x) = I/x% 13. :f(.\l = X <+ COS X.
7. flx) = x + /% 14, fixv) = {v* + ' cos 2x.
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4.20. Exemplos resolvidos de problemas de extremos

Muitos problemas de extremos, em Matematica Pura ou Aplicada, podem ser sistematica-
mente resolvidos com recurso ao cilculo diferencial. Na realidade, os primeiros rudimentos
de calculo diferencial foram desenvolvidos quando Fermat tentou encontrar métodos gerais
de determinagio de maximos e minimos. Nesta se¢io vamos resolver alguns exemplos,
dando ao leitor a possibilidade de resolver outros, apresentados no conjunto de exerci-
cios da Segio 4.21.

Em primeiro lugar formulamos dois principios simples-que podem ser usados para
resolver grande numero de problemas de extremos.

EXemMpPLO 1. Principio do produto mdximo, com soma constante. Dado o nimero positivo
S, provar que entre todos os pares possiveis de nimeros positivos x € y tais que x + y = S, 0

1

produto xy é maximo quando x = y = > S.

Demonstragao. Se x + y = S, entdo y = § — x e o produto xy € igual a x(S — x) =
= x§ — x%. Seja f{x) = xS — x*. Este polinomio do 2.° grau tem como primeira derivada

['(x) = § — 2x, a qual € positiva para x < %S e negativa para x > %S. Deste modo o ma-

Sey=8S—-x= -—%— S. Pode obter-se a mesma conclusio

-

o] —

ximo de xy ocorre quando x =

sem recorrer a0 calculo. Escreve-se muito simplesmente f{x) = % S*—(x— %S)2 ¢ obser-

va-se que f{x) ¢ maxima quando x = %S.

EXEMPLO 2. Principio da soma minima, com produto constante. Dado o numero positivo
P, demonstrar que entre todos os pares possiveis de numeros positivos x e y tais que xy = P, a
soma x + y € minima quando x = y = \/ﬁ

Demonstragao. Temos que determinar o minimo da fungdo f{x) = x + P/x parax > 0. A
primeira derivada, € f(x) = 1 — P/x?, a qual € negativa para x* < P e positiva para x> > P,
de modo que f{x) é minima para x = \/F Daqui resulta que a soma x + y € minima quando
xX=py= \/7’_

ExemMpLO 3. Entre todos os retangulos com um dado perimetro, o quadrado € o de maior
area.

Demonstragao. Usamos o resultado do Exemplo 1. Sejam x e y as medidas dos compri-
mentos dos lados dos retangulos. Se o perimetro é fixo, entdo x + y é constante, de maneira
que a area xy € maxima quando x = y. Logo, o retdngulo maximizante relativamente a area
¢ 0 quadrado.

EXEMPLO 4. A média geométrica de dois numeros positivos ndo excede a sua média

aritmética, isto é Vab < % (a + b).
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Demonstragao. Dados @ > 0 e b > 0, seja P = ab. Entre todos 0s numeros positivos x € y
com xy = P, a soma ¢ minima quando x = y =/ P. Por outras palavras, se xy = P, entao
x +y2\/P +\/P=2\/P. Em particular, a + b 22\/P = 2/ab pelo que \/ab <

g—;—— (a + b). A igualdade verifica-se se ¢ sO se a = b.

ExempLO 5. Um bloco de peso W move-se sobre um plano horizontal por agao duma
a " . n
for¢a que faz um angulo / com a reta da diregao do movimento, sendo 0 <6 < —~»Como se
indica na fig. 4.15. Admite-se a existéncia duma forg¢a de atrito que & proporcional a forga
normal com que o bloco pressiona perpendicularmente o plano em que se desloca. Deter-
minar o angulo para o qual a forga propulsora necessaria para vencer o atrito € a menor
possivel.

Resolugdo. Seja F(6) a forga que produz o movimento, a qual admite uma componente ver-
tical F() sen 6, de modo que a resultante das forgas normais a superficie do plano é N = W —
— F(p) sen (. A forga de atrito € uN, com x uma constante chamada coeficiente de atrito. A
componente horizontal da forga F(0) € F(0) cos 0. Quando se iguala a forga de atrito te-
mos F cos 0 = ul W— F(0) sen 0], donde resulta

uW

cos O + usenl -

F(0) =
Para minimizar F(8), maximizamos o denominador g(f) = cos / + usen # no intervalo
m n . .
0<hH< -5 Nos pontos extremos temos g(0) =l e g(——z—) = 1. No interior do intervalo temos
g'(0) = —senll + ucos b,

de modo que gtem um ponto critico em §) = a, onde sen a = ucos a. Isto da g(a) = cos a +

F(6)
(0, b)
Forga de atrito )
*ﬁ. ] * F(f) cosl)

!

Forga normal N = W— F(fi)sen 6

Fig. 4.15. Exemplo 5. Fig. 4.16. Exemplo 6.



Célculo diferencial 227
+ p'cos a = (| + p*)cos a. Podemos exprimir cos a em fungiio de u. Uma vez que 1 cos® a =
= sen’ @ = | —cos’ a, encontramos (1 + p?)cos® @ = |, e assim cos @ = 1/y/1 + p*. Entilo
= n : s
g(a) =/ 1 + u*. Visto que g(a) excede g(0) e g (T) 0 maximo de g ocorre no ponto critico.
Portanto a for¢ga minima requerida €
uWw —uW

F(x) = : .
g(x) Vil 4t

EXEMPLO 6. Determinar a mais curta distancia de um dado ponto (0, b) sobre OY a para-
bola x* = 4y. (O namero b pode tomar qualquer valor real.)

Resolugao. A parabola esta tragada na fig. 4.16. A quantidade a ser minimizada ¢ a distén-
cia d definida por

d=Vxt+(y— b2,

com a restricao x? = 4y. Da figura ressalta imediatamente que quando b é negativo a distan-
cia minima ¢é |6 Quando o ponto (0, ) se desloca para cima ao longo do semi-eixo positivo
0Y o minimo é b até que o ponto alcanga uma certa posi¢ao especial e a partir da qual a dis-
tancia d ¢ menor que b. Vamos agora determinar essa posigao especial.

Em primeiro lugar, observa-se que o ponto (X, y) que minimiza d também minimiza 4*
(Esta nota permite-nos eliminar a derivagao da raiz quadrada). Em seguida podemos exprimir
d? em fungao unicamente de x ou de y. Exprimiremos d? em fungao de y e deixamos ao leitor
o exercicio de efetivagdao dos calculos quando d? ¢ expresso em fungdo de x.

Deste modo a fungdo a ser minimizada é

f(y)=d*=4y + (y — b)*.

Embora f(y) seja definida para todo o real y, a natureza do problema exige que procuremos o
minimo unicamente entre aqueles valores de y tais que y = 0. A derivadaéf(y) =4+ 2(y—
— b) que se anula quando y = b — 2. Para b < 2 isto conduz-nos a um ponto critico y, nega-
tivo, o qual deve ser excluido devido a restricdo y > 0, isto &, se b < 2 0 minimo ndo ocorre
num ponto critico. Com efeito, quando b < 2, vemos que f(3) > O quando y > 0, e por isso fé
estritamente crescente para y 2 0. Portanto o minimo absoluto ocorre no ponto y = 0. O
correspondente minimo d é \/ b? = |bl
Se b 2 2, existe um ponto critico legitimo em y = b — 2. Visto que f'(¥) = 2 paratodo o y, a
derivada /" é crescente, e portanto o minimo absoluto de f ocorre neste ponto critico. O
minimo d € /4(b— 2) + 4= 2V b — 1. Fica assim provado que a distincia minima ¢é|b| se
b<2eé2/b—1sebh =2 (O valor b= 2 ¢éo valor especial referido atras).

4.21. Exercicios

I. Provar que entre todos os retangulos de determinada area, o quadrado é o que tem
menor perimetro.
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2.

10.

1.

12.

13.

14.

I5.

16.

17.

18.

19.

Célculo

Um agricultor dispde de L metros de réde para cercar uma pastagem de forma retangu-
lar, adjacente a uma longa parede de pedra. Que dimensoes darao a area maxima da pas-
tagem.

. Um agricultor deseja cercar uma pastagem rectangular de area 4, adjacente a uma longa

parede de pedra. Quais as dimensdes convenientes de modo a gastar o menos possivel de
réde.

Dado S > 0, provar que entre todos os pares de nimeros positivos x e y com x + y = §,
a soma x* + y* ¢ minima quando x = ).

Dado R > 0, provar que entre todos os pares de nimeros positivos x e y com x? + p* =
= R, a soma x + y € maxima quando x = ).

O lado de um quadrado tem comprimento L. Provar que entre todos os quadrados

inscritos no quadrado dado, o de area minima tem o ladode comprimento 5

O lado dum quadrado mede L. Determinar o quadrado de area maxima que pode ser
circunscrito no quadrado dado.

Demonstrar que entre todos os retangulos que podem inscrever-se numa circunferéncia
dada, o quadrado € o que tem area maxima.

Demonstrar que entre todos os retangulos de area dada, o quadrado tem o circulo ins-
crito minimo.

Dada uma esfera de raio R, determinar o raio r e a altura A4 do cilindro circular reto de
maior superficie lateral 2nrh que pode ser inscrito na esfera.

Entre todos os cilindros circulares retos com dada superficie lateral, provar que a menor
esfera circunscrita tem um raio igual ao raio do cilindro multiplicado por \/2—
Dado um cone circular reto de raio R e altura h, determinar o raio e a altura do cilindro
circular reto de maior area lateral que pode inscrever-se no cone.

Determinar as dimensoes do cilindro circular reto de volume maximo que pode ser ins-
crito num cone circular recto de raio R e altura A.

Dada uma esfera de raio R calcular, em fungdo de R, o raio r e a altura 4 do cone circu-
lar reto de volume maximo que pode ser inscrito nessa esfera.

Determinar o rectidngulo de area maxima que pode inscrever-se num semicirculo, tendo
um dos lados sobre o diametro.

Determinar o trapézio de area maxima que pode ser inscrito num semicirculo, a base
inferior estando sobre um diametro.

Uma caixa aberta foi construida com um retangulo de cartao, retirando quadrados
iguais em cada vértice e dobrando para cima os lados. Achar as dimensoes da caixa de
maior volume que pode construir-se deste modo se o retangulo tem lados (a) 10 e 10;(b)
12 e 18.

Se a e b sao os catetos de um triangulo retangulo cuja hipotenusa é 1, determinar o
maior valor de 2a + b.

Um camiao tem que percorrer 300 milhas numa estrada com uma velocidade constante
de x milhas por hora. As leis do circulagao impoem 30 = x < 60. Admita-se que o com-
bustivel custa 30 céntimos por galdo e ¢ consumido na razao de 2 + x?/600 galoes por
hora. Se o condutor recebe D dolares por hora e se cumprem as restrigoes do transito,
determinar a velocidade mais economica e o custo da viagem se: (a) D =0;(b) D = 1;
(c)D=2;(d D =3;() D=4
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20. Um cilindro ¢ definido pela revolugao de um retangulo em torno do eixo 0X, estando a

21.

base do retangulo sobre este eixo e todo o retéangulo estando na area limitada por 0X e
a curva y = x/(x* + 1). Determinar o volume maximo possivel para o cilindro.
Dobra-se uma folha de maneira que o canto inferior direito fique situado sobre o lado
esquerdo da mesma (ver fig. 4.17). Se a largura da pagina é de 6 polegadas determinar o
comprimento minimo da dobra. Qual € o angulo que forma esta dobra de comprimento
minimo com o lado direito da folha de papel? Supoe-se que a folha é suficientemente
larga para evitar que a dobra alcance o cimo da folha.

Fig. 4.17. Exercicio 21. Fig. 4.18. Exercicio 22.

22. (a) Um tridngulo isosceles esta inscrito numa circunferéncia de raio r, como se indica na

23.

24,

fig. 4.18. Se o angulo 2a no vertice € obrigado a tomar valores entre 0 e L, determinar

os valores maximos e minimos do perimetro do triangulo. Explicar em pormenor o ra-
ciocinio efectuado.

(b) Qual é o raio do menor disco circular suficientemente grande para cobrir fodo o
tridngulo isosceles de perimetro dado L? Dar todos os pormenores do raciocinio
seguido.

Uma janela tem a forma dum retangulo encimado por um semicirculo com o diametro
igual a base do retangulo. A parte retangular ha-de ser de vidro transparente e a parte
circular de vidro de cor que admite unicamente por pé quadrado metade da luz do
vidro transparente. O perimetro total da janela é P. Determinar, em fungdo de P, as
dimensoes da janela que deixara entrar mais luz.

Um tronco de madeira com 12 pés de comprimento tem a forma dum tronco de cone
circular reto com didmetros nas extremidades de 4 e (4 + h) pés, com A& > 0. Determi-
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nar, em fungao de A, o volume do maior cilindro circular reto que pode ser extraido do
tronco, coincidindo o seu eixo com o eixo do tronco de cone.

» . n v . .
25. Dados n numeros reais a,, a,, ..., @,, provar que a soma X, _, (x —a,)* ¢ minima quando
x ¢ a media aritmética de a,, a,, ..., a,.

26. Se x > 0, seja f{x)=5x* + AxX , em que A € uma constante positiva. Determinar o me-
nor valor de A tal que f{x) 2 24 para todo o x > 0.

27. Para cada real ¢, seja f(x) = —%x’ + Ix e represente m(7) o minimo de f{x) no inter-

valo 0 < x < 1. Determinar o valor de m(?) para cada ¢ no intervalo —1 < ¢ <1. Ter pre-
sente que para certos valores de ¢ o minimo de f{x) pode ocorrer nos pontos extremos do
intervalo 0 = x <1.

28. Sabe-se que x esta no intervalo a £ x £ b, com a > 0. Queremos aproximar x por meio
de outro nimero ¢ em [a, b] de maneira que o erro relativo | — x|/x seja tdo pequeno
quanto possivel. Represente M(?) o valor maximo de |t — x|/x quando x varia de a a b.
(a) Provar que este maximo ocorre num dos pontos extremos x = a ou x = b. (b) Provar
que M(1) ¢ minimo quando ¢ € a média harmonica de a e b, isto €, quando 1/t =

|
— —i—(lfa + 1/b).

*4.22. Derivadas parciais

Nesta segao introduz-se o conceito de derivada parcial e inicia-se o leitor nas respetivas
notagao e terminologia. Nao faremos uso das nogGes aqui expostas em nenhuma parte deste
volume I, pelo que o seu estudo pode ser omitido ou deixado para mais tarde sem que haja
perda de continuidade.

No Capitulo I definiu-se uma fungao como uma correspondéncia que associa a cada ele-
mento de um conjunto X um € um so elemento dum conjunto Y; o conjunto X designou-se
por dominio da fungdo. Até ao momento, tratamos com fungoes cujo dominio era um con-
junto de pontos do eixo real 0X. Tais fungOes designam-se genericamente por fungoes duma
variavel real. Nao é dificil generalizar muitas das nogoes do cilculo a fungoes com duas ou
mais variaveis reais.

Uma fungdo real de duas variaveis reais ¢ uma fungao cujo dominio X € um conjunto de
pontos do plano X0Y. Se a representamos por f, o seu valor em (x, y) € um numero real que
se representa por f{x, y). E facil imaginar como € que uma tal fungdo pode aparecer num pro-
blema fisico. Por exemplo, suponhamos uma placa de metal plana com a forma dum disco
circular de raio 4 cm situada no plano X0Y, com o centro na origem 0 e aquecida de tal
maneira que a temperatura em cada um dos seus pontos (x, y) € 16 — x> — y? graus centigra-
dos. Se representamos a temperatura em (x, y) por f{x, y), entdo f é uma fungdo de duas
variaveis definida pela equagao

flx,y) =16 — x* — 2, (4.27)

O dominio desta fungao € o conjunto de todos os pontos (x, y) cujas distancias a origem nao
excedem 4 cm. O teorema de Pitagoras diz-nos que todos os pontos (x, y) situados a uma dis-
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tancia r da origem satisfazem a equagao
xt4yt=rt (4.28)

Portanto o dominio, neste caso, € formado por todos os pontos (x, ¥) que verificam
x? + y? < 16. Note-se que sobre a circunferéncia definida por (4.28) a temperatura é f{x, y) =
16 — r?, isto €, a fungdo f € constante sobre cada circunferéncia com centro na origem (Ver
fig. 4.19).

Vamos referir dois métodos uteis para obter um quadro geométrico duma fungdo de
duas variaveis. Um € por meio de uma superficie no espago. Para construir esta superficie,
introduzimos um terceiro eixo coordenado (chamado o eixo 0Z) que passa pela origem e &
perpendicular ao plano X0Y. Sobre a paralela ao eixo 0Z que passa pelo ponto (x, y) marca-
mos o ponto (X, y, z) cuja coordenada z ¢ definida pela equagdao z = f{x, y).

(x" y’ z)

z=16 - x? — 2

"\ y
\
|

-

{I. ,V~ 0)

Fig. 4.19. A temperatura é constante sobre  Fig. 4.20. A superficie definida pela equagdo
cada circunferéncia com centro na origem. z=16—x* —y

A superficie correspondente ao exemplo atras exposto esta representada na fig. 4.20. Se
tivessemos colocado um termometro em cada ponto (x, y) da placa, a extremidade do fila-
mento de mercurio tocaria esta superficie precisamente no ponto (x, y, z)com z = f(x, y)
desde que, evidentemente, a unidade de comprimento sobre o eixo 0Z fosse escolhida de
maneira adequada.

Um outro tipo de imagem geomeétrica duma fungdo de duas variaveis pode ser completa-
mente desenhado no plano X0Y. Este ¢ o método das curvas de nivel utilizado pelos cartogra-
fos para representar uma superficie do terreno tridimensional por um tragado a duas
dimensdes. Imaginemos que a superficie atras referida foi secionada por diferentes planos
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paralelos a X0Y. Cada um interseta a superficie segundo curvas formadas de pontos (x, y, z)
para os quais a coordenada z € constante. Projetando essas curvas sobre o plano X0Y,
obtém-se uma familia de curvas de nivel. Cada curva de nivel é formada por todos e s6 por
aqueles pontos (x, ) cujas coordenadas satisfazem a equagao flx, y) = ¢ em que ¢ € a altura
(cota) para aquela curva particular. No exemplo atras referido, as curvas de nivel sao circun-
feréncias concéntricas as quais representam as curvas de temperatura constante, ou isotérmi-
cas, como sio tragadas numa carta meteorologica. Outro exemplo duma superficie e res-

z y

! T

\

(@) z=xy (b) curvas de nivel: xy = ¢

Fig. 4.21 (a) Superficie de equagao z = xy.
(b) As correspondentes curvas de nivel xy = constante.

petivas curvas de nivel € apresentado na fig. 4.21. A sua equagdo € z = xy, chama-se
paraboloide hiperbolico, e tem a forma duma “sela de montar™.

As curvas de nivel nos mapas topograficos desenham-se muitas vezes para cada 50 m
de altura. Quando aparecem muito juntas, a altura esta a variar rapidamente ao passar de
uma curva de nivel a outra; € o que acontece numa montanha escarpada. Quando as curvas
de nivel estdo bastantes distanciadas ent@ao a altura esta variando lentamente. Podemos pois
ter uma ideia da inclinagao do terreno pela analise do espagamento das curvas de nivel. Con-
tudo, para obtermos uma informagao rigorosa sobre o coeficiente de variagao da altura
(cota), devemos descrever a superficie por intermédio de uma fungao a qual possamos aplicar
os conceitos do calculo diferencial.

O coeficiente de variagao da altura num ponto (x,, y,) depende da diregdao segundo a qual
nos movemos a partir desse ponto. Por uma questdo de comodidade consideraremos aqui
precisamente as duas diregGes particulares paralelas respectivamente aos eixos 0X e 0Y.
Suponhamos que estamos a analisar uma superficie definida por uma equagao da forma z =

= flx, y) e que se interseta esta superficie por um plano perpendicular ao eixo 0Y, como se
indica na fig. 4.22. Pertencem a este plano todos os pontos (x, y, z) do espago para os quais a
coordenada y é constante, seja y = y,. (A equagdo y =y, ¢ a equagdo deste plano). A
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e Plano y = y,

Superficie de
~" equagdo z = flx, y)

Fig. 4.22. Curva de intersecgio de uma superficie = = f(x, y) com um plano y = y,.

intersegao do plano com a superficie € uma curva plana, cujos pontos satisfazem a equagac
z = flx, y,). Sobre esta curva a coordenada z = f{x, y,) € fungdo unicamente de x.

Suponhamos agora que se passa dum ponto (X, J,) a um ponto (x, + h, y,). A corres-
pondente variagdo da altura é f{x, + A, y,) — f{x,, ¥,). Isto sugere que se forme a razao incre-
mental

Sf(xo + h, yo) — f(Xo, ¥o) (4.29)
h

e se faca tender h— 0, Se este quociente tende para um limite quando A-0, chamamos este

limite a derivada parcial de f relativamente a x em (x,, y,). Para representar esta derivada
parcial existem varios simbolos, sendo 0os mais comuns os seguintes

af(%&l ’ fixo ¥o) s Sfudxo, ¥o) s SilXe, ¥o) D, f(xo, Yo) -

O indice 1 nas duas ultimas notagdes significa que somente a primeira coordenada varia
quando se forma a razao incremental (4.29). Assim temos

S(xo + h, yo) = f(x0, y0)
p ¢

fl(.\'n ,)’0) = lim
h—0

De modo analogo se define a derivada parcial relativamente a y em (x,, y,)

z = fix, y,) ao longo desta curva
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. f(xg, ¥oF k) — f(xg, Vo)
o Xg . Vo) = lIM* . ;
fa(x9 4 Yo :.—l—-u k

sendo outras notagoes para este caso as seguintes

af (Xg 5 Vo)

a ] f;(xﬂ * yﬂ) ] fy(x() ’ yﬁ) ] sz(xo » yﬁ) .
y

. 0z 0z . . - :
Se escrevemos z = f(x, y), estao e e W sao igualmente utilizados para representar as deri-
X oy

vadas parciais.
A derivagdo parcial ndo é um conceito novo. Se consideramos outra fungdo g duma
variavel definida por

g(’*) =f(xa Vo) »

entdo a derivada ordinaria g'(x,) ¢ exatamente a mesma que a derivada parcial f(x,, y,).
Geometricamente, a derivada parcial fi(x, y,) representa o declive da tangente num ponto
da curva representada na fig. 4.22. Do mesmo modo, quando x é constante, por exemplo
X = X,, @ equagao z = f{x,, y) define a curva de intersegao do plano x = x, com a superficie
z=f{x,y). A derivada parcial f;(x,, y) define o declive da tangente a esta curva. Das conside-
ragoes formuladas, concluimos que para calcular a derivada parcial de f{’x, y) relativamente a
x consideramos o y como constante e aplicamos as regras da derivagao ordinaria. Assim, por
exemplo, se fTx, ) = 16 — x* — y?, temos que f|(x, y) = —2x. De modo analogo, suposto x
fixo, encontramos f(x, y) = —2y.
Outro exemplo é a fungao definida por

f(x,y) = xseny + y*cos xy. (4.30)

As suas derivadas parciais sao:

filx,y) =seény — y¥*senxy,  filx,y) = xcosy — xy*sénxy 4 2y cos xy.
. s . of af . _
A derivagao parcial da lugar a novas fungoes f, = k. L= T obtidas a partir da
X

fungdo dada /. Uma vez que f] e f; sdo também fungoes de duas variaveis, podemos conside-
rar as suas derivadas parciais. Elas sdo as derivadas parciais de segunda ordem de f e repre-
sentam-se por:

9
-

QD
-

J . _ 9 _
fin=Jer = i’ he=Ju= dy ox ’ Jor = Sz

_ _p
=%y’ foa=Fu=73-

Chama-se a atengao para o fato de que /), significa (f}),, a derivada parcial de /] relativa-
mente a y. Na notagdo d representamos a ordem de derivagao escrevendo
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dydx 0y \ox
Nem sempre esta derivada coincide com a que se obtém por inversao da ordem de derivagao:
2
oxdy ox'\dy/

Contudo, a igualdade destas duas derivadas parciais mistas ¢ valida sob certas condigoes que
sao habitualmente satisfeitas por muitas das fungoes que aparecem na pratica. Essas con-
digoes serao estudadas no volume II.

Voltando ao exemplo de (4.27) encontramos para as suas derivadas parciais de segunda
ordem as expressoes: |

fl,l(x' y) = =2, fl,n(xs ») =fz,1(x: y) =0, fs,s(xa y) = —=2.

Para o exemplo (4.30) obtemos

Sialx, p) = —y*cos xy ,

Ji2(x, y) = cos y — xy*cos xy — 3y*sen xy,

Jea(x, y) = cos y — xy®cos xy — y*senxy — 2y*senxy = f, 4(x, y),

Jao(x, y) = —xseny — x*y* cos xy — 2xysen xy — 2xysenxy + 2 cos xy
= —xseny — x?y?cos xy — dxysenxy + 2 cos xy .

No volume II far-se-a um estudo mais pormenorizado das derivadas parciais.
*4.23. Exercicios

Nos Exercicios | a 8, calcular todas as derivadas parciais de primeira ¢ segunda ordem.
Verificar, em cada caso, que as derivadas parciais /| ,(x, y) e J51(x, y) sdo iguais.

L f(x, ) = x* + y' — 4x®)2 5. f(x, y) = sen(x*?).
2. f(x,y) = xsen(x + y). 6. f(x, y) = sen[cos 2x — 3y)].
X X +y
.f(x, ) =xy +-  (y#0) 1 f(x,y) = —— (x # y).
y x =y
T ) om ,
4. f(x,y) = Vx* + )~ 8. f(x,y) = Neeanae (x, y) # (0, 0).
9. Provar que x(9z/9x) + y(3z/3y) = 2zse:(a) z= (x — 2y)%, (b) z = (x* + y")V'%,
10. Sef(x,y) = —(;%Wl- para (x, y) # (0, 0), provar que
& T
52 -+ 52 = 0,
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RELACAO ENTRE INTEGRAGCAO
E DERIVACAO

5.1. A derivada de um integral indefinido. O primeiro teorema fundamental do calculo

Vamos passar em seguida a analise da importante ligagao que existe entre integragao e
derivagao. O tipo de relagdo entre estas duas técnicas € algo de semelhante ao que se verifica
entre “elevar ao quadrado™ e “extrair a raiz quadrada”. Se quadrarmos um numero positivo
e em seguida calcularmos a raiz quadrada positiva, obtemos o numero donde partimos. De
maneira semelhante, se integramos uma fung¢ao continua f, obtemos uma nova fungao (o inte-
gral indefinido de /) da qual, depois de derivada, se obtém a fungdo inicial £. Por exemplo,
se f{x)= x?, entdo um integral indefinido A4 de f¢é

Cs

x xr 3
A(x) = (’rd:=[r9!r=£— .
(x) frf) JOETTTS

com ¢ uma constante. Derivando, obtemos 4 (x) = x* = f{x). Este exemplo muito simples
ilustra um resultado geral, chamado o primeiro teorema fundamental do cdlculo, o qual pode
enunciar-se do modo seguinte:

TEOREMA 5.1. PRIMEIRO TEOREMA FUNDAMENTAL DO CALCULO. Seja f uma fungdo inte-
gravel em |a, x| para qualquer x de |a, b). Seja ¢ tal que a < ¢ < b e defina-se uma nova
JSungdo A como segue:

A(x) = ff(r) dt se a<x<b.

Entao a derivada A'(x) existe em cada ponto x do intervalo aberto (a, b) em que f é continua
e, para tal x, tem-se

A'(x) = f(x). (5.1)

APOSTOL — 9 237
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Em primeiro lugar vamos apresentar uma justificagao de carater geométrico que sugere
porque deve ser o teorema verdadeiro, para depois efetuarmos a demonstragao analitica.

Interpretagao geométrica. A fig. 5.1 representa o grafico de uma fungao f referente ao
intervalo [a, b]. Na figura h € positivo e

x+h +h
_L f(ydr = _L f(t)dt — |

U f(0 dt = AGx + ) = Ax).

Neste exemplo a fungdo f € continua no intervalo [x, x + Al. Deste modo, pelo teorema
da média para integrais, tem-se

A(x + h) — A(x) = hf(2), com x<z<x+h.
Em consequéncia podemos escrever

A(x 4+ h) — A(x)

=[(2), (5.2)

h

S
P
L]
=

Fig. 5.1. Interpretagio geométrica do primeiro teorema fundamental do calculo,

€, uma vez que x < z < x + h, concluimos que f{z)- f{x) quando h- 0, através de valores
positivos. Um argumento semelhante € ainda valido se h—-0 através de valores negativos.
Portanto 4 {x) existe e € igual a f{x).

Esta argumentagao pressupoe que a fungao f é continua em certa vizinhanga do ponto x.
Todavia, a hipotese do teorema refere-se unicamente a continuidade de f no prdprio ponto x.
Por conseguinte, seguiremos um método diferente para demonstrar o teorema sob esta hipo-
tese mais fraca.

Demonstragdo analitica. Seja x um ponto de continuidade de f, suposto fixo, e formemos a
razao incremental
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Alx 4+ h) — A(x)
n .

Para demonstrarmos o teorema provaremos que este quociente tende para o limite f{x) quando
h — 0. O numerador vale

Ax+ ) —A@ = | swdi= [ gwar=["fwa.

Se no ultimo integral escrevermos f{t) = fix) + [f{t) — fix)], obtemos

A+ W) = A = [ 10 di+ [T U0 = o) de

=W+ [ U0 —fGldt,

donde se conclui

Alx + h) — A(x) _

x+h
) S0+ j (1) — F(x)) d . (5.3)

Ficara completada a demonstragao de (5.1) quando tivermos provado que

lim % fm[f(r) — f(x)]dt =0,

h=0 x

Nesta fase de demonstragao faremos uso de continuidade de / em x.
Representando o segundo termo do segundo membro de (5.3) por G(k), pretendemos pro-

var que G(h) - 0 quando & — 0. Usando a definicao de limite, devemos mostrar que para
todo o € > 0 existe um § > 0 tal que

|G(h)] < € sempre que 0 < |k < 6. (5.4)
Em virtude da continuidade de f em x, dado um e existe um positivo d tal que:
1f(t) = f(x)] < de (5.5)
sempre que
x—0<t1<x+90. (5.6)

Se escolhermos /& de maneira que 0 < & < §, entdo cada ¢ do intervalo [x, x + k] satisfaz (5.6)
e por isso (5.5) é valida para cada ¢ desse intervalo. Recorrendo a propriedade | [7*"g(7) dt |<
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< [**Hg(0)| dt com g(t) = (1) — f(x), vé-se que a desigualdade (5.5) conduz i relagio

x+-h x+h z+h
H Lf (1) — /()] d‘ISL () = f(x) drgL Ye dt = }he < he.

Se dividimos por & vemos que (5.4) & valida para 0 < & < 8. Se & < 0, um raciocinio analogo
prova que (5.4) ¢ valida sempre que 0 < || < 8, estando assim completada a demonstragao.

5.2. Teorema da derivada nula

Se uma fungado f ¢ constante num intervalo aberto (a, b) a sua derivada € identicamente
nula em todo o intervalo (a, &). Provamos ja esta afirma¢io como uma consequéncia imediata
da defini¢io de derivada. Também demonstramos, na alinea (c) do Teorema 4.7, a reci-
proca desta afirmagdo a qual apresentamos de novo como um teorema independente.

TEOREMA 5.2. TEOREMA DA DERIVADA NULA. Se f (x) = 0 para todo o x pertencente a um
intervalo aberto I, entdo f é constante em 1.

Este teorema, combinado com o primeiro teorema fundamental do calculo, conduz ao
segundo teorema fundamental que vai ser tratado na seg¢do seguinte.

5.3. Fungoes primitivas e o segundo teorema fundamental do calculo

DEFINICAO DE FUNGAO PRIMITIVA. Uma fungdo P diz-se uma primitiva (ou uma antideri-
vada) duma fungdo f Inum intervalo aberto 1, se a derivada de P é f, isto é, se P'(x) = f(x)
para todo o x de I.

Por exemplo, a fun¢lo seno € uma primitiva de fung¢ido cosseno em todo o intervalo,
porque a derivada da fungdo seno € o cosseno. Falamos de uma primitiva, em vez de a pri-
mitiva, porque se P € primitiva de f, entdo também P + k o €, qualquer que seja a constan-
te k. Inversamente, duas quaisquer primitivas P ¢ Q duma mesma fungio f podem diferir
unicamente por uma constante porque a sua diferenga P—Q tem a derivada

Pi(x) — Q'(x) =fx) = f(x) =0,

qualquer que seja x em [ e por consequéncia, pelo Teorema 5.2, P — Q é constante em /.

O primeiro teorema fundamental do calculo diz-nos que podemos sempre construir uma
primitiva duma fungdo continua por integragao. Quando associamos este fato com o de
que duas primitivas da mesma fung¢ao podem, quando muito, diferir por uma constante, obte-
mos o segundo teorema fundamental do calculo.

TEOREMA 5.3. SEGUNDO TEOREMA FUNDAMENTAL DO CALCULO. Se f é continua num
intervalo aberto I e P é qualquer primitiva de f em I, entdo, para cada c e cada x em I, tem-se

P(x) = P(c) + ff (1) dt . (5.7)
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Demonstragdo. Seja A(x) = J'ﬁf( t)dt. Uma vez que f'é continua em cada x de 7, o primeiro

teorema fundamental diz-nos que 4 (x) = f{x), para todo o x em /. Quer dizer que 4 é uma
primitiva de f'em /. Sabido que duas primitivas de /' podem diferir unicamente por uma cons-
tante, teremos A(x) — P(x) = k para uma certa constante k. Quando x = ¢, a formula anterior
implica que —P(¢) = k, ja que A(c) = 0. Daqui resulta que A(x) — P(x) = —P(c), que ndo &
mais do que (5.7).

O Teorema (5.3) ensina-nos a calcular uma primitiva P duma fun¢ao continua f. Muito
simplesmente integramos f/desde um ponto fixo ¢ até um ponto arbitrario x e adicionamos-lhe
P(c) para obtermos P(x). Mas a importéncia real do teorema torna-se mais evidente quando
escrevemos (5.7) na forma

Iy di = Pex) = PCe). (5:8)

a qual nos diz que podemos calcular o valor dum integral mediante uma simples subtragao
desde que conhegamos uma primitiva P. O problema docalculo dum integral transformou-
se pois noutro problema — o do calculo duma primitiva P da fungao f. Na pratica, o segundo
problema é mais facil de resolver que o primeiro. Cada formula de derivagao, quando lida em
sentido inverso, da-nos o exemplo duma primitiva de certa fungao f e desta, por sua vez,
resulta imediata uma formula de integragdao para esta fungao.

Das formulas de derivagio ja estudadas, e como consequéncia do segundo teorema fun-
damental, podem deduzir-se as seguintes formulas de integragdo.

ExXempLO 1. Integragdo de poténcias racionais. A formula de integragao

b nyl __ ontl
f dx =2 =@ _0.1,2..) (5.9)
a n + 1
foi demonstrada na Segao 1.23 dire a partir da definicao do integral. O resultado

pode ser de novo estabelecido ¢ mesmo generalizado para expoentes racionais, aplicando o

segundo teorema fundamental. Em primeiro lugar, observemos que a fungao P definida pela
igualdade

n+1l
P(x) = — (5.10)
n+1

admite a derivada P'(x) = x”, se n & qualquer inteiro ndo negativo. Uma vez que (5.10) é
valida para todo o real x, podemos servir-nos de (5.8) para escrevermos

bn+1 — anrl

]
x"dx = P(b) — P(a) =
Jatu ©) @) n+1

qualquer que seja o intervalo [a, b]. Esta formula, demonstrada para todo o inteiro n > 0,
também é valida para todo o inteiro negativo excepto n = —1, porque n + 1 figura em deno-
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minador. Para demonstrar (5.9) para n negativo, basta mostrar que (5.10).implica P{x) = xn
lquando 7z € negativo e # — |, fato que ¢ facilmente verificavel derivando P como fungdo
racional. Evidentemente que, quando n € negativo, nem P(x) nem P7x)sdo definidas para
x =0, ¢ quando aplicamos (5.9) com 7 negativo ¢ importante excluir os intervalos [a, b) que
contenham o ponto x = 0.

O resultado do Exemplo 3 da Segao 4.5 permite-nos generalizar (5.9) a todos os expoen-
tes racionais (exceto —1), desde que a fungao integranda esteja definida em todos os pontos

do intervalo [a, b] sob consideragdao. Por exemplo,se 0 < a < ben = — —%— temos que

b 1 b 1/2
/ X
—dx =| xV¥%dx = —
o e,

a \ X

b

LS

Este resultado ja fora obtido recorrendo aos axiomas da area. A demonstragao que acabou
de efetuar-se ndo faz qualquer apélo a esses axiomas.
No capitulo que se segue vai definir-se uma tungd@o poténcia geral f tal que f{x) = x° para

todo o expoente real c. Demonstrar-se-a que tal fungdo tem a derivada f"(x) = cX¥ ! e a pri-

mitiva P(x) = _c"r% se ¢ # —1 0 que nos permitira generalizar (5.9) a qualquer expoente,

real, exceto —1.
Chama-se a atengao para o fato de que P’(x) = 1/x nao pode ser obtida por derivagao de

nenhuma fungdo da forma P(x) = x". Todavia, existe uma fungdo P cuja derivada & P '(x) =
= I/x. Uma tal fungdo pode ser expressa por meio de um integral indefinido de 1/x, por
exemplo,

P(x) =J .ld! se x>0.
1 1

Este integral existe, uma vez que a fungdo integranda ¢ monotona. A fungao assim definida
chama-se o logaritmo (mais concretamente, o logaritmo natural). As suas propriedades se-
rdo analisadas em pormenor no capitulo 6.

EXEMPLO 2. Integragado do seno e do cosseno. Uma vez que a derivada do seno € o cosseno
e a derivada do cosseno € menos o seno, o segundo teorema fundamental permite-nos escre-
ver:

b

=senb —sena,
a

"b
| cos X dx = senx
Ja

b
= cosa —cosbh.

b
| senx dx = (—cos x)
L]

formulas estas ja conhecidas, pois foram demonstradas no Cap. 2 diretamente a partir da
deﬁni_cﬁo de integral.
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Outros exemplos de formulas de integragao podem ser obtidos a partir dos Exemplos 1 ¢ 2,

considerando somas finitas de termos da forma Ax", Bsen x, Ccos x, com A, B e Ccons-
tinles.

5.4. Propricdades duma fungao estabelecidas a partir de propriedades da sua dcrivada

Se uma fungao admite uma derivada continua /" um intervalo aberto /, o segundo teorema
fundamental diz-nos que

S =1+ [ s (5.11)

quaisquer que sejam ¢ € xem /.Esta formula, que exprime f por intermédio da sua derivada f,
permite-nos estabelecer propriedades duma fungao a partir das propriedades da sua deri-
vada. Embora as propriedades que se vao referir ja tenham sido estabelecidas no capitulo 4,
pode ter interesse mostrar como podem ser deduzidas como simples consequéncias de (5.11).

Suponhamos f* continua e nao negativa em /. Se x > ¢, entao f‘:f'(t)d: > 0 e portanto

J1x) = f{c). Por outras palavras, se a derivada duma fungio € continua e nio negativa em /,
a4 fungio € crescente em /.

No Teorema 2.9 provou-se que o integral indefinido duma fungio crescente € uma
fungdo convexia. Por conscguinte, se f* € continua ¢ crescente em /, a igualdade (5.11)
mostra que f ¢ convexa em /. Do mesmo modo f ¢ concava em /se /7 € continua e decres-
cente naquele intervalo.

5.5. Exercicios

Em cada um dos Exercicios 1 a 10, calcular uma primitiva de f, isto é, determinar uma
fungao P tal que P(x) = f{x) e aplicar o segundo teorema fundamental para calcular

fg/(x)dx.

1: f(x) = 5x%. 6. f(x) =V2x +Vix, x>0.
2 = 4x* — 12 7 et >0
.f(x) = 4x* — 12x. Jx) = — -2\f; s x .
3. f(x) = (x + I)(x* = 2). 8. f(x) = "3 — x V3, x > 0.
. -3
4. f(x) = S—:;——-—, x # 0. 9. f(x) = 3sen x + 2x5,
5. /() =0 +vVx?% x>0 10. f(x) = x*/* — 5 cos x.

11. Provar que nao existe nenhum polindmio f cuja derivada seja dada por f7(x) = —l—
X

12. Mostrar que fglddt = _;~ x |x| para todo o real x.
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13. Mostrar que z 2x2
f (¢t + [t)*dt = 3 (x + |x|) para todo o real x.

0

14. Uma fungdo f ¢ continua e verifica a igualdade

‘:f(t)dr = —1 4+ x* 4+ xsen2x + } cos 2x

para todo o x. Calcular ﬂ—:-:—) e f'(4l).

15. Determinar a fungdo f e a constante c, tal que:

‘:f(t) dt =cosx — 1}  paratodo oreal x.

16. Determinar a fungao f e a constante c, tal que:

'xrf(r)d: =senx — xcosx — 3x*  para todo o real x.
o 0

17. Existe uma fungao f, definida e continua para todo o real x, que verifica a igualdade
16 18

z 1 X .
ff(r)dr =JA rzf(’)df'l'—-}-—-}-c,
0 z 8 o]

com ¢ constante. Determinar uma expressio explicita de f(x ) ¢ achar o valor da constante ¢.
18. Uma fungdo f esta definida para todo o real x pela formula

1 +sin¢
f(x)_3+J; 2+

dt .

Sem tentar o calculo deste integral, determinar um polinomio do segundo grau p(x) =
=a + bx + ¢cx?*, tal que p(0) = f(0)= p(0) = /7 (0) e p"(0)=/"(0).

19. Dada a fungdo g, continua em todo o cixo real, tal que g(1) = S5e fleg(nydt =2.

Seja fix)= % fg (x — 1 g(1)dt. Provar que
fix) == .’o g(r) di _.’.o‘ 1g(1) dr

e calcular /(1) e f(1).
20. Sem calcular os seguintes integrais indefinidos, determinar a derivada f (x) nos casos em
que f{x) é igual a:

- ozl .p3
@ | (1 +3de, )| A +%de, (© |, +%dr,
+0 J 0 Jz?



]

!

21.

22.

23.

24.

25.

26.
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Sem calcular o integral, determinar f{x) sendo f definida por

fﬁ

.I‘l
f(x) = L T3 dr .

L

Em cada caso, calcular f{2) se /'€ continua e verifica a formula dada para todo o x > 0.
@ [, f0dt =51 + ). © | edr =20+

(b) |0 f@) dt = x¥1 + x). (d) l':'[“'_f(r) dt =x.

A base dum solido € o conjunto de ordenadas duma fungao f nao negativa no inter-
valo [0, a] Todas as segoes perpendiculares a 0X sao quadrados. O volume do solido é

@ —2acosa + (2 — a®) sena

para todo o0 a 2 0. Supondo que f € continua em [0, a], calcular f{a).
Um mecanismo impele uma particula ao longo de uma reta. O movimento € tal que
a posi¢do da particula num instante ¢, a partir duma posigao inicial em 0, ¢ dada por

1 . . ‘ :
f(r):Tt’ + 2t sent. O mecanismo trabalha perfeitamente até ao instante 7 = m,

em que surge uma avaria inesperada. A partir dai a particula move-se com velocidade
constante (a velocidade que possuia em ¢ = n). Calcular: (a) a sua velocidade no instante
t = n; (b) a sua aceleragdo no instante r = n/2; (c) a sua aceleragao no instante { =
3n . 5 : .

= -—2—: (d) o seu deslocamentode t =0 ate ¢t = Trt; (e) Determinar um instante ¢ > =«
em que a particula volta a sua posi¢ao inicial 0, ou entao demonstrar que nunca volta
a 0.

Uma particula move-se ao longo de uma -reta. A sua posi¢ao num instante 7 € f(2).
Quando 0 < r < 1, a posigao € definida por

t'1 4 2 sen 7x COS mx
1) = dx .
o - [ Lr i,

(Nao tentar o calculo do integral). Para ¢t = 1 a particula move-se com aceleragao cons-
tante (a aceleragao adquirida no instante ¢ = 1). Calcular: (a) a sua aceleragdo no ins-
tante ¢ = 2; (b) a sua velocidade quando ¢ = 1; (c) a sua velocidade quando ¢ > 1;(d) a
diferenga f{7) — f{1) quando ¢ > 1.

Em cada um dos casos seguintes determinar uma fungao f (com segunda derivada
continua) que satisfaga a todas as condigoes indicadas, ou entdo explicar porque nao &
possivel determinar uma tal fungao.

(@) f(x) >0 paracadax, f(©O) =1, [f(1)=0.
(b) f(x) >0  paracadax, [0 =1, [f(I)=3.
(©) f'(x) >0  paracadax, f(0) =1,  f(x) <100 paratodo x > 0.

@ f(x) >0 para cada x, f(0) =1, f(x) £ 100 para todo x < 0.

27. Uma particula move-se ao longo de uma reta. sendo a sua posi¢do num instante ¢ defi-
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nida por f{1). Inicia 0 movimento com uma velocidade f(0) = 0 e tem uma aceleragao
continua /() > 6 para todo o t do intervalo 0 < ¢ < 1. Provar que a velocidade /"(2) = 3
1
para todo o ¢t em certo intervalo [a, b],onde0 < a< b < l,comb—a= -5
28. Dada uma fungao f tal que o integral 4A(x) = j;’ f(t)dt exista para cada x do intervalo
la, b]. Seja ¢ um ponto do intervalo (a, b). Considere as dez seguintes afirmagoes rela-
tivas a fle A

(a) fé continua em c. () A é continua em c.
(b) f & descontinua em c. (3) A édescontinua em c.
(c) f ¢é crescente em (a, b) (¥) 4 é convexa em (a, b).
(d) f(c) existe. (8) A’(c) existe.
(e) f* & continua em c. (¢) 4 & continua em c.
a | B | vy | 6| €
Numa tabela igual a desenhada aqui, a
escrever um 7 no quadrado correspondende
se a afirmagao assinalada com uma letra b
latina implica sempre a assinalada com uma —
letra grega. Deixar os restantes quadrados em c
branco. Por exemplo, se a) implica a), escre-
veremos um 7T no canto superior esquerdo, d
etc.
¢

5.6. A notagao de Leibniz para as primitivas

Voltamos agora a um estudo adicional da relagao entre integragao e derivagao. Em pri-
meiro lugar analisamos a notagao introduzida por Leibniz.

Definimos uma primitiva P duma fungao f como sendo qualquer fungdo para a qual
P'(x) = f{x). Se f ¢ continua num intervalo, uma primitiva ¢ dada pela formula

Pe) = | s dt,

e todas as outras primitivas defirirdo desta unicamente por uma constante. Leibniz usou o
simbolo [f{x)dx para representar uma primitiva qualquer de /. Com esta notagio, a igualdade

J'f(x) dx = P(x)+ C (5.12)

considera-se uma maneira alternativa de escrever P(x) = f(x). Por exemplo, uma vez que
a derivada do seno € o cosseno, podemos escrever
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J‘cos xdx =senx + C. (5.13)

. . -+ .
De modo analogo, uma vez que a derivada de x" l/(r: + 1eéex", podemos escrever

n+1
x"dx = —— + C, 5.14
f n+1 ( )

para qualquer racional n # —1. O simbolo C representa uma constante arbitraria, de modo
que cada uma das igualdades (5.13) e (5.14) é realmente uma afirmagao relativa a um con-
junto completo de fungdes.

A despeito da aparente semelhanga, o simbolo fj(x)dx. ¢ conceitualmente distinto do
simbolo de integragao fgj(x)d.t. Os dois simbolos resultam de dois processos por completo

diferentes — derivagao e integragao. Uma vez que, porém, ambos o0s processos estdo relacio
nados pelos teoremas fundamentais do calculo, existem igualmente relagoes entre aqueles
simbolos.

O primeiro teorema fundamental estabelece que qualquer integral indefinido de f¢ também

uma primitiva de f. Assim sendo, podemos substituir P(x), em (5.12), por f‘ o/(t)df.com cum
certo limite inferior e escrever

[rax=["swyar + c. (5.15)

Significa isto que podemos considerar o simbolo [f{x)dx como representando algum integral
indefinido de f, mais uma constante.

O segundo teorema fundamental diz-nos que para qualquer primitiva P de f e para qual-
quer constante C, temos

[ 1wax=1rw +al

Se substituimos P(x) + C por [f{x)dx, a formula anterior pode escrever-se
b " b
[[1wax=[rwax |, (5.16)

As duas formulas (5.15) e (5.16) podem considerar-se como expressoes simbolicas do pri-
meiro e segundo teoremas fundamentais do Calculo.

Devido a uma larga tradigio, muitos livros de calculo referem o simbolo [f{x)dx como um
“integral indefinido”, em vez de o designarem como uma primitiva ou uma antiderivada. Tal
fato esta em parte justificado pela formula (5.15),a qual indica que o simbolo [f{x)dx é, a
menos de uma constante aditiva C, um integral indefinido de f. Pelo mesmo motivo, muitos
manuais de formulas matematicas apresentam extensas listas de formulas designadas “tabe-
las de integrais indefinidos” as quais, na realidade, sdo tabelas de primitivas. Para dis-
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tinguir o simbolo [ f{x)dx de _fgj(x)dx, chama-se ao ultimo integral definido. Visto que o
segundo teorema fundamental reduz o problema da integragao ao da determinagdao duma
primitiva, a expressao “técnica de integragao” ¢ usada para referir qualquer método sistema-
tico de calculo de primitivas. Esta terminologia esta largamente difundida na literatura mate-
matica ¢ serd também adoptada neste libro. Deste modo, quando se pede para “integrar”™
|f(x)dx deve entender-se que o que se pretende € o calculo da primitiva mais geral de /.

Sdo trés as técnicas principais que sdo utilizadas para construir tabelas de integrais inde-
finidos e devem ser bem assimiladas por quem pretenda um bom conhecimento pratico do
calculo. Sdo elas (1) integragao por substituigao (a ser estudada na proxima segido),;um
método baseado na regra de derivagdo duma fun¢do composta; (2) integragao por partes,
um método baseado na formula de derivagdo do produto (a ser estudado na Segdo 5.9); ¢
(3) integragio por descomposigdo em fracgoes simples, uma técnica que sera apresentada no
final do Capitulo 6. Estas técnicas ndo so explicam como se constroem as tabelas de inte-
grais indefinidos, como também nos ensinam a transformar certos integrais en formas
basicas que figuram nas tabelas.

5.7. Integracio por substituicio

Seja Q uma fungdo composta das duas fungoes P e g, a saber Q(x) = P|g(x)] para todo o x
em dado intervalo /. Se conhecermos a derivada de P, seja P(x) = f{x), a regra da derivada
da fungdo composta diz-nos que a derivada de Q ¢ dada pela formula Q'(x) = P’[g(x))g(x).
Uma vez que P’ = f, isto determina que Q'(x) = flg(x)lg'(x). Por outras palavras,

P'(x) = f(x) implica Q'(x) = f[g(x)]g'(x). (5.17)
Na notagao de Leibniz, esta afirmagdo pode escrever-se: Se temos a formula de integragao

-

| f(x)dx = P(x) + C, (5.18)
entdo temos também a formula mais geral
| flg()]g'(x) dx = P[g(x)] + C. (5.19)

Por exemplo se f{x) = cos x, entdo (5.18) é verdadeira com P(x) = sen x e assim (5.19)
vem

| cos g(x) - g'(x)dx = seng(x) + C. (5.20)

Em particular. s (X) - ).'3, isto da-nos
b4
l COS Is - 3.(2 dx = senxa + C ’

um resultado facilmente verificavel, pois a derivada de sen x' € 3x’cosx’.
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Observemos agora que a formula geral (5.19) esta relacionada com (5.18) por um simples
processo mecanico. Suponhamos que substituimos g(x) em (5.19) por um novo simbolo u e

igualmente substituimos g °(x) por %, a notagao de Leibniz para derivadas. Entdao (5.19) vem

ff(u) Zdx = Pu) + C.

Ao chegar aqui é-se tentado a substituir a combinagao % dx por du. Se o fizermos, a ultima

formula vem

ff(u) du = P(u) + C. (5.21)

Observe-se, porém, que esta é exatamente a formula (5.18), apenas com o simbolo x subs-
tituido por u. Quer isto dizer que cada formula de integragao tal como (5.18) pode dar lugar a
outra mais geral bastando uma simples substituicao de simbolos. Substituimos x em (5.18)
por um novo simbolo u para obtermos (5.21), e depois consideramos u como representando
uma nova fungao de x, por exemplo u = g(x). Substituimos entdo o simbolo du pela combi-
nagao g'(x)dx e (5.21) reduz-se a formula geral (5.19).

Por exemplo, se substituimos x por u na formula [cosx dx = sen x + C, obtemos

fcosudu =senu + C.

Nesta Gltima formula « pode ser substituido por g(x) e du por g {x )dx e resulta uma férmu-
la correta de integragao, (5.20).

Usando este processo mecanico em sentido inverso, resulta o método de integragdo por
substituicdo. A finalidade deste método ¢ transformar um integral com uma fungdo inte-
granda complicada, tal como f 3x? cos x’dx, num integral mais simples, como j cos u du. O
meétodo € aplicavel sempre que o integral original possa escrever-se na forma

| fleC0g' (o) dx,

uma vez que a substituicao
u = g(x), du = g'(x) dx

o transforma em [f{u)du. Se soubermos efetuar a integragdo de [f{u)du, obtemos uma pri-
mitiva, seja P(u), e entao o integral original pode ser calculado pela substituigao de u por g(x)
na expressao de P(u).

O leitor verificara que nao atribuimos qualquer significado especial aos simbolos dx e du.
Sao usados como instrumentos meramente formais para nos auxiliarem a efetuar operagoes
matematicas de uma maneira mecanica. Cada vez que aplicamos o meétodo, estamos real-
mente a aplicar a afirmagao (5.17).
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O exito do método depende da habilidade de cada um em determinar qual a parte da
fungdo granda que deve ser substituida pelo simbolo « ¢ esta habilidade adquire-se, em
grande parte, com a experiéncia ganha na resolugdo de varios exemplos tipicos. Os exem-
plos seguintes ilustran a forma como o método pode ser aplicado na pratica.

ExempLO 1. Integrar [x? cos x*dx.

Resolugdo. Chama-se a atengdo para o fato de que vamos tentar escrever x’cos x* na
forma flg(x)ig{x). por uma escolha adequada de fe g. Uma vez que cos x* ¢ uma fungdo
composta, isso sugere que fagcamos f{x)= cosy ¢ g(x)= x*, de tal maneira que cos x*
venha expresso na forma flgfx)l. Esta escolha de gfx) define g'(x)=4x"' ¢ por isso
Slg(x)lg’(x) = (cos x*)(4x*). O fator 4 pode facilmente considerar-se, multiplicando e di-
vidindo a fun¢do integranda inicial por 4. Podemos entdo escrever

x3 cos x* = }(cos x*)(4x®) = }f[g(x)]g'(x).
Fazendo agora a substituicio u = g(x) = x*, du = g'(x)dx = 4x’dx, obtemos
J.x’cos x'dx = }ff(u)du = l-jcos udu= tsenu 4 C.

Substituindo u por x* no resultado final anterior, obtemos a formula

_I x*cos x*dx = }senx' + C,

a qual pode ser verificada por derivagio.

Com um pouco de pratica, alguns dos passos da resolug@o atras referidos efetuam-se
mentalmente e o calculo realiza-se duma maneira muito rapida, como segue: seja u = x*,
entdo du = 4x’dx e obtém-se

| X% cos x* dx = } ' (cos x")(4x* dx) = } | cosudu = tsenu + C = lsenx' + C.

Chama-se a atengao para o pormenor de que o método € aplicavel neste exemplo porque o
fator x’ tem um expoente inferior em uma unidade ao da poténcia de x que aparece em
cos x*.

ExempLO 2. Integrar [cos?x senxdx

Resolugao. Faga-se u = cosx, donde du = —sen xdx e

. . .
fcoszxsenx dx = — [ (cos x)*(—senx dx) = — {.uedu = - u; +Cc=-2X,¢.

Mais uma vez se refere que o resultado pode ser verificado por derivagao.
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senV/ x

dx .
Vx

ExempLO 3. Integrar J

Resolugdo. Seja u =/x = x\2, du = Lx‘“’dx. ou L2 = 2du.
2 Vx

Sera pois

/S
fsem xdx=2f53nudu= —2cosu + C= —2cos Vx+ C.

Vx
Y oxdx
ExempLO 4. Integrar l . _
YV 4 Xx*

Resolugdo. Fazendo u = 1+x? vem du=2x dx ou x dx= %du e portanto

u'Ptdu=u"*+C=V1i 4 xt+C.

O método de substituicao é, evidentemente, também aplicavel a integrais definidos. Por
exemplo, para calcular o integral definido [ "2 cosix sen x dx, determinamos em primeiro
0

lugar o integral indefinido, como foi exposto no Exemplo 2, ¢ depois recorremos ao segundo
teorema fundamental para escrevermos

t=/2 z/2

2 l i
cos"xsenx dx = — ECOb X

= — l(cos‘l I — cos® 0) =
0 2

1
T

0

Algumas vezes é preferivel aplicar o segundo teorema fundamental ao integral expresso em
funcao de u. Pode fazer-se isto definindo novos limites de integragdao. Mostraremos como isso
¢ feito resolvendo o exemplo particular seguinte e depois justificaremos o processo com um

teorema geral.

(x + 1)dx
Vx4 2x+ 3

3
ExempLO 5. Calcular J

Resolugdo. Seja u = x* + 2x + 3; entdo du = (2x + 2)dx e portanto

(x 4+ 1)dx
Vx242x+3

du

|
_2\ !I.



252 Caélculo

Calculamos agora os novos limites de integragao, definidos pelos valores de u corresponden-
tesax=2ex=23equesaou =11 e u = 18. Podemos pois escrever

18 _— p—
=VI8§ —VII.

11

u " du=vVu

:Vxi42x+3 2

"3 (x + 1) dx lf"’
v 1

1

Quando se exprime tudo em fungdo de x obtém-se o mesmo resultado

3

I o e
V¥t ox+3| =Vis— Vi,

fa (x + 1)dx
: Vx4 2x 43

2

Enunciamos e demonstramos a seguir um teorema geral que justifica o processo seguido
no Exemplo 5.

TEOREMA 5.4. O METODO DE SUBSTITUICAO PARA INTEGRAIS. Supde-se que g admite deri-

vada continua g’ no intervalo aberto 1. Seja J o conjunto dos valores assumidos por g em I e
admita-se que [ é continua em J. Entdo para cada x e ¢ em I, tem-se

‘x ~glz)
1 ftslg@de= | " fw)du. (5.22)
Demonstragdo. Seja a = g(c) e definamos duas fungoes P e Q do modo seguinte:

Px)= [ faydu se xeJ, Qx) = [ flalg(dt se xel.

e

Porque P e Q sao integrais indefinidos de fungoes continuas admitem derivadas dadas pelas
formulas

Pi(x)=f(x), Q'(x)=flg]g'(x).

Representando R a fungdo composta R(x) = Plg(x)] e aplicando a regra de derivagio para
aquela fungao obtemos

R'(x) = Plg0)]g'(x) = flgg'(x) = Q'(x).

Aplicando duas vezes o segundo teorema fundamental, obtemos

“glz)

" fwydu = [ P(w) du = Plg(x)] — Plg(©)] = R(x) — R(),

v

| remg@ e = "o di = [* R dt = R(x) - Ree).
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e portanto esta demonstrado que os integrais (5.22) s@o iguais.

5.8. Exercicios

Nos Exercicios 1 a 20, calcular os integrais pelo método de substituigao.

sen x dx
1. |V2x + 1dx. 11. .
f vV cos® x
8senVx + 1 dx
2. [xV1 + 3xdx. 12.
f 3 Vvx +1
3. f:c’“\/x + 1dx. 13. J.x"" sen x" dx, n#0,
. J‘”’ x dx 1 x5 dx
CJesV2 = 3x "IV =8
(x + 1)dx . 24
5. E T T 15. Jr(l + OV dy.,
6. J' sen®x dx. 16. Jn(x2 + 1)73/2 dx,
7. fz(z — 1)V3 g, 17. J'x=(8xa + 27T)%/3 dx.
g cos x dx 18 " (senx + cos x) dx
’ Scl'lax ' ! J (senx — cosx)lfs ¢
7/4 ¥ x dx
9, cos 4 —sen 2x dx, 19, .
L JV1 422 /(0 +2
L r 2 — 1/5
10. sen x dx . 0. (x* +1 — 2x) dx'
(3 + cos x)* J 1l —x

21. Deduzir as formulas dos teoremas 1.18 e 1.19 recorrendo ao método de substitui¢ao.
Y 22 Seja

= 'l'l
4 F(x, a) —J; md!,

e

onde a > 0, e p e g sdo inteiros positivos. Mostrar que F(x, a) = a”""%F(x/a, 1).

23. Provar que
1 odt 1z dy
Ll+r’=j, T2 € x>0

24. Provar que se m e n sao inteiros positivos

— B = m

1 "1
J-o x™1 — x)"dx = Jo x"(1 — x)™dx.
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25. Provar que
z/2 . ‘z/2
. cosxsin"xdx =2°"™ o cos™ x dx .

se m € um inteiro positivo.

26. (a) Provar que
J.g xf(senx) dx = 7—; ' f(senx) dx . [Sugestdo: u=mn —x.]
0 “J0
(b) Com o resultado da alinea (a) demonstrar a igualdade
T xsenx Jr = J' 1 dx
ol toostx T T T )T F A

27. Provar que [} (1 —x)" V2 dx = [T /2 c0s™" udu se n & um inteiro positivo. [ Sugestdo:

x = sen u]. O integral do segundo membro pode ser calculado pelo método de integragao
por partes que sera tratado a seguir.

5.9. Integragao por partes

Provamos, no Capitulo 4, que a derivada de um produto de duas fungoes fe g ¢ dada pela
formula

h(x) = f(x)g'(x) + f'(x)g(x),

com h{x) = f{x)g(x). Na notagdo de Leibniz para primitivas vem J'f(x)g'{x)dx + J'f (x)g(x)
dx = f({x)glx)+ C. que habitualmente se escreve

[ f(0g'(x) dx = f(x)gx) = | 7' (x)g(0) dx + C . (5.23)

Esta igualdade, conhecida por formula de integragdo por partes, conduz-nos a uma nova té-
nica de integragao.

Para calcular um integral, por exemplo ) k(x)dx, aplicando (5.23) tentamos determinar duas
fungoes f e g tais que k(x) possa ser escrita na forma f{x)g’(x). Se conseguirmos fazer isso,
entao (5.23) diz-nos que

l k(x) dx = f(x)g(x) — J g(x)f'(x)dx + C,

¢ a dificuldade transfere-se para o calculo de | g(x Jf7x)dx. Se f¢ g forem convenientemente
escolhidos, o ultimo integral sera mais facil de calcular do que o integral donde partimos.
Por vezes duas ou mais aplicagdes de (5.23) conduzem-nos a um integral que se calculara
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facilmente, ou que pode mesmo ser encontrado numa tabela. Os exemplos resolvidos,apresen-
tados a seguir, foram escolhidos para evidenciarem as vantagens deste método. Para os inte-
grais definidos, (5.23) escreve-se

[ £’ dx = F(b)e(b) — f(@)g(a) — || 1'(x)g(x) dx

Fazendo u = f{x), v = g(x) resulta du = f'(x)dx e dv= g'(x)dx e a formula de integragao
por partes escreve-se na forma abreviada

Judo=uw—[vdu+cC. (5.24)

ExempLo 1. Integrar [xcosxdx.

Resolugao. Escolhemos f{x) = x ¢ g'(x) = cos x. Quer isto dizer que f(x) = 1 ¢ g(x) =
sen x, de maneira que (5.23) vem

J.xcosxdx=xsenx—jsenxdx+C=xsenx+c0sx+C. (5.25)

Note-se que neste caso o segundo integral é ja conhecido.
Para cfetuar o mesmo calculo utilizando a notagao abreviada de (5.24), escrevemos

u=Xx, dv = cos xdx ,

du = dx, v = Icos xdx =senx,

jxcosxdx=uv—fvdu=xsenx—_[scnxdx+C=xscnx+cosx+C.

Se tivessemos escolhido ¥ = cos x € dv = x/dx, teriamos obtido du = —senxdx e v =

= —;—x’, e (5.24) dar-nos-ia

fxcosx dx =}x* cos x — }fx’(—senx) dx + C = }x* cosx+§fx’senx dx+ C.

Uma vez que o ultimo integral & um dos que ainda nao foi calculado, esta escolha de u e v ndo
¢ tdo util como a primeira. Observe-se, contudo, que esta ultima equagio pode ser resol-
vida relativamente a | x* sen x dx ¢ usar (5.25) para se obter

Ix’senxdx=2xsenx+2cosx—x’cosx+ C.
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ExempLO 2. Integrar [x? cos x dx.

Resolugdo. Seja u= x* e dv = cos x dx. Entdo du =2xdx e v = | cos x dx = sen x, 0 que
nos permite escrever:

|’ x*cosxdx = | udv=uv— | vdu + C = x*senx — 2 | xsenx dx + C. (5.26)

O ultimo integral pode ser calculado por aplicagao do método de integragao por partes mais
uma ¥ez. Uma vez que ¢ analogo ao Exemplo 1, escrevemos simplesmente o resultado:

xsenxdx = —xcosx +senx + C.

o

Substituindo em (5.26) e agrupando as duas constantes arbitrarias numa so, obtemos

szcosxdx = x®senx + 2xcos x — 2senx + C.

EXEmpPLO 3. O meétodo algumas vezes falha porque conduz de novo ao integral original.
Por exemplo, tentemos calcular | x dx por partes. Se fizermos u = x e dv= x~* dx, entido

J'x“dx = J.u dv. Com esta escolha de u e v tem-se du = dx e v = —x~', de modo que (5.24) da-
nos

| x dx = | wde = uv — l vdu+C=—1+ | xVdx + C, (5.27)

e voltamos ao integral donde partiramos. Além disso, a situagdo ndao melhora se fizermos

u=x"edr= x_"‘l.

Este exemplo ¢ muitas vezes usado para ilustrar a importancia que deve conceder-se a
constante arbitraria C. Se a formula (5.27) for escrita sem C, obtemos a igualdade Ix 'dx =

= —1] + I x"'dx, a qual é algumas vezes utilizada para dar uma demonstragédo viciada de que
0 =

Como uma aplicagao do método de integragao por partes, podemos obter outra versiao do
teorema da media pesada para integrais (Teorema 3.16).

TEOREMA 5.5. SEGUNDO TEOREMA DA MEDIA PARA INTEGRAIS. Seja g uma fungdo

continua em |a, b| e f uma fungdo admitindo derivada continua e que ndo muda de sinal em
la, bl. Entdo, para algum c em la, b) tem-se

*b e o
| g0 dx = (@) | g(x) dx + 7 (b) | gx) dx . (5.28)

Demonstragao. Seja G(x) = IE g(t)dt. Uma vez que g € continua, temos G '(x) = g(x). Por- -
tanto, a integragao por partes da-nos
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b *h *b
.I“ f(x)g(x)dx = .L f(x)G'(x) dx = f(b)G(b) — .I,. ['(x)G(x) dx (5.29)
visto que G(a) = 0. Pelo teorema da media pesada temos
|E F()G(x) dx = G(c) _|':’ 11(x) dx = G()[f(b) — f(a)]

para certo ¢ em |a, b]. Portanto (5.29) vem

0 que prova (5.28), ja que G(¢) = .I'Sg(.\‘)dx e G(b) - G(c) = .I'f g(x)dx.

5.10. Exercicios

Por aplicagao do meétodo de integragao por partes, calcular os integrais dos Exercicios
1 a 6.

1. ‘xscnxdx. 4. Jx?'senxd.r.
2. lxzscnxdx. 5. lsenxcosxdx.
3. ]x“cosxdx. 6. ]xscnxcosxdx.

7. Por aplicagao do método de integragao por partes demonstrar

Isenzxdx = —Senx Ccos x + Icos“xdx.

No segundo integral, escrever cos’ x = 1 — sen’ x e deste modo deduzir a formula

Jsen2 xdx = 1x — }sen2x.
8. Utilizar a integragao por partes para deduzir a formula
'scn“ xdx = —sen™*xcosx +(n—1) ’s.en"‘2 xcos®xdx .

No segundo integral, escrever cos’ x = 1 — sen? x e deduzir a formula

sen"lxcosx n-—1 .
sen" xdx = — - sen""% x dx.
n n

9. Com os resultados dos Exercicios 7 ¢ 8 mostrar que



258 Calculo

"z/2 .

2 R

(a) ], sen® x d. rk
Ffr/2 . 3 («/2 . i
(b)“o sen xdx-z,“o sén xdx-Té.
o2 . 5 /2 ] S
(©) ), sen xd.t=-6J; scnxdx=-§.

10. Recorrendo aos resultados dos Exercicios 7 e 8, deduzir as formulas.
(a) J-scn’xdx = —§ cos x + 1 cos Ix.
(b) |sen®xdx = 2 x — }sen2x + 3§ sendx.

(c) Jscn5xdx = —8x + % cos 3x — &% cos 5x.

11. Usando o método de integragao por partes e os resultados dos Exercicios 7 e 10, deduzir
as seguintes formulas:

(a) Ixscn'xdx =} x* — } xsen2x — § cos 2x.
(b) J.xs-ensxdx = § senx — gy sendx — §xcos x + % x cos 3x.
(©) J‘x’ sen® x dx = }x* + (3 — }x¥sen 2x — }x cos 2x.

12. Integrando por partes deduzir a formula

cos™xsenx n -1
+

fcos" xdx = fcos"”’x dx .

n

13. Utilizar o resultado do Exercicio 12 para obter a formula seguinte:

(a) fcos'xdx = }x + }sen2x,
(b) J.cosaxdx = §senx + 7% sen 3x,

(© J'cos‘xdx = #x + }sen2x + 3 sendx.

14. Integrando por partes demonstrar que

~ x“
— 2dy = x — —— (x.
i vl Xx° dx vyl X +J\ l _x_(\

Escrever x* = x> — 1 + | na segundo integral e deduzir a formula

* » l

] ~x2dy =1x\V1 —x 41 l =
LY \ ‘ - \ l ."-

dx.

15. (a) Usar a integracao por partes para deduzir a formula
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x(a® — )" 2a’n

J.(a2 - xXNdx = - (@ = )" 1dx + C.

2n + 1 2n + 1

(b) Utilizar a alinea (a) para calcular .|-3 (a* — x?)*"dx.
16. (a)Sel (x) = J'é" "(1? + a?)"'2dt, aplicar o método de integragio por partes para demons-
trar que

nl(x) =x"Wx2+a—(n—1a*, 4(x) se n>2.

(b) Aplicando (a) demonstrar que .Ingx’(x’ + 5)2dx = 168/5 — 40\/3-/3
17. Calcular o integral f_’lt’(4 + £°)"V2dt, sabendo que |*,(4 + ¢))"*dt = 11,35.
Exprimir o resultado em fungdo de \/3_ e \/3_1‘
18. Usar o meétodo de integragao por partes para deduzir a formula

sen™t1 x I sen™ x n (sen™'x
x
cos™*! x mcos™x m Jcos™x

Utilizar a formula para integrar jtgixdx e flg‘x dx.
19. Usar a integragdo por partes para derivar a formula

cos™ ! x lcos™x m( cos™'x
sen™! x

X
sen"tl x nsen™ x n

Utilizar a férmula para integrar [cotgix dx e [cotg*x dx.

20. (a) Determinar um inteiro n tal que nf}) x/"(2x)dx = [3¢f"(t jdt.
(b) Calcular _[J, xf"(2x)dx, sabendo que f(0)=1,f(2)=e, e f(2)= 5.

21. (a) Se ¢” ¢ continua ¢ ndo nula em la, b] ¢ se existir uma constante m > 0 tal que
¢’(t) > m para todo t em [a, bl, utilizar o teorema (5.5) para provar que

4
<-—.
m

b
J. sen &(r) dt

[ Sugestdo. Multiplicar e dividir o integrando por ¢'(1).]
(b) Se a > 0, mostrar que || *sen(r?)dt| < 2/a para todo 0 x > a.

*5.11. Exercicios de revisao.

I. Sejafum polinoémio com f10) = 1 e seja g(x) = x" f(x). Calcular g(0), g(0), ..., g (0).

2. Determinar um polinomio P de grau < 5 com P(0) = 1, P(1) = 2, P(0) = P7(0) =
= P(1) = P"(1) = 0.

3. Se flx) = cos x e g(x) = sen x, provar que
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fUx) = cos(x + lnn) e gM(x) =sen(x + ln=).

4. Se h(x) = fix)g(x), provar que a derivada de ordem n de h é dada por
(n)f ) — . .."l‘ (K} v\ {n—h){
h"(x) = Zﬂ( k_)f ()" H(x),

com (:) representando o coeficiente binomial. Esta é a chamada formula de Leibniz.

5. Dadas duas fungdes /e g cujas derivadas f'e g’ verificam as igualdades
f(x)=gx), g&=—f(x, [fO)=0, g0=1, (5.30)

para cada x em algum intervalo aberto J contendo 0.(Por exemplo, estas equagdes sdo
verificadas quando f(x) = sen x e g(x) = cos x.)
(a) Provar que f*(x) + g*(x) = |1 para todo o x em J.
(b) Seja F e G outro par de fungdes verificando (5.30). Provar que F(x) = f(x) e
G(x) = g(x) para todo o x em J. [Sugestdo: Considera-se h(x) = |F(x) — f(x)I* +
+ |G(x) — g(x)]?].
(¢) Que mais se pode dizer acerca das fungbes / e g que verificam (5.30)?

6. Uma fungdo /. definida para todos os reais positivos, verifica a equagdo f{x?) = x* para
cada x > 0. Determinar f(4).

7. Uma fungao g, definida para todos os numeros reais positivos, satisfaz as duas condigoes
seguintes: g(1) = 1 e g(x?) = x? para todo o x > 0. Calcular g(4).

8. Mostrar que

-

‘senrs
J !+ld120 para todox 2 0.
0

9. Sejam C, e C, duas curvas passando pela origem como se indica na fig. 5.2. Uma curva
C diz-se “bissectar a area” compreendida entre C, e C, se, para cada ponto P de C, as
duas regides sombreadas A4 ¢ B, representadas na figura tém areas iguais. Determinar a
curva C, sabido que a curva C tem a equagdo y = x* e que a curva C, tem a equagio

|

y=—=x.

2

Fig. 5.2. Exercicio 9.
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. Uma fungao ¢ definida por

x2 se x € racional,
Jx) = .
0 se x ¢ irracional.

Sejam Q(h) = f{h)/h se h # 0. (a) Provar que Q(h) — 0 quando & — 0.
(b) Provar que f admite derivada em (0) e calcular /7(0).

Nos exercicios 11 a 20 calcular os integrais dados. Tentar simplificar os calculos usando o
método de substituicdo e/ou o método de integragdo por partes sempre que possivel

11. l‘(Z + 3x)sen 5x dx. 16. ':x‘(l — x)%0 dx,

. 2 1
12. Jx\.-' 1 + x*dx. 17. f x~%sen — dx.

. x
13. J.;x(x’ — 1) dx. 18. J.sen Vx — 1dx.
L 2x +3 -
. 2

14. J;(f)x 7 dx. 19. stenx’cos.r dx.
15. X1 + 5 dx. 20. [V/T+3 cos?x sen2x dx.
21. Demonstrar que o valor do integral Jg 375 X3 (x? + l)“ dx é 2" para certo inteiro n.
22. Determinar um par de numeros a e b para os quais f()l (ax + b) (x* + 3x + 2)'2 dx = 3/2.
23. Sejal = Jg (1 — x?)" dx. Mostrar que (2n + 1) I =2nl _ e utilizar esta relagdo para

calcular 1, I,, I, e I,.
24. Seja F(m,n) = [ " (1 + 1" dt, m > 0, n > 0. Mostrar que

(m + DF(m,n) + nF(m + 1,n — 1) = x™(1 4 x)".

Usar esta igualdade para calcular F(10, 2).
25. Sejaf(n) = [ *tg"x dx onde n > 1. Mostrar que

@) f(n +1) < f(n).

1
(b)f(n) +f(ﬂ—2)=: se n > 2.
1 . 1 e .

(C)"+l<_f(n)<m n>2
26. Calcular f10), sabendo que fin) = 2 e que _fg %) + f(x))sen x dx = 5.
27. Seja 4 o valor do integral [] (;i—sg)zdx

T cosx e
o (X +2)2 *
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Calcular o seguinte integral em fungao de 4

dx .

”’-’2 sin x cos x
Jo x +1

As formulas dos Exercicios 28 a 33 foram extraidas duma tabela de integrais. Verificar
cada uma delas, por qualquer meétodo de integragao

"V a + bx — dx
2. | ———dx=2Va+bx+a | —F7————— + C.
J x x\Va + bx
M ’ 2 I - )
29, ] ™"\ ax + bdx = m(x"(ax B b)S;2 — ﬂbJ X"_l\" ax +'b dl) + C (ﬂ‘ # _.:)
R P 2 ( Va + b _ d )+C ( 1)
| dx=— X"V a X — na X m -3
i dx Vax + b 2n - 3a dx
3, | —m———=—_ - - + C (n#1).
Jx"Vax + b (n — bx1  (@2n — 2)bJ xWax + b
‘cos™ cos™-1 m — 1 [cos™2%x
32. = x = x_l + ——dx + C (m #n).
Jsen™x (m —n)sen™*x  m —n) sen"x
‘cos™ x cos™t x m-—n+2(cos™x
. = — - dx 1).
53 Jsen™ x (n — sen™' x n—1 Jsen"?x +C (¥l

34. (a) Determinar um polinomio P(x) tal que P'(x) — 3P(x) = 4 — 5x + 3x. Provar que
existe uma unica solugao.

(b) Se Q(x) ¢ um dado polinomio, provar que existe um e um s6 polinémio P(x) tal que
P(x) — 3P(x) = Q(x).

35. Uma sucessao de polinomios (chamados polinémios de Bernoulli) define-se, por indugdo,
como segue:

Px) =1;  P.(x) =nP, y(x) e [P (x)dx =0 se n>1.

(a) Determinar formulas explicitas para P,(x), Py(x), ..., P(x).
(b) Demonstrar, por indugdo, que P, (x) € um polindmio em x de grau n, sendo o termo

de maior grau x”.
(c) Provar que Pn(O) = Pn( 1)sen 2 2.

(d) Provar que Pn(x + l)—P"(x): " 'sen > 1.
(e) Provar que para n 2 2 se tem

P, (k) — P, ,(0)
n+ 1 '

k
o= [ P,(x) dx =
v

- »n
.'.-Ml.

(f) Provar que P (1 —x)=(=1" P (x)sen21.
(g) ProvarqueP,  (0)=0eP, ,(1/2)=0sen 21.
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36. Supondo que |f”'(x)| < m para todo o x do intervalo [0, a] e supondo ainda que ftem o
seu maior valor num ponto interior deste intervalo, mostrar que [/“(0)| +|/"(@)| < am.
Pode supdr-se que /™ € continua em [0, al.
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FUNCAO LOGARITMO, FUNCAO
EXPONENCIAL |
E FUNCOES TRIGONOMETRICAS INVERSAS

6.1. Introdugao

Sempre que alguém fixa a sua atengao em tipos de relagoes quantitativas, esta ou a analisar
propriedades duma fungao conhecida, ou a tentar descobrir as propriedades duma fungao
desconhecida. O conceito de fungao ¢ tao amplo e tao geral que nao supreende encontrar
uma imensa variedade de fungOes ocorrendo na natureza. O que € surpreendente, € que um
pequeno numero de fungoes especiais interfiram numa grande variedade de fenomenos natu-
rais, alguns completamente diferentes. Vamos estudar algumas dessas fungoes neste capitulo,
primeiramente o logaritmo e a sua inversa (a fungao exponencial) e em segundo lugar as
inversas das fungoes trigonométricas. Todo aquele que estude matematica, quer como uma
disciplina abstrata, quer como instrumento de aplicagao a outros dominios cientificos, verifi-
cara ser indispensavel um bom conhecimento destas fungoes e das suas propriedades.

O leitor provavelmente ja teve oportunidade de trabalhar com logaritmos de base 10 no
curso elementar de algebra ou trigonometria. A definigdao habitualmente dada na algebra ele-
mentar €: Se x > 0, o logaritmo de x na base 10, representado por log,,x, € numero real u tal

que 10“ = x. Se x = 10" e y = 10" sabe-se que xy = 10“"". Em termos de logaritmos tem-se

log (xy) = logy X + log,, ). (6.1)

E esta propriedade fundamental que torna os logaritmos particularmente uteis na aplicagdo a
calculos que contenham produtos. O numero 10 € pratico como base, porque 0s numeros
reais escrevem-se habitualmente no sistema decimal e certos numeros importantes como
0,01, 0,1, 1, 10, 100, 1000,...admitem por logaritmos os inteiros —2, —1, 0, 1, 2, 3, ..., respeti-
vamente.

Nao € contudo necessario que nos restrinjamos a base 10. Qualquer outra base positiva
b+ 1 deve igualmente servir. Assim

265
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u = log, x significa x=b", (6.2)
e a propriedade fundamental (6.1) vem
log, (xy) = log, x + log, y. (6.3)

Examinando a definigao (6.2) dum ponto de vista critico, verificamos que ela sofre de va-
rias falhas de logica. Em primeiro lugar, para compreender (6.2) devemos saber o que sig-

u
nifica b . Isso € facil quando u € um numero inteiro ou racional (o cociente de dois inteiros),
mas ndo ¢ uma questao trivial definir “ quando u é irracional. Por exemplo, como definir

IO‘/_Z.’ Ainda que se consiga obter uma definigdo satisfatoria de b“, existem outras dificulda-
des a vencer antes que possamos usar (6.2) como uma boa defini¢ao do logaritmo. Ter-se-a
que demonstrar que para cada x > 0, existe um numero « tal que x = b* ¢ também a pro-
priedade b“b* = b"** deve verificar-se para quaisquer expoentes reais u € p para que se possa
obter (6.3) de (6.2).

E possivel vencer estas dificuldades e chegar a uma definigao satisfatoria do logaritmo por
este método, mas o processo € longo e fastidioso. Felizmente, porém, o estudo dos logaritmos
pode fazer-se duma maneira inteiramente diferente, a qual ¢ muito mais simples e que além
disso ilustra o poder e a elegancia dos métodos do calculo. A ideia consiste em introduzir em
primeiro lugar o logaritmo e depois usar o logaritmo para definir b“.

6.2. Motivagio para a defini¢ao do logaritmo natural como um integral

O logaritmo é um exemplo de um conceito matematico que pode ser definido de varias
maneiras diferentes. Quando um matematico tenta formular a definigao de um conceito, tal
como o de logaritmo, tem usualmente na ideia um certo numero de propriedades que deseja
que o conceito possua. Examinando estas propriedades € conduzido frequentemente a uma
simples formula ou processo que pode servir como defini¢ao e da qual resultam aquelas pro-
priedades desejadas como dedugoes logicas. Vamos mostrar como este processo pode ser uti-
lizado para chegar a definigdo de logaritmo que sera apresentada na proxima segiio.

Uma das propriedades que se deseja para os logaritmos € que o logaritmo dum produto
seja igual a soma dos logaritmos de cada um dos fatores. Consideremos esta propriedade em
si propria ¢ vejamos onde ela nos pode conduzir. Se pensamos do logaritmo como uma
fungdo f, entdo deseja-se que esta fungdo possua a propriedade expressa pela formula

fxy) = f(x) + f(») (6.4)

sempre que x, y e xy pertengam ao dominio de f.

Uma equagdo como (6.4), que exprime uma relagdo entre os valores duma fung¢dao em
dois ou mais pontos, diz-se uma equagao funcional. Muitos problemas matematicos podem
reduzir-se a resolugao duma equacgio funcional cuja solugdo é qualquer fungao que a verifi-
que. Frequentemente uma equagao deste tipo admite muitas solugoes diferentes, sendo em
geral muito dificil a determinagio de todas elas. E mais facil procurar sé aquelas solugdes que
possuem alguma propriedade, tal como continuidade, ou derivabilidade. Para a maior parte
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dos problemas estas sao as unicas solugoes que geralmente interessam.Adoptemos este
ponto de vista e determinemos todas as solugoes derivaveis de (6.4). Porém sera interessante
analisar, em primeiro lugar, quais as conclugoes que poderemos obter de (6.4) sem qualquer
outra restrigdo acerca de f.

Uma solugao de (6.4) € a fungao identicamente nula em todo o eixo real Além disso, esta €
a unica solugio de (6.4) que esta definida para todos os numeros reais. Para provar isto, desig-
nemos por f qualquer fungio que verifique (6.4). Se 0 pertence ao dominio de /, entio pode-
mos fazer y = 0 em (6.4) para se obter f{0) = f{x) + f10), e isto implica que f{x) = 0 para todo
o x no dominio de f. Por outras palavras, se 0 pertence ao dominio de f; entdo f deve ser idén-
ticamente nula. Deste modo uma solugdo de (6.4) que nao seja idénticamente nula nao pode
estar definida em 0.

Se fé uma solugao de (6.4) e se 0 dominio de f contém o ponto 1, podemos fazer x =y = 1
em (6.4) para obtermos f{1) = 2/{1) o que implica

f()=o0.

Se 1 e —1 pertencem ao dominio de f podemos tomar x = —1 e y = —1 para concluirmos que
A1) = 21—1) e portanto f{—1) = 0. Se agora x, —x, 1 ¢ —1 pertencem ao dominio de f, pode-
mos fazer y = —1 em (6.4) para se deduzir f{—x) = fl—1) + f{x) e visto que f{—1) = 0 encon-
tramos

J(=x) = f(x).

Por outras palavras, qualquer solugdo de (6.4) é necessariamente uma fungado par.

Suponhamos, ainda, que se admite que / tem derivada /7 x) para cada x # 0. Se conservamos
y fixo em (6.4) e derivamos relativamente a x (pela regra da derivada da fungdo composta),
encontramos

W (xy) = f'(x).
Quando x = 1, concluimos da equagdo anterior que yf'(y) = f(1) e daqui resulta

' =f—’jﬂ para cada y # 0.

Por esta equagdo vemos que a derivada f'¢ monétona e por conseguinte integravel em cada
intervalo fechado nao contendo a origem. Além disso, f ¢ continua em cada um desses inter-
valos, e poder-se-a aplicar o segundo teorema fundamental do calculo para escrever
z _ M 1
10— 1@ = rwar=rm|[ Lar
¢

v

Se x > 0 esta equagao € verdadeira para qualquer positivo ¢, e se x < 0 ela é verdadeira para
qualquer negativo ¢. Uma vez que f{1) = 0, a escolha de ¢ da-nos
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f(t)-f(l)l it e x>o0.

Se x ¢ negativa entdo —x € positiva e, uma vez que f{x) = f{—x), encontramos

1(x) =f'(1)rld: s x<0.

Estas duas formulas para f{x) podem reunir-se numa so, valida tanto para x positivo como
para x negativo, a saber,

wEd
10 =S|, ld: se x50, (6.5)

Demonstramos portanto que se existir uma solugdo de (6.4) que admita derivada em cada
ponto x # 0, esta solugdo sera necessariamente definida pela formula integral (6.5). Se
/(1) = 0, entdo (6.5) implica que f(x) = 0 para todo x # 0, ¢ esta solugido coincide com
a solugdo identicamente nula.Por tanto, se f ndo ¢ identicamente nula, devemos ter f(1) #
# 0, hipotese em que se podem dividir ambos os membros de (6.5) por /1), obtendo-se

-~

[z]
2(x) _J Lai se x#0, (6.6)
1

S&x)
7y
que /o seja. Isto prova e (C.4) admite uma solugdo que nao é identicamente nula e se esta
solugao admite derivada em todo o eixo real, exceto na origem, entdo a fungdo g definida
por (6.6) € também uma solugéo e todas as solugdes se podem obter desta por multiplicagao
de g por uma constante adequada.

onde g(x) = A fungdo g é também uma solugdo de (6.4), pois que ¢/ é solugdo sempre

Deve ser posto em destaque que este raciocinio nao prova que a fungdo g em(6.6) seja uma
solugdo, porque deduzimos (6.6) na hipotese de que existia, pelo menos, uma solugao que nao
era identicamente nula. A formula (6.6) sugere um caminho para construir uma tal solugdo,
para o que basta muito simplesmente operar em sentido inverso, quer dizer, utilizamos o inte-
gral em (6.6) para definir uma fungao g e depois verificamos diretamente que esta fungao
verifica (6.4). Isto sugere-nos que definamos o logaritmo pela fungao g definida por (6.6). Se
procedermos deste modo, esta fungdo tera a propriedade de g(—x) = g(x) ou, por outras pala-
vras, numeros diferentes teriam o mesmo logaritmo. Para os pontos de vista que nos interes-
sarao mais tarde, € preferivel definir o logaritmo de maneira que dois numeros distintos nao
possam ter o mesmo logaritmo. Esta propriedade pode ser conseguida definindo o logaritmo
unicamente para numeros positivos. Por conseguinte tomaremos a seguinte defini¢ao:
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6.3. A defini¢ao de logaritmo. Propriedades fundamentais

DEFINIGAO. Se x é um mimero real positivo, define-se logaritmo natural de x, designado
provisoriamente por L(x), pelo integral

L(x) =J L dt . (6.7)
11
Quando x > 1, L(x) pode ser interpretada geometricamente como a area da parte sombreada

da fig. 6.1.

TEOREMA 6.1. A fungdo logaritmo possui as seguintes propriedades:
(a) L(1) = 0.

(b) L'(x) = l - para cada x > 0.
X

(¢) L(ab) = L(a) + L(b) paracada a> 0,6 > 0.

Demonstragdo. A alinea (a) resulta imediatamente da defini¢ao. Para provar (b), chama-
| mos a atengao para o fato de que L € um integral indefinido duma fungao continua e apli-
camos o primeiro teorema fundamental do calculo. A propriedade (c) resulta da propriedade
aditiva do integral. Escrevemos

Liab) _J'""dt J‘ dt+J‘°"dI La )+J‘°°dr

f A
y = L(x)
X
0 0 (1,0)
[ Fig. 6.1. Interpretagao do logaritmo Fig. 6.2. O grafico do logaritmo na-
COmo uma area. tural.

| APOSTOL — 10
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Se no ultimo integral fizermos a substitui¢ao u = t/a, du = dt/a verifica-se que o integral se
reduz a L(b), ficando pois demonstrada (c).

6.4. O grafico do logaritmo natural

O grafico da fungdo logaritmo tem a forma geral apresentada na fig. 6.2. Muitas proprie-
dades desta curva podem obter-se sem calculos excessivos, bastando pelo contrario analisar
as propriedades do Teorema 6.1. Por exemplo, de (b) vé-se que L admite derivada positiva
para todo o x > 0, pelo que ¢ estritamente crescente em todo o intervalo em que se define.
Visto que L(1) = 0, o grafico esta situado acima do eixo OX se x > 1 e situado abaixo
daquele eixo se 0 < x < 1. A curva tem declive 1 quando x = 1. Para x > 1, o declive
decresce gradualmente até atingir o valor zero quando x cresce indefinidamente. Para peque-
nos valores de x, o declive ¢ grande e, além disso, cresce indefinidamente quando x tende para

zero. A segunda derivada é L"(x) = — @ qual € negativa para todo o x e portanto L ¢

uma fung¢ao concava.

6.5. Consequéncias da equagao funcional L(ab) = L(a) + L(b)

Visto o grafico do logaritmo crescer até um limite quando x aumenta indefinidamen-
te, pode pensar-se que os valores de L admitem um limite superior. Porém, a fungao é ili-

mitada superiormente, isto €, para cada positivo M (tdo grande quanto se queira) existem
valores de x tais que

Lix)> M. (6.8)

Podemos prova-lo pela equagao funcional. Quando a = b, obtemos L(a?) = 2L(a). Usando a
equagao funcional ainda mais uma vez com b = a?, obtemos L(a’) = 3L(a). Por indugdo
encontramos a formula geral

L(a") = nlL(a)
para todo o inteiro n > 1. Quando a = 2, obtemos L(2") = nL(2), donde se tira que

| M
L(2")> M quando n > — . 6.9
q n L) (6.9)

Isto prova a afirmagao (6.8). Tomando » = 1/a na equacdo funcional, encontramos
L(1/a) = —L(a). Em particular, quando @ = 2", onde n é escolhido como em (6.9), tem-se

1 |
—_ | ‘)“. —_—
L(Qn ) L2Y < —M,

a qual mostra que também ndo existe limite inferior para os valores da fun¢io.
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Finalmente observamos que o grafico interseta cada reta paralela a OX uma unica vez,
isto ¢, dado um numero real arbitrario b (positivo, negativo, ou nulo), existe um e um sé a > 0
tal que

La)=h. (6.10)

Para provar esta afirmagao podemos raciocinar como segue: Se b > 0, escolhemos qualquer
inteiro nn > b/L(2). Entao L(2") > b, devido a (6.9). Examinemos agora a fungdo L no
intervalo fechado [1,2"]. O seu valor no extremo esquerdo é L(1) = 0, e no extremo

direito ¢ L(2"). Visto que 0 < b < L(2"), o teorema do valor intermédio para fungdes conti-
nuas (Teorema 3.8 da Seg¢ao 3.10) garante a existéncia de pelo menos um a tal que L(a) =
= b e ndao pode existir outro valor @ tal que L(a’) = b porque tal significaria que L(a)=L(a’)
para a # a’, 0 que vai contra a propriedade do logaritmo ser estritamente crescente. Por-
tanto a proposi¢ao (6.10) esta demonstrada para b > 0. A demonstragdo para valores negati-
vos de b € consequéncia da anterior se usarmos a equagao L(1/a) = —L(a). Demonstramos
assim o seguinte:

TEOREMA 6.2. Para cada niumero real b existe exatamente um niumero real positivo a
cujo logaritmo, L(a), é igual a b.

Em particular, existe um s6 numero cujo logaritmo natural ¢ igual a 1. Este numero, tal
como n, aparece tao repetidas vezes em tantas formulas matematicas que era inevitavel adop-
tar para ele um simbolo especial. Leonard Euler (1707-1783) parece ter sido o primeiro a
reconhecer a importancia deste numero e modestamente designou-0 por e, notagao que se
tornou usual.

DEFINICAO. Representa-se por ¢ o niimero para o qual

L(e)=1. (6.11)

No Capitulo 7 obteremos formulas que permitem calcular a expressio decimal de e, com
qualquer grau de precisio desejado. O seu valor, com dez casas decimais, € 2,7182818285.
No Capitulo 7 provaremos que e € um numero irracional.

Os logaritmos naturais chamam-se tambeém logaritmos neperianos, em homenagem 4o seu
inventor. J. Neper (1550-1617). E pritica comum a utilizagio dos simbolos In x ou log x,
em vez de L/ x), para representar o logaritmo de x.

6.6. Logaritmos referidos a qualquer base positiva b + 1

Na se¢do 6.2 concluimos que a fungdo mais geral f que € derivavel no semi-eixo real
positivo ¢ que verifica a equacdo funcional f{xy) = fix) + f{y) ¢ da forma

f(x) = clogx, (6.12)
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com ¢ uma constante. Para cada ¢, chamaremos f{x) o logaritmo de x associado com ¢ con-
quanto, evidentemente, o seu valor ndo seja necessariamente 0 mesmo que o logaritmo
natural de x. Quando ¢ = 0, f/ ¢ indenticamente nula, caso desprovido de interesse. Se ¢ # 0,
podemos indicar de outro modo a dependéncia de f em cintroduzindoo conceitode basede
logaritmos.

De (6.12) concluimos que, quando ¢ # 0, existe um unico numero real b > 0 tal que
fib) = 1. Este valor de b esta relacionado com c pela equagao clog b= l;como b # 1, ¢ =
1/log b e (6.12) escreve-se

log x

S = log b’

Para esta escolha de ¢ dizemos que f{x) ¢ o logaritmo de x na base b e escreve-selog, xem vez

de fIx).

DEFINICAO. Se b > 0, b # I e se x > 0, o logaritmo de x na base b é o mimero

em que os logaritmos do segundo membro sdo logaritmos naturais.

E evidente que log, b=1eseb=e, loge x = log x, pelo que os logaritmos naturais sao os
que tém base e. Visto que os logaritmos de base e sdo tao frequentemente utilizados na Mate-
matica, a palavra logaritmo significa quase sempre logaritmo natural. Mais adiante, na se-

¢do 6.15, definiremos b* de tal maneira que a equagdo b = x significara exactamente o
mesmo que u = log, x.

|< b< e

b>e

X

(a) b>1 (b)y 0<bh<I

Fig. 6.3. Grafico de y = log, x para diferentes valores de .
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Uma vez que os logaritmos de base b se obtém dos logaritmos naturais por multiplicagao
pelo fator constante 1/log b, o gréfico de y = logs x pode ser obtido do grafico de y= log x
multiplicando todas as ordenadas pelo mesmo fator. Quando b > 1, este fator € positivo
e, quando b < I, € negativo. Exemplos em que b > | estio representados na fig. 6.3(a).

Quando b < 1, entdo 1/b > 1 e log b = —log(1/b), de modo que o grafico de y = log, x
pode ser obtido do grafico de y = log, , x por simetria relativamente a OX; na fig. 6.3(b)
apresentam-se alguns exemplos.

6.7. Formulas de derivagdao e integra¢do contendo logaritmos

Visto que a derivada do logaritmo € dada pela formula D logx = 1/x para x > 0, resulta a
seguinte formula de integracao

f%dx=logx+(‘.
Mais geralmente se u = f{x), com f admitindo derivada continua, temos

du _joeu+cC ou | L¥ax=10gs(x)+C. (6.13)
u J(x)

Deve ter-se presente, ao utilizar-se (6.13), que o logaritmo nao esta definido para numeros
negativos. Deste modo as formulas de integragao em (6.13) sao validas somente se u, ou f{x),
€ positiva.

Afortunadamente e facil generalizar o campo de validade destas formulas de modo a
incluirem fungoes negativas ou positivas (mas ndo nulas). Introduz-se simplesmente uma
nova fungao L, definida para todos os reais x # 0 pela equagao

=l

Ly(x) = log |x]| = f -:-dr , (6.14)

uma defini¢ao sugerida pela equagao (6.6) da secio 6.2. O grafico de L, é simétrico relativa-
mente a OY, como se mostra na fig. 6.4. A parte do grafico a direita de OY é precisamente a
mesma que a curva logaritmica da fig. 6.2.

Uma vez que log [xy| = log (/x| ly|) = log x| + log ly,, a fungdao L, também satisfaz a
equagao funcional fundamental (6.4); quer dizer que se tem

Lo(xy) = Ly(x) + Lo(y)

. . - | B :
para quaisquer reais x € y nao nulos. Para x > 0, tem-se Lj(x) = > ja que Ly(x) €, neste
caso, a mesma fungao que log x. A formula da derivada também e verdadeira para x < 0

porque, neste caso, L,(x) = L(—x) e por isso L,(x) = —L'(—x) = —1/(—x) = —3-1(— Temos pois
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para todo o real x # 0. (6.15)

Ly(x) =

=

/,r = L (x) = log|x|

Y
-

Fig. 6.4. O grafico da fungao L,

Consequentemente, se usamos L, em vez de L nas precedentes formulas de integragao, pode-
mos estender o seu alcance para incluir fungoes que assumem tanto valores negativos como
valores positivos. Por exemplo, (6.13) pode generalizar-se como segue:

[du _ = log |u] + C, ff“; dx = log | f(x)| + C. (6.16)

u .

Evidentemente que, quando usamos (6.16) juntamente com o segundo teorema fundamental
do calculo para calcular um integral definido, devem evitar-se intervalos que incluam pontos
em que u ou f{x) possam anular-se.

ExempLO 1. Integrar [tg x dx.
: -du
Resolugao . O integral e da forma —J—u— onde u = cos x, du = —sen x dx. Portanto po-

demos escrever

-~
" du

tg xdx=—| —= —loglul + C = —log|cosx| + C,
v Jou

formula que ¢ valida em qualquer intervalo no qual cos x # 0.
Os dois exemplos que se seguem sao aplicagoes do método de integragdao por partes.

ExempLo 2. Integrar J‘log x dx.

Resolu¢ao. Seja u = log x, dv = dx. Entdo du = dx/x, v = x e obtém-se
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J log x dx =J.u dv = uv —fu du = x log x —Jx ! dx =xlogx —x+ C.
X

ExempLO 3. Integrar [sen(log x)dx.

Resolugdo. Seja u = sen(log x), v = x. Entdao du = cos(log x)(1/x)dx e obtém-se
J.sen (log x) dx =fu dv = uv —_’.v du = xsen(log x) —jcos (log x) dx .
No dltimo integral recorremos & integragdo por partes, uma vez mais, para oblermos
' cos (log x) dx = x cos (log x) + _l.sen (log x) dx .

Substituindo na igualdade anterior, encontramos

' sen (log x) dx = Jxsen(log x) — lxcos(logx) + C,

J cos (log x) dx = ixsen(log x) 4+ Ixcos(logx) + C.

6.8. Derivagao logaritmica

Exporemos a seguir uma técnica conhecida por derivagao logaritmica, a qual ¢ muitas
vezes um poderoso auxiliar no calculo de derivadas. O método foi desenvolvido em 1697 por
Johann Bernoulli (1667-1748), e o seu fundamento ¢ uma simples aplicagao de regra de deri-
vagdo da fungao composta.

Suponhamos que formamos a composigao de L, com qualquer fungao derivavel f; seja

g(x) = Ly[f(x)] = log | f(x)|

para os valores de x tais que f{x) # 0. A regra da derivagao da fungao composta, usada em
conjungao com (6.15), permite obter a formula
' ' , f'(x)
g(x) = Lo[f(x)] - f(x) =" (6.17)
f(x)
Se a derivada g'(x) puder ser calculada de outro modo, entdao podemos utilizar (6.17) para
obter f (x), por simples multiplicagdo de g'(x) por f{x). O processo é ttil na pratica porque em
muitos casos g'(x) € mais facil de calcular do que f(x). Em particular, tal é verdadeiro quando
/¢ um produto ou quociente de varias fungdes simples. O exemplo seguinte é elucidativo.

ExemprLo. Calcular f{(x) se f(x) = x®cos x (I + x*)~".
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Resolugdo. Tomamos o logaritmo do valor absoluto de f(x)e derivamos. Seja entdo

g(x) = log | f(x)| = log x* + log |cos x| + log (1 + x*)°7
= 2 log |x| + log |cos x| —7 log (I + x*).

Derivando vem

Multiplicando por f{x), obtemos
(x) = 2XCOs X x’sen x _ 28x%cos x
J )= (1+xY  (1+x% (1 + x%)®

6.9. Exercicios

1. (a) Determinar todos os valores de ¢ tais que log x = ¢ + j‘ir" dt para todo x > 0.

(b) Seja fx) = log [(1 + x)/(1 — x)] se x > 0. Se a e b sao nameros dados, com ab + —1,
determinar todos os valores de x tais que f{x) = fla) + fib).

Para cada alinea, determinar um namero real x verificando a equagio dada

rJ

(a) log (1 + x)=log (I — x) (¢c) 2logx=xlog 2. x#2
(b)log (1 + x)= 1+ log (I — x) (d)log(Vx +Vvx +1) =1,

3. Seja fix)= (log x)/x se x > 0. Descriminar os intervalos em que f ¢ crescente, decres-
cente, convexa e concava. Tragar o grafico de /.

Nos Exercicios 4 a 15 calcular a derivada f(x). Em cada caso a fungdo f supdese

estar definida para aqueles valores reais de x para os quais a formula f{x) tem signifi-

cado.
4. f(x) =log (1 + x*). 10. f(x) = (x + V1 +x3)"
5. f(x) =log V1 + x 1. f(x) =Vx + 1 —log(l +Vx + 1)

6. f(x) =log V4 — x* 12. f(x) = xlog(x + /1 +x%) =1 + %

7. f(x) = log (log x). 13. /) = 5= log \ a + x\ f
8. f(x) = log(x*log x). “Va Va—xvb
x*—1 14. f(x) = x[sen(log x) — cos (log x)].
1
- fx) = loga 5. f(x) = log, e.
Nos Exercicios 16 a 26, calcular os integrais.
dx [fl_l dt
2
16. ,[2+3x' 20 Jo 141
17. § log® x dx. 21. | cotg x dx.
18. fxlog x dx. 22. |x" log (ax) dx.

19. § x log® x dx. 23. | x*log? x dx.
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.

ix log |:
24, f “ . 26. J ..—_og b dx.
x log x xV 1+ log |x]

25. J e log (1 -0
0 1 —1¢

27. Deduzir a formula

x™ 1 Jog" x n .
x™ ]Ug” Ydy = . XM logﬂ—l X dx
m + | m 4+ 1

e usa-la para integrar [x3 log®x dx.
28. a) Sex > 0, seja flx) =x — 1 —log x, g(x) = log x —1 + 1/x. Examinar os sinais de f'e g’
e demonstrar que as desigualdades

1
l—;<log.\‘ <x -1

sao validas para x > 0, x # 1. Quando x = 1, transformam-se em igualdades.
(b) Tragar os graficos das fungoes 4 e B definidas por A(x) =x— 1l e B(x) =1 — 1/x
para x > O e interpretar geometricamente as desigualdades da alinea a).

29. Provar que

log(1 +x)
X a

lim
ax—0

pelos seguintes metodos: (a) usando a definigao de derivada L (1); b) usando o resultado

do Exercicio 28.
30. Se @ > 0, usar a equagao funcional para o logaritmo para provar que log(a") = r log a

para todo o racional r.
31. Seja P= la,, a,, a,, ..., a,} uma parti¢io qualquer do intervalo [1, x], com x > |.
(a) Integrando fungoes escalonadas que sdao constantes nos subintervalos abertos de P,
deduzir as seguintes desigualdades:

Z(a; — e 1)<Iogx <>(a,_ - 1})

a4

(b) Interpretar as desigualdades da alinea (a) geometricamente em termos de areas.
(c) Refinar a partigio para mostrar que para cada inteiro n > |

..
|
—

$ <logn <

1
oo
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32. Demonstrar as seguintes formulas de mudan¢a de base de logaritmos para outra

log, x
log, b’

(a) log, x = log, alog, x; (b) log, x =

33. Dado que log, 10 = 2,302585, aproximado a sexta casa decimal, calcular log,,e
servindo-se duma das formulas do Exercicio 32. Quantas casas decimais exatas se
podem assegurar para o resultado? Nora. Uma tabua calculada com seis decimais da
log,,e = 0,434294.

34. Uma fungio /, continua no semi-eixo positivo OX, tem a propriedade de que quaisquer
que sejam x > 0 e y > 0, o integral

J.:yf (1) dr

¢ independente de x (e por isso depende so de y). Se AA2) = 2, calcular o valor do integral
A(x) = If S{t)dt para todo o x > 0.

35. Uma fungao f, continua no semi-eixo real positivo, tem a propriedade de
|7 fyde = y| f@ydt + x| fy de

para todo x > O e y > 0. Se f{l) = 3, calcular f{x) para todo x > 0.
36. A base dum solido € o conjunto de ordenadas duma fungdo f continua no intervalo
[1, al. Todas as segoes perpendiculares ao intervalo [ 1, a] sao quadradas. O volume do

. .1 2 2 2
li —_— 2q — g3 iy . >1. .
solido e 3 a’ log*a 52 loga + 57@ — 55 para todo o a 2 1. Calcular f{a)

6.10. Aproximagao polinomial para o logaritmo

Nesta secio vamos demonstrar que a fungio logaritmo pode ser aproximada por certos
polinomios, os quais podem ser utilizados para o calculo de logaritmos com qualquer
grau de precisio desejada.

No sentido da simplificagiio das formulas resultantes substituimos, em primeiro lugar, x

por | — x no integral definindo o logaritmo para obtermos
1-x
log(l — x) = [ dt ,
1 t
a qual ¢ vdlida se x < 1. A mudanga de varidvel 1= 1 — u transforma esta igualdade em

—log (1 — x) =J du , valida para x < 1.
0

|l —u
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Aproximamos agora o integrando 1/(1 — ) por polinomios, os quais serao depois integrados
para obtermos as correspondentes aproximagoes para o logaritmo. Para ilustrarmos o me-
todo comegamos com a aproximagao linear simples para a fungao integranda.
A partir da identidade 1 — u? = (1 — u)1 + u) obtemos a formula
1 u® )
=14+u+ . (6.18)

1l —u | —u

valida para qualquer real u # 1. Integrando de 0 a x, com x < 1, obtemos

-~

—log (1 —x)=.\‘+£+J
2 ol —u

a2
T

du . (6.19)

O grafico do polinomio do 2.° grau P(x) = x + % x? que aparece no segundo membro de

(6.19) esta representado na fig. 6.5, juntamente com a curva y = —log (1 — x). Repare-se
que para x proximo da origem o polinémio P(x) ¢ uma boa aproximagao de —log (1 — x). No
teorema que se segue vamos utilizar um polinomio de grau n — 1 para aproximar 1/(1 — u)
¢ deste modo obter um polinomio de grau n que aproxima log(l — x).

= X

-

‘,r= ~log (I - x)

-
-

Fig. 6.5. Um polindémio quadratico de aproximagido da curva y = —log(l — x)

TEOREMA 6.3. Se P, é um polinémio de grau n dado por

x* x* x" - x*
P, =X+ —4+—4 == —_
(x) +2+3 n Zk
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entdo, para todo x < | e todo n = |, tem-se

~x n

—log (1l — x) = P,(x) +J

du . (6.20)

ol —u
Demonstragdo. A partir da identidade
l—w=(—-w(l+u+w+-+u"),
obtemos a formula

——1—-—=l+u+u2+'-'+u""+ - s

l —u |l —u

valida para u # 1. Integrando de 0 a x, com x < 1, obtemos (6.20).
Podemos escrever de novo (6.20) na forma

—log (1 — x) = P,(x) + E,(x), (6.21)

em que E.(x)¢é o integral

xr n

E.(x) =J —— du.

ol —u

E.(x) representa o erro cometido quando aproximamos —log(l — x) pelo polinomio
P”(x). Para utilizarmos (6.21) nos calculos, necessitamos de saber se o erro € positivo ou

negativo e qual a sua ordem de grandeza. O teorema que se segue diz-nos que para valores
de x pequenos e positivos 0 erro E (x) € positivo, mas para valores de x negativos o erro tem

. n+1 - » . . . o~ ’
0 mesmo sinal que (—1)" ", em que n € o grau do polindmio de aproximagao. O teorema da
ainda limites superior e inferior para o erro.

TEOREMA 6.4. Se 0 < x < 1, verificam-se as desigualdades

- e
x"H ] x"

< E, (x) < . (6.22)
n+1 l —xn+1
Sex <0,0erro En(x) tem o mesmo sinal que (—1 ) L e tem-se
. ]'\,lrr-—l
0 < (=" E(x) L (6.23)

n-{-l-

Demonstragdo. Suponhamos 0 < x < 1. No integral que define £ (x) temos 0 < u <x,
pelo que 1 — x £1 — u £1 e deste modo a fungdo integranda satisfaz as desigualdades
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Integrando estas desigualdades,obtemos (6.22).
Para se demonstrar (6.23), supomos x < 0 e fazemos t = —x = |x| Entdo ¢ > 0 e tem-se

L TL t (__.\n . ¢ n
E,(x) = E,(—1) =f — du = —f (=0)"4, = (—1)"‘*"" Y dv,
o 1 —u o 14w ol 40

0 que prova ter £,(x) o mesmo sinal que (—1)"*!Além disso, temos

t1on

(—D"E (x) =J

n+1 [xln+l

n+1=n+1’

(
dv gf " dv =
0

ol 4 v

a qual completa a demonstragao de (6.23).
O teorema seguinte da-nos uma formula que esta particularmente bem adaptada ao cal-
culo de logaritmos.

TEOREMA 6.5. Se 0 < x < I esem 2 1, tem-se

1 + X ( x3 x2m—-l )
lo =2lx4+—=4 "4+ + R, (x),
g] —-X ._ 3 2m — 1 ()
onde o erro, R (x), satisfaz as desigualdades
me*'l . 2 —_X xﬂm |
<R, (x . 6.24
2m 4+ 1 (\)Sl—.\c2m+l ( )

Demonstragado. A igualdade (6.21) € valida para qualquer x < 1. Se substituimos x por —x
em (6.21), tomando x > —1, obtemos a formula

—log (1 + x) = P,(—x) + E(—x). (6.25)

Se —1 < x < 1, sao validas ambas as formulas (6.21) e (6.25). Subtraindo (6.25) de (6.21)
encontramos

I 4+ x

l — x

log = P,(x) — P,(—x) + E,(x) — E,(—x). (6.26)

Na diferenga P (x) — P, (—x), as poténcias pares de x anulam-se e as poténcias impares sao

multiplicadas por dois. Portanto, se n € par, n = 2m, temos
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/ x:l x'2m 1
P'n’ m 2+_++ -)’
an(X) = Penl= (-\ 3 2m — 1

e a igualdade (6.26) escreve-se

Z m—

1 + x

- X

oglEE —a(x 4 T 4 2 ) R0,

2m —
onde R, (x)=E,, (x)-E, (-x). Esta formula ¢ valida se x pertence ao intervalo

aberto —1 < x < 1. Restrinjamos agora x ao intervalo 0 < x < 1. Entdo a estimativa forne-
cia pelo Teorema 6.4 da-nos

2m+1 1 t2m+1 2m+1

X .
n(x) < e 0< —-E,,(—x) <L .
2m+l Ean() 1l —x2m + 1 tn 2m + 1

1 2-—x
l—x 1—x

Somando estas desigualdades, obtemos (6.24) visto que 1 +

EXEMPLO. Fazendom=2¢e x = % vem (1l + x)/(1-x)=2e
log2 =2(} + ) + Ro}), onde 3(3)° < Ry(H) £ (3 = 386 -

Daqui resultam as desigualdades 0,6921 < log 2 < 0,6935, por meio de cdlculos simples.

6.11. Exercicios

: 1 .
1. Aplicar oTeorema 6.5 com x =—— e m = 5 para calcular valores aproximados do log 2.

3
Conservar nove casas decimais nos calculos e obter as desigualdades 0,6931460 <
< log 2 < 0,6931476.
3

2. Sex= L, entdo (1 +x)/(1-x) = >

5 Deste modo o teorema 6.5 permite calcular log 3

- 1 .
em fungao de log 2. Tomar x = 5 e m = 5 no Teorema 6.5 e usar o resultado do Exerci-

cio 1 para obter as desigualdades 1,098611 < log 3 < 1,098617.
Nota: Uma vez que log 2 < log ¢ < log 3, resulta que 2 < ¢ < 3.
: ] -
3. Aplicar oTeorema 6.5 com x =3 para calcular log 5 em fungao de log 2. Escolher o
grau do polinomio de aproximagao suficientemente elevado para obter as desigualdades
1,609435 < log 5 < 1,609438.

. 1 -
4. Aplicar o Teorema6.5, com x = & para calcular log 7 em fungao de log 5. Escolher o
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grau do polinomio de aproximagio suficientemente elevado para obter as desigualdades
1.945907 < log 7 < 1,945911.

5. Usar os resultados dos Exercicios 1 a 4 para calcular uma pequena tabua contendo log n
para n = 2, 3, ..., 10. Calcular tantas casas decimais corretas quantas as que s¢jam possi-
veis a partir das desigualdades dos Exercicios 1 a 4.

6.12. A fungao exponencial

OTeorema 6.2 mostra que para todo o real x existe um e um so y tal que L(y) = x. Por-
tanto podemos aplicar o processo de inversdo para definir y como fungdo de x. A fungao
inversa obtida é chamada a fungdo exponencial, ou o antilogaritmo e representa-se por E.

DEFINICAO. Para todo o real x, define-se E(x) como o nimero y cujo logaritmo é x, isto é,
v = E(x) significa que L(y) = x.

O dominio de £ ¢ todo o eixo real; o seu contradominio € 0 conjunto dos numeros reais €
positivos. O grafico de E, representado na fig. 6.6, obtéem-se do grafico do logaritmo por
simetria em relagdao a reta y = x. Uma vez que L ¢ E sao inversas uma da outra, tem-se

L[E(x)] = x para todo x e E[L(y)]=y paratodoy> 0.

e

Fig. 6.6. O grafico da fungao exponencial obtém-se do da fungao logaritmo por simetria rela-
tivamente a reta y = x.

Cada propriedade do logaritmo pode ser transformada numa propriedade da expo-
nencial. Por exemplo, uma vez que o logaritmo ¢ estritamente cresoente e continua em
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todo o semi-eixo real positivo, resulta do Teorema 3.10 que a exponencial € estritamente
crescente € continua em todo o eixo real. O teorema correspondente de 6.1 € o seguinte.

TEOREMA 6.6. A fun¢ao exponencial possui as seguintes propriedades:
(a) E(0O) =1, E(1)=e. '

(b) E'(x)= E(x) para qualquer x.

(¢c) E(a + b)=E(a) E(b) para a e b quaisquer.

Demonstragao. A alinea (a) resulta das equagoes L(1) = 0 e L(e) = 1. Demonstramos
seguidamente (c), a equagao funcional para a exponencial. Admitamos que a e b sao dados e
seja

x = E(a), y = E(b), c = L(xy).

Entao temos
L(x)=a, L(y)=0b, E(c) = xy.

Mas ¢ = L(xy) = L(x) + L(v) = a + b, isto &, ¢ = a + b. Daqui resulta E(c) = E(a + b). Por
outro lado, £(c) = xy = E(a)E(b). pelo que so E(a +b)=E(a)E(b),0que demonstra (¢c).

Servimo-nos agora da equacao funcional para a demonstragaode (b). A razao incremental
para a derivada E'(x) é

E(x + h) — E(x) _ E(x)E(h) — E(x) _ E(x) E(h) — 1
h h ‘ h '

Por conseguinte, para demonstrar (b) devemos provar que

. E(h) —1
lim —— =

) h

1. (6.27)

E conveniente exprimir o quociente de (6.27) em fun¢ido do logaritmo. Sejak = E(h) - 1.

Entdo k + | = E(h), de maneira que L{k + 1)= h e a razdo incremental ¢ igual a
E(h) — 1 k
— = 6.28
h Lk + 1) (6.28)

Quando & — 0, E(h) — 1, porque a fungao exponencial € continua no ponto 1. Uma vez que
k = E(h) — 1, temos k — 0 quando A — 0. Mas

Lk +1) _ Ltk + 1) = L(1)
ko k

—» L(1) = 1 quando k — 0,

Considerando (6.28), isto demonstra (6.27) a qual, por sua vez, prova (b).
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6.13. Exponenciais expressas como poténcias de e

A equagao funcional E(a + b) = E(a)E(b) tem muitas consequéncias de interesse. Por
exemplo, podemos usa-la para demonstrar que

E(r)= e (6.29)

qualquer que seja o numero racional r.
Fazemos, em primeiro lugar, b = —a na equagdo funcional obtendo

E(@E(—a)=E0)=1,
e daqui resulta E(—a) = 1/E(a) para todo o real a. Fazendo b = a, b = 2a, ..., b = na
na equagao funcional obtém-se, sucessivamente, E(2a) = E(a)?, E(3a) = E(a)’ e, em geral,
tem-se
E(na) = E(a)" (6.30)
para todo o inteiro positivo n. Em particular, quando a = 1, obtém-se

E(n)=e¢€",

snquanto que para @ = 1/n se obtém E(1) = E(1/n). Visto que E(1/n) > 0, isto implica
l —_ pl/n
E(In) = oVn, (6.31)

Portanto, se fizermos a = 1/m em (6.30) e utilizarmos (6.3 1), encontramos

() = £() = -

quaisquer que sejam oOs inteiros positivos m e n. Por outras palavras demonstramos (6.29)
para todo o nimero racional positivo 7. Sendo E(—r) = 1/E(r) = € ", também é verdadeira
para todo o racional negativo r.

6.14. A definicdo de e+ para .r real qualquer

Na se¢do precedente provou-se que e*= E(x) quando x é qualquer nimero racional.
Definimos agora e, para x irracional, por

e* = E(x) (6.32)
Uma justificagao desta definigao é que podemos utiliza-la para demonstrar que
eeh = e"th (6.33)
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¢ valida para todos os numeros reais @ ¢ b. Quando se toma a definigdo (6.32), a demons-
tragao de (6.33) ¢ trivial porque esta ndo ¢ mais que a mesma afirmagdo da equagido
funcional.

A notagdo ¢* para E(x) ¢ uma das mais frequentemente utilizadas para a exponencial.

Por vezes aparece exp(x) em vez de ¢", especialmente quando no expoente aparecem ex-
pressoes complicadas. Continuaremos ainda a usar E(x) uma vez por outra neste capitulo,

mas mais tarde usaremos apenas €.
Definimos a fungao exponencial de maneira que as duas igualdades

y=e" e x =logy

signifiquem exatamente a mesma coisa. Na se¢do seguinte definiremos poténcias mais
gerais de modoque y=a*ex = loga ¥ sejam equivalentes.

6.15. A defini¢do de a* paraa > 0 e x real

Agora que definimos €¥, para x real qualquer, nao ha dificuldade em formular uma de-
finigdo para a* qualquer que seja @ > 0. Uma maneira de o fazer é definir @ como o nu-
mero y tal que log, y = x; evidentemente que este método nao serve para @ = | uma vez que

Sa

o logaritmo de base 1 nao foi definido. Outra maneira é definir @ pela formula
at = e*lEe (6.34)

O segundo caminho é preferivel porque, em primeiro lugar, ¢ provido de significado para
g €p porq p £ P P
qualquer positivo a (incluindo a = 1) e, em segundo lugar, torna facil provar as seguintes pro-

priedades de exponenciais:
loga® = xloga. (ab)* = a*b” .
aa" =av. (@) = (a") = a".

Sea+ I,entdoy=a" seesdsex=log y

As demonstragoes destas propriedades sao deixadas ao leitor como exercicio.
Do mesmo modo que o grafico da fungao exponencial foi obtido do grafico da fungédo

logaritmo por simetria relativamente a reta y = x, também o grafico de y = ¢" se pode obter
do graficode y = logax por simetria relativamente a mesma reta; na fig. 6.7 apresentam-se

exemplos. As curvas da fig. 6.7 foram obtidas por simetria das da fig. 6.3. O grafico corres-
pondente a @ = 1 ¢, evidentemente, a reta paralela a OX, y= 1.

6.16. Derivagao e integragao de formulas contendo exponenciais
Uma das mais notaveis propriedades da fungao exponencial ¢ a formula

E'(x) = E(x), (6.35)
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a qual significa que esta fungao € a sua propria derivada. Se utilizamos este resultado junta-
mente com a regra de derivagao da fungao composta, podemos obter formulas de derivagao
para fungoes exponenciais com qualquer base positiva a.

Suponhamos f{x) = a* para x > 0. Segundo a defini¢do de a*, podemos escrever

f(") — e;r]uga — E(\ l()g a) .
pela regra da derivada duma fungao composta, encontramos
f'(x) = E'(xloga) - loga = E(xloga)-loga = a*loga. (6.36)

0 que significa que para derivarmos a* basta multiplicarmos @ pelo fator constante log a,
fator este que vale 1 quandoa =e.

(a) a>1 (b) 0<a<

Fig. 6.7. O grafico de y = @" para diferentes valores de a.

Naturalmente que estas formulas de derivagao conduzem automaticamente as correspon-
dentes formulas de integragao. Por exemplo, (6.35) da como resultado

| e*dx = e* + C, (6.37)

enquanto que (6.36) nos conduz a formula mais geral
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fafdx= T 4C @>0,a#1). (6.38)
log a

Esta pode ainda generalizar-se um pouco mais pelo método de substituigdo. Substituindo
em (6.37) e (6.38) x por u obtemos

fe“du=e"+C, ja“du= “—+C (@>0,a#1), (6.39)

log a

representando agora u qualquer fungdao com derivada continua. Se escrevemos u = f(x) e
= ["(x)dx, as formulas (6.39) vém

r flz)

u”“f'(_\') dx =

[e”“f’(.\') dx = ¢ + C, + C,

- -

log a

sendo a segunda valida quando a > 0, a # 1.

EXEMPLO 1. Integral | x?ex'dx.

Resolugdo. Fagamos u = x*. Entdo du = 3x?dx e podemos escrever

3

. . . .
‘ x%  dx =1 | e (3x*dx) =1 | e*du = e+ C= 1" + C.

f9VE
ExempLO 2. lmegrarJ — dx .
Vx

1 12

- . - n - _ 1 .
Resolugao. Seja u = \/ x=x . Entio du = - X dx = -5 d.x/\/}. Daqui resulta

"\: M I d\ ‘)u 21._‘\ P
'.” d.\'=2’"’“ ) |2“du—-" +C= + C.
URVE: log 2 log 2

ExempLO 3. Integrar |cos xe?*"* dx.

Resolugdo. Se u = 2 sen x, sera du = 2 cos x dx e daqui resulta
| cosxe* =rdx = e m*2cosxdx) =13 [ e du=}e* + C =}t =+ C.
ExempLO 4. Integrar [ e*senx dx.

Resolugdo. Seja u = e, dv = sen x dx. Entao du = €' dx, v = —cos x, e encontramos
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J.e’senxdx=J.udv=uv—J vdu = —e’cosx+fe’cosxdx+ C. (6.40)

O integral [ e* cos x dx calcula-se do mesmo modo. Fagamos u = e*, dv= cos x dx, du = e*
dx, v= sen x ¢ entdo vira

J e cos x dx = e*senx — | e“senxdx + C. (6.41)

-

Substituindo em (6.40), podemos resolver a igualdade obtida relativamente a | ¢° sen x dx e
escrever, depois de somar as duas constantes,

je’ senx dx = % (senx — cos x) + C.

Observe-se que podemos, por sua vez, substituir este resultado em (6.41) e obtermos também

fe‘cosxdx = %—(cosx +senx) 4+ C.

EXEMPLO 5. Integrar | —
l+e

Resolugao. Um modo de tratar este exemplo consiste em escrever a fungao integranda na
forma
—

1 e

l4+¢ e*+1'

fazendo depois u = ¢ ¥ + 1. Entao du = —e™* dx e obtém-se

e " —e Tdx " du
1x=—f———-—-——=—J—=——l0 Ul 4+ C = —=log(l 4+ e %)+ C.
fe_’+1‘ = " 8 lul 8 ( )

Pode dar-se outro aspecto ao resultado, operando com o logaritmo. Por exemplo,

E

1
—log(l + ™) =lo = lo
g( ) g [+ 7 g o

= log(¢’) — log(e* 4+ 1) = x — log (1 + ¢).

Outra maneira de resolver o problema consiste em escrevermos
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Entao temos

J'dx J e du
-=X — dx=x—| —,
1 4+ ¢° 1 + ¢° u

onde u = 1 + ¢*. Assim encontramos

fl ixer=x—log(l+e‘)+ c,

que ¢ uma das formas ja obtidas.
6.17. Exercicios

Nos Exercicios |1 a 12, calcular a derivada f“(x). Em cada exemplo, a fungdo f supde-se
definida para todos os valores reais de x para os quais a expressao dada de f{x) ¢ provida de
significado.

1. f(x) =¥, 7. f(x) = 2¢* [que significa 2").

2. f(x) =&, 8. f(x) = =%,

3. f(x) = e 9. f(x) = "=,

4. f(x) = ev'7, . 10. f(x) = €Wz 2,

5. f(x) = e”‘t. 11. f(.r) = e'r‘ [que sisniﬁcat’":’].

6. f(x) = 2% 12. f(x) = e [que significa exp (e'“")].
Calcular os integrais indefinidos dos Exercicios 13 a 18.

13. x e dx 16. J':/c2 e~ dx.

14, [xe®dx. 17. J'e"; dx.

15. J'x=e=dx. 18. [ dx.

19. Determinar todas as constantes a e b tais que €' = b + j:: é adt.

20. Sejam A = J°e“" cos bxdxe B = _fe‘“ sen bx dx, con a e b constantes, nao simultanea-
mente nulas. Por aplicagao do método de integragao por partes demonstrar que

aAd — bB = ¢ cos bx + C,, aB + bA = e**senbx + C,,

sendo C, e C, constantes arbitrarias. Determinar as expressoes de 4 e B e deduzir as
seguintes formulas de integragao.

e (a cos bx + bsenbx) +C
a* + b ’

J.e"’ cos bx dx =
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€¢**(a sen bx — b cos bx) c
a + b +

Je“’senbxdx =

Nos Exercicios 21 a 34, calcular a derivada f“(x). Em cada exemplo supoe-se que a
fungao festa definida para todos os valores reais de x para os quais a formula dada para
J(x) é provida de significado. A derivagao logaritmica pode simplificar a resolugao em
alguns casos.

21, f(x) = a*. 28. f(x) = (log x)*~.
22, f(x) = (1 + x)(1 + 7). 29. f(x) = xlo= =,

_ e —e”* ‘ B (log x)*
Zlf(x)_e"-}-e_"'. 30.](.’&’)—W.
24. f(x) = x*" + a*" + a*. 31. f(x) = (senx) ™ + (cos x)*=%
25. f(x) = log [log (log x)]. 32, f(x) = xV=,
26. f(x) =log(e* +4/1 + & 3. ) = o D

. f(x) = log \ ). fx) = 0 =200 + 09
27. f(x) = x<". 4. f(0) =T (x — ap.
i=1

35. Seja f{x) = x", com x > 0 e r qualquer nimero real. A formula f”(x) = r" ! foi demons-
trado atras para r racional.
(a) Provar que esta formula ¢ também verdadeira para r real qualquer. |Sugestao:
Escrever x” = e” 198 %],
(b) Discutir sob que condigoes o resultado da alinea (a) € valido para x < 0.

36. Aplicar a definigdo a* = ¢*'° @ para derivar as propriedades da exponencial geral:
(a) loga®™ = xloga.
(b) (ab)* = a*b*.
(¢) a"a’ = a*",
(d) (@)Y = (a")" = a™.
(¢) Sea + 1, entdo y = a* se e somente se x = log, v.

37. Sejafix) = —;— (@ + a ")coma > 0. Provar que
Sx +y) + flx — y) = 2f(x)f(y) .

38. Seja f(x) = €, com ¢ constante. Mostrar que f(0) = ¢, ¢ utilizar isto para deduzir a
relagiio:

39. Seja fuma fungao definida em todo o eixo real, admitindo uma derivada /” que satisfaz a
equacao

[ (x) = ¢f(x) para cada x,
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com ¢ uma constante. Provar que existe uma constante K tal que flx)= Ke® para
qualquer x. [Sugestdo: Seja g(x) = fix)e " e considere-se g'(x)|.

40. Seja fuma fungdo definida em todo o eixo real. Admitamos além disso que f verifica a
equagao funcional

() fix + p) = fx)f(y), quaisquer que sejam x € ).

(a) Uulizar unicamente a equagao funcional para provar que f{0) € ou O ou 1. Provar
também que se f(0) # 0, entao f(x) # 0 para todo o x.
Supor, em complemento de (i), que f(x) existe para todo o x, e provar as seguintes pro-
priedades:
(b) [ (x)f(») = f(¥)f(x) para todo o x e y.
(c) Existe uma constante ¢ tal que f(x) = cf(x) para todo o x.
(d) f(x) = e“* se f(0) # 0. [Sugestdao: Ver Exercicio 39.]

41. (a) Sejaf(x) = e* — 1 — x para todo o x. Demonstrar quef"(x) > Osex > Oef(x) < 0
sex < 0. '
Fazendo uso deste fato deduzir as desigualdades

e > 1 +x, et>1 —x,

verdadeiras para todo x > 0. (Quando x = 0, convertem-se em igualdades).
Integrar essas desigualdades para deduzir as seguintes, validas para x > O:

'1_2 _1.2
(b) & >1 +x+ 357, c"<l—x+2—,.
X X8 X2 X

© &>1+x+ + eE>1l—x 45, —5-

'3’_! ’
(d) Estabelecer a generalizagao sugerida e demonstra-la.
42. Se n ¢ um inteiro positivo e se x > 0, provar que

—n

{ xXn [ x'
(l+—)<e’, € que e‘((l——) s€¢ x <un.
n . n)

Pela escolha adequada de n, provar que 25 < e < 2,99.
43. Seja f(x,y) = x", com x > 0. Mostrar que

d . af
=y’ e —-— =x¥ X.
Pl oy x¥log x

6.18. Fungoes hiperbolicas

Aparecem frequentemente na andlise certas combinagdes de fungdes exponenciais, o
que justifica que lhes sejam dadas designagoes especiais e que se estudem como exemplos
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de novas fungdes. Estas combinagdes chamam-se seno hiperbolico (sh), cosseno hiperbélico
(ch) tangente hiperbolica (th), etc., e definem-se do modo seguinte:

e — et '+ et shx e'—e™
sh x = ——— chx=———, thx= = = .
2 2 chxy o'+ e~
cosch x = ! sech x = l coth x = !
’ sh x’ ) ch x’ ) thx’
y y y
A ' A
| |
S =\ L §
0 ! 0 0
_______ =gf====---
y=shx y=chx y=thx

Fig. 6.8. Graficos de fungoes hiperbolicas.

O qualificativo “hipérbolico™ deve-se ao fato destas fungdes estarem geometricamente

relacionadas com a hipérbole, do mesmo modo que as fungdes trigonometricas ja estudadas
estao relacionadas com a circunferéncia. Esta relagao sera discutida em pormenor no Capi-
tulo 14, quando fizermos o estudo da hipérbole. Os graficos do sh, ch e th, estdo representa-
dos na fig. 6.8.

As fungoes hiperbolicas possuem muitas propriedades parecidas com as das fungdes trigo-
nomeétricas. Algumas delas sao apresentadas a seguir como exercicios.

6.19. Exercicios

Deduzir as propriedades das fungdes hiperbolicas indicadas nos Exercicios 1 a 15 e
compara-las, sempre que possivel, com as correspondentes propriedades das fungoes trigono-

meétricas.

ch’ x —sh x = |.

.sh(—x)= —shx.
.ch(=x)=chx.

.th(—=x)= —thx.

.sh(x+ y)=shxchy+ chxshy.
.sh(x + y)=ch x ch y + sh x sh y.
.sh 2x = 2 sh x ch x.

. ¢h 2x = ch? x + sh? x.
.Cchx+chx=e"\

. chx—=chx=ex

Q\DMHJO‘U"I-FIBJN:—‘

—
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I'l. (ch x + sh x)7= ch nx + sh nx (na um enteiro).
12. 2sh* 5x =ch x — |.

13. 2ch? v =ch x + .

14. th® x + sech x = |.

15. csth® x — cosech’ x = 1.

16. Sendo sh x = —4— calcular chx.

3
17. Sendo ch x = %e x > 0 calcular shx.
18. Sendoth x = % calcular shx e chux.

19. Sendo sh x =

eshy —} achar ch(x + y).

wu|¢,

20. Sendo th x = T calcular th 2x.

Nos Exercicios 21 a 26 verificar as formulas de derivagao:

21. D sh x = ch x. 24. D coth x = —cosech x.
22. D ch x = sh x. 25. D sech x = —sech x th x.
23. D th x = sech’ x. 26. D cosech x = —cosech x coth v,

6.20. Derivadas de fungoes inversas

Aplicimos o processo de inversdo para construir a fungio exponencial a partir do loga-
ritmo. Na se¢lo seguinte iremos achar as inversas das fungdes trigonométricas. E pois
conveniente, nesta altura, discutir um teorema geral que nos demonstra que o processo de
inversdo transmite a derivabilidade de uma fungdo a sua inversa.

TEOREMA 6.7. Seja [ estritamente crescente e continua num intervalo a. b e represente g
a fungdo inversa de f. Se existir a derivada ['(x) e for ndo nula num ponto x de (a, b), entao a
derivada g'(y) também existe e € nao nula no ponto correspondente v, com v = fix). Aléem
disso, as duas derivadas sao reciprocas uma da oulra, isto €

g() = ——. (6.42)
X

Nota: Se usamos a notagao de Leibniz e escrevemos y em vez de f(x), dy/dx em vez de
Sf(x), x em vez de g(v) e dx/dy em vez de g’(y), entdao (6.42) escreve-se

dx I

= —

e
dx

5 /

que tem o aspecto de uma identidade algebrica trivial.
Demonstragao. Sejam x um ponto de (a, b) em que f(x) existe e € nao nula e y = f{(x).
Trata-se de demonstrar que a razao incremental
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gy + k) — g(y)
k

tende para o limite 1//°(x) quando k — 0.

Sejah=g(y + k) —g(v). Vistoque x =g(y)éh=g(y + h) — xoux + h=g(v + k). Por-
tanto v+ k= f{x + h) e por 1sso k= f{x + h)— fix). Note-se que h# 0 se k # 0, pois g é
estritamente crescente. Por conseguinte, se A # 0, a razdo incremental considerada vem

gly + k) — g(y) h 1
k T i+ h) —f(x) [fx+ k) —f)lh

Quando & — 0, a diferenga g(y + k) — g(v) — 0, em virtude da continuidade de g em y [pro-
priedade (b) do teorema 3.10]. Quer isto dizer que # — 0 quando k£ — 0. Mas nos sabemos que
a razao incremental no denominador do ultimo termo do segundo membro de (6.43) tende
para f(x) quando h — O |pois f"(x) existe]. Portanto, quando k — 0, a razao incremental do
termo do primeiro membro de (6.43) tende para o limite 1//'(x), e o teorema 6.7 fica demons-
trado.

(6.43)

6.21. Inversas das fun¢oes trigonométricas

O processo de inversio pode aplicar-se as fungdes trigonométricas. Consideremos a
fungido sen. Para determinar uma unica func¢io inversa, devemos considerar um intervalo
em que a fungido seno scja mon()tona Existem, cvidentemente, uma infinidade de tais

: 3 3 T Y
intervalos, por exemplo | — —, —I |2 55 7l - 5 7, — =, etc., sendo indiferente es-

: : I . .
colher qualquer deles. Habitualmente considera-se [——-, --| ¢ definimos a nova fungio

de modo seguinte:

f(x) = senx se - < x <

NI-J
m|q

|
R

Fig. 6.9 y=senx Fig. 6.10 y = arc sen x.

A fungdo f assim definida ¢é estritamente crescente ¢ toma todos os valores de — 1 a + 1,
T

7»
fungio g, definida em |1, 1], que faz corresponder a cada ndimero y em [—1, 1] 0 ndmero x

. m » " ¢ s
exatamente uma vez no intervalo | - ~-1. (Ver fig. 6.9). Portanto existe uma unica
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n - .
de [— 5 ——| para o qual y = sen x. Esta fungao g chama-se inversa do seno ou arco seno

2
e o0 seu valor em y representa-se por arc sen y ou sen”' y. Entdo,

u = arcsenv significa v =senu e ——-<uX<

T
5"

SR

O grafico do arco seno esta representado na fig. 6.10. Note-se que 0 arco seno nao esta
definido fora do intervalo [—1,1].

A derivada do arco seno pode obter-se pela formula (6.42) da Segao 6.20. Neste caso

# . . Tt TC v
S(x) = cos x, a qual € diferente de zero no intervalo aberto (— ——, 5 ). Portanto a formula

2
(6.42) permite obter

1 1 1 1
g =7—= =7 = se —I<y<I;
fi(x) cosx V]—sen®x V] —)*

com uma mudanga na notagao podemos escrever este resultado do modo seguinte

D arcsenx = —,l—_—q se —l<x<l1. (6.44)
VI —x*

Naturalmente que esta conclusao nos conduz a uma nova formula de integragao

[I——l_: dt = arcsenx , (6.45)
o0V] — 2

L

valida para —1 < x < L.

Nota: Esta formula pode usar-se como ponto de partida para uma teoria completamente
analitica das fungoes trigonometricas, sem qualquer referéncia a geometria. Muito resumida-
mente a ideia consiste em comegar com a fungao arc seno, definindo-a pelo integral (6.45) do
mesmo modo que definimos por intermeédio dum integral a fungao logaritmo. Em seguida, a
funcao seno define-se como a inversa do arco seno, ¢ o cosseno como a derivada do seno.
Para levar a cabo, completamente, este programa sao necessarios muitos pormenores € por
isso nao o descreveremos aqui. No Capitulo 11 sera apresentada outra alternativa para a
introdugao analitica das fungOes trigonometricas.

Na notagao de Leibniz para integrais indefinidos pode escrever-se

dx

J\_-’:z = arcsenx + C. (6.46)
1 — X’

Integrando por partes obtém-se uma nova formula de integragao
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X dx ) I
arcsenx dx = x arcsenx — \_T/__-__z = xarcsenx + V1 —x"+4+ C.
- X

O cosseno e a tangente sdo investidas de uma maneira semelhante. Para o cosseno € usual
escolher o intervalo [0, ] para efectuar a inversao. (Ver fig. 6.11). A fun¢ao inversa obtida,
chamada o arco cosseno, define-se do modo seguinte:

u = arccos v significa v = cosu e 0<u<n.

O grafico da fung@o arco cosseno esta tragado na fig. 6.12.

Fig. 6.11 y = cos x Fig. 6.12 y = arccos x.

. . TN )
Para inverter a tangente escolhemos o intervalo aberto (— Eh —2—) (Ver fig. 6.13) e defini-
mOS O arco tangente como segue:
u = arcigv significa v = tg u e — ;;- < u< ;—T

Na fig. 6.14 esta representada uma parte do grafico da fungao arctg.
O raciocinio utilizado para estabelecer (6.44) pode aplicar-se as fungdes arco cosseno e
arco tangente, obtendo-se as seguintes formulas de derivagao:

—1

D arccos x = ————, (6.47)
Vil — x*
valida para —1 < x < 1, ¢
Darclg x = 1 -, (6.48)
I + x°

valida para todo o real x.
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i ) :
] |
] i
I |
] | 11
I | Y
' L e - [
X |
: |
r: 5 - - < > X
7! 3
21 12
1 1
] ]
I I e e e amm e e e e e - -
1 : ._1
: | 2
I |
| |
Fig. 6.13 y = tg x Fig. 6.14 y = arctg x.

Quando (6.47) ¢é transformada numa formula de integragao resulta

J —L— dt = —(arccos x — arccos 0) = T — arccos x (6.49)
oV] -1 2

s¢ —1 <x < |, Comparando (6.49) com (6.45), deduzimos a relagdo %z — drecos x =

= arcsen x. (O mesmo pode ser deduzido da identidade sen (% — y) = cos y, escrevendo

y = arccos x). Na notagdo de Leibniz para integrais indefinidos podemos escrever (6.49)
na forma:

f——‘!t— = —arccos x + C. (6.50)
Vi—-x*

Analogamente, de (6.48) obtemos

* dt [ dx
= arclg x ou = arctg x + C. 6.51
Jol 4 ¢ e J1 4+ x* $ ( )

Por aplicagao do método de integragao por partes, em conjun¢ao com (6.50) e (6.51),
podem derivar-se outras formulas de integragao:

x dx
Y = xarccosx — V1 —x*+C,

-
J arccos x dx = x arccos x +f

V] —x?
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farctgxdx = x arclg x —flexz =xarcigx — log(l1 +x*)+ C.
X

As inversas da cotangente, secante e cossecante podem definir-se pelas formulas seguintes:

arccotg x = 23 — arctg x  paratodo oreal x, (6.52)
arcsec x = arccosi quando |x| > 1, (6.53)
arccosec x = arcsen;lc— quando x| > 1. (6.54)

As formulas de derivagdo e integragao para estas fungoes estao contidas no grupo seguinte
de problemas.

6.22. Exercicios

Provar as formulas de derivagao apresentadas nos Exercicios 1 a 5.

1. Darccos x = 8¢ -1 <x <1.
vl—x’

2. D areclg x = ﬁ para todo o real x.

-1

T para todo o real x.

3. D arccotgx =

1
4. Darcsec x = —————  S€ |x]| > L.
x|V —1
-1
5. DarccoseC x = —————— se |x| > 1.
[x]Vx® -1

Provar as formulas de integragao apresentadas nos Exercicios 6 a 10
6. farccog x dx = xarccog x+ 3log (1 + »*) + C.

x —_—
7. | arcsec x dx = x arcsec x —mloglx +Vaxt -1 +C

X
8. farcoscc X dx = x arccosec x + i loglx + Vx*—=1| + C.

9. J(arcsen x)® dx = x(arcsen x)* — 2x + 2v/1 — x*arcsen x + C.

a x —_1 = X
' 10, J‘ chs;n dx = log 1 —v1 =x% __ arcsen +C
x

11. (a) Provar que D(arccotg x — arctg 1/x) = O para todo o x # 0.
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(b) Provar que nao existe qualquer constante C, tal que arccotg x — arctg(1/x) =
para todo o x # 0. Explicar porque motivo esta conclusao nao contradiz o teorema 5.2.

Nos Exercicios 12 a 25, calcular a derivada /“(x). Em cada exemplo a fungao f supoe-se
ser definida para todos os valores reais de x para os quais a formula f{x) tem sentido.

12. f(x) = arcseng,

| — x

7

1
14. f(x) = arccos - .
X

13. f(x) = arccos

15. f(x) = arcsen (senx).
16. f(x) = \-'} — arctg \ x.
17. f(x) = arctg x + } arctg (x

1 — x*2

18. f(x) = arcsen 1

+x*

19. f(x) = arctg (1g® x).
20. f(x) = arctg (x + V1 + x%).

21, f(x) = arcsen (senx — cos x).

22, f(x) = arccos V' 1 — &%,

+ X

1
23. f(x) = arcig .y

24, f(x) = [arccos (x*)] 2

25. flx) = loﬂ(arccos—_)

26. Provar que dy/dx = (x + y)/(x — y) se arctg(y/x) se arctg(y/x) = log \/x?
27. Calcular d*p/dx? se y = (arcsenx)/\/1 — x* para |[x| < 1.

: 1 : :
28. Seja f(x) = arctg x — x + —3—x3. Examinar o sinal de /" para demonstrar que

x*

x~-§-<arctgx se x > 0.

Nos Exercicios 29 a 47, calcular os integrais indefinidos.

dx
29. J‘ﬁ. a #0.

dx
30. .
f\’l - 2x — x*?

35. | x*arccos x dx.

36. | x(arctan x)* dx.

dx 37. [ arctg V/x dx.
31. ey a #0, J gVx
Ja +x —_
8 arctg \/:
o, (& (ab # 0). 38. J‘—,— 8% a,
Ja+ bx* Vx(l + x)
33 [__& 39. )W T =x*dx.  [Sugestdo: x = senu.]
xR —-x+2 8 ' N
X . X eal‘clg X
34. |x arctg x dx. 40. | ———55dx

J (1 +x2)312
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f earcigx arccotg e*
A, | ——— dx. .
Jasa® “. f ax
s a-+x
42. | ———= dx. 45. .
Ja+ 3 “ f(a_r a>0
43. ‘._PIT dx. 46. j \-/(x — a)b — x) dx, b # a.
JT+e=
) dx .
47. - , b+ a.|Sugestdo: x — a = (b — a)sen® ul.
JVI(x —a)b — x)

6.23. Integragao por decomposicao em fracgoes simples

Lembramos que o quociente de dois polindomios se designa por fung¢io racional. A deri-
vagdo duma fung¢do racional conduz-nos a uma nova fungio racional, a qual se pode obter
por aplicagdo de regra de derivagdo do quociente. Pelo contrario, a integragdo duma
func¢ido racional pode conduzir a fungdes que ndo sejam racionais. Por exemplo, tem-se

dx dx
log |x| + C e f = arctg x + C.
J.x g |x]| L3 g

Vamos descrever um meétodo de calculo do integral de qualquer fungao racional, e verificare-
mos que o resultado pode sempre ser expresso em termos de polinémios, fungdes racionais,
arco tangentes ¢ logaritmos.

A ideia fundamental do método consiste em decompor uma dada fungao racional numa
soma de fragdes mais simples, as quais podem ser integradas pelas técnicas ja discutidas
anteriormente. Vamos descrever o processo geral por meio duma certo numerc de exem-
plos que servirdo para ilustrar todos os aspectos essenciais do método.

ExempLo 1. Comegamos com duas fragoes simples, 1/(x — 1) e 1/(x + 3), que sabemos
integrar e vejamos o que acontece quando formamos uma combinag@o linear destas fragoes.
Por exemplo, se tomamos duas vezes a primeira fragao mais trés vezes a segunda obtemos

2 + 3 =2(:c+3)+3(x—l)= 5x + 3
x—1 x+43 (x — (x + 3) x*42x =3

Se agora lemos esta formula da direita para a esquerda, ela diz-nos que a fung¢ao racional r
definida por r(x) = (5x + 3)/(x* + 2x — 3) se pode exprimir como uma combinagao linear de
1/(x — 1) e 1/(x + 3). Portanto, pode escrever-se o integral de r do modo seguinte:

-~

5x 4+ 3 . dx dx _
Jx2+°t—3d't_2Jx—1+3fx—+3_210g|x_“+310ng+3|+€'

~ ExempLO 2. O exemplo anterior sugere uma maneira para calcular integrais da forma
J(ax + b)/(x* + 2x — 3)dx. Por exemplo, para calcular f(2x + 5)/(x? + 2x — 3)dx tentamos

APOSTOL — 11
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exprimir o integral como uma combinagao linear de 1/(x — 1) e 1/(x + 3), escrevendo

x+> _ A B (6.55)
x*4+2x—-3 x—1 x+4+3

com as constantes A ¢ B a determinar. Se conseguirmos calcular A ¢ B de maneira que
(6.55) seja uma identidade, entdo o integral da fra¢do no primeiro membro € igual a
soma dos integrais das duas fragcdes mais simples do segundo membro. Para calcular 4 e
B, multiplicamos ambos os membros de (6.55) por (x — 1) (x + 3) para desembaracar dos
denominadores. Obtemos entdo

Ax +3)+ B(x—1)=2x+5. (6.56)

A partir desta igualdade utilizam-se usualmente dois processos para determinar A ¢ 8. Um
consiste em igualar os coeficientes das poténcias iguais de x em (6.56). Isto conduz-nos as
equacdes A + B= 2 ¢ 34 — B = 5. Resolvido este par de equagdes simultaneas, obtemos
A = T7/4 e B = 1/4. O outro método consiste em atribuir a x em (6.56) dois valores distintos,
obtendo-se ainda deste modo um par de equagoes simultaneas em A e B. Neste caso particu-

lar, a presenga dos fatores x — 1 € x + 3 sugere que usemos os valoresde x = | e x = —3.
Quando fazemos x = 1 em (6.56) o coeficiente de B anula-se e encontramos 44 = 7,4 = 7/4,
e do mesmo modo quando fazemos x = —3 anula-se o coeficiente de A e obtemos —48 = —1

ou B = 1/4. Em qualquer dos casos encontramos os valores de A ¢ B que satisfazem a (6.55)
e portanto temos

" 2x+ 5 7 J‘ dx 1 f dx 7 1
2 Ix = - - =-log|x—1|4+-1lo 3If+ C.
J.‘C"-i-Z:nc—S'E 4 x—1+4 x+3 4 glx |+4 glx+ 3|+

E evidente que o método exposto no exemplo anterior se aplica também a integrais da
forma _l' f(x)/g(x)dx nos quais f ¢ uma polinomio linear e g um polinomio quadratico que se
pode decompor num produto de fatores lineares com coeficientes reais g(x)=(x — x,)
(x — x,). Neste caso, o quociente pode expressar-se como uma combinagdo linear de
1/(x — x,) e 1/(x — x,) e a integragao de f{x)/g(x) conduz a combinagao linear de 1/(x — x,)
e 1/(x — x,) e a integragao de f(x)/g(x) conduz a combinagao correspondente dos termos
logaritmicos log |x — x,| e log |x — x,|.

Os exemplos precedentes referem-se a fungGes racionais f/g nas quais o grau do numerador
é menor do que o do denominador. Uma fungao racional nestas condigoes diz-se uma fungao
racional propria. Se f/g ¢ imprdpria, isto &, se o grau do numerador / ndo é menor do que o
de g, entao podemos exprimir f/g como a soma de um polindmio ¢ uma fungao racional pro-
pria. Com efeito, basta dividir / por g para obtermos

f(x) R(x)
.. ’ + T
g(x) e g(x)

com Q e R respetivamente os polindmios guociente e resto, este com grau inferior ao de g.
Por exemplo,



Funcédo logaritmo, funcdo exponencial e fungbes trigonométricas inversas 303

x® + 3x x4+ 10x + 6

x*—2x—3 x2—2x —3°

Portanto, no estudo desta técnica de integragao, nao ha perda de generalidade se nos restrin-
gimos as fungdes racionais prdprias e daqui para o futuro consideramos sempre [f(x)/g(x)dx
na hipotese em que o grau de f ¢ menor do que o de g.

Um teorema de algebra estabelece que toda a fungao racional propria pode ser expressa
como uma soma de fragoes da forma

A . Bx 4+ C
(x + a)* (x* + bx + o)™’

onde k e m sdo inteiros positivos e 4, B, C, a, b, ¢ sdo constantes condicionadas a b* — 4¢ <
< 0. Esta condigdo significa que o polindmio x* + by + ¢ ndo se pode decompor em fato-
res lineares com coeficientes reais, o mesmo ¢ dizer a equagdo do segundo grau x* + by + ¢=0
nao admite raizes reais. Um polinomio com esta forma diz-se que é irredutivel no campo real.
Quando uma fungao racional forexpressa do modo indicado, dizemos que foi decomposta em
fracoes simples. Deste modo o problema de integracdo desta fungdo racional reduz-se ao
da integracdo das suas fragdes simples. Estas podem ser facilmente integradas pela apli-
cagido das técnicas descritas a seguir.

Nio nos daremos ao trabalho de demonstrar que a decomposi¢do duma fungio racional
em fragdes simples é sempre possivel. Em vez disso mostraremos (por meio dos exemplos)
como obter as fragdes simples em problemas especificos. Em cada caso a decomposi¢do
em fragdes simples pode ser verificada diretamente.

E conveniente dividir a discussdo em dois casos, consoante 0 modo segundo o qual o deno-
minador de f{x)/g(x) pode ser decomposto num produto de fatores.

CASO 1. O denominador é um produto de fatores lineares distintos. Suponhamos que
g(x) € decomponivel em n fatores lineares distintos, por exemplo

gx) = (x — x)(x — x3) - - (x — X,).
Observa-se que uma combinagao linear da forma

Al An
+ o+

X — Xy X — X,

pode ser representada por uma unica fragdo com o denominador comum g(x), e cujo nume-
rador sera um polinomio de grau < »n contendo os A. Portanto, se pudermos encontrar os A’;
de modo que o numerador seja igual a f{x), teremos a decomposigao

f(x) A, A,
= i o ,
glx) x-—x X — X,
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n

e o integral de f{x)/g(x) sera igual a _}:1 A, log |x — xl.l. No exemplo que se segue vamos resol-
=

ver um caso para n = 3.

2x* 4+ 5x — 1

ExempLO 3. Integrar
x4 x?— 2x

dx .

Resolugdo. Visto que x* + x? — 2x = x(x — 1)(x + 2), o denominador ¢ um produto de trés
fatores lineares distintos, e teremos que calcular 4, 4, e A, tais que

2.!:2—!-5.\‘—1:41_!_ A-z + Aa )
+xE—=2x x x—-=1 x+42

Desembaragando de denominadores vem
2x2 4 Sx — 1 = A)(x — I)(x + 2) + Agx(x + 2) + Agx(x — 1).

Quando x = 0, vem —24, = —1,logo 4, = 1/2. Quandox = I, vem 3 4, = 6,logo 4, =2¢

quando x = —2 vem 64, = —3, logo 4, = —1/2. Portanto podemos escrever
2x* + 5x — | 1 [ dx [ dx 1 |‘ dx
=-| =42 .
J.t3+.r2—2.t(1't 2fx+ Jx—1 2)x+2
= llog|x| +2log|x — 1] —1log|x+ 2|+ C.

CASO 2. O denominador é um produto de fatores lineares, alguns dos quais repetidos.
Tratamos este caso com um exemplo.

Xt 4 2x 43 dx
(x = D(x + 1)

ExEmpLO 4. Integrarf

Resolugdo. Teremos que calcular 4, 4,, A, de modo que

X +2t+30= Al + Az + As - (657)
(x—I)x+1)y x—1 x+4+1 (x+4+1)

Sao necessarias ambas as fragoes A,/(x + 1) e A,/(x + 1)*, bem como 4,/(x — 1) a fim de
obtermos um polinomio de grau dois no numerador e conseguirmos tantas equagoes como
constantes quando pretendemos determinar os 4. Desembaragando de denominadores vem:

XA 2x +3=Ax 4+ 1)+ Ay(x = 1)(x + 1) + Ay(x — 1). (6.58)

Fazendo x = 1, vem 44, = 6 ou seja A, = 3/2. Se x = —1 vem —-24, = 2 e A, = —L.
Necessitamos de outra equagao para calcular 4,. Uma vez que nao ¢ possivel outra escolha
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de x de modo a anular algum dos fatores, procura-se tomar x de modo que os calculos resul-
tem tdo simples quanto possivel. Por exemplo, fazendo x = O obtém-se 3=A4, — 4, — 4,,
donde resulta A, = —1/2. Uma alternativa seria derivar ambos os membros de (6.58) e
depois atribuir a x um valor conveniente. Derivando (6.58) obtém-se

X+ 2=24,(x + 1) + As(x — 1) + As(x + 1) + A,

e se fizermos x = — 1l vem0 = —24, + A,,de modo que 4,= —;-A,= . —;—como Ja tinha-
mos calculado. Assim verificamos que para os A que satisfazem a (6.57) podemos es-

crever

J‘ X*+2x+3 0 _3 " dx 1 [ dx [ dx
ax = - -~ -
(x — I)x 4+ 1)* 2Jx—=1 2Jx41 Jx+1)7

I 1
Iog|x—l|—;log|x+]|+m+c.

I
(S RS

Se no primeiro membro de (6.57) figurasse o fator (x + 1)’ em vez de (x + 1)?, teriamos
que adicionar mais um termo A4,/(x + 1)’ ao segundo membro. Mais geralmente, se uma

fun¢do linear x + @ aparece p vezes em denominador entdo, para este fator, devem to-
mar-s¢ uma soma de p termos da forma

< A
k lm \ (6.59)

em que 0s A; sdo constantes. Para cada fator linear repetido tomar-se-a uma soma deste tipo.

CASO 3. O denominador contém fatores quadratices irredutiveis, nenhum dos quais se
repete.

P4 2w =2

x3 — 1

ix.

ExempLO 5. lntcgrarf 3x

Resolugao. O denominador pode ser apresentado na forma x* — 1 = (x — I)x? + x + 1),
em que x? + x + 1 ¢ irredutivel e tentemos uma decomposi¢do da forma

3Ix* 4+ 2x — 2 A Bx 4+ C

X' — 1 x—1 x*4x+1

Na fragio com o denominador x* + x + | escrevemos no numerador um polindmio de grau
unidade, Bx + C, a fim de se terem tantas equacdes como constantes quando se determinam A,
B e C. Desembaragando de denominadores e calculando 4, B e C, encontramos A = |, B=2
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e C = 3. Deste modo podemos escrever

2 Ty — 9
,[Bx :3_:‘1 - ds =fx‘fl +J.x2h: :--43- -

O primeiro integral do segundo membro é log|x — 1. Para calcular o segundo integral

escreve-se:
9 9 o)
."_"’F_'*'_‘;_ dx =f""—'*'l dx +J__.‘-__.__. dx
X4 x+1 X+ x+1 x4+ x 41

=log(x*+x+ 1)+ J.

- x3—1

é) +1

1 3 . :

Se fizermos u = x + Teuz 3 , 0 ultimo integral e
" du 2 u 4 -~ 2x + 1

2 = - arctg — = -V 3 arct -

J u* 4+ o o« 8 a 3 8 V'3
Portanto, temos

2 4 -~ 2 1
374 2x - d\—log|~:—l|+log(\ x+l)+5\-'3 arctg r,f-t + C.

CASO 4. O denominador contém fatores quadraticos irredutiveis, alguns dos quais estdo
repetidos. A situagao aqui é analoga a do caso 2. Da decomposi¢ao em fragoes de f{x)/g(x)
admitimos, em primeiro lugar, uma soma da forma (6.59) para cada fator linear, como ja foi
dito. Além disso, se um fator quadratico irredutivel x* + bx + ¢ se repete m vezes, admiti-
mos que se pode decompor numa soma de m termos da forma

i B,x + C,
(x* 4+ bx + o)’
k=1

em que cada numerador ¢ um polinomio linear.

Xt =34+ 2xr—x 42
(x — D(x* + 2)°

EXAMPLE 6. lntegrar

dx .

Resolugao. Escrevemos

X=xPH 2P —-x4+2 A Bx+ C  Dx+E
(x — 1)(x*+ 2)° x — | X242 (420
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Desembaracando de denominadores e determinando A4, B, C, D, E obtemos

A=lll" B=§' C=—rl;, D=—l, E=0

Resulta pois

J‘x4-x=+2x2-—x+2dx_1j’ dx +J‘§.x—g,(“_J‘ x dx
(x — 1)(x* + 2) 3Jx — 1 42 (x* +2)°
I_J. dx +lf2xdx_1[ dx _1[ 2x dx
3Jx—1 3Jx*4+2 3)Jx*42 2)(x*+2)¢

log |x — 1] +—110g(vc2 + 2) — X/—E arctg =
3 ' 6 V2

W |-

11
2x2 42

- +C

Os exemplos anteriores sao tipicos do que habitualmente acontece. O problema da inte-
gragao duma fungdo racional propria reduz-se assim ao do calculo de integrais da forma

f dx J x dx e J~ dx
(x +a)"’ (x* 4 bx + o)™ (x* + bx + o)™

O primeiro integral é log |x + a|sen=1¢ (x + a)"-l/(l — n) se n > 1. Para calcular os
outros dois integrais, escreve-se a forma quadratica como uma soma de quadrados da forma

x2+ bx 4+ ¢ = (t +g)2+ (C‘ — b{) = uy* +oc2,

ondeu=x+bl2ea= —I\/4c_—-7? (Isto ¢ possivel porque 4c— b* > 0). A substituigio

s

2
u = x + b/2 reduz o problema ao da determinagio de
] J _udu e [_d_”__ _ (6.60)
(“2 + aZ)m J (u.! + 12)m

0prir'neiroé%lc}g(u2 +a’)sem= 1.8%(1’12 +a)!' "/ — m)sem> 1. Quando m = 1,

o segundo integral em (6.60) € calculado pela formula

[ du =larclg£+('.
J x

o
! u2+oc‘ o

O caso em que m > 1 pode reduzir-se aquele em que m = 1 por aplicagao repetida da formula
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J(u® 4 o)™ 25 (m — 1) (u* + o) ! 20%(m — 1) .

" du I u 2m — 3 [ du
= + - 5 ,
(“3 + Iz)m—l

a qual se obtém por integragao por partes. Esta discussao permite concluir que toda a fungao
racional pode ser integrada em termos de polindomios, fungdes racionais, arco tangentes e
logaritmos.

6.24. Integrais que podem ser transformados em integrais de fungOes racionais

Uma fungdo de duas variaveis definida por
Px,y)=2 Xa,,x"y"

diz-se um polinomio de duas variaveis. O quociente de dois destes polinomios chama-se
Jungdo racional de duas variaveis. Integrais da forma | R(sen x, cos x)dvy, em que R € uma
_..'L
2
da forma [r(u)du com r uma fun¢iio racional duma variavel. O Gltimo integral pode ser
calculado por aplicacdo das técnicas que acabamos de descrever. Vamos ilustrar o método
com um exemplo particular.

fungdo racional de duas variaveis, podem reduzir-se pela substituigdo v = tg-=- em integrais

: 1
EXEmpLO 1. Integrar | dx.
/ senx + cos X

- . X .
Resolugao. A substituigao u = tg —— permite escrever

2
2
x = 2arctg u , dx = ——— du
| + u
. X X 21g lx 2u
Sénx = 2sen— cos — = = = s
2 2 sec” ix | + u”
s X 2 2 | — u®
cosx=2¢os — —l=—"—"—1= -1 =
2 sec” 4x I 4+ u 1 + u”
e
- %
2u4+1 —u
sénx + Ccos x = —_
| + u”
Assim temos
dx _ du _ du

J Senx 4+ cos x Jut—2u—1 R (u — allu — b) '
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coma=1+ ﬁ eb=1-— ﬁ O método da decomposigao em fragoes simples conduz-nos

a
du 1 1 1
J.(u —au — b)  a— b,“_u —a u-— b_.) du
e porque @ — b = 2,/2, obtemos

J dx \2 u
= log

SIn X 4 COs X 2 u—a

—_—

tg ix — 1 + v
gilx—1-—v

2], .
5|+ € (6.61)

O resultado final pode simplificar-se um pouco pela utilizagao de identidades trigonométricas
adequadas. Em primeiro lugar notemos que \/5 — 1 = tg n/8&, de modo que o numerador da
ultima fracdo em (6.61) € tg x/2 + tg n/8. No denominador escrevemos

—1-V2 (\"—2—1;tg"—l!=(\-'5+1)\1-tg§1g§i.

X
2

‘ tg =(V2+1)

o | =

. _— : 1
Tomando logaritmos, como se indica em (6.61), podemos associar o termo — -5 \/5 log(ﬁ -~

+ 1) com a constante arbitraria e escrever novamente (6.61) como segue:

[ dx _ V2
J senx 4 cos x 2

log

tg (%+§”+C

Na sec¢io anterior deduzimos a férmula de integragio

dx
= arcsenx

v\'l_x.‘:

como numa consequéncia da formula de derivagdo de arcsen x. A presenga do arcsen x
sugere que podemos também calcular este integral pela substituigdo trigonomeétrica / = arc
sen x. Temos entao

x=sent, dx=cos!dl, V1 — x2= V1 —sen’r = cos ¢,

€ éncontramos que

© o dx " cos 1 dt
——— = = |dt =1 = arcsen x.
V] — x*® Joocost /

Esta € sempre uma boa substituigdo a tentar se a fun¢ao integranda contém /1 — x*. Em
¢ ¢ g



310 Célculo

geral, qualquer integral da forma [R(x, \/a* — x?)dx, em que R & uma fungdo racional de
duas variaveis, pode transformar-se, pela substituigao

x = asent,’ dx = acostdt,

num integral da forma _fR(a sent, acost) acost dt. Este, por sua vez pode sempre ser
calculado por um dos métodos ja descritos.

X dx

ExempLO 2. Integrar ' :
J4 —xF 4 v4E— x®

Resolugdo. Seja x = 2 sent, dx = 2 costdt, \/4 — x* = 2 cost; entdo

J' x dx _ [ _4sentcostdi _J' sen { dt
4_x2+'\-'f4_x'2 J 4cos*t 4+ 2cost cost + 4
= —log|i 4+ cost|+ C=—log(l + V4 —-x")+ C.

O mesmo método resulta igualmente para integrais da forma

' R(x, Va* — (cx + d)?) dx

utiliza-se a substituigao trignomeétrica ¢x + d = a sen 1.
Podemos tratar duma maneira semelhante com integrais da forma

| R(x, Va* + (ex + d)?) dx

pela substituigao cx + d = a tg t, ¢ dx = a sec? t dt. Para integrais da forma

' R(x, V(ex + d) — a®) dx

usamos a substituigdao cx + d = a sec t,cdx = a sect tg ¢ dt. Em qualquer dos casos, a nova
fungao integranda vem uma fungao racional em sen ¢ ou cos /.

6.25. Exercicios

Calcular os seguintes integrais:

1 ) 2x +3 / 3 i x dx
.J(-"—z)(l’+5)(x' 'J\‘:’—3,\'+2
¥ x dx "xt 4+ 2x -6
2 . dx.
Jx + Dx + 2)x +3) o4 x? =2y
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10.

1.

13.

14,

15.

16.

17.

18.

19.

21.

7

s i ®

[Sugestdo: No exercicio 40, multiplicar e dividir a fungéo integranda por /2 — x — x2.]

) 8x* + 7

G+ 1P
"4x? + x + |
J ¥ -1

L

dx.

X dx
M+ 5xt 447
x4 2

z x.
xX° 4+ x

dx
x4 1)

-

dx

x dx

(x + 1)*°
* dx
xP—x

x* dx
X4+x—6
" (x 4+ 2)dx
Xt —4x +4°

"

* dx

(x + Dlx + 2%(x + 3)P*°

f (x — 3)dx
x4+ 322 + 2
" dx

x +1

x* -1

~

dx.

e
J x(x? + 1)?

-

dx.

dx

. _.-3'
.'].Y" _2.‘

EE
x(x* + 1)

dx

dx.

~

xt =1

(x2 —4x +4)x* —4x + 5)°

30.

31

33.

34.

35.

36.

37.

38.

39,

40.

W

J1 +acosx
J1 +acosx

J 1 +sen?x

dx
417

-

X2 dx
(x* + 2x + 2)*
To4xd — |

J* +x + 1) dx.

-

dx

J2senx —cosx +5°

" dx

i dx

" sen?x

dx.

3 dx

J a®sen’x + b*cos® x

) dx

J (@ senx + b cos x)*

(72 sén x dx

o | +cosx + senx’

M~

V'3 — xdx.

(/3 — x?
—_—dx.
J b
Vat+x
dx.
N X
|~
Vx:+ Sdx.
" x
/___.dx.
JVE24+x+1
r dx
JVE+x’
"'\/‘2 —-_x — x°
: dx.
X

Ly

0 <a<l).

(a > 1).

(ab # 0).

(a # 0).
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6.26. Exercicios de revisao

1. Sejaf(x) = [} (log H)/(t + 1) dt se x > 0. Calcular f(x) + f{]1/x). Como prova verificarse
N2) + A1/2) = 1/2 log? 2.

2. Determinar uma fungao f, continua para todo o valor de x(e nao nula para qualquer x),
tal que

sen ¢
fz(x) _[f( 2 + cost !
3. Tentar o calculo de l */x dx aplicando o método de integragdo por partes.
Integrar l“/ 2 log (e°°%%) dx.
5. Uma funcao JSesta definida pela equagao

_J 4x + 2 0
= +xry **>0

>

(a) Calcular o declive da curva de f/ no ponto x = 1.
(b) A regiao do plano limitada por 0X e a curva relativa ao intervalo | 1, 4] é rodada em
torno de 0X, gerando um solido de revolugao. Escrever um integral para o volume deste
solido. Calcular este integral e mostrar que o seu valor € n log(25/8).

6. Uma fungao F ¢é definida pelo integral indefinido

z et
F(x) =j — dt se x >0.
Lt
(a) Para que valores de x € valido log x < F(x)?

(b) Provar que ﬁe’/(t +a)dt=e *[F(x +a)—F(1 +a)l.

(c) De modo analogo, exprimir os seguintes integrais em fungao de F.

.reat ".ret zr ,
[ — dt, J - dt, fe‘-"d:.
1 ! ! 1

L

7. Para cada alinea dar um exemplo duma fungdo continua f satisfazendo as condigdes
fixadas para todo o real x, ou entdo explicar porqué ndo existe tal fungao:

(@) |Zf(r)dr =
(b) [Zf()dt =1 =27,  [2" significa 2=".]
© [Zf(ndt =f¥x) —~ 1.

8. Se fix + y) = f(x)f(y) para todo x e y e se f(x) = 1 + xg(x), em que g(x) — 1 quando
x — 0, provar que: (a) /“(x) existe para todo o x, e (b) f(x) = e.

9. Dada uma fungao g que admite derivada g’(x) para todo o x real e que satisfaz as seguin-
tes equagoes:
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10.

11,

12.

13.

14,
15.

16.

17

g0)=2eglx+y)=eg(x)+ e*g(y) para quaisquer x e y.

(a) Mostrar que g(2x) = 2e*g(x) e encontrar uma formula semelhante para g(3x).

(b) Generalizar (a) determinando uma férmula relacionando g(nx) com g(x), valida para
todo o inteiro positivo n. Provar o resultado por indugéo.

(c) Mostrar que g(0) = O e encontrar o limite de g(h)/h quando h — 0.

(d) Existe uma constante C tal que g"(x) = g(x) + Ce* para todo o x. Provar esta afirma-
¢do e calcular o valor de C. [Sugestdo: Usar a uefini¢io da derivada g{x).)

Uma fungdo periodica com periodo a verifica flx + a)=f{x) para todo o x no seu
dominio. Que pode concluir-se acerca duma fungdo que admite derivada para todo o
valor de x ¢ satisfaz a uma equagao da forma

f(x + a) = bf(x)

para todo o x, sendo a e b constantes?
Aplicar a derivagao logaritmica para estabelecer as formulas de derivagao de produtos e
quocientes a partir das correspondentes formulas para somas e diferencgas.

Sejad = -[c: e/t + 1) at. Exprimir os valores dos integrais seguintes, em fungao de A:

a e—t 1 é
(a) - m dt. (c) J; T+ 1)2 dt.

1 ‘et. 1
t
(b) J; T . @ J;e log (I + 1) d.

Sejam p(x)=¢, + ¢, x + &;x* e flx) = e*p(x).
(a) Provar que f"(0), a derivada de ordem n de f no ponto zero.é ¢, + ne, + n(n— 1)c,.

(b) Resolver o problema quando p € um polinémio de grau 3.
(c) Generalizar para um polinomio de grau m.

Seja f(x) = x sen ax. Mostrar que /227 (x) = (—1)" (a*"x sen ax — 2na 21=100s ax).
Provar que

, m

< (n 1 (m 1
Z(_l)k(k)k +m+1 Z(_I)L(k)k +n+1°

k=0 k=0

[Sugestdo: 1/(k + m + 1) = f‘; KM )

Seja F(x) = j'g f(v) dt. Determinar uma formula (ou formulas) para calcular F(x) para
todo o real x se f se define do modo seguinte:
@ f(0) = (t + 1)~ () f(1) =e 't

®) 1) (1 =2 se 1] <1, @ f len

A Tl =1 se 7 > 1. ) f(1) = ao maximo de | e £*.

. Um solido de revolugdo € gerado pela rotagio da curva duma fungido continua J
relativa ao intervalo |0, al, em torno do eixo 0 X. Se, para cadaa > 0, o volume ¢ a* + a
determinar f.
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18.

19.

20.

24,
25.

26.

217.

-\. -‘I- '_

Seja f(x) = e para todo o x. Representar por S(7) o conjunto de ordenadas de f rela-
tivo ao intervalo [0,7],em que ¢ > 0. Seja A(?) a area de S(1), V(1) o volume do solido
obtido por rotagao de S(1) em torno de OX e W(1) o volume do solido obtido por rota-
¢do de S(1) em torno do eixo QY. Calcular: (a) A(1); (b) V(1);(c) W(1);(d) lim, .o V(1)
Alt).

Seja ¢ um numero tal que sh ¢ = —%— (Ndo calcular ¢). Em cada alinea determinar todos
os valores de x (se existir algum) verificando a equagao dada. Exprimir as respostas em
fungao de log 2 e log 3.

(@) log(e* + Ve +1) =c. (b) log(e* —Ve* — 1) =c.

Dizer se cada uma das proposi¢des seguintes € verdadeira ou falsa. Demonstrar as
que foram verdadeiras.

(a) 2025 = Slox2 © > kV2<2y/n paranz L
=1
(b) log, 5 = 10gs > . (d) 1 + sh x < ch x para cada x.
- log, 3

Nos Exercicios 21 a 24, estabelecer cada desigualdade examinando o sinal da derivada

duma fung¢do conveniente.
2

w
. —x <senx < Xx 5€0<.\'<;.

m

) < log(-l + —1) < —: se x > 0.

\..'.5

L X - z <senx <xy s x>0.

(" + )" <X+ )t se x>0,p>0, ¢ 0<a<b
Demonstrar que
(a) .fﬁ etrdt =e *(e" —1 —x).

£ . f x°
(b) [] e'ttdt = 2!(.’__':(8'! -1 —x - 2—')

~x -3

~ts3 1 p—& | X2 x
.Oerdr=3.e (e‘—l—x—z—!—i-!.).
(d) Enunciar a generalizagao sugerida e demonstra-la por indugao.

Se a, b, a,, b, sao dados, com ab # 0, mostrar que existem constantes 4, B, C tais que

(©)

J‘a,senx + by cos x

dx = .
asenx + bcosx x = Ax + Bloglasenx + bcosx| + C

|Sugestao: Provar que existem 4 e B tais que

a,senx + b, cos x = A(asen x + b cos x) + B(acos x — bsenx).]

Em cada alinea, determinar uma fungao f que satisfaga as condigoes dadas:
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29.

30.

(@) f(x*) =1/x parax >0, f(1)
(b) f“(sen® x) = cos®* x para todox, f(I)
(c) f'(senx) = cos* x para todox, f(I)
para 0 <x <1,
para x > |,

1
1.
1

(d) f(logx) = f(0) =

Uma fungdo, chamada o logaritmo integral e representado por Li, € definida como
segue

* dr
Li(x)=f se x>2.
o logt

Esta fungido aparece na teoria analitica dos numeros, onde se prova que Li(x) é uma
aproximac¢do muito boa para a quantidade numeros primos < x. Demonstrar as pro-
priedades seguintes de Li(x):

X * dt 2
(a) Li(x) = —— + f -

logx Jy log*r log2’
b L x = k!x |”‘ dt C
(b) 1(x)=-——— log‘“ QEID-gT*'T;+ ns

onde C ¢ uma constante (dependendo de n). Determinar esta constante.

(c) Provar que existe uma constante b tal que |, (198 o'/ dt = Li(x) e calcular o valor de b.
. 1

(d) Exprimir | ':82'/(! — 1) dt em fungao do logaritmo integral, com ¢ = | + — log 2.

2
(¢) Sejaf(x)=e'Li(e™ % —e?Li(e™ % sex> 3. Provar que:

f®=a—%73

Seja f(x) = log | x| se x < 0. Provar que f admite inversa e representa-la por g. Qual é o
dominio de g? Determinar uma formula para calcular g(y) para todo o y no dominio de
g. Tragar o grafico de g.

Sejaf(x) = [X(1 + 1)1/

(a) Demonstrar que f ¢ estritamente crescente no e€1xo real ndo negativo.

(b) Designar por g a inversa de /. Demonstrar que a derivada de segunda ordem de g é
proporcional a g? [isto &, g”(y) = cg*(y) para cada y no dominio de g] e determinar a
constante de proporcionalidade.

dt se x > 0. (Nao efetuar o calculo do integral).



7
APROXIMACAO POLINOMIAL DE FUNCOES

7.1. Introdugao

Os polinomios figuram entre as fungoes mais simples que se estudam na Analise. Sdao ade
quados para trabalhar em calculos numeéricos porque os seus valores podem ser obtidos pelz
efetivagio dum numero finito de multiplicagcdes ¢ adigdes. No Capitulo 6 mostrou-se
que a fun¢do logaritmo pode ser aproximada por polinémios, o que torna possivel o calcu-
lo de logaritmos com qualquer grau de precisdo. Neste capitulo mostraremos que muitas
outras fungdes, tais como a fun¢do exponencial e as fungdes trigonométricas, podem
também ser aproximadas por polinomios. Se a diferenga entre uma fungio e a sua aproxi-
macdo polinomial € suficientemente pequena, entio podemos, com vista as aplicagdes,
operar com o polindmio em vez de o fazer com a fungio original.

Existem muitas maneiras para aproximar uma dada fung¢ao f por polinomios, dependendo
a escolha do uso que haja de fazer-se da aproximagao. Neste capitulo devemos interessar-nos
na obtengdo dum polinomio que coincida com f e algumas das suas derivadas, num dado
ponto. Vamos iniciar o estudo com um exemplo simples.

Suponhamos_f'uma fungao exponencial, f{(x) = ¢'. No ponto x =0, a fungdo f e todas as
suas derivadas tomam o valor 1. O polinomio linear

gx) =1+4x

também verifica g(0) = 1 e g'(0) = 1, de maneira que coincide com fe com a sua primeira
derivada em 0. Geometricamente isto significa que o grafico de g ¢ a tangente a f no ponto
(0, 1), como se indica na fig. 7.1.

Se aproximamos f por um polindmio quadratico @, o qual coincide com f'e as suas duas
primeiras derivadas em 0, poderemos esperar uma melhor aproximagao para f do que com a
fungao linear g, pelo menos nas proximidades de (0, 1). O polinomio

O(x) =1+ x + 4x*

verifica Q(0)=1, Q0)=1 ¢ Q70)=/70)= 1. A fig. 7.1 mostra que o grafico de Q se apro-
xima mais da curva y= e* do que a reta y= | + x nas proximidades do ponto (0, 1). Pode-

317
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mos tentar melhorar a aproximag¢do, usando polinomios que coincidem com f, bem como
também com as derivadas de terceira ordem e superiores. E facil verificar que o polinomio
x* x* x" ,

——1+x+;+---+—- (7.1)

Plx) = >_.« k! 2! n!

k=0

coincide com a fungdo exponencial ¢ igualmente coincidem as respetivas derivadas alé a
ordem n, no ponto x = 0. Evidentemente, antes de podermos utilizar tais polinomios para

]
+
-
..+.
b:’-
=
[

=1 4+ X

Fig. 7.1. Aproximagoes polinomiais para a curva y = ¢* nas proximidades de (0, 1).

calcular valores aproximados da fung¢do exponencial, necessitamos alguma informagio
acerca do erro cometido na aproximagdo. Em vez de continuarmos a discutir este exemplo
particular com mais pormenor, voltamos de novo a teoria geral.

7.2. Polinomios de Taylor gerados por uma fun¢ao

Suponhamos que f admite derivadas até a ordem n no ponto x = 0, sendo n > 1, e tente-
mos determinar um polinomio P que coincida com /' no ponto x = 0, bem como as respectivas
derivadas até a ordem n. Devem entao ser verificadas n + 1 condigoes, a saber
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PO)=f0), PO=70), ..., P"0)=f"(0), (7.2)

e assim ensaiamos um polinomio de grau n, por exemplo
P(x)=cy+ c;x + cox* + -+ 4+ ¢, x", (7.3)

com n + | coeficientes a serem determinados servindo-nos das condigdes (7.2).

Primeiramente fazemos x = 0 em (7.3) e determinamos P(0) = ¢,, pelo que f(0) = ¢,. Em
seguida derivamos ambos os membros de (7.3), fazendo depois x = 0 para determinarmos
P(0) = ¢, ; daqui resulta que ¢, = f(0). Derivando novamente (7.3) e fazendo x = 0, obte-
mos P7(0) = 2¢, e assim ¢, =/"(0)/2. Depois de ter derivado k vezes, determinamos
PX0) = k! ¢;, donde resulta a formula

f(ki(o)
k!

(7.4)

Cp =

para k=0, 1, 2, ..., n. [Quando k = 0, interpretamos f** (0) como significando f(0)]. Este
raciocinio prova que se existe um polinomio de grau < n que satisfaz a (7.2), entdo os seus
coeficientes sao necessariamente definidos por (7.4). (O grau de P sera igual a n se e so se
f™(0)# 0). Inversamente, € facil verificar que o polinomio P cujos coeficientes sao definidos
por (7.4) satisfazem a (7.2) e por conseguinte temos o teorema seguinte.

TeoOReMA 7.1. Se f é uma fun¢do admitindo derivadas até a ordem n no ponto x = 0,
enlao existe um e um so polinomio P de grau < n o qual satisfaz as n + 1 condigées

PO)=f0), PO=f0), ..., P"0)=["(0).

Este polinomio é definido pela formula

n (k)
P(x) = Zf—k("i) x*

k=0

Do mesmo modo, podemos mostrar que existe um ¢ um sO polinémio de grau < n que
coincide com f'e as suas n primeiras derivadas num ponto x = a. Com efeito, em vez de (7.3),
podemos escrever P ordenado segundo poténcias de (x — a) e proceder como antes. Se calcu-
lamos as derivadas em a em vez de 0, somos conduzidos ao polinomio

n (k)
P(x) = Zf——(“) (x — a)*. (7.5)

k!

k=0

Este € o unico polinomio de grau < » que verifica as condigdes

P(a) = f(a), P'(a) = f'(a), cevy  P"a) =f"Ya),
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e chama-se o polinomio de Taylor em honra ao matematico Brook Taylor (1685-1731). Com
maior rigor dizemos que o polinomio (7.5) € o polinomio de Taylor de grau n gerado por f no
ponto a.

E conveniente usar uma notagdo que indique a dependéncia do polinomio de Taylor P a
respeito de f'e n. Indicaremos esta dependéncia escrevendo P =T, fou P = T, (f). O simbolo
T, € chamado o operador de Taylor de grau n. O valor desta fungdo em x representa-se por
T f(x) ou por T, [f(x)]. Se desejamos também indicar a dependéncia a respeito de a, escre-
vemos T, fix, a), em vez de T, f(x).

ExempLO 1. Quando f ¢ a fung@o exponencial, f(x) = E(x) = ¢€", temos E® (x) = € para
todo o k, pelo que E*/(0) = ¢° = | ¢ o polinémio de Taylor de grau n gerado por £ em 0 é
dado pela formula

n k 2 n
TEX)=T() =S =1+4x+=+4 4=,
k! 2! n!
k=0
Se desejamos um polinomio que coincide com E e as suas derivadas no ponto a = 1, temos
E(‘U( 1) =eparatodo ok, peloque(7.5)nosda

T,E(x:1) = Zf'(x — 1),

k=0

ExempLO 2. Quando f{x) = sen x, temos f”(x) = cos x, f“(x) = —sen x, f”(x) = —cos x,
A¥(x) = sen x, etc., de maneira que /2" * (0) = (~1)" ¢ /2" (0) = 0. Assim aparecem somen-
te poténcias impares de x nos polinomios de Taylor gerados pela fungdo seno em 0. O poli-
nomio de Taylor de grau 2n + 1 tem a forma

To,q(s€NX) =X — — + — — — 4« -+ 4 (—])" .
2n+1 ' . + +\ )(2’1-}-1)'

EXEMPLO 3. Argumentando como no Exemplo 2, verificamos que o polinomio de Taylor
gerado pelo cosseno em 0 contém unicamente poténcias pares de x. O polinomio de grau 2n é
dado por

a
2 xi xs 2n

T T
Ty,(cos x) = 1 2 + 41 6! + +(=D (2n)!"

Observe-se que o polinomio de Taylor T..(cos x) é a derivada do polinomio de Taylor
T2n+ I(scn x). Isto deve-se ao fato de que o proprio cosseno ¢ a derivada do seno. Na segido

seguinte aprenderemos que certas relagdes que sdo validas entre fungdes se transmitem aos
respetivos polinomios de Taylor.
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7.3. Calculo de polinomios de Taylor

Se uma funcao f admite derivadas até a ordem » num ponto a, podemos sempre formar o
seu polinomio de Taylor 7, f pela formula

N _Ji_\f”{)(‘;) - .
Tuf(-\) - Z L' (-\ - “) .
k=0

Por vezes o calculo das derivadas f % (a) torna-se muito trabalhoso, pelo que € desejavel dis
por de outros meétodos para determinar os polinomios de Taylor. O teorema que
apresentamos a seguir da-nos propriedades do operador de Taylor que muitas vezes nos per-
mitem obter novos polinomios de Taylor a partir de outros dados. Neste teorema subentende-
se que todos os polinomios de Taylor sao gerados num mesmo ponto a.

TEOREMA 7.2. O operador de Taylor possui as seguintes propriedades: (a) Linearidade.
Se ¢, e ¢, sdo constantes, enido

Tfl(“lf-!- "2‘_2.) = {‘lTn(f) + C2Tn(g) .

(b) Derivagdo. A derivada de um polinomio de Taylor de f é um polinomio de Taylor de |
isto é, tem-se

(T.f) =T, ().

(c) Integragdo. Um integral indefinido de um polinomio de Taylor de f é um polinomio de
Taylor dum integral indefinido de f. Mais exatamente, se g(x)= [fit)dt, entdo
tem-se

"X
T,..8(x) = _'" T,f(1)drt.

Demonstragao. Cada proposigao (a), (b) ou (c), € uma equagao ligando dois polinomios do
mesmo grau. Para demonstrar cada proposigao, obervamos que o polinomio que figura no
primeiro membro tem 0 mesmo valor € as mesmas derivadas no ponto a que o do segundo
membro. Entdo basta que se invoque a propriedade da unicidade do Teorema 7.1. Ob-
serve-se que a derivagdo dum polinémio reduz o seu grau, enquanto que a integragdo o
aumenta.

O teorema seguinte diz-nos o que se verifica quando substituimos x por ¢x num polinomio
de Taylor.

TEOREMA 7.3. Propriedade de substituigao. Seja g(x) = f(cx), com ¢ uma constante.
Tem-se entao

T,g(x;a)=T,f(cx;ca).

Em particular, quando a = 0, tem-se T gx)=T nf (ex).
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Demonstragdo. Uma vez que g(x) = ficx), a regra da derivada da fungao composta
da-nos

g(x)=c¢f"(ex), ') =cH"(cx), ..., gPKx) = P(ex).

Daqui resulta

n gtkl(a) - n ffk?{ca) .
T,glx;a)= Z T (x —a)' = Z I (ex — ca)” = T,f(cx:ca).

k=0 k=0

EXEMPLOS. Substituindo x por —x no polinomio de Taylor para €*, encontramos que

2 x:l .n

~EY — x_.___ — ".'L
Te)=1-x+7—-3+ =D

Ja que x = je*+ {e~% podemos servir-nos da propriedade da linearidade para obtermos

x2 x4 Y!n
T, (chx)=3T(e) + T (e ) =1+ —+ =+ 4+ —.
2n( ) = 1T5,(¢°) + To.(e7) n T a (2n)!
A propriedade de derivagao da-nos
¥ x° x*n1
TopashX) =x+4+=—4=4 4 — |
ta-1{ 315! 2n — 1)!

O teorema que passamos a estudar ¢ tambem util na simplificagao dos calculos de polino-
mios de Taylor.

TeOREMA 7.4. Seja P, um polinomio de grau n = 1. Sendo f e g duas fungdes admitindo
derivadas até a ordem n em 0 e supondo-se que

S(x) = P,(x) + x"g(x), (7.6)

em que g(x) — 0 quando x — 0, entao P é o polinomio de Taylor gerado por fem 0.

Demonstragdo. Fagamos h(x) = f(x) — P _(x) = x" g(x). Por derivagao do produto ¥ g(x)
repetidas vezes, vemos que & e a suas n primeiras derivadas sao 0 para x = 0. Portanto,
J coincide com P e as n primeiras derivadas em 0, de maneira que P =T f, como se

afirmou.

EXEMPLOS. A partir daidentidade
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xn+l

1 =l+x+x2+...+x"+ (7.7)

1—x 1 —x

valida para qualquer x# |, vemos que (7.6) € verificada com f{x)= Il — x), P{x)=
=l4+x+...+x" e g(x)=x/(] — x). Visto que g(x)-+0 quando x-0, o Teorema 7.4
diz-nos que

T,,( 1 )=l+x+x2+-°-+x".

1l —x

Integrando membro a membro esta igualdade obtemos outro polindmio de Taylor

x2 xa xﬂ"rl
Toal=log(l = x)l=x+—+=—+ "+ -
1[—log ( )] 5 3 o
Em (7.7) podemos substituir x por —x? para obtermos
1 el et e (= 1) X — (—1)" x2ntl
1 + x2 ] ) e 1 + x2 '

Aplicando o Teorema 7.4 uma vez mais, concluimos que

1 1 o
T. = —1)5x3*
zn(lﬂz) go( )

Por integragao desta igualdade somos conduzidos a formula

x?k-f- 1

. — 1) =
Ty, 44 (arctg x) ;( 1) Tk

7.4. Exercicios

1. Tragar os graficos dos polinomios de Taylor T,(sen x) = x — x*/3! e Ti(sen x) = x —
— x3/3! + x*/5!. Prestar especial atengao aos pontos em que as curvas intersetam o eixo
0X. Comparar estes graficos com o de f{x) = sen x.

2. O mesmo problema do exercicio anterior para os polinomios de Taylor T,(cos x),
T,(cos x) e f(x) = cos x.

Nos Exercicios 3 a 10, determinar os polinomios de Taylor que se indicam. Em cada caso
subentende-se que f{x) se define para os valores de x para os quais f{x) € provida de signi-
ficado. Os Teoremas 7.2, 7.3 e 7.4 auxiliardo, em alguns casos, a simplificar os calcu-
los.



324 Calculo

10“ ] | IA 1.k
3 T =S > 6. T, log (1 + x)] —Y(__l__
Ke=0
| Y\ . 21
s, T,J(Il—;—_;,)—‘_‘,,_-'&(—l) ¥, 7. Ton. 1 long _a _ ";. -
) _ 1 xk
PR YRR
! k=0
. _F\'—'.- x\ a)  xx—1)-- (3_L+])
9. T,[(1 + 3] _;(k’).\ . onde (A) - -

I

\-* [Sugestdo: cos 2x = | — 2sen®x.]

10. T, (sen®x) *\ (=D a2

.&l

(20!

7.5. Formula de Taylor com resto

Voltamos agora a nossa atengdo para o analise do erro cometido na aproximagao duma
funciio f pelo seu polinomio de Taylor 7,/ num dado ponto a. O erro € definido pela diferenca
E "(x) = f(x) — Tn f(x). Deste modo, se f'admite derivada de ordem n em a, podemos escrever

(x —a)* + E,(x). (7.8)

n (k)
f(x) = ?‘f _('a)

—
=M

igualdade que ¢ conhecida por formula de Taylor com resto En(x),equeéde utili-

dade quando pretendemos avaliar a grandeza do erro £, (x). Definiremos o erro por inter-
medio dum integral e entao avaliamos a grandeza desse integral. Para exemplificar as ideias
principais, consideremos em primeiro lugar o erro resultante duma aproximag¢ao linear.

TEOREMA 7.5. Se fadmite derivada de segunda ordem f~, continua numa certa vizinhanga
de a, entao, para todo o x nessa vizinhanga, tem-se

f(x) = fla) + f(@)(x — a) + E\(x),

com

E(x) = | (x = nf'(n)dr.

Demonstra¢ao. De acordo com a definicao de erro podemos escrever
E\(x) = f(x) — f(a) — f'(a)(x — a) = "” f'(t)ydt — f'(a) .l,, dt = ' . [f'(t) — f'(a)] dt .

O ultimo integral pode escrever-se na forma )'; udv, fazendo u = f'(t) — f'(@) e v=1t — x.
Assim du/dt = (1), dv/dt = 1 e integrando por partes vem
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E@=] udv=w| - | (—xrwa= "= nswa,

uma vez que ¥ = 0 quando ¢ = @ e v = 0 quando ¢ = x ¢ 0 teorema esta demonstrado.
O resultado correspondente para um polinomio de aproximagao de grau n é dado pelo
seguinte

TEOREMA 7.6. Se f tem derivada continua de ordem n + I num certo intervalo contendo a,
entdo, para todo o x desse intervalo, tem-se a formula de Taylor

n f(k'(‘a)

fx=> P

k=0

(x — a) + E (x),
com

E,(x) = "i' l‘"(x — """ (1) dr .

Demonstragao. O teorema demonstra-se por indugdo a respeito de n. Ja o demonstramos
para n = 1. Agora supondo que € verdadeiro para algum n, vamos demonstra-lo para n + 1.
A formula de Taylor (7.8) escrita com n + / e com 7 e subtraindo membro a membro permite
obter

- f(n-é-l)(a) ) e
E,,H(x) e E“(,\) — —(-I;—*—_l)'- (.\ - a) 1 .

Servindo-nos agora da expressdo de E, (x) e tendo em conta que (X — )"+ 1) =

= f: (x — )" dt, obtemos
z (m+1) o
E,. (x) = ‘—J (x — 1)"f" V(1) dt —f———'("—)| (x — 1)"dt
n:Ja n. Ja
— ;l_'_f (‘ _ r)n[f(n-'rll(’) _f(n—rll(a)] df )

O ultimo integral pode escrever-se na forma [* u dv com u=f+VD (g)— f1+1) (g) ¢

V= —(x— t)"“/(n + 1). Integrando por partes e notando que u = 0 quando ¢ = a e que
v=0quando r = x, obtemos

_._1.. y y gum _i § __l_ y — n+1plne-2)
E,Hl(x)—n!'[ludb—- n!J;vdu—(n‘*. l)!J;(x n"’f (1) dr.

Isto completa a passagem de n a n + 1, pelo que o teorema ¢ verdadeiro paratodoon > 1.
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7.6. Estimativa do erro na formula de Taylor

Visto que o erro En(x), na formula de Taylor, foi expresso por um integral em que inter-

vém a derivada de ordem(n + 1)de f, necessitamos mais alguma informagao relativa a f'” D
antes que possamos estimar a grandeza de E,(x). Se forem conhecidos limites superior e

inferior para f('“” podemos determinar os correspondentes hmites superior € inferior para
E n(x), como se indica no

TEOREMA 7.7. Se a derivada de ordem (n + 1) de f satisfaz as condigées
m< frUe) <M (7.9)

para todo o t em certo intervalo contendo a, entdo para cada x pertencente a esse intervalo
tém-se as seguintes estimativas para o erro

_ n+1 (v _ Ayl
(;’C_L <E(x)<M x —a)" s x> a, (7.10)
(n+ 1)! (n + 1)!
e
— n+1 ._ yn1
m(a—-{)— < (=D)"E(x) £ M(u_l')_'— s¢ x<a. (7.11)
(n + 1)! (n + 1)!

Demonstragdo. Suponhamos em primeiro lugar que x > a. Entdo o integral de E (x) esta

estendido ao intervalo [a, b). Para cada t neste intervalo tem-se (x — £)” > 0, de modo que as
desigualdades em (7.9) ddo-nos

n! n' n!
Integrando de a a x obtemos
ml ( (x —n)"dt < E,(x) < A—/I‘J. (x — )" dt. (7.12)
n:Ja n:Ja
A substitui¢ao u = x — ¢, du = —dt da-nos
s *xr—a _ -1
(x = )'dt = u" du = (_'c__a)_ ,
a v n + |

e assim (7.12) reduz-se a (7.10).
Se x <a, a integragdo vem estendida ao intervalo [x, a). Para cada ¢ neste intervalo
temos ¢ = x, de modo que (—1)"(x —1)"= (¢t — x)" = 0. Portanto podemos multiplicar as
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desigualdades (7.9) pelo fator ndo negativo (—1)" (x —t)%n! e integrar de x até a para
obtermos (7.11).

EXEMPLO 1. Sef(x) =e”*ea =0, temos a formula

n
k=

Visto que /" V(x) = ¥ a dcnvada £V x) é monotona crescente em cada intervalo e por-
tanto satisfaz as desigualdades e’ < f ('”l)(r) < ¢“em cada intervalo da forma [b cl. Num
tal intervalo, as desigualdades para E n(x) do Teorema 7.7 sao verificadas com m = e eM =¢.
Em particular, quando b = 0, temos

+ E.(x).

"’I",

n+1 41

< E(x)< ¢
(n 4+ I)!

(n+ 1)!

se 0<x<c.

Podemos usar estas estimativas para calcular o nimero de Eulere. Toma-se b =0, ¢ = 1,
x = | e usamos a desigualdade e < 3 para obtermos

j: 1 ] 3
— — + . N - 7!'3
’ k=0 I\' bn{l) . onde ( )' _ “( ) < (" l)' ( )

Podemos deste modo calcular e com qualquer grau de precisdo. Por exemplo, se desejamos

calcular e com sete casas decimais escolnemos um n de maneira que 3/(n + 1)! < —410*

Verificaremos que basta n = 12. Uma tdbua de valores de 1/n! pode ser facilmente calcu-
lada devido a que 1/n! pode calcular-se dividindo 1/(n — 1)! por n. A tabua que a seguir se
apresenta para 3 < n < |2 contém esses numeros arredondados com nove casas decimais.
O arredondamento estd, em cada caso afetado por um mais ou por um menos, O que

nos indica se ele foi efetuado por excesso ou por defeito. (Em qualquer hipotese, o erro
¢ inferior a meia unidade da ordem da ultima casa decimal).

1 1

n n! n n!

0,166 666 667 — 8 0,000 024 802 —

3
4 0,041 666 667 — | 9 0,000 002 756 —
5 0,008 333 333 4+ | 10 0,000 000 276 —
6 0,001 388 889 — | 11 0,000 000 025 +
7

0,000 198 413 — | 12 0,000 000 002 +
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adigao, subtragio, multiplicagdo, divisao, ou composi¢ao. Outros exemplos que ocorrem
mais frequentemente quer na teoria, quer na pratica, sao os integrais

~r

= dt, sen (%) dt , Vil — k*sen®t dr.
0 ' o 0 o )

J”’ sent
(No primeiro caso subentende-se que o quociente (sen 1)/t tem que ser substituido por |
quando 7 =0. No terceiro caso, k ¢ uma constante 0 < k < 1.) Concluimos esta se¢do

com um exemplo que mostra como a formula de Taylor pode ser usada para se obter uma
boa estimativa do integral [} e~ di.

ExeEMPLO 3. A formula de Taylor para € com n = 4 da-nos

2 ta +

- o2 X g
=1+x+>+ 5+ +EM. (7.15)

Suponhamos agora x < 0. Num intervalo da forma [-—¢. 0] tem-se e € < ¢ < 1,de modo

que podemos usar as desigualdades (7.11) do Teorema 7.7 comm =¢ ‘e M =1 para escre-
vermos

(—x)°

5!

0 < (—1)°Ey(x) £

if x<0.

Por outras palavras, se x <0, entdo £,(x) € negativo e = x*/5! Substituindo x por —1* em
(7.15), temos

2 TR L
e =l—r’+;-—;+;+b‘4(—r2), (7.16)

| |
em que —1'9/5! < E,(—t*) < 0. Se 0 < t < ——, encontramos que '°/5! < (—)"/5! <

2 2
- 1
< 0,000009. Entao, se integramos (7.16) de 0 a = obtemos
1/2 _e di = _] _ 1 + | 1 + 1 p
o T2 Ty s T 773 904t

com 0 < 8 <£0,0000045. Arredondando para quatro decimais encontramos J}.”z e’ dt=

=0,4613.
*7.7. Outras formas para o resto da formula de Taylor

Exprimimos o erro, na formula de Taylor, por meio de um integral



330 Célculo

E (x)= —l-l I(x — )" V) de .

H.Ja

Este resto pode ser expresso por varias outras formas diferentes. Visto que o fator (x — )

na fungdo integranda nunca muda de sinal no intervalo de integragio, e ainda porque A"+ ¢
continua neste intervalo, o teorema da media pesada para integrais (Teorema 3.16) da-nos

v - o n41
(’\_ _ Ir)hftn.ll“) ‘“ =fh.u-]|(-‘_) (\ _ !)u {“ =fl:.wllu_)(_-\___a_)___
o Ja n + 1

onde ¢ pertence ao intervalo fechado [q, x]. Portanto o erro pode escrever-se

E,(x) = S0 (x — a)**!.
(n + 1!

Esta é a chamada forma de Lagrange para o resto. E de estrutura analoga aos anteriores ter-
mos da formula de Taylor, exceto que a derivada j{“ l)(c) ¢ calculada em certo ponto ¢
desconhecido em vez de a. O ponto cdepende de x e de n, bem como de f.

Usando um tipo de argumentagao diferente, podemos prescindir da continuidade de f’” D
e deduzir a formula do resto de Lagrange e outras expressoes para o resto sob uma hipotese
mais fraca. Suponhamos que f("'+ D existe em certo intervalo aberto (h, k) contendo o ponto
a, e que j( ") ¢ continua no intervalo fechado (A, k). Escolhamos qualquer x # a em A, k|. Por
comodidade, seja x > a. Fixemos x e definamos uma nova fungdo F no intervalo |a, x| do
modo seguinte:

(x — 1)~

n j'(k)('”
F)=f(0 + >

k=1

Observe-se que F(x) = f(x) e F(a) = T"f(x:a), de modo que F(x) — F(a) = En(x). A

fungao F € continua no intervalo fechado [a, x] e derivavel no intervalo aberto (@, x). Se cal-
culamos F(1), tendo em conta que cada termo da soma definindo F(¢) ¢ um produto, en-
contramos que todos os termos se anulam exceto um, pelo que nos resta a igualdade

Fi(t) — (_x___m.ffn-l)(r) )

n!

Seja agora G qualquer fungao continua em [a, x] e derivavel em (a, x). Entdo podemos apli-
car a formula do valor médio de Cauchy (teorema 4.6) para escrever

G'(¢)[F(x) — F(a)] = F'(¢)[G(x) — G(a)],

para algum ¢ no intervalo (@, x). Se G’ € nao nula em (a, x), isto da-nos a seguinte formula
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para o erro E IP'(.’r).'
() = g2 [6(x) = Gl@).

Podemos representar o erro de varias maneiras por diferentes escolhas de G. Por exemplo,

fazendo G(1) = (x — )", obtemos o resto de Lagrange,

n+1)
E ()= _ gy onde a<c<x.
(n+ 1)!

Tomando G(t) = x — t obtemos outra formula, chamada o resto de Cauchy ,
(n+1)
E,(x) =f—'(i)(x —&)"x—a), onde a<c<Xx.
n!
Se G(t) = (x — 1)?, com p > 1, obtemos a formula

(n+1)
E, (x) =f—'@ (x — )" %(x — a)”, onde a<c<x.
n!'p

7.8. Exercicios

Nos Exercicios 1, 2 e 3 apresentam-se exemplos de formulas de Taylor com resto. Em
cada caso provar que o erro satisfaz as igualdades apresentadas.

n (_l)k_lxﬂk_l ‘x|2n+1
= —("2;__”!"‘ + Eﬁn(x)s lEEn(x)l S m :

k=1

1. senx

(_l)k 2% Ix|2n+2
2. cos x =Z-—(2k—'"—')|'— + E2"+1(x), |E‘2'"+1(x)’ s 2n + 2!

k=0
n-1
(_l)i'xzk—r-l x?n-H
3. arctg x =Z —m'—l"' + Ey,(x), | Ean(x)] £ I+ 1 se 0<x<1.

4. (a) Obter o numero r =/ 15 — 3 como uma aproximagéo de raiz nao nula da equagao
x? = sen x, utilizando o polinomio de Taylor do terceiro grau que aproxima sen X.
(b) Provar que a aproximagao na alinea (a) verifica a desigualdade

|senr — r? <-l-
nr 200’

dado que /15-3 < 0,9. Sera a diferenca (sen r—r?) positiva ou negativa?
Apresentar os pormenores do raciocinio efetuado.
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5. (a) Aplicar o polinomio de Taylor do terceiro grau que aproxima arctg x para obter

10.

0 numero r= (\/ﬁ — 3)/2 como uma aproximagdo da raiz ndo nula da equagio
arctg x = x2.

(b) Dado que \/ﬁ < 4, 6 e que 2'" = 65536, provar que a aproximagao na alinea (a)
satisfaz a desigualdade

2
2 —arctg r| < —.
|r g 1 <750

Sera a diferenga (r* — arctg r) positiva ou negativa? Apresentar os pormenores do
raciocinio efectuado

+ X0 ¢
Demonstrar que _fo T+ dx=1+ 37 com 0<e<l.
Provar que 0,493948 < [} : —————dx < 0,493958.

1 +x*
(a) Se 0 < x < 1/2, demonstrar que sen x = x —x3/3! + r(x), onde |r(x)| < (1/2)*/5".

(b) Utilizar a estimativa da alinea (a) para calcular um valor aproximado do integral

1Y %2 Sen(x?) dx. Dar uma estamativa do erro.

Utilizar os trés primeiros termos nao nulos da formulade Taylor para senx para calcular
um valor aproximado do integral |l(sen x)/x dx e apresentar uma estimativa do erro.
[Subentende-se que o quociente (sen x)/x € igual a 1 quando x = 0.]

Neste exercicio apresenta-se um cdlculo de 7, usando a férmula de Taylor para

arctg x dada no Exercicio 3. Baseia-se no fato de que n é aproximadamente 3,2, de
T . . . .

modo que 2 ¢ aproximadamente 0,8 ou 4/5 e este € aproximadamente 4 arctg 1/5.

Sejaa = arctg 1/5, = 4a—n/4.

(a) Usar a identidade tg(4 + B) =(tg A + tg B)/(1 —tg A tg B) com A = B = a e depois

comA = B = 2apara obter tg 2a=5/12etg 4o = 120

119" . Utilizar depois a identidade com

1 . L. : )
2 339" . Isto conduz a seguinte identidade notavel des-
coberto em 1706 pot John Machin (1680-1751):

A =4a, B_._Lnobtendotgﬂ—

= 16 arctg 3 — 4 arctg 733-
(b) Aplicar o polinomio de Taylor T,, (arctg x) com x = |/5 para mostrar que .

3,158328934 < 16 arctg } < 3,158328972.

. .. 1
(c) Aplicar o polinomio de Taylor Ty(arctg x) com x = —— para provar as desigual-

239
dades
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—0,016736309 < —4 arctg 355 < —0,016736300,

(d) Utilizar as alineas (a), (b) e (c) para provar que o valor de 7, com sete decimais, €
3,1415926.

7.9. Outras observagdes acerca do erro na formula de Taylor. A notagdo 0

Se f possui derivada continua de ordem n + 1 em certo intervalo contendo um ponto
a, podemos escrever a formula de Taylor na forma

n, (%)
f(x) = Zf k‘!“) (x — ) + E,(x). (7.17)
k=0

Suponhamos que restringimos x a um certo intervalo fechado |a — ¢, a + ¢| de centro a, no
p

qual f"+1 ¢ continua. Entdo f"+" ¢ limitada neste intervalo e por isso satisfaz a uma
desigualdade da forma

S < M,
onde M > 0. Por conseguinte, devido ao Teorema 7.7, temos a estimativa do erro

. |.\' _ alrnl

E, ()| <M=———
(n 4+ 1)!

para cada xem [a — ¢, a + ¢|. Se considerarmos x # a e dividimos por |x — a|", encontramos

|x — aj.

0 < E.(x) |< M

T (n 4+ !

(x — a)”

Se agora fazemos x — a, vemos que E,(x)/(x — a)" — 0. Exprimimos esta conclusao di-
zendo que o erro £, (x) € de ordem inferior a (x — a)" quando x — a.

Quer dizer que, sob a hipoteses estabelecidas, f{(x) pode ser aproximada, na vizinhanga de
a, por um polinomio em (x — a) de grau n e o erro nesta aproximagao € de ordem inferior a

(x — a)" quando x — a.

Em 1909 E. Landau (+) introduziu uma notagao particularmente bem adequada quando
usada em ligagdo com a formula de Taylor. E a chamada notagio o (a notagio o miniscu-
lo) ¢ define-se do modo seguinte.

DEFINICAO. Se g(x) # 0 para todo x # a em certo intervalo contendo a, a notagdo

(+)Edmund Landau(1877-1938) foi um famoso matematico alemao que deu importantes contribuigoes a Mate-
marica. Ele ¢ mais conhecido pelos seus licidos livros de analise e teoria dos numeros.

APOSTOL — 12
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f(x) =o(g(x)) quando x-a
significa que
lim X — o
z=a g(X)

O simbolo f{x) = 0(g(x)) lé-se “f(x) & o-minusculo de g(x)"” ou "f{(x) ¢ de ordem inferior a
g(x)” e tem por finalidade dar a entender que para x proximo de a, f(x) € pequeno comparado
com g(x).

ExempLo . f{x) = o(l) quando x — a significa que f(x) — 0 quando x— a.

EXEMPLO 2. f(x) = ofx) quando x — 0 significa que f{x)/x — 0 quando x — 0.

Uma igualdade da forma f(x) = h(x) + ofg(x)) significa que f{x) — h(x) = o{g(x)) ou, por
outras palavras [f{x)-h(x)l/g(x)-0 quando x—a.

senxX—Xx  senx
EXEMPLO 3. Temos sen x = x + ofx) porque < == = 1 — 0 quando x — 0.

As observagoes precedentes dizendo respeito ao erro na formula de Taylor, podem tam-
bém ser expressas na notagao o. Podemos escrever

n 'f(k](a)

1= 27

(x — a)* + o((x — a)") quando x-a,

k=0

sempre que a derivada /" * V) seja continua em algum intervalo fechado contendo o ponto a.

Isto exprime, duma maneira resumida, o fato de que o erro é pequeno comparado com
(x-a)", quando x ¢ proximo de a. Em particular, da discussdo feita nas anteriores se-
¢Oes, temos os seguintes exemplos da formula de Taylor expressa na notagdo o:

1

Il — x

=14+ x4+ x4+ 4+ x"+ o(x") quando x-0,

1

.3 .7
log(l + x)=x——+ % -— % + -+ (—I)""é- + o(x") quando x-0.
n

x*
2

n

=14+ x +% + 4 Y—’ + o(x") quando x-0.
2! n!

.3 ) 7 2n—1

SCH.\':_\’——'—-}-—_L_.{,_...+(_|)ar—l X

2n
YRETRET (on — l)!+0(-’C ) quando x-0.
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x2 t-l \.6 2n

| — — — i -1)"
2!+4! 6!+ + )(2;1)!

cos X + o(x*"*') quando x—0.

3 5 7 an—1

X X X X
artg x =X — — 4+ — —— 4 o 4 (=11
8 35 7 S

s

+ o(x*") quando x—0.

Nos calculos implicando aproximagdes de Taylor, é muitas vezes necessario combinar
vérios termos contendo o simbolo 0. No teorema que se segue apresentam-se algumas regras
simples relativas a0 manejo dos simbolos o, as quais cobrem a maior parte das situagdes que
podem surgir na pratica.

TEOREMA 7.8. ALGEBRA DOS SIMBOLOS 0. Quando x— a, tem-se:

(@) o(g(x)) £+ o(g(x)) = o(g(x)).

(b) o(cg(x)) = o(g(x)) se ¢#0.
(©) f(x)- o(g(x)) = o f(x)g(x)).

(d) oo(g(x))) = o(g(x)).

1
© I 4+ g(x)

=1 — g(x) + o(g(x)) se g(x)—>0 gquando x-—a.

Demonstragdo. A proposi¢ao da alinea (a) significa que se f,(x)= ofg(x)) e f,(x) = ofg(x)).
entdo f,(x) + f,(x) = o(g(x)). Com efeito uma vez que temos

fs(—\') -+ fz(\') - fl(x) + f-z(x)
g(x) g(x) " gx)’

cada termo do segundo membro tende para zero quando x — a e assim esta demonstrada a
alinea (a). As proposig¢des (b), (¢) ¢ (d) demonstram-se duma maneira semelhante.
Para demonstrar (e) servimo-nos da identidade

) = ] —u-4+u u

1 4+ u l 4+ u

g(x)
1 +g(x)

com u substituido por g(x), observando entdo que -0 quando x - a.

EXEMPLO 1. Provar quetg x = x + f;-— + o{x’) quando x — 0.

Resolugao. Usamos a aproximagao de Taylor para o seno e cosseno. Da alinea (e) do

Teorema 7.8, com g(x) = ———;—x’ + o(x*), temos
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l = ~——-——__l—-———_-3 =1 + 1.\"’ + o(x?) quando x -0.
cosx 1 — Ix" + o(x) 2

Portanto, temos

sénx . 1 4 o4 )( 1 .2 ) ) 1 4 3
tgx=——=|x—==x"F o))l +=x"4+0(x7)) =x + =-x" 4+ o(x7).
& COS X ( 6 ! / 2 . 3
f l .
EXEMPLO 2. Provar que (1 + x)l"" =e.(l1- Zi - %fr + 0{x*)) quando x — 0.

Resolugdgo. Uma vez que (I + x)V*= ell/x) log (1+X) comegamos com um polindmio
de aproximagdo para log(l + x). Tomando uma, aproximagdo do terceiro grau, temos

g

log(l-+-x)=-\-£+'£+0(-‘f3_), M=l—£+x—2+0(-’52).
2 3 X 2 3
¢ portanto resulta
(I + )" =exp(l —x/2 + x*/3 + o(x?)) = e - e", (7.18)
com u = -x/2 + x*/3 + o(x*). Mas quando u—0, temos e“= 1+ u + -5—!;" + o(u*), com o

que se obtém

.2
Ilx + o(x?).

N x , X 2 _1_ x \_2 Ny W2 X
e _1—2+3+o(.x)+2(_—2+3 +o(.\)x)+om—1—2+ ”

Se aplicarmos esta igualdade a (7.18) obtemos a formula desejada.

7.10. Aplicagoes as formas indeterminadas

Ja explicamos como podem as aproximag¢oes polinomiais ser usadas no calculo do valor de
fungoes. Elas podem também utilizar-se como um meio auxiliar no calculo de limites. Prova-
mos isso com alguns exemplos.

ExXeEmpPLO 1. Se a e b sao numeros positivos, determinar o limite

.oa*—=b"
lim .

r=0 X

Resolugao. Nao podemos resolver este problema pelo calculo do limite do numerador e do
denominador separadamente, porque o denominador tende para zero e o teorema do limite
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dum quociente ndo € aplicavel. O numerador, neste caso, tende também para zero e 0 quociente
: 0 . .
diz-se tomar a “forma indeterminada —” quando x — 0. A formula de Taylor e a notagao

0

o permitem-nos muitas vezes calcular o limite duma forma indeterminada deste tipo por um
processo muito simples. A idea consiste em aproximar o numerador @* — b* por um poliné-
mio em x, dividir em seguida por x e fazer tender x — 0. Podemos aplicar a formula de Taylor
diretamente a f{x)= a*—b* mas, uma vez que a* = e*198 ¢ h* = ¢*198b ¢ mais simples neste
caso servirmo-nos da aproximagdo polinomial ja derivada para a funglo exponencial. Se
comegamos com a aproximacgao linear

e'=1+ 1+ o(t) quandor-0
e substituimos 7 por x log a e x log b, respetivamente, encontramos
a =1+ xloga + o(x) - b*=1+4 xlogb + o(x) quando x-0.
Aqui fizemos uso do fato que o(x log a) = ofx) e o(x log b) = o(x). Se subtrairmos e tiver-

mos presente que ofx }-o{x) = o(x), encontramos a ~b * = x(log a-log b) + ofx). Dividindo
por x e usando a relagdo o(x)/x = o(1), obtemos

ax_b.‘l'-

X

= log% + o(1) — Iogg quando x-0.

: 1 1 1
EXEmMPLO 2. Provar que lim _ o ?(Cotg X — _,;c_) = —

3

Resolugdo. Usamos o exemplo | da segido 7.9 e o Teorema 7.8(c) para escrevermos

cot x = l = 1 - l L
tgx x4+ 3IxX+o0(x*) x 1+ Ix*+ o(x?
1 ( 1, o) 1 1 _
= 1——x'+o.\")=~——x+ox.
X 3 e x 3 )
Daqui resulta
l((:4:::tvc—l)——-]—+ (l)—»—l— d 0
: x—3)=—3te . quando x-0.
i log(1 + ax)
EXEMPLO 3. Provar quelim__ . . = a para todo o real a.

Resolugdo. Se a=0, o resultado € trivial. Se a # 0 escrevemos a aproximagido linear
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log (I + x) = x + of{x). Substituindo x por ax, obtemos log(l + ax) = ax + ofax)= ax +
o(x). Dividindo por x e fazendo tender x -0, obtemos o limite a.

EXEMPLO 4. Provar que para todo o real a, se tem

lim (1 + ax)'* = ¢". (7.19)

xr—0

Resolugdo. Notamos muito simplesmente que (1 + ax)V* = fVXlogl+ax) o carvimo-nos
do resultado do exemplo 3 conjuntamente com a continuidade da fungao exponencial.
Substituindo ax por y em (7.19), encontramos outra importante relagao

lim (1 4 y) " = é".

y—0

Algumas vezes estas relagOes limites sdo tomadas como ponto de partida para a teoria da
fungao exponencial.

7.11. Exercicios

I. Determinar uma formula quadratica polinomial P(x)tal que 2¥= P{x) + o(x? ) quando
X=o0.

2. Determinar um polinomio do 3.° grau, Ax), tal que x cos x= Px)+ o((x=1)")
quando x— 1.

3. Determinar o polindmio P(x) de menor grau, tal que sen(x — x°) = P(x) + o(x") quando
x = 0.

4. Determinar as constantes @, b, ctais que log x = a + b(x — 1) + ¢(x — 1)* + o({x — 1)°)
quando x — 1.

-+
“

X
5. Recorda-se que cos x = | — 5+ o(x*) quando x — 0. Utlizar este resultado para

_ 1 .
provar que x *(1 — cos x) — 5 quando x — 0. De modo analogo determinar o limite de

x %1 — cos 2x — 2x?) quando x — 0.

Calcular os limites nos Exercicios 6 a 29

. senax . senx
6. lim . 11. Iim .
20 Sen bx roagdrclg x
. t 2.\’ at — 1
7. lim —22X 12. lim . b#1
0 SEN 3x e — 1
. Senx—-Xx | 0%
8. lim ———. 13. lim ——2%
z—0 x‘. 1 tz + X — 2
1" y -
. log (1 + x) I - cos x?
9. im e —1 14, lim ——— .
z—0 svp X SEN X
| —cos® x )
10. lim — — ., 15, lim x(ef +1) =2 = 1)
r.0 XIgX h < )

r—0 X



20.

21.

22,

3L

32.

33.
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23. lim x!/(==),
z—1

. cosx _
lim 24. lim (x + e¥)V/=,
z—}z X = 5" z-—0

I + x)V= —
im [sen (x/2x)l(log x)' 2. lim( ) e-
z—1 (Xl+5XX)|) 0 X
hx- A 1 + 1/z.1/2

lim XY 26. 1im((-——i :

20 X

. 3tgdx-121gx arcscnx

ll_r,nOJ sendx-12senx 27. | (

lim @ -am :

im —————— ., - —

- 3 28. IIm(x pra )
lim Cos (sen x)— cos x

i .

z—0 xt 2. :T:(logx x - l)

. Para que valor da constante a tendera x?*(e?*—e*—x) para um limite finito, quando:

x-+0? Qual sera o valor desse limite?
Sao dadas duas fungoes f'e g derivaveis em certo intervalo contendo 0, e no qual g € posi-
tiva. Supde-se também f{x) = o(g(x)) quando x — 0. Dizer se sao ou nao verdadeiras
cada uma das afirmagoes seguintes:

@ [7f@de = o[ g(t)dn) quando x+0, (b)/ ()= o0(g(x)) quando x-0.
(a) Se g(x) = o(l) quando x — 0, provar que

= — 2 —
T+ 200 1 —g(x) +g%x) + o(g*%x)) quando x —0 .

3 5
(b) Servir-se da alinea (a) para provar que tg x = x + xT + 21';

Uma fungio / admite uma derivada de terceira ordem continua para todo o real x ¢
verifica a igualdade

+ o(x*) quando x - 0.

1/z
lim(l + x +@) =ée,

z-—-0

Calcular f(0), £(0), /7(0) e lim(l +L‘—3)”:.

[Sugestdo: Se lim _, g(x) = A, g(x) = A + o(1) quando x — 0. |
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7.12. Regra de L Hopital para a forma indeterminada 0/0

Em muitos exemplos das precedentes se¢des calculamos o limite de um quociente fix)/
g(x) no qual ambas as fun¢des, numerador f{x) ¢ o denominador g(x), tendem para zero.
Em tais exemplos o quociente f(x)/gfx) diz-se que toman “a forma indeterminada 0/0".

Um caminho para resolver os problemas relativos a formas indeterminadas consiste em
obter aproximagdes polinomiais para f/x) e g{x ), como fizemos nos dois exemplos apresen-
tados atras. Por vezes o trabalho pode ser encurtado pelo uso duma técnica de derivagdo
conhecida por regra de I'Hopital*. A ideia base do método consiste em analisar o quociente
de derivadas f7x)/g7x) e por seu intermédio tentar obter informagio relativa a f{x )/g(x).

Antes de estabelecer a regra de L’Hopital, vamos demonstrar porqué o quociente de
derivadas f7x)/g (x) exibe uma relagdo para o quociente f(x)/g(x). Suponhamos fe g duas
/) f)—fa) _
gx) g(x)—ga)

. Se as derivadas f"(a) e g’'(a) existem e se g'(a) +# 0, entdo

fungoes para as quais f(a) = g(a) = 0. Entao, para x # a, tem-se
~ Jx)—fla) / g(x) —g(a)

X—a X—a
quando x —a o quociente no segundo membro tende para f{a)/g(a) e por isso fix)/g(x)—
-~ flalgia).

| — e*

Exempro. Calcular lim, _,,

Y

Resolugao. Aqui f{x) = 1 — e e g(x) = x, de maneira que f'(x) = —2¢~, g'(x) = 1.
Daqui resulta /7(0)/g(0) = —2, pelo que o limite em questao ¢ —2.

Na regra de L'Hopital nio se fazem quaisquer hipoteses acerca de f e g ou respetivas
derivadas no ponto x = a. Em vez disso, supomos que f(x) e g(x) tendem para 0 quando
X-~+a ¢ que o quociente f1x)/g(x) tende para um limite finito quando x—a. A regra de
L'Hopital diz-nos entdo que f{x)/g(x) tende para o mesmo limite. Mais precisamente, te-

mos O seguinte:

TEOREMA 7.9. REGRA DE L'HOPITAL PARA 0/0. Sejam f e g duas fungées admitindo deri-
vadas [(x) e g (x) em cada ponto x dum intervalo aberto (a, b) e que verificam

Iim f(x) =0 e lim g(x) = 0. (7.20)

I=*i-r

Admite-se que g (x) +# 0 para cada x em (a, b). Se o limite

lim L)

_ (7.21)
T—a+ g’(I_)

(+) Em 1696, Guillaume Frangois Antoine de L™ Hopital (1661-1704) escreveu o primeiro livro sobre cilculo diferencial. Este

trabalho apareceu em repetidas edicdes e desempenhou um papel de relevo na divulgagdo do assunto. A maior parte do con-

tetdo do livro, incluindo o meétodo conhecido por “Regra de L Hopital ™ era baseada no anterior trabalho de Johann Bernoulli,

um dos professores de L'Hopital.
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existe e tem o valor L, entao o limite

lim L&) (1.22)
z=a- g(\')

também existe e tem o mesmo valor L.

Note-se que os limites em (7.20), (7.21) e (7.22) sao “limites laterais, a direita”. Existe, com
certeza, um teorema analogo no qual as hipoteses sao formuladas em certo intervalo da
forma (b, a) e todos os limites sao “limites laterais a esquerda”, Também, pela combinagao
dos dois teoremas referentes a “limites laterais”, resultara um teorema valido para limites
bilaterais, fornecendo um resultado da mesma natureza quando x —+ a de qualquer maneira.

Antes de apresentarmos a demonstragao do Teorema 7.9, vamos ilustrar a utilizagao desse
teorema pela apresentagao de alguns exemplos.

ExemMpLO 1. Usar a regra de L’Hopital para obtermos a formula ja conhecida

. Sén Xx
lim

z—0 X

=1. (7.23)

Aquif(x)=senx e g(x)=x. O quociente das derivadas f(x)/g7x) = (cos x)/1 e este tende
para 1 quando x — 0. Pelo Teorema 7.9 o limite de (7.23) também existe e ¢ igual a .

ExXEMPLO 2. Para determinar o limite

) xX—-1lg x
lim X-lgx
s X—SEN X

recorrendo a regra de L’Hopital, fazemos f(x) = x — tg x, g(x) = x — sen x, e entao en-
contramos que

f(x) _ 1 — sec® x (7.24)
g(x) 1 —cosx ' '

Embora este cociente também tome ainda a forma 0/0 quando x — 0, podemos aqui levantar
a indeterminagao por meio de transformagoes algebricas. Se escrevermos

o 1 cos® x — 1 (1 4+ cos x)(1 — cos x
|l —sec*x =1 — - == " = — )2 ),
cos™ x COs™ X COs™ X

0 quociente em (7.24) escreve-se

f'ix) 1 +cosx
g'(x) cos® x
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o qual tende para -2 quando x - 0. Observe-se que a indeterminagdo desaparece quando
simplificamos o quociente por divisdo pelo fator comum | —-cos x. A supressdo de fatores
comuns tende habitualmente a simplificar o trabalho em problemas desta natureza.

Cuando o quociente das derivadas f(x)/g{x) também ¢ uma forma indeterminada 0/0,
podemos aplicar ainda a regra de L’Hopital mais uma vez. No exemplo que se segue, a inde-
terminagao ¢ levantada depois de duas aplicagoes daquela regra.

ExempLO 3. Para qualquer numero real ¢, temos

. X =ex+c~-1 . oext =g _
Iim = |iIm —— = |lim

cle—=1)x“* ele—1)
21 (x — 1)* =1 2(x — 1) 21 2 2

Nesta sequéncia de igualdades subentende-se que a existéncia de cada limite implica a
existéncia do precedente e também a sua igualdade.

O exemplo que apresentamos a seguir serve para mostrar que a regra de L'Hopital nao ¢
infalivel.

EXEMPLO 4. Sejaf({x)=e"*se x # 0 seja g(x) = x. O quociente f(x)/gfx) toma a forma
indeterminada (/0 quando x-0+ e uma aplica¢io da regra de L'Hopital conduz ao quociente

fi(x) _(xhe ™ et

@

g'(x) 1 x©

Este, igualmente, € indeterminado quando x -0+ e se derivamos o numerador ¢ o deno-
minador obtemos (1/x*) e~"¥/(2x) = e”V"¥/(2x"). Depois de n aplicagdes chega-se a0 quo-
ciente e 'Y/(n!x"+ 1) de maneira que a indeterminagio ndo desaparecera jamais por este
método.

EXEMPLO 5. Quando aplicamos a regra de L’Hopital repetidas vezes, é necessario algum
cuidado no sentido de averiguar se os quocientes que se vio obtendo continuam a constituir

uma indeterminagao. Um tipo de erro muito comum é mostrado pelo exemplo seguinte:

Lo 3xt—2x— 1 . b6x =2
lim . = lim
=1 X —-— X z—1 2.\? | :-12

A primeira passagem € correta, mas a segunda nio. O quociente (6x-2)/(2x-1) ndo ¢ in-
determinado para x— 1. O limite correto, 4, obtém-se pela substitui¢do de x por | em (6x -
-2)/(2x-1).

ExempLO 6. Algumas vezes o trabalho pode ser encurtado por uma mudanga de variavel.
Por exemplo, podemos aplicar a regra de L'Hopital diretamente para calcular o limite

Iim PR
-0+ ] — e*V*®
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mas podemos evitar a derivagao de raizes quadradas escrevendo ¢ = \/; e observando que

. \f—\- . 4 . 1 1
lim — = |im — = lim = — -
2=0- 1 — e VT japr ]l — e pope —2e° 2

Passamos agora a demonstragao do teorema 7.9.

Demonstragdo. Fazemos uso do teorema de Cauchy (Teorema 4.6 da segio 4.14)
aplicado a0 intervalo fechado em que a € o extremo esquerdo. Visto que as fungdes
f ¢ g podem ndo estar definidas em a, introduzem-se duas novas fungdes que esrejam
ai definidas. Sejam

F(x) = f(x) se x#a, F(la) =0,
G(x) = g(x) se x #a, Gla) = 0.

Ambas F e G sao continuas em a. Com efeito, se a < x < b, ambas as fungoes F e G sao

continuas no intervalo fechado |a, x| ¢ admitem derivada em todos os pontos do intervalo
aberto (a, x). Deste modo o teorema de Cauchy ¢ aplicavel ao intervalo [a, x] € obtemos

[F(x) — F(@)]G'(c) = [G(x) — G(a)]F'(c),
em que ¢ ¢ determinado ponto verificando a < ¢ < x. Visto que F(a) = G(a) = 0, temos
f(x)g'(e) = g(x)f '(c) .

Agora g'(c) # 0 [uma vez que, por hipotese, g” nunca € nula em (a, b)], e também g(x) + 0.
Com efeito, se tivessemos g(x) = 0 teria que ser G(x) = G(a) = 0 e, pelo teorema de Rolle,
existiria um ponto x,, entre a e x, onde G'(x,) = 0, contradizendo a hipotese de que g’ nunca
¢ nula em (@, b). Portanto podemos dividir por g'(c) e g(x) para obtermos

1) _ 1
g(x) g'(e)

Quando x—a, o ponto c—a (visto que a < ¢ < x) ¢ 0 quociente do segundo membro tende
para L [por(7.21)]. Por conseguinte f{x)/g(x) também tende para L e o teorema esta
demonstrado.

7.13. Exercicios

Calcular os limites nos Exercicios 1 a 12.

3+ 2x - 16 x* —4x + 3
L lim—; > - 2. lim,, = .
23 X°—Xx—2 re32X- — 13x + 21
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- E xt — x
3, lim ShX-senx. 8. lim .
z-+0 X s L =X +logx
R =-x)F —x -2 . arcsen2x — 2arcsenx
4. lim . 9. lim e
z-+0 x° z—0
log (cos ax) . xcotgx -1
5. lim 208 (cos ax) : 10. lim ———
2+ l0g (cOs bx) 20 x
X —senx oS xf—n
6. lim —— . 1. lim =———,
20+ (X €N X)*/2 21 X =1
Y /o — . 1 Vx Vx
7 lim Vx—Va+Vvx a 12, lim /,_(aarctg-——barctg—).
" gat V- a? 20+ XV X\ a b
13. Determinar o limite do quociente
(sen 4x)sen 3x)
x sen 2x
. T
quando x — 0 ¢ também quando x — >
14. Para que valores das constantes g e b €
lim (x % sen3x +ax 2 +5) =07
z—0
. . _ 1 * f2dt
15. Determinar as constantes a e b tais que lim, =1
bx — senx Jo\/a + ¢

. . - . n -
16. Um arco circular de raio 1 subtende um angulo de x radianos, 0 < x < — > como se indi-

B

Fig. 7.2. Exercicio 16.

ca na fig. 7.2. O ponto C ¢ a intersegio das duas tangentes em A e B. Seja T(x) a

area do triangulo 4BC e S(x) a area da regido sombreada. Calcular: (a) T(x); (b)
S(x); (c) o limite de T(x)/S(x) quando x — 0+.
7. A corrente I(1) que circula num certo circuito eléctrico num instante ¢ é definida por
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E
I(t) = 7 (1 — e RilLy

com E, R e L numeros positivos. Determine o valor limitede /() quandoR - 0 +.
18. Um peso estd suspenso por uma corda ¢ provoca-se-lhe uma vibragdo mediante uma
forga sinusoidal. O seu deslocamento f{7) num instante ¢ ¢ dado por uma equagdo da

forma

[0 = ﬁ(wn kt —senct),

com A, ¢ e k constantes positivas, sendo ¢ # k. Determinar o valor limite do desloca-
mento quando ¢ — k.

7.14. Os simbolos + o e —oo. Extensido da regra de L’Hopital

A regra de L'Hopital pode generalizar-se de varias maneiras. Em primeiro lugar podera
haver interesse em considerar o valor uo quociente f/x)/g(x). quando x cresce indefinida-
mente. E conveniente definir um simbolo para exprimir duma maneira abreviada o fato

de que estamos a considerar x a crescer indefinidamente. Com esta finalidade, os mate-
maticos usam o simbolo + o, chamado “mais infinito”. Embora ndo se deva atribuir qual-
quer significado ao simbolo + o em si proprio, daremos defini¢des precisas das varias
proposi¢des em que intervenha.

- Uma dessas proposigdes escreve-se como segue:

lim f(x) = A4,

F s - ¢

e lé-se “O limite de f{x), quando x tende para mais infinito, € A”. A ideia que pretendemos
exprimir € que os valores da fung¢ao f(x) podem ser tao proximos do numero real 4 quanto se
queira, para valores de x suficientemente grandes. Para tornar esta afirmagdo matematica-
mente rigorosa devemos explicar o que se entende por “tao proximo quanto se queira’ e *““su-
ficientemente grande”. Antige-se esta formalidade por intermeédio da seguinte definigao:

DerFINICAO. O simbolismo

lim f(x) = A

2=+

significa que para caaa numero € > 0, existe outro numero M > 0 (o qual pode depender de
€) tal que

|f(x) — A| < € sempre que x> M .

Os calculos implicando limites quando x — + ¢ podem reduzir-se a um caso mais simples.
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Basta substituir x por 1/r (isto €, x = 1/1) e observar que 7 — 0 por valores positivos quando
x = +oo, Mais concretamente, introduzimos uma nova fungao F, em que

F(r)zf(;l) se 1#0, (7.25)

¢ muito simplesmente constatamos que as duas proposigoes

lim f(x)= A e ImF(r)= A

T+ t—~0+

significam exatamente a mesma coisa. A demonstragao desta equivaléncia exige unicamente
as definigcoes dos dois simbolos limite e deixa-se como exercicio.

Quando estamos interessados na analise do comportamento de f{(x) para valores negativos
de x de grande valor absoluto, introduzimos o simbolo —c= (“menos infinito”) e escrevemos

Iim f(x) = A4

r

que significa: Para cada ¢ > 0, existe um M > 0 tal que
|f(x) — Al < € sempre que x < —M.

Se F esta defimda por (7.25) e facil provar que as duas proposigoes

lim f(x)= A4 e IimF(r)= A

| f=0—

sao equivalentes.

Em virtude das observagoes feitas, nao ¢ surpreendente encontrar que todas as regras
usuais de calculo com limites (como foram estabelecidas no Teorema 3.1 da se¢io 3.4) tam-
bem sao aplicaveis aos limites em que x — +oo. O mesmo € verdadeiro para a regra de L'HO-
pital a qual pode generalizar-se do modo seguinte:

Teorema 7.10. Sejam [ e g duas fungoes admitindo derivadas [(x) e g'(x) para
todo o x maior que um certo numero fixo M > 0. Admita-se que

lim fix)=0 e lim g(x)=0,

Xt 400 X4 40O

e que g'(x) +# 0 para x > M. Se ['(x)/g'(x) tende para um limite quando x — +<°, entao
f(x)/g(x) também tende para um limite e os dois limites sdo iguais, isto é,

f(x) f(x)

lim —. = L implica lim — = L. (726)
=+ g(,\') T+t a g(\)

Demonstragdo. Sejam F(t)=f(1/t) e G(t)=g(1/t). Entdo f{x)/g(x)= F(t)/G(t) se
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=1/x e t-0+ quando x— + co. Uma vez que F(1)/G(t) toma a forma indeterminada
0/0 quando -0+ analisa-se o quociente das derivadas F{r)/GT1). Pela regra da derivada

da fung¢iio composta, temos
-1 (1 -1 (1
F'I=—’—) € G'(r:—’(—).
(1 :2f(.: 1) 7 &\
Além disso, G'(1) # 0se 0 < 1 < 1/M. Quando x = 1/t e x > M, temos F'(1)/G’(1) =
= f(x)/g'(x), uma vez que o fator comum —1/¢? se simplifica. Deste modo, se f(x)/g(x)— L
quando x —+ +°o, entao F'(1)/G’(1) » L quando ¢ — 0+ e por isso, peloTeorema 7.9, F(1)/G(1)
- L. Uma vez que F(1)/G(1) = f(x)/g(x) esta demonstrada (7.26).

H4 evidentemente um teorema andlogo ao 7.10 quando se considera o limite para
X - —00.

7.15. Limites infinitos

Na seciio -precedente utilizdmos a notagdo x - +co para indicar que x toma valores
positivos arbitrariamente grandes. Podemos também escrever

lim f(x) = 40, (7.27)

x—a

ou ainda

f(x) = 4+ quando x—a, (7.28)

para exprimir que f(x) toma valores tao grandes quanto se queira, quando x se aproxima de
a. O significado rigoroso deste simbolo ¢ dado pela definigao seguinte:

DEFINICAO. O simbolismo em (7.27) ou (7.28) significa que a cada niimero positivo M
(tao grande quanto se queira) corresponde outro nimero positivo d (o qual pode depender de
M) ial que

f(x)>M sempreque 0 < |x—a| <9.
Se fix) > M sempre que 0 < (x — a) < B, escreve-se

lim f(x) = 400,

X—*a-

e afirma-se que f(x) tende para mais infinito quando x tende para a por valores a direita de a.
Se f(x) > M sempre que 0 < a — x < 0§, escreve-se

lim f(x) = 4+ o0,

x—ta—

e diz-se que f(x) tende para mais infinito quando x tende para a por valeres a esquerda de a.
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Os simbolos
lim f(x) = — oo, lim f(x)= -0 e lim f(x)= -
X—-a xX—-a+ X-a—

definem-se de modo semelhante, com a unica diferenga de que substituimos f{x) > M por
JS(x) < —M. Na fig, 7.3 estao representados alguns exemplos.

N\

l_im:f(.t) = — lim f(x) = + = Iin(,r) = + ®

K-+

Fig. 7.3. Limites infinitos

E também conveniente alargar um pouco mais as defini¢des destes simbolos para incluirem
0s casos em que x - + co. Assim, por exemplo, escrevemos

Iim f(x) = 4+

=+

se, para todo o numero positivo M, existe outro numero positivo X tal que f{x) > M sem-
pre que x > X.

O leitor nao tera qualquer dificuldade na formulagdo de definigoes semelhantes para os
simbolos

lim f(x) = 4+, lim f(x) = — 0, e lim f(x) = — 0.

- L=+, L= =00

ExempLOs. No capitulo 6 demonstramos que a fungao logaritmo € crescente e ilimitada

no semi-eixo positivo real OX. Podemos exprimir este fato duma maneira compacta escre-
vendo

lim log x = 4 0. (7.29)

z=+m
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Provamos igualmente no capitulo 6 que log x < 0 quando 0 < x < 1 e que o logaritmo nao
possui limite inferior no intervalo (0, 1). Portanto podemos também escrever lim,_o+ log x =
= —00,

A partir da relagdo que existe entre o logaritmo e a exponencial é facil provar que

lim ¢* = 4o e lim e =0 (ou lim e =0). (7.30)

L=+ J = - £+ 00

Utilizando estes resultados ndo ¢ dificil mostrar que para @ > 0 temos

im v = 400 e lim ~=0.

=+ =4+ X

A ideia é escrever x *= e * 8¢ aplicar (7.30) conjuntamente com (7.29). As formulas em
(7.30) ddo-nos igualmente as relagoes

1/x

lime ™V = 4+ e lime " =0.

I==0-- Pl | B

As demonstragdes destas proposigdes sao um bom exercicio para o leitor verificar se com-
preendeu os simbolos de limites contendo +co.

7.16. O comportamento de log x e €* para grandes valores de x

Os limites infinitos conduzem a novos tipos de formas indeterminadas. Por exemplo, pode-
mos ter um quociente f{x)/g(x) em que ambos f(x)- + oo e g(x)- + o quando x-a (ou
quando x - +w0). Neste caso dizemos que o quociente f(x)/g(x) toma a forma indeterminada

o0
—. Sdo possiveis extensoes da regra de L’Hopital que muitas vezes nos ajudam a determi-

nar o comportamento de um quociente quando este toma a forma indeterminada co/c0. Con-

tudo, nao analisaremos essas extensoes porque muitos dos exemplos que ocorrem na pratica
podem ser tratados pela aplicagao do seguinte teorema que descreve o comportamento do
logaritmo e da exponencial para valores grandes de x.

TeEOREMA 7.11. Sea > 0 e b > 0, tem-se

b
lim (108X)" _ (7.31)
T+ .’C
e
x!‘.‘l
lim X =0. (7.32)
r=+m €

Demonstra¢do. Vamos demonstrar (7.31) e depois utiliza-la para provar (7.32). Uma
demonstragao simples de (7.31) pode ser dada diretamente a partir da definigao do loga-
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ritmo por um integral. Se ¢ >0 e 2 |, temos 1! < -1, Por isso, se x > 1, podemos escre-
ver

0<logx=f lchg l"'ldr=x—l<i.
1 1 J1 c c
Portanto temos
b Je—a
0<(logx) <* paracada ¢ > 0.

x? c®

| - _ _
Se escolhemos ¢ = — a/b, entao xbe—a . x—al2

2

prova (7.31). Para demonstrar (7.32) efetuarmos a mudanga de variavel 1 = ¢'. Entdo
x = log t e por conseguinte xP/e® = (log f)b/f'. Mas ¢ — +°0 quando x — +<°, pelo que (7.32)
¢ consequéncia de (7.31).

o qual tende para 0 quando x— +°°, 0 que

Com uma extensdo natural da notagao o, podemos escrever as proposigoes que acabamos
de demonstrar na forma

(log x)* = o(x*) quando x — + o,
x? = o(e"*) quando x — 4,

Quer isto dizer que por maior que seja b e por pequeno que seja a (desde que ambos positi-
vos), (log x)b tende para infinito mais lentamente que x*. Igualmente, » tende para infinito
mais lentamente que e,

ExempLO 1. No Exemplo 4 da seg¢dio 7.2 mostrou-se que o comportamento de e VX Ix
para x proximo de 0 nao podia ser definido por qualquer numero de aplicagoes da regra de
L'Hopital a forma indeterminada /0. Porém, se escrevemos 7 = I/x, aquele quociente trans-

forma-se em t/e’,0 qual toma a forma indeterminada oo/oo quando ¢ — + 0. OTeorema7.11
diz-nos que

. 4
lm —=20.
t=+4om €

Portanto, eV *Ix =0 quando x — 0+ ou, por outras palavras,e Vs o(x) quando x — 0+.

Além de 0/0 e oo/co existem outras formas indeterminadas. Algumas delas representadas
pelos simbolos 0 . oo, 0% e = sdo apresentadas atraves de exemplos dados a seguir. Em
casos semelhantes a esses, transformagoes algébricas permitem-nos amiudadas vezes reduzir
o problema a uma forma indeterminada do tipo 0/0 ou eo/c<, as quais podem ser levantadas
pela regra de L’Hopital, pela aproximagdo polinomial, ou pelo Teorema 7.11.

EXEMPLO 2. (0. °). Provar que lim__ x"log x = 0 para cada « fixo > 0.

0
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Resolugdo. Escrevendo t = 1/x, vem x° log x = —(log #)/{* e, por (7.31), tende para 0
quando  — +oo,

ExempLo 3. (0°). Mostrar que Iimx_.0+ x =1,
Resolugdo. Visto que x* = ¢*'%8*, pela continuidade da fungo exponencial temos

lim x* = exp (lim x log x) ,
x—=0+ xr—=0-

se o ultimo limite existir. Mas, pelo Exemplo 2, sabemos que x log x — 0 quando x — 0+ e por
1850 x* = €% = 1.

EXEMPLO 4. (o2°). Mostrar que lim__ xlx 1,

+ 00

Resolugdo. Fazer t = 1/x e aplicar o resultado do Exemplo 3. Na Se¢io 7.10
demonstraram-se as igualdades

lim (1 + ax)"/* = ¢ ¢ lim (1 4+ x)"* = ¢". (7.33)

x—0 z—0

Cada uma destas relagdes é uma forma indeterminada do tipo 1°°. Podemos substituir x por
1/x naquelas formulas e obter, respetivamentc,

lim (l + t‘):= e Iim (‘l )u= e,

|
4w T=4wm \ X/

ambas validas qualquer que seja 0 numero real a.

As relagoes (7.33)e as dos Exemplos 2, 3 e 4 sdo todos do tipo f(x)g(x) . Habitualmente estas
resolvem-se escrevendo-as na forma

f(‘v)g(:, = eﬂ"«” ].U‘L.' I{I}’
tratando a seguir o expoente g(x) log f(x) por um dos métodos discutidos antes.

7.17. Exercicios

Calcular os limites dos Exercicios 1 a 25. As letras a e b representam constantes positivas.

—1/z% loe(a + be®)
1. lim — . s, lim 19B@* b€)
=0 ¥ z-+2 Va + bx*
. sen (1/x) |
2.31_12100 arctg (1/x) 5. xET-IJ x‘(cos- -1+ —)
tg 3x
3, lim —2 . tm log [sen x|

eets X .. log |sen2x| "



352 Calculo

7. lim 280 =20 17. lim [x — 1].

sy g —
1

g lim o +D 18. lim (1 — 2%)sen=,
-t ® e 20—

9. lim ,  a>l1. 19. lim x/loz =z
gt D xb z-+0+
. tgx—35 ) '

10. lim ————. 20. lim (cotgx)senz,
r—lz secx + 4 -0+ &

1 1)

11. lim —(— ——). 21. lim (tg x)'82=,
::-*0-‘-'\/_ sen.x X iz 5

12. lim x"¥sen(1/4/%). 22. lim (log'l)x.
Z—+ % X

-0+

13. lim (% — Vxt =x2 + 1),

23. lim x¢/(+log 2),

SR 0+
log x X )] _ N
—_— ] . 4. — y)iBtzz/2)
. [u + °g(l +x A im 2 =x)
. I !
15. lim (log x) log (1 — x). 2. 1i ( _ )
21 roollog(x + VI + 20  logl( + %)
16. Tim xt= 1),
z-.o..

26. Determinar ¢ de modo que

x +c\*
Iim( ) =4,
z—+w \X —C

27. Provar que (1 + x)° = 1 + cx + o(x) quando x — 0. Utilizar esta conclusao para calcu-
lar o limite de

{(x* + x)Y? — x?} quando x -+ + .
28. Para um certo valor de ¢, o limite

lim {(x* + 7x* 4+ 2)° - x}

I—-+ >

¢ finito e nao nulo. Determinar este valor de ¢ e calcular o valor do correspondente
limite.

29. Sejam g(x) = xe* e J(x) = ff g(t) (t + 1/0)dt. Calcular o limite de /(x)/g “(x) quando
X — 400,

30. Sejam g(x) = x° e*e f(x) = fx zr(3:2 + 1)"2dt. Para um certo valor de ¢, o limite de
f'(x)/g’(x) quando x — + oo ¢ ﬁmto e ndo nulo. Determinar ¢ e calcular o valor do limite.

31. Sejafix)=e”"" sex#0e fl0)=0.
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(a) Provar que para todo o m > 0, f{x)/x™ - 0 quando x — 0.

(b) Provar que para x # O a derivada de ordem n de ftem a forma f") (x) =f(x)P(1/x),
em que P(?) € um polindbmio em ¢.

(c) Provar que f( W (0) = 0 para todo n > 1. Isto prova que todo o polinomio de Taylor
gerado por fem 0 é o polindmio nulo.

Uma quantidade de P escudos ¢ depositada num banco que paga um juro de r 7% ao
ano,(r % = 0,06) acumulando-se os juros m vezes por ano (o juro do ano € pago em m
prestagdes iguais cada uma ao fim da m—enésima parte do ano, ¢ de cada vez esse va-
lor do juro foi capitalizado). (a) Provar que o total do capital mais os juros obtido ao
fim de n anos € P(l + r/m)™. Se r e n se mantém fixos, essa quantidade tende para
Pe™ quando m— + . Este fato da origem a definigiio seguinte: Dizemos que uma
certa importincia em dinheiro esta depositada com um juro anual continuo de r 7; se
a quantidade f{t) depois de 1 anos € f(0)e”, em que 1 € qualquer numero real nio nega-
tivo. Calcular aproximadamente o tempo necessirio para que uma certa importancia
em dinheiro duplique o seu valor se, depositado num banco, recebe um juro de 6 ¢/
a0 ano acumulado (b) continuamente; (¢) quatro vezes a0 ano (por trimestre).



8
INTRODUCAO AS EQUACOES DIFERENCIAIS

8.1. Introdugio

Nos varios dominios da Ciéncia apresentam-se uma grande variedade de problemas, nos
quais se deseja determinar algo variavel a partir do seu coeficiente de variagao. Por exemplo,
podemos estar interessados em calcular a posigdo duma particula em movimento, a partir
do conhecimiento da sua velocidade ou da sua aceleragio. Ou uma substincia radioativa
pode estar a desintegrar-se segundo um coeficiente de variagao conhecido e estarmos interes-
sados em determinar a quantidade de substancia ainda existente depois de decorrido um certo
intervalo de tempo. Em exemplos como estes trata-se de determinar uma fungdo desconhe-
cida, a partir do conhecimento de certos dados expressos por intermédio duma equagio
contendo pelo menos uma das derivadas da fungao desconhecida. Estas equagoes chamam-se
equagoes diferenciais e o seu estudo constitui um dos ramos da Matematica com maior nu-
mero de aplicagoes. .

As equagoes diferenciais sao classificadas sob dois aspectos principais: ordindrias e de
derivadas parciais, conforme a incognita seja uma fungao de anenas uma variavel ou de duas
ou mais variaveis. Um exemplo simples duma equagio diferencial ordindria ¢ a relagio

f'(x) = f(x) (8.1)

que ¢ satisfeita, em particular, pela fungdo exponencial f{x) = €*. Veremos depois que toda a
solugdo de (8.1) ha-de ser da forma f{x) = Ce", com C uma constante arbitraria.

Por outro lado uma equagao tal como

Y(x.y) , (x5 _,

ox*® oy*
€ um exemplo duma equagido de derivadas parciais. Esta, chamada equagao de Laplace,
aparece na teoria da eletricidade € magnetismo, mecinica dos fluidos € noutros assuntos.
Admite diferentes tipos de solugdes, entre as quais estdo f{x, y) = x + 2y, f(x, }) = € cos ¥
e f(x, y) = log(x? + y?).
355
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O estudo das equagoes diferenciais constitui um capitulo da Matematica que, talvez mais
do que qualquer outro, foi diretamente influenciado pela Mecanica, Astronomia ¢ Fisica
Matematica. A sua historia comega no século xvii quando Newton, Leibniz e Bernoulli resol-
veram algumas equagoes diferenciais simples, postas por certos problemas de Geometria e
Mecanica. Estas primitivas descobertas, iniciadas cerca de 1690, conduziram gradualmente
ao desenvolvimento do agora classico “saco de truques” para resolver determinados tipos de
equagoes diferenciais. Embora estes “truques™ especiais sejam aplicaveis em relativamente
poucos casos permitem-nos contudo resolver muitas equagoes diferenciais que aparecem na
Mecanica e Geometria, de maneira que o seu estudo tem algum interesse pratico. Alguns des-
ses metodos especiais bem como alguns dos problemas que eles permitem resolver serao apre-
sentados no final deste capitulo.

A experiéncia mostrou que ¢ dificil obter teorias matematicas muito gerais acerca das
solugoes das equagles diferenciais, excepto para uns poucos tipos. Entre estes figuram as
chamadas equagdes diferenciais lineares que aparecem em grande variedade de problemas
cientificos. Os tipos mais simples de equagoes diferenciais lineares e algumas das suas apli-
cagoes serdo estudados neste capitulo de introdugao. Um estudo mais completo das equagoes
lineares sera apresentado no Volume II.

8.2. Terminologia e notagao

Quando se trabalha com uma equagao diferencial tal como (8.1) é usual escrever y em vez
de f{x) e y" em vez de /’(x), sendo as derivadas de ordem superior representadas sucessiva-
mente por p”, ", etc. E evidente que também podem ser usadas outras letras, como por
exemplo «, v, =, ete., em vez de . Ordem duma equagiio diferencial é a ordem mais elevada
das derivadas que nela figuram. Assim (8.1) é uma equagdo diferencial de primeira ordem
que pode escrever-se y* = y. A equagao diferencial y’ = x’y + sen(x y”) é de segunda ordem.

Neste capitulo iniciaremos o nosso escudo com equagoes diferenciais de primeira ordem
que possam ser resolvidas relativamente a y’ e escritas na forma

Vv = f(x,y), (8.2)
onde a expressao f{(x, y) no segundo membro pode assumir diversas formas particulares.

Uma fungao derivavel y = ¥(x) dir-se-a uma solugdo de (8.2) num intervalo /, se a fungio Ye
a sua derivada Y~ satisfazem a equagao

Y'(x) = flx, Y(x)]

para todo o x em /. O caso mais simples ocorre quando f(x, y) € independente de y. Neste
caso (8.2) vem

_1" = Q(\) , (83)

por exemplo, em que Q se supde ser uma fungdo dada definida em algum intervalo /.
Resolver a equagio diferencial (8.3) significa encontrar uma primitiva de Q. O segundo
teorema fundamental do calculo diz-nos como obté-a quando Q é continua num intervalo
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aberto /. Muito simplesmente integra-se Q e adiciona-se-lhe uma constante arbitraria. Deste
modo toda a solugao de (8.3) esta contida na formula

y= J‘ Q(x)dx + C, (8.4)

em que C & uma constante qualquer (geralmente chamada constante arbitraria de integragao).
A equagao diferencial (8.3) tem, portanto, infinitas solugdes, uma para cada valor de C.

Se ndo for possivel calcular o integral em (8.4) por meio de fungoes elementares, tais como
polinomios, fungoes racionais, fungdes trigonométricas e trigonometricas inversas, logarit-
mos e exponenciais, considera-se ainda a equagao diferencial como tendo sido resolvida se a
solugdo pode ser expressa mediante integrais de fungoes conhecidas. Na pratica existem va-
rios métodos para obter valores aproximados de integrais os quais nos conduem a uma
informacao util acerca da solugdo. Maquinas de calculo automatico foram concebidas tendo
em mente a resolugao deste problema.

EXEMPLO. Movimento retilineo determinado a partir da velocidade. Suponhamos que
uma particula se move ao longo duma reta, de maneira que a sua velocidade no instante /
seja 2 sen 1. Determinar a sua posi¢ao nesse instante.

Resolugao. Se Y(1) representa a posi¢ao no instante f, medida a partir da posigao inicial,
entdo a derivada Y’(7) representa a velocidade nesse instante . Temos, pois, segundo o
enunciado

Y'(t) = 2sent.
Integrando obtemos
Y(1)=2|sentdt + C = —2cost + C.

Isto ¢ tudo quanto podemos deduzir acerca de Y(#), unicamente a partir do conhecimento da
velocidade; algo mais necessita ser conhecido para podermos dizer qual a posigao da parti-
cula. Podemos determinar C se conhecermos o valor de ¥ num certo instante. Por exemplo,
se Y(0) =0, entao C = 2 ¢ a lei do movimento € Y(1) = 2 — 2 cos . Mas se for Y(0) = 2,
entao C = 4 ¢ a mesma lei de movimento € Y(1) = 4-2 cos 1.

Em certos aspectos o exemplo que acabamos de considerar € tipico do que acontece em
geral. Em determinada fase do processo de resolu¢io duma equaglo diferencial de primeira
ordem, ¢ necessaria uma integragao para fazer desparecer a derivada y° e nesta fase aparece-
ra uma constante arbitraria C. O modo segundo o qual a constante arbitraria C entra na
solugdo dependera da natureza da equagdo diferencial dada. Pode aparecer como uma cons-
tante aditiva, como € o caso de (8.4), mas é mais favoravel que aparega sob qualquer outra
forma. Por exemplo, quando resolvemos a equagio y = y na se¢lio 8.3, encontramos que

toda a solugdo tem a forma y = Ce*.
Em muitos problemas ¢ necessario selecionar do conjunto de todas as solugdes aquela
que toma um valor previamente dado num certo ponto. Esse valor previamente dado
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chama-se uma condicdo inicial e o problema da determinagdo duma tal solugio ¢ chama-
do um problema de valores iniciais. Esta terminologia € oriunda da mecanica onde, como
no exemplo atras exposto, o valor previamente dado define a posigdo da particula num
determinado instante inicial.

Vamos comegar 0 nosso estudo das equagoes diferenciais com um caso particular impor-

tante.

8.3. Equacdo diferencial de primeira ordem para a fun¢ao exponencial

A fungao exponencial é igual a sua propria derivada, e 0 mesmo € verdadeiro se multipli-
carmos a exponencial por uma constante. E facil provar que estas sdo as unicas fungdes
que satisfazem a esta condigdo em todo o eixo real.

TEOREMA 8.1. Se C é um numero real dado, existe uma e uma so fungdo f que verifica a
equagdo diferencial

S ) =1(x)

para todo o real x e que verifica também a condigdo inicial f(0)= C. Esta fun¢do é dada pela
Sormula

f(x) = Ce*.

Demonstragdo. E facil verificar que a fungdo f(x) = Ce* satisfaz quer a equagio diferen-
cial, quer a condigdo inicial dada. Interessa agora demonstrar que esta é a unica solugao.
Seja y = g(x) qualquer solugdo deste problema de valores inciais

g'(x) = g(x) paratodoox, g(0)=C.
Pretendemos demonstrar que g(x) = Ce*, ou que g(x)¢ * = C. Consideremos a fungio

h(x) = g(x)e™™ e provemos que a sua derivada é sempre zero. A derivada de h é dada por
h(x)=g'(x)e* — g(x)e™ = e *[g'(x) — g(x)] = 0.

Logo, pelo teorema da derivada nula, 4 € constante. Mas g(0) = C, de maneira que h(0) =

= g(0)e® = C. Por conseguinte temos k(x) = C para todo o x,0 que significa que g(x) = C¢'
como se pretendia demonstrar.

O Teorema 8.1 é um exemplo dum teorema de existéncia e unicidade de solu¢do. Diz-nos
que o problema de valores iniciais dado tem uma solugio (existéncia) ¢ uma so (unicidade).
O objectivo de grande parte da investiga¢cdo na teoria das equagdes diferenciais consiste
em descobrir teoremas de existéncia e unicidade para amplas classes de equagdes.

Estudamos a seguir um tipo importante de equagdes diferenciais que inclui ambas as
equacgdes diferenciais y '= Q(x) e y'= y como casos particulares.’
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8.4. Equagoes diferenciais lineares de primeira ordem
Uma equagao diferencial da forma
V' + P(x)y = 0(x), (8.5)

onde P e Q sao fungdes dadas, chama-se equagao diferencial linear de primeira ordem. Os
termos que contém a funglio desconhecida y e a sua derivada y “aparecem como uma combi-
nagiio linear de y e y". As fungdes P ¢ Q supdem-se continuas em certo intervalo aberto /.
Procuramos obter todas as solugdes y definidas em /.

Em primeiro lugar consideremos o caso particular em que o segundo membro, Q(x), €
idénticamente nulo. A equagao

¥+ P(x)y =0 (R.6)

diz-se¢ homogeénea ou reduzida correspondente a (8.5). Vamos ver como resolver a
equagio homogénea, para em seguida utilizarmos o resultado na resolugdo da equagio nio
homogénea (8.5).

Se y € ndao nula em /, a equagdo (8.6) € equivalente a equagao

N

J}T = —P(x). (8.7)

isto €, toda a fungio y nio nula que satisfaga a (8.6) também satisfaz (8.7) e reciprocamente.
Admitamos agora que y € uma fungido positiva satisfazendo a (8.7). Uma vez que o quo-
ciente y/y ¢ a derivada de log y, a equagio (8.7) vem Dlog y= Fx), donde resulta
log y = - [ Plx)dx + C, pelo que temos

y=e4%,  com A(x)=|Px)dx—C. (8.8)
Quer dizer, se existir uma solugiio positiva de (8.6), terd necessariamente a forma (8.8) para

algim C. E agora facil verificar que toda a fungiio (8.8) ¢ uma solugio da equagio homo-
génea (8.6). Com efeito temos

y = —e4¥4(x) = —P(x)e 4 = —P(x)y .

Deste modo encontramos todas as solugoes positivas de (8.6). A partir delas ¢ facil determi-
nar todas as restantes solugoes. Estabelecemos o resultado como um teorema de existéncia e
unicidade.

TEOREMA 8.2. Se P é continua num intervalo aberto I, a um ponto qualquer em I e b um
mimero real arbitrdrio, enldo existe uma e uma so fun¢ao y = f(x) que satisfaz ao problema

de valores inciais

V' 4 P(x)y = 0, com f(a)=b, (8.9)
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no intervalo I. Esta fun¢do é definida pela formula
F(x) = b | onde A(x) = J: P(1) dt . (8.10)

Demonstragao. Consideremos f definida por (8.10). Entdao 4 (a) = 0,de modo que f(a) =
= be’ = b. A derivagao mostra que f satisfaz a equagao diferencial (8.9), pelo que /'€ uma
solugao do problema de valores iniciais. Temos agora que provar que essa solugao € unica.

Seja g uma solugao qualquer. Pretendemos mostrar que g(x) = be 1™ ou que g(x)é‘1 ®
= b, Portanto € natural introduzir A(x) = g(x)eA ) A derivada de h vem dada por

h'(x) = g'(x)e!™ + g(x)e!™PA'(x) = e*"“[g'(x) + P(x)g(x)]. (8.11)

Agora,uma vez que g satisfaz a equacgao diferencial em (8.9), temos g'(x) + P(x)g(x) = 0em
todo o /, de modo que /#(x) = 0 para todo o x em /. Isto significa que & € constante em /. Por

esse motivo temos A(x) = h(a) = g(a)e””’” = g(a) = b. Por outras palavras, g(x)eA(x) = b, de

maneira que g(x) = be ™, o que mostra que g = /., estando completada a demonstragao do
teorema.

A ultima parte da demonstragao anterior sugere um meétodo de resolugdo da equagao dife-
rencial ndo homogénea (8.5). Suponhamos que g € qualquer fungdo verificando (8.5) e

seja h(x) = g(x)e'4 ) onde, como anteriormente, 4 (x) = ‘I‘z P(t)dt. A equagao (8.11) é ainda
valida, mas, visto que g satisfaz a (8.5), a formula para 4 °(x) da-nos

h'(x) = e1'™Q(x) .
Invocando o segundo teorema fundamental podemos escrever

h(x) = h(a) + | e'"Q(1) dr .

Por isso, visto ser h(a) = g(a), toda a solugao g de (8.5) tem a forma
g(\) —_ e—.-ﬂxlh("r) — g('a)e—;“J‘.] + e—;“.r’ "” Q{:f)tf"“”(” ) (8]2)

Reciprocamente, pela derivagao direta de (8.12), é facil verificar que cada uma dessas

fungoes g € solugao de (8.5), pelo que encontramos fodas as solugdes. Estabelecemos assim o
resultado seguinte:

TEOREMA 8.3. Se P e Q sao continuas num intervalo aberto I, a um ponto qualguer de I e
b um numero real arbitrdrio, entdo existe uma e uma so fungdo y = f(x) que satisfaz ao
problema de valores iniciais

V' + P(x)y = Q(x), com fla)="b,
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no intervalo I. Esta fungao é definida pela formula

f(x) = be 4@ 4 g2 .',. O(net' dt

onde A(x) = J.: P(t)dt.

Até agora a palavra “intervalo” significava um intervalo limitado da forma (a, b), |a, b,
la, b) ou (a, b], com a < b. E conveniente considerar também intervalos ilimitados. Sao repre-
sentados pelos simbolos (a, +°), (—o9, a), |a, +c°) e (—oo, a] e definem-se do modo seguinte:

(@, +©) = {x| x> a}, (—o,a) = {x|x <a},
[a, +0) ={x|x2a}, (—x,a]l={x|x<La}.

Além disso é conveniente referir o conjunto de todos os nimeros reais como o intervalo (—co,
+0), Assim, quando discutimos uma equagao diferencial ou a sua solugao num intervalo I,
subentende-se que / pode ser um dos nove tipos que acabamos de referir.

ExempLO. Determinar todos as solugoes da equacao diferencial de primeira ordem xy” +
+(1=x)y= ¢ no intervalo (0, +2).

Resolugdo. Primeiramente da-se a equagdo a forma )’ + P(x)y = Q(x), por divisdo de
ambos os membros por x. Obtemos entao

(1
y +(x—l)}

pelo que P(x) = 1/x — 1 e Q(x) = ezx/x. Visto que P e Q sao continuas no intervalo (0, + <o),
existe uma unica solugao y = f{x) verificando qualquer condigao inicial dada da forma
f(a) = b. Devemos exprimir todas as solugoes em fungao do valor inicial no ponto a = 1. Por
outras palavras, dado qualquer numero real b, determinaremos todas as solugdes para as
quais f(1) = b.

Em primeiro lugar calculamos

I

9
P
X

A(x) =J:P(l) di =J.r(l‘l — 1) dt =logx —(x —1).

Daqui resulta e~4(*) = ex-1-logx = ¢x-1/x ¢ 4"/ = t¢!~', de maneira que o Teorema 8.3
diz-nos que a solugio ¢ dada pela formula

f(x)=b"
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r—1 o r—1 2x r+l
¢ PP et e
= b +;(e e)_bx+x X
Podemos também escrever f(x) na forma
. e2: + Ce.:
f(x) - X »
em que C = be~! — e. Obtivemos pois todas as solugdes no intervalo (0, + ©©).

Pode ser de interesse estudar o comportamento das solugoes quando x — 0. Se aproxima-
mos a exponencial pelo seu polinomio de Taylor linear, encontramos =1+2x+o(x)e
e* = 1 + x + o(x) quando x — 0, pelo que podemos escrever

(14+O0+Q+Ox+ox)_ 1+C
X X

f(x) = + 2+ C)+o(l).

Assim unicamente a solugio com C= -1 tende para um limite finito quando x -0, limite
esse que vale 1.

8.5. Exercicios
Em cada um dos Exercicios | a 5 resolver o problema de valores iniciais no intervalo
indicado.

.y =3y =e* no(— =, + =), comy = 0 quando x = 0,

2. xy' =2y =x°n0(0, +x),comy =1 quando x = 1.

3.y + ytanx =sen2x no(—4n }=), comy =2 quando x = 0.

4.y + xy =x* no(— =, + =), comy =0 quando x =0.

5. j—: + x =¢*! no(— =, +x), comx = | quando r = 0.

6. Determinar todas as solugoes de y“ sen x + y cos x = 1 no intervalo (0, n). Provar que
exatamente uma destas solugoes tem um limite finito quando x — 0, e outra tem um
limite finito quando x — ~. .

7. Determinar todas as solugdes de x(x + 1)y'+ y= x(x + 1)*e¢™ no intervalo (=1, 0).
Provar que todas as solugoes tendem para 0 quando x — —1, mas que apenas uma delas
tem um limite finito quando x — 0.

8. Determinar todas as solugoes de y* + y cotg x = 2 cos x no intervalo (0, n). Provar que
exatamente uma destas solugoes o € também no intervalo (—oo, +0),

9. Determinar todas as solugoes de (x — 2) (x — 3)y" + 2y = (x — 1)}x — 2) em cada um dos
seguintes intervalos: (a) (—oo, 2); (b) (2, 3); (¢) (3, +°°). Provar que todas as solugoes ten-
dem para um limite finito quando x — 2, mas que nenhuma admite limite finito quando
x- 3.

10. Seja s(x) = (sen x)/x se x # 0 e s(0) = 1. Seja ainda T(x) = f(‘) s(1)dt. Provar que a

funcdo f(x) = xT(x) satisfaz a equagdo diferencial xy’ — y = x sen x no intervalo (—eo,
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+o0) e determinar todas as solugdes neste intervalo. Provar que a equagao diferencial
nao tem solucao satisfazendo a condigao inicial f{0) = 1 e explicar o motivo porque tal
nao contradiz o teorema 8.3.

Provar que existe exatamente uma fungdo f, continua no semieixo real positivo, tal que

1 (=
f@ =1+~ | s
R §

para todo o x > 0 e determinar esta fungao.
A fungdo f definida pela equagao

. 2 7 C1 .I !
/{'\‘) - ‘\-()(l—'-f M2 - xe_.r jn! 1—2‘,:’.2 d’
v 1

para x > 0 goza das propriedades (i) € continua no semieixo real positivo e (ii) verifica a
equagao

f(x) =1 —x ': f(0) di

para todo o x > 0. Determinar todas as fungoes com estas duas propriedades.

A equagdo de Bernoulli. A equagao diferencial da forma y* + P(x)y = Q(x)), em que
n & diferente de O e 1, chama-se a equagao de Bernoulli. E uma equagio nio linear devi-

do a presenga de y". O exercicio que se segue mostra que tal equagdo pode ser sempre
transformada numa equagao linear de primeira ordem para uma nova fungao desconhe-

cidav, comt = yk, k=1-—n.

Seja k uma constante ndo nula. Suponhamos que P e @ sdo continuas num intervalo /.
Se a €1 e b é qualquer nimero real, seja v = g(x) a unica solugdo de v+ kP(x)r=
=kQx)em I, com g(a)=b. Se n# | ¢ k= 1-n, provar que uma fungido y = f{x), que
nio ¢ identicamente nula em /, ¢ uma soluciio de

y + P(x)y=Q(x)y" em I,com f{a)* = b

se e somente se a poténcia da ordem k de f¢é igual a g em /.

Em cada um dos Exercicios 14 ¢ 17, resolver o problema de valores iniciais no interva-
lo especificado.

Yy — 4y = 2¢*y'2em(—w©, + =), comy = 2quando x =0,

Vo =y == +x + l)em(—x, +x),com p= | quando x = 0.

x}r' — 2}' = 4_\’3)'1'r2em( -0, =+ o0 ), Com'l = Oquando x =1,
xy" + y = y*x*log xem(0, + =), comy = 3 quando x = I.
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18. 2xyy’+ (1 + xpp*=¢€* em (0, + ), com (a) y= \/; quando x=1; (b) y= -\/; quando,
x = |; (c) um limite finito quando x - 0.

19. Uma equagao da forma y’ + P(x)y + Q(x)y* = R(x) chama-se a equagdo de Riccati.
(Ndo se conhece qualquer método de resolugdo da equagao geral de Riccati). Provar que
se u ¢ uma solugdo conhecida desta equagao, entao existem outras solugoes da forma y
= u + 1/v, em que v verifica a equagao diferencial linear de primeira ordem.

20 A equacgao de Riccati y'+ p + p? = 2 tem duas solugoes constantes. Partir de cada uma
delas e usar o Exercicio 19 para encontrar outras solugoes como segue: Se —2 < b < 1,
determinar uma solugdo em (—oo, +°) para o qual y = b quando x = 0.
(b) Se b > 1 ou b < —2, determinar uma solugéo no intervalo (—eo, +0) para a qual
v = b quando x = 0.

8.6. Alguns problemas fisicos conduzindo a resolugdao de equagoes diferenciais lineares de
primeira ordem

Nesta se¢do vamos analisar alguns problemas fisicos que podem ser formulados matema-
ticamente por intermédio de equagoes diferenciais. Em cada exemplo, a equagao diferencial
representa uma esquematizagao idealizada do problema fisico e chama-se um modelo mate-
mdtico desse problema. A equagao diferencial aparece como a tradugao de certa lei fisica, tal
como a segunda lei de Newton do movimento, a lei de “conservagao”, etc. O nosso proposito
aqui ¢ ndo a justificagdo da escolha do modelo matematico, mas antes a dedugao de con-
sequéncias logicas a partir dele. Cada modelo € unicamente uma aproximagao da realidade e
a sua justificagdo propriamente dita pertence a ciéncia da qual ele resulta. Se a intuigao ou
evidéncia experimental concordam com os resultados deduzidos matematicamente, entao
acreditamos que o modelo nos sera util. Se assim nao for, tentaremos encontrar um outro
modelo que seja mais adequado.

EXEMPLO 1. Desintegragdo radioactiva. Embora varios elementos radioactivos mostrem
diferencas nitidas nas respectivas velocidades de desintegragao todas eles parecem possuir
esta propriedade comum — o coeficiente de desintegragao para uma dada substancia €, em
qualquer instante, proporcional a quantidade de substancia existente nesse instante. Se repre-
sentarmos por y = f(1) o total de substancia existente em ¢, a derivada y* = f (1) representa o
coeficiente de variagdao de y no instante 7 e a lei de desintegragao exprime-se por

Vo= —ky,

onde k ¢ uma constante positiva (chamada constante de desintegragao) cujo valor depende
do elemento particular que se esta desintegrando. O sinal menos aparece porque y decresce
quando ¢ aumenta e por isso y’ é sempre negativo. A equagao diferencial y"= —ky € o modelo
matematico usado para os problemas relativos a desintegragao radioactiva. Cada solugao
y = f{1) desta equagao diferencial ¢ da forma

£(1) = f(0)e . (8.13)

Portanto, para determinar o total de substdncia presente num instante f, necessitamos saber o
valor inicial f{0) ¢ o valor da constante de desintegragao k.



il

Introducdo as equacoes diferenciais 365

E interessante saber qual a informagao que pode ser obtida de (8.3), sem conhecer o valor
exato de f(0) ou de k. Em primeiro lugar observamos que néo existe qualquer valor finito

de ¢ para o qual f(?) seja nulo, uma vez que a exponencial ¢ ¥ nunca se anula. Portanto ndo

tem significado falar de “tempo total de vida™ duma substancia radioativa. Contudo, €
possivel determinar o tempo necessario para que qualquer fraggo da amostra do elemento
se desintegre. A fragdo 1/2 ¢ habitualmente escolhida por conveniéncia e o tempo 7 para o

qual f{T)/0) = —;— chama-se vida média da substancia. Esta pode ser calculada pela resolu-

. : A 1 :
¢ao relativamente a 7" da equagao e KT - 5 Tomando logaritmos vem —K7 = —log 2 ou
I' = (log 2)/k, equagao que relaciona o periodo de vida média com a constante de desintegra-

¢ao. Uma vez que se tem

fltt+T) _f(o)é’fk“'ﬂ _ =kT

1
J(1) f(0)e™* 2

J

0)

BO) fommmm o

0 T 2T

Fig. 8.1. Desintegragdo radioativa com vida média 7.
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V((D)] e

e —

T

vemos que o periodo de vida média € o mesmo para gualquer amostra duma mesma
substancia. A fig. 8.1. da uma ideia da forma geral da curva de desintegrag¢do radioativa.

EXEMPLO 2.Corpo em queda num meio resistente. Um corpo de massa m em repouso ¢
langado de grande altura na atmosfera terrestre. Admitamos que cai segundo a vertical e que
as forgas unicas actuando sobre ele sdo a for¢a da gravidade terrestre (mg, com g a

APQSTOL — 13
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aceleracdo da gravidade, suposta constante) e uma forga resistente (devida a resisténcia
do ar) que ¢ proporcional a sua velocidade. Pede-se para discutir 0 movimento.

Seja s = f{(1) a distancia percorrida pelo corpo em queda ao fimdotemporev=s"=f{1)a
sua velocidade. A afirmagdo de que inicialmente esta em repouso significa que f(0) = 0.

Existem duas forgas a atuar sobre o corpo, uma dirigida para baixo (o0 seu peso) e outra
dirigida para cima, —ku, (devida a resisténcia do ar) sendo k uma constante positiva. A
segunda lei de Newton afirma que a resultante das forgas atuando sobre o corpo em
qualquer instante ¢ igual ao produto da sua massa m pela respectiva aceleragdo. Se designar-
mos a aceleragao no instante ¢ por @, entdo @ = " = 5" ¢ a lei de Newton conduz-nos a
equagao

ma = mg — kv.

Esta pode ser considerada uma equagao diferencial de segunda ordem para o deslocamento s
ou uma equagao diferencial de primeira ordem para a velocidade v. Como equagao de
primeira ordem em ¢ ¢ linear ¢ pode escrever-se na forma

k
v+ —v=¢g.

n

Esta equagao ¢ o modelo matematico do problema. Visto que v = 0 quando ¢ = 0, a Unica
solugao da equagao diferencial ¢ dada pela formula

"t

U= e—?\‘f,- mJ geku)'m du = ’_’::g (] — e—kix'm) . (8.14)
0

Note-se que v — mg/k quando ¢ — +9o, Se derivamos (8.14), encontramos que a aceleragao
em cada instante € @ = geqk” ™ Observe-se ainda que @ - 0 quando ¢ — +co. Interpretado
fisicamente, significa isto que a resisténcia do ar tende a equilibrar a forga da gravidade.

Visto que ¢ = s°, a equagao (8.14) & ela propria uma equacao diferencial para o
deslocamento s, e pode ser integrada diretamente para dar

mg gl"- —ki/m
¢

§ = — |

= +k* + C.

Por ser s = 0 quando t = 0, vem C= —gm?¥/k*? ¢ a equagio do movimento é

mg am® ..
4 = (e
P

S =

- 1).
Se a velocidade inicial € ¢, quando 7 = 0, a formula (8.14) deve ser substituida por

mg ot/ m ~kt]m
!.=__kﬁ“ — Uy 4 pgHUm
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E interessante a conclusio de que para toda a velocidade inicial (positiva, negativa ou nula) a
velocidade limite, quando ¢ cresce indefinidamente, € mg/k, valor este independente de ¢,. O
leitor deveri tentar convencer-se a si proprio, por argumentos fisicos, que isto parece razodvel,

ExempLo 3. Um problema relativo a arrefecimento. O coeficiente segundo o qual um
corpo varia de temperatura € proporcional a diferenga entre a sua temperatura ¢ a do meio
que o circunda. (Esta € a chamada lei de Newton do arrefecimento). Se y = f(1) é a
temperatura (desconhecida) do corpo no instante e se M(7) representa a temperatura (conhe-
cida) do meio ambiente, a lei de Newton conduz-nos a equagao diferencial

Vo= —k[y— M(1)] ou y +ky=kM({), (8.15)

em que k ¢ uma constante positiva. Esta equacao diferencial linear de primeira ordem € o
modelo matematico que usamos para os problemas de arrefecimento. A tunica solugdo da
equagdo satisfazendo a condig¢do inicial f{a) = b é dada pela formula

f(1) = be™™" + e_""f: kM(u)e*™ du . (8.16)

Consideremos agora um caso particular no qual um corpo arrefece desde 200° até 100°
em 40 minutos quando imerso num meio cuja temperatura se supde constante, digamos M(1) =
= 10°. Se medimos t em minutos e f{¢) em graus, temos f(0)= 200 e (8.16) da-nos

“f
f(1) = 200e™*" + l()ke_“JO " du
= 2007 4 10(1 — ¢ ") = 10 + 190¢7*", (8.17)

Podemos calcular k a partir do conhecimento de que f(40) = 100. Fazendo ¢ = 40 em (8.17)

1
encontramos 90 = l90e"40k. de maneira que —40k = log(90/190), k = 20 (log 19 — log 9).

Seguidamente, calculemos o tempo necessario para que este mesmo corpo arrefega de

200° até 100°, se a temperatura do meio ambiente se mantem em 5°. A equagdo (8.16) ¢
valida com a mesma constante k, mas com M(u)= 5. Em vez de (8.17) obtemos

f(r) =35+ 195¢*,

Para determinar o tempo ¢ par o qual f{t) = 100, obtemos 95 = 195¢ X , de maneira que
—kt = log(95/195) = log (19/39) e por conseguinte

|0g 39_—_ lng_l?

1
t =—(log39 — log 19) = 40 .
ko8 g log 19 — log 9

Duma tabela de logaritmos naturais, com 4 casas decimais, tiramos log 39 = 3,6636,
log 19 = 2,9444 ¢ log 9 = 2,1972, o que da aproximadamente ¢ = 40(0,719)/(0,747) = 38,5
minutos.
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A equagao diferencial (8.15) diz-nos que o coeficiente de arrefecimento diminui
consideravelmente quando a temperatura do corpo comega a aproximar-s¢ da temperatura
do meio em que se encontra. Para pdr isto em evidéncia, determinemos o tempo exigido para
arrefecer a mesmo corpo de 100° até 10° com a temperatura do meio igual a 5°. O calculo
conduz a log(5/95) = —kt ou

log 19 _40(2,944)
log 19 — log 9 0,747

quer dizer para a temperatura baixar de 100° até 10° ¢ necessario quatro vezes mais de
tempo do que para passar de 200 a 100°.

= 40 = 158 minutos.

<3
oa
|

EXEMPLO 4. Um problema de dilui¢ao. Um deposito contém 100 litros de salmoura cuja
concentragdo € de 2,5 gr de sal por litro. Uma salmoura contendo 2 grs de sal por litro ¢
langada no tanque a razio de S litros por minuto e a mistura (tornada uniforme por agita¢ao)
corre do tanque na mesma propor¢ido. Determinar o total de sal existente no tanque em cada
instante.

Seja y = f{t) o nimero de gramas de sal existente no tanque ¢ minutos depois de ter
comecado a mistura. Sao dois os fatores que obrigam y a variar, a salmoura que ¢ langada
no tanque a qual fornece sal a razao de 10 grs por minuto e a mistura que sai a qual retira do
tanque sal a razao de 5(y/100) gramas por minuto. (A fragio y/100 representa a concen-
tragao no instante r.) Daqui resulta que a equagao diferencial ¢

Y=10—-35yr ou y +35y=10.

Esta equagao linear ¢ o modelo matematico para o nosso problema. Visto que y = 250
quando ¢ = 0, a unica solugao ¢ dada pela formula

. ]
y =250e""% 4 ¢ | 10¢"* du = 200 + 50¢"*°. (8.18)

Esta equagao mostra que _v'> 200 para todo o e que y — 200 quando ¢ cresce indefinida-
mente. Quer dizer que o minimo de sal contido no tanque ¢ 200 grs. (Isto também podia ter
sido concluido do enunciado do problema). Na equagdo (8.18) podemos tirar o valor de ¢

s
y — 200.)'

= 201log

Tal permite-nos encontrar o instante em que o sal contido no tanque assuma determinado
valor y, desde que 200 <y < 250.

EXEMPLO 5. Circuitos eletricos. A fig. 8.2(a), pagina 370, mostra um circuito elétrico
que tem uma forga eletromotriz, uma resisténcia, € uma auto-indugdo ligadas em série. A forga
eletromotriz origina uma corrente elétrica no circuito. O leitor ndo deve preocupar-se se ndo
esta familiarizado com os circuitos elétricos. Para os nossos propositos, tudo o que é
necessario saber-se acerca dos circuitos elétricos € que a tensdo, representada por V1)
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¢ a intensidade da corrente, designada por /(¢), sdo ambas fungdes do tempo ¢ relacionadas
por uma equagio diferecial da forma

LI'(t) + RI(t) = V(1), (8.19)

com L ¢ R constantes positivas, designadas respetivamente por indutancia ¢ resisténcia. A
equagdo diferencial € a formulagio matematica duma lei conhecida por lei das tensoes de
Kirchhoff ¢ serve como modelo matematico para o circuito.

Aos leitores ndo familiarizados com circuitos elétricos pode ser comodo imaginar a
corrente como andloga a dgua que circula num tubo. A forga eletromotriz (geralmente uma
bateria ou um gerador) € analoga a uma bomba que obrigue a agua a correr no tubo; ¢ a
indutdncia é uma influéncia estabilizadora que tende a opor-se a variagoes bruscas na intensi-
dade da corrente, devidas a variagdes subitas de tensdo.

O tipo corrente de pergunta relativa a tal circuito € esta: Se se aplica ao circuito deter-
minada tensdo M ¢), qual € a intensidade da corrente resultante? Uma vez que estamos
perante uma equacdo diferencial linear de primeira ordem, a solugdo € uma questdo de
rotina. Se /(0) representa a intensidade da corrente no instante inicial # =0, a equagido
admite a solugdo

Uy
I(1) = I(0)e " 4 ¢~ 11 L(Ll) e™ 1k dx
.rD

Um caso particular importante ocorre quando a tensdo aplicada é constante, por
exemplo Wt)= E, para todo o t. Neste caso a integragdo € facil de efetuar e obtemos a
formula

i ._E E - Rt/ L,
1(:)_R+(|1(0)—§‘e 0L

Isto mostra que a natureza da solugao depende da relagdo entre a intensidade da corrente
inicial /(0) e o quociente E/R. Se /(0) = E/R, o termo exponencial nio aparece ¢ a intensidade
da corrente € constante, /(1) = E/R. Se I(0) > E/R, o coeficiente do termo exponencial € posi-
tivo ¢ a intensidade decresce até ao valor limite £/R quando ¢ — <=, Se 1(0) < E/R, a corrente
cresce até ao valor limite E/R. A constante E/R chama-se a componente estaciond-
ria, da intensidade, e o termo exponencial [/(0) — E/R]e R"L chama-se a componente varid-
vel. Na fig. 8.2(b) exemplos estdo representados.

Os exemplos anteriores exemplificam o poder unificador ¢ a utilidade pratica das equagoes
diferenciais. Elas mostram como diferentes tipos de problemas fisicos podem conduzir a
exatamente 0 mesmo tipo de equagio diferencial.

A equagao diferencial em (8.19) € de interesse especial porque sugere a possibilidade de
atacar uma larga variedade dos problemas fisicos usando meios elétricos. Por exemplo,
suponhamos que determinado problema fisico conduz a uma equagao diferencial da forma
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' RA0

Corrente quando 7 (0) > £

1(0) R

Corrente quando /(0) = E

\

Indutor

=|m

Forga

eletromotriz

E
IO)" Corrente quando/ (0)< =
IA » |

Resisténcia

(a) (b)

Fig. 8.2.(a) Diagrama para um circuito simples em série. (b) Intensidade da
corrente resultante da aplicagado duma voltagem constante.

yVi4ay=20,

em que @ é uma constante positiva ¢ Q € uma fungdo conhecida. Podemos entio tentar
construir um circuito elétrico com indutancia L e resisténcia R, de modo que seja R/L =ae
entdo aplicar a tensao LQ no circuito. Teriamos assim um circuito elétrico com exacta-
mente 0 mesmo modelo matematico que o problema fisico. Podemos, portanto, esperar
obter dados numéricos relativos a solugdo do problema fisico efetuando medigdes da in-
tensidade no circuito elétrico. Esta ideia foi posta em pratica e conduziu ao desenvolvi-
mento dos computadores analogicos.

8.7. Exercicios

Nos exercicios que se seguem, estabelecer uma equagao diferencial de primeira ordem
adequada como modelo matematico do problema.

1. O periodo de vida média do radio ¢ aproximadamente 1600 anos. Determinar qual a per-

centagem duma dada quantidade de radio que se desintegra num periodo de 100 anos.

2. Se uma cultura de bactérias aumenta duma maneira proporcional a quantidade existente

em cada instante e se a populagao duplica numa hora, de quanto aumentara ao fim de
duas horas?

3. Representar por y = f{t) o total de substancia existente no instante ¢. Supor que ela se

desintegra proporcionalmente a quantidade existente. Se n ¢ um inteiro positivo, o
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numero T para o qual f{T)= f(0)/n diz-se o periodo de vida n-enésimo da substancia.
(a) Provar que o periodo de vida n-en€simo para qualquer amostra da mesma substan-
cia € o mesmo ¢ calcular 7 em fungdo de n ¢ da constante de desintegragio.

(b) Se a e b sao dados, provar que f pode ser expresso na forma

f(!) — f(a)-rlt}j'(b)l —wit)

e determinar w(7). Isto prova que a quantidade existente no instante ¢ ¢ uma media
geometrica ponderada das quantidades existentes nos dois instantes t=a e ¢t = b.

. Um individuo langa-se em paraquedas duma grande altura. O peso do individuo e

do paraquedas ¢ de 192 libras. Seja v(?) a sua velocidade (em pés/segundo) no instante
t segundos depois do inicio da queda. Durante os primeiros 10 segundos, antes de o

paraquedas se abrir, supor que a resisténcia do ar & -%—r(!) libras. Depois do paraquedas

se abrir supor que essa resisténcia vale 12p(2) libras. Admitindo que a aceleragao da
gravidade vale 32 pés/seg? determinar formulas explicitas para a velocidade v(1) no ins-
tante r. (Usar a aproximagdo e = 37/128).

5. No Exercicio 2 da se¢do 8.6 usar a regra da derivagio da fun¢do composta

dv dsdv dv

= = -
dt  drds ds
e mostrar que a equagao diferencial pode ser escrita na forma

ds bv

— =

dv ¢ —v’

em que b = m/k e ¢ = gm/k. Integrar esta equagao para exprimir s em fungdo de v.
Comparar o resultado com as formulas para » e s derivadas naquele exemplo.

. Modificar o Exemplo 2 da sec¢do 8.6 supondo que a resisténcia do ar € proporcional a

v®. Mostrar que a equagao diferencial pode ser escrita nas formas seguintes:

m v dt m 1

‘b-— . —
dv kG —-v dv k-

onde ¢ = \/ mg/k. Integrar cada uma delas e obter as seguintes expressoes para v:

m ot — bt
1’2=Tg(l —eWimy . p = = cthbr,

P et

com b = \/kg/m. Determinar o valor limite de ¢ quando ¢ — +oo,

. Um corpo numa sala a 60° arrefece de 200° para 120° em meia hora.

(a) Mostrar que a sua temperatura depois de ¢ minutos ¢ 60 + 140 e ™, com k= (log 7
— log 3)/30.
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(b) Mostrar que o tempo ¢ necessario para alcangar a temperatura de 7 graus ¢ dado
pela formula ¢ = [log 140 — log(T — 60)|/k, com 60 < T < 200.

(c) Determinar o instante em que a temperatura ¢ de 90°.

(d) Determinar a formula para a temperatura do corpo no instante 7 se a temperatura da
sala ndo se considera constante, mas sim variando na razdo de | grau cada dez minu-
tos. Supor que a temperatura da sala ¢ de 60° quando a temperatura do corpo ¢ de 200°,
Um termometro dentro de determinada sala marcava 75°F. Cinco minutos depois de
ter sido retirado para o exterior marcava 65°F e depois de outros cinco minutos mar-
cava 60°F. Calcular a temperatura exterior.

. Um tanque contém 378,53 litros de salmoura obtida pela dissolugao de 22,68 kg de sal.

Por uma entrada corre agua para o tanque na razao de 11,36 | por minuto, mantendo-se
a concentragdo uniforme por agita¢do do liquido. Que quantidade de sal existira no
tanque ao fim de uma hora se a mistura corre para o exterior a razao de 7,57 | por minu-
to?

Admitir as condigoes do problema anterior. O fundo do tanque esta coberto por uma
mistura de sal e material insoluvel e admite-se que o sal se dissolva com uma velocidade
proporcional a diferenca entre a concentragao da solugao e a duma solugao saturada
(362 gramas/litro) e que se a agua fosse pura se dissolveria 453,6 gr. de sa! por minuto.
Que quantidade de sal havera na solugdao quando tiver decorrido uma hora?

. Consideremos um circuito elétrico semelhante ao do Exemplo 5 da segao 8.6.

Suponhamos que a for¢a eletromotriz- € um gerador de corrente alterna que produz uma
tensdo V(t)= E sen wi, em que E ¢ w sdo constantes positivas. Se /(0) = 0, provar que
a intensidade de corrente tem a forma

E Ewl
fl_f! = —am————— SCN( Wl — &) + N TT ("“" ‘f‘,
\ R'..' + w'.'L'.! R + wl*

em que a depende unicamente de w, L ¢ R. Mostrar que a = 0 quando L = 0.

No Exemplo 5 da segdo 8.6 supor que a tensdo ¢ uma fung¢do em escada definida do
modo seguinte: £(1) = Esea < t < b,coma > 0; E(1) = 0 para qualquer outro valor de
t. Se I1(0) = 0 provar que a intensidade de corrente ¢ dada pelas seguintes formulas:
I(t) = 0set < a;

E £ . .
I{” — E‘l - Rit—a) 1’_] se a<1¢ < b t“) _ E" Kt/ L h,h.‘: L _ t,hrt.'f.) se 1t >0b.

Fazer um esbogo representativo da natureza do grafico de /.

Crescimento da populagao. No estudo do crescimento de uma populagao (quer humana,
quer animal, quer bacteriana), a fungao que conta o numero x de individuos existindo num
dado instante ¢ € necessariamente uma fungdo em escada, tomando unicamente valores
inteiros. Deste modo o verdadeiro coeficiente de crescimento dx/dt é zero (quando ¢ pertence
a um intervalo aberto em que x é constante) ou entao a derivada dx/dt nao existe (quando x
salte de um inteiro para outro). Apesar disso, pode muitas vezes obter-se uma informagao

util,

admitindo-se que a populagao x € uma fungao continua de r com derivada continua dx/dt
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em cada instante. Postulam-se entdo varias “leis de crescimento” para a populagao, depen-
dentes de fatores do meio ambiente que podem estimular ou retardar o crescimento.

Por exemplo, se 0 meio ambiente tem pouca ou nenhuma influéncia, parece natural supor
que o coeficiente de crescimento € proporcional ao total da populagao existente e entdo a lei
de crescimento tomara a forma

dx

E = k.\.’, (8'20)

em que k € uma constante que depende da natureza da populagao. Podem ocorrer determina-
das condigdes que originem a variagcao do fator k com o tempo e a lei de crescimento (8.20)
pode generalizar-se para

d:
X k(Dx. (8.21)
dt

Se, por qualquer razao, a populagao nao puder exceder um certo maximo M (por exemplo
porque possam esgotar-se os alimentos) parece razoavel supor que o coeficiente de cresci-
mento € conjuntamente proporcional a x e M — x. Deste modo teremos nova lei de cresci-
mento.

dx
— = kx(M — x), (8.22
dt

onde, como em (8.21), k pode supor-se constante ou, mais geralmente, k pode variar com o
tempo. Aperfeigoamentos tecnologicos podem fazer com que o valor de M cresga ou
decresga lentamente e por isso podemos generalizar (8.22) numa outra forma com M a
variar com o tempo.

13. Exprimir x como uma fungao de ¢ para cada uma das “leis de crescimento™ em (8.20) e
(8.22) (com k e M ambos constantes). Mostrar que o resultado de (8.22) pode
apresentar-se do modo seguinte:

M

X = ] + p -1'-'—’1' ¥

(8.23)

em que a é constante e [, € o instante em que x = M/2.

14. Considerar a lei de crescimento dada pela formula (8.23) do Exercicio 13 e supor que
fazendo-se censos da populagdo em trés datas, t,, 1,, f,, definindo intervalos de tempos
iguais, se obtiveram os valores x,, x,, x;. Mostrar que estes dados bastam para deter-
minar M e que, com efeito, se tem

.\‘3(.\.2 - .\-1) - .\‘1[.).-3 - .‘\‘2}

(8.24)

X3 = XXy
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15. Deduzir a formula que generaliza (8.23) para a lei de crescimento (8.22) quando & ndo

16.

17.

18.

¢ necessariamente constante. Exprimir o resultado em relagdo ao tempo ¢, para o qual
x= M/2. '

O Census Bureau indica as seguintes populagoes (em milhoes) para os Estados Unidos
em intervalos de 10 anos desde 1790 até 1950: 3,9; 5,3; 7,2; 9,6; 12,9; 17; 23; 31; 39;
50; 63; 76; 92; 108; 122; 135; 150.

(a) Usar a equacio (8.24) para determinar o valor de M, com base nos dados dos cen-
sos de 1790, 1850, 1910.

(b) O mesmo que em (a) para os anos 1910, 1930, 1950.

(¢) Com base nos calculos de (a)e (b) pode considerar-se como aceitavel ou nao a lei de
crescimento (8.23) para a populagao dos Estados Unidos?

(a) Desenhar o grafico de log x como fungao de ¢, em que x representa os dados do
censo referidos no Exercicio 16. Utilizar este grafico para demonstrar que a lei de cresci-
mento (8.20) se verifica com muita aproximagdo desde 1970 até 1910. Determinar um
valor médio razodvel de k para este periodo.

(b) Determinar um valor médio razoavel de k para o periodo desde 1920 a 1950; supor
que a lei (8.20) ¢ verdadeira para este valor de k, e prever qual a populagao dos Estados
Unidos para os anos 2000 a 2050.

A presenga de toxinas num certo meio destroi uma cultura de bactérias numa razao con-
juntamente proporcional ao numero de bactérias presentes € ao total de toxinas existen-
tes na cultura. Se ndo existissem toxinas as bactérias cresceriam proporcionalmente ao

X X X

I\ T

\__-! o -
(a) (b) (c)

ol

(d) (e) (f)

Fig. 8.3. Exercicio 18.

total existente. Represente x 0 nimero de bactérias vivas no instante 7. Suponhamos
que o total de toxinas cresce numa razio constante e que a produgio de toxinas se ini-
cia no instante 7 = 0. Estabelecer uma equacio diferencial para x. Resolver essa equa-
¢do diferencial. Uma das curvas da fig. 8.3 € a que representa melhor o comporta-
mento geral de x como fungio de . Dizer qual, e justificar a escolha.
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8.8. Equacdes diferenciais lineares de segunda ordem com coeficientes constantes

Uma equagdo diferencial da forma
V' 4 Py(x)y" 4+ Po(x)y = R(x)

diz-se uma equagdo linear de segunda ordem. As fungdes P, e P, que multiplicam a fungao
desconhecida y e a sua derivada y’ sdo os coeficientes da equagao.

Para as equagoes lineares de primeira ordem provamos um teorema de existéncia e unici-
dade e determinamos todas as solugdes recorrendo a uma formula explicita. Embora exista
um correspondente teorema de existéncia e unicidade para a equagao linear geral de segunda
ordem, nao existe uma formula que dé todas as solugoes, excepto em alguns casos especiais.
O estudo da equacgao linear de segunda ordem mais geral é feito no Volume II. Aqui apenas
tratamos o caso em que os coeficientes P, e P, sdao constantes. Quando o segundo membro
R(x) ¢ identicamente nulo a equagao diz-se homogénea.

A equagao diferencial linear homogénea com coeficientes constantes foi a primeira
equagao diferencial dum tipo geral a ser completamente resolvida. Em 1743 Euler publicou
uma primeira solugdo. A parte o seu interesse historico, esta equagdo apresenta-se numa
grande variedade de problemas, pelo que o seu estudo reveste grande importancia pratica.
Além disso, podemos estabelecer formulas explicitas para todas as solugdes.

Consideremos uma equagao linear homogénea de segunda ordem com coeficientes cons-
tantes que escrevemos

Y +ay +by=0.

Pretendemos solugdes em todo o eixo real (—oo, +c0). Uma solugdo é a fungdo constante
v = 0. E a chamada solugdo trivial. O nosso interesse esta na determinagio de solugdes nio
triviais e para isso iniciamos 0 nosso estudo com alguns casos particulares para os quais se
podem encontrar aquele tipo de solugoes por simples analise da equagdo. Em todos estes
casos o coeficiente de y° é zero e a equagao tem a forma y” + by = 0. Verificaremos que
resolver esta equagao particular é equivalente a resolver o caso geral.

8.9. Existéncia de solucdes da equacido y "+ by = 0

EXEMPLO 1. A equagao y” = 0. Neste caso ambos os coeficientes a e b sdao nulos e pode-
mos facilmente determinar todas as solugGes. Admitamos que y € uma fungao satisfazendo a
y*“ = 0 no intervalo (—eo, +<0). Entdo a sua derivada y‘ € constante, por exemplo y’ = ¢,.

Integrando esta relagéio y tem necessariamente a forma
y=0x+ 0,
onde ¢, ¢ ¢, sdo constantes. Reciprocamente, para qualquer escolha das constantes ¢, e ¢,

o polinémio linear y= ¢ x + ¢, satisfaz a y"= 0, pelo que estdo determinadas todas as
solugOes neste caso.
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No exemplo seguinte admitimos que b # O e tratamos separadamente os casos b < O e
b > 0.

EXEMPLO 2. A equagdo y™+ by = 0, com b < 0. Uma vez que b < 0, podemos escrever
b = —k* com k > 0 e dar a equagao diferencial a forma
Y=k
k.

Uma solugdo evidente e y = ¢ eaoutraéy = e X A partir destas podemos obter outras
solugées formando combinagoes lineares da forma

y = €™ + ce™,

com ¢, e ¢, duas constantes arbitrarias. No Teorema 8.6 mostraremos que todas as solugdes
estdo incluidas nesta formula.

EXEMPLO 3. A equagdo y” + by = 0, com b > 0. Neste caso podemos fazer igualmente
h = k* com k > 0 e a equagdo diferencial toma a forma

Y = —kty.

De novo obtemos algumas solugoes por analise direta. Assim uma solugao ¢ y = cos kx e
outra € y = sen kx. A partir destas obtemos outras pela formagao da combinagao linear

y =c¢,c0skx + cysinkx,

onde ¢, ¢ ¢, sdo duas constantes arbitrarias. O Teorema 8.6 mostrar-nos-a que esta formula
inclui todas as solugdes.

8.10. Redugao da equagao geral ao caso particular y** + by = 0

O problema de resolugao da equagao diferencial linear de segunda ordem com coeficientes
constantes pode reduzir-se ao da resolugao do caso particular que acabamos de expor. Existe
um metodo para o fazer,o qual se aplica também a equagOes mais gerais. A ideia consiste em
considerar tres fungoes y, u e v tais que y = wv. A derivagao da-nos y = uv+ w' e y” =
= w" + 2u'v" 4 «"v. Em seguida exprimimos a combinagdo y” + ay’ + by em fungdo de u e
v. Obtemos

Y+ ay +by=w" + 22" + u"v + a(w’ + u'v) + buw
= (0" + av’' 4 bo)u + (20" + av)’ + vu". (8.25)

Escolhemos seguidamente » de modo que o coeficiente u* seja nulo. Isso implica que v" =av/2,

pelo que podemos escolher v = ¢~ 2 Para este valor de v temos »” = —av'[2 = a*v/4,
e o coeficiente de u em (8.25) vem
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" "+ bv=— —— 4 bv = — .
v" 4 av + bv 2 2+u 2 v

Entdao a equagdo (8.25) reduz-se a

— s
y:r+ay.'+by= (u,,+4b4 a u)u.

ax/

Vistoque v=¢" 2, a fungao v nunca se anula, pelo que y satisfaz a equagao diferencial y” +

+ay'+ by=0seesosewusatisfazau” + T(fib — a@*)u = 0. Demonstramos, assim, o se-
guinte teorema.

TEOREMA 8.4. Sejam y e u duas fungoes tais que y = u e_axfz. Entao, no intervalo (—e°,
Jamy 4

+0), y satisfaz a equagdo diferencial y” + ay’ + by = 0 se e 50 se u satisfaz a equagdo dife-
rencial

. 2
u"+4b—au=0.
4

Este teorema reduz o estudo da equagao y” + ay’ + by = 0 ao caso particular y” + by = Q.
14 encontramos solugdes ndo triviais para esta equagdo, mas, excepgdo feita ao caso em que
b = 0, ainda nao provamos que as solugoes encontradas constituem todas as solugoes da
equagao.

8.11. Teorema de unicidade para a equagao y'* + by =0

O problema da determinagao de todas as solugoes da equagédo y” + by = 0 pode resolver-
se com a ajuda do seguinte teorema de unicidade.

TEOREMA 8.5. Sejam f e g duas fungoes supostas satisfazerem a equagdo y” + by =0 no
intervalo (—o°, +0) e também a verificarem as condigées iniciais

J0)=g0), f(0)=¢g(0).
Entao f(x) = g(x) para todo o x.

Demonstragao. Seja h(x) = f(x) — g(x). Pretendemos demonstrar que 4(x) = 0, para todo
o x. Devemos fazer isto exprimindo & em fun¢éo das suas aproximagdes por polindmios de
Taylor.

Primeiramente observamos que /4 € também solugao da equagao diferencial y” + by =0e
verifica as condigoes iniciais #(0) = 0, £(0) = 0. Toda a fun¢ao y que seja solugao da
equacdo diferencial admite derivadas de qualquer ordem em (-0, + ) as quais podem
calcular-se por derivagdes sucessivas da equacdo diferencial. Por exemplo, uma vez que
y = -by, temos y“= -by’, y'*’ = -by"= b*y. Por indugdo concluimos que as derivadas de
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TeEOREMA 8.7. Seja d = a* — 4b o descriminante da equagdo diferencial linear y” + ay’ +
+ by = 0. Toda a solugao desta equagao no intervalo (—e, +) tem a forma

y = e ¥ 2cn(x) + caug(x)], (8.29)

onde ¢, e ¢, sdo constantes e as fungoes u,(x) e u,(x) sao determinadas de acordo com o sinal
do descriminante, do modo seguinte:

(a) Sed =0, entdo u,(x) = 1 e uy(x) = x.

— | -
(b) Sed> 0, entdo u,(x) = e e uy(x) = e, com k= —-/d.

1 —_—
(c) Sed < 0,entdo u,(x) = cos kx e u,(x) = sen kx, com k = —- v —d.

Nota: Na hipotese (b) em que o descriminante d € positivo, a solugdo y em(8.29)¢ uma combi-
nagdo linear de duas fungdes exponenciais,

y = eﬂr.rj?.((.lekx + (.25,—&-:) — Clt"lz + (’26"3: ,

onde _ _
a —a + \Vd a —a —\d
n=-s+k=—s—, n=-—5-—k=—3—
Os n - duto r,r, = - (a* — d) = b int
s nimeros r, € r, tem soma r, + r, = —a e produto r,r, = —— (a* — d) = b, por conseguinte

sao as raizes da equagdo do 2.° grau r? + ar + b= 0. Esta é¢ a chamada equagdo carateris-
tica associada a equacgao diferencial

Yy +ay +by=0.

A expressao d = a’ — 4b ¢ também o bindmio descrimante desta equagao do 2.° grau; o seu
sinal determina a natureza das raizes. Se 4 > 0 a equagao tem duas raizes reais definidas por
(—a +/d)/2. Se d < 0, a equacido admite raizes complexas 7, € r,. A definigio da fungio
exponencial pode alargar-se de modo que €' e €** sejam providas de significado quando
r, e r, sao numeros complexos. Esta extensao, descrita no capitulo 9, ¢ feita de tal modo
que a combinagao linear (8.29) pode também escrever-se como uma combinagao linear de
e"* ¢ e"* quando r, e r, sdo complexas.

Concluimos esta segdo com algumas observagdes de carater geral. Uma vez que todas
as solugdes da equagdo diferencial y™ + ay” + by = 0 estdo contidas na formula (8.29), a
combinagdo linear do segundo membro chama-se vulgarmente a solugdo geral da equagio
diferencial. Qualquer solugdo obtida por particularizagdo das constantes ¢, ¢ ¢, diz-se uma
solugdo particular.

Por exemplo, fazendo ¢, = 1, ;=0 e ¢, =0, ¢, = 1, obtemos as duas solugdes particulares

v, = e ¥y (x), vy = e~ 2uy(x) .
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Estas duas solugdes sdo de especial importancia porque as combinagoes lineares formadas com
elas ddo-nos todas as solugoes. Um par de solugoes quaisquer com esta propriedade diz-se uma
base para o conjunto de todas as solugoes.

Uma equagao diferencial tem sempre mais do que uma base. Por exemplo, a equagao
y“ =9y tem a base v,= e, vy =€ °*, Mas também tem a base w, = ch 3x, w, = sh 3x.
Com efeito, uma vez que e>* = w, + w, e e %= w, — w,, cada combinagéo linear de & e
e >* & também uma combinago linear de w, e w,. Por isso 0 par w, € w, constitui outra base.

Pode demonstrar-se que qualquer par de solugdes v, e v, duma equagdo diferencial
y“+ ay’+ by = 0 sera uma base se 0 quociente v,/r,ndo for constante. Embora esta propriedade
ndo seja necessaria aqui, referimo-la porque € importante na teoria das equagoes diferenciais
lineares de segunda ordem com coeficientes constantes. No Exercicio 23 da Segao 8.14 esboga-

se uma demonstragao.

8.14. Exercicios

Determinar todas as solugdes das seguintes equagoes diferenciais, no intervalo (—eo, +c2),

1. y" —4y =0. 6. y"+2y =3y =0
2. y"+4y =0. T.y" =2y +2y =0.
3.y" =4y =0. 8. y' =2y + 5y =
4. y" + 4y = 0. 9. " +2y +y =
5.)" =2y +3y=0. 10. y" =2y +y =

Nos Exercicios 11 a 14 determinar a solugdo particular que satisfaga as condigoes iniciais
dadas.

11. 2y” +3y’=0,com y=1 e y'=1 quando x=0.

12. y” + 25y =0, com y=—1 e y’=0 quando x = 3.

13. p"—4y’—y=0,com y=2 e y'=—1 quando x= 1.

14. y” + 4y’ + 5y=0, com y=2 e y’=yp” quando x =0,

15. O grafico de uma solugao u da equacgao diferencial y* — 4y’ + 29y = O interseta na
origem o grafico da solugdo v da equagao ) + 4y’ + 13y = 0. As duas curvas tém
iguais declives na origem. Determinar u e v se u'(—;—rr) = .

16. O grafico duma solugao uda equagdo diferencial y“— 3y°— 4y =0 intersecta naorigem o
grafico da solugao ¥ da equagao diferencial y” + 4y " — 5y = 0. Determinar « ¢ v se as duas
curvas tém iguais declives na origem e se

17. Determinar os valores da constante k tais que a equagao diferencial y” + ky = 0 admite
uma solugao nao trivial y = _/;‘(x) para a qual j;‘(O) = j;‘(l) = 0. Para cada valor possivel
de k, determinar a correspondente solugao y = Ji.(x). Considere valores positivos e nega-
tivosdek.

18. Se(a, b) ¢ um dado ponto do plano e m um numero real, provar que a equagao diferencial y "+
+ k*y =0tem exatamente uma solugdo cujo grafico passa por (a, b) e tem declive m nesse
ponto. Discutir também o caso em que k = 0.
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v(x) = e Puy(x), vy(x) = e ¥ Puy(x) (8.32)

determinando-se as fungoes u, e u, por meio do descriminante da equagao, como foi explicado
no Teorema 8.7. Agora mostramos que v, e v, podem utilizar-se para construir uma solugao par-
ticular y, da equagao nao homogénea L(y) = R.

Nessa construgao intervem uma fungao W definida por

W(x) = vy(x)vy(x) — va(x)vy(x) .

Esta fungdo ¢ o chamado wronskiano de v, e v,; algumas das suas propriedades foram expostas
nos Exercicios 21 e 22 da Secao 8.14. Necessitamos da propriedade de que W(x) nunca é nulo.
Esta pode demonstrar-se pelos métodos indicados nos exercicios ou pode ser verificada direta-
mente para as fung¢des particulares v, e v, dadas em (8.32)

TEOREMA 8.9. Se v, e v, sao solugdes de equagao L(y) =0 dada por (8.32), com L(y) =
="+ ay’+ by, e se W representa o wronskiano de v, ev,, entdo a equagao nao homogénea L (y)-
= R possui uma solugdo y, particular definida por

W(x) = 1,(x)ry(x) + ta(x)ve(x) ,

em que

R(x)
Wi(x)

dx , Iy(x) = [Ul(.‘f) dx . (8.33)

R(
1(x) = —Jt'z(x) Vm

W(x)

Demonstragao. Tentemos determinar duas fungdes f, e f, tais que a combinagdo y, =
= I,v, + L,v, satisfaga a equagao L(y,)= R. Temos

’

y =unv, + tp, + (Lo, + 1,0,),

y1 = hvy + ty + (Hjoy + t305) + (110, + 130,)" .

Quando formamos a combinagao linear L(y,) = y,” + ay, + by,, os termos contendo ¢, e ¢,
desaparecem devido as relagoes L(r,) = L(v,) = 0. Os restantes termos ddao-nos a relagao

L(yy) = (g + 1205) + (1100 + 1,00)" + a(tyoy + 130,) .

Desejamos escolher 7, € 7, de maneira que L(y,) = R. Podemos consegui-lo se escolhemos ¢, e,
de modo que

1oy + tw, =0 e Loy + vy = R.

Estas constituem um par de equagoes algebricas para 1, e ;. O determinante do sistema ¢ o
wronskiano de ¢, e r,. Uma vez que ¢ diferente de zero, o sistema tem uma solugao dada por
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1y = —U,R/W and ts = 0,R/W.
Integrando estas relagoes obtemos as formulas (8.33), completando assim a demonstragao.

O meétodo pelo qual obtivemos a solug@o y, ¢ algumas vezes designado por método de
variagdo das constantes. Foi utilizado pela primeira vez por Johann Bernoulli em 1697 para
resolver equagdes lineares de primeira ordem, e depois por Lagrange em 1774 para resol-
ver equagdes diferenciais lineares de segunda ordem.

Nota: Visto que as fungoes ¢, e ¢, noTeorema 8.9 sao expressas por integrais indefini-
dos, cada uma delas so esta determinada a menos duma constante. Se adicionarmos uma
constante ¢, a f, ¢ uma constante ¢, a f,, transformamos a fungao y, numa nova fungao
Y, =¥, + ¢,v; + c,v,. Pela linearidade, temos

L(yy) = L(yy) + L(cyvy + cvp) = L(yy) ,

donde concluimos que a nova fungao y, ¢ também uma solugao particular da equagao nao
homogénea.

. - -~ . T N
ExXEMPLO 1. Determinar a solug¢ao daequagaoy” + y=tgx em(— 5 —2—)

Resolugdo. As fungoes v, e v, das igualdades (8.32) sao dadas por
v,(x) = cos x, v,(x) = sen x.

O respetivo wronskiano & W(x) = v, (x)r,(x) — v,(x)r,(x) = cos’x + sen’x = 1. Portanto de
(8.33) obtemos

f(x) = — ' sen x tg x dx =senx — log [sec x + tg x|,
to(x) = | cos x tg x dx = | sen x dx = —cos X .

Entdo uma solugdo particular da equagdo nao homogenea é
¥y = H(x)ey(x) + 12(x)re(x) = senx cos x — cos x log [sec x + tg x| — s€nx cos x
= —cos x log [sec x + tg x| .
PeloTeorema8.8, a sua solugao geral é
¥y = ¢, COS X + cy8en x — cos x log [sec x + tg x].

Emborao I'eorema8.9 nos dé um método geral para determinar uma solugao particular de
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calculo dos integrais fx’ senxdxe fx-" cos x dx, enquanto que pelo método dos coeficientes inde-
terminados ndo € necessaria qualquer integragao.

Se o coeficiente b € zero, a equagao y” + ay’ = R nao pode ser satisfeita por um polinomio de
grau n, mas por um de grau n + 1, se a# 0. Quando a e b sao ambos nulos, a equagao ¢ simples-
mente y” = R; a sua solugdo geral € um polindmio de grau n + 2 obtido por duas integragoes
sucessivas.

CASO 2. O segundo membro tem a forma R(x) = p(x)é™, sendo p um polindmio de grau
n e m uma constante.

Neste caso a mudanga de variavel y = u(x)e”™" transforma a equagdo diferencial y~ +
+ay’+ by=R nanovaequagao

W' + 2m + a' + (m* 4+ am + bu=p.

Esta é, porém, do tipo estudado no Caso 1 pelo que sempre admite por solugao um polinomio
u,. Por conseguinte, a equagao original tem uma solugdo particular da forma y, = u,(x)é™,
com u, um polinomio. Se m* + am + b # 0, o grau de u, € 0 mesmo que o grau de p. Se
m? + am + b= 0,mas 2m + a # 0, o grau de u, € superior em uma unidade ao grau de p. Se
ambos m?> + am + b= 0e 2m + a = 0, o grau de u, € duas unidades superior ao grau de p.

ExemprLO 2. Determinar uma solugao particular da equagaoy " + y = xe™.

Resolugdo. A mudanga de variavel y = ue>* conduz a uma nova equagao u” + 6u’ +

+ 10u = x. Ensaiando u,(x) = Ax + B, encontramos a solugao particular u,(x) = (5x —
— 3)/50, pelo que uma solugdo particular da equagdo original € y, = e~ (5x— 3)/50.

O método dos coeficientes indeterminados também pode utilizar-se se R ¢ da forma R(x) =
= p(x)e™ cos ax, ou R(x) = p(x)€™ sen a x, sendo p um polindmio e m e a constantes. Em

ambos os casos existe sempre uma solugdo particular da forma y,(x) = e™[g{x) cos ax +
+ r(x) sen ax|, onde g e r sdo polindomios.

8.17. Exercicios

Determinar a solugao geral de cada uma das equagdes diferenciais nos Exercicios 1 a 17.Se a
solugao nao for valida em todo o eixo real, determinar os intervalos em que o seja.

Ly =y =x 9. y' +y =2y ="

2.y =y =22 10. y" 4y =2y = e*.

Ly +y =2+ 2x 1Ly +y — 2y =e* + ¥,
4. )" = +3y =% 12. )" =2y +y =x + 2x ¢
5" =5y +4y=x*—-2x + L. 13. y" +2y +y =e?[x%

6. y' +y —6y =22 + 5x* —Tx + 2. 14. y" + y = cot®x.

7.y —dy =™ 15. y" —y =2/(1 + €.

8. ) +4y =" 16. y" +y" =2y = €&[(1 + €.
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17. y” + 6y" + 9y = f(x), onde f(x) = 1 para | < x < 2, ¢ f(x) = 0 para todos restantes
valores de x.

18. Se k ¢ uma constante nao nula, provar que a equagdo y” — k?y = R(x) admite uma solugao
particular y, definida por

1
k

=

"I R(1) sh k(x — t)dt.

Determinar a solugio geral da equagdo y” — 9y = €.

19. Se k é uma constante nao nula, provar que a equagaoy '+ k’y = R(x) tem uma solugao par-
ticular y, dada por

] —

h =

[
[ R(n)senk(x — 1) dr.
0

o

Determinar a solugao geral daequagdo y " + 9y = sen 3x.

Em cada um dos Exercicios 20 a 25, determinar a solugao geral.

20. y" + y =senx. 23, y" + 4y = Jxsenx.
21. ¥y 4 y = cos x. 24, y" =3y = 2e¢* senx.
22. v" + 4y = 3xcos x. 25. y" + y = €*" cos 3x.

8.18. Exemplos de problemas fisicos conduzindo a uma equagao diferencial linear de segunda
ordem com coeficientes constantes

EXEMPLO 1. Movimento harmonico simples. Suponhamos que uma particula esta animada
de movimento retilineo, estando a sua aceleracao dirigida para um ponto fixo da reta e sendo
proporcional a distancia a esse ponto fixo. Se tomamos a origem coincidente com o ponto fixo e
designamos por y a distancia e por x o tempo, entdo a aceleragdo y” deve ser negativa
quando y € positiva e positiva quando y € negativa. Portanto podemos escrever y” = —k’y, ou

.‘.'f + k'.!‘- —_ 0 ,

onde k? € uma constante positiva. Esta ¢ a chamada equagao diferencial do movimento harmo-
nico simples. E muitas vezes usada como modelo matematico para o movimento dum ponto
num mecanismo vibrante tal como uma corda tensa ou um diapasdo vibrante. A mesma
equagdo aparece na teoria dos circuitos elétricos onde se chama a equagao do oscilador harmo-
nico.

O Teorema 8.6 diz-nos que todas as solugoes tém a forma

vy = Asenkx + Bcos kx, (8.34)

sendo A e B constantes arbitrarias. Podemos exprimir as solugdes em fungdo do seno ou
do cosseno unicamente. Por exemplo podemos introduzir novas constantes C e a, onde
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— ;
C=VA + B e x=urclg;,

entdo temos (Ver fig. 8.4) 4 = C cos a, B = C sen a, ¢ a equagao (8.34) escreve-se
y = Ccosasenkx + Csenxcos kx = Csen(kx + «) .

Quando a solugao ¢ escrita desta maneira, as constantes C e a tém uma interpretagao geome-
trica simples (Ver fig. 8.5). Os valores extremos de y que ocorrem quando sen(kx + a) =
= + 1, sdo + C. Quando x = 0, a posi¢ao inicial € C sen a. Quando x cresce, a particula oscila
entre os valores extremos + C ¢ —=C com um periodo 27/k. O angulo kx + @ € chamado o
angulo de fase e o proprio @ chama-se o valor inicial do angulo de fase.

A
~+—Periodo = 27 |
k
C - -
Csena
c
B -
0
o
A B I
Fig. 8.4. Fig. 8.5. Movimento harmonico simples.

ExeMPLO 2. Vibragées amortecidas. Se uma particula, sujeita a movimento harmonico
simples, ¢ submetida subitamente a uma forga externa proporcional a sua velocidade, o novo
movimento satisfaz a equagao diferencial da forma

Vit 200" + k=0,

em que ¢ ¢ K% sdo constantes, ¢ # 0, k > 0. Se ¢ > 0 todas as solugdes tendem para zero quando
x- + oo, Neste caso a equacdo diferencial diz-se que ¢ estavel. A forca externa causa
amortecimento a0 movimento. Se ¢ < 0, mostraremos que certas solugdes tomam valores abso-
lutos arbitrariamente grandes quando x- + co. Neste caso a equagido diz-se ser instavel.

Uma vez que o descriminante da equagdo € d = (2¢)* — 4k? = 4(c* — k?), a natureza das
solugOes ¢ determinada pelas grandezas relativas de ¢’ e k*. Os trés casos d = 0,d > O e

d < 0 podem analisar-se do modo seguinte:
(a) Descriminante nulo: ¢* = k*. Neste caso todas as solugoes tem a forma

y = e~(A + Bx).

Se ¢ > 0, todas as solugdes tendem para zero quando x - 4 co. Este caso € designado por
amortecimento critico. Se B # 0, cada solugdo mudara de sinal exatamente uma vez devido
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ao fator linear A + Bx. Na fig. 8.6(a) mostra-se um exemplo. Se ¢ < 0, cada solugdo ndo
trivial tende para + co ou para — oo quando x - + .

(b) Descriminante positivo: ¢* > k*. PeloTeorema8.7 todas as solugoes tem a forma
y = e ““(Ae" + Be ") = Ae'"~ 4 Be MO

onde h = %\/3= v/ ¢ —k*.Umavez que h* = ¢* — k?,temos h? — ¢* < 0 pelo que (h — c)(h +

+¢) <0, e e % entdo h + ¢ ¢é posiivo pelo que h—c é negativo e por isso ambas as expo-
nenciais e, Portanto os nimeros h—c e h + ¢ tém sinais opostos. Se ¢ > 0, e e/** en-
dem para zero quando x— + co. Neste caso, designado por amortecimento exponencial,
todas as solugdes tendem para zero quando x - + co. Na figura 8.6(a) esta representado
um exemplo. Cada solu¢do pode mudar de sinal quando muito uma vez.

Se ¢ < 0, entao h — ¢ € positivo mas h + ¢ é negativo. Deste modo, ambas as exponenciais
e(h—0xg o =(h+0)x 0 qar para +°° quando x — +oo, pelo que de novo existem solugoes com
valores absolutos tao grandes quanto se queira.

(c) Descriminante negativo: ¢* < k*. Neste caso todas as solugoes tem a forma

y = Ce ““sen(hx + =),

| - .. . .
onde / = T‘/—d = \/k2 — . Se ¢ > 0, cada solug@o ndo trivial oscila, mas a amplitude da

oscilagao decresce e tende para zero quando x — +co, Este caso chama-se amortecimento

oscilante ¢ esta representado na fig. 8.6(b). Se ¢ < 0, todas as solugdes ndo triviais tomam
valores arbitrariamente grandes, positivos e negativos, quando x - + co.

=
\\ . .

amortecimento exponencial _ ,amortecimento oscilante
\ h‘-.-'_,"'-\—___

\/" { \/ N L

amortecimento critico R
V’il

(a) Descriminante 0 ou positivo (b) Descriminante negativo

Fig. 8.6. VibragOes amortecidas que se apresentam como solugoes de y ™ + 2¢y” + k%y = 0,
com ¢ > 0 e descriminante 4(c* — k3).

EXEMPLO 3. Circuitos elétricos. Se intercalarmos um condensador no circuito elétrico do
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Exemplo 5 da .segido 8.6, a equagao diferencial que serve como modelo para este circuito ¢ dada
por

LI'(t) + RI(1) + El‘ [(t)dt = V(1),

onde C € uma constante positiva chamada a capacidade. Derivando esta equagao obtem-se uma
equacgao diferencial linear de segunda ordem da forma

LI"(f) + RI'(1) + —C'J(:) = V'(1).
Se a tensdo aplicada Vt) € constante, o segundo membro € nulo ¢ a equagdo toma a forma
R 1
I'y+-=1t)+ —I(1) = 0.
(1) 3 (1) Lo (

Esta é uma equagao do mesmo tipo da que foi analisada no Exemplo 2, exceto que 2¢ aparece
substituido por R/L, e k? & substituido por 1/(LC). Neste caso o coeficiente ¢ € positivo, pelo que
aequacgao ¢ sempre estavel. Por outras palavras, a intensidade de corrente /(7) tende sempre para
zero quando #— +oco, A terminologia do Exemplo 2 tambeém se utiliza aqui. A corrente diz-se ser
criticamente amortecida quando o descriminante ¢ nulo (CR? = 4L ), exponenciamente
amortecida quando € positivo (CR?* > 4L ) e oscilante quando o descriminante € negativo
(CR* < 4L).

EXEMPLO 4. Movimento dum foguetdo com massa variavel. Um foguetdo ¢ impulsionado
pela combustido de carburante numa camara, permitindo-se a expulsio dos produtos de com-
bustio para a retaguarda. Suponhamos que o foguetio parte do repouso e que se move vertical-
mente para cima. Representemos a altura a que se encontra o foguetdo no instante ¢ por
r(t), a sua massa (incluindo o combustivel) por m(t) e a velocidade dos produtos da com-
bustdo, relativamente ao foguetdo, por ¢r). Na auséncia de forgas exteriores, a equagio

m(t)r"(t) = m'(t)e() (8.35)

constitue o modélo matematico para o movimento em discussao. O primeiro membro, m(t)r (1),
¢ o produto da massa do foguetao pela sua aceleragao. O segundo membro, m ‘(1) c(t).
¢ a for¢a de aceleragdo do foguetdo originada pelo impulso desenvolvido pelo mecanis-
mo de impulsdao. Nos exemplos que aqui se consideram, m(z) e c(?) sdo conhecidos ou
podem ser definidos em fungao de r(7) ou das suas derivadas r’(7) (a velocidade do foguetao). A
equagdo (8.35) converte-se entdao numa equagao diferencial linear de segunda ordem para a lei
de movimento r(1).

Se existem forgas exteriores, tais como a acgao da gravidade, entao em vez de (8.35), utiliza-
mos a equagao

m(t)r"(1) = m'(t)e(t) + F(1), (8.36)
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—~k/g e a equagdo anterior vem

e MO ke
T = m(r)c 8 w — kt

—g.

Integrando, e utilizando a condigao inicial r(0) = 0, encontramos

w — kt

r'(t) = —clog — gt.

Integrando de novo e considerando a condigao inicial r(0) = 0, obtemos a relagao

c(w — ki) w—kt 1
lo — =gt 4+ ct.
k - w 2g

(1) =

Todo o carburante estara consumido quando ¢ = b/k. Nesse instante a altura sera

b) ow—b), w—b 1gb* cb
2) = 1 — - 4 = 8.37
r(k kBT 2Kk (8.37)

Esta formula € valida para b < w. Para certos foguetdes, o peso em vazio é desprezavel

perante o peso do carburante, e € interessante considerar o caso limite em que b = w. Nao

podemos fazer b = w em (8.37) devido a presenga do termo log (w -w- b)

. Contudo, se fazemos

b — w, o primeiro termo em (8.37) é uma forma indeterminada com limite 0. Deste modo,
quando b — w, o valor limite do segundo membro de (8.37) &

. b 1 1
Ilmr(—)=—-——+—=_— T? T.
n 2 PR

b—=w
onde T = w/k & o tempo necessario para que todo o peso w seja consumido.

8.19. Exercicios

Nos Exercicios 1 a 5, supde-se uma particula a mover-se com movimento harmonico simples,
com a lei do movimento definida por y = C sen(kx + a). A velocidade da particula ¢ dada pela
derivada y’". A frequéncia do movimento ¢ a inversa do periodo. (O periodo =
= 2n/k; a frequéncia = k/2n.) A frequéncia representa o numero de ciclos completados na uni-
dade de tempo, desde que k£ > 0.

1. Determinar a amplitude C se afrequénciafor 1/n e os valoresiniciaisde yey’(quandox =
0) sdao 2 e 4 respetivamente.

2. Determinar a velocidade quando y € zero, sabendo que a amplitude ¢ 7 e a frequéncia
é 10.

3. Mostrar que a equagao do movimento pode também escrever-se do modo seguinte:
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Ln

8.

10.

11.

12.

y = Acos(mx + f).

Determinar as equagoes que relacionam as constantes A, m, [ ¢ C. k, .

Determinar a equagio do movimento, sabendo que y = 3 ¢ y'= 0 quando x =0 e queo
periodo € 1/2.

. Achar a amplitude do movimento se o periodo € 27 ¢ a velocidade € = v, quando y = y,.
. Uma particula esta animada de movimento harmonico simples. Inicialmente a sua posigao €

1, a sua velocidade é 2 e a sua aceleragdo é —12. Calcular a sua posigao e a sua aceleragao
quando a velocidade for \/§

Para um certo nimero positivo k, a equagao diferencial do movimento harmonico simples
v + k2 =0 tem solugdes da forma y = f(x) com f(0) = f(3) = O e f(x) < O paratodo o x do
intervalo aberto 0 < x < 3. Calcular k e determinar todas as solugoes.
A intensidade de corrente /(t) dum circuito elétrico verifica a equagdo diferencial
17(6) + 1(t1) = G(¢) onde G é um passo da fungdo dada com G(1) =1 se 0 <1< 27,
G(r) = 0 para todos os outros valores de r. Determine a solugdo que verifica as con-
digdes iniciais /(0) =0, 7'(0) = 1.

. A intensidade de corrente /(r) dum circuito elétrico verifica a equagdo diferencial

I'(t) + RI'(t) + I(t) =senwi,
em que R ¢ w sdo constantes positivas. A soluglio pode ser expressa na forma /(1) =
= F(t) + A sen(wt + a), com F(t1)-0 quando 1~ + ®, € A ¢ a sdo constantes depen-
dendo de R e w, com A > 0. Se existir um valor de w que faga A tdo grande quanto
possivel, entdo w/(27) chama-se a frequéncia de ressonancia do circuito.
(a) Determinar todas as frequéncias de ressonancia quando R = I.
(b) Determinar todos os valores de R para os quais o circuito admite uma dada frequéncia
de ressonancia.
Uma naveespacialregressa a Terra. Suponhamos que a inica forga exterior -atuando’ sobre
ela é a forga da gravidade e que ele cai segundo uma retal dirigida para o centro da Terra.
O efeito da gravidade é parcialmente anulado acendendo um foguet@o contrario ao sentido
do movimento. O carburante do foguetdo ¢ consumido a razdo constante de k quilos
por segundo e a matéria expelida tem uma velocidade constante de ¢ metros por segun-
do relativamente ao foguetdo. Determinar a formula que da o deslocamento da nave em
fun¢do do tempo 1, se ela parte do repouso no instante r =0 com um peso inicial de w
quilos.
Um foguetdo de peso inicial w quilos parte do repouso num espago isolado (sem forgas
exteriores) € move-se com movimento retilineo. O carburante é consumido na razido
constante de k quilos por segundo e os produtos de combustdo sdo expelidos para a
rectanguarda com uma velocidade constante de ¢ metros por segundo relativamente
ao foguetdo. Determinar a distancia percorrida no tempo .
Resolver o Exercicio 11 na hipotese da velocidade inicial do foguetao ser ¢, € os produtos da
combustdao serem expelidos com uma velocidade tal que fiquem em repouso no espago.

8.20. Observagoes referentes a equagoes diferenciais nao lineares

Uma vez que as equagoes diferenciais lineares de segunda ordem com coeficientes constantes

intervém em tdo ampla variedade de problemas é realmente de muita utilidade que tenhamos me-
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todos sistematicos para as resolvermos. Muitas equagOes nao lineares aparecem também
naturalmente quer em problemas fisicos, quer geomeétricos; mas nao existe para elas uma teoria
geral semelhante a das equagoes lineares. Na introdugao deste capitulo referimos uma classica
“bolsa de truques™ que tem sido desenvolvida para tratar muitos casos especiais de equagoes
diferenciais nao lineares. Vamos concluir este capitulo com uma analise de alguns desses
artificios e alguns dos problemas que eles nos permitem resolver. Devemos considerar unica-
mente equagoes diferenciais de primeira ordem, que possam ser resolvidas relativamente a deri-
vada y’e expressas na forma

V' =flxy). (8.38)

Lembramos que uma solugao de (8.38), num intervalo /, € qualquer fungao, por exemplo
y = Y(x), que é derivavel em / e verifica a igualdade Y (x)=f[x,Y(x)]para todo o x de /. No caso
linear provamos um teorema de existéncia e unicidade da solugao. o qual nos diz que existeumae
uma so solugao satisfazendo a condigao inicial previamente definida. Além disso, estabelecemos
uma formula explicita para determinar esta solugao.

Nao e isto o que se verifica em geral. Uma equagao linear pode ndo ter qualquer solugao que
satisfaga a condigao inicial dada, ou pode rer mais do que uma. Por exemplo, a equagao (y')* —
xy’+ y + 1 =0 nao tem qualquer solugao com y = 0 quando x = 0, uma vez que tal significaria
que (¥)* = —1 quando x = 0. Por outro lado, a equagdo y = 3y** tem duas solugées distintas,
Y,(x) = 0e Y,(x) = x*, verificando a condigao inicial y = 0 quando x = 0.

Entao o estudo das equagdes nao lineares € mais dificil devido a possibilidade da nao exis-
téncia ou nao unicidade das solugoes. Também mesmo na hipotese das solugoes existirem,
podera nao ser possivel determina-las explicitamente em termos de fungoes conhecidas. Algu-
mas vezes pode eliminar-se a derivada y “da equacgao diferencial e chegar a uma relagao da forma

Fx,y)=0

satisfeita por algumas, ou talvez todas, solugoes. Se esta equagao pode resolver-se exprimindo y
como fungao de x, obtemos uma forma explicita para a solugdo. Frequentemente,porém, a
equagao ¢ demasiado complicada para que possa explicitar-se o valor de y. Por exemplo, numa
se¢ao posterior, estudaremos a equagao diferencial

y }I—-x
y =
y+x

e verificaremos que toda a solugdo satisfaz necessariamente a relagao

-lilog (x* + %) +arctg 2 + C =0 (8.39)
X

para alguma constante C. Seria inutil tentar resolver esta equagao relativamente a y, exprimindo-
-0 em fungao de x. Num caso como estedizemos que a relagao (8.39) define uma formula impli-
cita para as solugdes. E pratica comum dizer que a equagio diferencial foi “resolvida” ou “inte-
grada” quando chegamos a uma formula implicita tal como F(x, y) = 0, na qual aparecem
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coordenadas x e y. Quando C toma todos os valores, o conjunto das curvas integrais obti-
das diz-se uma familia de curvas dependendo de um sé pardmetro.

Por exemplo, quando a equagao diferencial é y"= 3 aintegragdoda-nosy=3x +Ceascurvas
integrais constituem uma familia de retas, todas com o declive 3. A constante arbitraria C
representa, para cada reta, a ordenada do seu ponto de intersegao com 0Y.

Se a equagao diferencial € y’ = x, a integragao da-nos y = —;—x’ + C, e as curvas integrais
constituem uma familia de parabolas, como se mostra na fig. 8.7. Ainda aqui a constante C
define a ordenada do ponto de interse¢ao da curva com OY. A fig. 8.8 representa uma
familia de curvas, y = Ce*, que sdo as curvas integrais da equacdo diferencial y'= y. Mais
uma vez C representa a ordenada do ponto de interse¢do com 0Y. Neste caso C € tam-
bém igual ao declive da curva no ponto em que interseta 0Y.

Na fig 8.9. representa-se uma familia de retas nao paralelas. Sdo as curvas integrais da
equacao diferencial

dy 1(
y=x-—--
dx 4

dy¥ .
-, 8.41
| dx.-) (8.41)

Fig. 8.9. Curvas integrais de equagao dife- Fig. 8.10. Uma solu¢ao da equagao

rencial. (8.41) que nao ¢ elemento da familia na
o _dy 1 [dyy? equagao (8.42).
Y= %ax T dx) :

e a equagao
y=Cx—{C*. (8.42)

constitue uma familia de solugdes que depende dum s6 parametro. Esta familia admite uma
envolvente, isto €, uma curva gozando da propriedade de que em cada um dos seus pontos € tan-

APOSTOL — 14
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gente a uma das curvas da familia(*). Aenvolvente aqui € y = x? e 0 seu grafico € a curva a trace-
jadonafig. 8.9. A envolvente duma familia de curvas integrais € ela propria uma curva integral
porque o declive e as coordenadas dum ponto da envolvente coincidem com as duma das cur-
vas integrais da familia. Neste exemplo € facil verificar directamente que y = x* € solugao
de (8.41). Observe-se que esta solugdo particular ndao & elemento da familia definida por
(8.42). Podem obter-se outras solugoes que ndo pertencem aquela familia de curvas unindo
partes de curvas da familia com partes da envolvente. Na fig. 8.10 apresenta-se um exemplo.
A reta tangente em A resulta de fazermos C = —2 em (8.42) e a tangente em B de se consi-

derar C = —;— A solugao resultante y = f(x) vem definida por

—2x — | se -1,

x< —
flx) = {x* se —1<x<£ ],
Ix — 5% s€ x>}

Esta fung¢do admite derivada e satisfaz a equagao diferencial (8.41) para todo o valor de x. E evi-
dente que um numero infinito de exemplos semelhantes se pode construir do mesmo modo. Este
exemplo mostra que pode nao ser facil dar todas as solugdes possiveis duma equagao diferen-
cial.

Algumas vezes ¢ possivel estabelecer uma equagao diferencial de primeira ordem verificada

por todos os elementos duma familia de curvas a um parametro. Mostraremos isso com dois
exemplos.

ExempLO 1. Achar uma equagao diferencial de primeira ordem satisfeita por todas as cir-
cunferéncias com centro na origem.

Resolugao. Uma circunferéncia de centro na origem e raio C tem por equagdo x? + y* = C2.
Quando C toma todos os valores positivos obtemos todas as circunferéncias de centro na ori-
gem. Para estabelecer uma equagao diferencial de primeira ordem admitindo estes circulos
como curvas integrais basta derivar a equagao cartesianada circunferéncia obtendo-se
2x + 2yy " = 0. Entao, cada circunferéncia satisfaz a equagéo diferencial y* = —x/y.

ExXEMPLO 2. Achar a equagao diferencial de primeira ordem para a familia de cir-
cunferéncias passando pela origem dos eixos coordenados e tendo os centros sobre 0.X.

Resolugdo. Se o centro duma circunferéncia ¢ o ponto (C, 0) e se passa pela origem, 0
teorema de Pitagoras diz-nos que cada ponto (x, y) da circunferéncia verifica a equagdo

(x — CF + y* = (7, que pode também escrever-se

X242 —=2Cx=0. (8.43)

(*) E inversamente, cada membro da familia e tangente a envolvente.
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Para estabelecer uma equagdo diferencial que admita estas circunferéncias como curvas
integrais, derivamos (8.43) e obtemos 2x + 2yy'— 2C= 0 ou

x+y'=0C. (8.44)

Uma vez que esta equagao contém C, ¢é satisfeita unicamente por aquela circunferéncia a que
corresponda o mesmo valor de C em (8.43). Para obter uma equagéo diferencial satisfeita
por todas as curvas de(8.43) devemos eliminar C. Poderiamos derivar (8.44) paraobtermos 1 +
yy” + (y’)* =0. Esta é uma equagao diferencial de segunda ordem verificada por todas as curvas
(8.43). Podemos obter uma equagao diferencial de primeira ordem, gozando da mesma proprie-
dade, eliminando algebricamente C entre (8.43) e (8.44). Substituindo em (8.43) C por x + )y,
obtemos x* 4+ y* — 2x(x + '), uma equagao diferencial de primeira ordem que resolvida
relativamente a y" nos da y’ = (3* — x)/(2xy).

A'fig. 8.11. representa o que se chama um campo direccional de uma equagio diferencial. E
muito simplesmente um conjunto de pequenos segmentos de reta tangentes as varias curvas
integrais. O exemplo particular representado na fig. 8.11. ¢ um campo direcional da equagaoy’

S }".

¥
A / /
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Ay 7 e
7 b Ve g
Py ~ /
/// ,/ - -
~ “ - -
I L P —
5:-‘_.’#-’-—-
f:-—. L oY
--...,"'“--..-"'"""’--.
. — -"“"-.
SIS~ T~ < T~
~ \‘“"\ \\ ~
\ \‘» \ \ \
NN
\
h SN \ N
NN \
N\ \
NN
\

Fig. 8.11. Um campo direcional para a equagao diferencial y* = y.

Pode construir-se um campo direcional sem resolver a equagao diferencial. Escolhe-se um
ponto, por exemplo (a, b), e determinamos o numero f(a, b) obtido por substituigao no segundo
membro da equagao diferencial y* = f{x, y). Se existir uma curva integral que passe por esse
ponto, o seu declive ai deve ser igual a f{a, b). Portanto, se tragarmos um pequeno segmento de
reta passando por (a, b) e com esse declive ele pertencera ao campo direcional da equagao
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diferencial dada. Tragando varios destes segmentos de reta podemos obter uma ideia clarado
comportamento geral das curvas integrais. Algumas vezes tal informagao qualitativa acerca da
solu¢ao pode ser tudo o que necessite saber-se. Chama-se a atengdo para o fato de que pontos
diferentes (0, b) do eixo 0Y originam curvas integrais distintas. Isto dd-nos uma justifica-
¢io de indole geométrica do aparecimento duma constante arbitraria a0 integrar-se uma
equacdio diferencial de primeira ordem.

8.22. Exercicios

Nos Exercicios 1 a 12, determinar uma equagao diferencial de primeira ordem que tenha
como curvas integrais a familia de curvas dada.

1. 2x + 3y = C. 6. x2 + )" +2Cy = L.

2. y=Ce ™, 7.y = C(x = 1)e".
3.2—-y=C_C 8. Yx +2) =Clx —2).
4. xy = C. 9. y =Ccosx.

5. v* =Cx. 10. arctg y + arcsenx = C,

11. Todas as circunferéncias que passam pelos pontos (1, 0) e (—1, 0).
12. Todas as circunferéncias passando pelos pontos (1, 1) e (—1, —1).

Na constru¢dao dum campo direcional duma equacao diferencial, algumas vezes o tra-
balho pode ser consideravelmente reduzido se primeiramente localizamos aqueles pontos nos

quais o declive y“tem um valor constante C. Para cada C, estes pontos estao situados sobre uma
curva chamada isoclinica.

1 3 .
5 1, 5 e 2 para a equagao

diferencial y* = x* + y?. Com o auxilio das isoclinicas, construir o campo direcional

para a equagao e tentar determinar a forma da curva integral passando pela origem.

14. Mostrar que as isoclinicas da equagao diferencial y* = x + y constituem uma familia

de retas a um parametro. Tragar as isoclinicas correspondentes aos declives O,

13. Tragar as isoclinicas correspondentes aos declives constantes

3 ryge - L4 . - - .
+ = +1,+ =50 + 2. Com o auxilio das isoclinicas, construir um campo direcional ¢

desenhar a curva integral passando pela origem. Uma das curvas integrais ¢ também
uma isoclinica; determinar esta curva.
15. Tragar varias isoclinicas e construir um campo direccional para a equagao

o dy\?

r=X= 7
Y= ax T\dx,

Se o campo direcional for cuidadosamente desenhado poder-se-a determinar uma familia

de solugdes desta equagao a um parametro,a partir apenas do aspecto do campo
direcional.

8.23. Equagoes diferenciais de primeira ordem de variaveis separaveis

Uma equacao diferencial de primeira ordem da forma y "= f{x, y).na qual o segundo membro
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J(x, y) se pode exprimir como um produto de dois fatores, um dependendo unicamente de xeo
outro unicamente de y, diz-se uma equagao de varidveis separadveis.Exemplos destas equagoes
sdoy = x3y =y, y =senylogx, y’ = x/tg y, etc. Assim uma equagéo de variaveis separaveis
pode apresentar-se na forma

¥ = Q(x)R(y),

onde Q e R sao fungoes dadas. Quando R (y) # 0, podemos dividir ambos os membros por aquele
fator e escrever a equagao diferencial na forma

A(y)y' = Q(x),

onde se fez A(y) = 1/R (). O teorema seguinte diz-nos como encontrar uma formula implicita
que seja satisfeita por qualquer solugao duma tal equagao.

TeEOREMA 8.10. Seja y = Y(x) qualquer solugao da equagao diferencial de variaveis
separaveis

A(y)y' = O(x) (8.45)
tal que Y’ seja continua num intervalo aberto 1. Se ambas as fungées Q e a fungdo composta

A o Y sdo continuas em I e G é uma qualquer primitiva de A, isto é, qualquer fungdo tal que
G’ = A, entdo a solugao Y satisfaz a formula implicita

G(y) = .I' O(x) dx + C (8.46)

para algum valor de C constante. Inversamente, se y satisfaz a (8.46) entdo y é uma solugdo de
(8.45).

Demonstragao. Uma vez que Y € uma solugao de (8.45), devemos ter
A[Y(x)]Y'(x) = O(x) (8.47)
para todo o x em /. Visto que G’ = A, esta equagao vem
G'[Y()]Y'(x) = Qx).

Mas, pela regra da derivada da fung@ao composta, o primeiro membro € a derivada da fungao
composta G ¢ Y. Portanto G ¢ Y € uma primitiva de Q, o que significa que

GLY()] = | Q@) dx + C (8.48)

para algum C constante. Esta € a igualdade (8.46). Inversamente, se y = Y(x) satisfaz a (8.46)
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por derivagao obtemos (8.47), a qual mostra que Y ¢ uma solugdo da equagao diferencial (8.45).

Nota: A formula implicita (8.46) pode ser expressa em fungao de A. De (8.47) resulta

[ALY0]Y(x) dx = | Q) dx + C.

Se efetuarmos a substituigdao y = Y(x), dy = Y '(x)dx no integral da esquerda, a equagao vem

A()dy = | Q@) dx + C. (8.49)

-

Uma vez que o integral indefinido J-A (v)dy representa qualquer primitiva de 4, a equagao (8.49)
¢ outra forma de escrever (8.46).

Na pratica a formula (8.49) obtém-se diretamente de (8.45) por um processo puramente
mecanico. Na equagao diferencial (8.45) escrevemos dy/dx para a derivada y e em seguida con-
sideramos dy/dx como uma fragao para obtermos a igualdade 4 (y)dy = Q(x)dx. Basta depois
colocar simbolos de integragdo em ambos os membros da igualdade e adicionar-lhe a constante
C para obtermos (8.49). A justificagdo para este processo mecanico € proporcionada pelo
Teorema 8.10. Este processo € mais um exemplo evidenciando a eficacia da notagao de Leibniz.

EXEMPLO. A equagao nao linear xy’ + y = p? & de variaveis separaveis porque pode escrever-
se na forma
yooo 1 (8.50)
=1 x’ '
desde que y(y — 1) # 0 e x # 0. Neste caso as duas fungdes y = 0 e y = | sao evidentemente
solugOes de xy* + y = y%. As restantes solugoes, se existirem, satisfazem a (8.50) e por isso,
devido ao teorema (8.10),tambem satisfazem a

[L _
Wy —1)

dx |
X

(s

para algum valor constante K, Uma vez que a fungdo integranda do primeiro membro é
1/(y — 1) — 1/y, quando integramos obtemos

logly — 1] — log|y| = log |x| + K.

Daqui resulta |(y — 1)/y|=|x|e* ou (y — 1)/y = Cx para certo valor de C. Resolvendo relati-
vamente a y obtemos a formula explicita

(8.51)
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de declive m passando pela origem, cuja equagdo € y = mx para qualquer ponto (x, y)
sobre a reta: em particular, o ponto (I, m) pertence a reta Suponhamos agora, por
uma questio de simplicidade, que existe uma curva integral a passar por cada ponto da
reta y = mx. O declive da curva integral que passa pelo ponto (a, b) desta reta € ffa, b) =
= fta, ma). Se¢ a # 0 podemos usar a propriedade de homogeneidade (8.53) para escrever-
mos ffa, ma) = f(1, m). Por outras palavras, se (a, b) # (0, 0), a curva integral por (a, b)
tem o mesmo declive que a curva integral que passa por (1, m). Portanto a reta y = mx ¢
uma isoclinica, como fora afirmado. (Pode também mostrar-se que estas sio as unicas
isoclinicas duma equag¢io homogénea.)

Esta propriedade das isoclinicas sugere uma propriedade das curvas integrais conheci-
da por invariancia a respeito de transformagoes de semelhanga. Lembramos que uma trans-
formagido de semelhanga transforma um conjunto S num novo conjunto &S, obtido de §
por multiplicagio das coordenadas de cada ponto por um fator constante k& > 0. Cada
reta passando pela origem permanece fixa sob uma transformagio de semelhanga. Por-
tanto, as isoclinicas duma equag¢do diferencial homogénea ndo variam por transforma-
¢Oes de semelhanga; por esta razdo o campo direcional também ndo se altera. Isto sugere
que as transformagoes de semelhanga transformam curvas integrais em curvas integrais.
Para se demonstrar isto analiticamente supde-se que S € uma curva integral definida por
uma formula explicita

Dizer que S ¢ uma curva integral de y* = f(x, y) significa que se tem
F'(x) = f(x, F(x)) (8.56)

para todo o x sob consideragdo. Escolhe-se agora um ponto qualquer (x, y) de £S. Entdo o ponto
(x/k, v/k) pertence a S e por isso a suas coordenadas satisfazem a (8.55), pelo que se tem y/k =
F(x/k)ouy = kF(x/k),isto &, a curva kS € definida pela equagao y = G(x),com G(x) = kF(x/k).
Chama-se a atengao para a derivada de G definida por

G'(x) = I\P(i) i- = F(i—) .

Para provar que kS € uma curva integral de y* = f(x, y) bastara mostrar que G '(x) = f(x, G(x))
ou, 0 Que € a mesma coisa, que

. (i) _ f(_x, kF(i) ) . (8.57)

Mas substituindo x por x/k na equagio (8.56) ¢ usando a propriedade da homogeneidade
com ! = k, obtem-se.

(E) =5 ) =k (3))
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0 que prova (8.57). Em resumo, mostrou-se que XS € uma curva integral sempre que S o seja.
Um exemplo simples no qual esta propriedade geométrica ¢ quase evidente ¢ a equagao
»y" = —x/y cujas curvas integrais constituem uma familia de circunferéncias dependendo de
um parametro, de equagao x? + y* = C.

Pode também mostrar-se que sendo as curvas integrais da equacgdo diferencial de pri-
meira ordem y"f{x, y) invariantes a respeito duma'transformagido por semelhanga, entdo
a equacio diferencial é necessariamente homogénea. ‘

8.26. Exercicios

I. Mostrar que a substituigao y = x/v transforma a equagao homogénea y’ = f{x, y) numa
equacao diferencial de primeira ordem para », a qual é de variaveis separaveis. Algumas vezes
esta substituicao conduz a integrais que sao mais faceis de calcular que os obtidos pela subs-
tituigdo y = xv ja estudada no texto.

Integrar as equagoes diferenciais dos Exercicios 2 a 11.

—J’

2,y =— 7. X%y 4+ xy 4+ 2y* =0,
) ¥ . : .
) y 8. V¥  +(x2 = xy + )y =0.
Ly =1+=. ' S
* (x* + xy + 9
x* + xy + y*?
xt 4 2y? 9. y' = = e
4. y = —-. ' x(x* + 3xy + %)
. v
i 10, y’ z + se z
Ly == n- .
5. (2 = %) + 3xy =0. : X X

T x(y + 4x)y" + plx +4y) = 0.

8.27. Alguns problemas fisicos e geométricos conduzindo ao estabelecimento de equagdes
diferenciais de primeira ordem

Analisamos a seguir alguns exemplos de problemas de natureza fisica ¢ geométrica que con-
duzem a equagoes diferenciais de primeira ordem que sao ou homogéneas ou de variaveis
separaveis.

Trajetorias ortogonais. Diz-se que duas curvas se intersetam ortogonalmente num ponto se
as respetivas tangentes nesse ponto sao perpendiculares. Uma curva que interseta cada ele-
mento duma familia de curvas ortogonalmente chama-se uma trajetoria ortogonal dafamilia.
Na fig. 8.13 estdo representados exemplos. Problemas respeitantes a trajetorias ortogonais sao
de importancia,quer na matematica pura, quer na aplicada. Por exemplo, na teoria de escoa-
mento de fluidos duas familias de curvas ortogonais dizem-se /inhas equipotenciais e linhas de
corrente respetivamente. Na teoria do calor sao conhecidas por linhas isotérmicas e linhas de
Sluxo.

Suponhamos uma dada familia de curvas satisfazendo a uma equagao diferencial de primeira
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ordem, por exemplo
v =f(x,p). (8.58)

O nimero f(x, y) é o declive duma curva integral que passa por (x, y). O declive de cada
trajetoria ortogunal nesse ponto € o simétrico do reciproco - |/f(x, y), de maneira que as
trajetorias ortogonais satisfazem a equacio diferencial

1
f(x,p)

y' =

(8.59)

Se (8.58) & de variaveis separaveis, entdo (8.59) é-o também. Se (8.58) ¢ homogénea, entao(8.59)
¢ também homogeénea.

ExempLO 1. Determinar as trajetdrias ortogonais da familia de circunferéncias passando
pela origem e cujos centros estao sobre OX.

Resolugdo. No Exemplo 2da segdo 8.21 vimos que esta familia ¢ definida pela equagao car-
tesiana x? + y? —2Cx = 0 e que satisfaz a equagdo diferencial y* = (»* — x? x?)/(2xy). Subs-
tituindo o segundo membro pelo simétrico de reciproco, encontramos que as trajetorias
ortogonais satisfazem a equacio

2xy

Esta equagao homogeénea pode integrar-se recorrendo a substitui¢ao y = vx, e conduz a familia
de curvas integrais

x*4 2 =2Cy=0.

Esta ¢ uma familia de circunferéncias passando pela origem e tendo os centros sobre o eixo 0Y.
Na fig. 8.13 estdo representadas algumas curvas destas familias.

Problemas de perseguigao. Um ponto Q € obrigado a mover-se ao longo de determinada curva
plana C,. Outro ponto £ no mesmo plano “persegue” Q, isto €, P move-se de tal maneira que a
diregdo do movimento de P estd sempre dirigida para Q. O ponto P descreve pois outra
curva C, chamada a curva de perseguigdo. No exemplo da fig. 8.14 C, € o eixo 0Y. Num pro-
blema de perseguigdo pretende-se determinar a curva C, quando a curva C, € conhecida
e ¢ dado algum elemento adicional dizendo respeito a P e a Q, por exemplo uma relagao
entre as respetivas posigdes, ou entre as respetivas velocidades.

Quando dizemos que a diregdo do movimento de P esta constantemente dirigida para Q,
queremos significar que a tangente a C; em P passa pela posigdo correspondente de Q. Portan-
to, se representamos por (x, y) as coordenadas retangulares de P num dado instante, ¢ por
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Fig. 8.13.Circulos ortogonais. Fig. 8.14. A tractriz como
uma curva de perseguigio.
A distancia de Pa Q € cons-
tante.
(X, Y) as de Q no mesmo instante, devemos ter
Y — vy
y =——2 (8.60)

X —Xx

A informagao adicional vai permitir-nos considerar X e ¥ como fungoes conhecidas de x e y,
caso em que a Equagao (8.60) se transforma numa equagao diferencial de primeira ordem para
y. Consideremos agora um caso em que essa equagao ¢ de variaveis separaveis.

ExeMPLO 2. Um ponto Q move-se sobre uma reta C, e um ponto P persegue Q de maneira
que a distancia de P a Q tenha um valor constante k > 0. Se P néo esta inicialmente sobre C,,
determinar a curva de perseguigao.

Resolugao. Consideremos C, sobre o eixo 0Y e coloquemos inicialmente P no ponto (&, 0).
Visto a distancia de P a Q ser constante, k, devera verificar-se (X —x)* + (Y—y)*=k%. Mas
X=0em C,,de maneira que temos Y- y=1/k*-x? e a equagao diferencial (8.60) escreve-se

s 9
. x ka— —_— xn

y
—X
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Arca = A(v)

Fig. 8.15. Escoamento dum liquido através dum orificio.

EXeEMPLO 3. Consideremos o caso particular em que A(y) € constante, isto ¢ A(y) = A4
para todo o y ¢ suponhamos que o nivel do liquido desce de 10 metros para 9 metros em
10 minutos (600 segundos). Estes dados podem ser introduzidos nos limites de integragio
e da equacio diferencial (8.61) deduz-se:

9 g * 600
— -(-i-}—_ = J dt,
104/y 0

onde k = 4,84 ,/4. Da equagao anterior pode calcular-se k porque

V10 — V9

_ V10 =3
300

= 600k ou k

Agora podemos calcular o tempo necessario para que o nivel des¢a dum dado valor para
outro. Por exemplo, se no instante 7, 0 nivel € de 7 metros ¢ no instante ¢, ¢ de | metro
(#, e t, medidos em minutos, por exemplo) entdo temos

2 | \ * 601
—J i"-— = J (“,

I "
7 \ } 601y



19.

21.
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23.
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5/3 centimetros quadrados. Se o nivel da dgua ¢ inicialmente 2 metros acima do orifi-

cio, determinar o tempo necessario para que o nivel desga para | metro.

Considerar o problema anterior. Se ¢ também langada agua no tanque na razao de 100 pés

cubicos por segundo, mostrar que o nivel da agua se aproxima do valor (25/24)* pés acima

do orificio, independentemente do nivel inicial da agua.

Um tanque tem a forma dum cone circular reto com o vértice para cima. Determinar
0 tempo necessario para esvaziar o tanque dum liquido de que esté cheio, atravésde
um orificio feito na base. Exprimir o resultado em fun¢io das dimensdes do cone e da

area A, do orificio.

A equagdo xy” — p’ + (I — x)y = 0 possui uma solugdo da forma y = €™, onde m ¢

constante. Determinar esta solugao explicitamente.

Resolver a equagao diferencial (x + y?) + 6xy?y’ = 0 por uma adequada mudanga de

variaveis que a transforme numa equagao linear.

Resolver a equagdo diferencial (1 + y?e*)y” + y = 0 recorrendo a uma mudanga

de variaveis da forma y = ue™, com m constante ¢ u uma nova fungao desconhecida.
(a) Dada uma fungdo f que verifica as relagGes

/

1
2(x) =f(;) se x>0, f(I)=2,

'

se y = f(x) provar que y verifica a equagao diferencial da forma
x*y" +axy +by =0,

onde a e b sao constantes. Determinar a e b.
(b) Determinar uma solugdo da forma f{x) = Cx".

I 25. (a) Sejauuma solugdonao nuladaequacgao diferencial de segunda ordem

Y+ Px)y + Qx)y =0.
Mostrar que a substituigdo y = we transforma a equagao
Y+ Px)y” + Q(x)y = R(x)

numa equagao linear de primeira ordem para v’
(b) Determinar uma solugdo nao nula da equagao y”— 4y’ + x*(y"— 4y)=0por tentativas
e aplicar o método da alinea (a) para encontrar a solugao de

yo=4y + xz(y’ —4y) = 2xe— %13
tal que y =0e y" = 4 quando x = 0.

Cientistas do Ajax Atomics Works isolaram um grama de um novo elemento radioa-
tivo. Verificou-se que se desintegrava proporcionalmente ao quadrado da parte exis-
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NUMEROS COMPLEXOS

9.1. Introdugao historica.

A equagdo quadratica x? + 1 =0 nao admite solugGes no conjunto dos nimeros reais, porque
ndo existe nenhum numero real cujo quadrado seja —1. Para se definirem solugdes para tais
equagoes foram introduzidos novos tipos de numeros, chamados numeros complexos. Estes
serdo analisados neste breve capitulo e mostraremos quanto sio importantes na resolugio
de equagdes algébricas e no cilculo diferencial e integral.

Ja no século xvi se introduziu o simbolo \/——_l para exprimir as raizes da equagao x? +
+ 1 = 0. Este simbolo, mais tarde representado pela letra i, foi considerado como um numero
ficticio ou imaginario, o qual podia ser tratado algebricamente como qualquer nimero real,
exceto que o seu quadrado era —1. Assim, por exemplo, o polindmio quadratico x* + | podia
fatorizar-se escrevendo x* + | =x* —i* =(x —i)(x + i) e as solugdes da equagdo x* + | =0
foram definidas como sendo x = + i, sem qualquer preocupagio de considerar o significado ou
validade de tais formulas. Expressdes tais como 2 + 3i foram designadas por niimeros comple-
xos e foram utilizados duma maneira meramente formal durante cerca de 300 anos, antes que
fossem descritos duma maneira que pudesse ser considerado satisfatéria na atualidade.

Em principios do século XiX, Karl Friedrich Gauss (1777-1855) ¢ William Rowan Ha-

milton (1805-1865), independentemente um do outro e quase simultaneamente, propuse-
ram a ideia de defini¢io dos niumeros complexos como pares ordenados (a, b) de nimeros

reais dotados com certas propriedades especiais. Esta. ideia esta largamente aceite hoje
em dia e serd descrita na sec¢do seguinte .

9.2. Definigoes e propriedades

DEFINIGAO. Se a e b sdo niimeros reais, o par (a, b) diz-se um mimero complexo se a igual-
dade, adigao e multiplicagao de pares se definem do modo seguinte:

(a) Igualdade: (a, b) = (c, d) significaa =ce b = d.

(b) Soma: (a, b) + (¢, d) = (a + ¢, b + d).

(c) Produto: (a, b) (c, d) = (ac — bd, ad + bc).

415
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A definigdo de igualdade diz-nos que o par (@, b) deve ser considerado como um par ordenado.
Assim, o nimero complexo (2. 3) ndo € igual a (3.2). Os numeros a e b sao as componentes de (a,
b).A primeira, a,é a parte real do nimero complexo; a segunda, b, é a parte imaginaria. Observe-
se que o simbolo i =\ — | ndo aparece em toda esta definigao. Introduzir-se-a aqui i como um
numero complexo especial que goza de todas as propriedades algébricas prescritas ao simbolo
ficticio V' — | pelos matematicos antigos. Contudo, antes de fazermos isso, discutiremos as
propriedades fundamentais das operagoes que acabamos de definir.

TEOREMA 9.1. As operagdes de adigdo e multiplicagdo de numeros complexos gozam das
propriedades comutativa, associativa e distributiva, isto é, se x, y, e z sGo numeros complexos
arbitrarios, tem-se:

Propriedade comutativa: x + y =y + X, Xy = JX.
Propriedade associativa: x + (v + z) = (x + y) + z, x(yz) = (xy)z.
Propriedade distributiva: x(y + z) = xy + xz.

Demonstragdo. Todas estas propriedades sao facilmente verificadas diretamente a partir da
defini¢do de soma e produto. Por exemplo, para demonstrar a propriedade associativa para a

multiplicagdo, escrevemos x = (x,, X,), ¥ = (¥,» Vo), z = (2,, z,) € observamos que
X(yz) = (X, Xa)(V171 — Vala, V122 + VaZh)
= (V1121 = 1e2a) — (1422 + ez X1(1Ze + 122) + Xo( Y121 = VaZa))
= (X0 — Xo)a)z — ()2 + X2 V122 (-"1,1'2 + -"2,.1’1)-71 + (xl,.vl - -\'2,1"2)22)

= (X1 — X2)a, Ny + XenilZy, 22) = (X)Z.
As propriedades comutativa e distributiva podem demonstrar-se de modo analogo.

O Teorema 9.1 mostra que o conjunto de todos os numeros complexos satisfaz aos trés
primeiros axiomas do sistema dos numeros reais, como se apresentaram na Se¢io 1. 3.2.
Demonstraremos ainda que os Axiomas 4, 5 ¢ 6 sao tambem satisfeitos.

Visto que (0, 0) + (a, b) = (a, b) para qualquer complexo (a, b), o nimero complexo (0,0) é o
elemento neutro para a adigao. Chama-se o numero complexo zero. De modo semelhante o
numero complexo (1, 0) é o elemento neutro para a multiplicagao, porque

(a, b)(1,0) = (a, b)

para todo o (a, b). Deste modo,o Axioma 4 ¢ verificado com (0, 0) como elemento neutro para a
adigao e (1, 0) como o elemento neutro para a multiplicagao.
Para verificar o Axioma 5 fazemos notar muito simplesmente que (—a, —b) + (a, b) =(0,0),
de modo que (—a, —b) € o simétrico de (a, b). Escrevemos —(a, b) em lugar de (—a, —b).
Finalmente provaremos que cada numero complexo nao nulo admite um reciproco relativa-
mente ao elemento neutro(1,0). Isto é, se (a, b)+ (0,0) existe um nimero complexo (¢, d) tal que
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(a, b)(c,d) = (1,0).
Com efeito esta equagdo ¢ equivalente ao par de equagoes
ac — bd = 1, ad + bc =0,
que admitem a solugao unica

C = a tl“ =b

v TEre

9.1)

A condigdo (a, b) # (0,0) assegura que a* + b? # 0, pelo que o reciproco € bem definido. Escreve-
mos (a, b))~ ou 1/(a, b) para representar o reciproco de (a, b). Assim temos

L _ ( L. ,,*h - se (a, b) # (0,0). (9.2)
(a, b) a4 b* a” 4+ b"

A discussdo precedente mostra que o conjunto de todos os numeros complexos satisfaz aos
seis axiomas do sistema dos nimeros reais. Por conseguinte, todas as leis da algebra estabeleci-
das a partir daquele conjunto de axiomas sao também validas para os nimeros complexos. Em
particular os Teoremas 1.1 a 1.15 da se¢do 1.3.2 sdo todos vilidos tanto para nimeros
complexos como para os numeros reais. O Teorema 1.8 diz-nos que o quociente de ni-
meros complexos existe, quer dizer se (a, b) e (c, d) sio nimeros complexos sendo (a, b) #
(0, 0) existe precisamente um numero complexo (x, y) tal que (a, b) (x, y) = (¢, d). Com efeito
tem-se (x, y) = (¢, d) (a, b)™".

9.3. Os numeros complexos como uma extensao dos numeros reais

Representamos por C o conjunto dos nimeros complexos. Consideremos o subconjunto C,
de C formado por todos os complexos da forma (a,0),isto &, todos os complexos com a parte ima-
ginaria nula. A soma ou produto de dois elementos de C, pertence aindaa C,. Comefeito temos

(@a,0) 4 (b,0) = (a + b, 0) e (a, 0)(b, 0) = (ab, 0) . (9.3)

Isto prova que podemos somar ou multiplicar dois numeros de C,, adicionando ou multipli-
cando unicamente as partes reais ou, por outras palavras, com respeito a adi¢do € a multi-
plicagido, os numeros em C, comportam-se exactamente como se fossem reais. O mesmo é.
valido para a subtragdo e divisido, visto que —(a, 0)=(—a,0) e (b,0)"' =(b",0)se b# 0.
Por esta razdo, nido se¢ faz habitualmente qualquer distingdo entre 0 nimero real x e 0.
complexo (x, 0) cuja parte real € x; assim identificamos x ¢ (x, 0) e escrevemos x = (x, 0).
Em particular, escrevemos 0 = (0, 0), 1 = (1,0), —1 = (=1, 0), etc. Por este fato podemos
pensar do sistema de numeros complexos como uma extensido do sistema dos nimeros reais.

A relagado entre C, e o sistema dos numeros reais pode estabelecer-se de maneira algo
diferente. Seja R o conjunto dos numeros reais e represente / uma fun¢do que aplica cada
numero real x no numero complexo (x, 0), quer dizer se x R faz-se
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flx) =(x,0).

A fungao fassim definida tem dominio R e contradominio C e aplica elementos distintos de R
em elementos distintos de C,. Devido a estas propriedades diz-se que festabelece uma corres-
pondencia biunivoca entre R ¢ C,. As operagdes de adigao e multiplicagdo sdo conservadas sob
esta correspondéncia. Por outras palavras temos

fla + b) = f(a) + f(b) e flab) = fla)f(bh),

sendo estas equagoes simples reformulagoes de (9.3). Uma vez que R satisfaz aos seis axiomas, o
mesmo se verifica com C,. Os dois corpos de numeros R e C, dizem-se isomorfos; a fungao fque
os relaciona, como se referiu, chama-se um isomorfismo. Pelo que respeita as operagdes de adi-
¢d0 e multiplicagiio nio se faz qualquer distingdo entre corpos isomofos. E por isso que identi-
ficamos o numero real x com o nimero complexo (x, 0). O sistema dos nimeros complexos C
diz-se uma extensao do sistema dos numeros reais R porque contém um subconjunto C, que
¢ isomorfo com R.

O corpo C, pode também ser ordenado de tal maneira que os trés axiomas de ordem da
se¢io 13.4 sejam verificados. Com efeito, definimos (x, 0) como positivo se e sé se x > 0. E
trivial verificar que os Axiomas 7, 8 e 9 sao satisfeitos, pelo que C, € um corpo ordenado. O iso-
morfismo f descrito atras, também preserva a ordem ja que aplica os elementos positivos de R
nos elementos positivos de C,.

9.4. A unidade imaginaria i

Os numeros complexos possuem algumas propriedades nao possuidas pelos numeros reais.
Por exemplo a equagdo quadratica x? + 1 = 0, que ndo admite solugdo no campo real, pode

agora resolver-se com auxilio dos numeros complexos. Na verdade o numero complexo
(0, 1) € solugdo porque se tem

O0,12=0,DH0,1)=0-0—-1-1L0-141-0)=(=1,0)=—1.
O numero complexo (0, 1) representa-se por i e chama-se a unidade imaginaria. Goza
da propriedade do seu quadrado ser —1, i = —1. O leitor pode facilmente verificar que (—i)* =
—1 pelo que x = —i & outra solugao da equagao x* + 1 = 0.

Podemos agora relacionar a ideia de par odenado com a notagio usada pelos antigos mate-
maticos. Observemos em primeiro lugar que a defini¢gao de multiplicagao de numeros complexos
da-nos (b, 0) (0, 1) = (0, b) e daqui resulta

(a, b) = (a,0) + (0, b) = (a, 0) + (b, 0)(0, 1).
Portanto, se escrevermos @ = (a, 0), b = (b, 0) e i = (0, 1), obtemos (a, ) = a + bi. Por outras
palavras provémos (8] seguinte.

TEOREMA 9.2. Todo o numero complexo (a, b) pode expressar-se na forma (a, b) = a + bi.

A vantagem desta notagao reside na facilidade de manipulagao de formulas contendo a
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adig¢ao e a multiplicagao. Por exemplo se multiplicamos a + bi por ¢ + di, aplicando as proprie-
dades distributiva e associativa e substituindo i* por —1, obtemos

(a + biMc + di)y = ac — bd + (ad + bc)i

que estara, evidentemente, de acordo com a definigao de multiplicagao. De modo analogo, para
calcular o reciproco dum complexo nio nulo a + bi, podemos escrever

] a — bi a — bi a bi

a+bi (a+ bi)a —bi)— a* + b a* + hz_uz+ bh*

Esta formula esta de acordo com a dada em (9.2).

Com a introdugao dos nimeros complexos lucramos muito mais do que a possibilidade de
resolver o simples equagdo quadratica x? + 1 = 0. Consideremos, por exemplo, a equagao qua-
dratica ax® + bx + ¢ =0, onde a, b, ¢ sdo numeros reais e a # 0. Completando o quadrado pode-
mos escrevé-la na forma

( b dac — b* _

2a da-

0.

Se 4ac — b* < 0, a equagio tem raizes reais (—b + /¥ — 4ac)/(2a). Se 4ac — b* > 0, o pri-
meiro membro ¢ positivo para todo o real x e a equagao nao tem raizes reais. Neste caso,
porem. admite duas raizes complexas dadas pelas formulas

b Ndac — b b {_l dac — b*

- — —— e ro = — — —

=
2(! 2:1 2(1 2d

(9.4)

Em 1799 Gauss provou que toda a equagao algebrica de forma

Ay + ayx + ax* + - +ax" =0,

onde a,, a,, a,, ..., a,s30 numeros reais arbitrarios, com a, # 0, tem uma raiz pertencente
10 corpo dos numeros complexos se 7 = 1. Além disso, se os coeficientes a,, a,, ..., @,530
complexos, existe uma solugdo no sistema dos numeros complexos. Esta afirmagdo é
conhecida por teorema fundamental da algebra*. Por seu intermédio se conclui ndo ser
necessdrio construir numeros mais gerais que os numeros complexos para resolver as
equagdes algébricas com coeficientes complexos.

9.5. Interpretacio geométrica. Modulo e argumento

Visto que um numero complexo (x, ¥) ¢ um par ordenado de nameros reais, pode ser represen-

+ Uma demonstragiao do teorema fundamental da algebra encontra-se em qualquer livro que trate da teoria das fungdes de variavel
complexa. Por exemplo, ver K. Knopp, Theory of Functions, Dover Publications, N. York, 1945 ou E. Hile, Analitic Function
Theory, vol. 1. Blaisdel Publi. 1959. Uma demonstragdo mais elementar e apresentada em 0. Schreier e E. Sperner, Introduction 1o
Modern Algebra and Matrix Theory, Chelsea Pub. C., 1951,
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tado geometricamente por um ponto no plano ou por um vector que una a origem com o ponto
(x,y), como se indica na fig. 9.1. Neste sentido, o plano X0Y € muitas vezes designado por plano
complexo. O eixo 0.X é o eixo real; o eixo 0Y diz-se o eixo imaginario. E frequente usarem-se as
palavras numero complexo e ponto indistintamente. Assim, referir-nos-emos ao ponto z em vez
de o ponto correspondente ao numero complexo z.

As operagdes de adigio e subtragdo de nimeros complexos admitem uma interpretagio geo-
métrica simples. Se dois nimeros complexos z, € z, s3o representados por setas da origem para
z, € para z,, respetivamente, entdo a soma z, + z, ¢ determinada pela regra do paralelogramo.
A seta que representa z, + z, € a diagonal do paralelogramo determinado por 0, z, e z,, como se
mostra na fig. 9.2. A outra diagonal esta relacionada com adiferengade z, e z,. Asetade z, para
z, ¢ paralela a setade Q para z, — z, e de igual comprimento; a seta no sentido oposto, de z, para
z,,esta relacionada do mesmo modo com z, — z,.

Se (x, y) # (0, 0), podemos exprimir x ¢ y em coordenadas polares,
X = rcosf, y = rsenl,
e obtemos,
x + iy = r(cos 0 + isenfl) . (9.5)

O numero positivo r, que representa a distancia de (x, ) a origem, chama-se o médulo ou valor
absoluto de x + iy e representa-se por |x + iyl Assim podemos escrever

X + iy] = Va2 4 2.

(X, V) = x 4 1y

I
I
I
) .
-y o= sen f]
I
I
1

Fig. 9.1. Representagdo geomeétrica do Fig. 9.2. Adi¢dao e subtragio de numeros
numero complexo x + iy. complexos representados geometricamente
mediante a regra do paralelogramo.

O angulo polar 0 chama-se um argumento de x + iy. Dizemos um argumento em vez de o
argumento, porque para um dado ponto (x, y) o angulo 0 ¢ determinado a menos de multi-
plos de 2. Por vezes € conveniente atribuir um Unico argumento a um nimero com-
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plexo. Pode conseguir-se isto restringindo 6 a tomar valores num intervalo semiaberto de
medida 2z Os intervalos [0, 27) ¢ (-7, 7] sdo frequentemente utilizados com esta finali-
dade. Nos utilizaremos a intervalo (-7, 7| e referir-nos-emos a 6 como sendo o argumento
principal de x + iy, representamos tal 6 por arg/x + iy). Por este fato, se x+iy+#0e
r=|x+ iy|, define-se arg(x + iy) como sendo o unico real 0 verificando as condigdes

x =rcos0, y=rsené, < 0L .

Para o numero complexo zero, o seu modulo € zero e convencionamos que qualquer numero real

@ pode ser usado como argumento.

Porque o médulo dum nimero complexo z é simplesmente o comprimento dum seg-
mento de reta, ndo surpreendera verificar que goza das propriedades dos valores absolu-
tos dos numeros reais. Por exemplo tem-se

z] >0 se z#0, e |2, — zp| = |2z — 24 .

Geometricamente o valor absoluto |z, — z,| representa a distancia entre os pontos z, € z, do
plano complexo. A desigualdade triangular

121 + 2o] < |zi] + |z

e igualmente valida. Em complemento temos as seguintes formulas para valores absolutos de
produtos € quocientes de nimeros complexos

|2y Za| = [24] |2 (9.6)

Se escrevemos z, = a + bi € z, = ¢ + di, obtemos (9.6) como consequéncia da identidade
(ac — bd)* + (bc + ad)* = (a* + b*)c* + d?).

A formula para |z,/zz| resulta de (9.6) se escrevemos z, como um produto

(8]
[

-
2= 22

ta
s

Se z = x + iy, 0 complexo conjugado de z ¢ o nimero complexo z = x — iy. Geometrica-
mente 2 representa o ponto simétrico de z relativamente ao eixo real. A definigio de con-
jugado implica que

1 z,/z

2 1/=2

/235 22 = |z|*

- - — [ - —
Htz=I5, 154, “1e2 =

A verificagao destas propriedades ¢ deixada ao leitor como exercicio.
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pelo que

]

et = ¢'e"[cos 1ncos v —seny sene + i(Cos ysent + sen i cos v)] .

Recorrendo as formulas de adi¢ao para cos(y + v) e sen(y + ) e a regra do produto de poten-
cias para expoentes reais, a igualdade anterior pode escrever-se

e‘e’ = e ""[cos (v + v) + isen(y + v)]. (9.11)

b

Visto ser @ + b = (x + u) + i(v + ¥), o segundo membro de (9.11) é e“7” e esta portanto

demonstrada(9.10).

TEOREMA 9.4. Todo o numero complexo z + 0 pode ser expresso na forma
- = re"”, (9.12)

em que r = |z| e 0 = arg(z) + 2nn, com n inteiro qualquer. Esta representagdo é a forma
polar de z.

Demonstragdo. Se z = x + iy, a representagao (9.5) da-nos
z = r(cos O + isenf), .

com r = |z|e f = arg(z) + 2nn, sendo n um inteiro qualquer. Mas fazendo x =0 e y = 0 em
(9.9), obtemos a formula

¢ = cos O/ + isenf,
0 que demonstra (9.12).

A representagao dos numeros complexos na forma polar (9.12) é particularmente vanta-
josa na multiplicagdo e divisao de numeros complexos. Por exemplo, se z, = re” e
z, = ry,€'®, temos

&

= re%rye'® = ryre’'? (9.13)

Portanto o produto dos modulos, r,r,, € 0 modulo do produto z,z,, de acordo com a equagao
(9.6) ¢ a soma dos argumentos,  + ¢, € um argumento do produto z,z,.

Quando z = re", a aplicagao reiterada de (9.13) da-nos a formula
z" = r"e'" = r"(cos nf + isennb),
vilida para qualquer inteiro n niio negativo. Também ¢ vilida para inteiros negativos n se

definimos z como sendo (z™' )" com m inteiro e positivo.
De modo andlogo tem-se
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0
2y nel {'_;E;w—m
Zq ree'® ry

pelo que o modulo de z,/z, é r,/r, e a diferenga ) — ¢ é um argumento possivel de z,/z,.

9.8. Funcoes complexas

Uma fungdo f, cujos valores sio nimeros complexos, diz-se uma fungido complexa. Se o
dominio de f é o conjunto dos numeros reais, f diz-se fungido complexa duma variavel real.
Se o dominio é um conjunto de nimeros complexos, f/ ¢ uma fun¢do complexa duma

variavel complexa. Um exemplo € a fungio exponencial definida pela equagio

f(z) =¢*

para todo o complexo z. Muitas das fungoes elementares mais familiares do calculo, tais

como a exponencial, o logaritmo e as fungOes trigonometricas, podem generalizar-se e

converter-se em fung¢des de variavel complexa. (Ver Exercicios na se¢do 9.10). Nesta es-
trutura mais geral aparecem com frequéncia novas propriedades. Por exemplo, a fungio
exponencial complexa ¢ periodica. Com efeito z= x + iy € se n ¢ um inteiro qualquer

tem-se

e = e'[cos (v + 2nw) + isen(y + 2nm)] = e“(cos v + iseny) = €.

Concluimos assim que f(z + 2nmni) = f(z), pelo que f'¢ periodica de periodo 2ni. Esta proprie-
dade da exponencial soO se revela quando estudamos a exponencial como uma fungao de
variavel complexa.

O primeiro estudo sistematico do calculo diferencial e integral de fungdes duma variavel
complexa foi feita por Cauchy, nos comegos do sec. XiX. Desde entio a teoria desenvol-
veu-se num dos mais importantes € mais interessantes ramos da matematica, tornando-se
indispensavel para os fisicos e engenheiros e tendo ligagdes com quase todos os ramos da
matematica pura. Nio faremos aqui o estudo dessa teoria. Analisaremos apenas uns rudi-
mentos do calculo com fungdes complexas duma varidvel real.

Suponhamos que fé uma fungao complexa definida no intervalo real /. Para todo o x em /
o valor da fungdao € um numero complexo, pelo que podemos escrever

J(x) = u(x) + iv(x),

onde u(x) e r(x) sao reais. Esta igualdade define duas fungoes reais u e v chamadas, respeti-
vamente, as partes real e imaginaria de f; a igualdade escreve-se mais resumidamente
S = u + ir. Conceitos tais como continuidade, derivagao e integracao de /' podem ser definidos
atraves dos conceitos correspondentes para u € r, como se indica na seguinte definigao.

DEFINICAO Se f = u + it, diz-se que f é continua num ponto se ambas as fungées u e v
Jorem continuas nesse ponto. A derivada de [ define-se pela igualdade

f(x) =u'(x) + iv'(x)
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u'(x) = e’ cos px — pe** senpx, v'(x) = xe* senpx + e cos fx .
Visto que f(x) = u'(x) + iv'(x), temos
f'(x) = ae**(cos fx + isenfx) + ife**(cos fx + isenpx)

= (a + iB)e"* % = 1",

estando portanto demonstrado o teorema.

O Teorema 9.5 origina algumas consequéncias de interesse. Por exemplo, se adoptamos
a notacio de Leibniz para os integrais indefinidos, podemos traduzir o Teorema 9.5 pela
igualdade

-~

ix
e dx = e (9.15)
f

quando ¢ # 0. Se fizermos = a + if e igualarmos a parte real e a parte imaginaria de
(9.15) obtemos as formulas de integragio

fe”‘ cos fx dx = ¢ (a cos fjx +r:8 senfix)
o” + p°
€
J‘e” senfix dx = e (x senﬁzx —_.f €os px) s
a4+ p°

as quais sao validas se a e § sao nao nulos.
Outra consequéncia do Teorema 9.5 € a ligagao entre exponenciais complexas e as
equagoes diferenciais de segunda ordem com coeficientes constantes.

TEOREMA 9.6. Seja dada a equagao diferencial
YV +ay +by=0, (9.16)

com a e b constantes reais. As partes real e imaginaria da fun¢do [ definidas em (-0, + o)
pela igualdade f(x) = €™ sdo solugées da equagdo diferencial (9.16) se e s6 se t é uma raiz
da equagdo caracteristica

t24+at+b=0.

Demonstragdo. Seja L(y) = y” + ay’ + by. Visto ser f'(x) = té~, teremos também

[ lx) = t?e™, pelo que L(f) = ¢*(¢* + at + b). Mas €~ nunca é nulo,visto que &* ¢~ =
= e% = 1. Por isso L(f) = 0 se e somente se 1> + at + b = 0. Mas,se escrevermos f'= u + iv,
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6. Demonstrar que toda a soma da forma

Sa(x) = 3a, + O (ajcos kx + by sen kx)
k=1

pode ser expressa como uma soma de exponenciais complexas

n
S,(x) = Z c e’
k=—n

com ¢, = %(ak— ib) para k = 1, 2, ..., n. Determinar as formulas correspondentes
parac_,.

7. (a) Se m e n sao inteiros, provar que

-
ein: e—t'm.r dx = 0 & m #n,
0 27 se m=n.

(b) Utilizar a alinea (a) para deduzir as relagoes de ortogonalidade para o seno e cosseno
(m e n sao inteiros, m?* # n?):

"2x 2 2r
Jo sen 71X cos mx dx =fo sen nx sen mx dx =f° cosnxcosmxdx =0,

27 2r
Jo sen® nx dx =f° cos’nxdx == si n#0.

8. Considere um nimero complexo z # 0. Fazer z = re”, onde 6 = arg(z). Seja z, = Re'™,
onde R= r'"e a = 6/n, e seja € = ™" com n inteird e positivo.
(a) Provar que z{'= z, isto €, z, € uma raiz de ordem n de z.
(b) Mostrar que z tem exactamente n raizes n-ésimas distintas

21 €2y, E:!‘."1 rerr E"_l:l *
e que estao situadas sobre uma circunferéncia de raio R definindo entre si arcos iguais.
(c) Determinar as trés raizes cubicas de i.
(d) Determinar as quatro raizes quartas de i.
(e) Determinar as quatro raizes quartas de —i.

9. As defini¢oes das fungdes seno e cosseno podem generalizar-se para o plano complexo
como segue:

el’: _+_ e—i’: it — iz
Cos 2 = —m— Sénz = - .
2 2i

Quando z é real estas formulas coincidem com as fungoes seno e cosseno ordinarias.
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(Ver Exercicio 4). Utilizar estas formulas para deduzir as propriedades seguintes do seno
e cosseno complexos. Aqui u, ¢ e z representam numeros complexos, com z = x + ).
(a) sen(u + v) = senucosv + COs u senv.

(b) cos(u + v) = cosucosv —senu senv.

(c) sen®z + cos*z = 1.

(d) cos(iy) =chy, sen(iy) =ishy.

(¢) cosz =cosxchy — isenxshy.

(f) senz =senxchy + icos xsh y.

Se z ¢ um numero complexo nao nulo define-se Log z, o logaritmo complexo de z, pela
igualdade

Logz =log|z| + iarg(z).

Quando z é real e positivo, esta formula coincide com a do logaritmo ordinario. Utilizar
esta formula para deduzir as seguintes propriedades dos logaritmos complexos.

(a) Log(—l) = mi, Log (i) = mif2.

(b) Log(z,2,) = Logz, + Logz, + 2nmi, onde n é um inteiro.

(c) Log(zy/z,) = Logz, — Logz, + 2nwi, onde n é um inteiro.

(d) e =z,

11. Se w e z sdo niumeros complexos, z # 0, definimos z¥ pela igualdade

12

13.

14,

¥ =ewLogz’

onde Log z é o definido no Exercicio 10.

(a) Calcular 1,#, e (-1)'.

(b) Provar que z°z% = z**® ge g, b e z sao complexos, z # 0.
(c) Observar que a igualdade

(2129) = z¥z¥ (9.17)

ndo ¢ verificada quando z, = z, = — | e w= i. Quais sdo as condi¢gdes que devem verifi-
car z, e z, para assegurar que (9.17) é verdadcira para todo o complexo w?

Nos Exercicios 12 a 15 L representa o operador linear definido por L(y) =y + ay’ +
+ by, onde a e b sdo constantes reais.

Provar que se R ¢ uma fungao complexa, por exemplo R(x) = P(x) + iQ(x), entao a
fungdo complexa f{(x) = u(x) + iv(x) satisfaz a equagdo diferencial L(y) = R(x) no inter-
valo / se e sO se u e v verificam as equagbes L(u) = P(x) e L(v) = Q(x) em LI.
Se A ¢ complexo e w € real, provar que a equagao diferencial L(y) = A€* admite uma
solugdo complexa da forma y = Be“"x, desde que seja ou b a ®? ou aw # 0. Exprimir
o numero complexo B em fungao dea, b, 4 € w.

Suponha que ¢ € real e b # «* Usar os resultados do Exercicio 13 para provar que a
equagao diferencial L(y) = c cos wx admite uma solugdo particular da forma y =
= A cos(wx + a), em que
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SUCESSOES, SERIES, INTEGRAIS IMPROPRIOS

10.1. O paradoxo de Zendo

O assunto principal deste capitulo teve a sua origem num problema posto ha mais de 2400
anos, quando um filoésofo grego Zendo de Eleia (495-435 a. C.) precipitou uma crise na
Matematica antiga formulando alguns paradoxos engenhosos. Um deles, muitas vezes
chamado o paradoxo do corredor, pode apresentar-se do seguinte modo:

Um corredor nunca pode alcangar a meta numa corrida porque tem sempre que correr
metade de qualquer distancia antes de correr a distancia total. Quer isto dizer que, tendo
corrido a primeira metade, tera ainda que correr a segunda metade. Quando tiver corrido
a metade desta, faltahe uma quarta parte do total. Quando tiver corrido a metade desta
quarta parte falta-lhe a oitava parte do inicial e assim indefinidamente.

Zenao referia-se a corrida idealizando, evidentemente, uma situagao na qual o corredor €
considerado como um ponto em movimento de um extremo do segmento até ao outro
extremo do segmento de reta. Podemos formular o paradoxo de outra maneira. Suponha-
mos que o corredor parte do ponto | marcado na fig. 10.1 e corre para o ponto 0. As posi-
¢Oes assinaladas com 1/2, 1/4, 1/8, etc., indicam a fragdo do percurso que falta percorrer
quando esses pontos sdo alcangados. Estas fragdes, cada uma das quais vale metade da
anterior, subdividem o percurso total num numero indefinido de pequenos segmentos
cada vez mais pequenos. Para percorrer cada um desses segmentos € necessario um certo
intervalo de tempo ¢ o tempo exigido para correr todo o percurso € a soma total de todos
estes intervalos parciais. Dizer que o corredor nunca atinge a meta, significa que ele nao
pode atingir esse ponto ao fim dum intervalo de tempo finito; ou, por outras palavras,
que a soma dum numero infinito de intervalos positivos de tempo ndo pode ser certa-
mente finita.

Esta afirmagio foi rejeitada 2000 afos depois de Zenao, com a criagao da teoria das séries
infinitas. Nos séculos Xvi1 € XVIII 0s matematicos comegaram a pensar que seria possivel
generalizar as ideias da adigao ordinaria de conjuntos finitos de nimeros a conjuntos infini-
los, de maneira que algumas vezes a “soma™ dum conjunto infinito de nimeros seja finita.
Para se ver como se pode fazer esta extensao e ter uma ideia de algumas das dificuldades que
podem ser encontradas ao fazé-la, devemos analisar o paradoxo de Zenao mais em porme-

nor.
433
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Suponhamos que o ja mencionado corredor corre com velocidade constante ¢ admitamos
ainda que necessita 7 minutos para cobrir a primeira metade do percurso. Na quarta parte
seguinte do percurso gastara 7/2 minutos, na oitava parte seguinte gastara 7/4 e, em geral,
para a parte do percurso compreendida entre 1/2" e 1/2 "' necessitara de 7/2" minutos.
A “soma” de todos estes intervalos de tempo pode ser indicada simbolicamente escrevendo a
seguinte expressao:

T & T T

7‘_* 3--+':I *_.- -_F E: 4—' e, (10.1)

Esta ¢ um exemplo das chamadas series infinitas e o problema consiste agora em verificar se
existe algim método natural de determinagcdo dum numero que possa ser chamado a soma
desta série.

A experiéncia diz-nos que o corredor que corre com velocidade constante alcangara a meta
ao fim do dobro do tempo necessario para alcangar o ponto médio. Visto que ele gasta T
minutos para correr metade do percurso, devera gastar 27 minutos para efetuar toda a cor-
rida. Esta linha de raciocinio sugere fortemente

- —» — aman -
0 & } b |

16

Fig. 10.1. O paradoxo de Zenao.

que devemos atribuir a “soma” 27T a serie (10.1) e leva-nos a esperar que a igualdade

T, T T
T+y+g+ =0T (10.2)

seja “verdadeira” em certo sentido.

A teoria das séries infinitas diz-nos exatamente como interpretar esta igualdade. A ideia é
a seguinte: em primeiro lugar somam-se um numero finito de termos, por exemplo os n
primeiros, € representamos a sua soma por S, Assim temos

T
T N (10.3)

2 ju—l'

Obtém-se assim a chamada soma parcial n-enésima da série. Em seguida estudamos o compor-
tamento de s, quando n toma valores tdo grandes quanto se queira. Em particular tentamos

determinar se a soma parcial s, tende para um limite finito quando » cresce indefinidamente.
Neste exemplo ¢ facil verificar que 27" é o valor limite da soma parcial. Com efeito, se
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calculamos varios destas somas parciais, encontramos

s, =T, s =T+

I
FNEN
-

Chama-se a atengao para o fato de que estes resultados podem ser expressos do modo
seguinte:

55=Q =0T, s5=Q—=}T, s=Q—-DT, s,=Q-NT,

0 que nos leva a conjeturar que, para qualquer inteiro positivo n, se tem a formula

s, = (\2 - '—)T. (10.4)

an -1

A formula (10.4) ¢ alias facilmente verificavel por indugao. Visto 1/2"' - (0 quando
n — +co, resulta que s, — 27. Portanto a igualdade (10.2) € “verdadeira™ se a intepretamos
como significando que 27T € o limite da soma parcial s,- Este processo limite parece invali-
dar a afirmagdo de que a soma dum numero infinito de intervalos de tempo nao pode ser
nunca finita.

Vamos agora apresentar um argumento que proporciona um consideravel apoio ao ponto
de vista de Zendo. Suponhamos que fazemos uma pequena, mas importante, mudanga na ana-
lise precedente do paradoxo da pista de corridas. Em vez de admitirmos que a velocidade do
corredor € constante, suponhamos que a sua velocidade decresce gradualmente de tal
maneira que ele gasta 7 minutos para ir de 1 a 1/2, 7/2 minutos para ir de 1/2 a 1/4,
7/3 minutos para ir de 1/4 a1/8 e, em geral, 7/n minutos para ir de 1/ a1/2" O “tempo
total” que gasta na corrida pode representar-se pela série infinita:

., T | T T
T+5+3+ -+, + (10.3)
Neste caso o nosso sentido fisico ndo sugere qualquer “soma” natural ou ébvia para atribuir
a esta série e por isso devemos confiar inteiramente na analise matematica para tratar deste
exemplo.
Procedamos como no caso anterior introduzindo as somas parciais s, ou seja

T T T
S,,=T+;+-j'+"‘+;;- (10.6)

O nosso objetivo consiste em analisar o que acontece a s, quando n crece indefinidamente.
Estas somas parciais nao sao tao faceis de estudar como as de (10.3), porque ndo existe uma
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formula simples analoga a (10.4) que simplifique a expressdo do segundo membro de (10.6).
Nao obstante ¢ facil obtermos uma estimativa para a grandeza de 5, Se compararmos a

soma parcial com um integral apropriado.
Na fig. 10.2 esta tragado o grafico de f{x) = 1/x para x > 0. (A escala esta modificada no
eixo 0Y). Os retangulos indicados tém uma area total igual a soma

(10.7)

1 1 1

A soma de areas de retangulos ¢ I+%+_l+...+

1
3 n

n4 |
A area da parte sombreada é f] x~'dx =log(n+1)

Fig. 10.2. Significado geométrico da desigualdade | + 1/2 + ... + 1/n > log(n + 1).

A area da parte sombreada ¢ J"]”' x ldx = log(n + 1). Visto que esta area ndo pode exceder
a soma das areas dos retangulos, temos a desigualdade

1 1 1
l+2+3+"'+7‘2103(n+1). (10.8)

Multiplicando ambos os membros por T, obtemos 5 > T log(n + 1). Por outras palavras, se

a velocidade do corredor decresce da maneira que se indica atras, 0 tempo necessario para

alcangar o ponto 1/2" é,pelo menos, T log(n + 1) minutos. Visto que log(n + 1) cresce inde-
finidamente quando n aumenta, devemos concordar com Zenao e concluir que o corredor
ndao pode atingir a meta ao fim de qualquer intervalo de tempo finito.

A teoria geral das séries infinitas faz uma distingao entre as séries do tipo (10.1) cujas

somas parciais tendem para um limite finito e as do tipo (10.5) cujas somas parciais tendem
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Na matematica estas palavras tém significados ténicos especiais. A palavra “sucessdao” tem
um sentido analogo ao da linguagem corrente, querendo significar-se um conjunto de objec-
tos dispostos segundo determinada ordem, mas a palavra “série” € usada em sentido algo
diferente. O conceito de sucessdo sera discutido nesta se¢do e o de série serd definido na
secdo 10.5.

Se a cada inteiro positivo n esta associado um numero real ou complexo a, entdo o

conjunto ordenado

Ay Ay, Qg ooy lyy...

diz-se definir uma sucessao infinita. O fundamental aqui € que cada elemento do conjunto foi
qualificado com um inteiro, de maneira que podemos falar de primeiro termo a,, segundo
termo a, e, em geral, o termo de ordem n, a . Cada termo 4, tem um sucessor g _, € por
iss0 ndao ha nenhum termo que seja o ultimo.

Os exemplos mais correntes de sucessoes podem construir-se dando algumas regras ou
formulas para descrever o termo de ordem n. Assim, por exemplo, a formula a = 1/n define
uma sucessao Cujos primeiros cinco termos sao

I,

T
-
P
"
e
-
[

Algumas vezes empregam-se duas ou mais formulas como, por exemplo.
Agpy = 1, ay, = 2n*,
sendo por conseguinte alguns dos primeiros termos os seguintes
,b2,1,8, 1,18, 1,32, 1.
Outra maneira habitual de definir uma sucessao € por um conjunto de instrugoes que indicam

como obter um termo a partir dos anteriores, depois de definidos alguns. Assim poderemos
escrever

al=a‘.’=]* an:l=an+afr—l para "22'

Esta regra particular ¢ conhecida por formula de recorréncia e define uma sucessao notavel
cujos termos sao chamados numeros de Fibonacci(+). Os primeiros termos sao

1,1,2,3,5 8,13, 21, 34.

Em qualquer sucessdo o fundamental € que exista alguma fungao f definida no conjunto
dos inteiros positivos, tal que f{n) seja o termo de ordem n da sucessdo paracadan= 1, 2,

(+) Fibonacci, também conhecido por Leonardo de Pisa (cerca de 1175-1250), encontrou esta sucessdo num problema referen-
le aos processos hereditarios nos coelhos.
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3,.... Este sera com certeza 0 modo mais conveniente para estabelecer uma definigio
ténica de sucessio.

DEFINIGAO. Uma fungdo f, cujo dominio é o conjunto de todos os inteiros positivos 1, 2, 3,
., diz-se uma sucessao infinita. O valor de fungao f(n) diz-se o termo de ordem n da suces-
sao.

O contradominio da fungdo (isto €, o conjunto dos valores da fun¢do) ¢ habitualmente re-
presentado escrevendo os termos por ordem, isto €:

S, f(2),/3), ... .. f(n),....

Por uma questdo de comodidade a notagdo {f{n)} ¢ usada para representar uma sucessio
cujo termo de ordem n € f{n). Muitas vezes a dependéncia de n € indicada pelo uso de indi-
ces, € escreve-se an, Sn, Xn, dn, OU UMa notagio analoga, em vez de f{n). A menos que seja
especificado doutro modo, todas as sucessdes neste capitulo sdo supostas de termos reais

ou complexos.

A questdo fundamental que se nos apresenta aqui € determinar o modo de decidir se os ter-
mos de f{(n) tendem ou ndo para um limite, quando »n cresce indefinidamente. Para tratarmos
este problema necessdrio se torna alargar o conceito de limite as sucessdes. Isto faz-se
como segue.

DEFINICAO. Uma sucessdo \f(n)} diz-se ter um limite L se, para todo o numero positivo €,
existe outro numero positivo N (o qual pode depender de € ) tal que

|f(n) = L| <€ paratodoon = N.
Neste caso diz-se que a sucessdo{ f(n)}converge para L e escreve-se

limf(n)=L, ou fin)—> L quando n - oo,

n—o

Uma sucessdo que ndo convirja diz-se divergente.

Nesta definicdo os valores da fungdo f{n) e o limite L podem ser numeros reais ou
complexos. Se /e L sao complexos podemos descompo-los nas respetivas partes reais €
partes imaginarias, por exemplo f= u + ive L = a + ib. Entdo tem-se f{n) — L = u(n) —a +
+ i[v(n) — b]. As desigualdades

u(n) — al < | f(n) — L| e lo(n) — b] < | f(n) — L

mostram que a afirmagao f(n) — L implica u(n) — a e v(n) - b quando n — o, Inversamente,
a desigualdade

|f(n) = L| < |u(n) — a| + |v(n) — b
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mostra que as duas afirmagoes u(n) - a, v(n) = b implicam f{(n) - L quando n — . Quer
isto dizer que uma sucessao de termos complexos f converge se e sO se ambas as partes realue
imaginaria v convergem separadamente, caso em que se tera

lim f(n) = limu(n) + ilimv(n).

n=* a0 =+ n—ax

E evidente que qualquer fungdo definida para todo o real positivo x pode ser usada para
construir uma sucessao restringindo x a tomar unicamente valores inteiros. Isto explica a
forte analogia entre a definigao que acabamos de dar e a que foi apresentada na se¢do 7.14
para fungoes mais gerais. A analogia estende-se igualmente a limites infinitos e deixa-se ao
leitor a definigao dos simbolos

lim f(n) = +x e lim f(n) = —

n—=w n—w

como se fez na se¢do 7.15 quando f € uma fungao real. Se f € complexa, escrevemos
f(n) - o quando n — < se |f(n)| = +oo.

A expressdo “sucessdo convergente” é usada unicamente para uma sucessao cujo limite &
finito. Uma sucessao com um limite infinito diz-se divergente. Existem, evidentemente, suces-
sdes divergentes que ndo tem limites infinitos. As formulas que se seguem definem alguns
exemplos:

f(n) =(-1)", f(n) = senn—w s f(ﬂ) - (_l)n(l + l) , f(") = "2
2 -~

As regras basicas do calculo de limites de somas, produtos, etc., sdo também validas para
limites de sucessoes convergentes. O leitor nao tera dificuldade em formular estes teoremas
por si proprio; as respetivas demonstragoes sdo algo semelhantes as dadas na segdio 3.5.
A convergencia ou divergéncia de muitas sucessoes pode ser determinada pelo uso de pro-
priedades de fungoes conhecidas que estdo definidas para todo o x positivo. Mencionamos
alguns exemplos importantes de sucessGes de termos reais cujos limites se podem calcular
diretamente ou pela utilizagao de alguns dos resultados estabelecidos no cap. 7.

1

li_.m ;—=0 se x>0. (10.9)
le x"=0 se |x|<I. (10.10)
le ('Ioib")a = () para quaisquera>0,5> 0. (10.11)
limn'" = 1. (10.12)

fi—+oo

lim (1 + %) = ¢" para todo o real a. (10.13)

n-* e
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Se f(n)~ a demonstragao ¢ analoga, sendo neste caso o limite o infimo do conjunto dos
valores da fungao.

10.4. Exercicios

Nos Exercicios 1 a 22 define-se uma sucessao {f{(n)} pela formula dada. Em cada caso: (a)
dizer se a sucessao converge ou diverge; (b) determinar o limite em cada sucessao conver-
gente. Em alguns casos pode ser de utilidade substituir o inteiro n por um numero real posi-
tivo arbitrario x e estudar a fung@o de x assim obtida pelos métodos do capitulo 7. Podem
aplicar-se as formulas (10.9) a (10.13) dadas no final da Segao 10.2.

n n+ 1 4+ (=2
L. f(”) = 7+ 1 I 12. f(n) = vt 4 (=2t
2 2 1
2.f(n)=n:_1—n: 13. f(n) =V +1 = Vn.
3. f(n) = cos’;—w. 14. f(n) = na", onde la] <.
Hz —
4. f(n) = %ﬁ 15, foy = B2 o,
100,000
5. ) = 3. 16 f0) = .
2\"
6. f(n) =1 + (=1)". 17. f(n) =(1 +;) .
I+ (=1)"
7.f(n)=—"-——. 18. f(m) =1 + +1C057
— n 1 _l'ﬂ
8. f(n) = =7, +(2 L 19.f(n)=( )
9. f(n) = Zl'". 20. f(n) = e77in/2,
10. f(n) = n=V", 21. f(n) = ;l;e""'"”.
n*3sen (n!) .
ll.f(ﬂ) = —"":-1—'— 22. f(n) = pe~Tin/Z

Cada uma das sucessoes {a"} nos Exercicios 23 a 28 ¢ convergente, portanto, para cada
¢ > 0 previamente dado, existe um inteiro N (dependendo de ¢) tal que [a, — L| < € se
n2 N, sendo L = lim a_. Determinar, em cada caso, o valor de N adequado a cada um

n—oo T’

dos seguintes valoresde € : ¢ = 1;0, 1;0,01; 0,001; 0,0001.

1 _ln--l
23. a, =~. 25.a,,=( ) .

n

n 1
24.a.,=’:—1. 26.0,,=F.
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2n
w417

= 28 l"(gn
a, = .a, =(=1) ]0).

.

29. Provar que uma sucessdo ndo pode convergir para dois limites diferentes.

30. Supor que lim
31.

32.

33.

34.

35.

a0 @, = 0. Usar a defini¢ao de limite para provar que lim,___ a* = 0.
Selim, . a =Aelim b =B, usar a definigdo de limite para provar que
lirn"_.m (an +b ’) =A+Be limn_m(can) = ¢A, com ¢ constante.

Considerando os resultados dos Exercicios 30 e 31, provar que se lim"_m a =4, entac
limn_ma: = A% Em seguida, servindo-se da identidade 2ab =(a, + b)? — an2 - b

provarquelim _(a b )=ABselm  _a =Aelim b =B.

Se a € um numero real e » um inteiro nio negativo, o coeficiente binominal (a) ¢ definido
n
por

o oot — It =2) (ot —n+1)
”_)= n! '

(a) Quando a =—1/2 mostrar que

% 1 oy 3 (1‘ 5 (oc‘ 35 (1" 63
/= 72 (2)‘5' ‘3)__16’ ,|4)'123’ 5] T 25"

(b) Sejaa,= (=1)"("}*). Provar quea, > 0 equea, , <a,.
Seja f uma fungdo real que ¢ monotona crescente e limitada em [0, 1]. Definir duas
sucessoes |s | e {7 | como segue

ks ’ k=1

(a) Provarques, < [1f(x)dx < 1, eque0 < [} f(x)dx—s, SJ"(l)—nﬂO) .

(b) Provar que ambas as sucessoes lsnl et r'I convergem para o limite [} /(x)dx.
(c) Estabelecer e demonstrar um resultado correspondente para o intervalo [a, b).
Utilizar o Exercicio 34 para estabelecer as seguintes relagoes:

1<—/k2? 1 I 1
(a) lim - (—) =-. (d) nl’fl — == =log (1 +V2).
nem M\ 3 ; vVnd + k2
n n
2
(b) lim Z—k=log2. (e) lim Z;scnf——-;.
—® R ® =1
S 7 . ™ |
(c) lim Z s e (r),.]'fl z-sen2-"— -3
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10.5. Séries

A partir duma sucessao de nimeros reais ou complexos podemos sempre formar uma
nova sucessao pela adigao sucessiva dos seus termos. Assim, dada a sucessao de termos

Ay, Ay ... lyy ...,
podemos formar a sucessdo das “somas parciais”
Slxal’ .§°==ﬂl+ag, 33=a1+a2+03,

etc., vindo para a soma s, a expressao
i
Sa=a+ a+ " +a,=3a,. (10.14)
k=1

A sucessdo [s | das somas parciais chama-se uma série infinita ou simplesmente uma série
e representa-se também pelos simbolos seguintes

ay+as+ag+-c, atay+-ccta, 4+, (10.15)

ek
»

o0

Por exemplo, a série kE lI/k representa a sucessao {s | para a qual

n

1
.

S, =

k=1

Com os simbolos em (10.15) se pretende lembrar que a sucessdo de somas parciais {s,,}

¢ obtida da sucessio la,} pela adigio de termos sucessivos.
Se existir um numero real ou complexo S tal que

lims, = §,

=+ aC

dizemos que a série 22:1 a, € convergente e tem a soma S, caso em que se escreve
oc
da.,=S.
k=1

Se s nl diverge, diz-se que a série 2;‘;1 a, diverge e nao tem soma.

EXEMPLO 1. A SERIE HARMONICA. Na discussdo do paradoxo de Zendo, mostramos que a
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soma parcial s dasérie I 1/k satisfaz a desigualdade
k=1

— 1
a=§;zmun+n.
k=1
Visto que log(n + 1) = o° quando n — ©°, 0 mesmo ocorre com s, epor 1SS0 a série Z‘;;l 1/k
diverge. Esta chama-se a série harmonica.

EXeEMPLO 2. Na discussdo do paradoxo de Zenao encontramos também as somas

. 1 1 .
parciais da serie 1 + -t t e dadas pela formula

a qual se demonstra facilmente por indugdo. Quando n- o, estas somas parciais tendem
para o limite 2 e por isso a série converge e tem soma 2. Podemos indicar isso escrevendo

I+ 343+ =2. (10.16)

O leitor deve ter presente que a palavra “soma” € usada aqui num sentido muito especial.
A soma duma série convergente nao se obtém por uma adi¢ao ordinaria, mas sim como o

limite da sucessao de somas parciais. Também notara o leitor que, para uma série conver-
(= =]

gente, o simbolo k!: a; € usado para representar tanto a série como a respetiva soma, muito
=1

embora os dois sejara conceitualmente distintos. A soma representa um numero e portanto
nao pode ser nem convergente nem divergente. Uma vez feita a distingao entre a série ¢ a

respetiva soma, o uso do mesmo simbolo para representar ambas as coisas nao da lugar a

qualquer confusao.
o3

Como no caso da notagao de somagao finita, a letra k utilizada no simbolo kE la" ¢ um “in-

dice mudo” que se pode substituir por qualquer outro simbolo conveniente. As letras n, m, e
r sao habitualmente usadas com esta finalidade. Algumas vezes é conveniente iniciar a soma
com k = 0 ou k = 2 ou qualquer outro valor de k. Assim, por exemplo, a série em (10.16)

oo (o o]

k . . .
pode escrever-se 3.‘.=01/2 . Em geral, se p > 0, definimos o simbolo kipak para significar o

]

mesmo que k): lbk' com b, = @y k-1 Assim b, = ay b, = , etc. Quando nao ha peri-

ap+ 1
go de confusao, ou quando 0 ponto de partida ndo € importante, escreve-se @, em lugar de

(= =)

ra

k=p K
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(= =] (= =]

E facil demonstrar que as duas séries Jk}:‘. ak e k}: a; sao ou ambas convergentes ou ambas

divergentes. Sejas, =a, + @, + .. +a, el =a,+ Gy * et Se p = 0 tem-se

t,.1 =% + S, peloqueses, — 5 quando n — o, entdo £, — a, + § e inversamente, se t,»T
quando n — o, entdo s, —+ T — a,. Deste modo, ambas as séries convergem ou divergem
quando p = 0. O mesmo é verdadeiro se p > 1. Para p = | tem-se s,=t, eparap >1

tem-set, =s,  , | =S,_ ¢ de novo resulta que ambas as sucessoes [snl e {tnl convergem

ou divergem. Exprime-se isto muitas vezes dizendo que omitindo ou adicionando ao principio
duma série um numero finito de termos tal ndo afeta a sua convergéncia ou divergéncia.

10.6. A propriedade da linearidade das séries convergentes

As somas finitas ordinarias possuem as seguintes propriedades importantes:

S(ay+ b)=Ya,+ b, (propriedade aditiva) (10.17)
k=1 k=1 k=1

D (cay) = ci a, (propriedade homogénea). (10.18)
k=1 A=1

O teorema que apresentaremos a seguir € uma extensao natural destas propriedades as sé-
ries infinitas convergentes, e desse modo justifica muitos calculos algébricos nos quais as
séries convergentes sdo tratadas como se fossem somas finitas. Quer a associatividade quer a
homogeneidade podem ser combinadas para se definir uma propriedade de linearidade que
pode enunciar-se do modo seguinte.

TeEOREMA 10.2. Se La,eZb, sao séries infinitas convergentes de termos complexos e x e §
dois numeros complexos dados, entdo a série L(xa, + Bb n) também converge, e a sua soma é
dada por

Y(xa, + pb)=23a,+ iSh,. (10.19)

=1 n=1 =1

Demonstragao. Tendo em conta (10.17) e (10.18) podemos escrever
> (xay + fby) = a2 a; + ﬂzlbk. (10.20)
k=1 k=1 k=

Quando n — o o primeiro termo do segundo membro de (10.20) tende para akf lak € O se-
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@
gundo termo tende para ﬁkxlb*. Portanto o primeiro membro tende para a sua soma, e

iss0 prova que a série Z(aay , sp) converge para a soma indicada por (10.19).

O teorema 10.12 admite um interessante coroldrio que € muitas vezes usado para
se gconcluir da divergéncia da série.

TeOREMA 10.3. SeZa convergeeseLb diverge, entdo LZ(a + b )diverge.

Demonstragdo. Visto que b = (a, + b) — a,, e porque La converge, o Teoremal0.2
diz-nos que a convergéncia de X (a,+ b,) implica a convergéncia de Zb . Deste modo,
Z( a,+b ,) nao pode convergir se Lb, diverge.

ExempLO. A série Z(1/k + 1/ 2") diverge porque I 1/k diverge, embora £ 1/ 74 convirja.

Se Za, e Lb, sao ambas divergentes, a série Z(a_ + b ) pode ou nédo convergir. Por
exemplo quando a,= b,= | para todo o n, entdo Z(a,+ b,)diverge. Mas quandoa,= l e

b,= -1 para todo o n, entdo X(a,+ b,) converge
10.7. Séries telescopicas
Qutra propiedade importante das somas finitas € a propriedade que estabelece que

2(by = b)) = by — b,y . (10.21)

k=1

Quando tentamos generalizar esta propriedade as séries infinitas somos levados a considerar
aquelas séries £ a, para as quais cada termo a, pode ser expresso como uma diferenga da
forma

a, =b,—b,,,. (10.22)

Estas séries sdo conhecidas por series telescopicas e o0 seu comportamento € caraterizado
pelo seguinte teorema.

TeOREMA 10.4. Sejam {“,,} e |b | duas sucessoes de niimeros complexos tais que

-

a,=b,—b,., para n=1273.... (10.23)

A série La  converge se e S0 se a sucessao {b n] converge, hipotese em que se verifica

da,=b, — L, onde L =Ilimb,. (10.24)

fiem] n—* o
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Demonstragao. Seja §, @ soma parcial dos n primeiros termos de X a. Entao temos
ﬂ‘ n
Sn =Zﬂk = Z(bk —b)=b—b,,,
k=1 k=1
devido a (10.21). Desta maneira ambas as sucessoes [sn} e Ibn} convergem ou ambas diver-

gem. Alem disso se b, —+ L quando n— <o, entdo s, - b, — L, 0 que prova (10.24).

Nota: Toda a série é telescopica, visto que se podera sempre verificar (10.22), escolhendo

um b, arbitrario e fazendo b, ,=b, —s paran> les =a, +..+a,.

ExempLO 1. Seja a, = 1/(n* + n). Entdo tem-se

Ay

e por isso (10.23) verifica-se com bn = 1/n. Uma vez que b, = 1 e L = 0 obtém-se

N 1
Zﬂ(n+ l)=l

n=1

ExEmPLO 2. Se x ndo € um inteiro negativo, tem-se a decomposigao.

1 =1( I _ 1 )
m+xn+x+D)n+x+2) 2\n+x)n+x4+1) (M4+x+Dn+x+4+2)

para todo o inteiro n > 1. Portanto, pela propriedade telescopica, as seguintes séries conver-
gem e tem a soma indicada.

o 1 1
Z(n-{»—x)(n—!—x-}- Dn4+x+2) 20x+ 1)x+2)

n=1

EXeMPLO 3. Visto que log[n/(n + 1)] = log n — log(n + 1) e porque log n —co quando
n —oo, a série L log(n/(n + 1)] diverge.

Nota: A serie telescopica ilustra perfeitamente a diferenga importante entre somas finitas e
séries infinitas. Se escrevermos (10.21) na forma desenvolvida temos:

(bl _‘ba) +(b2 _ba) + o0 +(bn _bn+1) =bl _b"H—l

igualdade que pode ser verificada pela supressao dos paréntesis e simplificagdo dos termos
simétricos. Suponhamos agora que fazemos as mesmas operagoes nas séries infinitas
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(by — by) + (by — bg) + (b — by) + -

Assim b, permanece, b, anula-se com —b,, b, com —b,, etc. Para todo n > 1 anulam-se b, e
—b,, simplificando-se todos os b, menos b, o que nos leva a concluir ser b, a soma da série.
Devido ao teorema 10.4 esta concluséo ¢ falsa, a menos que lim b = 0. Mostra-nos esta

n—oo
conclusdo que os paréntesis nem sempre podem ser removidos numa série infinita como
acontece com uma soma finita. (Ver também o Exercicio 24 da se¢do 10.9).

10.8. A série geometrica

A propriedade (10.21) das somas finitas pode utilizar-se para estudar um exemplo muito
importante conhecido por série geomeétrica. Esta série ¢ gerada por adigdes sucessivas

dos termos duma progressdo geométrica e tem a forma L X", onde o termo de ordem n, X, é
a poténcia de grau » num nimero fixo x, real ou complexo. E conveniente iniciar esta série
com n = 0, com a convengdo de que o termo inicial, x°, € igual a I.

Seja s , & soma parcial dos n primeiros termos desta seérie, isto é:

Sr;=l+x+'\-2+...+"_n_1-

Se x= 1, cada termo do segundo membro ¢ igual a | e 5,= n. Neste caso a série diverge,
uma vez que s, o quando n-co. Se x # | pode escrever-se a soma simplificada, obser-
vando que

n—1 n—1
(1=x)s,=1—-—x)3x=3—=x*)=1-—-x",
k=0 k=0

pois que a ultima soma ¢ do tipo (10.21). Divindindo por | -x, obtemos a expressio

= = —_— sS€ _\'#1
|l — x | — x 1l — x

s!‘l

Isto mostra que o comportamento de s, para n suficientemente grande depende inteiramente

do comportamento de x". Quando |x|< 1, entdo X' - 0 quando n — < e a série converge
para a soma 1/(1 — x).

Visto que s,,, — 5,= X", a convergéncia de | sn] implica X" — 0 quando n — oo, Portanto,

se|x| >1 a sucesséo {s,| diverge visto X" ndo tende para zero nesta hipotese. Demonstramos
assim o seguinte teorema:

TeoREMA 10.5. Se x é complexo, com|x| < 1, a série geométrica £ X" converge e tem a
n=0

soma l/(1-x), isto €, tem-se
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l+x+ x4+ x"4 = se |x|<1. (10.25)

Se|x| > 1, a série diverge.

A série geométrica, com |x| < 1,é um dos raros exemplos em que a soma pode calcular-se
pela determinagao duma formula para as suas somas parciais. (Na Se¢ao 10.1, em ligagao
com o paradoxo de Zendo, tratamos o caso particular desta série para x = 1/2). A real
importancia desta serie esta no fato de poder ser usada como ponto de partida para a deter-
minagao da soma dum grande numero de outras series interessantes. Por exemplo, se admi-
tirmos que |x| < 1 e substituimos x por x? em (10.25), obtemos a igualdade

° g 1
1_{_-\.--_'_“'_}_._{_'rz"‘_{_=l_x2 se |.’C|<l. (10-26)

Observe-se que esta serie contém aqueles termos de (10.25) em que o expoente € par. Para
determinar a soma das poténcia impares basta multiplicar ambos os membros de (10.26) por
X, obtendo-se

_\'+x3+.\'5+"'+x2’”'1+--.=l ad - se |x] < 1. (10.27)
- X

Se se substitui x por —x em (10.25), temos

l— x4+ =4 (=) = ——  se x| <1. (10.28)
l 4+ x

Substituindo x por 'xz em (10.28), temos:

l =X+ x = (=X = . se |x| < 1. (10.29)

Multiplicando ambos os membros de (10.29) por x, resulta:

x_x3+-t5_x7+...+(_l)ﬂx2u.~l+.--=l: A se I.\f|<l(10,30)
X

Se substituimos x por 2x em (10.26), obtemos:

| +4x* 4 16x ' + - - 4+ 4" 4+ - - =

que ¢é valida se | 2x| < 1 ou, 0 que é equivalente, se| x| < TR E evidente que muitas outros

exemplos podem ser construidos de forma semelhante.
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entdo para cada inteiro positivo n a formula de Taylor conduz a igualdade

f(x) = iakx"' + E (x), (10.34)

" .
onde a soma finita &an,‘x* ¢ um polindmio de Taylor de grau < n ¢ E fx) € 0 erro corres-
pondente a essa aproximagdo. Se agora fixamos x e fazemos crescer n indefinidamente em

av
(10.34), os polinomios de Taylor dio lugar a séries de poténcias, nomeadamente ‘goakx".

sendo cada coeficiente a; definido por:

_IMo)
=1

a

Se, para um dado x, o erro En(x) tende para 0 quando n — oo, entao para esse x podemos
fazer n — oo em (10.34) obtendo

f(x) = lim ia,‘x" 4+ 1imE (x) = iakx* .
k=0

n-ow k=0 n-* o

- Por outras palavras, a série de poténcias em questdo converge para f{x). Se x ¢ um ponto
para o qual E (x) ndo tenda para 0 quando n — o, entdo a soma parcial nao tendera para
S(x). CondigGes a que f deva satisfazer para garantir que E (x) - 0 serdo estudadas mais
adiante, na se¢io 11.10.

Para fundamentar melhor a teoria geral das séries de poténcias vamos debrugar-nos a
seguir sobre certas questoes gerais relativas a convergéncia e divergéncia de séries arbitrarias.
Voltaremos ao estudo das séries de poténcias no capitulo 11.

10.9. Exercicios
Cada uma das séries dos Exercicios 1 a 10 € uma série telescopica ou uma série

geometrica ou alguma série cuja soma parcial pode simplificar-se. Em cada problema pro-
var que a série converge e que a soma tem o valor indicado.

li———-—i——~1 A
"'EI(Zn—l)(2n+l)_2' '2;_?“—"';‘3-
- 2 \n+l-\/r_:

2 > 2 s s, S Ynrl-vn
Vi +n

...
]
—
=
i
-

i
1

e |

6. =-.
Z(n + D +2)n+3) 4

W

w
[Ms

(=

=
"~
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- 2n+1 (=1)"'@n + 1)
’-z,.-(—r—m . 92 O
2" 4+n4+n log [(1 + 1/n)"(1 + n))
8. ZZ"“n(n ) Sl 10. Z(Iogn“)[log(n Ty = log Ve.

Na scg¢do 10.8 obtivemos séries de poténcias para log(1l + x) e arctg x pela efetivagao de

diferentes operagoes sobre a série geométrica. Duma maneira semelhante, sem preocupagao
de justificar as passagens, obter as formulas dos Exercicios 11 a 19. Estas sao todas validas,
pelo menos para |x|< 1. (A justificagdo tedrica sera dada na segdo 11.8).

11.

12.

13.

14.

15.

20.

inx"=(l - 16. Zh X

=] T |

= n x4+ x . 1

Zrﬂx - l?.;(::-l—l)x - i

c X +4x 4+ x = (n + 1)(n + 2) 1
Zn’x“ -—— 18. 2 o =

= XA+ 11+ 11X + x n‘(n+l)(n+2)(n+3) 1
Z;u‘x" = a—»F . 19. 2, T x° = T
- x"_l 1

--1?_ BT —x"

Os resultados dos Exercicios 11 a 14 sugerem que existe uma formula geral

Z nlx' - _}:‘—(f)—
(l — x)k-l-l ’

n=]

onde Pfx) € um polindmio de grau k, sendo o termo de menor grau x ¢ 0 de maior
grau x* Demonstri-la por indugdo, sem ter a preocupagio de justificar os cilculos
efetuados com séries.

21. Os resultados dos Exercicios 17 e 19 sugerem uma formula mais geral

22.

<[n+k\ 1 n+ky (+Dn+2)-(n+k
Z( Kk )x =(_l-x)“+1’ onde ( k )= T .

=0

Demonstra-la por indugao, sem tentar justificar as operagoes formais com séries.

Sabendo que I ox"/n! = ¢” para todo 0 x, determinar as somas das séries seguintes pres-
n=

supondo que ¢ possivel operar com séries infinitas como se fossem somas finitas.



23.

24,

25.

Célculo
n—1 —n+ 1 —(n—1)n+1)
(a) Z - (b) Z‘—;',— ‘ (© ; o :
(a) Dado que & 6x"/n! = ¢* para todo o x, provar que
n=

= (x* + x)e*,

o nix"
Z n!
n=1
supondo que € possivel operar sobre estas séries como se fossem somas finitas.
o0

(b) Asomada série I n’/n! é ke, onde k ¢ um inteiro positivo. Determinar o valor

n=1
de k. Nao tentar justificar os calculos.
Duas séries L Gy © z 1bIPI dizem-se idénticas se a, = b _para todo n = 1. Por exemplo as
n= n=
séries
04040+ €  (I=D4+0 =D+ =1)+ -

sao idénticas, mas as séries

L+1 414 e I4+0+1+0+1+40+--

nao sao idénticas. Determinar se sim ou nao as séries sao idénticas em cada um dos
seguintes pares:

@ i1—1+1-=1+"-
B 1 =1 4+1 =1+
@1=-14+1—=1+"-
1+ +31+3+-

C-D-B-2)+@-HN-(G-4+ .
A=D+A=D+A=D+0=1) 4.
L4+ (=1 +D+(=14+D+(=1+1)+---.
1+0-H+G-H+d-H+ .

o o o o

(a) Utilizando (10.26) provar que

1
1+0+x’+0+x‘+---=-lsz se |x| <1.

Observar que segundo a definigdo dada no Exercicio 24 esta série nao é idéntica a de
(10.26),se x # 0.

(b) Aplicar o Teorema 10.2 ao resultado da alinea (a) ¢ a (10.25) para deduzir (10.27).
(c) Mostrar que o Teorema 10.2 quando aplicado diretamente a (10.25) e (10.26) ndo da

(10.27). Em seu lugar, obtem-se a formula £ l(.!r" —x*™ = x/(1 — x?), valida se| x| < 1.

n=
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*10.10. Exercicios sobre desenvolvimentos decimais

Na secdo 13.15 tratamos da representagao decimal dos numeros reais. Viu-se que cada
numero real x positivo admite uma representagao decimal da forma

x=au.ala203...,

onde 0<a, <9 para todo k 21. O nimero x esta relacionado com os digitos a,, a,, a,, ...,
pelas desigualdades

a, a, a, a, + 1
<,r<au+m+'-- -+-10,,_1 + TQ

a,
ag +— + ' +

10 0" = (10.35)

n
Se fizermos S, = ;:E og / 10¥ e subtrairmos s, @ cada membro de (10.35), obtemos

0<x -5, <10,

Isto mostra que s, — x quando n — oo e por conseguinte x € dado pela série convergente

x
—

a.
x = 10 - (10.36)

o
-

I
=

Cada um dos desenvolvimentos decimais nos Exercicios 1 a 5 subentende-se que se repete
indefinidamente na forma indicada. Representar cada um por uma série infinita, achar a
soma da série e em consequéncia disso exprimir x como quociente de dois inteiros.

. x =04444 . . . 4. x =0.123123123123....

2. x = 051515151 .... 5. x =0.142857142857142857142857 . . ..

3. x =202020202....

6. Provar que cada desenvolvimento decimal periodico representa um numero racional.
-

. . . : 1
. Se um numero tem um desenvolvimento decimal que termina em zeros, tal como — =

8
= 0,1250000..., entao este nimero pode também escrever-se como um numero decimal
que termina em noves se subtraimos uma unidade ao ultimo digito nao nulo. Por exem-

plo, —;—— = 0,1249999... . Demonstrar esta proposicao fazendo uso das séries infinitas.

A representagao decimal em (10.36) pode generalizar-se substituindo o inteiro 10 por
qualquer outro inteiro b > 1. Se x > 0, represente a, 0 maior inteiro contido em x; admi-
ta-se¢ que a,, 4,, ..., a,., tenham sido definidos e que a, representa o maior inteiro
tal que
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bem da diferenga entre condigao necessdria e condigao suficiente. Portanto o leitor deve
esforgar-se por ter sempre presente esta distingao quando aplica na pratica um determinado
critério.

O mais simples de todos os critérios da uma condigao necessdria para a convergéncia e
pode ser enunciado do modo seguinte:

TeOREMA 10.6. Se a série La, converge, entdo o seu termo de ordem n lende para 0,
isto é,

Iima,=0. (10.37)

n=ox

Demonstragao: Seja s, = a, + @, + ... + a,. Entaoa, =s, —s, . Quando n — o quer
s, quer s, _, tendem para o mesmo limite e por isso a, 0 e o teorema esta demonstrado.

Este é um exemplo dum critério que € do tipo (ii) e nao do tipo (i). A condigao (10.37)
nao ¢ suficiente para a convergéncia duma série. Por exemplo, quando a = 1/n, a condigao
a, — 0 ¢ satisfeita e contudo a série L 1/n diverge. A real utilidade deste critério esta no fato

de nos dar uma condigdo suficiente para a divergéncia, isto €, se os termos a, duma série
Xa, ndo tendem para zero, entdo a série diverge. Esta conclusdo € logicamente equivalente

ao Teorema 10.6.
10.12. Critérios de comparagao para séries de termos nao negativos

Consideramos nesta se¢do apenas séries de termos nao negativos, isto €, séries da forma
La , onde cadaa, > 0. Uma vez que as somas parciais de tais séries sa0 monotonas crescen-
tes, pode aplicar-se o Teoremal0.1 para se obter a seguinte condigao necessdria e suficiente
de convergéncia.

TeoREMA 10.7. Se a, 2 0 para todo o n 2 1, entdo a série La  converge se e somente se a
sucessdo das respetivas somas parciais € limitada superiormente.

Se as somas parciais s@o limitadas superiormente por um numero M, por exemplo, a soma
da série ndao pode entdao exceder M.

ExempLO 1. O Teorema 10.7 pode usar-se para se provar a convergéncia da série

oo

L 1/n!. Calcula-se um limite superior para as somas parciais através da igualdade

1 1
E g zl—l ’

a qual € evidentemente verdadeira para todo k > 1, pois k! ¢ formado por k — 1 fatores
todos eles 2 2. Deste modo tem-se
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ExempLO 3. Uma vez que I1/n é divergente, toda a série de termos positivos assinto-
ticamente igual a 1/n sera também divergente. Por exemplo isto verifica-se com as duas séries

a0

- 1
Z _w_\;(_n_l-l-_l()) e Z sen; .

n=1 n=1

A relagao sen 1/n ~ 1/n resulta do facto que (senb)/x - 1 quando x-0.
10.13. O critério de comparag¢ao com um integral

Para aplicar os critérios de comparagao € necessario dispor de alguns exemplos de séries
de comportamento conhecido. As séries geométricas € a fungao zeta sao importantes para
esta finalidade. Novos exemplos podem ser obtidos de maneira muito simples por aplicagao

do critério de comparagdo com um integral, pela primeira vez demonstrado por Cauchy em
1837.

Fig. 10.4. Demonstragao do critério de comparagao com um integral.

TEOREMA 10.11. CRITERIO DE COMPARACAO COM UM INTEGRAL. Se f é uma fungdo posi-
tiva decrescente, definida para todo o real x > | e, se para cada n > 1, é

Sy = if(k) e t, =J.nf(x) dx .
k=1 1

entdo ambas as sucessoes |s | e {t | convergem ou divergem.

Demonstragao: Comparando / com fungoes em escada adequadas, como se sugere na fig.
10.4, obtemos as desigualdades

n—1

310 <) fexrdx <3 10

k=2
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ous,—f(1)<¢, <s, _.Uma vez que ambas as sucessoes Isnl e [rn] $a0 monotonas crescen-
tes, estas desigualdades mostram que ambas sao ou limitadas superiormente ou limitadas

inferiormente. Portanto ambas as sucessoes ou convergem ou divergem, como se tinha afir-
mado.

ExeEmPLO 1. O critério de comparagao com um integral permite demonstrar que

o

1 .

Z = converge-se e somentese s > 1.
n

n=1

Fazendo f(x) = x ° tem-se

1-35
nt—1
t, = de= 1 —5 -
1 x*
logn se s=1.

Se s> | o termo n'"*-0 quando n- o ¢ por isso {1,} converge. Pelo critério do integral,
tal implica a convergéncia da série para s > 1.

Quando s < | entdio 1, oo € a série diverge. O caso especial s = 1 (a série harmdnica) foi
discutido na segdo 10.5. A sua divergéncia ja era conhecida de Leibniz.

ExXeEMpPLO 2. O mesmo método pode ser utilizado para demonstrar que

w 1 L4
Z converge-se ¢ somente se s > 1.
n(log n)’

n=2

(Inicia-se a soma com n = 2 para evitar n para o qual log n seja nulo).
O correspondente integral neste caso é

1-s __ 1—s
. (log n) (log 2) se 51,
t, =J‘ —dx = 1l -5
2 x(log x)*

log (log n) — log (log 2) se s=1.
Entdo {t,} converge se e s se s > | e por tal motivo, em virtude do critério do integral, o
mesmo acontece com a série em questio.
10.14. Exercicios

Verificar se as séries seguintes sdo convergentes ou divergentes e, para cada exemplo, justi-
ficar a resposta dada.

APOSTOL — 16
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p
n Il +vVn
. . 10. _ .
: ;(4::—3)(4!1—1) (n+l)3—-l
2i\z/2n—-llog(4n+l) . i I
] n(n + 1) - (log n)*
o - 4]
n +‘1 [ nl
. D 2. > =, lal <10,
=1 ne=]
© n = 1
4 ”5' l3‘21000::“
c 'sen nx| < n cos® (n=/3)
5. 2, =3 14 D
n=]1 n=1
2 4 (=1) = 1
aZ—iLﬂu 152 .
& 2n - n log n (log log n)*
ad "! [+ +] .
7. G I - 16. Zne .
n=1 n=1
- log n i Vx
8. = 17.
nz_g"\/n +1 ﬂzrl ‘
oD l ‘ﬂ'l
9. Z——-— 18. Z e Vzdx,
“~ Vn(n + 1) —

19. Seja f uma fungdo crescente ndo negativa, definida para todo o x = 1. Aplicar 0 mé-
todo sugerido para a demonstragdo do critério do integral para provar que

n—1 . n
Zf(k) < || fx)dx SZ[(I:) :
k=1 k=g

Fazer f{x) = log x e deduzir as desigualdades
en"e™ <n! <en*tlem, (10.41)
Elas dao uma estimativa grosseira da ordem de grandeza de n!. De (10.41) resulta

elfn (ﬂ!)lf" elfn "lfn
< <

[ n e

Fazendo n — oo, conclui-se que

("!)lrrﬂ l f n
- - ou (nH)l/n ~ quando n —» «© ,
e

n
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10.15. Critérios da raiz e do quociente para séries de termos nio negativos

Usando a série geométrica Zx" como séric de comparagdo, Cauchy desenvolveu dois
critérios conhecidos por critério da raiz e critério do quociente.

Se Za, ¢ uma série cujos termos (a partir dum deles) satisfazem a uma desigualdade da
forma

0<a,<x", onde O0<x<I, (10.42)

uma aplicagao direta do critério de comparagao (Teoremal0.8) diz-nos que La, converge.
As desigualdades (10.42) sao equivalentes a

0<aV’" < x; (10.43)

daqui o0 nome de critério da raiz.
Se a sucessdo {al/"} é convergente, o critério pode ser reformulado duma maneira mais
util que ndo faz qualquer referéncia a x.

TeEOREMA 10.12. CRITERIO DA RAIZ (OU DE CAUCHY).Seja La , uma série de termos ndo
negativos tais que

a¥"™ — R quando n — o0 .

(a) Se R < 1, a série converge.
(b) Se R > 1, a série diverge.
(c) Se R = 1, a critério € inconcludente.

Demonstra¢do: Suponhamos R < 1 e consideremos x tal que R < x < 1. Entdo (10.43)
deve ser verificada para todo n = N, a partir dum certo N. Por conseguinte £a, converge
pelo critério de comparagdo e a alinea (a) fica demonstrada.

Para demonstrar (b), observemos que R > 1 implica @, > 1 para uma infinidade de valores
de n e em consequéncia a, nao pode tender para 0. Portanto, pelo TeoremalO.6, Zaﬂ diverge,
0 que demonstra (b).

Para provar (c), consideram-se os dois exemplos nos quais a, = l/ne a = 1/n®. Em

ambos 0s casos R = 1 visto que n'/m 1 quando n — oo [Ver a igualdade (10.12) da segdo
10.2], mas X 1/n diverge enquanto que I 1/#? converge.

ExempLo 1. Por aplicagao do critério da raiz ¢ facil determinar a convergéncia da série

L (logn)™", pois que
n=3

]
allm= —— »0 quando n-o.
log n
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EXEMPLO 2. Aplicando o critério da raiz a Z[n/(n + 1)}”, encontramos

1/n ( n )" 1 1
a," = = —————— > - quando n-oo,
\n + 1 (14 1/n)" €

pela igualdade (10.13) da seg¢do 10.2. Posto que 1/e < 1, a série converge.
Uma aplicagdo ligeiramente distinta do critério de comparagao conduz ao critério do
quociente.

TeOREMA 10.13. CRITERIO DOQUOCIENTE (OUDE D’ALEMBERT).Seja La, uma série de ter-
mos positivos tais que

aPIJ-
'~» L quando n- .
a?l
(a) Se L < 1, a série converge.
(b) Se L > 1, a serie diverge.
(¢c) Se L = 1, o critério é inconcludente.

Demonstragdo: Suponhamos L < 1 e consideremos x tal que L < x < 1. Existira entdao um
inteiro N tal que @, /a, < x paratodo o n = N. Isto implica

paratodoon=N .

Quer dizer, a sucessdo {a,/x"} € decrescente para n = N. Em particular, quando n= N,
deve verificar-se a,/x" < a,/x" ou, por outras palavras,

ay
a, <ecx”, onde ¢ = 3

=

Deste modo a, ¢ majorada pela série convergente I x”, e a alinea (a) esta demonstrada.
Para demonstrar (b) basta verificar que L > 1 implica quea, , > a, paratodon 2N, a
partir dum certo N, e por tal motivo a, nao pode tender para 0.
Finalmente (c) demonstra-se utilizando os mesmos exemplos que no Teorema 10.12.

Observagao: O fato do quociente a,, /a, ser sempre menor do que 1 ndo significard
necessariamente que o /imite L seja menor que 1. Por exemplo a série harmodnica, que é
divergente, tem sempre o quociente n/(n + 1), menor que | mas o limite L ¢ igual a I.
Contudo para a divergéncia ¢ suficiente que o quociente seja maior que | para n suficien-
temente grande, visto que entdo € a,;, > a, ¢ a, ndo pode tender para zero.
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ra

15.

16.

o (n))? <
In n
2! . 2 (n 1.
n=1 n=1
- (n!)? - X
ot - 9. Ze*"'.

ne=1

— 2"n!
D= 10.2(——‘:"*)
n

n=]1 n=]1

= 3np! (1000)ﬂ
71_“_ . 11.

= 1 n= l
n! 12 n™n

— 3n - * "=l(" + ljn)n .

S 7! NPV (D
227: . . Z 3n .

n=1
oo

“ 1
. Zm‘ . 14, z r" |sennx|, r>0.

n=]

Sejam {a | e |b,} duas sucessdes com a, > 0 e b, > 0 para todo o n 2N, e seja
c,=b,—b, _,a,  /a.Provarque:
(4) Se existe uma constante positiva r tal que ¢, = r > 0 para todo o n = N, entdo Za,
converge.

[Sugestdo: Provar que L7 kNG SaybJr.]
(b) Sec,<Oparan 2NeseZl/b, dlvergc, entdo a, diverge.

[Sugestdo: Provar que L 1/b, € majorada por Za,.]
SejaLa, uma série de termos positivos. Provar o critério de Raabe: Se existirumr > O e
um N 21 tal que

Gy 1

Sl—-—!—: para todon = N,

a, n

entao L a,converge. A série a, diverge se

Ani

1
21 —- paratodon=N.
a, n

[Sugestdo: Recorrer ao Exercicio 15 com b,,, = n.]

17. Seja Xa, uma série de termos positivos. Provar o critério de Gauss: Se existirum N = |,

ums> |, eum M > 0 tais que
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paran= N,

com |f(n)| < M para todo o n, entdo La, convergese A > 1 e divergese 4 < 1.

[Sugestdo: Se A #1, utilizar o Exercicio 16. Se A = 1, utilizar o Exercicio 15
comb, ,=nlogn.]

18. Aplicar o critério de Gauss (do Exercicio 17) para provar que a série

[«

1-3-5---@2n =D
Z( 2:4:-6---(2n) )

fi=]

converge se k > 2 diverge se k < 2. Este ¢ um exemplo em que falha o critério do quo-
ciente.

10.17. Séries alternadas

Ate aqui estudamos, com alguma pormenor, séries de termos nao negativos. Vamos voltar
agora a nossa atengdo para as séries cujos termos podem ser positivos ou negativos. O caso
mais simples ocorre quando os termos da série sdo alternadamente positivos ou negativos.
Tais séries dizem-se alternadas e sido da forma

@
Z(—l)""la,, =g, —ds+ag—as+ -+ (=D""a, +---, (10.45)

n=1

)
para cadaa > 0.
Exemplos de séries alternadas eram ja conhecidas de muitos dos pioneiros da investigagao
neste dominio. Ja referimos a série logaritmica

log(1+_\;)=x_'.;_+ +...+(__-l)n—lx;_+._‘

Como provaremos mais adiante esta série converge ¢ a sua soma ¢ log(1 + x) sempre que
—1 < x < 1. Para x positivo € uma série alternada. Em particular, quando x = 1,obtemos a
formula

1
log2.-l—§+

(_l)n—l

n

4+ 4o, (10.46)

Y.

1
3

a qual nos diz que a soma da série harmonica alternada ¢ log 2. Este resultado € de particular
interesse em virtude do fato da série harmonica £ 1/n divergir.
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S = (log2n + C + o(1)) — (logn + C + o(1)) = log 2 + o(1),

pelo que s, — log 2 quando n — oo, Isto prova que a soma da série harmonica alternada e
log 2.

10.18. Convergéncia simples e absoluta

Conquanto a série harmonica alternada X (— )" Yn seja convergente, a série obtida pela
substitui¢ao de cada termo pelo seu valor absoluto é divergente. Quer isto dizer que, em
geral, a convergéncia de La, nao implica a convergéncia de Elan | Em sentido contrario
temos o teorema:

Teorema 10.15. Se I anl é convergente, entdo € também convergente La, e tem-se

<2la,l. (10.51)

fi=1

»
2 a,

n=1

Demonstragdo. Suponhamos, 2m primeiro lugar, que os termos a . sdo reais. Seja b’.1 =a, +
+|a,.Vamosprovar gue £b_ ¢é convergente. Resulta entéo (pelo Teorema10.2) que Za, con-
verge porque a, = b" — |ﬂ,,|-

Visto que bné ouQou?2 ]anl, tem-se 0 < bn£2 ]a"|,e por isso Ebn ¢ majorado por Za . Por-
tanto L b, converge e, como ja foi referido, isto implica a convergéncia de La,

Suponhamos agora que os termos a, sao complexos, quer dizer,a,= u, + iy, comu ev,
reais. Uma vez que I",,l < |an|, a convergénciade L |an| implica a convergéncia de |un| ¢ esta,
por sua vez, implica a convergéncia de u, visto que u, e real. Analogamente Ly, converge.
Em virtude da linearidade, a série E(un + i ’) converge.

Para provar (10.51) observamos que |1’22=1 aki S.‘Iz:l ]ak |, e depois fazemos tender n — o,

DEfFINICAO. Uma série La, diz-se absolutamente convergente se E|an| € convergente.
Diz-se simplesmente convergente (ou semi-convergente) se La  converge, mas E|a"| diverge.

Se La,e Ebn sao absolutamente convergentes, o mesmo se verifica para a série L(za, +
+ [1b,) qualquer que seja a escolha de « e . Isto € uma consequéncia imediata das desigual-
dades

M M M o a€“
2laa, + pb,| < x| Xla,| + A1 2 1b,] < x| Xla,l + 181 2 |b,],

n=1 n=1 n=1 n=1 n=1

que provam serem limitadas as somas parciais de X |ar.an - ﬁbn|.
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£ @ z — 1)
33. Zn"z". 40 .
(n + 2)!
n=]
© (_])nZSn (—l)"(z — ])n
34, Z——T . 4], Z .
n=1 Pl
-2}
z" 2z + 3"
23. ZF . anog(n +1)
n=0 :
- z" -1y (1 - z\
36'25 43'22:1—1 )
n=1
< (=" z
37.
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n=1 n=1
o0 o A
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38. ] . , .
;ﬁ"g " h ;n+1(22+l)
= P\ - 1
17Tn e
39.;(1 +5n+]) 217, 46.2;( AL

Nos Exercicios 47 e 48 determinar o conjunto dos reais x para os quais as séries dadas
convergem

- 2"56!12" - an n
4. > (- ——. 8. > ——
n o— n

fims 1

Nos Exercicios 49 e 52 as séries supoem-se de termos reais.
49. Sea, > 0 e La, converge, provar que X l/a diverge.

50. Se E’l | converge, provar que Ea converge Dar um contra exemplo no qual }:a con-
virja, mas Z|a | divirja.

51. Dada uma série convergente Za , onde cada a2 0, provar que E\/czn_p converge se
p > 1/2. Dar um contra exemplo para p = 1/2.

52. Dizer se é verdadeira ou falsa cada uma das seguintes proposigoes.
(a) SeZa ,converge absolutamente, também converge absolutamente X a;/(l - a;).
(b) SeZa n converge absolutamente e se nenhuma, = —1, entdo X an/(l +a,) converge
absolutamente.

*10.21. Comutatividade nas séries

A ordem dos termos duma soma finita pode sempre alterar-se sem que isso afete o valor
da soma. Em 1833 Cauchy fez a surpreendente descoberta de esse fato nao ser sempre ver-
dadeiro para séries infinitas. Por exemplo consideremos a série harmonica alternada
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-3+l —-1+5—8+—""=log2. (10.56)

A convergéncia desta série para a soma log 2 foi provada na se¢do 10.17. Se reordenamos
os termos desta série, tomando alternadamente dois termos positivos seguidos dum ter-
mo negativo, obtemos uma nova série escrita como segue:

T+ —d+5+i—-i+i+h—s++—" (10.57)

cada termo que aparece na série harmonica alternada aparece também uma sO vez aqui €
reciprocamente. Todavia pode facilmente demonstrar-se que esta nova série tem uma soma
maior que log 2. Procedemos para isso do modo seguinte:

Seja ¢, a soma parcial de ordem » de (10.57). Se n € um multiplo de 3, por exemplo n = 3m.

a soma parcial 3 contém 2m termos positivos € m termos negativos e ¢ dada por

1 s el ) 1331 1%
D B Ll YD RS DR EDI L PR PN

k=1 k=1 k=1 kw1 k=1 k=1

Em cada uma das trés ultimas somas utilizamos a relagao assintotica

Zi:]og;]+c+u(l) quandon-ﬂo.

k=1

obtendo

t3m = (logdm + C + o(1)) — d(log 2m + C + o(1)) — d(logm + C + o(1))
=3 log2 + o(l).

. 3
Assim 7, - 5 log 2 quando m — o=. Mas Gm + 1 = U3m

— 1/(2m), pelo que 1, , , e, ~, tém o mesmo limite que 7, quando m — co. Portanto

+ 1/(4m + l)etjm_ L= Um—

. .. 3 ..
cada soma parcial 1, tem o limite 5 log 2 quando n — <o, pelo que a soma da série em (10.57)

¢ —-;— log 2.

O exemplo precedente mostra que a reordenagdo dos termos duma série convergente
pode alterar a sua soma. Provaremos a seguir que isto pode verificar-se somente se a série
dada ¢ simplesmente convergente, isto €, a modificacio da ordem dos termos numa série
absolutamente convergente ndo altera a sua soma. Antes de provarmos €sta afirmacdo,
vamos precisar o que deve entender-se por reordenagao.

DEFINICAO. Represente P ={1, 2, 3, ...} o conjunto dos inteiros positivos. Seja f uma
Jungado cujos dominio e contradominio sao P e admita-se que f goza da propriedade seguinte:
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Os termos a,, a,, ..., a, anulam-se na subtragdo, pelo que se tem

.
|B, — Ayl < |ays| + layssl + - = |Ay — §*| < 5

Combinando este resultado com (10.58) vemos que |B,— S| < € paratodo o 2 M, o que
quer dizer que 8,- S quando n— « ¢ demonstra que a série reordenada Zb,tem soma S.

A hipotese de convergéncia absoluta noTeorema10.20 é essencial. Riemann descobriu que
uma série simplesmente convergente de termos reais pode ser sempre reordenada de modo a
dar lugar a uma série que convirja para uma soma previamente dada. O raciocinio de Rie-
mann fundamentava-se numa propriedade das séries simplesmente convergentes de termos
reais. Uma tal serie Za, tem infinitamente muitos termos positivos e infinitamente muitos

termos negativos. Consideremos as duas novas séries Za}, e Za, obtidas tomando so termos
positivos e sO termos negativos, respetivamente. Mais precisamente, definamos aj, e a;,
como segue:

a u - aﬂ - an SO0
a;=_"+_|LI, a, = __._[__I (10.59)
2 2

Se a, € positivo, entdo ay, = a, ¢ a,=0; se a, ¢ negativo, entdo a,=a, e a,= 0. As duas
novas séries Za}, ¢ Za, estdo relacionadas com a série dada Xa, do modo seguinte:

TeOREMA 10.21. Dada uma série La, de termos reais, definam-se a: e a; por (10.59).
(a) SeXa n € simplesmente convergente, ambas as séries * a, el a;: divergem.

(b) SeZ a, € absolutamente convergente, ambas as séries L a: eLa, convergem e tem-se

ian=ia;+2a;. (10.60)
1

n=1 n= ris 1

Demonstragdo. Para demonstrar a alinea (a) observa-se que Xia, converge e Xila,
diverge. Deste modo, pela propiedade da linearidade (Teorema 10.3) Za}, diverge e Za;, di-
verge. Para demonstrar (b) observamos que quer Zia, e Xi|a,| convergem pelo que, pela
propriedade da linearidade (Teorema 10.2), ambas as séries Za}, ¢ Za;, convergem. Visto
ser a,= a% + a,, obtemos também (10.60).

Podemos demonstrar agora facilmente o teorema da reordenagao de Riemann.

TeEOREMA 10.22. Se }.‘.ané uma série simplesmente convergente de termos reais e S um
numero real dado, entao existe uma reordenagao Lb de L a, que converge para a soma S



480 Calculo

Demonstragdo. Definamos &, ¢ a, como foi indicado em (10.59). Ambas as séries Zaj, e
Xa, divergem, visto que Xa, ¢ simplesmente convergente. Reordenemos Za,do modo se-
guinte:

Tomam-se, pela ordem, termos positivos a: em numero suficiente, de maneira que a sua
soma exceda S. Se sao necessarios p, termos positivos temos

) q
Ya,>S mas Ya,<S s g<p.

mies 1 n=1

Isto ¢ sempre possivel visto que as somas parciais de Zaj, tendem para +co. A estasoma
adicionamos termos negativos a, por exemplo n, termos negativos, de tal maneira que
a soma resultante seja menor do que S. Tal é possivel visto que as somas parciais de a,ten-
dem para —co. Assim temos

ny m

b Py
Ya,+da; <S8 mas za',j+2a‘;25 se m<n,.

fiw 1 [T | ne=1 ri=1

Repetimos o processo, adicionando precisamente novos termos positivos de modo a tornar-se
a soma maior que S, e em seguido juntamos-lhe suficientes termos negativos de modo a faze-
rem a soma menor que S. Continuando deste modo obtemos uma reordenagao Lb,.
Cada soma parcial de £b, difere de S quando muito dum termo a} ou a, Masa,~0
quando n- o, pois Za, € convergente, pelo que as somas parciais de £b, tendem para

S. Esta assim demonstrado que a série reordenada XZb, converge ¢ tem soma S, como
se afirmara.

10.22. Exercicios de revisao

I. (a) Sejaa,=\/n+ —\/;.Calcular lim a,.

n—o0

(b) Sejaa,=(n + 1F — n¢, com c real. Determinar aqueles valores de ¢ para os quais a
sucessao {a | converge e aqueles outros para os quais diverge. Na hipotese de con-

vergéncia, calcular o limite da sucessao. Observe-se que ¢ pode ser positivo, negativo ou
nulo.

2. (a) Se 0 < x < 1, provar que (1 + x™Y" tende para um limite quando 7 — = e calcular
este limite.
(b) Dados a > Oe b > 0, calcular lim (a" + p™/n,

n—oo
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3. Uma sucessao {a, | esta definida por recorréncia em fungao de a, e a, pela formula

11.
12.

(a) Supondo que {a ] converge, calcular o limite da sucessdo em fungdo de a, e a,.

O resultado € uma meédia aritmética pesada de a, e a,.
(b) Provar que,para cada escolha de a, e a,, a sucessao Iaul converge. Pode supor-se

que a, < a,. [Sugestdo: considere {a, | € la,, | separadamente.]

Uma sucessdo |x | esta definida pela seguinte formula de recorréncia:
r
x1=l, xn+12‘\"l+xﬂ.

Provar que a sucessdao converge e determinar o seu limite.
Uma sucessdo |x | € definida pelas seguintes formulas de recorréncia

1 ]

1
xo = ] N xl — 1 ’ =
Xni2 Xnil Xn

Provar que a sucessdao converge ¢ calcular o limite.

. Sejam |a } e {b ] duas sucessdes tais que para cada n se tem

1]
en=gqa, +e"

(a) Demonstrar que a n> 0 implica b n> 0.
(b) Se a, > O para todo o n e se La, converge, demonstrar que X(b, /a,) converge.

Nos Exercicios de 7 a 11 averiguar a convergéncia das séries.

o
- 1
P N
ngl V1 + n® —n). (log n)os"
n=2
x _ “ 1
S Wn+1=2Vn+vVn—1). 1. anﬂm :
=l n=1 ,
L a,sendoa, = I/n senéimpar,a, = 1/n? se n é par.
n=1

Provar que a série

WA ET = Vi)

ks

0

It

n

converge para a > 2 e diverge paraa = 2.
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13.

14.

15.
16.

17.

Dado a, > 0 para cada n, dar uma demonstragao ¢ um contra-exemplo para cada uma

das proposigoes seguintes.
(a) Se L a_diverge,entao L a? diverge.
n=1" n=1"

oo

o0
(b) Se £ ia:converge, entio I f'n/" converge.
n= n=

[= <]
Determinar todos os valores reais de ¢ para os quais as séries £ (n!)°/(3n)! converge.
n=1
oo

Determinar todos os inteiros @ > 1 para os quais a série L l(n!f /(an)! converge.
n=

Sejam n, < n, < n,... aqueles inteiros positivos que nao contém O na sua representagao
decimal. Assimn, = 1, n, = 2, ..., ny = 9, n,, = 11, ..., n,, = 19, n, =21, etc. Provar que a
(= =]
série dos reciprocos L 1/n , converge e tem uma soma inferior a 90.
=1

[Sugestdo: A série 9L (59/ 10)" majora a série em estudo.)
n=

Se a é um numero real arbitrario, seja s, (a) = 19 + 2% 4+ ... + n®. Calcular o seguinte
limite:

i s.la +1)
o s

(Considere o a positivo, negativo e ainda a = 0).
18. (a) Se p e g sao inteiros fixos p 2 ¢ = 1, mostrar que

pn

|

k=gn

(b) A série seguinte € uma serie reordenada da série harmonica alternada na qual apare-
cem, alternadamente, trés termos positivos seguidos de dois negativos:

I+ +3—d—-d+f+s+h—-d—-t+++-—-".
- 1 - :
Mostrar que a série converge e tem soma log 2 + — log 3/2. | Sugestdo: Considerar a

soma parcial s e usar a alinea (a). | 2

(c) Reordenar a série harmonica alternada, escrevendo alternadamente p termos positi-
vos seguidos de g termos negativos. Aplicar a alinea (a) para mostrar que esta reorde-

- - 1
nacao define uma serie que converge e tem soma log 2 + =3 log (p/q).
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Portanto _f;° e~y converge e o seu valor é 1/a. Por outro lado, se a > 0 temos

"0 —alz] ‘0 ‘u_t b
‘be‘”dx='be”‘dx=—’be°dl= oe"df.

Destemodo [© _e™* 1|4 também convergee vale 1/a. Assim podemos concluir [ el gy =

= —:';—. Observe-se, contudo, que o integral [ e~ **dx diverge porque [° e ~*"dx diverge.

Como no caso das séries, dispomos de varios critérios de convergéncia para integrais im-
proprios. O mais simples diz respeito a fungdes integrandas positivas.

TEOREMA 10.23. Se o integral proprio j'f;f(x Jdx existe paratodoo b = aesef(x)= 0 para
todo o x = a, entdo j"': f(x)dx converge se € so se existe uma constante M > 0 tal que

" b
.L f(x)dx <M  paracadab > a.

Este teorema constitui a base do seguinte critério de comparagao:

TEOREMA 10.24. Se o integral proprio [bf(x)dx existe para todo o b= a e se0 < f(x) <
< g(x) para todo o x = a e [* g(x)dx converge, entdo [® f(x Jdx também converge e

': f(x)dx < J:C g(x) dx .

Nota: O integral f:gfx)dx diz-se que majora o integral f: S x)dx.

TeEOREMA 10.25. CRITERIO DE COMPARACAO LIMITE. Se ambos os integrais pro'priosfﬂj(x)dx

e fﬁg(x)dx existem para todo b 2 a, com f(x) 2 0 e g(x) >0 para todo x 2 a, e se

lim f(—'t)=

. c, com ¢#0, (10.63)
T+ g(Y)

entdo os integrais | *f(x)dx e | g(x)dx ou convergem ambos ou divergem ambos.

Nota: Se o limite em (10.63) € 0, podemos concluir apenas que a convergéncia de J':“’g(x)dx
implica a convergéncia de I:f(x)dx.
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definida pela equacgdo f(x)=x ¥ se 0 <x=<1. O integral [} f(x)dx converge, mas
o integral [} m/*(x)dx diverge. Geometricamente isto significa que o conjunto de ordenadas

de ftem uma area finita, mas o solido obtido pela rotagao desta regiao em torno do eixo 0X
tem um volume infinito.

Integrais improprios da forma 'Iog_f(t)dr definem-se de modo semelhante. Se os dois

integrais [ f()dt e f?'f( 1)dt convergem, entdo podemos escrever
“h— “e - )
_'q_ f(r) dr = |' f(1) dt + .lr f(1) dr .

- .b___'
Nota: Alguns autores escrevem jz emvezde | .

A definigiio pode generalizar-se (duma maneira evidente) para cobrir 0 caso de qual-
quer numero finito de integrais parcelas. Por exemplo, se fnio estd definida em dois pon-
tos ¢ < d interiores ao intervalo la, b, dizemos que o integral improprio _[gf{t}d: converge

- -d- b, ; .

¢ tem o valor jj Steyde + |, fit)de + § 4, f(t)dt, desde que cada um dos integrais parcelas
convirja. Além disso, podemos considerar combinagdes “mistas™ tais como j:+f(t}dl +
+ [P fl)dt que se escreve |, f(tidt, ou combinagdes mistas da forma B-fie)dt +
+ [§, f(t)dr + |® f(1)dt que podem escrever-se muito simplesmente 5° f(1 )dt.

EXEMPLO 6. A fungdo gama. Se s>0 o integral J?ﬁ e't>'dr converge. Este integral
deve interpretar-se como uma soma, a saber

"1

| et tdr4 | et tdr (10.65)

« 0+

O segundo integral converge para qualquer real s, devido ao Exemplo 4. Para estudar o pri-
meiro integral escrevemos ¢ = 1/u e observamos que

~1

(/= 1/ 1
Le'rtdr= ll ey du.

Mas | e~V u=3-'du converge para s> 0 por comparagdo com [® u~*~'du. Portanto o
integral |§, e~'t5~'dr converge para s > 0. Quando s > 0, a soma (10.65) representa-se por
I'(s). A fungdo I' assim definida chama-se a fungdo gama, introduzida por Euler em 1729.
Ela possui a interessante propriedade de que I'(n + 1) = n! quando n € um inteiro = 0. (Ver
Exercicio 19 da secgio 10.24, para um esbogo de demonstragio).
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15. Para que valores das constantes @ e b existira o limite e sera igual a 1?

_ f”x"+ax’+bx
lim

poi Jup Xo+ X +1

16. (a) Provar que

~h dy 1 dx i
lim (f —-+[ —) =0 e que lim f senxdx =0,
'h

h—+Q+ -1 X X h==40 J=h

(b) Dizer se convergem ou divergem os seguintes integrais improprios

1dx =
J —_ J sen x dx ,
-1 X —c0

17. (a) Provar que o integral J{; , (sen x)/x dx converge.
(b) Provar que lixg x| i(cos 0)/ttde = 1.
x—+0+
(c) Sera o integral _[(l](cos t)/lzd: convergente ou divergente?
18. (a) Se f¢é mondtona decrescente para todo x 2 1 e se f{x) — 0 quando x — + o, provar
que o integral f‘;" f(x)dx e a série f{(n) sao ambos convergentes ou ambos divergentes.

[Sugestdo: Recorde-se a demonstragdo do critério do integral.]

(b) Dar um exemplo duma fungdao monotona f para a qual a série I f{(n) converge € o
integral ij(x)dx diverge.

19. Sejal'(s) = fg:_ Ve ldr ses> 0. (A fungdo gama.) Usar a integragao por partes para
demonstrar que I'(s + 1) = s I'(s). Demonstrar depois, por indugdo,que I'(n + 1) = n! se
n € um inteiro positivo.

Em cada um dos Exercicios 20 a 25 figura uma proposi¢ao, ndo necessariamente correta,
relativa a fungao f definida para todo x = 1. Em cada um desses exercicios n € um inteiro

positivo e /| representa o integral J";' Sf(x)dx, que se supoe que existe sempre. Para cada pro-

posigao dar ou a demonstragao ou um contra-exemplo.
20. Se fé monotona decrescente e se lim J, existe, entdo o integral J";"’ S(x)dx converge.

n—co

21. Se lim f(x) =0e lim I = A, entéo |7 f(x)dx converge e tem valor A.

X—0o n—oo

22. Se a sucessdo {7 } converge, entdo o integral [ °/(x)dx converge.

23. Sefépositivaese lim I = A, entdo | ;" f(x)dx converge e tem o valor A.
n 1

H—00

24. Suponhamos que f'(x) existe para todo x > 1 e que existe uma constante M > 0 tal que
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[f“(x)| < M para todo x > 1. Se lim I, = A, entdo o integral J-Tf(x)dx converge ¢ vale A.

n—o0

25. Se f T’f(x)dx converge, entao lim f{x)=0.

x—oo



11
SUCESSOES E SERIES DE FUNCOES

11. Convergéncia pontual de sucessoes de fungoes

No capitulo 10 estudamos sucessdes cujos termos eram numeros reais ou complexos.
Agora vamos considerar sucessoes | fnl cujos termos sdo fungdes reais ou complexas, pos-

suindo um dominio comum na reta real ou no plano complexo. Para cada x pertencente ao
dominio, podemos formar outra sucessao {f n(x)l de numeros cujos termos sao 0s correspon-

dentes valores das fungoes. Designemos por S o conjunto dos pontos x para os quais esta
sucessao converge. A fungao f definida em § pela igualdade.

f(x) =1lim f,(x) se xe§,

n—co

chama-se a fungdo limite da sucessao {f n] e diz-se que a sucessao U;:I converge pontualmente

para fno conjunto S.
O estudo de tais sucessoes esta relacionado,em principio,com o seguinte tipo de questao: se
cada termo duma sucessdo [/, | tem uma certa propriedade tal como a continuidade, deriva-

bilidade ou integrabilidade, até que ponto esta propriedade se conserva na fungio limite?
Por exemplo, se cada fungio f, € continua num ponto x, serd também a fungdo limite con-
tinua em x? O exemplo seguinte mostra que, em geral, ndo o €.
limite? Por exemplo, se cada fungao f, € continua num ponto x, sera também a fungao limite
continua em x? O exemplo seguinte mostra que, em geral, nao o €.

EXEMPLO 1. Uma sucessdo de fungdes continuas com uma fungdo limite descontinua. Seja

Jalx)=x"se 0 < x < 1. Os graficos de alguns termos da sucessdo estdo representados na
fig. 11.1. A sucessio {f,} converge no intervalo fechado (0, 1] e a sua fun¢do limite f/ € da-
da pela formula

491
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_ 0 se 0L<x<KI,
f(x) =lmx" =
n-*o l se x=l.

Observe-se que a fungao limite /¢ descontinua em 1, embora cada termo da sucessdo seja
continua no intervalo [0, 1].

ExeMpLO 2. Uma sucessao para a qual lim J‘z S (x)dx # _I'z lim f (x)dx. Seja f (x)=
H—00

n-—+co
=nx(l- xz)" para 0 € x £ 1. Neste exemplo a sucessao U;‘ | converge para uma fungao limite

Jfa qual & nula em todo o intervalo fechado [0,1]. Alguns termos da sucessao estao tragados
na fig. 11.2. O integral de f, estendido ao intervalo [0,1] &€ dado por

1 b . n(l —xH)"tit n
Ax) dx = x(1 —x¥)'dx = — = = .
Juf'(\)‘ = 'u X ) ¢ n+1 l 2n+1)

L

(g%

. 1 -
Portanto temos que lim | (')fn(x)dx = ——, Mas .l(l) lim j;' (x)dx =0. Por outras palavras,o

n—soo 2 n-—so0

limite dos integrais nao é igual ao integral dos limites. Este exemplo mostra que as duas ope-
ragoes

Fig. I1.1. Uma sucessao de fungoes Fig. 11.2. Uma sucessao de fungdes para
continuas com uma fungdo limite des- a qual f, >0 no intervalo [0, 1] mas
continua.

{4/+ = % quando n- .
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de “passagem ao limite” e “integragao” nem sempre sao permutaveis. (Ver também Exerci-
cios 17 ¢ 18 na segido 11.7.)

George G. Stokes (1819-1903), Philip L. v. Seidel (1821-1896) ¢ Karl Weilrstrass foram os
primeiros a verificar que sao necessarias algumas condi¢oes suplementares para justificar a
permutabilidade destas operagoes. Em 1848, Stokes e Seidel (independentemente um do outro
¢ quase simultaneamente) introduziram um conceito actualmente designado por convergéncia
uniforme e mostraram que para uma sucessao uniformemente convergente as operagoes de
passagem a0 limite a integragdo podem permutar-se. Weilrstrass mais tarde provou que o con-
ceito ¢ de grande importdncia em analise superior. Vamos introduzir o conceito na sec¢do
seguinte e provar a sua relagao com a continuidade e a integragao.

11.2. Convergéncia uniforme duma sucessao de fungoes

’

Seja |f | uma sucessdo que converge pontualmente num conjunto S para uma fungao

limite /. Segundo a definigao de limite, isso significa que para cada x em S e para cada € > 0
existe um inteiro N, que depende de x ¢ €, tal que|f, (x) — f(x)| < € sempre que n 2 N. Se o

mesmo N serve para fodos os pontos x de S, entao a convergéncia diz-se uniforme em S.
Quer isto dizer que podemos dar a seguinte

DEFINIGAO. Uma sucessdo de fungées |f | diz-se convergir uniformemente para f, num
conjunto S, se para cada € > 0 existe um N (dependendo unicamente de ¢ ) tal que n = N
implica

[falx) — f(x)| < € paratodo x em S.

Simbolicamente escreve-se

Jo—f  uniformemente sobre S.

Fig. 11.3 Significado geométrico da convergéncia uniforme. Se n > N, todo o grafico
de cada f, esta situado a uma distancia inferior a € do grafico da fungao limite /.

Quando as tungdes f, sdo reais, existe uma interpretagao geométrica simples da convergén-

APOSTOL — 17
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cia uniforme. A desigualdade [fn(x) — f(x)| < € € equivalente ao par de desigualdades
f(X) — € <f,(x) <f(x) + €.

Se estas se verificam para todo » 2 N e todo o x em S, entdo todo o grafico de f, relativoa S

esta situado numa banda de largura 2¢ simetricamente situada em relagao ao grafico de f,
como se indica na fig. 11.3.

11.3. Convergéncia uniforme e continuidade

Podemos agora demonstrar que a convergéncia uniforme transmite a continuidade dos ter-
mos da sucessdo (/| a fungdo limite .

TEOREMA 11.1.Seja f, = [ uniformemente num intervaio S. Se cada fungao f, € continua
num ponto p de S, entdo a fungdo limite f é também continua em p.

Demonstra¢ao. Vamos provar que para todo ¢ > 0 existe uma vizinhanga N(p) tal que

lf(x) — f(p)| < € sempre que x € N(p) N S. Se & dado ¢ > 0, existe um inteiro N tal que
n > N implica

| fu(x) — f(x)] < § para todo o x em §.
Visto que f, € continua em p, existe uma vizinhanga N(p) tal que

| fx(x) = f(p)l < 3 para todo o x em N(p) N .

Portanto, para todo o x em N(p) M S, tem-se

|f(x) = f(p)l = | f(x) = filx) + fs(x) = f[x(p) + fulp) — f(p)]
S f(x) = ()] + 1 f3(x) = fulp)l + | f(p) = fip)l .-

Uma vez que cada termo do segundo membro € < —(j-,

como queréamos demonstrar.

encontramos que |fix)— fip)| < e

O teorema precedente tem uma aplicagdo importante as series infinitas de fungoes. Se os
valores das fungGes /' (x) sdo somas parciais de outras fungGes, por exemplo

fn(x) = ﬁ: “k(x) »
k=1

e se f, -/ pontualmente em S, entdo tem-se
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€

b —a

() — f()] < paratodoofemla,bl.

Por conseguinte, se x € la, b] e se n 2 N, temos

~

~ Qb

x b
(f,(1) — f(n) dt ) SJ | f.(1) — f(1)] dt <J

dt = €,

18u(x) — g(x)| =

i o a — a
pelo que g, — g uniformemente em |a, ).
Ainda, como corolario, temos o correspondente resultado para séries infinitas.

TeEOREMA 11.4. Se uma série de fungoes Lu, converge uniformemente para uma fungdo
soma [ num intervalo |a, b), com cada uy uma fungcdo continua em |a, b) e se xela, b) define

n *tr

g,(x)= Z w, (1) dt e g(x) =J f(t)ydt,

k=14 a

entdao g, — g uniformemente em |a, b). Por outras palavras, tem-se

n fax *x n
lim > | wf)dr=| lim > uyr)dt
n=a k=1Ja va n—=w k=1
ou
o "= fx o«
S| udodr=| X ulr)dr.
k=1+a va k=1

Demonstragdo. Aplicamos o Teorema 11.3 a sucessdo de somas parciais U;: | dadas por

L

ft) =2 w(1)

k=1
e observamos que J% /,(¢1) dt = 2 JEu(r)dr.

Com frequéncia exprime-se o resultado do Teorema 11.4 dizendo-se que uma série unifor
memente convergente pode integrar-se termo a termo.

11.5. Uma condi¢ao suficiente para a convergéncia uniforme

Weilrstrass estabeleceu um critério para provar que certas séries sdo uniformemente con-
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vergentes. O critério € aplicavel sempre que a série dada possa ser majorada por uma série
convergente de valores numericos positivos.

TEOREMA 11.5. O CRITERIO M DE WEIRSTRASS. Dada uma série de fungies Zu, que con-

verge pontualmente para uma fungdo f num conjunto S, se existir uma série convergente de
valores numéricos IM 1al que

0< |u(x)| <M, paracadan > | e cada x em S

entdo a série Lu , converge uniformemente em S.

Demonstragao. O critério de comparagio mostra que a série Zu,(x) converge absoluta
mente para cada x em S. Para cada x em S temos

i

z t(x)

ke=nsl

n

J(x) = 2 u(x)

k=1

< S @< S M.

kesmesl ke nsld

Visto que a serie LM converge, para todo « > 0 existe um inteiro N taln 2 N implica

> M, < e.

LR |

Isto mostra que

F(x) =3 uyx)

r=1

< €

para todon 2 N e todo o x de S. Portanto a série Lu, converge uniformemente para f em §.

A derivagio termo a termo duma série arbitraria de fungdes € ainda mais delicada que a
integragio termo a termo. Por exemplo, a série £ (sen nx)/n* converge para todo o real x
porque € majorada por EZ1/n’. Além disso a convergéncia ¢ uniforme em todo o cixo real.
Porém, a série obtida por derivagdo termo a termo € X(cos nx)/n a qual diverge quando
x = 0. Este exemplo mostra que a derivagao termo a termo pode destruir a convergéncia.
muito embora a série original seja uniformemente convergente. Por conseguinte o problema
de justificagao da possibilidade de permutagao das operagoes de derivagao e somagao €, em
geral, mais complicado do que no caso da integragao. Mencionamos este exemplo para que o
leitor se aperceba que calculos usuais com somas finitas nem sempre se podem transportar
para séries infinitas, mesmo que as séries consideradas sejam uniformemente convergentes.
Dirigimos de novo a nossa atengao para séries especiais de fungoes, conhecidas por séries de
poléncias, as quais podem tratar-se como se fossem somas finitas.
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11.6. Series de poténcias. Circulo de convergéncia

Uma serie da forma

iaﬂ(z""")""'_""o'i"'ﬂ'n(z"'t'-')-i-"'+aﬂ(.’.-—a)"+---

=10

diz-se uma série de poténcias em z — a. Os numeros z, a e 0s coeficientes a, sao complexos.

A cada serie de poténcias esta associado um circulo, chamado o circulo de convergéncia.al
que a serie converge absolutamente para todo o z interior ao referido circulo e diverge para
todo o valor de z exterior a esse circulo. O centro do circulo € a e o seu raio r chama-se o raio
de convergéncia (ver fig. 11.4). Em casos limites

regiao de
divergéncia

regiao
de convergéncia

absoluta

.
a

N

| =a|=r
Fig. 11.4. O circulo de convergéncia duma série de poténcias.

o circulo pode reduzir-se ao simples ponto a, o que significa ser nulo o raio de convergéncia
ou pode aquele circulo compreender todo o plano complexo, hipotese em que se diz ser o raio
de convergéncia r = +oo. A existéncia do circulo de convergéncia sera provada no Teorema
11.7.

O comportamento da série nos pontos da fronteira do circulo nao pode ser previsto anteci-
padamente. Com diferentes exemplos se pode concluir que pode nao haver convergéncia em
nenhum dos pontos ou entao existir em alguns ou em todos os pontos da fronteira.

Para muitas das séries de poténcias que se apresentam na pratica o raio de convergéncia
pode ser determinado quer recorrendo aos critérios do quociente ou da raiz, como se mos-
tra nos exemplos apresentados a seguir.

EXEMPLO 1. Para determinar o raio de convergéncia da série de poténcias Xz"/n!/, aplica-
mos o critério do quociente. Se z # 0, 0 quociente de dois termos consecutivos tem o valor

absoluto

2™ pl |2

m+ 1zt n+1
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(n!)?
9 z" 13. Z (senan)z", a>0
2m!
n=1 =0
* 3 \; 2n -
10. ; . 14, E (shan)z", a > 0.
Lot n
=1 n=qQ
> 13:5---2n— 1)@ = 2"
E . E s 0, 0.
11. : ( 346 0m ) 15 PR a>0,b>

o

. -
12.Z(l+— 16.2( 5)  a>0b>0.
n T

n=1 pe=1

17. Sefn(x) = nxe” ™ paran =1, 2,... e x real,provar que

1
lim jﬁ,(t)d\ #J lim f,(x) dx .

"= G0 N ne=x

Este exemplo mostra que as operagoes de integragdo € passagem ao limite nem sempre
podem permutar-se.
18. Sejaf "(x) = (sen nx)/n, e para cada x real fixo seja f{x) = lim f;: (x). Provar que
n—oo

lim £7(0) # f(0).

n—» 9

Este exemplo poe em evidéncia que as operagoes de derivagao e passagem ao limite nem
sempre podem permutar-se.
L= o]
19. Provar que a série L (sen nx)/n* converge para todo o x real e representar a sua soma

n=|
por f{x). Provar que /¢ continua em (0, 7] e aplicar o Teorema 11.4 para provar que

T - l
J; f(x)dx = 221 =T

20. Sabe-se que

=
r3 if 0<x<2n.

-h|31,

a0
Cosnx X
Z o -7t

n=1

Usar esta formula e oTeorema 11.4 para provar as igualdades seguintes

= 1 - (_ )nH *
@2 a=% <b)z( =y A A

f=] H=1
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11.8. Propriedades das fun¢oes representadas por séries reais de poténcias

Nesta segdo vamos limitar-nos a series reais de poténcias, isto é, séries da forma Xa, (z—a)"
nas quais z, a e os coeficientes a i sao todos numeros reais. Escrevemos x em vez de z. O
circulo de convergéncia interseta o eixo real segundo um intervalo (@ — r, a + r) simétrico
em relagdo ao ponto a; designamos este como sendo o intervalo de convergéncia de série real

de poténcias £ a, (x — a)". O nimero r diz-se ainda o raio de convergéncia (ver fig. 11.5).

~—convergéncia absoluta—

divergéncia ———— e——divergéncia
% L pr
s ® 4
a-r a a4r

Fig. 11.5. O intervalo de convergéncia para a série real de poténcias.

Cada série real de poténcias define uma fungao soma cujo valor em cada x dointervalo de
convergéncia ¢ dado por

oo

f(x) =2 a,(x —a)".

n =0

Diz-se que a série representa a fungao f no intervalo de convergéncia e chama-se o desenvolvi-
mento de [ em série de poténcias de a.

Existem dois problemas fundamentais relativos ao desenvolvimento em série de poténcias
que aqui nos interessam:

(1) Dada a seérie, determinar propriedades da fungao soma f.

(2) Dada a fungao f, determinar se pode ou nao ser representada por uma seérie de potén-
cias. Acontece que unicamente algumas fungoes especiais admitem desenvolvimentos em sé-
ries de poténcias. Contudo tal classe de fungoes inclui a maior parte dos exemplos que se
apresentam na pratica e por este motivo o seu estudo ¢ da maxima importancia. Passemos
agora a discussao da questao (1).

O Teorema 11.6 diz-nos que a série de poténcias converge absolutamente para todo x per-
tencente ao intervalo aberto (a — r, a + r) e que converge uniformemente em todo o subinter-
valo fechado [a — R, a + R], com 0 < R < r. Uma vez que cada termo da série de poténcias é
uma fungao continua em todo o eixo real, resulta do Teoremall.2 que a fungao soma f é
continua em todo o subintervalo fechado l[a — R, @ + R] e por tal motivo no intervalo aberto
(a —r,a + r). Alem disso o Teorema 1 1.4 diz-nos que podemos integrar a série de poténcias
termo a termo em todo o subintervalo fechado (@ — R, @ + R]. Estas propriedades das
fungoes representadas por séries de poténcias ficam formalmente reunidas no seguinte teo-
rema.

TeOREMA 11.8. Se uma fungao [ admite o desenvolvimento em série de poténcias
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f) =3 a,(x — a)" (11.1)

1m0

num intervalo aberto (a—r, a +r), entao [ € continua nesse intervalo e o seu integral esten-
dido a qualquer subintervalo fechado pode calcular-se integrando a série termo a termo; em
particular para todo o x em (a — r, a + r) tem-se

ff(r)dr Z f(t a)"dt = Zn+l(x—a)"+“

n=0

O Teoremall.8 mostra também que o raio de convergéncia da série integranda é pelo
menos igual ao da série original. Provaremos a seguir que ambas as séries tém precisamente o
mesmo raio de convergéncia, demonstrando em primeiro lugar que uma série de poténcias
pode derivar-se termo a termo no interior do respetivo intervalo de convergéncia.

TEOREMA 11.9. Se f é representada pela série de poténcias (11.1) no intervalo de conver-
géncia (a — r, a + r) entao verifica-se que:
(a) A serie derivada E na, (x — )" tem igualmente raio de convergéncia r.

n=1
(b) A derivada [(x) existe para todo o x no intervalo de convergéncia e é definida por

fx) = ina,,(x —a)"?t.

n=1

Demonstragao. Por comodidade vamos considerar na demonstragao a = 0. Vamos em pri-
meiro lugar demonstrar que a serie derivada converge absolutamente no intervalo (—r, r).
Seja x um nimero positivo tal que 0 < x < r e seja h um numero positivo pequeno tal que
0< x < x+ h<r. Entio as séries para f{x) ¢ f{x + h) sio ambas absolutamente conver-
gentes. Assim, podemos escrever

flx + hh) — f(x) _ Z o & hi): - x" (11.2)

n=0

A série do segundo membro é absolutamente convergente visto ser numa combinagao linear
de séries absolutamente convergentes. Aplicando o teorema da meédia escrevemos

(x + h)" — x" = hnel ™,

ondex < ¢, < x + h. Logo a série (11.2) ¢ idéntica a serie

18

na,cr ! (11.3)

n=1
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a qual deve ser absolutamente convergente uma vez que a da igualdade (11.2) o €. A seérie
(11.3) ja ndo € uma série de poténcias, mas majora a série de poténcias T nanx"_l , pelo que
esta ultima série deve ser absolutamente convergente para este valor de x. Esta pois provado
que o raio de convergéncia da série derivada L na nx"—l ¢, pelo menos, igual a r. Por outro
lado o raio de convergéncia da série derivada ndo pode exceder r porque esta série derivada
majora a serie inicial £ anx”. Esta pois demonstrada a alinea (a).

Para demonstrar (b), representemos por g a fungdo soma da serie derivada,

a0
gx) =2 na,x" .
n=1

Aplicando o Teorema 11.8 a g, podemos integrar termo a termo no intervalo de convergencia,
obtendo

-

g(tydt =Y a,x" = f(x) — a,.
0

~ ne= ]

Por g ser continua, o primeiro teorema fundamental do calculo diz-nos que f*(x) existe e €
igual a g{x) para cada valor de x no intervalo de convergéncia; estd assim demonstrada a
alinea (b).

Nota: Uma vez que cada série de poténcias Za,, (x —a)" pode ser obtida por derivagdo da

correspondente série integrada, X aﬂ(x—a)’1+ l/(n + 1), oTeorema11l.9 diz-nos que ambas as
séries terao 0 mesmo raio de convergeéncia.

Os Teoremas 11.8 e 11.9 justificam os calculos da se¢do 10.8, onde obtivemos varios
desenvolvimentos em série de poténcias utilizando a derivagao e a integragao, termo a termo,
da série geométrica. Em particular estes teoremas estabelecem a validade dos desen-
volvimentos

., (_l)n_\_n—l 953-_:(_1)1?'\.2"-1
I 1 X) = N e arclg x = s
gl + )= 1 : 262n+1
n=0 n=

sempre que x pertence ao intervalo aberto —1 < x < 1.

Como mais uma consequéncia do Teoremall.9, concluimos que a fungdo soma duma
série de poténcias admite derivadas de todas as ordens,as quais se podem obter por derivagao
sucessiva, termo a termo, da série de poténcias. Se f(x) = L a, (x—a)", derivando esta igual-

dade k vezes e fazendo em seguida x igual a a encontramos f(k)(a) = k'a;, pelo que o coefi-
ciente a, ¢ dado pela formula
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igual a f{x)? Surpreendentemente embora, a resposta a ambas as questoes €, em geral, “nao”.
A série pode ou nao convergir para x # a e, caso afirmativo, a sua soma pode ou néo ser
igual a f{x). Um exemplo no qual a série converge para uma soma diferente de f{(x) € dado no
Exercicio 24 da, secdo 11.13.

Uma condigiio necessdria e suficiente para que a responta a ambas as perguntas seja afir-
mativa pode conseguir-se mediante a formula de Taylor com resto, a qual permite obterum
desenvolvimento finito da forma

n (k)
1= S0 - af + B0, (11.6)

k=0

A soma finita ¢ o polinomio de Taylor de grau n gerado por fem a e E, (x) & o erro cometido

na aproximacao de f pelo seu polinomio de Taylor. Se fizermos 7 — == em (11.6), vemos que a
série de poténcias (11.5) convergira para f{x) se e s se o resto tender para zero. Apresentare-
mos a seguir uma condigdo suficiente para que o resto tenda para 0.

11.10. Uma condi¢ao suficiente de convergéncia da série de Taylor

No Teorema 7.6 provamos que o erro na formula de Taylor pode ser expresso por inter-
médio de um integral

E (x) = -l—'f(x — 1" d (11.7)
niJa

em qualquer intervalo em torno do ponto @ no qual f('H D seja continua. Portanto, se f ¢ infi-
nitamente derivavel, temos sempre essa representagao do erro pelo que a série de Taylor
converge para f{(x) se e sO se este integral tende para 0 quando n — °e.

O integral pode escrever-se dum modo ligeiramente diferente e mais convenientemente
recorrendo a uma mudanga de variavel. Facamos

t= x4+ (a— x)u, dt = —(x — a) du ,

e observemos que u varia de | a0 quando r varia de a a x. Desta maneira, o integral (11.7)
vem

n+1 1
E,(x) = (—"—‘—ﬁ)—J W Vx4 (@ — x)u] du . (11.8)
0

n'

Esta forma do erro permite-nos enunciar a seguinte condigao suficiente de convergéncia da
série de Taylor.

TeEOREMA 11.11. Se f'¢é infinitamente derivavel num intervalo aberto I = (a —r,a +r) e
se existe uma constante positiva A tal que
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[fUYx) < A" para n=1,2,3,..., (11.9)
e todo x em 1, entdo a série de Taylor gerada por [ em a converge para f(x) para todo o x
em I.

Demonstragdo. Aplicando a desigualdade (11.9) na formula integral (11.8) obtemos a esti-
mativa

— n+1 1 _ n+l 4nitl nil
0<|E (x| <L !—t——ﬂ-l—- A”*-‘JA u" du = X al A . B
0

n! (n 4+ 1! B (n 4+ 1)! ’

onde B = A |x — a} Mas para cada B, B"/n! tende para 0 quando n — oo, pelo que £ (x) -0

para todo o x em /.

11.11. Desenvolvimento em série de poténcias das fungoes exponencial e trigonométricas

As fungoes seno e cosseno e todas as suas derivadas s@o limitadas por 1 em todo o eixo
real. Portanto a desigualdade (11.9) ¢ valida com 4 = 1 se f{x) = sen x ou se f{x) = cos x, e
temos 0s desenvolvimentos em série

xa xS x7 o x!n—l
SeNX =X — — 4+ = — = 4 o (=" ———— — ..,
TR TREET D S T
xz x4 xs nxgn
cosx=l-ota et TEY T

vilidos para todo o x real. Para fungdo exponencial, ffx) = e* temos f17/(x) = e* qualquer
que seja x, pelo que em qualquer intervalo finito (—7, r) temos ™ < e”. Deste modo (11.9) ve-
rifica-se com A = e”. Uma vez que r é arbitrario, isto mostra que o seguinte desenvolvimento
em série de poténcias ¢ valido para todo o x real:

2 n

F=l4x+T4 0+

= R
n!

Os precedentes desenvolvimentos em série de poténcias do seno e do cosseno podem
tomar-se como ponto de partida para um estudo completamente analitico das fungoes trigo-
nomeétricas. Se usarmos estas séries como definigdao do seno e do cosseno € possivel derivar,
a partir daqui, todas as propriedades algébricas e analiticas das fungoes trigonometricas. Por
exemplo, as series dao-nos imediatamente

sen0=0, cosO=1, sen(—x)= —senx, cos(— x) = cosx,

Dsenx = cosx, Dcosx = — senx.
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Vamos provar que o erro verifica as desigualdades

1

0<E,(x) < (;) 1. (11.11)

Isto, por sua vez, prova que E,(x)-0 quando n- oo, visto que 0 quociente (%)’”'—-0
quando 0 < x <r.

Para demonstrar (11.11), servimo-nos da forma integral do erro que foi dada em (11.8)
coma = 0.

) xn+l
E,\(x) =—
n.

1
f uf " (x — xu) du .
0

Esta formula é valida para todo o x pertencente ao intervalo fechado [0, 7]. Se x # 0, seja

1
E':I(:) =1 f u"f "V (x — xu) du .
]

X n!

Fﬂ(x) =

A fungdo £ * Vé monétona crescente no intervalo [0, 7] visto que a sua derivada é ndo ne-
gativa. Portanto temos

[ (x — xu) = OV [x(1 — w)] < V(1 = )

se 0 < u £ 1, o que implica que F "(x) < F n(r) se 0 < x < r. Por outras palavras, temos

E’[x)/'x"+l < E”(.v-)/r’"+1 ou

\n+1
E,(x) < (5,.) E(r). (11.12)

Fazendo x = r em (11.10), concluimos que E (r) < f(r) porque cada termo na soma ¢ nao
negativo. Considerando (I1.12) obtemos (11.11), o qual por sua vez completa a demons-
tragdo.

11.13. Exercicios

Para cada uma das séries de poténcias dos Exercicios | a 10 determinar o conjunto de
todos 0s reais x para os quais as séries convergem e calcular a sua soma. Os desenvolvi-
mentos em séries de poténcias ja dados no texto podem utilizar-se sempre que se considere
i$S0 convieniente.

L. i (—1ynan, 2. i 3‘:11.

n=0 n=0U




. nx”", ) m 1 \2) .
=0 n=0
L+ ] -

- (__l)tlx3rl

4.2(—1) nx", 8. D ——.
n=10 n==()

5 i( 2)nn + 2 . 5

'“:0 "+1x. 'nﬁ (n+3)'°
o 2nx" o (x = 1)

6. Z — . 10. > ooy
n=1 n=()

Cada uma das fungoes nos Exercicios 11 a 21 admite um desenvolvimento em série de
poténcias de x. Admitida a existéncia de tal desenvolvimento, verificar que os coeficientes tém
a forma dada e mostrar que as séries convergem para os valores indicados de x. Pode
recorrer-se aos desenvolvimentos dados no texto sempre que isso seja considerado conve-
niente.

1 n
z (log a) x", a >0 (todo 0 x). [Sugestdo: cos 2x= 1 — 2 sen? x.]

n=0

- x2n+l

12. shx = G 3 1) (todo 0 x).

n=0

2n 1
13. sen® x _Z(_ i ! x*"  (todo 0 x). [Sugestdo: 2x = 1 — 2sen® x.]

1 — X
14. 5> =ZZ"“ (Ix] < 2).

. * —l .. 2n
15. e* =Z%£— (todo © x).

2n

16. sen® x = - Z (“-I)"TI (‘m xantl (todo 0 x).

i ]
“ 2n+1
Z - (x| < 1).

17. log f
Z I —(=2r" (%l < D).

l8'1-{-x—"x2

w |

[Sugestdo: 3x/(1 + x — 2x*) = 1/(1 — x) — 1/(1 + 2x).]

12 -5 —1)"
6—5x—xx2 Z( : ))x" (<D
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Z séni-”;——l—)x" (Ix] < 1).

1 2
20, ————m—— = —
x4+ x+41 \/jﬂ-o

[Sugestao: x3 —1 =(x — 1)(x2 + x + 1))

x 1 < 1= (=" -
N e =52(n + —-—-2——)x (x < 1).

fe=]

22. Determinar o coeficiente a,y do desenvolvimento em série de poténcias sen (2x + %—) =
oo
= L a,x".
n=0 "
23. Seja f(x) = (2 + x*)*”2. Determinar os coeficientes a,, a,, ..., a, da série de Taylor gerada
por fem 0.
24. Seja f(x) = e”V*' se x # 0, e seja f(0) = 0.
(a) Mostrar que f/ admite derivada de todas as ordens em todo o eixo real.
(b) Mostrar que f(")(O) = ( para todo n 2 1. Este exemplo mostra que a série de Taylor

gerada por f em torno do ponto 0 converge em todo o eixo real, mas que representa f°
apenas na origem.

11.14. Séries de poténcias e equagdes diferenciais

As series de poténcias permitem-nos. por vezes, obter solugoes das equagoes diferenciais
quando outros métodos falham. Uma discussao sistematica do uso da série de poténcias na
teoria das equagoes diferenciais lineares de segunda ordem sera feita no Volume II. Aqui ape-

nas pretendemos ilustrar com um exemplo algumas das ideias e ténicas relacionadas com o
assunto.

Consideremos a equagao diferencial de segunda ordem
(1 = x*)y" = —=2y. (11.13)

Admitamos a existéncia duma solugao, por exemplo y = f{x), a qual pode ser expressa por
intermédio duma série de poténcias em certa vizinhan¢a da origem, seja

y=3ax". (11.19)

n=0

A primeira coisa a determinar sdo os coeficientes a,, a,, a,, ....
Uma maneira de proceder ¢ a seguinte: Derivando (11.14) duas vezes obtemos

o

y'=3nn— Da,x"*.

Multiplicando por 1 — x?, encontramos
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a0 @

(1 = x*y" =3nn— Da,x"*—3nn — a,x"

n=2 n=2

=>(n+ 2)(n+ Da, x" — Z n(n — 1)a,x"
ne=0

n=>0

= i [(n 4+ 2)(n + Da,,» — n(n — a,]x". (11.15)

=0

Substituindo cada uma das séries (11.14) e (11.15) na equagao diferencial, obtemos uma
equacao contendo duas séries de poténcias, valida em certa vizinhanga da origem. Pelo teore-
ma da unicidade, estas series de poténcias devem ser iguais termo a termo. Entdo igualando os

coeficientes de x” obtemos a relagdo
(n+2Yn+ a,.. —nn—la, = —2a,
ou, 0 que € a mesma coisa,

_ n—n-—2 p n—2
m+2)Xn+1) " n+2

a,. o

Estas relagoes permitem-nos determinar a,, a,, a,, ... sucessivamente, em fungao de a,. Ana-
logamente, podemos calcular a,, as, a,, ... a partir de a,. Para os coeficientes de indice par
encontramos

a, = —a,, a;=0-a,=0, Qg = Ay = Ay ="+ =0.

Os coeficientes de indices impares sao

-2 —1 Jj—-2 1 (=1)
3= ay = —4a,, ds = Ay = ~ ay,
142 3 342 5 3
5—-2 31 (=1 —1
a, = dyg = ="' ="' — 4, = —— d,
542 75 3 7
¢ em geral,
2n — 3 2n—-3 2n—35 2n -7 31 (=1
A2piy = o = ’ ' DT T 4y
2n + 1 2n+1 2n—1 2n—3 75 3
Simplificando vem
—1

Aoy =

: a .
(2n + 1)2n — 1)

Portanto, a serie para y pode escrever-se como segue:
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2 1
' = ] — 2y __ 2n+1.
¥ =l = x) alz(2n+1}(2n—-l)x

n=0

Aplicando o critério do quociente pode verificar-se que esta série é convergente para|x| < 1.
Pela forma como foi obtida vé-se que a série satisfaz efetivamente a equagdo diferencial

(11.13), podendo a, € a, ser consideradas como constantes arbitrarias. O leitor constatara
que neste exemplo particular o polinomio que multiplica a, € ele proprio uma solugao de
(11.13) e a série que multiplica @, ¢ outra solugao.

O metodo acabado de descrever chama-se método dos coeficientes indeterminados. Outra
maneira de calcular estes coeficientes baseia-se no uso de

. = f(u!(o)

n

- se y=f(x).

Algumas vezes as derivadas de ordem superior de y, na origem, podem ser calculadas direta-
mente a partir da equagao diferencial. Por exemplo, fazendo x = 0 em (11.13), obtemos

/(0 = -2/(0) = —2a,,

donde resulta

Para calcular as derivadas de ordem mais elevada derivamos a equagao diferencial para
obtermos

(I =2)" — 2xy" = =2)". (11.16)

Fazendo x = 0, vemos que f"(0) = —2/7(0) = —2a, e daqui a, = " 0)/3! = —a,/3. Deri-
vando (11.16) obtemos

(1 — 2 —4xy" =0.

4 ) : )
Quando x = 0, obtcmos_/" )(0) = 0 e por isso a, = 0. Repetindo o processo uma vez mais.
encontramos

(1 = x2)y — 6xy — 4y" =0,

n “0 a
70) = 4/"(0) = —8a,, a5=f~5—!()= — é

-

E evidente que o processo pode ser levado tao longe quanto se queira.
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Esta propriedade, que é uma consequéncia imediata da definigao (11.18), € valida para todo o
real « e todo o inteiro n 2 0. Pode também ser expressa na forma

("+1)(":_ l) +"(.r:)=m(:)' (11.21)
Derivando (11.19) obtemos
f(x) = i n(:)t ! i(u + lJ(" :_ 1).\'" ,
. o
donde se obtém
a+0r@=Slo+n(, %) +n(2)} = S (2)x = v,
a0 o

em virtude de (11.21). Isto prova que f satisfaz a equagao diferencial (11.20) o que, por sua
vez, prova (11.17).

11.16. Exercicios

1. A equagdo diferencial (1 —x?)y* — 2xy“ + 6y =0 tem como solugdo a fungao y = f(x)

com f(0) = 1 ef'(0) = 0 e admite um desenvolvimento em série de poténcias f{x)= ¥ a"f .
n=0
Aplicar o método dos coeficientes indeterminados para obter uma formula relacionando

a,,,aa, Determinar explicitamente a, para todo o n e calcular a soma da série.

2. Fazer o mesmo que no Exercicio 1 para a equagao diferencial (1 — x?)y” — 2xp" + 12y =
=0 e as condigoes iniciais f(0) = 0, /7(0) = 2.

Em cada um dos Exercicios 3 a 9 define-se uma fungao f por intermédio duma serie de
poténcias. Determinar, em cada caso, o intervalo de convergéncia e provar que f verifica a
equacao diferencial indicada, sendo y = f{x). Nos Exercicios 6 a 9 resolver a equagao diferen-
cial e obter a soma da série.

i\ xln dl‘.
3. /() =~2{4}(4u)! > R

-] x”
4. f(x) =z ("———.72- N xy"+y —y=0
n=0

9&|.4.7...3 -2
5. f(x) =1 +Z (3")(! - )A"'"'; y =x%+b.  (Acharaeb)
w=1
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Xx=n » J_. ( — l )rrzﬁn.\.En
6. f(x) =Z T : y = 2xy. 8. [(x) =Z e S V' +4y =0.

(3”)!
n=>_U n=

‘.u (3\)-rl +1
7. f(x) _Z S y=xy 9. f(x) = x +z(‘*n Sy =90~ )

=3

C-

10. As fungdes J, e J, definidas pelas séries

o0 oo

Jy(x) “‘T (=1 -l)d')zu ’ Jy(x) =Z (=D"

W= U n=Q

\'2" +1

n'(n + 1)123n+1

sao chamadas fungcoes de Bessel de primeira espécie de ordem zero e um respetiva-
mente. Estas fun¢Oes aparecem em muitos problemas de matematica pura e aplicada.
Mostrar: (a) que ambas as séries convergem para todo o real x; (b) Jj(x) = —J,(x); (c)
Jo(X) = jj(x) com jy(x) = x J,(x) e j,(x) = xJ,(x).

11. A equagao diferencial

Gyt 4 xy + (= nf)y =0

chama-se equagdo de Bessel. Provar que J, ¢ J, (definidas no Exercicio 10) sao solugoes
quando n = 0 e n = 1, respetivamente.

Em cada um dos Exercicios 12, 13 e 14, supor que a equagao diferencial dada tem uma
solugdo desenvolvivel em série de poténcias e achar os quatro primeiros termos nao nulos.
12. py" = x? + y*, com y = | quando x = 0.

13. y"=1 + xy% com y = 0 quando x = 0.
14, y" = x + »*, com y = 0 quando x = 0.

Nos Exercicios 15, 16, 17 supdr que a equagao diferencial dada admite como solugao uma
série de poténcias da formay =X aﬂx", e determinar o coeficiente a,.

15. y' = ay. 16. y* = xy. 17. y* + xy" +y = 0.
18. Sejafix)= L aux", onde a, = 1 e os restantes coeficientes sao determinados pela iden-

n=o
tidade

2 =% {2a, + (n + 1)a,,,)x".

=1

Calcular a,, az, a, e encontrar a soma da serie correspondente a f(x).

19. Sejaf(x)= E a x com 0s coeﬁcnemcsa determinados por

pewal)



12
ALGEBRA VECTORIAL

12.1. Introdu¢ao historica

Nos capitulos precedentes apresentamos muitos dos conceitos fundamentais do célculo,
ilustrando-os com aplicagoes a resolu¢ao de problemas relativamente simples de carater
geométrico ou fisico. Ulteriores aplicagdes do célculo exigem ja um conhecimento de geo-
metria analitica mais profundo do que o até agora apresentado e por esta razio vamos dirigir a
nossa ateng¢ao para um estudo mais pormenorizado de algumas ideias geomeétricas funda-
mentais.

Como ja se afirmou no inicio deste livro, o calculo e a geometria analitica estiveram sem-
pre intimamente relacionados no decorrer do seu desenvolvimento historico. Cada nova des-
coberta num dos assuntos conduzia a um progresso no outro. O problema do tragado de tan-
gentes a curvas resolve-se com a descoberta da nogao de derivada; o de area conduziu ao
estabelecimento do integral; e as derivadas parciais foram introduzidas para estudar
superficies curvas no espago. Juntamente com estas descobertas obtém-se desenvolvimentos
paralelos na mecanica ¢ na fisica matematica. Em 1788 Lagrange publicava a sua obra
prima, Mecanique Analytique, que pds em evidéncia a grande flexibilidade e a enorme efi-
cacia alcangada pelo uso de métodos analiticos no estudo da mecéanica. Mais tarde, no século
XIX, 0 matematico irlandés William Rowan Hamilton (1805-1865) estabelecia a sua Theory
of Quaternions, um novo método € um novo ponto de vista que muito contribuiu para a
compreensdo tanto da algebra como da fisica. Os aspectos mais positivos da andlise dos
quaternides e da geometria cartesiana fundiram-se mais tarde, gragas em grande parte aos
esforgos de J. W. Gibbs (1839-1903) ¢ O. Heaviside (1850-1925), para darem lugar a um
novo dominio chamado 4 lgebra Vectorial. Rapidamente se aperceberam que os vectores
eram os instrumentos ideais para a exposi¢ao sintética de muitas ideias importantes na geo-
metria ¢ na fisica. Serd o objetivo deste capitulo o estudo de elementos de dlgebra vecto-
rial. As aplicagdes desta a geometria analitica far-se-d0 no capitulo 13. No capitulo 14
faz-se uma combinagio de dlgebra vectorial com métodos do calculo e dao-se aplicagdes
quer no dominio da geometria quer da mecanica.

Existem fundamentalmente tres maneiras diferentes para se iniciar o estudo da dlgebra
vectorial: geometricamente, analiticamente e axiomaticamente. Na via geomeétrica os
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vectores sdo representados por segmentos de reta orientados ou por setas. As operagoes
algébricas com vectores, tais como a adigao, subtragdo e multiplicagao por nimeros reais,
sdo definidas e estudadas por métodos geométricos.

No método analitico, os vectores e correspondentes operagoes sao completamente descri-
tos em termos de mimeros, chamados as componentes. As propriedades das operagoes com
vectores sao entao deduzidas a partir das propriedades correspondentes dos numeros. A des-
crigdo analitica dos vectores resulta naturalmente da descrigao geomeétrica,desde que se intro-
duza um sistema de coordenadas.

Na via axiomatica ndo se faz qualquer tentativa para descrever um vector ou as operagoes
algebricas com vectores. Pelo contrario, vectores e operagoes vectoriais sao considerados
como conceitos nao definidos, relativamente aos quais nada sabemos a nao ser que eles satis-
fazem a um certo conjunto de axiomas. Um tal sistema algébrico, com axiomas apropriados,
chama-se um espago linear ou um espago vectorial linear. Em todos os ramos da Matematica
se encontram exemplos de espagos lineares e estudaremos alguns deles no capitulo 15. A al-
gebra dos segmentos de reta orientados e a algebra dos vectores definidos pelas componen-
tes sao apenas dois exemplos de espagos lineares.

O estudo da algebra vectorial de um ponto de vista axiomatico é talvez o mais satisfatorio
matematicamente,uma vez que proporciona uma descrigao dos vectores independentemente
do sistema de coordenadas e de qualquer representag¢io geométrica particular. Esse estudo é
feito com algum pormenor no cap. 15, Neste capitulo fundamentamos o nosso estudo no me-
todo analitico ¢ usamos também os segmentos de reta orientados para interpretarmos geo-
meétricamente muitos dos resultados. Sempre que possivel, apresentaremos as demonstragoes
por métodos independentes das representagoes dos vectores num dado sistema de coordena-
das. Em resumo, este capitulo serve para nos familiarizarmos com exemplos concretos
importantes de espagos vectoriais e igualmente para motivar o tratamento mais abstrato que
se fara no capitulo 15.

12.2. O espaco vectorial dos N-sistemas de nameros reais

A ideia de utilizar um namero para localizar um ponto sobre uma reta ja era conhecida
dos antigos gregos. Em 1637 Descartes generalizou esta ideia, utilizando um par de numeros
(a,, a,) para localizar um ponto no plano e um terno de numeros (a,, a,, a,) para localizar
um ponto no espaco. Os matematicos A. Cayley (1821-1895) e H. G. Grassman (1808-1877)
provaram que nao era forgoso parar nos ternos de numeros para representar pontos. Podem
muito naturalmente considerar-se um quaterno de numeros (a,, a,, a,, a,) ou, mais geral-
mente, um sistema de n numeros reais

(@,,a,,...,a,)

para qualquer inteiro n > 1. Um tal n-sistema diz-se um ponto n-dimensional ou um vector n-
dimensional, sendo os nimeros a,, @y, ..., g, as coordenadas ou componentes do vector. O

conjunto de todos os vectores n-dimensionais formam o espago vectorial dos n-sistemas, ou
mais simplesmente um n-espago. Representamo-lo por Vu.

O leitor pode, nesta altura, preguntar qual o interesse em considerar espacos de dimensao
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superior a trés. Uma resposta ¢ que muitos problemas que implicam um grande nimero
de equacdes simultaneas sdo mais facilmente analisadas pela introdugdo de vectores num
adequado n-espacgo e substituindo todas aquelas equagoes por uma unica equagao vectorial.
Outra vantagem ¢ que ficamos aptos a tratar, duma vez, muitas propriedades comuns a
espagos de uma, duas, trés ou mais dimensoes, isto €, propriedades independentes da
dimensao do espago. Isto esta de acordo com o espirito da matematica moderna que pretende
o desenvolvimento de amplos meétodos para atacar problemas numa extensa frente.

Infelizmente as representagoes geométricas, que sao um grande auxiliar na justificagao de
conceitos vectoriais quando » = 1, 2 e 3, ndo sao possiveis quando n > 3; quer isto dizer que
o estudo da algebra vectorial em espagos com mais do que trés dimensoes deve fazer-se
completamente por métodos analiticos.

Neste capitulo representamos habitualmente os vectores pelas letras maiusculas 4, B, C, ...
e as componentes pelas correspondentes letras minusculas a, b, ¢, ... . Assim, escrevemos

A=(a,a,,...,a,).

Para dotar ¥, com uma estrutura algébrica definimos a igualdade de vectores e duas

operagoes com vectores chamadas a adigdo e multiplicagdo por um escalar. A palavra
“escalar” ¢ aqui usada como sinonimo de “numero real”.

DEFINICAO. Dois vectores A e B dizem-se iguais sempre que as correspondentes compo-
nentes coincidem, isto ¢, se A = (a,, a,, ..., a,) e B = (b,, b,, ..., b ), a igualdade vectorial
A = B significa exatamente o mesmo que as n igualdades escalares

ﬂl=bl, az=b2. o« e o9 a"=b“.

A soma A + B define-se como o vector obtido por adi¢do das correspondentes componentes:

A+B=(al+bl,a2+b2,....a"+b").

Se ¢ é um escalar, define-se cA como sendo o vector obtido por multiplicagio de cada com-
ponente de A por ¢

cA = (ca;,cay,...,ca,).
A partir desta definigao ¢ facil verificar as seguintes propriedades destas operagoes.
TEOREMA 12.1. A adigdo vectorial é comutativa

A+ B=B+ A,
e associativa

A+B+C)=(A+B)+ C.

A multiplicagao por escalares é associativa
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c(dA) = (cd)A
e satisfaz as duas propriedades distributivas
(A + B) =cA + ¢B, e (c+ d)A=cA+ dA.

A demonstragdo destas propriedades ¢ uma consequéncia imediata da defini¢ao e deixa-se
ao leitor como um exercicio simples.

O vector de componentes todas nulas diz-se o vector nulo, e representa-se por 0. Goza
de propriedades de que 4 + O = A qualquer que seja A, o que significa que O ¢ o elemento
neutro para a adigao vectorial. O vector (—1)4, também representado por —A4, chama-se o
simétrico de A. Escrevemos também 4 — B em vez de A + (—B) e chamamos-lhe a diferenga
de 4 e B . A igualdade (4 + B) — B = A mostra que a subtracgao € a inversa da adigao.
Observe-se que 04 =0 e 14 = A.

O leitor ja tera notado a semelhanga entre vectores no 2-espago € 0s numeros complexos.
Ambos sao definidos por pares ordenados de numeros reais e ambos se adicionam exata-
mente do mesmo modo. Assim, pelo que respeita a adigao, os numeros complexos e 0s
vectores bidimensionais sao algebricamente indistinguiveis. SO se diferenciam quando intro-
duzimos a multiplicagao.

A multiplicagdo de numeros complexos da ao sistema destes numeros o conjunto de
propriedades relativas aos axiomas de corpo possuidas pelos numeros reais. Pode
demonstrar-se (embora a demonstrac¢ao seja dificil) que excepto para n = 1 e 2, ndo ¢ possivel
definir a multiplicagao em ¥, de maneira que satisfaga a todas as propriedades dos axiomas
de corpo. Nao obstante podem definir-se produtos especiais em ¥, que ndo satisfagam a
todas as propriedades dos axiomas de corpo. Por exemplo na se¢do 12.5 vamos considerar
o produto escalar de dois vectores de V,. O resultado desta operagao ¢ um escalar e nao um
vector. Outro produto, chamado produto vectorial, é estudado na se¢do 13.9. Esta multipli-
cagao define-se unicamente no espago V,. O resultado € sempre um vector, mas o produto
vectorial € nao comutativo.

12.3. Interpretagio geométrica paran< 3

Embora as definigoes dadas atras estejam completamente divorciadas da geometria, os
vectores e as operagoes vectoriais sao susceptiveis duma interpretagao geomeétrica interes-
sante para o caso de espagos de dimensdo igual ou menor que trés. Vamos efetuar as
representagdes geométricas num espago bidimensional e deixamos ao leitor a tarefa de as
viszualizar num espago tridimensional ou unidimensional.

Um par de pontos 4 e B chama-se vector geométrico se um dos pontos, seja A, € a origem e
0 outro, B, ¢ a extremidade. Representamos este vector por uma seta de A até B, como se
mostra na fig. 12.1 e escrevemos A4B.

Os vectores geométricos sao especialmente uteis para representar certas quantidades fisi-
cas tais como forg¢a, deslocamento, velocidade, e aceleragao que possuem uma grandeza uma
diregao ¢ um sentido. O comprimento do segmento 4B € uma medida da grandeza ¢ a
ponta da seta indica o sentido sobre a dire¢ao definida pelo segmento.



Algebra vectorial 523

dg - Cy
B Extremidade
b, - a,
A Origem
0
Fig. 12.1. O vector geométrico A_é de Fig.12.2. AB e CD sio equipolentes
A atée B. porque B — A = D-C.

Suponhamos que deﬁnim_o,s um sistema de coordenadas com origem em O. A fig. 12.2.
mostra dois vectores AB e CD com B — A = D — C. Relativamente s componentes isto sig-
nifica que

bl—al=d|—cl c bz—a2=d2"—c2.

— -
Observando os triangulos iguais da fig. 12.2 verificamos que as setas representando AB ¢ CD
tem comprimentos iguais, sao par_aJelas e tém o0 mesmo sentido. Chamamos a tais vectores
- v . . . o
equipolentes, isto €, dizemos que 4B € equipolente com ¢ p sempre que

B—A=D-—C. (12.1)

Repare-se que os quatro pontos 4, B, C, D, sao vértices de um paralelogramo. (Ver figura
12.3). A igualdade (12.1) pode também escrever-se A + D = B + C que nos diz que veértices
opostos dum paralelogramo tém a mesma soma. Em particular, se um dos vertices, por
exemplo A, ¢ a origem 0, como na fig. 12.4, o vector geomeétrico de 0 até ao vértice oposto D
corresponde ao vector soma D = B + C. Exprime-se este fato dizendo que o vector soma
corresponde geometricamente a adi¢ao de vectores geométricos pela regra do paralelogramo.
A importancia dos vectores na fisica provém do fato notavel de que muitas grandezas fisicas
(tais como forga, velocidade e aceleragao) se combinam por meio da regra do paralelogramo.

Por comodidade de notagao utilizaremos o mesmo simbolo para representar um ponto de
V,(quando n < 3) e o vector geométrico definido pela origem O e por esse ponto. Assim

— —
escrevemos A em vez deOA, B em vez de OB, etc. Por vezes escrevemos tambem 4 no lugar
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D
c
B
A
Fig. 12.3. Vertices opostos de Fig. 12.4. Adigao de vectores interpretada
um paralelogramo tem a mesma geometricamente pela regra do paralelo-
somaAd + D =B + C. gramo.

de qualquer vector geométrico equipolente a0A. Por exemplo a fig. 12.5 representa geome-
tricamente a subtragdao de vectores. Dois vectores geomeétricos estao designados por B — 4,
mas estes vectores sao equivalentes. Eles tém a mesma grandeza, a mesma dire¢do ¢ o
mesmo sentido.

A fig. 12.6 representa geometricamente a multiplicagao por escalares. Se B = cA4, o vector
geometrico B tem grandeza igual a |c| vezes a grandeza de 4; tem a mesma diregdo que A e o
mesmo sentido se ¢ € positivo e o sentido contrario se ¢ € negativo.

B -A 34

24
A
iA
0
-A
Fig. 12.5. Representagao geométrica da sub- Fig. 12.6. Multiplicagao de
tragao de vectores. vectores por escalares.

A interpretagao geomeétrica de vectores em ¥, para n < 3sugere uma maneira de definir
paralelismo num espago de dimensao n qualquer.

DEFINICAO. Dois vectores A e B de vV, dizem-se paralelos se B = cA para algum ¢ ndo

nulo. Tem o mesmo sentido se B = cA para algum escalar positivo ¢ e o sentido contrdrio se
B = cA para algum escalar negativo c.
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enquanto que o segundo membro &
(14 + |BI)* = |41*+ 2] 4] |BI + 1 B]*.
Comparando estas duas formulas vemos que (12.5) verifica-se se e somente se
A-B< Al B . (12.6)

Mas A+ A4 < |4+ B| pelo que (12.6) resulta da desigualdade de Cauchy-Schwarz na forma
(12.4). Podemos assim afirmar que a desigualdade triangular € uma consequéncia da
desigualdade de Cauchy-Schwarz.

A posi¢do inversa ¢ tambem verdadeira, isto €, se a desigualdade triangular se verifica,
tambeém se verifica (12.6) para A e para —A4, donde se obtém (12.3). Se a igualdade se verifi-
ca em (12.5), entio 4 - B = |4 ||| B|. pelo que B = ¢4 para algum escalar ¢. Por conseguinte
A B=c|A|*ell4||B|l=]c||4]]>. Se 4 # 0 isto implica que ¢ = |¢| = 0. Se B # 0 entdao B =
cA com ¢ > 0.

A desigualdade triangular esta representada geometricamente na fig. 12.9 e nessa represen-
tagao geometrica estabelece que o comprimento de um lado de um triangulo nao pode exce-
der a soma dos comprimentos dos outros dois lados.

12.7. Ortogonalidade de vectores

No decorrer da demonstragao da desigualdade triangular (Teorema 12.5) obtivemos a
formula

|4+ BI* = |A|* + |B|*+ 24 B (12.7)

_A+B

I Bl

Il A
Fig. 12.9. Significado geometrico da Fig. 12.10. Dois vectores per-
desigualdade triangular ||[4 + B|| < ||4||+|| Bl|.  pendiculares satisfazemaiden-

tidade de Pitagoras |4 + B

F=14F + | BF.
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que ¢ valida para dois quaisquer vectores A ¢ B de V . A fig. 12.10 representa dois vectores

geométricos perpendiculares no plano. Eles definem um triangulo rectangulo de lados ||4|| e
|IB|| e cuja hipotenusa mede ||4 + B|| O teorema de Pitagoras estabelece que

I4 + Bl* = [|4]]* + IB]?*.

Comparando este resultado com (12.7) vemos que 4 - B = 0. Por outras palavras, o produto
escalar de dois vectores perpendiculares ou ortogonais no plano € zero. Esta propriedade pro-
porciona uma defini¢ao de ortogonalidade de vectores de V.

DEFINICAO. Dois vectores A e B de V, dizem-se ortogonais se A - B = 0.

A igualdade (12.7) mostra que dois vectores 4 e B de V, sdo ortogonais se € somente se
|l4 + B||* =||4|[* +||B||*. Esta & a chamada identidade de Pitagoras em V.

12.8. Exercicios

1. Sejam A4 =(1,2,3,4),B=(-1,2,-3,0)e C = (0, 1, 0, 1) trés vectores de V,. Calcular
cada um dos seguintes produtos escalares:
(@) A-B;(b)B-C;(c)A-C;(d)A-(B + C); (e) (A-B)-C.

2. Sao dados trés vectores 4 = (2,4, -7),B =(2,6,3) e C = (3, 4, —5). Em cada uma das
expressoes seguintes existe uma e uma sO maneira de inserir os paréntesis de modo a
obter expressoes providas de significado. Inserir os paréntesis ¢ efetuar as operagoes
indicadas.

(a) A-BC; (b)) A-B + C;(c)A + B-C; (d) AB-C; (e) A/B-C.
3. Dizer se ¢ ou ndo correcta a seguinte proposigao relativa a vectores de V,:Se 4 - B =

=A-C eA # 0 entio B = C.
4. Dizer se € ou ndo correta a seguinte proposigdo relativa a vectoresde V,:Se4-B =0

para cada B, entao A = 0.

5.S¢e4 =(2, 1, —1) e B = (1, —1, 2) determinar um vector nao nulo C de V, tal que
A-C=B-C =0.

6. SeA =(1,—-2,3)e B =(3, 1, 2), determinar escalares x ¢ y tais que C = x4 + yB ¢ um
vector nao nulo com C-B = 0.

7. Se A = (2, -1, 2) e B = (1, 2, —2), determinar dois vectores C ¢ D de V, verificando as
seguintes condigoes: 4 = C + D, B-D = 0, C paralelo a B.

l 1 1

8. Sed=(1,2,3,4,5eB=(l, 532
verificando todas as condigoes seguintes: B = C + 2D, D - A = 0, C paralelo a 4.

9. Sejam A4 = (2, —1,5),B=(—1,-2,3)e C =(1,—1, 1) trés vectores de V,. Calcular a
norma de cada um dos seguintes vectores.
(a) A + B;(b)A—-B; (c)A+B—-C;(d)A—-B + C.

1 . .
75 ), determinar dois vectores C e D de V
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Calculo

Em cada alinea determinar um vector B de V,talque B-4 =0e¢ ||B|| = |=4|] se:
(@ A4 =(11;0bdA4=(,-1);kA4d=1(2-3)dA4 = (a b)

Sejam A = (1, -2, 3) e B = (3, 1, 2) dois vectores de V,. Em cada alinea determinar um
vector C de comprimento | paralelo a:

(a) A + B;(b)A — B; (c)A + 2B; (d) A — 2B; (e) 24 — B.

Sejam 4 =(4, 1, -3):;B=(1,2,2:C=(1,2,-2),D=(2,1,2)e E=(2,-2,-1)
vectores de V,. Determinar todos os pares de vectores ortogonais.

Determinar todos os vectores de ¥/, que sdo ortogonais a 4 e tém 0 mesmo comprimento
que A se:

@A=(,2;0b)A4=(,-2);0)A4=(@2-1)(dAd=(-21.

Sed =(2,—1,1)e B = (3, —4, —4) determinar um ponto C no 3-espagotalque 4, BeC
sejam vertices de um triangulo retangulo.

Sed =(1,-1,2)e B=(2, 1, —1) determinar um vector nao nulo C em V; ortogonal a A
e B.

Sejam A = (1, 2) e B(3, 4) dois vectores de V,. Determinar vectores Pe Q em V, tais que
A =P+ Q, Pé paralelo a B e Q ortogonal a B.

Resolver o Exercicio 16 se os vectores estdao em V, com 4 = (1, 2, 3, 4) e B =
=(1, 1, 1, 1).

Sao dados os vectores 4 = (2, —1, 1), 8 =(1,2, —1) e C = (1, 1, —2) de V,. Encontrar
cada vector D da forma xB + yC o qual é ortogonal a A e tem comprimento 1.
Provar que para dois vectores A ¢ B de ¥, se tem a identidade

A+B*~- A-B*=44"B,

eporissod B =0seo0sose|ld + B||=||4 — B|l. Quando isto é interpretado geometri-
camente em V,, significa que as diagonais de um paralelogramo tém comprimento igual
se e somente se o paralelogramo for un retangulo.

Provar que para quaisquer dois vectores A ¢ B de V, se tem

A+Bl*+|4A—-B*=21A4]*+2 |B|2.

Que teorema relativo as diagonais e lados de um paralelogramo se pode deduzir desta
identidade?

O teorema de geometria enunciado a seguir sugere uma identidade vectorial relativa a
trés vectores A, B e C. Dizer qual é a identidade e provar que se verifica para vectores
de V. Tal identidade proporciona uma demonstragao do teorema por métodos vec-

toriais.

“A soma dos quadrados dos lados de um quadrilatero qualquer excede a soma dos
quadrados das diagonais em quatro vezes o quadrado do comprimento do segmento de
reta que une os pontos medios das diagonais”.

Um vector 4 de V, tem comprimento 6. Um vector B de V, tem a propriedade de que,
para todo o par de escalares x e y, os vectores xA + yB e 4y4A — 9xB sao ortogonais.
Calcular os comprimentos de B e de 24 + 3B.

1 1 1
Dados os vectores 4 =(1,2,3,4,5) e B =(1, R R

) de V, achar os vectores
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C e D que satisfagam as trés condigoes seguintes: C ¢ paralelo a 4, D ¢ ortogonal a 4,
eB=C+D.

24, Dados em V, dois vectores 4 ¢ B nao nulos e nao paralelos, demonstrar que existem
vectores C e D em ¥V, que satisfazem as trés condigoes do Exercicio 23 e exprimir C e D
em fungao de 4 e B.

25. Dizer se € ou nao correta cada uma das seguintes proposigoes referentes a vectores
de Vn:

(a) Se A ¢ ortogonal a B, entido ||4 + xB| 2 |l4|| para todo o real x.
(b) Se ||[4 + xB|| 2 ||4|| para todo o x real, entio A é ortogonal a B.

12.9. Projecdes. Angulo de dois vectores num espaco » dimensional

O produto escalar de dois vectores em ¥, admite uma interpretagao geomeétrica importan-
te. A fig. 12.11 (a) representa dois vectores geométricos nao nulos A e B fazendo entre si um

angulo 0. Neste exemplo temos 0 <6 < % A figura 12.11 (b) mostra o mesmo vector 4 ¢
dois vectores perpendiculares cuja soma € A. Um deles, (B, ¢ o produto de B por um escalar.

chamamos-lhe a projegao de A sobre B. Neste exemplo ¢ € positivo porque 0 < @ < —’2'—

Cf _________________________ A=1B+C

:_ ﬂl . -~
B 1B = projec¢ao
de A sobre B

(a) (b)
Fig. 12.11. O vector /B ¢ a proje¢ao de A sobre B.

Podemos utilizar o produto escalar para exprimir 7 em termos de 4 ¢ B. Em primeiro lugar
escrevemos (B + C = A e multiplicamos escalarmente ambos os membros por B obtendo

tB-B+C-B=A-B.
Mas C- B = 0, porque C ¢ perpendicular a B. Portanto (B + B = A - B pelo que se tem

 _AB_A'B
B-B |B|*

(12.8)

Por outro lado o escalar ¢ origina uma relagao simples com o angulo 8. Da fig. 12.11(b)
vemos que
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Algumas vezes escreve-se sobre as letras uma seta, por exemplo 7, j. O significado geométrico
do Teorema 12.6 esta representado na fig. 12.12 para n = 3.

Quando os vectores sao expressos como combinagoes lineares dos vectores coordenados
unitarios, os calculos algebricos relativos a vectores podem ser efetuados com as somas
L x E, de acordo com as regras usuais da Algebra. As varias componentes podem ser re-

conhecidas nas varias fases do Calculo, considerando os coeficientes dos vectores unitarios
coordenados. Por exemplo para somarmos dois vectores, sejam 4 = (a,, a,, ..., a ) e B = (b,

b,, ..., b ).escrevemos

A=Y aE,, B=Y bE,,
k=1

A=aji+a,j+ ak

azk

Fig. 12.12. Um vector 4 de V, expresso como uma combinagao linear de i, j, k.

e aplicamos a propriedade da linearidade das somas finitas para obtermos
A+ B= Z a.E; + 2 byEx =E (ax + bEy.
k=1 k=1 k=1

O coeficiente de £, no segundo membro € a componente de ordem k da soma 4 + B.

12.11. Exercicios

I. Determinar a projecao de A4 sobre Bse 4 = (1,2, 3)e B = (1, 2, 2).
2. Determinar a projegao de A sobre Bse A =(4,3,2, 1) e B=(1,1, 1, 1).
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15. Suponhamos que em V, definimos o produto escalar de dois vectores 4 = (a,, a,) ¢
B = (b,, b,) pela formula

A-B = 2alb1 + 02b2 + albz - aabl .

Provar que todas as propriedades do Teorema 12.2 sdo validas com esta defini¢ao do
produto escalar. Sera a desigualdade de Cauchy-Schwarz ainda valida?

16. Resolver o Exercicio 15 se o produto escalar de dois vectores de V;, 4 = (a,, a,, a,) ¢
B =(b,,b,, b,), for definido pela formula 4B = 2a,b, + a,b, + a,b, + a,b, + a,b,.

17. Suponhamos que em vez de se definir a norma dum vector 4 = (a,, a,, ...,a,)pela
formula (A+A4 )'\?, consideramos a seguinte definigio

Al =3 layl .
k=1

(a) Provar que esta defini¢do da norma satisfaz a todas as propriedades dos Teore-
mas 124 e 12.5.

(b) Usar esta definigdo em V), e representar numa figura o conjunto de todos os pontos
(x, y) de norma 1. '

(c) Quais as propriedades dos Teorema 12.4 ¢ 12.5 que permaneceriam validas se usas-
semos a definigao

Al = ?

n
2 a
k=1

I8. Suponhamos que a norma dum vector 4 = (a,, a,, ..., @ ) era definida pela formula
n

1Al = max |a;,
1<k=n

onde o simbolo do segundo membro significa 0 maximo dos n numeros |a, } |a,} ..., |a, |

(a) Quais as propriedades dos Teoremas12.4 e 12.5 que serao validas com esta defi-
nigao?
(b) Utilizar esta definigao da norma em V, e representar numa figura o conjunto de
todos os pontos (x, y) de norma 1.

19. Se 4 = (a,, a,, ..., a,) € um vector de V', definir duas normas do modo seguinte:

n
Al = Z |ag € lAlly = max |ay.
k=1 1<k<n

Provar que ||4|[,< ||4| < |4]|,. Interpretar geometricamente esta desigualdade no plano.

20. Se A e B sao dois pontos num espago a n dimensoes, a distancia de A a B representa-se
por d(A, B) ¢ é definida pela igualdade d(4, B)|=||4 — Bl Provar que a distancia tem
as seguintes propriedades:
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vem na mesma ordem. Subentende-se igualmente que a implicagao (12.10) é valida para uma
ordenagao previamente fixada, mas arbitraria, dos vectores 4, 4,, ..., 4 e

TEOREMA 12.7. Um conjunto S gera todo o vector de L(S) duma unica maneira se e so
se S gerar o vector nulo duma unica maneira.

Demonstragdo. Se S gera todo o vector de L(S) duma unica maneira, entiio certamente
gera O de modo unico. Para provar a inversa supomos que S gera O dum unico modo ¢
escolhnemos qualquer vector X em L(S). Admitamos que S gerava X de duas maneiras
diferentes, por exemplo

k k
X=ZCI'AI' € X=zdaA.
=1

Subtraindo, membro a membro, as igualdades, encontramos que 0= E (c,— d)A Mas por-

que S gera O duma maneira unica, devemos ter ¢, — d, = 0 para todo :. pelo que S gera X de
modo unico.

12.13. Independéncia linear

OTeoremal2.7 poe em destaque a importancia dos conjuntos que geram o vector zero
duma unica maneira. Tais conjuntos distinguem-se com uma designagado especial.

DEFINIGAO. Um conjunto S = {A,, 4,, ..., A k} que gera o vector nulo duma maneira

unica diz-se um ‘conjunto linearmente independente de vectores. Caso contrdrio S diz-se
linearmente dependente.

Por outras palavras, independéncia significa que S gera O unicamente na representagao
trivial:

c;A; = 0 implica todo ¢;= 0.

Dependéncia significa que S gera O de alguma maneira nao trivial, isto é, para certa es-
colha de escalares ¢y, ..., ¢, tem-se

k
> ¢;A; = 0 mas nem todos os ¢; sdo nulos

i=1

Embora a dependéncia e independéncia sejam propriedades dos conjuntos de vectores, €
pratica comum aplicar estas designagdes aos proprios vectores. Por exemplo, os vectores
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num conjunto linearmente independente designam-se, correntemente, por vectores linear-
mente independentes. Convencionamos também chamar o conjunto vazio um conjunto

linearmente independente.
Os exemplos dados a seguir podem servir para proporcionar-uma melhor compreensao da
ideia de dependéncia e independéncia linear.

EXEMPLO 1. Se um subconjunto 77 dum conjunto S € linearmente dependente, entdo S é
também linearmente dependente, porque se 7 gera O ndo trivialmente com S acontece o
mesmo. Isto € logicamente equivamente a afirmagdo de que todo o subconjunto dum
conjunto linearmente independente ¢ linearmente independente.

ExXEmPLO 2. Os n vectores coordenados unitarios E,, E,, ..., E , de P;! geram O duma
unica maneira pelo que sdo linearmente independentes.

ExempLO 3. Qualquer conjunto contendo o vector nulo € dependente. Por exemplo se
A, = O temos a representagao nao trivial 0=1A4, + 04, + ... + 0 4,.

ExXEMPLO 4. O conjunto S= i, j, i +jl de vectores de V, ¢ linearmente dependente
porque a partir deles temos a seguinte representagdo ndo trivial do vector nulo.

O=i+j+ (=Di+).

Neste exemplo o subconjunto T = {i, j} ¢ linearmente dependente. O terceiro vector,
i + j, pertence ao subespago de T. O teorema seguinte mostra que se juntarmos a ¢ ¢ qual-
quer vector pertencente ao subespacgo de 7, obtemos um conjunto dependente.

TeOREMA 12.8. Seja S =[A,, ..., A, | um conjunto linearmente independente de k vectores
em Ve seja L(S) o subespago linear de S. Enxdo todo o conjunto de k + | vectores de L(S)
é linearmente dependente.

Demonstragdo. A demonstragao faz-se por indugao em k, o numero de vectores de S.
Suponhamos primeiramente & = 1. Entdo, por hipotese, S ¢ formado por um s vector, seja

A,, com 4, # O uma vez que S ¢ independente. Consideremos em seguida dois quaisquer
vectores distintos B, € B, de L(S). Entao cada um deles sera um multiplo escalar de A |, isto
&, B, = cAd,eB,= c,A,,com ¢, e ¢, nao ambos nulos. Multiplicando B, por ¢, e B, por
¢; e subtraindo, encontramos

C2B]. - (.182 = O .

Isto ¢ uma representagdo nio trivial de O pelo que B, e B, sio dependentes. Esta pois
demonstrado o teorema quando k = 1.

Suponhamos agora que o teorema ¢ verdadeiro para k — 1 e provemos que é também ver-
dadeiro para k. Tomemos qualquer conjunto de & + 1 vectores em L(S), por exemplo
T'=|B,, By, .., B, ,|. Desejamos provar que T ¢ linearmente dependente. Visto que cada B,
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esta em L(S), podemos escrever

k
B,=Ya,A, (12.11)

=1

para cada i = 1, 2, ..., k + |. Examinemos todos os escalares a, que multiplicam 4, e divi-
damos a demonstragdo em duas partes conforme todos os coeficientes sejam 0 ou ndo.

CASO l.a,=0paratodooi= 1,2, ..., k+ |. Neste caso a soma em (12.11) ndo con-
tém A, pelo que cada B; em T esta no subespago linear gerado pelo conjunto §™ = {4,,
Ay, ..., A;l. Mas S7 ¢ linearmente independente e ¢ formado por k — | vectores. Pela
hipotese da indugio, o teorema € verdadeiro para k — |, pclo que o conjunto 7 ¢ depen-
dente. Isto demonstra o teorema no caso 1.

CASO 2. Nem todos os escalares a; sao nulos. Suponhamos que a,, # 0. (Se necessario
podemos voltar a numerar os B para que assim seja). Tomando i = | na equagio (12.11) e
multiplicando ambos os membros por ¢;, onde ¢; = a,,/a,, , obtemos

k
C,'Bl - a“Al +E C,a”/{j -
-2

Subtraindo (12.11) a igualdade anterior resulta

k
¢;B, — B, = z (c;ay; — a;)A;,

j=2

parai= 2, .., k + l. Esta igualdade exprime cada um dos k vectores ¢, B, — B, como uma
combinagao linear de k — 1 vectores linearmente independentes 4,, ..., 4 - Pela hipotese de
indugao, os k vectores ¢B, — deevem ser dependentes. Por conseguinte, para uma certa es-
colha dos escalares ¢, ..., , _ |, ndo todos nulos, temos

k41
Z rt(ciBl - Br) =0 ’
=2

onde resulta

kel ka1
(. 2“ I‘C',)Bl —Z' tB.= 0.

Mas esta € uma combinagdo linear ndo trivial de B, ..., B, . | que representa o vector nulo,

pelo que os vectores B,, ..., B, | devem ser dependentes, estando assim completada a de-
monstragao.
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Demonstramos a seguir que o conceito de ortogonalidade esta intimamente relacionado
com o de independencia linear.

DEFINICAO. Um conjunto S = {d,, 4, .., 4 k' de vectores de V' f diz-se um conjunto ortogo-
nalseA;- A = 0 sempre que i + j.Por outras palavras, dois quaisquer vectores distintos de
um conjunto ortogonal sdo perpendiculares.

TeoREMA 12.9. Qualquer conjunto ortogonal S = (A, ..., A k] de vectores ndo nulos em V.
€ linearmente independente. Além disso, se S gera um vector X, por exemplo

X =3cA,, (12.12)
fem]
entdo os coeficientes escalares c,, ..., c; sao dados pela formula
X 4 j=1,2,...,k
C; = —— ara j=1,2,...,k. '
= A para j (12.13)

Demonstragao. Vamos demonstrar, em primeiro lugar, que S ¢ linearmente independente.
k

Suponhamos que .}21 ¢A;=0. Multiplicando escalarmente ambos os membros por 4, e tendo
=

em contaque A, -4, = 0 para i+ 1, encontramos ¢, (4, - 4,) = 0. Mas (4, . 4,) # 0 visto que
A, #0, pelo que ¢, = 0. Repetindo este raciocinio, com A, substituido por Aj, concluimos que
cada ¢ = 0. Por conseguinte S gera o vector nulo duma maneira unica, pelo que S ¢ linear-

mente independente.
Suponhamos agora que S gera X como em (12.12). Efetuando o produto escalar de X por
A 7 encontramos que r._".(A y A J) =X.A y de onde se obtem (12.13).

Se todos os vectores 4,, 4,, ""Ak doTeorema12.9 tém norma 1, a formula para os coefi-
cientes simplifica-se vindo apenas

c;=X"A;.

4 J

Um conjunto ortogonal de vectores {4, ..., 4 kl’ cada um dos quais com norma 1, diz-se um
conjunto ortonormado. O conjunto dos vectores coordenados unitarios E,, ..., E, € um exem-
plo dum conjunto ortonormado.

12.14. Bases

E natural estudar o conjunto de vectores que geram todo o vector de P;' duma maneira
unica. Tais conjuntos de vectores constituem bases de V..
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DEFINICAO. Um conjunto S = (4, .4 k} de vectores de v, diz-se uma base para V, se §
gera cada vector de V, duma maneira unica. Se, em complemento, S é ortogonal, entao S
diz-se uma base ortogonal.

Assim, uma base € um conjunto linearmente independente de vectores o qual gera todo o
espago Vn. O conjunto de vectores coordenados unitarios € um exemplo dessas bases. Esta
base particular ¢ também uma base ortogonal. Provaremos a seguir que cada base contera o
mesmo numero de elementos.

TeoREMA 12.10. Num dado espago vectorial V,, as bases gozam das seguintes propriea-
dades:

(a) Toda a base contém exatamente n vectores.

(b) Qualquer conjunto de vectores linearmente independente € um subconjunto de certa
base.

(¢) Qualquer conjunto de n vectores linearmente independente é uma base.

Demonstragao. O conjunto dos vectores coordenados unitarios E,, ..., E, formam uma
base de V. Se provarmos que duas quaisquer bases contém o mesmo namero de vectores de-
monstramos (a).

Sejam S e T duas bases, em que S tem k vectores e T tem r vectores. Se r > k, entao T’
contém pelo menos k + 1 vectores em L(S), visto que L(S) = V,. Deste modo, devido ao
Teoremal 2.8, T deve ser linearmente dependente, contradizendo a afirmagao de que 7 ¢ uma
base. Isto significa que ndo pode ser r > k, pelo que devemos ter r < k. Aplicando o mesmo
raciocinio com S e T trocados, encontramos que k < r. Por conseguinte k = r ¢ a alinea (a)
esta demonstrada.

Para demonstrar (b), seja S = {4, 4,, ..., 4 k] qualquer conjunto de vectores linearmente
independentes em V,-SeL(S)=V,, entdo S ¢ uma base. Caso contrario existe algum vector
Xem ¥V, o qual nao esta em L(S). Juntemos este vector a S e consideremos 0 novo conjunto
S'={4) .., 4, X|. Se este conjunto fosse dependente, existiriam escalares c,, ..., €, y» NA0O
todos nulos, tais que

k
2 A+ X =0.

Masc, #0,vistoqued,, ..., A4 k sao independentes, e portanto podemos resolver esta equa-
¢ao relativamente a X e verificar que X € L(S), em contradigao, pois, com a hipotese de que
X nao pertencia a L(S). Portanto o conjunto S’ ¢é linearmente independente, mas contém k +
+ 1 vectores. Se L(S') = Vn, S’ € uma base e visto que S € um subconjunto de S, a alinea (b)
esta demonstrada. Se S’ ndo é uma base, podemos argumentar com S’ como o fizemos com
S, obtendo um novo conjunto S que contém k + 2 vectores e € linearmente independente.
Se §°° ¢ uma base, (b) esta demonstrada. Caso contrario, repetimos o processo. Devemos
chegar a uma base ao fim dum numero finito de repetigdes do processo, de outro modo
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obteriamos um conjunto independente com n + 1 vectores, em contradi¢ao com oTeorema
12.8. Portanto a alinea (b) esta demonstrada.

Finalmente, utilizando as alineas (a) ¢ (b) demonstramos (c). Seja S qualquer conjunto

linearmente independente formado por n vectores. Pela alinea (b), S € um subconjunto de
certa base, por exemplo B. Mas devido a (a) a base B tem precisamente n elementos, pelo
que S = B.

12.15. Exercicios

10.

12.

. Sejam i e j os vectores coordenados unitirios de ¥,. Em cada alinea determinar os

escalares x e y tais que x{i — j)+ Wi+ j) € igual a
(@ & (b)j: (©)3i-5; (d)7i+5).

.SeAd=(l,2),B=(2, —4)e C= (2, —3)sdo trés vectores de V,, determinar escalares x

¢ y tais que C= x4 + yB. Quantos pares existem?

SedAd=2,-1,1),B=(1,2, -1)e C=(2, =11, 7) sdo trés vectores em V;, determinar

os escalares x ¢ y tais que C= x4 + yB.

Provar que o Exercicio 3 ndo tem qualquer solugdo, se C ¢ substituido pelo vector
2, 11, 7).

Sejam A e B dois vectores ndo nulos de V.

(a) Se 4 e B sdo paralelos, provar que A ¢ B sdo linearmente dependentes.

(b) Se 4 ¢ B nio sdo paralelos, provar que 4 ¢ B sdo linearmente independentes.

Se (a, b) ¢ (c. d) sdo dois vectores de V,, provar que eles sdo linearmente indepen-
dentes se, e somente se, ad — be # 0.

Determinar todos os reais ¢ para os quais os dois vectores(l + ¢, 1 = e(l—¢, 1+ 1)
de V, sio linearmente independentes.

Sejam i, j, k, 0s vectores unitarios coordenados de V;. Provar que os quatro vectores
i, j, k, i + j+ k sdo linearmente dependentes, mas que quaisquer trés dentre eles sdo
linearmente independentes.

Sejam i e j vectores coordenados unitdrios em V; e seja S = {i, i + j}.

(a) Provar que S ¢ linearmente independente.

(b) Provar que j esta no subespago linear de S.

(¢) Exprimir 3i — 45 como numa combinagdo lincardei e i+ j.

(d) Provar que L(S)= V,.

Consideremos os trés vectores A =i, B=i+ j,C=i+j+3kemV,,

(a) Provar que o conjunto {4, B, C} ¢ linearmente independente.

(b) Exprimir cada um dos vectores i ou k como uma combinagio linear de 4, Be C.
(c) Exprimir 2i — 3j + 5k como uma combinagdo linearde 4, Be C.

(d) Provar que {4, B, C} ¢ uma base de V;.

Sejam A = (1, 2), B = (2, —4), C = (2, —=3) e D = (1, —2) quatro vectores de V,.
Enumerar todos os subconjuntos nao vazios de {4, B, C, D} que sao linearmente inde-
pendentes.

Sejad =(1,1,1,0,B=(0,1,1,1)e C=(1, 1,0, 0) trés vectores de V.
(a) Determinar se A, B, C sao linearmente dependentes ou independentes.



546 Calculo

13.

14.

15.

16.

17.
18.

19.

20.

(b) Obter um vector D nao nulo tal que 4, B, C, D sejam dependentes.

(c) Obter um vector E tal que 4, B, C, E sejam independentes.

(d) Escolhido E da alinea (c), exprimir o vector X = (1, 2, 3, 4) como uma combinagao

linear de A4, B, C, E.

(a) Provar que os seguintes trés vectores de ¥, sao linearmente independentes: (\/3, 1, 0),
(1.1/3, 1), (0, 1,/3).

(b) Provar que os trés seguintes sao dependentes: (\/5, 1, 0), (1, \/5 1), (0, 1, \/5).
(c) Determinar todos os reais ¢ para os quais os trés vectores seguintes em ¥, sdo depen-
dentes: (¢, 1, 0), (1, ¢, 1), (O, 1, 7).

Considerar os seguintes conjuntos de vectores de V,. Para cada alinea determinar um

subconjunto linearmente independente contendo o maior numero de vectores possivel.

(a) {(1,0,1,0), (1,1,1,1), (0,1,0,1), (2,0, =1,0)}.

(b) {(1,1,1,1), (1, =1, 1,1), (1, =1, =1,1), (1, =1, =1, =1)}.

(c) {(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)}.

Dado trés vectores linearmente independentes A, B, C de V,, Dizer se sdo ou nio
corretas cada uma das proposigdes seguintes.,
(a) 4 + B, B + C, A + C sao linearmente independentes.
(b) A — B, B + C, A + C sao linearmente independentes.
(a) Provar que o conjunto S de trés vectores em ¥, ¢ uma base para V, se € sO se 0 seu
subespaco linear L(S) contém os trés vectores coordenados unitarios #,j, k.
(b) Estabelecer e demonstrar uma generalizagao da alinea (a) para V' .
Determinar duas bases para ¥, contendo os dois vectores (0, 1, 1) e (1, 1, 1).
Determinar duas bases para ¥, tendo somente os dois vectores (0, 1, 1, 1)e (1, 1,1, 1)
em comum.
Considerar os seguintes conjuntos de vectores em V,:

={(1,1,1),(0,1,2),(1,0, =)}, T=1{(2,1,0),(2,0, =2)}, U =1{(1,2,3),(1, 3,95}
(a) Provar que L(T) < L(S).
(b) Determinar todas as relagdes de inclusdo entre os conjuntos L(S), L(T) e L(U).
Sejam A e B dois subconjuntos finitos de vectores num espago vectorial v, esejam L(A)

e L(B) os respetivos subespagos lineares. Provar cada uma das seguintes proposigoes:

(a) If A < B, entdo L(4) = L(B).
(b) L(A N B) < L(4) N L(B).
(c) Dar um exemplo em que L(4 N B) # L(4) N L(B).

12.16. O espago vectorial V ,(C) dos r-sistemas de nimeros complexos

Na secdo 12.2 definiu-se o espago vectorial ¥, como o conjunto de todos os sistemas de
n nimeros reais (n-tuplos). Igualdade, adi¢do vectorial, ¢ multiplicagdo de vectores por
escalares foram definidos em fung¢do dos componentes do modo seguinte: Se 4 = (a,,
ev@y)e B=(b,, ..., b,), entdo

A= B significa a,=b, paracadai=12,...,n,

A+ B=(a,+b,,...,a,+b,), cA = (ca,., ..., ca,) .
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Se todos os escalares a, b, e ¢ nestas relagoes forem substituidos por numeros complexos, o
novo sistema algeébrico assim obtido diz-se espago vectorial complexo e representa-se por
V (C). Aqui C ¢ usado para nos lembrar que os escalares sao complexos.

Uma vez que os numeros complexos satisfazem aos mesmos axiomas de corpo que os nu-
meros reais, todos os teoremas relativos aos espagos vectoriais V., que utilizam unicamente
os axiomas de corpo dos numeros reais sao também verdadeiros para ¥, (C), com tanto que
todos os escalares possam ser complexos. Em particular, aqueles teoremas neste capitulo que
implicam somente a adigao vectorial e a multiplicagao por escalares sao também verdadeiros
para V (C).

Esta extensdo nao se faz unicamente por uma questdao de generalizagao. Os espagos vec-
toriais complexos aparecem naturalmente na teoria das equagoes diferenciais lineares e na
moderna mecanica quantica, pelo que o seu estudo assume uma consideravel importancia.
Felizmente, muitos dos teoremas relativos ao espago vectorial real Vn podem transportar-se,
sem qualquer modificagao, para V (C). Contudo algumas modificagoes tém que ser feitas
naqueles teoremas que incluem a nogao de produto escalar. Ao provar que o produto escalar
A - A dum vector nio nulo por si proprio € positivo, apoiamo-nos no fato de que a soma de
quadrados de numeros reais € positiva. Uma vez que o quadrado de nimeros complexos pode
ser negativo, temos que modificar a defini¢ao de 4 - B se desejamos conservar a propriedade
de positividade. Para ¥, (C) usamos a seguinte definigao de produto escalar.

DEFINICAO. Se A = (a,, @y, ..., a,) € B = (b,, by, ..., b ) sdo dois vectores de V, (C), define-
se 0 respetivo produto escalar A - B pela formula

onde b, é o complexo conjugado de b v

Observe-se que esta definigdo concorda com a dada anteriormente para ¥, porque 5,( =
=b,quando b, é real. As propriedades fundamentais do produto escalar, correspondentes as
doTeorema 12.2, tomam agora a forma

TeorReEMA 12.11. Para todos os vectores A, B, C de Vn (C) e rodo o complexo escalar c,

tem-se:

(a) A-B=B- A,

(b) A< (B+C)=A"-B+ A-C,
(¢) e(A-B)=(cA)-B= A-(¢B),
(d)A-A>0 se A#O0,
() A-A=0 se A=0.

Todas estas propriedades sdo consequéncias imediatas da definigao e as respetivas
demonstragdes sdo deixadas como exercicio. O leitor deve ter presente que a conjugagao
aparece na propriedade (a) quando a ordem dos fatores ¢ invertida. Igualmente aparece
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. (a) Provar que para dois quaisquer vectores A e B de V,(C,asomad-B+A-B é real.

(b) Se A4 e B sao vectores nao nulos em V (C), provar que

A-B+ A-B

S 9

< A B -

. Define-se o angulo 0 entre dois vectores 4 e B em V (C) pela formula

YA B+ A B)

fl = arccos
A B

A desigualdade no Exercicio 6 mostra que existe sempre um unico angulo ¢ no intervalo
fechado 0 £ ¢ < n verificando aquela igualdade. Demonstrar que

A —B®*= A4+ B*—-2 4| |B cos#t.

Usar a definigio do Exercicio 7 para calcular o dngulo dos seguintes pares de vectores
de Vy(C): A =(1,0,i,i,01), ¢ B=1(ii140,1i).

(a) Provar que os trés vectores seguintes formam uma base para V,(C): 4 = (1, 0, 0),
B =1(0.i0),C=(,1,1.

(b) Exprimir o vector (5, —2, —i, 2i) como uma combinagao linear de 4, B, C.
Provar que a base dos vectores unitarios coordenados E, E,, ..., E, em ¥, ¢ também
uma base de ¥, (C).



13

APLICACOES DA ALGEBRA VECTORIAL A
GEOMETRIA ANALITICA

13.1. Introdug¢ao

Neste capitulo trataremos das aplicagoes da algebra vectorial ao estudo das retas, planos
e segoes conicas. No capitulo 14 a algebra vectorial combina-se com os métodos do calculo
e apresentam-se outras aplicagoes ao estudo das curvas e a certos problemas de mecanica.

O estudo da geometria como um sistema dedutivo, como foi concebido por Euclides cerca
de 300 anos a. C., comega com um conjunto de axiomas ou postulados que definem as

propriedades dos pontos e das retas. Os conceitos de “ponto” e “reta” tomam-se como
nogoes primitivas ¢ permanecem indefinidos. Qutros conceitos sao apresentados em termos
de pontos e retas, deduzindo-se sistematicamente os teoremas a partir dos axiomas. Euclides
estabeleceu dez axiomas a partir dos quais deduziu todos os seus teoremas. Demonstrou-se,
porém, posteriormente que estes axiomas nao sao adequados para a teoria. Por exemplo, na
demonstragao do seu primeiro teorema Euclides faz uma hipotese tacita relativa a intersecgao
de duas circunferéncias que nao esta coberta pelos respetivos axiomas. Desde entao foram
formuladas outras séries de axiomas dos quais resultam todos os teoremas de Euclides. A
mais famosa foi a série de axiomas estabelecida pelo matematico alemao David Hilbert
(1862-1943) no seu agora classico Grundlagen der Geometrie, publicado em 1899. (Existe
uma tradugdo inglesa: The Foundations of Geometry, Open Court Publishing Co., (1947).
Esta obra, da qual se fizeram sete edi¢des alemids ainda em vida de Hilbert, diz-se que
inaugurou a matematica abstrata do século vinte.

Hilbert parte, para o seu tratamento da geometria plana, com cinco conceitos nio definidos:
ponto, reta, sobre (uma relagao valida entre um ponto e uma reta), entre (uma relagao entre
um ponto e um par de pontos) e congruéncia (uma relagao entre pares de pontos). Hilbert
apresenta entdo quinze axiomas, a partir dos quais desenvolve toda a geometria plana
euclidiana. A sua analise de geometria no espago baseia-se em vinte € um axiomas, contendo
seis conceitos nao definidos.

A introdugdao da geometria analitica € feita de modo algo diferente. Definimos conceitos
tais como ponto, recta, em (sobre), entre, etc., mas fazémo-lo em termos de numeros reais, 0s
quais ndo se definem. A estrutura matematica resultante chama-se um modelo analitico da
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geometria euclidiana. Neste modelo utilizam-se propriedades dos numeros reais para deduzir
os axiomas de Hilbert. Nio tentaremos comentar todos os axiomas de Hilbert. Pelo con-
trario, indicaremos simplesmente como podem os conceitos primitivos ser definidos por meio
dos nimeros reais ¢ daremos algumas demonstragoes para ilustrar os métodos da geometria
analitica.

13.2. Retas num espaco n-dimensional

Aplicamos em seguida os nameros reais a definigao dos conceitos de ponto, reta, e sobre
(em). As defini¢oes sdo formuladas de modo que se adaptem as nossas ideias intuitivas, relati-
vas a geometria euclidiana tridimensional, mas sao ainda providas de significado num espago
n dimensional com n > 1.

Um ponto ¢ simplesmente umvectorem V,, isto €, um sistema ordenado de n-tuplos de
numeros reais; usaremos indiferentemente as palavras “ponto™ e “vector™. O espago vecto-
rial ¥, diz-se um modelo analitico do espaco euclidiano n-dimensional. Para definir a “reta”
servimo-nos das operagdes algébricas de adi¢do e de multiplicagdo por escalares em V,,.

DEFINICAO. Seja P um dado ponto e A um vector dado ndo nulo. O conjunto de todos os
pontos da forma P+ tA, onde t toma todos os valores reais, diz-se uma reta passando
por P e paralela a A. Designamos esta reta por L(P; A) e escrevemos

L(P; A)=\P 4+ t A|t real} ou, mais brevemente L(P; A) = {P + tA}.

Um ponto Q diz-se estar sobre a reta L(P; A) se Q € L(P; A).

L(P.A)

L(O; A)

Fig. 13.1. A reta L(P; A) passando por P paralela a A e a sua relagdo geomeétrica com a
reta L(O; A) passando por O paralela a A.
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Na notagao L(P; A), o ponto P que se escreve em primeiro lugar esta sobre a reta, visto
que corresponde a = 0. O segundo ponto, A, chama-se o vector direccional da reta. A
reta L(O; A)que passa pela origem € o subespaco de A, formado por todos os produtos de
A por escalarés. A reta passando por P paralela a A obtém-se somando P a cada vectordo
subespago de A.

A fig. 13.1 mostra a interpretagdao geometrica desta definigao em V. Cada ponto P + 14
pode representar-se pela extremidade dum vector geometrico tragado a partir da origem.
Quando ¢ varia tomando todos os valores reais, o ponto correspondente P + tA4 descreve uma
reta que passa por P e € paralela ao vector A-4 fig. 13.1 mostra os pontos corresponden-
tes a alguns valores de r em ambas as retas L(P; A)e L(O; A).

13.3. Algumas propriedades simples da reta

Vamos demonstrar em primeiro lugar que o vector direccional A que intervém na definigao
de L(P; A) pode ser substituido por qualquer vector paralelo a A. (Lembramos que dois
vectores A e B dizem-se paralelos se A = c¢B para um certo escalar ¢ nao nulo).

TeOREMA 13.1. Duas retas L(P; A) e L(P; B) passando pelo mesmo ponto P coincidem
se, e sO se,o0s vectores direcionais A e B sao paralelos.

Demonstra¢ao. Suponhamos em primeiro lugar que L(P; A) = L(P; B). Tomemos um
ponto em L(P; A) distinto de P, por exemplo P + A. Este ponto esta também em L(P; B), pelo
que P + A = P + ¢B para algum escalar ¢. Daqui resulta que 4 = ¢B com c¢# 0, visto que
A # 0. Portanto 4 ¢ B sao paralelos.

Demonstremos agora o inverso. Suponhamos A e B paralelos, quer dizer A = ¢B para
algum ¢ #+ 0. Se Q estaem L(P; A),entdaotem-se Q = P + tA = P + t(cB) = P + (ct)B, pelo
que Q esta em L(P; B). Deste modo L(P; A) < L(P; B). De modo analogo, L(P; B) ©
< L(P; A), pelo que L(P; A) = L(P; B).

Vamos agora provar que o ponto P que intervém na definigao de L(P; A) pode ser substi-
tuido por qualquer outro Q sobre a mesma reta.

TEOREMA 13.2. Duas retas L(P; A)e L(Q, A ) com o mesmo vector direcional A coinci-
dem se, e 5o se, Q esta em L(P; A).

Demonstragao. Suponhamos L(P; A) = L(Q; A). Visto que Q esta em L(Q; A), Q esta
também em L(P; A). Para demonstrar o inverso supomos que Q esta em L(P; A), por
exemplo Q = P + cA. Desejamos provar que L(P; A) = L(Q; A). Se X € L(P; A), entdao
X=P+(Aparaalgumi. MasP=Q —cA,peloque X =Q —~cA +iA=Q + (t—c)A eem
consequeéncia X esta também em L(Q; A). Portanto L(P; A) < L(Q; A). De modo analogo
encontramos L(Q; A) < L(P; A), pelo que ambas as retas sao iguais.

Um dos famosos postulados de Euclides € o postulado das paralelas, o qual € logicamente
equivalente a proposigao de que “por um ponto dado passa uma e uma soO reta paralela a
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outra reta dada”. Deduziremos esta propriedade com uma consequéncia simples do Teo-
rema 13.1. Assim, em primeiro lugar, necessitamos definir paralelismo de retas.

DEFINICAO. As retas L(P; A) e L(Q; B) dizem-se paralelas se os respetivos vectores
direcionais A e B forem paralelos.

TEOREMA 13.3. Dada uma reta L e um ponto Q ndo sobre L., entdo existe uma, e uma so,
recta L' contendo Q ¢ paralela a L.

Demonstragao. Suponhamos que a reta dada tem o vector direcional A. Consideremos
a reta L"= L°(Q; A). Esta reta contéem Q e ¢ paralela a L. OTeorema 13.1 diz-nos que esta
¢ a unica reta com essas duas propriedades.

Nota: Durante largo periodo de tempo os matematicos suspeitaram que o postulado das
paralelas poderia ser deduzido dos outros postulados de Euclides, mas todas as tentativas
para o demonstrar falharam. Nos comegos do século Xix os matematicos Karl F. Gauss
(1777-1855), J. Bolyai (1802-1860) e N. I. Lobatchevski (1793-1856) chegaram a conclusao
de que o postulado das paralelas nao poderia ser derivado a partir dos outros e comegaram a
desenvolver geometrias nio euclidianas, isto é, geometrias nas quais o referido postulado nao
seria valido. O trabalho destes homens inspirou otros matematicos e cientistas a alargarem os
seus pontos de vista acerca das “verdades aceites” e a por de parte outros axiomas que
durante séculos haviam sido considerados como coisa sagrada.

E também possivel deduzir com facilidade a seguinte propriedade das retas que Euclides
tinha estabelecido como um axioma.

TeOREMA 13.4. Dois pontos distintos definem uma reta, isto é, se P + Q, existe uma,e
uma so, reta unindo P com Q, a qual pode definir-se como o conjunto |P + t (Q — P)|.

Demonstragdo. Seja L a reta que passa por P e é paralela a Q — P, isto &,
L=LP;Q—P)={P+1Q—P).

Esta recta contém quer P quer Q (fazer t = 0 para obter P e t = | para obter Q). Seja agora
L’ qualquer reta contendo quer P quer Q. Vamos demonstrar que L’ = L. Uma vez que
L’ contem P, temos L’ = L(P; A) para algum 4 # O. Mas L’ também contém Q, pelo que
P + cA = Q para algum ¢. Daqui resulta Q - P == ¢4, com ¢ # 0, ja que Q # P. Deste modo
Q — P ¢ paralelo a A, pelo que, pelo Teorema 13.2, se tem L" = L(P; A) = L(P;
Q- P) = L.

ExXEMpPLO . O Teoremal3.4 da-nos uma maneira facil para averiguar se um ponto Q per-
tence a uma determinada reta L(P; A). Diz-nos que Q esta em L(P;A) se e so se, Q — P for
paralelo a A. Por exemplo, consideremos a reta L(P; A),onde P =(1,2,3)ed =(2,—1,5).
Para averiguar se o ponto Q = (1, 1, 4) esta sobre esta reta, examinemos Q — P = (0, —1, I).
Visto Q — P nao ser o produto de A por um escalar, o ponto (1, 1, 4) ndo esta sobre a reta.
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Por outro lado, se Q = (5, 0, 13) encontramos que Q — P = (4, —2, 10) =2 A4, pelo que Q esta
sobre a reta.

A dependencia linear de dois vectores em V| pode ser expressa em linguagem geomeétrica.

TEOREMA 13.5. Dois vectores A e Bde V', sdo linearmente independentes se, e so se,
estdo situados sobre uma mesma reta que passa pela origem.

Demonstragdo. Se quer A quer B sao niilos, o resultado é trivial. Se ambos sdo nao nulos,
entdao A e B sdo dependentes se, e sO se, B=tA4 para algum escalar 1. Mas B=1A4 se, ¢ somente
se, B esta sobre a reta que passa pela origem paralela a A4.

13.4. Retas e fungoes vectoriais

O conceito de reta pode relacionar-se com o de fungao. A correspondéncia que associa a
cada real r o vector P + 1A € um exemplo de uma fungdo cujo dominio € o conjunto dos
numeros reais e cujo contradominio é a reta L(P; A). Se representamos a fungio pelo
simbolo X, entiio o valor da fungio X{(1), para um dado ¢, é dado por

X()=P+1A. (13.1)

Chamar-lhe-emos uma fungiio vectorial duma varidvel real.

A defini¢io dum tal tipo de fung¢iio é importante porque, como veremos no capitulo 14,
fornece-nos um meétodo natural para definir curvas mais gerais no espago.

O escalar 7 em (13.1) chama-se, muitas vezes, pardmetro, e (13.1) a equagdo vectorial
paramétrica ou simplesmente a equagado vectorial da reta. Por vezes convém considerar a
reta como a trajectoria duma particula movel, caso em que o parametro ¢ € interpretado
como o tempo ¢ X(t) € o vector posicional da particula.

Observe-se que dois pontos X(a) e X(b) sobre uma dada reta L(P;A) coincidem se, e sO
se,temos P + aA = P + bA ou (a — b)a =0. Visto que A # 0, esta ultima igualdade verifica-se
se, e 5O se, A - b = 0, ou seja @ = b. Assim, valores distintos do parametro ¢ conduzirao a pon-
tos diferentes sobre a reta.

Consideremos agora trés pontos distintos sobre uma dada reta, por exemplo X(a), X(b)
e X(c), com a > b. Dizemos que X(c) esta entre X(a) e X(b) se c esta entre a e b, isto &, se
a<c<b

A congruéncia pode definir-se em termos de normas. Um par de pontos P, Q diz-se
congruente com outro par P, Q" se||P — Q|| =||P"— Q| A norma||P — Q|| chama-se tam-
bém a distdncia entre P e Q.

Isto completa as definigoes dos conceitos ponto, reta, sobre, entre, congruéncia no nosso
modelo analitico do espago euclidiano n-dimensional. Concluimos esta se¢ao com algumas
observagoes complementares respeitantes as equagoes parameétricas das retas no espago tri-
dimensional.

Se uma reta passa por dois pontos distintos P e Q, podemos utilizar Q — P para vector
direcional A na equagdo (13.1); a equagdo vectorial da reta vem entdo
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por P coincidem se, e so se, o subespago gerado por A e B é o mesmo que o gerado pelos
vectores Ce D.

Demonstra¢do. Se o subespago de A e B € o de C e D é evidente que M = M’ (os planos
coincidem). Inversamente, suponhamos que M = M". O plano M contem P + A ¢ P + B.
Uma vez que ambos estes pontos estdo também em M, entao cada um dos 4 e B deve estar
no subespaco gerado por C e D. Analogamente, cada um dos C e D deve estar no subespago
gerado por A e B. Portanto o subespago gerado por A e B € o subespago gerado por C e D.

O teorema que apresentamos a seguir mostra que o ponto P que intervéem na defini¢ao do
plano {P + sA + tB| pode ser substituido por qualquer outro ponto Q do mesmo plano.

TEOREMA 13.8. Dois planos M = 'P + sA + tBl e M" = |Q + sA + tB| gerados pelos mes-
mos vectores A e B coincidem se, e so se, Q) esta sobre M.

Demonstra¢ao. Se M = M’, entdo Q esta certamente em M. Para demonstrar a inversa,
supomos que Q esta em M, quer dizer Q = P + a4 + bB. Consideremos qualquer ponto X em
M. Entao X = P + sA + 1B para certos escalares s e 1. Mas P = Q — ad — bB, pelo que
X=0Q+(s—aA + (1 — b)B. Portanto X estaem M’ e assim M < M’. Analogamente, veri-
ficamos que M* < M, pelo que os dois planos sdo iguais.

O postulado das paralelas de Euclides(Teoremal3.3) admite uma forma analoga para os
planos. Antes de enunciarmos este teorema necessitamos definir paralelismo de dois planos.
A definigao ¢ sugerida pela representagao geométrica da fig. 13.3.

DEFINIGAO. Dois planos M = |P + sA + (B} e M" = |Q + sC + tD| sdo paralelos se o
subespaco gerado por A e B ¢€ o subespago, gerado por C e D. Diz-se tambem que um vector
X € paralelo ao plano M se X pertence ao subespago gerado por A e B.

TEOREMA 13.9. Dado um plano M e um ponto Q nao situado sobre M, existe um e um so
plano M’ que contem Q e ¢ paralelo a M.

Demonstragdo. Seja M = |P + sA + (B] e consideremos o plano M" = |Q + s4A + (B|.
Este plano contem Q e é gerado pelos mesmos vectores A ¢ B que M. Portanto M ¢ paralelo
a M. Se M” ¢ outro plano passando por Q paralelo a M, entao

M" ={Q + sC + 1D} ,

onde o subespago gerado por C e D ¢é igual ao de 4 e B. PeloTeoremal3.7 devemos ter
M” = M’. Portanto M" ¢ o unico plano passando por Q e paralelo a M.

O Teoremal3.4 diz-nos que dois pontos distintos definem uma reta. O teorema que se
segue mostra que trés pontos distintos definem um plano, desde que nao sejam colineares.

TeOREMA 13.10. Se P, Q e R sdo trés pontos ndo situados sobre a mesma reta, entdo
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existe um e um so plano contendo esses trés pontos. Tal plano define-se pelo conjunto de pon-
tos

M = {P + s(Q — P)+ t(R — P)}. (13.4)

Demonstragdo. Suponhamos em primeiro lugar que um dos pontos, por exemplo P, e a
origem. Entdo Q e R ndo estao sobre uma mesma reta que passe pela origem, pelo que sdo
linearmente independentes. Deste modo eles geram um plano que passa pela origem, diga-
mos o plano

M' = {sQ + tR}.

Este plano contém os trés ponto O, Q ¢ R.
Provemos agora que M’ € o unico plano que contém os trés pontos dados O, Q ¢ R.
Qualquer outro plano que passe pela origem tem a forma

M" = {sA + 1B},
onde A e B sado linearmente independentes. Se M/ contem Q) ¢ R, temos
O = aA + bB, =c¢A + dB, 13.5)

para certos escalares a, b, ¢, d. Por conseguinte, toda a combinagao linear de Q e R ¢ também
uma combinagao linear de 4 e B, pelo que M* < M ", basta provar que cada um dos vectores
A e B é uma combinagao linear de Q e R. Multiplicando a primeira equagado (13.5) porde a
segunda por b e subtraindo eliminamos B e obtemos

(ad — bc)A = dQ — bR.

A diferenga ad — bc nao pode ser nula, porque se o fosse Q e R seriam dependentes. Desta
maneira podemos dividir ambos os membros por ad — bc e exprimir A como uma combi-
nagao linear de Q e R. Analogamente, podemos exprimir B como uma combinagao linear dos
mesmos vectores, pelo que M” © M’ Esta assim demonstrado o teorema quando um
dos trés pontos P, Q ¢ R ¢ a origem.

Para demonstrarmos o teorema no caso geral, seja M o conjunto (13.4)e C = Q — P,
D = R — P. Vamos provar primeiro que C e D sao linearmente independentes. Se o nao fos-
sem verificar-se-ia D = 1C para algum escalar ¢, resultando R— P=t(Q— PJou R= P +
t(Q — P), contradizendo o fato de que P, Q e R ndo sao colineares. Portanto o conjunto M ¢
um plano passando por P gerado pelo par linearmente independente C e D. Este plano con-
tem os pontos P, Q e R (fazer s = 1, t = 0 para obter 0, e s = 0, t = | para obter R). Falta
agora provar que este € o unico plano contendo P, Q e R.

Seja M’ qualquer plano contendo P, Q e R. Uma vez que M’ ¢ um plano contendo P,
tem-se

M' = {P 4+ sA + 1B}
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para qualquer par de vectores linearmente independentes 4 ¢ B. Seja M “ = {s4 + tB] o plano
gerado pelo mesmo par A e B passando pela origem. Evidentemente M “contém um vector
X se.e so se.M; contém X — P. Uma vez que M “contéem Q e R, o plano M, contém C=Q — P
e D = R — P. Mas acabamos de demonstrar que existe um e um so plano contendo O, C e D,
visto C e D serem linearmente independentes. Portanto M, = {sC + tD/, pelo que M’ =
=[P+ sC + tD} = M, o que completa a demonstragao.

No Teorema13.5 demonstramos que dois vectores em ¥/ sdo linearmente dependentes se, e

sO se,estdo situados sobre uma mesma reta que passa pela origem. O teorema seguinte
exprime uma condi¢do equivalente para trés vectores num plano.

TEOREMA 13.11. Trésvectores A, Be Cde V, sao lineamente dependentes se,e SO se,estdo
situados sobre o mesmo plano passando pela origem.

Demonstrag¢do. Suponhamos que A, B e C sdao dependentes. Podemos entao exprimir um dos
vectores como combinagdo linear dos outros dois ou seja C = s4 + tB. Se A e B sao inde-
pendentes, geram um plano que passa pela origem e C esta nesse plano. Se A e B sao depen-
dentes, entdo A, B e C estao situados sobre uma mesma reta que passa pela origem e por-
tanto estdao em qualquer plano que passe pela origem e que contém os trés pontos A, B e C.

Para demonstrar o inverso, supomos que 4, B e C estdao sobre um mesmo plano que passa
pela origem, por exemplo M. Se 4 e B sdao dependentes,entdo A, B e C sao dependentes ¢ o
teorema esta demonstrado. Se 4 e B sao independentes, geram um plano M’ que passa pela
origem. Segundo o Teorema 13.10 existe um e um so plano que passa por O e contém A e B.
Por conseguinte M’ = M. Uma vez que C esta neesse plano deve ser C = s4 + 8, pelo que
A, B e C sao dependentes.

13.7. Planos e fung¢des vectoriais

A correspondéncia que associa a cada par de numeros reais s € # 0 vector P + sA + (B no
plano M = |P + sA + tB| é outro exemplo duma fungdo vectorial. Neste caso o dominio da
fungao € o conjunto de todos os pares de numeros reais (5, f) e 0 seu contradominio ¢ o plano
M. Se representarmos a fungao por X e os seus valores por X(5, 1), entao para cada par (s, t)
temos

X(s,t)=P + sA + 1B. (13.6)

Diz-se que X ¢ uma fungao vectorial de duas variaveis reais. Os escalares s ¢ t chamam-se
parametros ¢ a equagao (13.6) diz-se a equagao vectorial parameétrica ou simplesmente a
equagdo vectorial do plano. E a equivalente a representagdo da reta por uma fungio vec-
torial duma variavel real. A presenca de dois parametros na equagao (13.6) da-nos o cara-
ter de bidemensionalidade do plano. Quando cada vector esta em V, e € expresso em fungao
das suas componentes, a saber

P=(py,ps,ps). A= (a,,a,,a,, B = (b, by, bsy), e X(s, 1) = (x, v, 2),
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a equagao vectorial (13.6) pode substituir-se por trés equagoes escalares
X =p, + sa, + tb,, Y= p, + sa, + th,, Z=ps+ sa, + thy.

Os parametros s e t podem sempre eliminar-se entre estas trés equagoes para dar lugar a uma
equagao linear da forma ax + by + ¢z = d, chamada a equagao cartesiana do plano. Apre-
sentamos a seguir um exemplo.

EXEmMpPLO. SejaM = |P + sA + tBl,onde P=(1,2,3),A=(1,2,1) eB=(1,—4,—1). A
correspondente equagao vectorial €

Xis,t)=(1,2,3)+ s(1,2,1) + (1, —4, —1).
A partir daqui obtém-se as trés equagoes paramétricas escalares

x=1l+s+4Ly=2+28 —4,z=3+5—1.

Para se obter a equagio cartesiana escrevemos a primeira a terceira equagoes, respetiva-
mente, nas formas x— |l =5+ 1, z— 3= 5 — 1. Somando-as e subtraindo-as encontra-se
2s=x+ -4, 2t = x — =+ 2. Substituindo na segunda equagdo os parametros s ¢ f pelos
valores tirados das equagdes anteriores obtemos a equagdo cartesianadoplanox + y— 3z =
=—6. Voltaremos a0 estudo de equagdes cartesianas lineares na se¢io 13.16.

13.8. Exercicios

1. SejaM = {P + sA + tB},onde P =(1,2,-3),4 =(3,2,1),e B=(1,0,4). Determinar
quais dos pontos estdo sobre M.
(a) (1,2,0); (b) (1,2,1); (c) (6,4,6); (d) (6,6,6); (e) (6,6, —35).

2. Os trés pontos P = (1, 1", —=1), Q = (3, 3, 2), e R = (3, —1, —2) definem um plano M.
Determinam quais dos pontos seguintes estio sobre M:
(@ (2,2,3); (b) (4,0, =1); (¢) (=3,1,=3); (d) (3,1,3); (e) (0,0,0).

3. Determinar as equagOes parametricas escalares de cada um dos planos definidos do
modo seguinte:
(a) O plano passando por (1, 2, 1) gerado pelos vectores (0, 1,0) e (1, 1, 4).
(b) O plano passando por (1, 2, 1), (0, 1, 0) e (1, 1, 4).

4, Um plano M tem as equagOes escalares parameétricas

x=1+4+s5—2r, y=2+s+4r, z=2s+1¢.

(a) Determinar quais dos pontos seguintes estio sobre M: (0,0, 0), (1, 2,0), (2, 3,-3).
(b) Determinar vectores P, A e B tais que M = [P + sA + 1B|.

5. Seja M o plano determinado pelos trés pontos P, O, R ndo colineares.
(a) Se p, g, rsio trés escalares tais que p + ¢ + » = |, provar que pP + ¢Q + rR esta so-
bre M.
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(b) Provar que todo o ponto de M ¢ da forma pP + qQ + rR,comp + g + r = 1.
Determinar a equagdo linear cartesiana da forma ax + by + cz = d para cada um dos
seguintes planos:

(a) O plano passando por (2, 3, 1) e gerado por (3, 2, 1) e (-1, =2, =3).

(b) O plano passando por (2, 3, 1), (-2, —1, —3), e (4, 3, —1).

(c) O plano passando por (2, 3, 1), paralelo ao plano passando pela origem e gerado por
(2,0, —=2) e (1, 1, 1)

. Um plano M tem a equagdo cartesiana 3x — 5y + z = 9.

(a) Determinar quais dos seguintes pontos estdo sobre M:

0, =2, —1), (=1, =2, 2), (3, 1, =95).

(b) Determinar vectores P, A e B tais que M = (P + sA + (B|.

Considerar os dois planos M = {P + sA + (Bl e M = |{Q + sC + tD|,onde P = (1, 1, 1),
A=(2,-1,3),B=(-1,0,2),0=(2,3,1),C=(1,2,3)e D =(3, 2, 1). Determinar dois
pontos distintos sobre a intersegao M M M’.

Dado um plano M = |P + sA + tB|,onde P=(2,3,1),4 =(1,2,3)e B=(3,2, 1) e
outro plano M' com a equagao cartesiana x — 2y + z = (.

(a) Verificar se M e M’ sao paralelos.

(b) Determinar dois pontos da intersegio M UM se M tem a equagdo cartesiana

X+2+2=0.

Seja L a reta passando pelo ponto (1, 1, 1) e paralela ao vector (2, —1, 3) e seja M|,
plano passando por (1, 1, —2) gerado pelos vectores (2, 1, 3) e (0, 1, 1). Provar que existe
um € um sO ponto na interse¢ao L M M e determinar esse ponto.

Uma reta com o vector direcional X diz-se paralela a um plano M se X ¢ paralelo a M.
Seja L a reta passando pelo ponto (1, 1, 1), paralela ao vector (2, —1, 3). Determinar se
L ¢ paralela a cada um dos seguintes planos.

(a) Plano passando por (1, 1, —2) e gerado por (2, 1, 3) e (——i—, 1, 1).

(b) Plano passando por (1, 1, =2), (3, 5, 2) e (2, 4, —1).
(c) Plano de equagao cartesiana x + 2y + 3z = —3.

. Dois pontos distintos P e Q estao situados no plano M. Provar que cada ponto da recta

definida por P ¢ Q esta em M.

. Dada a reta L passando pelo ponto (1, 2, 3) paralela ao vector (1, 1, 1) e dado o ponto

(2, 3, 5) que nao esta em L, determinar a equagao cartesiana do plano passando por
(2, 3. 5) e contendo a reta L.

Dada uma reta L e um ponto P nao em L, provar que existe um ¢ um so plano passando
por P contendo L.

13.9. Produto vectorial

Em muitas aplicagoes da algebra vectorial a problemas de geometria e mecanica é util dis-

por de um método expedito de determinagdo dum vector perpendicular a cada um de dois
vectores dados 4 ¢ B. Isto consegue-se por intermédio do produto vectorial 4 X B (leia-se 4
vectorial B™) que se define do modo seguinte:
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TEOREMA 13.13. Se A e B sdo vectores linearmente independentes de V,, entdo:

(a) os vectores A, B, A x B sao linearmente independentes

(b) Todo o vector Nde V,, ortogonal simultaneamente a A e B, é igual ao produto dum
escalar por A x B.

Demonstragdo. Seja C = A x B. Entdo C # O,visto que 4 e B sao linearmente independen-
tes. Dados os escalares a, b, ¢ tais que ad + bB + ¢C =0, multiplicamos escalarmente
ambos os membros por Ce tendo em conta que A-C= B-C= 0 encontramos ¢= 0. En-
tio resulta a4 + bB=0peloquea= b= 0 visto que 4 ¢ Bsio independentes ¢ a alinea (a)
esta demonstrada.

Seja agora N qualquer vector ortogonal a ambos A e B e seja C = A x B. Vamos demons-

trar que _
(N-CPR=(N-N)C-C).

Entdo da desigualdade de Cauchy-Schwarz (Teorema 12.3) resulta que N € o produto de
um escalar por C

Uma vez que A, B e C sido linearmente independentes sabemos, pelo Teorema 12.10(c),
que geram V. Em particular eles geram N, pelo que podemos escrever

N =aA + bB + ¢C

para determinados escalares a, b, ¢. Daqui resulta entdo
N-N=N-(aA+bB+ cC)=cN-C,

visto que N. A = N .- B = (0. Igualmente, visto que C- A4 = C+ B = 0, se tem
C-N=C-(aA+bB+ cC)=cC-C.

Portanto (N- N)(C-C)=(cN-C)(C-C)=(N- C)(cC-C)=(N- C)* oque completa a
demonstragao.

O Teorema 13.12 permite-nos uma interpretagdo geométrica do produto vectorial. Das
propriedades (d) e (e) sabemos que 4 x B e perpendicular quer A que a B. Quando o vector
A x B se representa geometricamente por uma reta, o sentido da seta depende das posigoes
relativas dos trés vectores unitdrios coordenados. Se i, j ¢ k estdo dispostos como se indica
na fig. 13.a(a), diz-se que formam um sistema de eixos coordenados positivo. Neste caso o
sentido de A X B ¢ determinado pela “regra da mao direita”, isto €, quando A4 roda para
B segundo o menor angulo de maneira que os dedos da mao direita (fechada) indiquem o
sentido da rotagao, entao o polegar indica o sentido de 4 x B (supondo, evidentemente, que 0
polegar define uma dire¢do perpendicular aos outros dedos). Num sistema de eixos coorde-
nados negativo, como se indica na fig. 13.4(b), o sentido de A x B ¢ o oposto ¢ pode ser deter-
minado pela correspondente “regra da mao esquerda”.

O comprimento de 4 x B admite uma interpretagdo geomeétrica simples. Se 4 e¢ B sao
vectores nao nulos fazendo entre si um angulo 6, com 0 < § < =, podemos escrever A - B =
|4]|||B|| cos 6 na propriedade (f) do Teorema13.12. para obtermos
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vectores. Por exemplo se escrevermos o determinante

}i j k|
‘!al a, das|
by by by

e 0 “desenvolvermos™ segundo a regra indicada em (13.8), verificamos que o resultado ¢ igual

ao segundo membro de (13.7); por outras palavras, podemos escrever a definigao de produto
vectorial na seguinte forma compacta

I i j ok
A X B —_— .ul a._, as
b, b, by

Por exemplo, para calcularmos o produto vectorialde A = 2i — 8j + 3k ¢ B = 4j + 3k,
escrevemaos

ij ok
-8 3 2 3 |2 -8
AXB=|2 -8 3|= i— Jj+ k= —36i — 6j + 8k
430 o3 |0 4
0 4 3
13.11. Exercicios
l. Sejam A = =i + 2k, 3= 2i+Jj—k C = i+2j+ 2k Calcular cada um dos vectores

seguintes como combinagao linear de 7, j, &:
(a) A x B; (d) A x (C x A); (g) (4 x C) x B;
(b) B x C; (e) (4 x B) x C; (h) (4 + B) x(4 —-C);
(¢c) C x A; (f)y A x(B x C); (1) (A x B) x (A x ).
2. Em cada alinea determinar um vector de ¥, com norma unitaria ¢ ortogonal simul-
taneamente a A e a B:

(a) A =i +Jj+k, B =2i + 3j — k;
(b) A4 = 2i — 3j + 4k, B = —i+ 5j + Tk;
(¢) A =i —2j+ 3k, B = —3i+2j— k.
3. Em cada alinea calcular a area do triangulo, de vectores A, B e C, recorrendo ao produto
vectorial
(a) A =1(0,2,2), B =(2,0, =1), C =(3,40);
(by 4 =(-2,3,1), B = (1, =3,4), C=(1,21);
(c) A =(0,0,0), B =(0,1,1) C=(1,0,1).

4. Se A=2i + 5]+ 3k, B=2i +7j +4k,e C=3i + 3j + 6k, exprimir o produto vectorial
(A — C) x (B — A) como combinagao linear de i, j, k.

5. Provar que ||[4 x B|| = ||4]|||B|| se e s0 se A e B sdo ortogonais.

6. Dados dois vectores linearmente independentes 4 ¢ B de V; e C = (B x A) — B.
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A=aB + bC + c(B x C)
para determinados escalares a, b, ¢. Multiplicando escalarmente ambos os membros por
B x C e atendendo a que 4 - (B x C) = 0 encontramos ¢ = 0, pelo que A = aB + bC e esta

assim provado que A, B e C sao linearmente dependentes.

ExXEmMPLO. Para determinar se os trés vectores (2, 3, —1), (3, =7, 5) e (1, =5, 2) sao depen-
dentes, formamos o respetivo produto misto na forma de determinante

2 3 -1
3 =7 S|=2—144+25)—-3(6—-5)—1(=15+7)=27.
1 =5 2

Uma vez que o produto misto nao € nulo, os trés vectores sao linearmente independentes.

O produto misto € susceptivel duma interpretagdo geometrica interessante. A fig. 13.6
mostra um paralelipipedo determinado pelos trés vectores geométricos A, B, C nao compla-
nares. A sua altura é||C|| cos ¢, onde ¢ é o angulo entre A x B e C. Nesta figura, cos ¢ &

n
2
também a area de cada segdo paralela a base. Integrando a area da segdo entre O e||C||
cos ¢, encontramos para volume do paralelipipedo ||4 x B||(||C|| cos ¢#).a area da base
vezes a altura. Mas sabe-se que

positivo porque 0 < ¢ < —. A area do paralelogramo que forma a base ¢ ||4 x B||, e esta é

|4 x B| (|Clcos¢)=(A X B)-C.

Por outras palavras, o produto misto 4 x B . C ¢ igual ao volume do paralelipipedo determi-

1 . . :
nado por 4, B e C. Quando 5 &< ¢ < m, cos ¢ & negativo e o produto 4 x B+ C ¢é nega-

tivo, portanto vale o simétrico do volume. Se 4, B e C sdao complanares e o respetivo plano

altura = ||C|| cos ¢ —f—m = <L volume = Ax B . (

“drea-‘da base = || 4 x B||

Fig. 13.6. Interpretagao geometrica do produto triplo escalar como o volume dum
paralelipipedo.
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(ai + bj + ck) -k x (6§ +3j +4k) =3.

(b) Determinar o vector ai + bj + ck de menor comprimento ¢ que verifique a relagio
(a).

Utilizar as propriedades algébricas do produto escalar e produto vectorial para derivar as
seguintes propriedades do produto misto.

(@ (4 +B)(4+B)xC=0.

(b) A-B x C=—B-A x C, aqual significa que a troca dos dois primeiros vectores
muda o sinal do produto misto. [ Sugestgo: Aplicar a alinea (a) e a propriedade distribu-
tival.

(¢) A- B x C=—A -C x B, aqual significa que a troca dos dois ultimos vectores muda
o sinal do produto misto. [ Sugestdo: usar a antissimetria do produto vectorial]

(d) A B x C=—C-B x A, aqual significa que a troca do primeiro com o terceiro vec-
tor muda o sinal do produto misto. | Sugestdo: usar (b) e (c).)

Igualando os segundos membros de (b), (c¢) e (d) verificamos que

A BxC=B-CxA=C-Ax8B,

0 que prova que a permutagao circular de 4, B e C deixa invariavel o produto misto.

. Este exercicio esboga uma demonstragao da formula vectorial

Ax (BxC)=(C-AB - (B-AC, (13.15)

que algumas vezes se chama, como mnemonica, formula “cab menos bac”. Sendo
B=(b,b,, b,) C=(c,, ¢, ¢,), demonstrar que

i x(BxC)=cB—bC.

Isto prova (13.15) no caso particular 4 = i. Demonstrar as formulas correspondentes
para A = j e A = k. e combina-las depois para obter (13.15).

Usar a formula “cab menos bac” do Exercicio 9 para deduzir as seguintes igualdades
(a) (A xB)yx(CxD)y=(AxB-D)C —-(4AxB-C)D.

b)) A Xx(BxC)4+Bx(CxA)+C x(4xB)=0.

() Ax(BxC)=(AxB)yxC seesose B x(C x A) =0.

(d) (A x B)-(C x D) =(B-D)A-C) —(B-C)A- D).

Quatro vectores de V, 4, B, C e D verificam as relagoes A x C-B=5,4 x DB
3,C+D=i+2j+k C—D=i—k. Calcular (4 x B) x (C x D) em fungao

de i, j, k.
Provar que (4 x B) - (B x C) x (C x A) = (A . B x C)~
Dizer se ¢ verdadeira ou falsa a formula 4 x [4 x (4 x B)]-C= — |42 A-B x C.

(a) Provar que o volume do tetraedro cujos veértices sao A, B, C e D ¢

§1(B=A)-(C—A) x(D—-A).

(b) Calcular este volume quando 4 =(1,1,1),8=(0,0,2),C=(0,3,0)e D = (4,0, 0).
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projec¢ao de P — Q sobre N. Este comprimento minimo € ((P— Q)N |/|IN||e chama-se a
distdncia de Q ao plano. O numero d,em (13.17),¢é a distancia da origem ao plano.

13.16. Equacoes lineares cartesianas definindo planos

Os resultados estabelecidos pelos Teoremas 13.15 e 13.16 podem também exprimir-se em
termos de componentes. Se admitimos que N = (@, b, ¢), P = (x,, ¥,, z,) eN=(x, , 2), a
equacao (13.16) escreve-se

ax —x)+by—n)+clz—2)=0. (13.18)

Esta é a equagdo cartesiana do plano e é verificada por aqueles pontos (Xx, y, z) (e sO por eles)
que estao no plano. O conjunto de pontos verificando (13.18) nao se altera se multiplicarmos
cada um dos valores a, b, ¢ por um escalar ndao nulo . Isto significa unicamente que se
escolheu outro vector normal ao plano em (13.16).

Passando ao segundo membro os termos independentes de x, y e z, podemos dar a (13.18)
a forma

ax + by + cz = d,, (13.19)

onde d, = ax, + by, + cz,. Uma equagao deste tipo diz-se que ¢ linear em x, y e z. Mostra-
mos exactamente que todo o ponto (X, y, z) dum plano verifica uma equagao cartesiana
linear (13.19), na qual es trés valores a, b, ¢ ndo sao todos nulos. Inversamente, toda a
equagao linear com esta propriedade representa um plano. (O leitor pode demonstrar esta
proposigao a titulo de exercicio).

O namero d, em (13.19) da lugar a uma relagao simples com a distancia d do plano a ori-

[(0, 0,2)
N |
1 Xy, 2z _
' 3trta =
P ;
|
I
] ).____-._(.E.:Ly
" 2
X ’
. 1’
s
4
@ /(3.0. 0)
X
Fig. 13.7. Um plano passando por Fig. 13.8 Um plano intersetando os

P e X e normal N eixos coordenados.
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21. (a) Se trés pontos A, B, C definem um plano, provar que a distancia de Q a este plano ¢
(Q—4)-(B—4)x (€ —4)|/||lB—-4)x (-4
(b) Calcular esta distanciase Q =(1,0,0),4 =(0, 1, 1),B=(1,-1,1)e C=(2, 3,4).

22. Provar que se dois planos M e M' nao sao paralelos, a sua intersec¢ao M M M’ ¢ uma
reta.

23. Achar a equagdo cartesiana do plano paralelo aj e que passa pela intersegao dos planos
deequagbes x + 2y + 3z =4e2x + y + z = 2.

24. Achar a equagao cartesiana do plano paralelo ao vector 3i — j+ 2k € que contém
a reta de intersegio dosplanosx+ y=3e2y+ 3z=4.

13.18. As segoes conicas
Uma reta movel G que interseta uma reta fixa A num ponto P, com a qual forma um an-
gulo constante 8, onde 0 < 6 < =, gera no espago tridimensional uma superficie chamada

cone circular reto. A reta G € a geratriz do cone, A o seu eixo e P o vertice. Cada um dos
cones representados na fig. 13.9 tem eixo vertical. As partes superior e inferior do cone que
se unem no veértice chamam-se as duas folhas do cone. As curvas obtidas por intersegao
do cone com um plano nao passando pelo vertice chamam-se segdes conicas, ou simples-
mente conicas. Se o plano secante ¢ paralelo a uma geratriz do cone, a conica € uma pa-
rabola. Nos outros casos essa segao €

Hiperbole

/

Parabola

Fig. 13.9. As segOes coOnicas.

ou uma elipse ou uma hipérbole, conforme o plano interseta uma ou as duas folhas (Ver
fig. 13.9). A hipérbole ¢ formada por dois ramos, um em cada folha do cone.

Muitas descobertas importantes, tanto na matematica pura como aplicada, estiveram
relacionadas com as segoes conicas. O estudo das conicas feito por Apolonio data do Sec.
A. C. e constitui um dos trabalhos mais notaveis da geometria classica grega. Cerca de dois
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mil anos mais tarde, Galileu descobria que um projéctil langado horizontalmente do cimo de
uma torre cai para a terra deecrevendo uma trajetoria que € um arco de parabola (se for
considerada desprezavel a resisténcia do ar e se admitirmos que 0 movimento tem lugar numa
regido da superficie terrestre suficientemente reduzida para que possa ser considerada um
plano). Um dos pontos de viragem na historia da astronomia ocorreu em 1600 quando
Kepler sugeriu que todos os planetas se movem em Orbitas elipticas. Cerca de 80 anos mais
tarde, Newton pode demonstrar que uma oOrbita planetaria eliptica implica uma lei de
atragao gravitacional em que a forga € inversamente proporcional ao quadrado da distancia.
Este fato levou Newton a formular a sua famosa teoria da gravitagao universal, a qual tem
sido frequentemente referida como o maior descoberta cientifica jamais feita. As se¢des co-
nicas aparecem nao somente como Orbitas de planetas e satélites, mas também como traje-
torias de particulas atomicas elementares. Por tal fato podemos concluir que a importancia
das se¢oes conicas dificilmente podera ser superestimada.

Ha outras defini¢oes equivalentes das sec¢oes conicas. Numa delas consideram-se pontos
especiais conhecidos por focos; e aqui a elipse pode definir-se como o conjunto de todos os
pontos do plano para os quais a soma das distancias d, e d, a dois pontos fixos F, e F, (os
focos) € constante. (Ver fig. 13.10). Se os focos coincidem, a elipse reduz-se a uma cir-
cunferéncia. Uma hipérbole ¢ o conjunto de todos os pontos do plano para os quais a dife-

| directriz
I
|_d
2 |
4, "/ Ja,
|
F, F, i
|
|
I
d, + d, = constante \d, — d,| = constante :
(elipse) (hipérbole) d =d,
(parabola)

Fig. 13.10. Defini¢oes focais das secgoes conicas.

renca |d, — d,| € constante. Uma parabola ¢ o conjunto dos pontos do plano para os
quais a distancia a um ponto fixo F(chamado o foco) € igual a distancia a uma dada reta
(chamada a diretriz).

Por um raciocinio muito simples pode demonstrar-se que a propriedade focal da elipse é
uma consequéncia da sua definicao como uma se¢ao de um cone. Esta demonstragao foi
feita em 1822 pelo matematico belga G.P. Dandelin (1794-1847), considerando no interior do
cone duas esferas que lhe sao tangentes e em que cada uma delas € tangente a um plano
secante do cone, como se indica na fig. 13.11. O lugar dos pontos de contacto destas esferas
com o cone sao duas circunferéncias C, e C,, situadas em planos paralelos. Interessa provar
que os pontos F, e F, de contato do plano secante com as esferas sao os focos da elipse
determinada no cone pelo plano.
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esfera §,

circunferéncia C,

foco F,

elipse

circunferéncia C,
esfera §,

()
Fig. 13.11. Demonstra¢ao de Dandelin

Seja P um ponto qualquer da elipse. O problema consiste em demonstrar que IIPF I+
+ | ppz | & constante, isto €, independente de P. Considere-se a geratriz do cone dirigida
de 0 para P e sejam A eAd, os pontos de interse¢ao com as circunferéncias C, e C,, res-
petwameme Entao p}: e PA A, sao duas tangentes a S, tiradas a partir de P ¢ por isso
IPF1 = | p,41|| Analogamente I sz =l PA: |+ € portanto tem-se

|\PF,|| + |PE,| = ||PAy| + ||PA,] .

— — —
Mas||PA,| + [|PA,|| = ||A,A;|l, que € a distancia entre os planos de C, e C, medida ao longo

da reta OA, geratriz do cone. Isto prova que F, e F, sdo os focos da elipse, como se tinha
afirmado.
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Se e > |, a curva é uma hiperbole com um ramo de cada lado de L. Os pontos do ramo
esquerdo verificam (13.27) e os do ramo direito satisfazem a

ed

rm— (13.28)

ecosf — 1

Equagoes polares correspondentes a outras posigoes da diretriz serao discutidas no con-
junto de exercicios que se apresenta a seguir.

13.21. Exercicios
1. Provar que a equagao (13.22) do Teorema 13.17 deve substituir-se por
| X —F| =el(X —F)-N +d|

se F esta no semi-plano positivo determinado por N.

2. Seja C uma conica de excentricidade ¢, um foco na origem e directriz vertical L a uma
distancia 4 de F e a sua esquerda.
(a) Provar que se C € uma elipse ou uma parabola, todo o ponto C esta a direita de L e
satisfaz a equagao polar

ed

r=l—ecosﬁ'

(b) Provar que se C é uma hiperbole, pontos no ramo direito satisfazem a equagdo da
alinea (a) e pontos do ramo esquerdo satisfazem a r = —ed/(1 + e cos 6). Repare-se que
1 + e cos § é sempre negativo nesta hipotese.

3. Se uma conica tem uma directriz horizontal a uma distancia 4 acima do foco situado na
origem, provar que os seus pontos verificam a equag¢ao polar obtida da do Teorema 13.18
pela substituicao de cos f por sen 6. Quais sao as correspondentes equagoes polares se a
directriz é horizontal e situada abaixo do foco?

¢
Ca.a um dos Exercicios 4 a 9 da uma equagao polar duma conica com o foco F na ori-
gem e a diretriz vertical a direita de F. Em cada caso determinar a excentricidade e e a
distancia d do foco a diretriz. Tragar a curva mostrando a relagao desta com os respe-
tivos foco e diretriz.

2 1
4'r=]+c050' 7'r=-—$+c050'
5.r=—3-—-—. 8.r=——-—4——~.

1 +4cosb 1 + 2cos @
6.r=—6——. 9.r=;.
3 +cosb | + cos 6
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Em cada um dos Exercicios 10 a 12, uma conica de excentricidade e tem um foco na
origem ¢ a diretriz com uma dada equagdo cartesiana. Em cada caso calcular a dis-
tancia d do foco a diretriz e determinar uma equagao polar para a conica. Para a
hipérbole dar uma equagdo polar para cada ramo. Fazer um desenho mostrando a
relagao da curva com o seu foco e diretriz.

10. e = 1/2; directriz: 3x + 4y = 25.

11. e = 1; directriz: 4x + 3y = 25,

12. e = 2, directriz: x + y = 1.

13. Um cometa move-se numa oOrbita parabolica com o sol no foco. Quando o cometa dista

T - n -
10® quilometros do sol, um vector do foco para o cometa faz um angulo de — radianos

com o vector unitario N do foco perpendicularmente a diretriz, estanau o foco no
semi-plano negativo determinado por N.

(a) Determinar a equagao polar da orbita, tomando a origem no foco e calcular a menor
distancia do cometa ao Sol.
(b) Resolver a alinea (a) se o foco esta situado no semi-plano positivo definido por MN.

13.22 Conicas simétricas relativamente a origem
Um conjunto de pontos diz-se simétrico relativamente a origem se —X pertence ao con-
junto sempre que X pertenga. Vamos provar a seguir que o foco duma elipse ou duma

hipérbole pode sempre ser definido de modo que a conica seja simétrica em relagao a origem.
Para isso escrevemos a equagdo fundamental (13.22) na forma:

| X—F|=e|(X—F)N—d|=¢e|X N—F-N—d|=|eX-N—a|, (13.29)
onde a = ed + e F* N. Quadrando ambos os membros vem
IXI?P=2F- X+ |F|*! =X -N)*—2eaX-N+ a*. (13.30)

Se pretendemos que exista simetria a respeito da origem, esta equagdo deve ainda ser
satisfeita quando se substitue X por —X ou seja

| X2 4 2F- X+ |[F|* =€ X -N)?*+ 2eaX- N+ a*. (13.31)
Subtraindo (13.31) de (13.30), teremos simetria se € SO se
F-X=eaX" N ou (F—eaN)- X =0.

Esta equagao pode ser satisfeita para todos os X pertencentes a curva se e so se F e N estao
relacionados por

F = eaN , onde a=-¢ed+ eF-N. (13.32)

A relagao F = eaN implica que F * N = ea, donde resulta a = ed + e*a. Se e = 1, esta ultima
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(a) Elipse (b) Hipérbole.
LD S PR T S X Y Lk -a
a’+ r l;: BP=a® -¢ S :

Fig. 13.14. Conicas de excentricidade e # 1, simétricas relativamente a origem. Os focos sao
os pontos (+c, 0), com ¢ = |a| e. Os triangulos relacionam a, b e ¢ geometricamente.

Para se obter uma equagao cartesiana para a parabola, voltamos a equagao fundamental
(13.20) com e=1. Tomando para diretniz a reta x = —c e considerando o foco no ponto
(c, 0),se X = (x, y), tem-se X — F = (x — ¢, y) e a equagdo (13.20) da-nos (x — ¢)* + y* =
= |x + cP. Efetuando as simplificagdes possiveis obtemos a equagido da parabola na forma
reduzida

y¥=dcx. (13.40)

O ponto médio entre o foco e a diretriz (a origem na fig. 13.15) chama-se o vértice da
parabola e a reta passando pelo vértice e pelo foco é o eixo da parabola. A parabola é sime-
trica em relagao ao seu eixo. Se ¢ > 0, a parabola esta situada a direita do eixoOY, como na
fig. 13.15; quando ¢ < 0O, a curva fica a esquerda de OY.

Se os eixos se escolhem de modo que o foco esteja sobre QY no ponto (0, ¢) e se a diretriz
for a reta y = —c, a forma reduzida da equagido cartesiana da parabola é

x? = 4cy.

Quando ¢ > 0,a parabola tem a concavidade para cima como se mostra na fig. 13.16.
Quando ¢ < 0, a concavidade esta voltada para baixo.
Se a parabola da fig. 13.15 for deslocada de maneira que o seu vértice seja 0 ponto (X, ¥)s

a equagao correspondente sera

(y — yo)* = de(x — xo).
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9. O mesmo Exercicio 8, excepto que 0 eixo maior ¢ paralelo a OY.
10. Vertices em (—1, 2), (=7, 2), eixo menor de comprimento 2.
11. Vertices em (3, —2), (13, —=2), focos em (4, =2), (12, =2).
12. Centro em (2, 1),eixo maior paralelo aQX, passando a curva pelos pontos (6, 1) e (2, 3).
Cada uma das equagoes dos Exercicios 13 a 18 representa uma hipérbole. Determinar as
coordenadas do centro, dos focos e dos vertices. Tragar as curvas e desenhar as assintotas.
Determinar tambem a excentricidade.

R A 6. 9x? — 16y2 = 144.
3100 " & 16- 27 =19
4 2 - 17, 4x* — 5)° + 20 = 0
100 64 AT A=
(x + 3)* . (x =12 (v +2)
— P o— 2 = . 8 _— = .
(y—3);F=1 ! 4 9 I

Em cada um dos Exercicios 19 a 23 determinar a equagido cartesiana da hipérbole que
verifica as condigdes dadas. Tragar cada curva e as assintotas.
19. Centro em (0, 0), um foco em (4, 0), um vertice em (2, 0).
20. Focos em (0, +/2), vértices em (0, +1).
21. Vertices em (+2, 0), assintotas y = +2x.
22. Centro em (—1, 4), um foco em (—1, 2), um vértice em (—1, 3).
23. Centro em (2, —3), eixo transverso paralelo a um dos eixos coordenados, passando a
curva pelos pontos (3, —1) e (—1, 0).
24, Para que valor (ou valores) de C sera a reta 3x — 2y = (C tangente a hiperbole
Xt — 3y =17
25. As assintotas da hipérbole sao as retas 2x — y = 0 e 2x + y = 0. Determinar a equagao
cartesiana da curva, sabendo que passa pelo ponto (3, —5).
Cada uma das equagoes dos Exercicios 26 a 31 representa uma parabola. Determinar as
coordenadas do vertice, a equagao da diretriz e a equagao do eixo. Tragar as curvas

26. y* = —8x. 29. x* = 6y.
27. y* = 3x. 30. x* + 8y =0.
28. (y — 1)* = 12x — 6. 31 (x + 2 =4y + 9.

Em cada um dos Exercicios 32 a 37 achar a equagao cartesiana da parabola que satisfaz.
as condigoes dadas e tragar a curva.
32. Foco em (0, —1/4); equagdo da diretriz x = 1/4.
33. Vertce em (0, 0); equagao da diretriz x = —2.
34. Vertice em (—4, 3): foco em (—4, 1).
35. Foco em (3, —1); equagdo da diretriz x = 1/2.
36. Eixo paralelo a QY e passando pelos pontos (0, 1), (1, 0) e (2, 0).
37. Eixo paraleio a OX, vertice em (1, 3), passando por (—1, —1).
38. Partindo da defini¢ao focal, achar a equagdo cartesiana da parabola cujo foco € a origem
e cuja diretriz ¢ a reta 2x + y = 10.
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12. Considere o Exercicio 11. Provar que em cada ramo da hipérbole a diferenga
l|X — F|| = ||X + F}|| é constante.

13. (a) Demonstrar que uma transformag¢do de homotetia (substitui¢do de x por tx e y por
ty) transforma uma elipse de centro na origem noutra elipse com 0 mesmo centro € com
a mesma excentricidade; por outras palavras elipses homotéticas tém a mesma excentri-
cidade.
(b) Provar o inverso, isto &, se duas elipses concéntricas tém a mesma excentricidade e
os eixos maiores sobre a mesma reta, entao elas estdao relacionadas por homotetia.
(c) Provar os resultados correspondentes a (a) e a (b) para as hipérboles.

14. Utilizar a equagdo cartesiana que representa todas as conicas de excentricidade e € cen-
tro na origem para demonstrar que estas conicas sdao curvas integrais da equagao
diferencial y* = (e* — 1)x/y.

Nota: Uma vez que esta € uma equagao diferencial homogénea (se¢do 8.25), o conjunto
de todas essas conicas de excentrecidade e € invariante por uma transformagdo homotética.
(Comparar com o Exercicio 13.)

15. (a) Provar que o conjunto de todas as parabolas € invariante sob uma transformagio
de semelhanca. Isto é, uma transformagdo de semelhanga transforma uma parabola
numa parabola.

(b) Determinar todas as parabolas semelhantes a y = x?.

16. A rectax —y + 4 =0, é tangente a parabola y*> = 16x. Determinar o ponto de contato.

17. (a) Se as duas parabolas y> = 4p(x — a) e x?=4qy, dado a+# 0, sao tangentes provar
que a abcissa do ponto de contato depende unicamente de a.

(b) Determinar uma condi¢ao relativa a a, p e ¢ que exprima o fato de que duas
parabolas sao tangentes.

18. Considerar o lugar dos pontos P do plano para os quais a distancia de P ao ponto (2, 3) &
igual a soma das distancias de P aos eixos coordenados.

(a) Mostrar que a parte deste lugar geométrico situado no primeiro quadrante € parte de
uma hipérbole, localizar as assintotas e fazer um desenho.
(b) Tragar o lugar geometrico nos restantes quadrantes.

19. Duas parabolas tém 0 mesmo ponto como foco e a mesma reta como €ixo, mas 0s verti-
ces situados um de cada lado do foco. Provar que as parabolas se intersetam ortogonal-
mente (isto €, que as tangentes as parabolas nos pontos de intersegdao sao perpendicu-
lares).

20. (a) Provar que a equagao cartesiana

T2 2

; ¥
a* + a® - ¢*

=]

representa todas as conicas simétricas relativamente a origem com os focos em (¢, 0) e
(—e, 0).

(b) Fixar c e representar por S o conjunto de todas as conicas obtidas quando a* toma
qualquer valor real e positivo diferente de ¢®. Provar que toda a curva de S verifica a
equacgao diferencial



14
CALCULO COM FUNCOES VECTORIAIS

14.1. Fungoes vectoriais duma variavel real

Este capitulo combina a algebra vectorial com os métodos do calculo e descreve algumas
aplicagoes ao estudo de curvas e de alguns problemas de mecinica. O conceito de fungao
vectorial ¢ fundamental neste estudo.

DEFINIGAO. Uma fungdo cujo dominio é um conjunto de nimeros reais e o contradominio
€ um subconjunto do espago  n-dimensional V, denomina-se fungao vectorial duma varid-
vel real.

Encontramos tais fungdes no capitulo 13. Por exemplo, a reta passando por um ponto P,
paralela a um vector nao nulo 4, € o contradominio da fungao vectorial X definida por

X(t)y=P + 14 ,

para todo o ¢ real.
As fungOes vectoriais serdo representadas pelas letras maiusculas, tais como F, G, X, Y,

etc., ou por letras minusculas f, g, etc. O valor da fungiio F em 7 representa-se, como habi-
tualmente, por F(1). Nos exemplos que viermos a estudar o dominio de F serda um inter-
valo que pode ser finito e fechado ou pode mesmo ser infinito.

14.2. Operagoes algébricas. Componentes

As operagoes usuais da algebra vectorial podem servir a combinagao de duas fungoes vec-
toriais ou a combinagao duma fungao vectorial com uma fungao real. Se F e G sao fun-
¢oes vectoriais e ¥ € uma fungao real, todas com o mesmo dominio, definimos novas fungoes
F + G, uF, e F - G mediante as igualdades

(F + G)(1) = F(t) + G(1), (uF)(1) = u(t)F(1), (F-G)(1) = F(1)" G(1).

597
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A soma F + G e o produto uF sdo fungoes vectoriais, enquanto que o produto escalar F - G ¢
uma fun¢do real. Se F(1) e G(1) sdo definidas no espago tridimensional, podemos também
definir o produto vectorial F x G pela formula

(F x G)(r)= F(1) x G(1).

As operagoes de composigao podem aplicar-se na combinagao de fungoes vectoriais com
fungoes reais. Por exemplo, se F é uma fungdo vectorial cujo dominio inclui 0 dominio de
uma fungdo real &, a composi¢io G= F © u ¢ uma nova fungdo vectorial definida pela
equagio

G(r) = Flu(r)]

para cada ¢t do dominio de .
Se uma fungao F tem valores em V/ , entao cada vector F(7) tem n componentes ¢ podemos
escrever

F(t) = (filt), fol D)o 5 (1))

Deste modo, cada fungao vectorial F da lugar a n fungdes reais f|, ..., /;, cujo sistema de valo-
res para um certo { sao as componentes de F(z). Exprimimos simplesmente esta relagao escre-
vendo F = (f, [, - f)) € chamamosfk a componente de ordem k de F.

14.3. Limites, derivadas e integrais

Os conceitos basicos do calculo tais como limite, derivada e integral, podem generali-
zar-se as fungdes vectoriais. Basta para tanto exprimir a fungdo por intermédio das suas
componentes ¢ efetuar com estas componentes essas operagdes do cdlculo.

DEFINIGAO. Se F = (f;, .. [, ) € uma fungdo vectorial, definem-se o limite, derivada e o in-
tegral pelas formulas

lim F(1) = (Iim_fl(r) ..... limf,,('r)) .
{—p

t—= t—p !

F'(ry=(fit), ..., f1),

*b ) *h
| F(yde= (| funyde,....| f(1) dr)

sempre que as componentes do segundo membro tenham significado.

Dizemos igualmente que F' € cantinua, derivavel ou integrdvel num intervalo, se cada com-
ponente de F possui a correspondente propriedade nesse mesmo intervalo.
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Em virtude das definigoes apresentadas, ndao surpreendera a verificagao de que muitos
teoremas sobre limites, continuidade, derivagao e integragdo de fungdes reais sejam também
validas para as fungGes vectoriais. Vamos estabelecer alguns desses teoremas de que faremos
uso no presente capitulo.

TEOREMA 14.1. Se F, G e u sao derivaveis num intervalo, entao também o sao F + G, uF e
F - G e tem-se

(F+ G) =F + G, (uF) = u'F + ufF’, (F-G)Y=F -G+ F-G'.
Se F e G tém valores em V, também se verifica
(FxG))=F xG+ Fx (G

Demonstragdo. Apenas para mostrar a rotina das demonstragoes, vamos provar a igual-
dade (uF)’ = u'F + uF. As demonstragdes das restantes sao analogas e deixam-se¢ como
exercicio ao leitor.

Escrevendo F = (£}, /3, ....f,) tem-se

uF = (ufy,...,uf,), (uF) = ((ufy), ..., Wf,)).

Mas a derivada da componente de ordem k de u F ¢ (wf) =u’f, + uf, de maneira que
(uFY =u'(fy,.... L)+ ulf)..... fi)=u'F + uF".

O leitor tera notado que as formulas de derivagao no Teorema 14.1 sdo analogas as formas
usuais de derivagao duma soma ou um produto de fungoes reais. Visto que o produto vec-
torial &€ nao comutativo, deve prestar-se atengao a ordem dos fatores na formula definindo
(F x GY.

Da formula de derivagdo do produto escalar F - G resulta o seguinte teorema que utilizare-
mos com frequéncia.

TeEOREMA 14.2. Se uma fungao vectorial é derivavel e tem norma constante num intervalo
aberto 1, entao F - F' = 0 em I, isto é, F'(1) é perpendicular a F(t) para cada t em 1.

Demonstragdo. Seja g(t) = ||F(1)|F = F(1) - F(1). Por hipétese g & constante em / e con-
sequentemente g° = O nesse intervalo. Mas, porque g ¢ definida por um produto escalar,
podemos escrever g' = F' - F + F- F' = 2F - F'. Deste modo F - F' = 0.

O teorema seguinte diz respeio a fungoes compostas. A sua demonstragao faz-se com
facilidade a partir dos Teoremas 3.5 e 4.2 que contém resultados analogos para as fungoes
reais.

TeOREMA 14.3. Seja G = F - u, com F uma fungao vectorial e u uma fungao real. Se u é
continua em t e se F é continua em u(t), entdo G é continua em t. Se as derivadas u'(1) e
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F'lu(t)) existem, entdo G'(1) também existe e é dada por
G'(t) = F'lu())d'(1) .

Se uma fungdo vectorial F é continua num intervalo fechado [a, b|, entdao cada compo-
nente é continua e por conseguinte integravel em [ a, b1, pelo que F ¢ integravel no mesmo
intervalo. Os trés teoremas seguintes dio-nos as propriedades fundamentais do integral de
fungdes vectoriais. Em cada um deles as demonstragdes sdo consequéncias imediatas dos

resultados correspondentes para os integrais das fungdes reais.

TEOREMA 14.4. LINEARIDADE E ADITIVIDADE. Se as fungdes vectoriais F e G sdo inte-
graveis em la, bl, o mesmo se verifica com ¢,F+c¢,G para quaisquer ¢, e c, e lem-se

j:'(clm) + aGW) di = ¢ Ft)di + ¢ Gy dt.
Igualmente para todo ¢ em |a, b) verifica-se
b re b
| Frydt=| F(tydt+| F(t)dr.

TEOREMA 14.5. PRIMEIRO TEOREMA FUNDAMENTAL DO CALCULO. Se F é uma fungdo vec-

torial continua em |a, b) e ¢ € |a, bl, define-se o integral indefinido A como sendo a fungdo
vectorial dada por

A) =["Fydt  se a<x<b.

Entao A'(x) existe e tem-se A'(x) = F(x) para todo x € (a, b).
TEOREMA 14.6. SEGUNDO TEOREMA FUNDAMENTAL DO CALCULO. Se a fung¢do vectorial

F admite derivada continua F’ no intervalo aberto I, entdo para cada escolha de ¢ e x em |
tem-se

F(x) = F(c) + | F(1) dt.

O teorema seguinte € uma generalizagao da propriedade c_[g F()dt = _I'g cF(1)dt, com a
multiplicagdao por um escalar ¢ substituido pelo produto escalar pelo vector C.

TeoreMA 14.7. Se F = (f,,/,, ... f,) € integrdvel em |a, b, entdo para cada vector C =
= (¢}, ¢y ., ¢,) 0 produto escalar C . F é integrdvel em |a, b] e tem-se

c-|" Fy i =_|‘h C - F(t) dt .
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Demonstragdgo. Uma vez que cada componente de F ¢ integravel, temos

il

b n b B o b
C-| F(tydt =3 ¢;| f1)dt =' Y e fndt=| C-F(t)dr.

Ja i=]1 &0 Ja =] ol

Apliquemos agora o Teorema 14.7, conjuntamente com a desigualdade de Cauchy-
Schwarz, para obtermos a seguinte propriedade importante das fungoes vectoriais.

TEOREMA 14.8. Se F e ||F|| sdo integrdveis em |a, b, tem-se

‘Hﬁmm”gjﬂmm. (14.1)

Demonstragao. Seja C = f g F(t)dt Se C = 0O, entao (14.1) resulta trivial. Supomos, por-
tanto,C # O e aplicando o Tzorema 14.7, temos

ICIE=C-C=C-| Fydt=[ C-F(t)dr. (14.2)
Visto que o produto escalar C - F(7) ¢ uma fungao real, temos a desigualdade
. . :
| cFwar< | e Folde < [T1c1 IF@) dr, (14.3)

onde na ultima passagem fizemos uso da desigualdade de Cauchy-Schwarz, |C - F(1)| <||C||
||F(1)||. Combinando (14.2) e (14.3) obtemos

*»
ICI* < ICl| I dr .
Porque ||C|| > 0, podemos dividir ambos os membros por ||C|| para obtermos (14.1)

14.4. Exercicios

Calcular as derivadas F'(7) e F"'(1) para cada uma das fungdes vectoriais indicadas nos
Exercicios 1 a 6.

1. F(r) = (1, 12, 22, 1%). 4. F(r) = 2eti + 3etj.
2. F(1) = (cos t,sen? ¢, sen 2¢, tan t). 5. F(1) = chti +sh2tj + e k.
1
3. F(1) = (arcsen f, arccos f). 6. F(r) =log(l + )i+ arctg 1j + I 372 k.

7. Seja F a fungao vectorial definida por
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l xr
F(x) = xe*A +; [ F(t)dr

v

para todo x > 0, sendo A um vector fixo ndao nulo.

24. Uma fungao vectorial F, que nunca € nulo e tem derivada continua F'(z) para todo ¢, é
sempre paralela a sua derivada. Provar que existe um vector constante 4 e uma fungao
real positiva u tal que F(1) = u(1)A para todo 1.

14.5. Aplicagoes as curvas. Tangéncia

Seja X uma fungao vectorial cujo dominio € um intervalo /. Quando ¢ percorre 7, 0s corres-
pondentes valores da fungdo X(7) definem um conjunto de pontos que designaremos por grd-
fico de X. Se os valores da fungao estao definidos num espago a duas ou trés dimensoes,
podemos efetuar a correspondente representagao geometrica. Por exemplo se X(1) = P + (A,
com P ¢ A vectores fixosde V,, e A4 #0, o grafico de X ¢ uma linha reta passando por P
e paralela a A. Uma fungdo mais geral dara origem a um grafico mais geral, como sugere 0
exemplo da figura 14.1. Se X é continua em /, tal grafico diz-se uma curva; mais rigorosa-
mente, a curva descrita por X. Por vezes dizemos que a curva ¢ definida parametricamente
por X. O intervalo / diz-se o intervalo paramétrico; e t diz-se um parametro.

As propriedades da fun¢ao X podem utilizar-se para investigar as propriedades geometri-
cas do seu grafico. Em particular a derivada X~ esta relacionada com o conceito de tan-
géncia, como no caso duma fungao real. Formemos a razao incremental

X(t+ h) — X(1) (14.4)
h

e analisemos o seu comportamento quando 2 — 0. Este quociente € o produto do vector
X(1 + h) — X(1) pelo escalar 1/h. O numerador, X(r + h) — X(1), representado na fig. 14.2, é
paralelo ao vector (14.4). Se exprimirmos esta razao incremental por intermeédio das respeti-
vas componentes e fazemosh — 0, encontramos

. X(t+ h)— X(1n)
lim

h=0 h

= X'(1),

admitindo, ¢ claro, que a derivada X'(2) existe. A interpretagdo geométrica desta relagao
sugere a seguinte defini¢ao:

DEFINIGAO. Seja C uma curva descrita por uma fungdo vectorial continua X. Se a deri-
vada X'(1) existe e é nao nula, a reta que passa por X(t) e é paralela a X'(t) chama-se a tan-
gente a C em X(1). O vector X'(1) chama-se o vector tangente a C em X(1).

ExempLO 1. Linha reta. Para uma reta dada X(1) = P + tA, com A # 0, tem-se X'(1) =
=A, peloqueatangente a reta em cada um dos seus pontos coincide com a propria reta X(1),
propriedade que evidentemente era de desejar.



606 Calculo

X' (uy + uy) = dy + d, X' (uy — uy) = dy — dj. (14.6)

O=F, F,
(a) 6, = n — 6,, na elipse (b) 6, = 6, na hipérbole

Fig. 14.4. Demonstragdo das propriedades de reflexao para a elipse e hipeérbole.

Na elipse d, + d, ¢ constante, pelo que d; + d; = 0. Sobre cada ramo da hipérbole d, — d, €
constante, pelo que d; — d; = 0. Deste modo, as equagoes (14.6) dao-nos

X' (uy + u) =0 na elipse, X' (u, —u,) =0  na hipérbole.

Seja T= X'/] X'|éum vector unitdrio tendo a mesma dire¢do e sentido que X'. Entdo T
¢ tangente a conica, € tem-se

T-uy=—T-u,  na elipse, T uy=T-u na hipérbole.

Se 0, ¢ 0, representam, respectivamente, os angulos que 7 faz com u, e u,, com0< 6, <
<ne0= 0, <, estas duas ultimas igualdades mostram que

cos 1, = —cos 0, na elipse, cos 0, = cos 0, na hipérbole.

Daqui se conclui que 6, = n — 6, na elipse e 6, = 6,, na hipérbole. Estas relagoes entre os
angulos 0, e 6, justificam as propriedades de reflexdo da elipse e da hipérbole ja referidas.

14.6. Aplica¢cbes a0 movimento curvilineo. Vector velocidade, grandeza do vector veloci-
dade e vector aceleragao

Suponhamos uma particula movendo-se no espago bidimensional ou tridimensional, de tal
maneira que a sua posigao no instante ¢, referida a um determinado sistema de coordenadas,
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seja X(7). Quando ¢ varia num certo intervalo de tempo, a trajetoria descrita pela particula ¢
precisamente o grafico da fungao X(7). Quer isto dizer que a fungdo vectorial X serve como
modelo matematico para descrever o movimento. A fungao vectorial X da-se a designagio de
Jungao de posi¢ao do movimento. Conceitos fisicos com o vector velocidade, a velocidade
(grandeza do vector velocidade) e o vector aceleragao podem ser definidos em termos de deri-
vadas da fung¢do de posigao.

Na discussao que se segue supomos que a fungdo de posi¢ao pode derivar-se tantas vezes
quantas as necessarias, sem que seja preciso afirma-lo expressamente de cada vez.

DEFINICAO. Considere-se um movimento definido por uma fung¢do vectorial X. A derivada
X' (1) define o vector velocidade no instante t. A norma desse vector, || X'(t)|| dé a grandeza da
velocidade. A segunda derivada da fungao de posicao, X''(1), define o vector aceleragdo.

Notagdo. Algumas vezes a fung¢do de posigao X representa-se por r, o vector velocidade
por v, a grandeza da velocidade por v ¢ a aceleragdo por @. Assim, v =r', v=||v|le a=v" =

== P'.

Se o vector velocidade X'(1) se considera ligado ao ponto que se move sobre a curva em
X(1), vé-se que ele tem a diregao da tangente a curva. A palavra velocidade, como norma do
vector velocidade, da o coeficiente de variacao do comprimento do arco medido sobre a
curva com o tempo. Quer dizer, a grandeza do vector velocidade diz-nos da rapidez com que
a particula esta a mover-se em cada instante e a sua dire¢dao e sentido dizem-nos para onde a
particula se move nesses mesmos instantes. O vector velocidade variara se modificarmos quer
a sua diregao quer a sua grandeza (velocidade) ou ambos. O vector aceleragao da uma
medida desta variagao. A aceleragao esta relacionada com o efeito que experimenta nos
quando um automovel muda de velocidade ou de dire¢ao. Contrariamente ao vector veloci-
dade, o vector aceleragdo ndo tem necessariamente a dire¢dao da tangente a curva X(7).

EXEMPLO 1. Movimento rectilineo. Consideremos 0 movimento em que O Vector posicio-
nal ¢ dado por

r(it) =P+ fin)4,

com P ¢ A vectores constantes ¢ 4 3= 0. Este movimento tem lugar ao longo de uma reta
passando por P e paralela a A. O vector velocidade, sua grandeza,e o vector aceleragao sao
dados por

() =f(0A4, o)= o) = Ol Al, alt)=f()A.
Se f'(t) e f (1) sdo diferentes de zero, entio os vectores aceleragio e velocidade sdo paralelos.

EXeEmPLO 2. Movimento circular. Se um ponto (x, y) em V, ¢ representado pelas suas
coordenadas polares r e 6, tem-se

x=rcosf, "=rserl(l.
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Fixado r, por exemplo r = a, e podendo 6 tomar todos os valores num intervalo de amplitude,
pelo menos, 2 7, o ponto de coordenada (x, y) descreve uma circunferéncia de centro na ori-
gem e raio a. Se 6 se considera uma fungao de ¢, & = f{1), tem-se um movimento definido pela
fungdo vectorial de posigao

r(t) = acos [(1)i + asenf(1)j .
O correspondente vector velocidade €
v(t) = r'(t) = —af'(r)senfl1)i + af (1) cos f(1)],
donde se pode obter a grandeza da velocidade, no ipstante ¢, definida por

o(t) = () = alf'(1)].

O fator |f11)|=|d6/dt| ¢ a chamada velocidade angular da particula.

Um caso de interesse corresponde a hipotese de 6 = wf, com » uma constante positiva.
Neste caso a particula parte do ponto (a, 0) no instante 1 = 0 e move-se no sentido positivo
(contrario ao do movimento dos ponteiros do relogio) ao longo da circunferéncia com veloci-
dade angular constante w. As formulas que definem o vector posicional, o vector velocidade,
a grandeza deste, e 0 vector aceleragao sao, respetivamente,

r(1) =acoswti+ asenwt j, (1) = —wasenwii + wacos wl j, v(t) = aw .
a(t) = —w*acos wti — w*asenwt j = —w*r(1),

mostrando a ultima formula que o vector aceleragao ¢ paralelo ao vector posicional, mas de
sentido contrario. Quando se faz a representagao geometrica deste vector para uma dada
posi¢dao da particula, ele fica dirigido desta para o centro da circunferéncia que a particula
descreve. Por esta razao se designa por aceleragdo centripeta.

Nota: Se uma particula em movimento tem massa m, a segunda lei de Newton estabelece
que a forga que atua sobre ela é o vector ma(t), produto da massa pela aceleragao. Se a
particula se move sobre uma circunferéncia com velocidade angular constante, aquela forga
diz-se centripeta porque esta dirigida para o centro. Esta forga ¢ exercida pelo mecanismo
que obriga a particula a uma trajetoria circular. O mecanismo ¢ a corda no caso da pedra
girando numa funda ou a atragde da gravidade no caso de um satélite a volta da Terra. A
reagao, igual e oposta (devido a terceira lei de Newton), isto €, a for¢a —ma(1), diz-se a forga
centrifuga.

EXEMPLO 3. Movimento sobre uma elipse. A figura 14.5 representa uma elipse de equagao

2 2

— -

cartesiana 7 + ~b7 = 1, e duas circunferéncias concéntricas de raios a e b. O angulo 6 cha-

ma-se o dngulo excéntrico. Esta relacionado com as coordenadas (x, y) dum ponto da elipse
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pelas formulas

x=acosf, y = hsenfl.
Quando 6 varia num intervalo de amplitude 27, o ponto correspondente (x, y) percorre a
elipse. Se considerarmos 6 como fungao de ¢, 6 = f{1), temos um movimento definido pela
fungao vectorial de posi¢ao

r(t) = acos fit)i + bsenf(1)j.

Se 6 = wt, com w uma constante positiva, o vector velocidade, a sua grandeza e o vector ace-
leragao sao dados respetivamente por

o(t) = o(—asenwti + beos wtj),  v(t) = w(a*sen* wt + b* cos* wr)'’?,

a(t) = —w¥acos wti + bsenwt j) = —wr(t).

©.5) (x.»)

9 (a,O)

Fig. 14.5. Movimento sobre uma elipse Fig. 14.6. Movimento sobre uma hélice cilindrica.

Assim, quando a particula se move sobre a elipse de tal maneira que o angulo excéntrico seja
uma fungdo linear do tempo, a aceleragdo € centripeta.

EXEMPLO 4. Movimento sobre uma hélice. Se um ponto (x, y, z) gira em torno do eixo0#
a uma distancia constante a daquele e simultaneamente se move paralelamente ao eixo de
maneira que a sua cota z varia proporcionalmente ao angulo de que roda em torno daquele, a



610 Calculo

trajetoria resultante chama-se uma hélice cilindrica. Na figura 14.6 apresenta-se um exem-
plo. Se 0 representa o angulo de revolugao, tem-se

x=uacosf, y = asenf, z = b0, (14.7)

onde a > 0,¢ b # 0. Quando 0 varia de 0 a 2 7, as coordenadas x ¢ v voltam a assumir os
valores iniciais enquanto = varia de 0 a 27h. O numero 27b designa-se habitualmente por
passo da hélice,

Suponhamos agora que 6 = wt, com « constante. O movimento sobre a hélice € entao des-
crito pelo vector posicional

r(t) = acos wti 4 asenwt j + bwtk .
Os vectores velocidade e aceleragao sao dados por
v(t) = —wasenmti + wa cos wt j + bok , a(t) = —w*(acos wti + asenwtj).

Entido. quando o vector aceleragiio esta aplicado na particula em movimento, ele mantém-
-se paralelo ao plano XOY dirigido para o eixoOZ.

Se eliminarmos 6 entre as duas primeiras equagoes (14.7), obtemos a equagao cartesiana
x* + y? = a?, que reconhecemos como sendo a equagdao duma circunferéncia no planoXOY
e centro na origem. No espago tridimensional, porém, esta equagao representa uma superfi-
cie. Um ponto (x, y, z) satisfaz a equagao se,e soO se,a sua distancia a0Z for a. O conjunto de
todos esses pontos ¢ um cilindro circular de raio a e com o eixo coincidente comOZ. A hélice
desenvolve-se ao longo desse cilindro.

14.7. Exercicios

Em cada um dos Exercicios 1 a 6, r(1) representa o vector posicional, no instante ¢, refe-
rente a uma particula movendo-se numa curva do espago. Em cada exemplo, determinar os
vectores velocidade o(r) e aceleragiio a(r) em fungiio de i, J, k; calcular ainda »(r).

1
r() =Bt =i +35 + Gt +tHk, 4. r(t) =(rt —sen )i + (1 —cost)j + 4sen;k.
r(t) = costi +sentj+ e'k. 5. r(r) = 3¢% + 2% + 3k, -
r(r) = 3tcosti + 3tsentj + 4rk. 6. r(t) =ti +senrj+ (1 — cos k.

--...|w_ra.—-

Considerar a hélice cilindrica definida pela equagiio vectorial rif)=a cos wti + a
sen wij + bwitk, com @ uma constante positiva. Provar que a tangente a curva faz um
angulo constante com OZ ¢ que o cosseno deste dngulo € b/y/a* + b°.

8. Ainda referente a hélice do Exercicio 7, provar que os vectores velocidade » e acele-
raglo a tem comprimento constante, ¢ que

v X al a
lol* a* + b*’

9. Ainda referente ao Exercicio 7, represente aff) 0 vector unitario aff) = sen wii — cos wlj.
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Provar que existem duas constantes A ¢ B tais que v X @ = Au(t) + Bk,e exprimir A ¢ B
em fungdo de a, b, e w.

10. Provar que para qualquer movimento o produto escalar dos vecotores velocidade e acele-
ra¢ao vale metade da derivada do quadrado da velocidade:

| d

v(r) -alr) = 3 c_f-:f v (1) .

11. Seja ¢ um vector unitario constante. Uma particula move-se no espago de tal modo que
0 seu vector possicional r(7) verifica a equagao r(1) - ¢ = & para todo / e o seu vector ve-

: . n
locidade v(7) faz um angulo constante / com ¢, sendo 0 < 6 < -

(a) Provar que ||»(2)|, num instante 1, & 2¢?/cosf.
(b) Exprimir o produto escalar a(?) . ¢(2) em fungao de ¢ e 0.

12. A identidade ch’¥ — sh? = 1 para fung¢des hiperbolicas sugere que a hiperbole
x?/a* — y*/ b* = | pode representar-se pelas equagoes parameétricas x=ach 6 , y = b sh
6 ou,0 que ¢ a mesma coisa, pela equagao vectorial r = ach 6i + bsh 6 j. Quandoa = b
= 1, ao parametro 0 pode ser dada uma interpreta¢io geométricaanaloga adadaa 6,senf
e cos 6 no circulo de raio unidade, desenhado na figura 14.7(a). Afigural4.7(b) repre-
senta um ramo da hiperbole x* — y* = 1. Se o ponto P tem coordenadas x =chf ey =
=sh 0, provar que 6 ¢ igual a duas vezes a area do setor AOP sombreado na figura.

[ Sugestdo: Represente A() a area do setor OAP. Mostrar que

et
A(0) = Lchbshb —lll)\-"x2 — ldx.

1

-

Derivar para obter 4'(f) =

¥
'\ _ A
P(cos 0. sen )

P(ch 6. sh 0)
f) = 2 vezes a area do
setor AOP

—_— 1'

6 = 2 vezes a area do
setor AOP
- X

(a) Circulo x* + »* = I, (b) Hiperbole x* — 17 = 1.

Fig. 14.7. Analogia entre o parametro para o circulo e o correspondente para a hiperbole.
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13. Uma particula move-se ao longo de uma hipérbole, segundo a equagio r(1)= a chwti +
+ b shwtj, com @ constante. Provar que a aceleragio ¢ centrifuga.

14. Provar que a tangente a4 uma parabola num ponto X bisseta o angulo entre a reta que
une X com o foco e a que, passando por X, ¢ paralela ao eixo. Isto constitui a proprie-
dade de reflexdao na parabola (Ver figura 14.3).

15. Uma particula de massa 1 move-se num plano segundo a equagao r(f)= x(1)i+(t)j. Ela
¢ atraida para a origem por uma for¢a cuja grandeza ¢ quatro vezes a distancia da paru-
cula & origem. No instante r = 0, a posi¢io inicial, ¢r(0) = 4i e o vector velocidade ini-
cial € 2(0) = 6.

(a) Determinar as componentes x(7) e y{t) explicitamente em fungao de .
(b) A trajetoria da particula ¢ uma conica. Determinar a equagao cartesiana desta co-
nica, desenha-la e indicar o sentido do movimento ao longo da curva.

16. Uma particula move-se ao longo duma parabola x* + ¢y — x) = 0 de tal maneira que
as componentes segundo OX eQY do vector aceleragao sao iguais. Se sao necessarias T
unidades de tempo para ir de (¢, 0) a (0, 0) que tempo sera necessario para ir de (¢, 0) a
(c/2, c/4)?

17. Supondo que a curva C ¢ descrita por duas fungoes equivalentes X e Y, com
Y(1) = X|u(1)], provar que em cada ponto de C os vectores velocidade associados com X
e Y sdo paralelos, mas que os correspondentes vectores aceleragao nao sao necessaria-
mente paralelos.

14.8. O vector tangente unitaria, o vector normal principal e o plano osculador a uma curva

No caso do movimento retilineo o vector aceleragao ¢ paralelo ao vector velocidade. No
caso do movimento circular, com velocidade angular constante, o vector aceleragao € perpen-
dicular ao vector velocidade. Vamos estudar, nesta se¢ao, que num movimento qualquer o
vector aceleragao ¢ a soma de dois vectores perpendiculares entre si, um paralelo ao vector
velocidade, e outro perpendicular a esse mesmo vector. Se 0 movimento € nao retilineo, estes
dois vectores definem um plano que passa pelo ponto correspondente da curva e que se
chama plano osculador.

Para estudarmos estes conceitos, introduzimos o vector tangente unitaria T. Esta € outra
fungao vectorial associada a curva e definida por

, X'(1)
T(t) =
( X))

sempre que a velocidade | X 7t)f # 0. Observe-se que || 7{1)j = | par: *odo o 1.

A fig. 14.8 mostra a posi¢do do vector tangente unitiria 7(7) ao longo da curva, para di-
ferentes valores de . Quando a particula se move ao longo da curva, o correspondente
vector 7, tendo comprimento constante, pode variar unicamente na sua dire¢io. O modo
de variagdio de 7 ¢ medido pela sua derivada 7. Visto que 7 tem grandeza constante, o
Teorema 14.2 diz-nos que T ¢ perpendicular a sua derivada 7,

Se 0 movimento for retilineo, entio 7 =0. Se T # 0, 0 vector unitiario com a mesma
dire¢do ¢ sentido de T chama-se o vector normal principal a curva e representa-se por N.
Quer dizer, N ¢ uma nova fung¢io vectorial associada a curva e definida por
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a(t) = o'()T(t) + o(t) | T'() || N(1). (14.9)
Demonstragdo. A formula que define o vector tangente unitario da-nos

v(1) = v(1)T(1).

Derivando encontra-se
a(t) = v'(NT(t) + o()T'(1),

Que demonstra (14.8). Para demonstrar (14.9) basta utilizar a defini¢io de N escrevendo
T(t)=IT(t)IN(1).

Este teorema mostra que o vector aceleragao esta sempre no plano osculador. Na figura
4.10 apresenta-se um exemplo. Os coeficientes de 7(¢) e N(?) em (14.9) chamam-se respeti-
vamente componentes tangencial e normal da aceleragao. Uma variagao na grandeza da velo-
cidade contribui para a variagao da componente tangencial da aceleragao, enquanto que uma
variagao na dire¢ao do vector velocidade contribui para uma variagao da componente nor-

mal da aceleragao.
No caso da trajetoria ser plana, o comprimento de T () € susceptivel duma interpre-
tagdo geométrica interessante. E isto 7 ser um vector unitario, podemos escrever

T(t) = cos a(t)i + sena(t)j,

{ a'(t) < 0
u(t) = — N(1)

Uo)

a(r) decrescente
a'(t)y > 0
u(t) = N(1)

N(1)

T(t) = cos a(f)i + sen a(1)j

ﬁ

a(r) crescente
-y - X

plano osculador

X

Fig. 14.10. O vector aceleragdao esta Fig. 4.11. O angulo de inclinagao do vector tan-
situado no plano osculador gente a uma curva plana.

onde a(t) representa o angulo do vector tangente com o semi-eixo positivo OX, como se indi-
ca na fig. 14.11. Derivando, encontramos 7 (t)= —sen aft) a'(t)i+ cosa(t) a’(t)j=
= a’(t)u(t) ondeu(t) € um vector unitario. Portanto | 7(t)| =|a’(t)| o que provaser|| T (1)
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duas ou trés dimensoes, definida pelo vector posicional r, e consideramos a parte da curva
definida por r(1) quando 7 varia num intervalo | @, »]. Em principio, apenas admitimos que r ¢
continua no intervalo [a, b]. Mais adiante imporemos outras restrigoes.

Consideremos agora qualquer parti¢do P do intervalo [a, b| por exemplo

P={ty,t;,...,1,}, onde a=t<n< " "<t,=b.

Representemos por n(P) o contorno poligonal cujos vértices sao r(t,), r(t,), ..., r(1,), respe-

tivamente. (Na fig. 14.14 esta representado um exemplo com n = 6). Os lados do contorno
poligonal tem comprimentos

lr(ty) = r(to)ll, Ir()) — r(2) 1), . . -, lir(e,) — K1, 1)l

Portanto, o comprimento de n(P), que representamos por |n(P)| é a soma
|7(P)] = 2 lIr(t) — r(ti)ll -
k=1

DEFINIGAO. Se existir um mimero positivo M tal que
|m(P)| < M (14.10)

para todas as partigoes P de (a, b), entdo a curva diz-se retificavel e o seu comprimento,
representado por A(a,b), define-se como o supremo do conjunto dos mimeros |n(P). Se nao
existir tal M, a curva diz-se nao retificavel.

Observe-se que, se existe um M que satisfaga a (14.10) para cada particio P, tem-se

.4
-

A r(t,)

r(;)

r(1,) r(h)

Fig. 14.14. Uma partigao de [a, b]em seis subintervalos e a correspondente linha poligonal
inscrita.
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#(P)| < Aa, b) < M, (14.11)

uma vez que o supremo nao pode exceder nenhum limite superior.

E facil provar que uma curva é retificavel sempre que o seu vector velocidade v é continuo
no intervalo [a, b].Com efeito o teorema seguinte diz-nos que neste caso podemos usar o
integral da velocidade com um limite superior de todos os nimeros |n(P)|

TeEOREMA 14.10. Se¢ja v(t) o vector velocidade da curva com vector posicional r(t) e
e(t) = |lo(t)|| a respectiva grandeza. Se v é continua em | a, b), a curva é retificavel e o seu
comprimento A(a, b) satisfaz a desigualdade

" u(1) dt. (14.12)

a

A(a, b) <

Demonstragao. Para cada partigdo P de |a, ] vem

ty
f r'(t) dt \
1y

n k b
< kzl le(n)|| dt = f o(1) dt,

= fk-1

m(P)] =3 Ir(t) — r(te )l = 3
k=1 k=1
177
f (1) dt
fk~1

sendo a desigualdade uma consequéncia do Teorema 14.8. Isto mostra que | n (P) | < j': v(1)dt

para todas as partigoes P e por conseguinte 0 numero fg v(t)dt € um limite superior do con-

junto de todos os nimeros |n (P)|. Isto prova que a curva é retificavel e, a0 mesmo tempo.
diz-nos que o comprimento A(a, b) ndao pode exceder o integral da velocidade.

Mais adiante provaremos que a desigualdade (14.12) e, com efeito, uma igualdade. A
demonstragao deste fato exigira a aplicagdao da aditividade do comprimento da curva, pro-
priedade que vamos passar a estudar.

14.11. Aditividade do comprimento do arco.

Se uma curva retificavel se divide em duas partes, o comprimento de toda a curva é a
soma dos comprimentos das duas partes. Este € outro exemplo das proposigoes “intuitiva-
mente evidentes” e cuja demonstragao nao € de modo algum trivial. Esta propriedade chama-
se da aditividade do comprimento do arco e pode ser expressa analiticamente do modo
seguinte:

TEOREMA 14.11. Considere-se uma curva retificavel de comprimento A(a, b) descrita
pelo vector r(t) quando t varia no intervalo la, bl. Se a < ¢ < b, sejam C, e C, as curvas des-
critas por r(t) quando t varia nos intervalos |a, c| e |c, bl, respetivamente. Entao C, e C,
também sdo retificaveis e se A(a, c) e A(c, b) representam os seus respetivos comprimentos,
tem-se
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primento de arco s, definida do modo seguinte:
s(t) = Ala, 1) se t > a, s(a) = 0.
A condigao s(a) = 0 significa muito simplesmente que estamos a admitir que 0 movimento se
inicia quando ¢ = a.

O teorema da aditividade permite-nos estabelecer algumas propriedades importantes para
s. Por exemplo, temos 0 seguinte:

TEOREMA 14.12. Para qualquer curva retificavel, a fungdo comprimento de arco s é
monotona crescente em |a, bl, isto é, tem-se

s() <s(t;) se a<t, <1, <b. (14.15)
Demonstragdo. Se a < t, < t; < b, tem-se
s(ts) — s(t) = Na, t,) — Aa, 1) = A1, 1),

onde a ultima igualdade resulta da aditividade. Visto que A(f,,f,) 2 0, fica demonstrada
(14.15).

Em continuagao vamos provar que a fungdo s admite derivada em cada ponto interior do
intervalo em que se define e que essa derivada ¢ igual a grandeza da velocidade da particula.

TEOREMA 14.13. Seja s a fungao comprimento de arco associada com determinada curva
e represente v(t) a grandeza da velocidade no instante t. Se v é continua em | a, b), entdo a
derivada s5'(1) existe para cada t em (a, b) e é dada pela formula

s'(1) = v(1). (14.16)

Demonstragdo. Definamos f(1) = J'; v(u)du. Sabemos que /(1) = v(t), devido ao primeiro
teorema fundamental do calculo. Pretendemos provar que s'(z) = ¢(2). Com este objetivo
formamos a razao incremental

r(t + h) — r(1)

p . (14.17)

Suponhamos em primeiro lugar que 2 > 0. O segmento unindo r(z) e ¥(r + h) pode considerar-
se como uma poligonal que aproxima o arco que une esses pontos. Portanto, em virtude de
(14.11), temos

et 4+ h) = r(@)|| < At 1+ h) = s(t + h) — s(1).

Aplicando este resultado em (14.17),conjuntamente com a desigualdade (14.12) do teorema
14.10, temos

APOSTOL — 21



622 Calculo

r(t + h) — r(1)
h

SUER =) Ly, SCED=f©)

h h ot h

Um raciocinio analogo permite concluir que estas desigualdades sao ainda validas para
h < 0. Se fizermos h — 0, a razdo incremental mais a esquerda tende para||r'(1)|| =v(?) e ada
direita tende para f /1) = ¢(1). Daqui resulta que a razdo incremental intermédia também tende
para v(t). Mas isto significa que s'(7) existe ¢ € igual a v(7), como tinhamos afirmado.

O Teorema 14.13 esta de acordo com a nossa nogao intuitiva de velocidade como sendo a
distancia percorrida na unidade de tempo, durante 0 movimento.

Usando (14.16, conjuntamente com o segundo teorema fundamental do calculo, podemos
calcular a medida do comprimento do arco por integragao da grandeza da velocidade. Conse-
quentemente a distancia percorrida pela particula durante o intervalo de tempo [¢,, ,] €

3 s
s(ts) — s(ty) =_|“s'(:) dt =.|“r(t) dt.

Em particular, quando ¢, = a e 7, = b, obtemos o seguinte integral para o comprimento do
arco

b
A(a, b) =-|.: o(t) dt .

ExempLO 1. Comprimento dum arco de circunferéncia. Para calcular o comprimentodum
arco de circunferéncia de raio a, podemos imaginar uma particula movendo-se ao longo
da circunferéncia de acordo com a equagao r(?) = a cos i + a sen tj. O vector velocidade é
v(t) = —a sen li + a cos [j € a sua grandeza r(?) = a. Integrando a velocidade v(7) num inter-
valo de amplitude f, encontramos que o arco percorrido € af), quer dizer o comprimento do
arco da circunferéncia € proporcional ao angulo que subtende; a constante de proporcionali-
dade ¢ o raio do circulo. Para uma circunferéncia de raio unidade temos @ = 1 € o compri-
mento do arco vale exatamente o correspondente angulo ao centro.

ExempLo 2. Comprimento do grafico duma fungdo real. O grafico duma fungao real f
definida num intervalo | a, b| pede ser tratado como uma curva cujo vector posicional r(z) &
dado por

r(t) = ti + f(1)j .
O correspondente vector velocidade € v(1) = i + f(1)j e a sua grandeza -
o(t) = o)l = V1 + [f(D)].

Deste modo o comprimento do grafico de f correspondente ao intervalo [a, x| ¢ dado por
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s(x) = L"u(:) dt = J::Vl + [f'(D) dt . (14.18)

14.13. Exercicios

Nos Exercicios 1 a 9 determinar o comprimento do arco de trajectoria descrita por uma
particula movendo-se sobre uma curva definida pelo vector posicional dado e durante o inter-
valo de tempo referido.

1.
.r(t) =e'costi + e sentj, 0Lt L2
. r(t) = alcost + tsent)i 4+ a(sent — 1 cos t)j, 0<tr<2n, a>0.

11.

12

13.

14.

15.

16.

17.

r(r) = a(l — cos 1)i + a(t — sent)j, 0<t<2n, a>0,

2 2

c c '
r(r) =;cos“r:’+3scn3:j, 0<t<2n, *=a*"—-0b, 0<b<a.

r(r) = a(sht — )i + a(cht — 1)j, 0<t<T, a>0.

r(1) =senti +tj+ (1 —cost)k (0 <1 < 2n).

r(r) = 1i + 3% + 6% 0 <1 <2).

r(1) =ti+log(sect)j + log(sect + tg Nk 0Lt £ in).

r(t) = acos wti + asenwt j + bwk (ty <t <1y

Calcular um integral semelhante ao de (14.18) para o comprimento do grafico duma
equagdo de forma x = g(y), admitindo g derivada continua no intervalo [c, d].
Uma curva tem a equagao y? = x3. Determinar o comprimento do arco unindo (1, —1) a
(1, 1).

Dois pontos 4 e B sobre uma circunferéncia de raio unidade e centro O definem o setor
circular AOB. Provar que 0 arco AB tem um comprimento igual a duas vezes a area do

setor. . 5
Estabelecer integrais para os comprimentos das curvas cujas equagoes sao: (a) y = e,

O0<x<l;(b)x=t+logt,y=1t—logt, 1< t< e Mostrar que o segundo comprimento
€ /2 vezes O primeiro.

(a) Estabelecer o integral que da o comprimento da curva y = cch(x/c)de x =0e
x=a(a>0,c>0).

(b) Mostrar que ¢ vezes o comprimento desta curva € igual a area da regiao limitada por
y=cch(x/c), oeixoOX,oeixoOYearetax=aq.

(c) Calcular este integral e determinar o comprimento da curva quando a = 2.
Provar que o comprimento da curva y = chx entre os pontos (0, 1) e (x,ch x) € sh xse
x> 0.

Uma fun¢ao nao negativa f goza da propriedade de o conjunto de ordenadas relativa a
um intervalo arbitrario ter uma area proporcional ao comprimento do arco do grafico
referente a0 mesmo intervalo. Determinar f.

Utilizando a equagao vectorial () = a sen ti + b cos tj, onde 0 < b < a, mostrar que o
perimetro L duma elipse é dada pela formula

L =4a| VT = SFsentrar,

.0

com e =/ a® — b* / a. (O numero e representa a excentricidade da elipse). Este € um
caso particular dum integral da forma
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18.

19.

20.

21.

22.

Célculo

(#/2

Ek) = . V1 — k®sen®t dt,

chamado integral eliptico de segunda espécie, em que 0 £ k < 1. Os valores E(k) estdo
tabulados para diferentes valores de 4.

t
2
primento do arco de trajetoria descrito desde r =0 até 1 = 2n € 8 g E(k), onde E(k)
tem o significado apresentado no Exercicio 17 e k? = | —(b/da)*.

Uma particula move-se segundo a lei vectorial do movimento

Se0< b< 4a,sejar(t)=alt—sent)i+ a(l —cost)j+ bsen ——rtk. Provar que o com-

() =tA +*B +2(31®** 4 x B,

onde A e B sao dois vectores unitarios fixos que formam entre si um angulo de n/3
radianos. Calcular a velocidad da particula no instante ¢ ¢ determinar o tempo necessario
para que percorra um arco com 12 unidades de comprimento, a partir da posigao inicial
r(0).

(a) Quando um circulo rola (sem escorregar) ao longo duma reta, um ponto da sua cir-
cunferéncia descreve uma curva chamada cicloide. Se a reta fixa for o eixo OX e se o
ponto escolhido (x, y) estiver inicialmente na origem, provar que quando o circulo rola
do angulo 6 se tem

x = a(f — senb) , y =a(l —cos0),

sendo a o raio do circulo. Estas sao as equagoes parametricas do cicloide.

(b) Referindo-se a alinea (a), mostrar que dy/dx = cotg % e provar que a tangente ao

_ . 1 . .
cicloide no ponto (x, y) faz um angulo > (n — @) com o eixo OX. Tragar o grafico e pro-

var que a tangente passa pelo ponto mais alto do circulo.

Seja C uma curva descrita por duas fungoes equivalentes X e Y, onde Y(1) = X |u(1))
para ¢ < ¢ < d. Se a fungao u, que define a mudanga de parametro, admite derivada
continua em [¢, d] provar que

Fuld)

X)) du = |-'f Y ()l de,

Jule)

e demonstrar que o comprimento do arco C ¢ invariante sob uma tal mudanga de para-
metro.
Considerar uma curva plana cuja equagao vectorial é r(z) = ti + f(1)j, onde

f(r)=!cos(%) se +#0, f(0) =0.

Considerar a seguinte partigao do intervalo [0, I]:
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1.

Mostrar que o correspondente poligono inscrito n(P) tem perimetro

[ 1 1

['5—;!'2”—]“”'

P =

| —
-
bad | e

1 1 1
|=(P)] > 1 + 3 +'i+"'+,,—"

¢ demonstrar que a curva nao é retificavel.
14.14. Curvatura duma curva

No caso da reta o vector tangente unitaria 7 ndo muda de dire¢do quando se desloca
sobre a reta e portanto 7' =0. No caso de uma curva qualquer, a derivada 7" da contada
mudanga de diregdo da tangente a curva. O coeficiente de variagao da tangente unitaria em
relagao ao comprimento do arco chama-se o vector curvatura da curva. Representa-se por
dT/ds, em que s representa o comprimento do arco. A regra da derivada da fungao com-
posta, aplicada em conjungao com a formula s'(2) = ¢(t), permitem relacionar o vector curva-
tura d7/ds com a derivada 7 em relagdao “ao tempo” pela igualdade

dT  dtdT 1 .. 1 .,
Uma vez que T'(1) = ||T'(1)|| N(1), obtemos
dar  ||[T'(1)ll
L LR UL Y .
ds v(t) (0 (14.19)

que poe em evidéncia que o vector curvatura tem a mesma dire¢ao e sentido que a normal
principal N(7). O fator escalar, que multiplica N(2) em (14.19), € um nimero nao negativo
chamado a curvatura da curva em 1 e representa-se por (7). Temos pois que a curvatura
«k(t), definida como a norma do vector curvatura, ¢ dada pela formula seguinte:

seguinte:

1Tl

k(l) = —
v(t)

(14.20)

ExempLO 1. Curvatura duma circunferéncia. Para a circunferéncia de raio a, dada por
r(t)=a cos ti+a sen j, tem-se o(f)= —a senti+a costj, v(t)=a, T(1)=
= —sen ti + cos fj e T'(t)= —cos ti — sen tj. Daquiresulta] T(z)] = 1, pelo que k(1) = l/a.
Quer isto dizer que numa circunferéncia tem curvatura constante. O inverso da curvatura
define o raio da circunferéncia.

Quando x(t)+ 0, o seu inverso define o raio de curvatura e representa-se porp(t) A circun-
feréncia situada no plano osculador com raiop(t)e centro na extremidade do vector curvatura
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Tomando a norma de cada membro de (14.23) e tendo presente que
INXT|=|N||T|senim =1,
obtemos ||la x v|| = kv?, o que demonstra (14.22).

Na pratica € consideravelmente mais facil calcular os vectores v e a (por derivagdo da
equagao vectorial da curva); em consequéncia a equagao (14.22) pode considerar-se como
um meio de calcular a curvatura. Este método ¢ habitualmente mais simples do que a deter-
minagao da curvatura pela definigao.

Para uma reta tem-sea X v=0, pelo que a curvatura € constantemente nula. Uma curva,
com uma pequena curvatura num ponto, tem nesse ponto um grande raio de curvatura e na
sua vizinhanga difere pouco duma reta. Isto permite interpretar a curvatura como medindo
a tendéncia para uma curva se desviar da forma retilinea.

14.15. Exercicios

1. Considerar as curvas definidas nos Exercicios 1 a 6 da se¢ao 14.9 e para cada uma
delas calcular a curvatura «(?), para o valor indicado de t.

2. Uma heélice cilindrica tem por equagao vectorial r(z) = a cos wti + asen wzj + botk.
Provar que a sua curvatura « € constante, e igual a a/(a* + b?).

3. Dois vectores unitarios constantes 4 ¢ B fazem entre si um angulo 6, com 0 < 6 < .
Uma particula move-se sobre uma curva no espago de tal maneira que o seu vector posi-
cional r(?) e velocidade v(2) estdo relacionados pela férmula v(?) = A4 x r(1). Se r(0) = B,
provar que a curva tem curvatura constante e determinar essa curvatura em fungao de f.

4. Um ponto move-se no espago segundo a equagao vectorial

r(t) =4costi +4sentj +4costk.

(a) Provar que a trajetoria € uma elipse e achar a equagao do plano que contém essa
elipse.
(b) Provar que o raio de curvatura € p(2) = 2\/5(1 + sen?t)’2,

5. Para a curva cuja equagdo vectorial é r(z) = e'i + ¢ ' j + \/2tk, mostrar que a curva-
tura é k(1) =\/2/(e" + ™)

6. (a) Para uma curva plana definida pela equagao r(?) = x(1)i + y(1)j, mostrar que a cur-
vatura ¢ dada pela formula

[x(0)y" (1) — y'(0)x"(1)|

“O=TOF + Y ORE

(b) Se uma curva plana tem a equagao cartesiana y = f{’x), mostrar que a curvatura no
ponto (x, flx)) &
0l
{1 + [P
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r=Xxi+yj

Fig. 14.15. Coordenadas polares Fig. 14.16. Os vectores unitarios u eu,.

E conveniente introduzir também um vector unitario u,, perpendicular a ¥ , definido do modo
seguinte:

u & senfl i 4 0j
= = — i+ coslj.
! dfl J
Observe-se que

dug . .

— = —cosfi—senfllj= —u,.

db

No estudo de curvas planas, os dois vectores unitarios u_e u, desempenham, para as coorde-
nadas polares, 0 mesmo papel que i e j para as coordenadas retangulares. A figura 14.16
mostra os vectores unitarios u_e u, ligados a curva, em alguns dos seus pontos.

Suponhamos agora que as coordenadas polares r e 0 sao fungoes de ¢, por exemplo r = f{(1)
e 0 = g(1). Vamos deduzir formulas para expressar os vectores velocidade e aceleragao em
termos de u_e u,. Para o vector posicional temos

r=ru, = f(tu,.

Visto que § depende do parametro ¢, 0 mesmo acontece com O vector unitario u, e deve ter-se
esse fato em consideragao quando se calcula o vector velocidade. Assim tem-se

Utilizando a regra da derivagao da fungao composta, podemos exprimir du, /dr em fungao de
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orbita

planeta

Sol

Fig. 14.19. O vector posicional do planeta relativamente ao Sol.

sendo a o vector aceleragao do planeta considerado. Seja r o vector posicional do planeta em
relagdo ao Sol (fig. 14.19), sejem r = ||r|| ¢ u, 0 vector unitario com a diregao e sentido de r,
de modo que r = ru,, A lei da atragao universal estabelece que

F=—G£%du,,
r

com G uma constante. Combinando-a com (14.28), obtemos

__GM
P

(14.29)

a qual nos diz que a aceleragao € central. Demonstraremos a seguir que a orbita € uma curva
plana. Uma vez sabido isto, resulta imediatamente, devido a segao 14.17, que o vector posi-
cional descreve areas proporcionalmente ao tempo.

Para demonstrar que a trajetoria € plana servimo-nos do fato de r e a serem paralelos.
Considerando o vector velocidade temos

dv dv _ dr d .
r><a=r><E+vxv—rxa+mxv=a(rxv).

Visto ser r x @ = O, resulta que r X v € um vector constante, por exemplo r x v = ¢.

Se ¢ = 0, o vector posicional r e paralelo ao vector velocidade e o movimento é retilineo.
Uma vez que a orbita do planeta nao é retilinea, entao devera ser ¢ # 0. Da igualdade
r x v = ¢ resulta que r - ¢ = 0 e portanto o vector posicional esta num plano perpendicular a
¢. Como ja se referiu, a aceleragao é central e r varre areas proporcionais ao tempo, conclu-
sao que prova a segunda lei de Kepler.

E facil provar que a constante de proporcionalidade na descrigao das areas pelo vector r
vale exactamente metade da grandeza do vector ¢. Com efeito, utilizando coordenadas po-
lares e exprimindo a velocidade em fungao de u, e u,, como em (14.25), encontramos
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dr df o dl
c=r X v=_(ru) X ,E""Frﬁ"“):r-d_:"'x"” (14.30)

e por conseguinte ||¢|| =|72d 0/ dt|. Considerando (14.27) isto é igual a 2|4"(2)| onde A°(1) é a
velocidade com que o raio vector varre a area.
A segunda lei de Kepler esta representada na figura 14.20. As duas regioes sombreadas,
que foram varridas pelo raio vector em intervalos de tempo iguais, tem areas iguais.
Demonstraremos a seguir que a orbita € uma elipse. Antes de mais, formemos o produto
vectorial @ x ¢ utilizando (14.29) e (14.30) para encontrarmos

' 7]
axc¢= (—%u,) X (rzgfqu,xue) = —GMj—?u,x(u,Xug)=GMj—[u,.

r

Visto que @ = dv/dt e u, = du /df), a expressao anterior de @ X ¢ pode escrever-se
d d
rr (v X ¢) = E(GM"') .

Integrando, obtém-se
v X ¢c=GMu, + b,
onde b ¢ outro vector constante. Podemos ainda escrever esta igualdade na forma
v X ¢c=GM(u, + e), (14.31)

onde GMe = b. Interessa-nos combinar esta igualdade com (14.30) para eliminar v e obter
uma equagao para r. Com esta finalidade multiplicamos escalarmente ambos os membros de
(14.30) por ¢ e ambos os de (14.31) por r. Igualando as duas expressoes do produto misto
r- v x ¢, chegamos a equagao

GMr(l + ecos ¢) = ¢2, (14.32)

onde e = |le||, ¢ =||¢||, e ¢ representa o angulo entre o vector constante e e o raio vector r.
(Ver figura 14.21). Se fizermos d = ¢*/(GMe) a equagdo (14.32) escreve-se

ed

= — ou = e(d — rco . 14.33
ecos ¢ + 1 r= rcos ¢) ( )

+

Pelo Teorema 13.18, esta ¢ a equagdo polar duma conica de excentricidade e e um foco no
Sol. A figura 14.21 mostra a diretriz tragada perpendicularmente a e ¢ a uma distancia d do
Sol. A distancia do planeta a diretriz € d — r cos ¢, € o quocienter/(d — r cos ¢) € a excentri-
cidade e. A conica é uma elipse se ¢ < 1, uma parabola se e = 1 e uma hipérbole se e > 1.
Visto que os planetas descrevem orbitas fechadas, a orbita sob consideragao deve ser uma
elipse. Isto prova a primeira lei de Kepler.



15
ESPACOS LINEARES

15.1. Introdugao

Ao longo deste livro encontramos muitos exemplos de objetos matematicos que podem
ser adicionados uns aos outros e multiplicados por numeros reais. O primeiro exemplo de tais
objetos sdo os proprios nimeros reais. Qutros exemplos sdao as fungoes reais, 0s numeros
complexos, as séries infinitas, os vectores num espago n-dimensional e as fungdes vectoriais.
Neste capitulo vamos analisar um conceito matematico geral, chamado espago linear, que
inclui todos estes exemplos € muitos outros como casos particulares.

Em resumo, um espago linear € um conjunto de elementos de natureza qualquer no qual se
efectuam certas operagdes (chamadas adipdo e multiplicagio por mimeros). Ao definir-se um
espago linear, ndio € necessario especificar a natureza dos elementos nem dizer como se reali-
zam entre elas as operagoes acabadas de referir. Em vez disso, exige-se que as operagoes
gozem de certas propriedades que se tomam como axiomas do espago linear. Vamos precisa-
mente, em seguida, fazer uma descrigao pormenorizada desses axiomas.

15.2. Definigao de espago linear

Seja ¥ um conjunto ndo vazio de objetos, chamados elementos. O conjunto V¥ chama-se
um espago linear se satisfaz aos dez axiomas que a seguir se enunciam, divididos em trés gru-
poSs.

Axiomas de fecho.

AXIOMA 1. FECHO A RESPEITO DA ADICAO. A todo o par de elementos x e y de V corres-
ponde um unico elemento de V, chamado soma de x e y e representado por x + y.

AXIOMA 2. FECHO A RESPEITO DA MULTIPLICACAO POR NUMEROS REAIS. A fodo o x de V
e todo o numero real a corresponde um elemento de V, chamado o produto de a por x e repre-
sentado por ax.

641
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Axiomas para a adigado.
AXIOMA 3. PROPRIEDADE COMUTATIVA. Para todoo xeydeV, lem-se x + y =y + X.

AXIOMA 4. PROPRIEDADE ASSOCIATIVA. Para todo o x,y ez de V, tem-se x + (y + z) =
(x +y) + z

AXIOMA 5. EXISTENCIA DE ELEMENTO NEUTRO. Existe um elemento em V, representado
pelo simbolo O, tal que

x4+ O = x paratodo x em V.

AXIOMA 6. EXISTENCIA DE SIMETRICOS. Para todo o x de V, o elemento (—1)x tem a
propriedade

x+(=lx=0.

Axiomas para a multiplicag@o por numeros.

AXIOMA 7. PROPRIEDADE ASSOCIATIVA. Para todo o x de V, e todo o par de numeros
reais a e b, tem-se

a(bx) = (ab)x .

AXIOMA 8. PROPRIEDADE DISTRIBUTIVA PARA A ADICAO EM V. Para todo o par x e y de
V e todo o real a, tem-se

alx + y)=ax + ay.

AXIOMA 9. PROPRIEDADE DISTRIBUTIVA PARA A ADICAO DE NUMEROS. Para todo o x em
V e todo o par de reais a e b tem-se

(a + b)x = ax + bx.
AxiomA 10. EXISTENCIA DE ELEMENTO NEUTRO. Para todo x em V, tem-se lx = x.

Os espagos lineares, como foram definidos atras, sdo muitas vezes chamados espagos
lineares reais, para fazer ressaltar o fato de que se multiplicam elementos de V por numeros
reais. Se nos Axiomas 2, 7, 8 e 9 substituimos numero real por numero complexo, a estru-
tura resultante chama-se um espago linear complexo. Por vezes um espago linear chama-se
também espago vectorial linear, ou mais simplesmente espago vectorial; os numeros usados
como multiplicadores chamam-se escalares; um espago linear real admite 0s numeros reais
como escalares, um espaco linear complexo admite os nimeros complexos como escalares.
Embora se considerem aqui fundamentalmente exemplos de espagos vectoriais lineares reais,
todos os teoremas sao verdadeiros igualmente para os espagos vectoriais complexos. Quando
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fazemos uso da expressdao espago linear, sem qualquer designagdao suplementar, deve
subentender-se que o espago pode ser real ou complexo.

15.3. Exemplos de espacos lineares

Se especificamos qual o conjunto V ¢ dizemos como somar 0s seus e¢lementos € como
multiplica-los por numeros, obtemos um exemplo concreto dum espago linear. O leitor pode
facilmente verificar que cada um dos seguintes exemplos satisfaz a todos os axiomas para um
espago linear real.

ExempLO 1. Seja V' =R o conjunto dos nimeros reais e sejam x + y € ax a adi¢gao e mul-
tiplicagao ordinarios de numeros reais.

ExempLO 2. Seja ¥V = C o conjunto dos numeros complexos e seja x + y a adigao ordina-
ria de numeros complexos e ax a multiplicagao de nimeros complexos x pelo numero real a.
Embora os elementos de V' sejam nameros complexos, este € um espago linear real porque os
escalares sao reais.

EXemPLO 3. Seja V' =V , espago vectorial dos sistemas de numeros reais, com a adigao
e a multiplicagdo por escalares definida da maneira usual em fungao das componentes.

ExempLO 4. Seja V o conjunto de todos os vectores em ¥, , ortogonais a um dado vector

nao nulo N. Se n = 2, este espago linear € uma reta que passa por O, admintindo N como
vector normal. Se n = 3, € um plano que passa por O com N como vector normal.

Os exemplos que se seguem dizem-se espagos funcionais. Os elementos de V' sao fungoes
reais, com a adi¢ao de duas fungoes f e g definidas na forma usual:

(f + g)x) = fix) + g(x)

para todo o real x pertencente a intersegao dos dominios de f'e g. A multiplicagio duma
fungao f por um escalar real a define-se do modo seguinte: gf ¢ a fungdo cujo valor para cada
x no dominio de /€ gf{x). O elemento zero é a fungdo cujos valores sao sempre zero. O leitor
verificara com facilidade que cada um dos conjuntos seguintes € um espago funcional.

ExempLO 5. O conjunto de todas as fungoes definidas num dado intervalo.
ExXEmMPLO 6. O conjunto de todos os polinomios.

ExemMpPLO 7. O conjunto de todos os polinomios de grau < n, com n fixo. (Sempre que se
considera este conjunto subentende-se que o polindmio zero esta também incluido). O con-
junto de todos os polinomios de grau igual a n nao é um espago linear porque os axiomas de
fecho nao sao satisfeitos. Por exemplo, a soma de dois polinomios de grau n ndo tera necessa-
riamente grau n.
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ExempLO 8. O conjunto de todas as fungGes continuas num dado intervalo. Se o intervalo
¢ [a, b] representamos este espago linear por C(a, b).

ExempLO 9. O conjunto de todas as fungoes derivaveis num dado ponto.
ExemMpLO 10. O conjunto de todas as fungoes integraveis num dado intervalo.

ExempLO 11. O conjunto de todas as fungoes f definidas no ponto 1, com f(1) = 0. O nu-
mero O ¢ fundamental neste exemplo. Se substituirmos () por um numero ¢ nao nulo, violamos
o axioma de fecho.

ExempLo 12. O conjunto de todas as solugoes duma equagao diferencial linear homoge-
nea y” + ay’' + by = 0, com a e b constantes. Aqui mais uma vez o 0 ¢ essencial. O conjunto
de solugoes duma equagdo diferencial ndo homogénea nao satisfaz aos axiomas de fecho.

Estes exemplos e muitos outros mostram bem quanto o conceito de espago linear esta
estendido a algebra, geometria e analise. Quando se deduz um teorema a partir dos axio-
mas dum espago linear, obtemos um resultado valido para cada exemplo concreto. Uni-
ficando diferentes exemplos, ganhamos desta maneira, um conhecimento mais aprofun-
dado de cada um. Algumas vezes o conhecimento dum exemplo particular ajuda-nos a
antecipar ou interpretar resultados validos para outros exemplos e pde em evidéncia rela-
¢oes que de outro modo poderiam passar despercebidas.

15.4. Consequéncias elementares dos axiomas
Os teoremas que se seguem deduzem-se facilmente dos axiomas para um espacgo linear.

TEOREMA 15.1. UNICIDADE DO ELEMENTO NEUTRO. Em qualquer espago linear existe
um e um so elemento neutro.

Demonstragdo. O axioma 5 diz-nos que existe pelo menos um elemento neutro. Supon-
hamos que existiam dois, por exemplo O, ¢ O,. Tomando x = 0, ¢ O, no Axioma 5, ob-
temos O, + O, = 0,. Analogamente, tomando x= 0, e O = 0,, encontramos O, + O, =
= 0,. Mas O, + 0, = 0, + 0,, devido a propriedade comutativa, pelo que O, = 0,.

TEOREMA 15.2. UNICIDADE DOS ELEMENTOS SIMETRICOS. Em qualquer espago linear

todo o elemento admite unicamente um simétrico, isto é, para todo o x existe um e um so y tal
gue x + y = Q.

Demonstragao. O Axioma 6 diz-nos que cada x admite pelo menos um simétrico, a saber
(—1x. Admitamos agora que x tinha dois simétricos, y, e y,. Entaox + y, =0ex + y, =0.
Somando y, a ambos os membros da primeira igualdade e utilizando os Axiomas 5, 4 ¢ 3,
encontramos

Va + (.\' + _lll] = Vs . () = Yo,
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¢ e+t (x+p) =0+ )+ =0+ y,=y,+0=y,.
Portanto y, = y,, pelo que x tem precisamente um simétrico, o elemento (—1)x.

Notagao. O simétrico de x representa-se por —x. A diferenga y — x € definida pela soma
Y+ (—x).

O teorema seguinte refere um certo nimero de propriedades que regem os calculos algeébri-
cos elementares num espago linear.

TEOREMA 15.3. Num dado espago linear sejam x e y elementos arbitrdrios e a e b escala-
res arbitrdrios. Entdo verificam-se as seguintes propriedades:

(a) Ox = O.

(b) a0 = 0.

(¢) (—a)x =—(ax) = a(—x).

(d) Se ax = 0, entdo a = 0 ou x = O.

(e) Seax = ay ea # 0, entdo x = ).

() Seax =bxex+ O,ea =b.

® —(x+p) =(=0)+(=p)=—x—y.

(h) x+ x =2x,x+ x + x = 3x e geralmente D  x = nx.

Vamos demonstrar (a), (b) e (c), deixando as demonstragoes das restantes ao cuidado do
leitor.

Demonstragao de (a). Seja z = Ox. Desejamos provar que z = 0. Somando z a si proprio e
aplicando o Axioma 9 verificamos que

z4+z=0x4+0x=0+4+0)x=0x=z.

Adicionamos agora —z a ambos 0s membros para obtermos z = 0.
Demonstragao de (b). Seja z — a0, adicionemos z a si proprio ¢ utilizemos o Axioma 8.

Demonstragao de (c). z = (—a)x. Adicionando z a ax ¢ utilizando o Axioma 9, verifica-
mos que

z4+ax=(—ax+ax=(—a+ax=0 =0,

pelo que z € o simétrico de ax, z = —(ax). Analogamente, se adicionamos a(—x) a ax e utili-
zamos o Axioma 8 ¢ a propriedade (b), encontramos que a(—x) = —(ax).

15.5. Exercicios

Nos Exercicios | a 28 verificar se cada um dos conjuntos dados € um espago linear real,
com a adigdo ¢ a multiplicagdo por escalares reais definidas da forma usual. Para os exerci-
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31. Seja § o conjunto de todos os pares ordenados (x,, x,) de nimeros reais. Em cada alinea
determinar se sim ou nao S ¢ um espago linear, com as operagdes de adigao ¢ multipli-
cagdo por escalares definidas como se indica. Se o conjunto ndo for um espago linear,
dizer quais os axiomas que ndo sdo verificados.

@) (xy,x3) + ¥y, ¥ =(x; + vy, X3 + ), a(xy, x;) = (ax,,0).
(b) (xy,x3) + (1,2 = (x; + 1,,0), a(xy , xg) = (ax, , ax,).
©) (x,, -\’2) + (}'1 'Jr'g) = (x,,x; + )’g). a(xy, x3) = (axy, axy).

(d) (x1 ’ xz) + (}'1 ._Vz) = (le + xz!- i)’l + }'2'), a(x1 ’ -’fz) - (]axll, |axa|)-
32. Provar a alinea (d) recorrendo a (h) do Teorema 15.3.

15.6. Subespacos dum espago linear

Dado um espago linear ¥, seja S um conjunto nao vazio de V. Se § € também um espago
linear, com as mesmas operagoes de adi¢ao e multiplicagao por escalares, entao S diz-se um
subespago de V. O teorema que apresentamos a seguir da um critério simples para determinar
se sim ou nao um subconjunto dum espago linear ¢ um subespago.

TEOREMA 15.4. Se S é um subconjunto ndo vazio dum espago linear V, entdo S é um
subespago se,e so se, S satisfaz aos axiomas de fecho.

Demonstragdo. Se S € um subespago, verificam-se todos os axiomas para um espago linear
e por conseguinte, em particular, verificam-se os axiomas de fecho.

Demonstremos agora que, se S satisfaz aos axiomas de fecho, satisfaz igualmente aos
outros. As propriedades comutativa e associativa para a adigao (Axiomas 3 e 4) e os axiomas
para a multiplicagdao por escalares (Axiomas 7 a 10) saa automaticamente satisfeitos em S,
porque sao validos para todos os elementos de V. Falta verificar os Axiomas 5 ¢ 6, a existén-
cia em S do elemento neutro e a existéncia do simetrico de cada elemento de S.

Seja x um qualquer elemento de S. (S tem pelo menos um elemento visto que € nio va-
zi0). Pelo Axioma 2, ax estd em S para todo o escalar a. Fazendo a = 0, resulta que Ox estd
em S. Mas Ox = O, pelo Teorema 15.3(a), pelo que O € S e 0 Axioma 5 ¢é satisfeito. Fazen-
do a = — |, vemos que (— I)x pertence a S. Mas x + (— I)x — O visto que x e (— I)x estio
em Ve consequentemente o Axioma 6 ¢ satisfeito em S. Deste modo S ¢ um subespago de V.

DEFINICAO. Seja S um subconjunto ndo vazio dum espago linear V. Um elemento x de V
da forma

onde Xy, Xy, ..., X pertencem todos a S e c,, ¢, ..., ¢, sdo escalares, diz-se uma combinagdo
linear finita de elementos de S. O conjunto de todas as combinagées lineares finitas de elemen-
tos de S verificam os axiomas de fecho e por conseguinte é um subespago de V. Chama-se
este o subespago gerado por S, e representa-se por L(S). Se S € vazio, definimos L(S) como
{0}, o conjunto constando unicamente do elemento zero.
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EXEMPLO 2. Se um elemento de S ¢ um multiplo escalar do outro, entdo S € dependente.
ExempPLO 3. Se O € S, entdao S ¢ dependente.
ExempLO 4. O conjunto vazio € independente.

No Capitulo 12 foram discutidos muitos exemplos de conjuntos dependentes e independen-
tes. Os exemplos seguintes ilustram esses conceitos em espagos funcionais. Em cada caso o
espaco linear fundamental V' é o conjunto de todas as fungoes reais definidas na reta real.

ExeMPLO 5. Sejam u,(7) = cos’t, u,(t) = sen’t, u,(t) =1, para todo o numero real 7. A
identidade de Pitagoras mostra que u, + u, — u, =0, pelo que as trés fungoes u,, u,, u, sao
dependentes.

EXEMPLO 6. Seja uk(t) =k parak =0, 1, 2, ..., e t real. O conjunto S = |ug, u,, ...| € inde-
pendente. Para demonstrar isto, basta provar que,para cada n, os n + 1 polinomios Ugy Uyy ooy
u , sao independentes. Uma relagao da forma £ ¢, u; = Osignifica que

Set =0 (15.1)

k=0

para todo o real 7. Quando ¢ = 0, encontramos ¢, = 0. Derivando (15.1) e fazendo ¢ = 0, en-
contramos ¢, = 0. Repetindo o processo, verificamos que cada coeficiente ¢, € zero.

ExempLO 7. Sea,, ..., @, sdo numeros reais distintos, as n fungGes exponenciais

u(x) = e™*, ..., u,(x) = e*n*

sao independentes. Podemos demonstra-lo por indugao relativamente a n. O resultado verifi-
ca-se trivialmente quando n = 1. Admitamos por conseguinte que € verdadeira para n — |
fungoes exponenciais e consideremos os escalares ¢, ¢,, ..., ¢, tais que

Y™ = 0. (15.2)
kw1

Seja a,,0 maior dos 7 numeros a,, a,, ..., @,. Multiplicando ambos os membros de (15.2) por

—a
e '"x. obtemos

S ez — 0, (15.3)

k=1

Se k # M, o nimero a, — a,, € negativo. Deste modo, quando x —+ + © na equagdo (15.3),
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ExemprLo 1. Em V' seja(x, y) = x. y, o produto escalar usual de x por y.

EXEMPLO 2. Se x = (x,, Xx,) e y = (¥,, ,) sdo dois vectores quaisquer de V,, definir (x, )
pela formula

(x,y) =2 + X0 + Xg)1 + Xp)s .

Este exemplo mostra que pode estar definido mais do que um produto interno num dado
espago linear.

EXEMPLO 3. Represente ((a, b) o espago linear de todas as fungdes reais continuas defini-
das num intervalo (a, b]. Definamos o produto interno de duas fungdes f¢ g pela formula

" b
a

(f, @) =] flg)dr.

Esta formula € andloga 4 equacio (15.5) que define o produto escalar de dois vectores de V,,.
Os valores das fungdes /(1) e g(1) desempenham o papel das componentes x; € y; € a inte-
gragdo substitui a soma.

ExempLO 4. No espago C(a, b), definimos

() =] wr e dt,

com w uma fungao positiva dada em C(a, b). A fungdo w diz-se a_fungdo peso.No Exemplo 3
temos w(z) = 1 para todo o 1.

EXEMPLO 5. No espago linear dos polinomios reais, definimos

(f, ) =] ef g dr.

Em virtude do fator exponencial, este integral improprio converge para todo o par de polino-
mios [ e g.

TeEOREMA 15.8. Num espago euclidiano V, todo o produto interno verifica a desigualdade
de Cauchy-Schwarz:

|(x, )I* < (x, x)(y,¥) para quaisquer x e y em V.
Além disso o sinal de igualdade verifica-se se,e so se,x e y sdo dependentes.

Demonstragao. Quando se demonstrou o resultado correspondente para vectores de V.
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Teorema 12.3), tivemos o cuidado de fazer notar que a demonstragio era uma consequéncia das
propriedades do produto escalar indicadas no Teorema 12.2 e ndo se fez depender da defi-
nigdo particular usada para deduzir estas propriedades. Deste modo, precisamente a mesma
demonstragio € valida em qualquer espago euclidiano real. Quando aplicamos esta demons-
tragdo a0 espago euclidiano complexo, obtemos a desigualdade (x, y) (y, x) <(x, x)(y. y) Que
¢ a mesma que a desigualdade de Cauchy-Schwarz

(x, )3 X) = (x5, )%, y) = 10x, Y2

ExempLo. Aplicando o Teorema15.8 ao espago C(a, b) com o produto interne (f, g) =
= f: (1) g(1) dt, encontramos para a desigualdade de Cauchy-Schwarz

([ rew o)< ([ rwar)(] s ar).

O produto interno pode ser usado para introduzir o conceito métrico de comprimento em
qualquer espago euclidiano.

DEFINICAO. Num espago euclidiano V, o mimero ndo negativo || x|| definido pela igualdade
Ixll = (x, x)1/2
chama-se a norma do elemento x.

Exprimindo a desigualdade de Cauchy-Schwarz em termos de normas escreve-se

1, I < llxl] iyl -

Visto ser possivel definir um produto interno de diferentes maneiras, a norma dum ele-
mento dependera da escolha do produto interno. Esta falta de unicidade era de esperar. Tal
fato ¢ analogo ao de podermos atribuir diferentes nimeros a medida do comprimento de
dado segmento de reta, dependendo da escolha da unidade de medida. O teorema seguinte
define propriedades fundamentais das normas que ndao dependem da escolha do produto
interno.

TEOREMA 15.9. Num espago euclidiano, toda a norma goza das seguintes propriedades
para todos os elementos x e y, e todo o escalar c:

(@) x| =0 se x= 0.

(b) x| >0 se x#0 (positividade).

() llex| = |e] x|l (homogeneidade).

@ x4yl < x| + |yl (desigualdade triangular).
O sinal de igualdade verifica-se em (d) se x = 0, se y = 0, ou se y = c¢x para algum ¢ > 0.

Demonstragao. As propriedades (a), (b) e (¢) deduzem-se imediatamente dos axiomas do
produto interno. Para demonstrar (d) observemos que
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Ix+ylP=x+yx+)=xx)+ 0y + &)+ x
= |x|* 4+ IylI*+ (x,») + (x, ).

A soma (x, y) + (x, y) é real. A desigualdade de Cauchy-Schwarz mostra que |(x, »)| < ||x||
Ivlle [(x, I < lIx[llly]l, pelo que se tem

Ix 4+ yI* < lxl® + [|pi* + 2lx] |yl = xl + 1yl)?*.
o que demonstra (d). Quando y = ¢x, com ¢ > 0, temos
Ix + yll = llx + ex|| = (1 + o)lix| = x| + llex|| = lxI + lyi.

DEFINICAO. Num espago euclidiano real V, o dngulo formado por dois elementos ndo
nulos x e y define-se como sendo o nimero 8 do intervalo 0 < 6§ < = dado por

(x, )
f = =222 15.6
x| vl (156)

Nota: A desigualdade de Cauchy-Schwarz mostra que o valor do quociente no segundo
membro de (15.6) pertence ao intervalo [— I, 1], pelo que existe um e um s0 € no intervalo
[0, 7] cujo cosseno € igual ao valor daquele quociente.

15.11. Ortogonalidade num espa¢o euclidiano

DEFINICAO. Num espago euclidiano V, dois elementos x e y dizem-se ortogonais se o cor-
respondente produto interno for zero. Um subconjunto S de V diz-se um subconjunto ortogo-
nal se (x, y) = 0 para cada par de elementos distintos x e y de S. Um conjunto ortogonal diz-
se ortonormado se cada um dos seus elementos tem norma 1.

O elemento neutro € ortogonal a todo o elemento de Ve € o unico elemento ortogonal a
si proprio. O teorema seguinte mostra uma relagdo entre ortogonalidade e dependéncia.

TEOREMA 15.10. Num espago euclidiano V, todo o conjunto ortogonal de elementos nao
nulos ¢ independente. Em particular num espago euclidiano de dimensao finita, com

dim V= n, todo o conjunto ortogonal formado por n elementos ndao nulos define uma base
de V.

Demonstragao. Seja S um conjunto ortogonal de elementos nao nulos de V' e suponhamos
que certa combinagao linear finita de elementos de S é igual a zero, quer dizer

onde cada x, € S. Multiplicando escalarmente ambos os membros por x, e tendo presente
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que (x,, x;= 0 se i # |, encontramos que ¢,(x,, x, )= 0. Mas(x,, x, ) # 0 visto que x, # O,
donde resulta ¢, = 0. Repetindo o raciocinio,com x, substituido por X;, encontramos cada
;= 0, 0 que prova que S ¢ independente. Se dim V' = n e se S € formado por n elementos,
o Teorema 15.7(b) mostra que S & uma base de V.

ExeMpLO. No espago linear real C(0, 2#) com o produto interno (f; g) = Jg“ J(x) g(x) dx,
seja S o conjunto de fungoes trigonométricas {ug, u,,...}, definido da seguinte maneira

uy(x) =1, Uy, _4(x) = cos nx, Uy, (x) =sennx, para n=12....

Se m # n, temos as relagoes de ortogonalidade

[unxun(x) dx = 0,

e portanto S € um conjunto ortogonal. Visto que nenhum elemento de S € o elemento zero,
S ¢ independente. A norma de cada elemento de S calcula-se facilmente. Temos (u,, u,) =

= J02" dx = 2n e,paran >1,temos

2r 2r
(uzn_l, uan__l) = L COSz nx dx = ﬂ', (uzﬂg “2:1) =.[) Sellz nx dx = Tr.

Por conseguinte ||, || =1/2n e[|, || =\/n para n 21. Dividindo cada u_ pela respetiva
norma, obtemos um conjunto ortonormado {¢y, @1, ¢=...| comg, =u / ||u, IT Entao resulta

COsS nx S€n nx
S ¢2p|(x) = /"— L] para n 2 l .
Vom Vo

Po(x) = \/g ’ Pap(Xx) =

Na segdo 15.13 provaremos que todo o espago euclidiano de dimensao finita admite uma
base ortogonal. O teorema que se segue mostra precisamente como calcular as componentes
dum elemento relativamente a tal base.

TEOREMA 15.11. Seja V um espago euclidiano de dimensao finita n e admita-se que
S=le,,e,,..., e, éuma base ortogonal de V. Se um elemento x se exprime como uma combi-
nagdo linear dos elementos da base, seja

n
x=7Yce. (15.7)
1=1
entdo as suas componentes na base ordenada (e, e,, ..., e,) sdo dadas pelas formulas

_ (%)

T (e, €))

para j=1,2,...,n. (15.8)
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12

13.

14.

15.

16.

(a) Provar que (f, g) € um produto interno para P, .

(b) Calcular (f, g) quando f{t) = t e g(t) = at + b.

(c) Se f{1) = t, determinar todos os polinomios lineares g ortogonais a f.

No espago linear de todos os polinomios reais, definir (f, g) = _l'a’ e ' f(1) g(v) dt.

(a) Provar que este integral improprio converge absolutamente para quaisquer polino-
mios f e g.

(b) Se xn(r) = ("paran =0, 1, 2, ..., provar que (xn, xm) =(m+n)!.

(¢) Calcular (f, g) quando f{t) = (t + 1)* e g(t) = * + 1.

(d) Determinar todos os polinomios lineares g(1) = a + bt ortogonais a f{t) = 1 + L.
No espago linear de todos os polinomios reais, determinar se sim ou nao (f, g) € um pro-
duto interno quando (f, g) é definido pela formula indicada. Caso (/, g) ndao seja um
produto interno, indicar quais os axiomas que nao sao verificados. Em (c), f'e g’ repre-
sentam derivadas.

@) (f.g) = f(1g(L. © (£8) =], [ @ a.
®) (fg) = | | gy ar| @ (£g) = ([ s ar) ([ gto) ).

V é formado por todos as sucessdes infinitas {x,} de nimeros reais para as quais as
séries Lx} convergem. Se x = {x,} e y= {y,} sdo dois elementos de ¥V, define-se

v 8
(X, 9) = D X, -
=]
(a) Provar que esta série converge absolutamente.

ags - !
| Sugestdo. Utilizar a desigualdade de Cauchy-Schwarz para calculara soma X |xnyn .l
1

nH=
(b) Provar que V € um espago linear com (x, y) como produto interno.
(¢) Calcular(x,y)sex,= l/ney,= l/(n+ |)paran> 1.

(d) Calcular (x, y)se x,=2¢ey,= l/n! paran= 1.

Seja ¥V o conjunto de todas as fungoes reais continuas em [0, +oo| e tais que o integral
[o e "f*(1) dt converge. Definir (f, &) = [ ¢~ /(1) g(1) .

(a) Provar que o integral para (f, g) converge absolutamente para cada par de fungdes
fegem V.

| Sugestao: Utilizar a desigualdade de Cauchy-Schwarz para calcular o integral
J3" e\ f11) g(t)iar.

(b) Provar que V € um espago linear com (f, g) como produto interno.

(c) Calcular (f, g)sefit) =e ‘eg(t)=t",comn=0,1,2,..

Num espago euclidiano complexo, provar que o produto interno tem as seguintes pro-
priedades para todos os elementos x, y e z e todos os complexos a e b.

(a) (ax, by) = ab(x, ¥). (b) (x,av + bz) = alx,y) + b(x, z).
Provar que as identidades seguintes sao validas em todo o espago euclidiano
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ortogonal a si proprio, pelo que z = 0. Esta, pois, completada a demonstragao do teorema
de ortogonalizagao.

Na construg¢do precedente suponhamos que se tem Y,. =0 para algum r. Entdo (15.13)
mostra que x__, € uma combinagdo linear de y,, ..., y , € por isso de x,, ..., x, pelo que os
elementos x,, ... x__, sdo dependentes. Por outras palavras, se os primeiros k elementos
Xys «s X 580 independentes, entdo os elementos correspondentes y,, ..., y, sdo ndo nulos.
 Neste caso o0s coeficientes a;em (15.13) sao dados por (15.14) e as formulas definindo
()5 s ¥ ) esCrevem-se

=Xty e =gy =D e pare 2 k—1. (15.15)
i=1 (y:'!yi)

Estas formulas descrevem o método de Gram-Schmidt para a construgao dum conjunto
ortogonal de elementos nao nulos y,, ..., Yy 08 quais geram o mesmo subespac¢o que um dado
conjunto independente x,, ..., x;. Em particular, se x;, ..., x, € uma base dum espago eucli-
diano de dimensao finita, entdo y,, ..., ¥, € uma base ortogonal para 0 mesmo espago. Pode-

mos ainda converter esta numa base ortonormada pela normalizagao de cada uma dos seus
elementos y, isto &, pela divisao de cada um pela respetiva norma. Por conseguinte, como
corolario do Teorema 15.13 podemos enunciar:

TeOREMA 15.14. Todo o espago euclidiano de dimensao finita possui uma base ortonor-
mada.

Se x e y sdao elementos dum espago euclidiano, com y # O, o elemento

(x, )

(3, »)

diz-se a projegdo de x sobre y. No método de Gram-Schmidt (15.15), construimos o elemen-
to y,, | subtraindo de x_ , a projegiao de x,, | sobre cada um dos anteriores elementos

Yis s ¥, A figura 15.1 mostra essa construgao geomeétrica no espago vectorial V.

ExempLo 1. Em ¥V, determinar uma base ortonormada para o subespago gerado pelos
trés vectores x, =(1,—1, I, —-1),x,=(5,1, 1, 1) ex; =(-3,-3,1,=3).

Resolugao. Aplicando o método de Gram-Schmidt, obtemos
}"1 = xl = (I, -"'l. 1, —l),

xe— e 2 o (4.2,0,2),
(yl ’ ."1)

-
(]
Il
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(xq, ‘1) (x3' Vz)y =Xg— V1 + y2=(0, 0,0,0).
() 1,}1) (Y2, y2)

Y3 = X3 —

X3
Yi= X3 — @), — GoYy, G = %:—}{3—

|

gllll

= V= Xp — C)yy C-(y‘: D

M= X3

Fig. 15.1. O método de Gram-Schmidt em ¥,. Um conjunto ortogonal |y,, y,, ¥,/ foi cons-
truido a partir dum conjunto independente dado |x,, x,, x;l.

Visto que y; =0, os trés vectores x, X,, X, devem ser dependentes. Mas uma vez que y, € y,
sao nao nulos, os vectores x, ¢ x, sdao independentes. Por conseguinte L(x,, x,, x;) € um
subespago de dimensao 2. O conjunto [y,, y,] € uma base ortogonal para este subespago.
Dividindo cada um dos y, e y, pela correspondente norma obtemos uma base ortonormada
formada pelos dois vectores

no_1 Ve
=5(,-1,1,—-1) e (2,1,0,1).
Iyl 2 el \/_
EXEMPLO 2. Polindmios de Legendre. No espago linear de todos os polinomios, com o
produto interno (x, y) = |!, x(t)y(t)dt, consideremos a sucessao infinita x,, x,, x,, ..., onde

x, (1) = t". Quando se aplica o teorema de ortogonalizagdo a esta sucessdo, obtém-se outra

sucessao de polinomios y,, ,, ¥ ..., pela primeira vez encontrados pela matematico frances
A.M. Legendre (1752-1833) nos seus trabalhos sobre a teoria do potencial. Os primeiros des-
ses polinomios calculam-se facilmente pelo método-de Gram-Schmidt. Em primeiro lugar
temos y, (1) = x,(t) = 1. Uma vez que

-

1 -
(Yo s Yo) =_‘Fldt =2 e (X, Vo) =Ji,'d' =0,

encontramos
(x,, .Vo)

T Yo() = xy(t) = 1.

() = x,(1) —

Utilizamos depois as relagoes
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IxI* = fis* + [ls=]2. (15.17)

Demonstragdo. Em primeiro lugar provamos que ¢ possivel a decomposi¢dao ortogonal
(15.16). Visto que S tem dimensio finita, admite uma base ortonormada, le,, e,, ..., en].
Dado x, definimos os ¢lementos s € s~ do modo seguinte:

s=i(x,e,)e,, ST =x—5. (15.18)

i=]

Observa-se que cada termo (x, ¢;) € a proje¢ao de x sobre ¢. O elemento s ¢ a soma das
projegoes de x sobre cada um dos elementos da base. Visto ser s uma combinagao linear
de elementos de base, s esta em S. A definigao de s mostra que (15.16) é verdadeira. Para
provar que s-esta em S*, consideramos o produto interno de s com qualquer elemento da
base e - Temos

(s-,e) =(x —s5,¢,) =(x,¢;) —(s5,¢)).

Mas de (15.18) resulta que (s, e;)= (x, €;). pelo que s+ € ortogonal a e;, 0 que significa

que s+ ¢ ortogonal a todo elemento de S ou seja que s+ €5~
Demonstremos agora que a decomposigao (15.16) € unica. Admitamos a existéncia de
duas representagoes para x, por exemplo

X=g5+4 s ¢ X=1t4+1, (15.19;

onde s e f pertencem a Se 5 e/ pertencema S-. Desejamos provarques =t e s~ = 1+,
De (15.19) temos s—t=1-— 5-, pelo que necessitamos unicamente demonstrar que
s—t=0 Mass—te Sett— s €S eassimtemos que s — ¢ é simultaneamente ortogo-
nal e igual ar*-s-.Porque o elemento neutro € o uUnico elemento ortogonal a si proprio,
deve ser s — 1 = O e portanto a decomposig¢do € tnica.

Finalmente, provaremos que a norma de x ¢ dada pela formula de Pitagoras. Temos

IxI2=(x,x) =(s+ s*, 5+ s°) = (5, 5) + (s, 5),

sendo os restantes termos nulos uma vez que s e s-sdo ortogonais e portanto esta demons-
trado (15.17).

DEFINIGAO Seja S um subespago de dimensdo finita dum espago euclidiano V e seja
{e p€y-me "] uma base ortonormada para S. Se x € V, o elemento s definido por

s = z (.Y, el’)ei

fa=]

diz-se a projeyao de x sobre o subespago S.
Demonstramos seguidamente que a proje¢do de x sobre S € a solugao do problema de
aproximagao abordado no inicio desta segao.



16
TRANSFORMACOES LINEARES E MATRIZES

1. Transformacgoes lineares

Um dos ultimos objetivos da andlise € um amplo estudo de fungdes cujos dominio e
contradominio s3o subconjuntos de espacos lineares. Tais fungdes chamam-se transfor-
magoes, aplicagées ou operadores. Este capitulo trata dos exemplos mais simples, chamados
transformagoes lineares, as quais aparecem em todos os ramos da Matematica. As pro-
priedades de transformacdes mais gerais obtém-se frequentemente aproximando-as me-
diante transformacdes lineares.

Em primeiro lugar vamos introduzir algumas notagées e terminologia relativas a fungoes
quaisquer. Sejam V¥ e W dois conjuntos. O simbolo

T:V—-w

sera usado para indicar que 7 ¢ uma fungao cujo dominio € V e cujos valores estao em W.
Para cada x de V, o elemento 7(x) em W chama-se a imagem de x por meio da aplicagdo T e
dizemos que T aplica x em T(x). Se A é um subconjunto qualquer de ¥, o conjunto de todas
as imagens 7(x), para x em A, chama-se a imagem de A por meio da aplicagdo T e
representa-se por 7(4). A imagem do dominio V, T(V), é o contradominio de 7.

Suponhamos agora que ¥ e W sao espagos lineares admitindo 0 mesmo conjunto de esca-
lares ¢ definamos uma transformagao linear do modo seguinte:

DEFINICAO. Se V e W sdo espagos lineares, uma fungdo T : V — W diz-se uma transfor-
magao linear de V em W se possui as duas propriedades seguintes:

(a) T(x + y) = T(x) + T(y) quaisquer que sejam x e y em V;

(b) T(cx) = cT(x) para todo o x de V e todo o escalar c.

Estas propriedades significam que 7 preserva a adigao e a multiplicagao por escalares. As
duas propriedades podem combinar-se numa unica formula que estabelece que

T(ax + by) = aT(x) + bT(y)
671
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para todo o par (x, y) em V e quaisquer que sejam os escalares a e b. Por indugdao temos tam-
bém a relagao mais geral

En: a‘-x,‘) = i a;T(x;)
i=1

i=1

para n elementos quaisquer x,, ..., x, de V" e n escalares quaisquer a,, ..., a,.
O leitor comprovara com facilidade que os exemplos seguintes sao transformagoes linea-
res.

EXEMPLO 1. A transformagado identidade. A transformagao 7' : V — V, onde T(x) = x para
todo o x em V, chama-se a transformacao identidade e representa-se por / ou por /.

EXEMPLO 2. A transformagado zero. A transformagao 7' : V — V, que aplica cada elemento
de V em O, chama-se a transformagao zero e representa-se por O.

EXemMpLO 3. Multiplicagao por um escalar fixo c. Aqui tem-se 7 : V' — V, onde T(x) = cx,
para todo o x de V. Quando ¢ = 1 cai-se na transformacao identidade. Quandoc =0 ¢é a
transformacao zero.

EXeMPLO 4. Equagées lineares. Sejam V =V, e W = W, . Dados mn numeros reais Gy

ondei=1,2,..,mek=1,2,..n, definamos T: ¥V, - ¥, do modo seguinte: T aplica cada
vector x = (x,, ..., x,) de ¥, no vector y = (y,, y,, ..., J,,,) de ¥, segundo as equagoes

}’1‘=zuikxk para i=1,2,...,m.
k=1

EXEMPLO 5. Produto interno com um elemento fixo. Seja V um espago euclidiano.
Para um elemento fixo z de V, definamos T : ¥ - R do modo seguinte: Se x € ¥V, entdo
T(x) = (x, z), o produto interno de x com z.

EXEMPLO 7. O operador derivagao. Seja V o espago linear de todas as fungoes reais f deri-
vaveis num intervalo aberto (a, b). A transformagédo linear que aplica cada fungao fde V
na sua derivada /' chama-se o operador derivagao e representa-se por D. Assim temos
D : V- W, onde D(f) = f" para todo o fem V. O espago W ¢ formado por todas as derivadas

I
ExemMpLO 8. O operador integragao. Seja V o espago linear de todas as fungoes reais

continuas num intervalo [a, b]. Se f €V, defina-se g = T(f) como sendo aquela fungao de V'
definida por

g(x) = |‘If(!) dt se a<x<b.

Esta transformagao T chama-se o operador integragao.
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16.2. Espago nulo e contradominio

Nesta se¢do, T representa uma transformagao linear dum espago linear ¥ em um espago
linear W.

TEOREMA 6.1. O conjunto T(V) (o contradominio de T) é um subespago de W. Além disso,
T aplica o elemento zero de V no elemento zero de W.

Demonstragdo: Para demonstrar que 7(¥) é um subespago de W, necessitamos verificar
unicamente os axiomas de fecho. Tomemos dois quaisquer elementos de 7(V), por exemplo
T(x) e T(y). Entao T(x) + T(y) = T(x + y), pelo que T(x) + T(y) esta em T(¥). Também,
para qualquer escalar ¢, temos c¢7{(x) = T(cx), pelo que c¢7(x) esta em T(V). Deste modo 7(V)
é um subespago de W. Fazendo ¢ = 0 na relagao T(cx) = cT{(x) verificamos que 710)= O.

DEFINICAO. O conjunto de todos os elementos de V que T aplica em O chama-se o nucleo
de T e representa-se por N(T). Assim tem-se

N(T) = {x|xe V e T(x)= 0}.
O nucleo designa-se tambem por espaco nulo de T.
TEOREMA 16.2. O mucleo de T é um subespaco de V.

Demonstragao. Se x e y estao em N(T), o mesmo se verifica com x + y e ¢x qualquer que
seja ¢, ja que

Tx+y)=Tx)+T(»=0 e  T(ex)=cT(x)=0.

Os exemplos apresentados a seguir referem-se aos nicleo das tranformagdes lineares
dadas na se¢do 16.1.

EXEMPLO |. A transformacdo identidade. O nucleo ¢ (O], o subespacgo consistindo uni-
camente do elemento zero.

EXEMPLO 2. A transformagdo zero. Visto cada elemento de V ser aplicado no elemento
zero, o nucleo € o proprio V.

EXEMPLO 3. Multiplicacdao por um escalar fixo c. Se ¢ # 0, o niicleo contém unicamente
0.Sec=0,0ntcleo é V.

EXEMPLO 4. Equagoes lineares. O nucleo consiste de todos os vectores (x,, ..., x,) de
V, para os quais

ia,-,‘xk=0 para i=1,2,...,m.
k=1
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EXEMPLO 5. Produto interno com um elemento fixo z. O nucleo consiste de todos os
elementos de V ortogonais a z.

EXEMPLO 6. Projecpdo sobre um subespago. Se x € V, tem-se a inica decomposi¢do orto-
gonal x = s+ s (pelo Teorema (15.15). Visto ser T(x)= s, tem-se T(x)= O se e sO se
x = 5L, e assim o nucleo € S+, o complemento ortogonal de S.

EXEmMPLO 7. Operador derivagao. O espago nulo é formado por todas as fungoes que sao
constantes num dado intervalo.

ExempLO 8. Operador integragao. O espago nulo contém unicamente a fungdo zero.
16.3. Nulidade e ordem

Nesta se¢do 7 representa ainda uma transformacgao linear dum espago linear ¥ num
espaco linear W. Interessa-nos estabelecer uma relagao entre a dimensao de V, do espago
nulo N(T) e do contradominio T( V). Se V tem dimensdo finita, entdo o espago nulo tam-
bém tem dimensdo finita, porque ¢ um subespago de V. A dimensdo de N(T) chama-sea

nulidade de T (dimensdo do nucleo de 7). No teorema que se segue prova-se que o con-
tradominio também tem dimensdo finita; a essa dimensido da-se o0 nome de ordem de T.

TEOREMA 16.3. TEOREMA DA NULIDADE MAIS DA ORDEM. Se V ¢ de dimensao finita,
entdo T(V) é também de dimensao finita e tem-se

dim MT) + dim T(V) = dim V. (16.1)

Por outras palavras, a nulidade mais a ordem duma transformagdo linear é igual a dimen-
sao do seu dominio.

Demonstragdo. Sejam n=dim V ¢ e,, e,, ..., ¢, uma base para N(T), onde k = dim
N(T) £ n. Pelo Teorema 15.7, estes elementos formam uma parte de uma certa base de V,
por exemplo a base

€1y €rsChigy s Cpiypy (16.2)

com k + r = n. Pretendemos provar que os r elementos

Tlep. ), . . ., T(ex.,) (16.3)

formam uma base para 7(V), o que prova que dim 7(¥) = r. Uma vez que k + r = n, isto
tambem prova (i6.1).

Demonstremos primeiro que os r elementos em (16.3) geram T(¥). Se y € T(V), temos
¥y = T(x) para algum x em V, e podemos escrever x = ¢,e, + ... + €+ » € . - Daquiresulta
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[R(ST))(x) = R[(ST)(x)] = R[S[T(x)]] e [(RS)T)(x) = (RS)[T(x)] = R[S[T(x)]],
0 que prova que R(ST) = (RS)T.

DEFINICAO. Seja T : V — V uma fungdo que aplica V em si proprio Definem-se as potén-
cias inteiras de T por indugao do modo seguinte:

=1, T =TT"1' para n2>1.

Aqui / representa a transformagao identidade. O leitor podera verificar que a propriedade
" . . m n . . . . i .
associativa implica a regra 7. T"= T™ ", quaisquer que sejam os inteiros nao negativos
me n.
O teorema que se enuncia a seguir mostra que a composigao de transformagoes /ineares ¢
ainda linear.

TEOREMA 16.6. Se U, V, W sao espagos lineares com os mesmos escalaresese T: U— V
e S : V- W sao transformagdes lineares, entdo a composigao ST : U - W é linear.

Demonstragao. Para quaisquer x e y de U e quaisquer escalares a e b, temos
(ST)ax + by) = S[T(ax + by)] = S[aT(x) + bT(y)] = aST(x) + bST(y).

A composi¢ao pode combinar-se com as operagoes algébricas de adigao e multiplicagao
por escalares em & (V, W) para dar origem ao seguinte.

TEOREMA 16.7. Sejam U, V e W espagos lineares com os mesmos escalares; suponha-se
que S e T pertencem a ¥ (V, W) e seja ¢ um escalar qualquer.
(a) Para qualquer fungdo R com valores em V, tem-se

(S+ T)R= SR+ TR e (¢S)R = ¢(SR) .
(b) Para qualquer transformagdo linear R : W — U tem-se
R(S+ T)= RS + RT e R(cS) = ¢(RS).

A demonstragao € uma aplicagao imediata da definicao de composigédo e é deixada ao lei-
tor como exercicio.

16.6. Inversas

No nosso estudo das fungdes duma variavel real aprendemos a construir novas fungoes
por inversdo das fungoes monodtonas. Pretendemos agora generalizar o processo de inversao
a uma classe mais geral de fungoes.

Dada uma fungio 7, € nosso objetivo encontrar, se possivel, outra fung¢do S cuja com-
posi¢io com T seja a transformagdo identidade. Visto a composigdo nido ser, em geral,
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DEFINICAO. Seja T: V — W biunivoca em V. A unica inversa esquerda de T (que se sabe jd
ser também inversa direita) representa-se por T '. Diz-se que T é invertivel e chama-se T ' a
inversa de T.

Os resultados desta se¢dio dizem respeito a fungdes quaisquer. Vamos em seguida apli-
ca-los a transformagdes lineares.

16.7. Transformagoes lineares biunivocas

Nesta secdo, Ve W representam espagos lineares com os mesmos escalares e 7: V- W
representa uma transformagao linear em % (V, W). A linearidade de T permite-nos exprimir
de diversas maneiras a propriedade para que uma transformagdo linear seja biunivoca.

TEOREMA 16.10. Seja T : V — W uma transformagdo linear em £ (V, W). Sao equivalen-
tes as seguintes proposigoes:

(a) T € biunivoca em V.

(b) T é invertivel e a sua inversa T ': T(V) = V é linear.

(¢c) ParatodooxemV, T(x) =0 implica x =0, isto €, o0 espago nulo N(T) contém unica-
mente o elemento zero de V.

Demonstragao. Vamos demonstrar que (a) implica (b), (b) implica (¢) e (¢) implica (a).
Admitamos que (a) € verdadeira. Entao T admite inversa T '(peloTeorema16.9), a qual se
vai provar que € linear. Consideremos dois quaisquer elementos u e ¢ em 7(¥). Entao
u = T(x) e v = T(y) para algum x e algum y em V. Quaisquer que sejam os escalares a ¢ b,
temos

au + bv = al(x) + bT(y) = T(ax + by),

visto 7 ser linear. Daqui resulta, aplicando 7',
T Yau + bv) = ax + by = aTu) + bT (v),

pelo que 7' ¢ linear. Por conseguinte (a) implica (b).

Admitamos agora que (b) ¢ verdadeira. Tomemos um x qualquer em V para o qual
T(x)= 0. Aplicando T-', encontramos que x= T-'(0) = O, visto T"' ser linear. Assim
concluimos que (b) implica (¢).

Finalmente, admitamos que (c) ¢ verdadeira. Consideremos dois quaisquer elementos
ueyem Vcom T(u)= T(v). Devido a linearidade temos T(u— v)= T(v)= O, pelo que
u—v= 0. Portanto, T ¢ biunivoca em V e a demonstragido do teorema esta completada.

Quando Vtem dimensdo finita, a propriedade da transformacdo ser biunivoca pode ser
formulada noutros termos, como se indica no teorema que apresentamos a seguir.

TEOREMA 16.11. Se T : V —» W é uma transformagao linear em £(V,W) eV tem dimensao
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16.9. Transformagoes lineares com valores determinados

Se V tem dimensao finita, podemos sempre construir uma transformagao linear 7 V - W
com valores determinados para os elementos duma base de V', como se explica no seguinte

TEOREMA 16.12. See, .., e, constitui uma base dum espago linear n-dimensional V e
U p ..., U, A0 n elementos arbitrdrios dum espago linear W, entdo existe uma e uma so trans-
JSormagao linear T : V - W tal que

Te,)=u, para k=12,...,n. (16.7)

Esta transformagdo T aplica um elemento arbitrdrio x de V do modo seguinte:

n

Se x=Yxe, enmdo T(x)=Y xu,. (16.8)
K=1 K

=]

Demonstragao. Cada x de V pode exprimir-se duma unica maneira como combina-
¢do linear de e,, ..., e,, sendo os coeficientes x,, ..., x, as componentes de x na base
(e,, ..., e,). Se definimos T por (16.8), ¢ uma questdo imediata a verificagdo de que 7 ¢
linear. Se x = ¢, para certo k, entdo todas as componentes de x sio 0, excepto a de ordem
k, que ¢é |, pelo que (16.8) da T(e,)= u;, como se pretendia provar.

Para demonstrar que existe unicamente uma transformagido linear satisfazendo (16.7),
designamos por 7 outra transformagdo e calculamos 77x). Encontramos

T'(x)= T'( z.\‘ﬁ.e,‘.) = > x,.T'(e,) =D xuut, = T(x).
w=1 k=1 k=1

Visto que T'(x) = T(x) para todo o x em V, temos T’ = 7, o que completa a demonstragao.

ExempLO. Determinar a transformagao linear 7" : ¥V, — V, que aplica os elementos base
i=(l,0)ej=(0, 1) do modo seguinte:

r)=i+j, T(j=2-—j.
Resolugao. Se x = x,i + x,j ¢ um elemento arbitrario de V,, entdo 7(x) é dada por
T(x) = x,T() + x,7(j) = x,(i + j) + x2i — j) = (x; + 2x)i + (x;, — x2)f .
16.10. Representagao matricial das transformagoes lineares
O Teorema 16.12 mostra que uma transformacgao linear 7: V— W dum espago linear

de dimensao finita V fica completamente determinada pela sua agdo sobre um dado conjun-
todeel “entos duma basee,,e,,...,e, de V. Suponhamos agora que o espago W tem também
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dimensao finita, por exemplo dim W= m e seja w,, ..., w, uma base de W. (As dimensoes m e

n podem ou ndo ser iguais). Visto T ter valores em W, cada elemento T(e,) pode represen-
tar-se de maneira Unica como uma combinagio linear dos elementos da base w,, w,, ..., w,,

T(e) = ): LW s
=1

onde t,,, ..., ,, sa0 as componentes de 7(e,) na base ordenada (w,, w,, ..., w, ). Disporemos
verticalmente o m-sistema (¢, ..., 7, ,) do modo seguinte:

(16.9)

_Imk_l

Esta disposicao chama-se um vector coluna ou uma matriz coluna. Teremos um tal vector
coluna para cada um dos n elementos T'(e,), ..., T(e,). Colocamo-los lado a lado, encerrando-
-0s por um par de paréntesis retos de modo a obter-se a seguinte disposi¢do rectangular:

[ty - fin |
Iy Iy o
_Iml fmz e ’mn_

Este arranjo diz-se uma matriz formada por m linhas e n colunas. Chamamo-la uma matriz
m por n ou uma matriz m X n. A primeira linha ¢ uma matriz 1 X n (¢,,, #,3, ..., £1a). A matriz
m x 1 destacada em (16.9) é a coluna de ordem k. Os escalares Ly estao afetados de dois
indices, indicando o primeiro (o indice i) a linha, e o segundo (o indice k) a coluna em que se
situa 7, Chamamos a 1,0 elemento ik da matriz. Também se utiliza por vezes uma notagao

mais compacta

m.n

(1) ou (T gy s

para representar a matriz cujo elemento ik € Ly

Assim, cada transformacgao linear 77 dum espago n dimensional V sobre um espago m
dimensional W da lugar a uma matriz m x n,(2,). cujas colunas sao as componentes de 7'(e,),
s T(e,) relativamente a base (w,, ..., w, ). A matriz considerada define a representagdo ma-



Transformacoes lineares y matrizes 689

dos. A imagem T(x) dum ponto arbitrario x de V € entao dada pelas equ.aqées (16.12) e
(16.13)

ExXeEmpPLO 1. Construgdo duma dada transformagado linear a partir de uma matriz dada.
Suponhamos que partimos com a matriz 2 x 3 de elementos

31 =2
1 0 4]
Escolhamos as bases usuais de vectores unitarios coordenados para V, e V,. Entao, a matriz

dada representa uma transformagdo linear 7 : V', — V, a qual aplica um vector arbitrario
(x,, X, X,) de ¥, no vector (¥,, y,) de ¥, segundo as equagdes lineares

n=3x 4+ x,— 2x,4
),2 — X]_ + 0.\'2 + 4.\‘3 .

ExempLo 2. Construgao da representagao mairicial duma transformagao linear dada.
Seja V o espago linear de todos os polinomios reais p(x) de grau < 3. Este espago tem dimen-
sao 4 e escolhamos a base (1, x, x?, x3). Seja D o operador derivagao que aplica cada polino-
mio p(x) de V na sua derivada p’'(x). Podemos considerar D como uma transformagao linear
de ¥V em W, onde W é o espago tridimensional de todos os polinomios reais de grau < 2. Em
W escolhemos a base (1, x, x?). Para determinar a representagao matricial de D, relativa-
mente a esta escolha de bases, transformamos (derivamos) cada elemento da base de V e
exprimimo-lo como uma combinagado linear dos elementos da base de W. Assim, encontra-
mos

D(1) =0 =0 + Ox + 0x2, D(x)=1=1+4 0x + 0x%,
D(x?) = 2x = 0 + 2x + 0x?, D(x*) = 3x* = 0 4+ Ox 4 3x%.

Os coeficientes destes polinomios determinam as colunas da representagao matricial de D.
Deste modo, a representagao pedida vem dada pela matriz 3 x 4:

01 00O
0 0 20
0 0 0 3

Para evidenciar o fato de que a representagao matricial depende nao so dos elementos das
bases, mas também da respetiva ordem, invertamos a ordem dos elementos da base de W e
utilizemos, em seu lugar, a base ordenada (x? x, 1). Entao os elementos da base de V sao
transformados nos mesmos polinomios obtidos atras, mas as componentes destes polinomios
relativamente a nova base (x?, x, 1) aparecem por ordem inversa. Portanto, a representagio
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to para os r elementos da diagonal

h =lIp= =t,=1.

Demonstragao: Construimos, em primeiro lugar, uma base para W. Porque 7(¥) € um
subespago de W com dim T(V) =r, o espago 7(¥) tem uma base de r elementog em W,
sejam w,, Wy, ..., w, Pelo Teorema 15.7 estes elementos formam um subconjunto duma

certa base de W. Deste modo podemos juntar os elementos w,__ ,, ..., W, de modo que

Wiy oo s Wey Wiy s o v oy W,) (16.16)

seja uma base de W.
Seguidamente construimos uma base para V. Cada um dos primeiros r elementos w; em

(16.16) e a imagem de pelo menos um elemento de V. Escolhamos um tal elemento de V e
designemo-lo por e, Entdo T'(e) = w para i = 1, 2,...,, r, pelo que (16.14) € satisfeita. Seja agora
k a dimensao do espago nulo N(7). Pelo Teoremal 6.3 temos n = k + r. Visto ser dim N(7) = k,
o espago N(T) admite uma base formada por k elementos de V, que designamos pore, _ , ...,
e, Para cada um destes elementos, a equagao (16.15) ¢ satisfeita. Portanto, para comple-
tar a demonstragdo, devemos provar que o conjunto ordenado

(1,...3€,, €10y €pip) (16.17)

€ uma base para V. Porque dim ¥ = n = r + k, necessitamos unicamente mostrar que estes
elementos sao independentes. Suponhamos que certa combinagdo linear deles seja zero,
por exemplo

rtk
Z Ciei — 0 . (1 6.18)

i=1
Aplicando T e usando as equagoes (16.14) e (16.15) encontramos

r+k r

SeTle)= Scw, =0.

i=1 i=1
Mas w, ..., w s@o independentes e por isso ¢, = ... = ¢, = 0. Daqui resulta que os r primeiros
termos em (16.18) s@o zero, pelo que (16.18) se reduz a

r+k
> ce=0.
i=r+l
Mase, , ., .., €, , sao independentes visto formarem uma base para N(7), e porissoc,  , =

= =0 = 0. Porque todos os c;em (16.18) sao nulos, os elementos de (16.17) formam
uma base para V' e o teorema esta demonstrado.
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ExempLO. Consideremos o exemplo 2 da segao 16.10, onde D é o operador derivagao
que aplica o espago V dos polinomios de grau < 3 no espago W dos polinomios de grau < 2.
Neste exemplo, o contradominio T(V) = W, pelo que T tem ordem 3. Aplicando o método
usado para demonstrar o Teoremal6.14, definimos uma base qualquer para W, por exemplo

: “ g s : . 1
a base (1, x, x?). Um conjunto de polinomios de ¥ que se aplica nestes elementos e (x, 5" x2,

1 . X . . 2
— x*). Aplicamos este conjunto para obtermos uma base para V juntando-lhe o polinomio

3
constante 1, o qual € uma base para o espago nulo de D. Deste modo, se utilizamos a base
| l - .
(x, > X2, 5 x, 1) para V e a base (1, x, x?) para W, a correspondente representagao matri-

cial para D tem a forma diagonal

o O =
o = O
_— 0 O
o O O

16.12. Exercicios

Em todos os exercicios em que intervenha o espago vectorial V, considera-se a base

usual formada pelos vectores coordenados unitarios, a menos que se diga expressamente 0
contrario. Nos exercicios relativos a matriz duma transformagao linear 7 V - Wcom V =
W, toma-se a mesma base quer em V quer em W, a menos que seja indicada outra escolha.
1. Determinar a matriz de cada uma das seguintes transformagoes lineares de V,emV .
(a) a transformag¢ao identidade.
(b) a transformagao zero.
(¢) multiplicagdo por um escalar dado c.
2. Determinar a matriz de cada uma das seguintes projegoes.
(a) T:V, -V, onde T(x,, x,, xy) = (x,, X3).
(b) T : V, = V,, onde T(x,, x,, x3) = (x;, x3).
(¢) T:Vy =V, onde T(x,, x5, Xy, X5 X5) = (X5, X3, X,).
3. Uma transformagao linear 7" V, — V, aplica os vectores da base i e j da maneira seguin-
te:

Th=i+j, Th=2-j.

(a) Calcular T'(3i — 4j) e T%3i —4j) em fungao de i e j.
(b) Determinar as matrizes de T e T°.
(c) Resolver a alinea (b) se a base (i,j) € substituida por (e,, e,), onde e, = i — j,
e, = 3i +J.
4. Uma transformagao linear T : V, — V, define-se do modo seguinte: Cada vector (x, »)
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DEFINICAO. Se A = (au) eB= (b‘.f.) sdo duas matrizes m x n e se ¢ é um escalar qualquer,
definem-se as matrizes A + B e cA do modo seguinte:

A+ B= (au <+ bu‘); cA = ((‘a”) .

A soma define-se unicamente quando A e B sdo do mesmo tipo m x n (mesmo numero de
linhas e mesmo numero de colunas).

1 2 -3 5 0 1
A= e B = ,
-1 0 4 1 -2 3
temos pois

6 2 =2 2 4 —6 -5 0 -1
A+ B= . 24 = . (=B = .
0 —2 7 -2 0 8 -1 2 =3

Definimos a matriz nula O, como sendo a matriz m x n na qual todos os elementos sdo 0.
Com estas definigGes € um exercicio simples verificar que o conjunto de todas as matrizes
m x n define um espago linear. Representamos este espago linear por M, . Se os elementos

$40 nNUMeros reais, 0 espago M, , € um espago linear real. Se os elementos sao complexos,
M mn € um espago linear complcxo E igualmente facil provar que este espago tem dimensio
mn. Com efeito, uma base para M, consiste de mn matrizes, tendo cada uma delas um
elemento igual a 1 e todos os outros iguais a ‘0. Por exemplo, as seis matrizes

1 00 [0 1 0] [0 0 1 000 [000)] [000
[000]’[000}’{000".100’ 01 0] (00 1]

formam uma base para o conjunto de todas as matrizes 2 x 3.

ExemMPLO. Se

16.14. Isomorfismo entre transformagoes lineares de matrizes

Voltamos agora a relagao entre matrizes e transformagoes lineares. Sejam V ¢ W espagos
lineares de dimensao finita, com dim ¥ = n e dim W = m. Escolhamos uma base (e, ..., ¢,)
para Ve uma base (w,, ..., w ) para W. Nesta discussao estas bases consideram-se fixas. Seja
% (V, W) o espago linear de todos as transformagoes lineares de Vem W.Se T € & (V, W),
seja m(T) a matriz de T relativamente as bases dadas. Lembramos que m(7) se define como
segue:

A imagem de cada elemento base e, exprime-se como uma combinagao linear dos elemen-
tos da base de W:
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m

T(e,) = dt,w, para k=12...,n. (16.19)
i=1

Os coeficientes escalares ¢ ik sao os elementos ik de m(7T). Assim temos

m(T) = (tu)5ry - (16.20)

A equagdo (16.20) define uma nova fungao m cujo dominio € #(V, W) e cujos valores sao
matrizes de M, .Umavezque cada matriz m X n € amatriz m(7T) para algum 7T em Z(V, W),

o contradominio de m € M, . O teorema que apresentamos a seguir mostra que a transfor-
magaom: £ (V, W)— M,  ¢linear e biunivoca em Z(V, W).

TEOREMA 16.15. Para todo o S e todo o T em (V, W) e todo o escalar c, iem-se
(S + T)= m(S) + m(T) e m(cT) = em(T).
Além disso,
m(S) = m(T) implica S=T,
pelo que m € biunivoca em ¥ (V, W).
Demonstragao: A matriz m(T) ¢ formada pelos coeficientes Lk de (16.19). Analogamente,
a matriz m($S) é formada pelos coeficientes s, nas equagoes

S(e) =D s;w, para k=1,2,...,n. (16.21)
=1

Uma vez que se tem

T

(S + T)e) =D (s + tiw; € (cT)(e) = i(('ril.)txrf ,
i=1 i=1

obtemos m(S + T) = (s,.k + t'.k) =m(S)+m(T)em(cT)=(c t‘.‘) = cm(T), o que prova que
m é linear.

Para provar que m € biunivoca, suponhamos que m(S) = m(T), onde S = (sl.k)e T= (‘fk)'
Asequacgoes (16.19)e (16.21) mostram que S(e) = T(ek) para cada elemento da base €., pelo
que S(x) = T(x) para todo x de V' e por conseguinte S = 7.

Nota: A fungdo m diz-se um isomorfismo. Para uma dada escolha das bases, m estabe-
lece uma correspondéncia biunivoca entre o conjunto de transformagoes lineares, & (V, W)
¢ o conjunto M, de matrizes m X n. As operagoes de adi¢ao e multiplicagao por escalares



Transformacades lineares y matrizes 697

conservam-se através desta correspondéncia. Os espagos lineares & (V, W) e M, . dizem-se

isomorfos. Teorema 16.11 mostra que o dominio duma transformagio linear biunivoca
tem a mesma dimensdo que o respetivo contradominio. Portanto, dim Z(V, W)= dim
M“. n= mn.

Se V' = W e se escolhermos a mesma base em V e W, entao a matriz m(I) que corresponde
a transformagéo identidade 7 : V' - V € uma matriz diagonal n X n, com cada elemento da
diagonal igual a unidade e todos os restantes iguais a 0. Esta ¢ a matriz identidade ou matriz
unidade e representa-se por / ou por /.

16.15. Multiplicagao de matrizes

Algumas transformagodes lineares podem multiplicar-se por meio da composi¢ao. Vamos
passar a definir multiplicagdo de matrizes de tal maneira que o produto de duas matrizes cor-
responda a composigao das transformagoes lineares que representam.

Recordamos que se 7: U = V e S: V — W sao transformagoes lineares, a sua composigao
ST: U - W é uma transformagdo linear dada por

ST(x) = S[T(x)] para todo x em U.
Suponhamos que U, V' e W sdo de dimensao finita, por exemplo
dmU=n, dmV=p, dim W=m.
Escolhamos bases para U, V e W. Relativamente a estas bases, a matriz m(S) € uma matriz
m x p, a matriz T € uma matriz p x n e a matriz de ST € uma matriz m x n. A defini¢do que

a seguir se apresenta de multiplicagdo de matrizes permite-nos deduzir a relagdo
m(ST) = m(S)m(T), o que estende aos produtos a propriedade de isomorfismo.

DEFINICAO. Sejam A uma matriz m x p qualquer, e B outra matriz p X n qualquer, por
exemplo

A= (a,-,-)m" e B = (bu),ﬂ:,"z;-

f,J=1

O produto AB define-se como sendo a matriz m x n, C = (ei/, cujo elemento ij é dado por
D

Ciy =D aub,, . (16.22)
k=1

Nota: O produto AB so se define quando o numero de colunas de A4 é igual ao numero de
linhas de B.

Se escrevemos A ;para a linha de ordem ide 4 e B’ para a coluna de ordem j de B e imagi-
namos estas como vectores p-dimensionais, entao a soma (16.22) é simplesmente o produto
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. Se A ¢ uma matriz-quadrada, provar que 4

. Seja A =[(1) i] Verificar que 42 =[

. Seja A =l'
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0 0 1 0[a] [ 1 02 0

1 00 oflo] |9 a b c dlloo 11 1066
(a)0100C=6;(b)[1492:|0100=|:1984:|.

0 0 0 1|4] |5 [0 0 1 O

Calcular, para cada alinea, AB — BA

12 2 4 1 1
@A=|(212|, B=|-4 2 0|;

1 2 3 1 21

C 2 0 0 3 1 =2
MmA=| 1 1 2|, B=| 3 =2 4|

-1 2 1 -3 5 1

"4™ = A™*", quaisquer que sejam os inteiros

m=0en=0.
2]ecalcular A",

1

01
cos 6 —sen 6 . , | cos 20 —sen 26
senf cos 8]’ Verificar que 4 = [sen 26 cos 26

I 11 1 2 3
Sejad ={0 1 1| Verificar que 4> = |0 1 2. Calcular 4* ¢ A*. Tentar escrever

]e calcular 4",

0 0 1 0 0 1
uma formula geral para A" e demenstra-la por indugdo.
Seja A =|: : (” Provar que A% = 24 —/ e calcular 4'%.

Determinar todas as matrizes 4, 2 x 2, tais que A? = 0.

(a) Provar que uma matriz A, 2 x 2, comuta com toda a matriz 2 x 2 se e sO se 4
comuta com cada uma das quatro matrizes

1 0 [0 l:l |:0 0] 0 Oj|
[oo}’ 0 o) 1 0J [01'
(b) Achar todas as matrizes A.
A equagdo A? = I é satisfeita por cada uma das matrizes 2 x 2

P P P

onde b e ¢ sao numeros reais arbitrarios. Determinar todas as matrizes 4, 2 x 2, tais que
A 2 == !.
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uma solugao particular b do sistema nao homogéneo. Adicionando b a cada vector v do

espago nulo de 7, obtemos todas as solugoes x = v + b do sistema nao homogéneo.
Seja k a dimensdo de M T)(a nulidade de T'). Se pudermos encontrar k solugdes indepen-

dentes v, ..., v, do sistema homogéneo, elas formarao uma base para N(7) e podemos

obter cada » em N(7T) formando todas as combinagGes lineares possiveis
U=flvl+ "'+tkuk,

onde 7, ..., I, sao escalares arbitrarios. Esta combinagéo linear chama-se a solugdo geral do

sistema homogeneo. Se b ¢ uma solugao particular do sistema nao homogéneo, entdo todas as
solugoes x sao dadas por

x=b+!lvl+"'+lkvk.

Esta combinagdo linear diz-se a solugao geral do sistema ndo homogéneo. Ao teorema
(16.18) pode entao dar-se a nova forma.

TeOREMA 16.19. SejaT:V,—V  umatransformagdotalque T(x) =y, onde x = (X}, ..., X, ),
Yy=Wpal,)e

yi=2aux, para i=12...,m.
=1

Seja k a nulidade de T. Se v, ..., v) sdo k solugdes independentes do sistema homogéneo

T(x) =0, e se b é uma solugdo particular do sistema ndo homogéneo T(x) = c, entdo a solu-
¢ao geral do sistema ndo homogéneo é

.’C=b+flt)1+"'+tkvk,

onde t Pl sao escalares arbitrarios.

Este teorema nido nos diz como determinar uma solugio particular b do sistema nido
homogéneo nem nos diz como determinar as solugdes v,, ..., vy do sistema homogéneo.
Diz-nos, apenas, o que pode obter-se quando o sistema nio homogéneo tem uma solugio.
O exemplo seguinte, embora muito simples, ilustra o teorema.

EXEMPLO. O sistema x + y= 2 admite como sistema homogéneo associado, x + y = 0.
Por tal fato, o espago nulo ¢ formado por todos os vectores de ¥, da forma (7, —2) com ¢
arbitrario. Porque (7, —t) = (1, —1), este € um subespago unidimensional de ¥, com base
(I, =1I). Uma solugao particular do sistema nao homogéneo & (0, 2). Por conseguinte, a
solugao geral do sistema ndao homogéneo é dada por
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X=2y4+ z= 35
y—2z=13
z=31.

Estas equagoes podem resolver-se sucessivamente, partindo da terceira ¢ caminhando em
sentido ineverso, para obtermos

z =31, y=134+2z2=13 4+ 62 =175, x=542y—z=35+4 150 — 31 = 124.

Ou,entdo, podemos continuar o processo de Gauss-Jordan convertendo em zeros todos 0s
elementos situados acima da primeira diagonal na segunda e terceira colunas. Multiplicando
a segunda linha de (16.27) par 2 e adicionando o resultado a primeira linha, obtemos

1 0 =331
01 =213
0 0 1|31

Finalmente, multiplicamos a terceira linha por 3 e adicionamos o resultado a primeira ¢ em
seguida multiplicamos a terceira linha por 2 e adicionamos o resultado a segunda para obter-
mos a matriz (16.25).

EXEMPLO 2. Um sistema com mais do que uma solugao. Consideremos o seguinte sistema
de 3 equagdes com 5 incognitas
2x =5y +4:z+ u—v=-3
X—2y+ z— u4+v=>,5 (16.28)
X—4y+6z42u—v=10.

A correspondente matriz ampliada €

2 =5 4 1 =1 | -3
1 =2 1 -1 1 5
1 —4 6 2 -1 10

Os coeficientes de x, y, z ¢ os segundos membros sao os mesmos do Exemplo 1. Se efetuar-
mos as mesmas operagdes linha referidas no Exemplo |, obtemos a matriz ampliada

1 0 0 —16 19| 124
01 0 =9 11| 75
001 -3 4| 31
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O correspondente sistema de equagOes pode resolver-se relativamente a x, y, z em fungao de u
¢ v dando-nos

x =124 + 16u — 19

y= 154 %u-—1lv

z= 3l 4+ 3u-— 4v.

Se fizermos u = t, e v=t,, com {, e ¢, nUmeros reais arbitrarios ¢ determinarmos x, y, z por
estas equagoes, o vector (x, y, z, u, v), em V,, dado por

(x, v,z,u,v) = (124 4+ 16¢; — 191, , 75 + 9, — 114,, 31 + 31, — 41, , 1, , 1,)

€ uma solugao. Separando as partes contendo T, e T,, podemos escrever a igualdade anterior
na forma

(x, v, z, u,v) = (124, 75, 31, 0,0) + 1,(16,9, 3, 1, 0) + 1,(—19, —11, —4,0, 1).

Esta equagao da a solugdo geral do sistema. O vector (124, 75, 31, 0, 0) & uma solugao par-
ticular do sistema nao homogéneo (16.28). Os dois vectores (16,9, 3, 1,0) e (=19, —11, —4,
0, 1) sao solugoes do correspondente sistema homogéneo. Uma vez que sao independentes,
constituem uma base para o espago de todas as solugoes do sistema homogéneo.

ExXempLO 3. Um sistema sem solugao. Consideremos o sistema

2x = Sy + 4z = =3
X=2y+4+ z= 5 (16.29)
x—4y+5z= 10.

Este sistema ¢ quase idéntico ao do Exemplo 1, excepto que o coeficiente de z na terceira
equagao se mudou de 6 para 5. A correspondente matriz ampliada é

2 =5 4| -3
1 =2 1 5
1 -4 5| 10

Efetuando as mesmas operagoes do Exemplo 1 sobre as linhas de matriz anterior que permi-
tiram a passagem de (16.24) a (16.27), obtemos a matriz ampliada

1 =2 1| 5
0 1 —2|13]. (16.30)
0 0 03l
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ay ap ag|l 0 0
oy doa dog 01 0

03, 032 aan | 0 0 1

A matriz a direita da linha divisoria € a matriz inversa que se pretendia obter, sendo a matriz
a esquerda dessa linha a matriz identidade.

Nao é necessario saber a priori se 4 € nao singular. Se A é singular (nao regular), podemos
ainda aplicar o método de Gauss-Jordan, mas acontecera que no processo de diagonalizagao

alguns dos elementos da diagonal virdao nulos e nao sera possivel transformar A na matriz
identidade.

16.20. Exercicios

Aplicando o método de Gauss-Jordan a cada um dos sistemas seguintes, determinar a
solugao geral, caso exista:

. x+y+3z=35 5.3x =2y +5z2+ u=1
2x —y +4z =11 X+ y—3z42u=2
-y + z= 3. 6x + y—4z +3u=1.
2.3x+2y+ z=1 6. x+y =32+ u=35
Sx +3y+3z2=2 2x =y + z—=2u=2
x+ y— z=1. Ix+y—=7z4+3u=3
33x4+2y+ z=1 7. x4+ y+2z+4 3u+ 4 =0
Sx+3y+3z2=2 2x +2y + 7z + 1lu + 140 =0
7x +4y + 5z = 3. 3Jx +3y + 6z + 10u + 150 = 0.
4. 3x+2y + z=1 8. x =2y 4+ z42u= -2
Sx +3y +3z=2 2x +3y— z—=5u= 9
Tx +4y + 5z =3 4 - y+ z— u= 5§
x+ y— z=0. Sx =3y +2z4 u= 3.

9. Demonstrar que o sistema x + y+ 2z =2,2x —y + 3z =2,5x — y + az = 6, tem uma
solugao unica se a # 8. Determinar todas as solugoes se a = 8.
10. (a) Determinar todas as solugoes do sistema

Il
I
—

5x +2y — 6z + 2u

X—y+ z— u= -2,

(b) Determinar todas as solugoes do sistema
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5x +2y —6z + 2u = —1
xX— y+ z2— u= -2

X+ y+ z =

11. Este exercicio mostra-nos como determinar todas as matrizes nao singulares 2 x 2. Pro-

var que
a b d —b
|: :||: j| = (ad — bo)l .
¢c d|| —c a

: ab|. . . . : .
Deduzir que o d |€ 030 singular se e sO se ad — bc # 0, caso em que a sua inversa €

1 d =b
ad —be| —¢ 4l

Determinar a inversa.de cada uma das matrizes dos Exercicios 12 a 16

2 3 4 1 2 3 47

12. 2 1 1. 01 2 3

-1 1 2 15. o sl

0 0 0 1]
1 2 2 01 0 0 0
13. |2 -1 1 2.0 2 0 0
1 3 2 030100
1 =2 1 16. 001020
14, | =2 S —41. 000 3 01
1 -4 6 000020

16.21. Exercicios varios sobre matrizes

I. Se uma matriz quadrada tem uma fila (linha ou coluna) de zeros, provar que é
singular.

2. Para cada uma das proposigoes seguintes relativas a matrizes n x n, dar uma demons-
tragao ou apresentar um contra exemplo.
(a) Se AB + BA = 0, entao A’B* = B*A4?,
(b) Se A e B sao nao singulares, entao 4 + B € nao singular.
(c) Se A e B sao nao singulares, entao AB € nao singular.
(d) Se A, B ¢ A + B sao nao singulares, entao A — B ¢ nao singular.



SOLUCOES DOS EXERCICIOS

Introdugao

I* 1.4. Exercicios (pg. 9)

. (@ 36° () 6° (o) 56 (@) §°+b () lab® +bc
2. (¢) lab* + be

pr+1 ab*i1

1 <5 © 7

':, ht

3. (b) 5, <

I 2.5. Exercicios (pg. 18)

A={1,-1},B={1},C={1}, D ={2},E = {1, —17},

F={1, =17, =8 + /47, —8 — \/47}.

2. ACc ABC AABCBB<C<CBCEBC FCCACS B CcSC,C<CE CCEF,
D< D,Ec E, Ec F, F< F. (Nao ter em consideragao as inclusoes “proprias™).

. (a) Verdadeiro (b) Verdadeiro (¢) Falso (d) Verdadeiro (e¢) Falso (f) Falso.

. (a) Verdadeiro (b) Verdadeiro (c) Verdadeiro (d) Verdadeiro (e) Falso

(H Falso.

241, 125 35 41, {1, 20, {1, 35, {1, 4}, {2,3}, {2, 4}, {3,4}, {1, 2,3}, {1, 2,4}, {1, 3,4},

{2,3,4},

6. (a) Falso (b) Falso (c) Falso (d) Verdadeiro (¢) Falso (f) Falso (g) Ver-
dadeiro (h) Falso (i) Verdadeiro.

17. (¢) A=C (d) sim (e) ndo

—
.

B

wa

I 4.4. Exercicios (pg. 42)
2. 1 =449 =164+ (=12 = (=" 1 +2 +3 4+ +n)

3 l+z+-4 4+

»
= P
—
|
N |
- -
| ——
-—
I
W] e
“"_—"
e
I
X | -
Il
=

5. =5
2n + 1)*
6. (b) A(1) Falsa. (c) 1 +2+---+n< "8 )

715
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7 n =3

I 4.7. Exercicios (pg. 48)

1. (a) 10 (b) 15 (c) 170 (d) 288 (e) 36 f 2
8. (b) n+1

9. Constante = 2
11. (a) Verdadeira (b) Falsa (c) Falsa (d) Falsa (e) Falsa (f) Falsa.

n

12.
n+1

I 4.9. Exercicios (pg. 52)

2' (al ] b2)1 (a'j ] b‘!,.)v (03 L] b?). (a.] » b][])! (as ] bs); (aﬁ » bs)a (a? L] bg)i (as » b.l.), (ag » bﬁ)l (alo ’ b])
3. (a) Falsa (b) Verdadeira (c) Verdadeira (d) Falsa (e¢) Falsa.

I* 4.10. Exercicios varios referentes ao método de indugdo (pg. 53)

I. (a) 10 (by 1 ¢y 7 (d) 21 (e) 680 (fH) 1
2. (b) 17 (c) 9 (d) Nao.

0 n-+1 i
5. a; =1, Ha,,:a,“l- ]ak
k=1 k=1 k=1

8. 2»

9. Verdadeira se cada a = 0.
11. n >4

Capitulo 1

1.5. Exercicios (pg. 68)

L. fQ)=3,/(-2)=~—1,=f2)= =3, /) =3, 1/fQ =}, fla+b)=a+b+1,
fla) +f(b) =a +b +2 fla)fb) =ab +a+b +1

S +g(2) =2, f(2) —g(2) =4, f(2)e(2) = =3, f(2)[g(2) = =3, f[g(2)] =0,
glf2)] = =2, fla) + g(—a) =2 + 2a, f(Ng(—1) = (1 +1)*

[

3. ¢0)=4,9(1) =2,9(2) =2,9(3) =2, 9(—=1) =6,¢(=2) =8, 1 = 1.
4. (a) Todo o x (b) Todo x e y(¢) Todo x e h (d) Todo y (e) Todo ¢ (f) Todo a.
5. (@) x| <2 () [yl (© =2} @ 0<a<4 (o) |s|] <4

() ]xl <2 x#0
6. (b) {x|0<x <1} (c) {x|2<x <4 (d) O dominio é vazio.

7. Intersectam-se quandox =0, 1, —1.
8. Intersectam-se quando x = —1, —3.
10. (1) px)=1 (b)px)=ix(x—1)+ 1| (¢) p(x) = ax(x— 1)+ |, a arbitrariory

(d) p(x) = ax(x— 1)+ b, a e b arbitrarios
. (a) p(x)=ax(l — x)+ b, a e b arbitrarios (b) p(x)= ¢, ¢ arbitrarios
(¢) p(x)= ax, a arbitrario  (d) p(x) = ¢, c arbitrario

@ ST
k=0 "

|

x* (c) ) Z x*

k=0

=

—
2

k-

-
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1.11. Exercicios (pg. 77)

5.

[nx] = TS |:x + %]

k=0

1.15. Exercicios (pg. 85)

1. (@ 2 (b) 4 (c) 6 (d 4 (e) 6 (h =6

2. Um exemplo. s(x) =35 se 0 <x <2, s(x)=-1 se 2<x<5§

5. ) 25 k(Vk +1—vk) =221 =3vV2 -V3 -5 -v6-V7)
6. (c) x=Lx=%§

7. (a) 13

10. @ fG)=1,/@4) = —1,f[f3)] =0

1. (a), (d), (e)
12. (a), (b), (¢)

1.26. Exercicios (pg. 100)

1.9 6. 2
2. 18 7. 0
3. 16 8. 0
4. 0 9. 6
5. 1 10. 11
21. (@ 0,3 (b) O

2. (@) & (b) ¢f2

23. p(x) = 6x — 6x*
24. p(x) = 4x + 8x* + 3x°
27. (1/A) [42 % f(x) dxsed #0;

2.4. Exercicios (pg. 113)

o e
(] N;M

S WN -
Wk S 89

5- ,112.
p 42 W2 1
T3 T T2 T2
; W2 W2 1
3 2 6
8. 1(10 — 4V/2)
17. (@) 922 (b) =/2 (¢

APOSTOL — 24

(b) p=14,p =15

I1.
12.
13.
14,
15.

16. 92

8 17. =78
1 18, 2392
-3 19. 5921
2 20. —2111

(b —a)f(B) se A = 0.

—6n

Capitulo 2

10.
11.

12

dr w

13.

14,

16.

5v/5 —3)

g
-

R RSN

9v3 — 1
27

Lz ]
Il
[

=
I

I
N}

717
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2.8. Exercicios (pg. 126)

Nota: Nos exercicios 1 a 13 n representa um inteiro arbitrario.

I. (b) in + nr

2. (@) le+21m (b) 2n7 ()

6. t +y) =
gix +)) 1 —tgxtgy
7. A=% B =33

A=Ccosa, B=Csenu

oo

9. C=(4 + B*). Se A*> + B* #0, escolher a de tal maneira que cos & = 4/c, sen a = B/C.

If A =B =0, escolher a.
10. C=2V2 «=5x/4
1. C=vV2,a=—n/4
12. = + nn
13. 37 4+ 2n%: = + 2nn

17. @) 1 =13  (b)
(h)y 3V3 —+2)

1 — 12

L=

18. I#* +2
19. 1 + #%/24
20. 0O

g‘n + 2nn

(c) ! (d 1

(d) @2n+ =

tgx +1gy : cotg (x + ) = cotg x cotgy — 1

cotg x + cotg y

) 2 () 0 (g o

21. 22 =2
22, 1n

23. V3 + /6

24. V3 + bx +senx + 7/65¢0 < x < 27/3; 2V/3 - 3x —senx + 5x/6se2#/3 < x <=

25. (x* = x%)[3 + cos x — cos (x2)
26. 1
27. 1

2.11. Exercicios (pg. 133)

5. 4+%/3 9. 8»
6. = 10. =/8
7. 2 1. =2
8. 4n 12, 2
2.13. Exercicios (pg. 136)

1. ﬂC2b3/3 5. ‘."-'2;“2

2. =/2 6. =%/4

3. 2#/3 7. =*

4. 33a/5 8. =2

h

17. 2 (B +4M + By)

18. (a) 8=/5 (b) 2= (c) 10=/3
2.15. Exercicios (pg. 140)

1. 60. libras/pé 3.

2. 125 joules; 0,8 metro 4.

13. 2
14, 32
5. 9n/2
9. 3+/10 13. (32 = 4\/3)m
10. =2 14, a=3%
1. 27V/3 15. 16V/3/3
12, ¢ 16. 4a5/5

(d) 164/15

(a) 441 joules
a=3b= -2

(b) 425 joules



5. 3750 libras/pe
6. 5000 libras/pe

2.17. Exercicios (pg. 142)
1. (92 + ab + b*)[3

5. 2/»
11. ¢ = al\-/3; C = a/(n + 1)1,‘!;

12. (a) wx) =x (b) wix) =

14. Todas trés.

Solugoes dos exercicios

7. 20000 libras/pé.
8. 21 800 libras/peé.

1

i ol

2/
2[n
1/
1

L=l =

x2 (e) wx) =x*

16. (@) L2 (b) L¥3 (c) L/\V3 B
17. (@) 7L/12 (b) 5L%8 (c) VISL[6

18. (@) 2L/3 (b) LY4 (¢
19. (a) 11L/18  (b) 31L%192
20. (@) 3L/4 (b) L35 ()
21. (a) 21L/32  (b) 19L5/240

23. (@) 6/= (b) 3V2]2
24, T =2mwsec: 803

2.19. Exercicios (pg. 148)

x + x22 + X33

2y +2)° + 8)°/3

5 4 2x +2x% + 8x%3
=2x + 2x* — Xx*

(3x® + 5x* + 136)/15

x + 3x32 — 3

2(x® — x32) 4 $(x%2 = x31%)
sen x

10. 1x® + sen(x?)

11. 3x® — 3x + cos(x*) —cos x
12, 3(x* —cos3x + 1)

i AR ol ol M

V2 L2

(©) V62L/12

V15 LJ5

(c) V190 L[20
22. p(x)=x*para0 < x< Ldax=3L/4

x19/5 + 2x5/3 — x3/5 — 2x%[3 + x* — x

13. 3(x® — x* + cos 3x — cos (3x%))

14. 3y* +3y —isen2y
x
15. 2seni —3cos2x + 3

16. i(x +=) +senx + ] sen2x
17. 0, £V/2

18. (¢) P(x) = i(x — [x]* — 3(x
20. (b) £(2) = 24,£05) = SA

- [xD  (d)
c) A=0

o
)

719
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Capitulo 3
3.6. Exercicios (pg. 164)
1. } 5. 2t 9. 0 13. 1
2. -1 6. —1 10. 0O 14. -1
3. 4 7. 1 11. 1
4. 1 8. 0 12, =1
22. a =(sen ¢ — b)/c se ¢ # 0; se ¢ = 0 nao existe solugao a menos que b = 0, em cujo caso

servira qualquer a.

23. a=(2 cos ¢ — b)/ se ¢ # 0; se ¢ = 0 ndo existe solugao a menos que b = 2, caso em que
servira um a qualquer.

. . n o
24. A tangente € continua para todo o valor de x, excepto em x = —~ +nm, comn inteiro; a

cotagente € continua para todo o valor de x, excepto em x = a1, com 7 um inteiro qualquer.

25. ftx) — 1 quando x — 0. Define-se f(0) = 1 para a continuidade em 0.
28. Nao.

29. Nao.

30. f(x) - 0 quando x — 0. Define-se f{0) =0 para a continuidade em 0.
32. f(x) — 0 quando x — 0. Define-se f(0) =0 para a continuidade em 0.

3.8. Exercicios (pg. 168)

1. x* —1,todo o x 6. —x, x>0

2. (x— 1) todo o x 7. sen \/_}, x>0

3. |x|, todo o x 8. Vsenx, 2kr < x < (2k + l)=, » inteiro.
4. 0, definida unicamente em x = 0. 9, J X +Vx,x>0

5. x,x=>0 10. A/x+\/’;+,,/x +Vx, x>0

11. =3 13. 1 15. 1 17. 0 19. 1

12. V3 14. 1 16. 2 18. 2 20. }

2. x*senx > 0; 0se x < 0.

22. 1sel < |x| </ 3;0 para os restantes valores de x.

<
23. xX*sex > 0;0sex<0

3.15. Exercicios (pg. 177)

1. gy) =y —1; todo oy
2. g(y) =3y —5); todo o y
3. g(y) =1 —y; todooy
4, g('}r) = y”a; todo o y

5

. g)=ysey < l;\/ysel <y < 165 (/8)* se y > 16.

3.20. Exercicios (pg. 183)

3. 0,099669 com arredondamento da sexta casa decimal.
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Capitulo 4

4.6. Exercicios (pg. 197)

f’(O) = l,f’(%) =0, /(1) = -1, f(=10) = =19
@ 1, -2 (b) 0,—-1 (c) 3, —4
2x + 3
4x® + cos x
4x3senx + x*cos x
—1/(x + 1)*
—2x/(x% + 1)* + 5x*cos x — x*sen x
—1/(x —1)?
sen x/(2 + cos x)*
2x% + 9x* 4+ 8x* 4+ 3x* +2x -3
- (* + x% + 1)
1 — 2(senx + cos x)
(2 — cos x)*

VO NAY B WN

S

11.

senx + xcosx 2x°senx
1 +x2 (1 +x)

13. (b) vo/32seg (c) — v, pés/segundo (d) 16 pés/seg.; 160 pés/seg; 167 peés/segundo.
() f) = vyt — 10 £# € um exemplo.

14. 3x%, onde x € a medida duma aresta.

12,

16. 3x12
- -1 28. —(x 2 4+4x 4+ 9

T 2vVx(1 + V)P b 21 + x%)
18. x12 Sl = x®)?
19. —3x52 2(1 — 2x)
20, VE 4+ a4 ol U T
21, —lx32 — Jx 3 — 1y

X COS X — Sen X

’s 1 —x 31. =

. _"_.—"_-2

va(l +-x) 32 1 4+ cosx
2+ Vx - (x + senx)*
23, —mmm=—
21 + VxR 4y d b
26. sec x (1 + 2 tg* x). " (ex 4+ d)?
27. x sec? x + tg x. 24 (2x* 4+ 3)senx + 4x cos x
' (2x* + 3)*

2 (2ax + b)(senx + cos x) + (ax*> + bx + c)(senx — cOs x)

) 1 + sen2x
36. a=d=1; b=c=
37. a=c=e=0; b=f=2;, d= -1

nx" —(n + Dx" + 1

38. (a) P




722 Calculo

wAxY — (20 + 20 — DX 4 (4 1P = —

(b) = 1)

4.9. Exercicios (pg. 204)

10.

11.

12.

13.

14.

1

N

16.

WoOoNALR NN

1,3

(@ -1,i (® =30 (© -2,3

(2n + 1)m, com n um inteiro qualquer.
a=-=2,b=4

a=1,b=0,c= -1

(a) x; +x,+a (b) Mx; +x2)

Tangente em (3, —3); intersecta a curva em (0, 0).

m=-=2b=-2a=%c=4}
a=2b=—c*

3 1
a=30b="3a

a=cosc,b =senc —ccosc

1 14+3Vx 31 +4Vx +5x

TV VR 2 + VR 4 Vx(x + Vo
a=—4, b=5 c¢c=~-1, d= -2

15
—_ 1
(a) 2 (b)y 2 (c) 3

(a) verdadeira (b) verdadeira (c) falsa se (@) # 0. O limite ¢ 2f (@) (d) falsa se

/(@ # 0.0 limite ¢ - £(a).

(@ D*f+g =0 +g/ID* + (1 + flg)D*¢ quando f(x) e g(x) nao sao 0.

D*(f-g) =g* D*f +[* D*g;

D*(flg) =(g* D*f — [* D*g)/g* quando g(x)# 0
(b) D*f(x) = 2f(x) Df(x)
(¢) f(x) = c para todo o x

4.12. Exercicios (pg. 211)

N

1
2
3.
4.
5
6

—2cos x(1 + 2senx)
S
xV1 4+ x?
(2x* — 4x) senx? — 2x cos x* + 2 senx® + 6x3 cos x*
~—sen2x cos (cos 2x)
nsen™ 1 xcos(n + 1)x
€Os x ¢os (senx) cos [sen(senx)]

2 senx(cos x senx® — x senx cos x°)
sen* x*

2/(sen® x)
16 cos 2x
sen? 2x



10.

11.

12.

13.

14,

15.

Solugoes dos exercicios

1 + 2x*

Vit

4(4 — x*)9i

2x2 (1 +x3)”3

1 —x8\1 — X3

—(1 + x%)~3/2

1 +2Vx + 4V xg(x)

8V x g(x)V x + g(x)

6 + 3x + 8x* + 4x® + 2x* + 3x°
(2 + xH)V3 + xh)2/3

,onde g(x) = ,Jx +vVx

16. f(x)=(x+1)% gx)=2x +1)*

17.

18.

19.

20.
21.
22,
23.
24,
25.
26.

27.

28.
29,

X h(x) h'(x) k(x) k'(x)

0 0 -10 0 5

1 1 5 1 12

2 2 4 2 -10

3 3 12 3 4

x | gx) | £

0 0 0

1 3 10

2 30 36
(@) 2xf'(x? (© fIfOIf"(x)
(b) [f’(sen’x) — f’(cos® x)] sen2x (d) T {fTf ()]}

(a) 75cm¥/seg (b) 300 cm?/seg (¢) 3x*cm?/seg
400 milhas por hora.

(a) 201\/5pés/seg. (b) 50\/2 pés/seg.

7,2 mi/hr

(a) e (b) 5/(4n) pés/min.;

¢ =1+ 36n

dV|dh = 757 pés’/pés; dridt= 1/(157) pés/seg.

— cm?3[sec
5 /

n =33
@ x=3% y=%1 (b V3

4.15. Exercicios (pg. 219)

3.

(b) ¢ =1, c‘='\/§

723



724 Calculo

6.

7.

(a-) U=}2’ U—'é
x + 1
(b) 0= __.‘ i : 01 se x>0
x4+ Vx4 xh+ ik

(b) / tem quando muito k + r zeros em |a, bl.

4.19. Exercicios (pg. 224)

1.

(FS]

o

9.

10.

(a) —g— (b) f decresce se x < 3/2; cresce se x > 3/2 (c) f'cresce para todo 0 x.

2 - 2 2
(a)iT\-'3(b)fcrescese|x|> T\--’B;decrcscese|x|<T\/l

(c) f'cresce se x > 0; decresce se x < 0.

. (a) £ 1 (b) fcresce se |x| > 1; decresce se|x|< 1 (c)f cresce se x > 0; decresce se x < 0.
. (@) 1,3 (b) fcresce se x < | ou se x > 3; decresce se 1 < x < 3;(c) /" cresce se x > 2; de-

cresce se x < 2.

(a) 1 (b)fcresce se x > 1; decresce se x < 1(c) /" cresce para todoox.
(a) nenhum (b) f cresce se x < 0; decresce se x > 0.

(c) f cresce se x< 0, ou se x> 0.

(a) 2'3 (b) fcresce se x < Q,ouse x > 2V3; decrescese 0 < x < 21/3.
(¢) f cresce se x <0, ouse x > 0;

.(a) 2 (b) fcresce se x < l,ouse | <x<2; decresce se 2<x<3, ouse x> 3

(c) f“crescese x < 1,ouse x> 3;decrescese 1 < x < 3.

(a) + 1 (b) f cresce se |x|< 1: decresce se |x|> 1 (c) /" cresce se —1/3 < x < 0, ou se
x> 1/3 decresce se x < —4/3, ou se 0 < x< V3.

(a) 0 (b) fcresce se x < —3,0use —3 < x< 0; decrescese 0 < x< 3,ousex>3(c)f
cresce se |x|> 3; decresce se |x|< 3.

Nota: Nos Exercicios 11,12 e 13 n,representa um inteiro qualquer.

11.

12.

13.

14.

(a) —-:l"—nn(b)fcresce se nn<x<(n+—;—)n;decrescese(n—%)n<x<nn(c)f

|
cresccsc(n—T)n <x<(n+ %)x;decrescese(n - —;—)n <x< (n+—i—)n.

(a) 2nn (b)fcresce para todo o x.
(c) f'crescese 2nn < x < (2n + 1)m;decrescese(2n—1)n < x< 2nm.

(a) (2n + %) n (b) fcresce para todo o x.

(c) / crescese(2n + %)n <x< (2n+—;-)n;dccresccsc(2n——;-)n<x<(2n+%)n.

(a) O (b) fcresce se x > 0; decresce se x < 0 (c) f'cresce para todo x.

4.21. Exercicios (pg. 227)

2.

3.

1
vy L metros de largo, % L de comprido.

1 .
Largura > \/ 24, comprimento \/ 24.



10.

12.
13.

14.

15.
16.
17.

18.
19.

20.
21.
22,
23.
24,

26.
27.

Solugoes dos exercicios 725

r= 2R/3 h = H/3
=4R, r=3V2R
Um retangulo cuja base ¢ dupla da altura.
Trapézio isésceles, base inferior o diametro, base superior o raio.

(a) 6 {9 3 _ _
(b) 8 +2V7,2 +2V7,5 —1/7
\'5

(a) 20 \/3 milhas por hora; $10,39.
(b) 40 \/2 milhas por hora; $16,97.
(c¢) 60 milhas por hora; $22.00.
(d) 60 milhas por hora; $27,00.
(e) 60 milhas por hora; $32,00.

/4
9 . 1
Cresce = -5 \/5 polegadas, angulo = arctg > \/5

(@) max =3V3r; min = 4r

(b) L
O retangulo tem por base 4P/(3n + 8), altura P(4 + n)/(6n + 16).
V=48rpara 0 <h <2; V =4n(4 + h)*/(%) para h > 2

A = 22212

m(t) =0 se r* 2 :'s: m(t) =7 - .'1t se r* < :'t

*4.23. Exercicios (pg. 235)

of af 2% a2
L o dd 2 L =4y — "";—=]2'2—83'——1 2 _ Qu2.
3 4x* — 8xy 3 4y 8x%) 3 X 'y 3 2y* — 8x%;
f _ o
= = —16xy
Oxdy Odyox *)
fe=s8en(x +y) + xcos(x +y): f, = xcos(x + y); f,, = —xsen(x + y);
Sz = 2c0s (x +y) — xsen(x + 1) f,., =f,» =cos(x + y) — xsen(x + y)
D,f=y +}"_l f_ x —xy = Dy f =0; Dy *f=" 2-"}'4; Dy ,f =D,,f=1 ")’_2

fe=x(x* 4+ )12 f, = y(x* + Vz)'”z [z = VHX® + )82,
w =X+ ) fy e = —xp(x? + )2

jfru: = 6x%y cos)(’zx’f) -—f9:r4v{ ;en(.r2r"')

fey = fuz = 6x)* cos (x*)?) — 6x°)° sen(x%)?)

fev = fue = 6,08 (2x — 3y) cos [cos (2x — 3y)] + 6sen? (2x — 3y)sen [cos (2x — 3))]
% _ 2 & " _
3x£v 3}3f —2x + y)x = 7 axf =4y — % a_f dx(x — y)®

fre = =3P 4 YA)782; f,, = —x(x* = 2p)(x* + p?)79/2;

fnr =fy: = )F(sz - yz)(x2 + y2)~5,"2




728 Célculo

26. 3
1/1 1
27.5(54-” +2—A)
4. (@) px) = —x>+x—1

35. (@) Pi(x) =x—13; Pyx)=x2—x+1; Pyx) =x>—3x? + Ix;
Pyx) = x* =23 + x? — 5 Py(x) = x5 — §x* + §x® — ix

Capitulo 6

6.9. Exercicios (pg. 276)

1. (a) 1 (b) (a + b)/(1 + ab)
2 0o (b 4 @ eV

. (a) (b) m (c) (d) T
3. Cresce se 0 < x < e, decresce se x > e; convexa se x > &2, concava se 0 < x < ¥,

, 10 nx +vV1 + x3)"

4, (ZX)’(I + x ) . \’m
5. x/(12+ x?) 1. 120 +Vx + 1]
6. x/(x* —4) —
7. 1)xlog x) 12. log(x +Vx* + 1)
8. (2/x) + 1/(xlogx) 13. 1)@ — bx?)
9. x/(x*—1) 14. 2 sen(log x)

15. —1/(xlog* x)

16. 4log|2 +3x| +C

17. xlog®|x| —2xlog |x| + 2x + C

18. ix*log|x| —§x*+ C

19. ix%log®|x| — ix%log|x| + }x* + C
20. 3

21. log |senx| + C

J.‘"'H xn-i-l

n+1 log fax] TR

+C se n# —1;

x3
23. ?(Iog2 |x| —3log|x| +3)+ C

24. logllogx| + C
25. =2

26. (-2 +loglxDV'1 +log|x| + C

Ylog®lax| + C se n= -1

4
27. 7 10g*|x| — fx*log? [x| + txtlog x| — rdext + C

34. 4logx
35. 3 +3logx.
36. aloga



6.17. Exercicios (pg. 290)

Solugoes dos exercicios

1. 3e3=1 6. 2-log?2
2. B8xets’ 7. iy log 2
3. —2xe® 8. (cos x)e*=z
. £ Ve 9, —(sen2x)e's’z
C2Vx 10. 1
eliz 11. e®e”
5. = = 12. etece”

13 #x—-1)+C

14 —e*Hx+1)+C 18. —}(x? +1)e-f‘ +C
15. #(x* -2x+2)+C 19. b = e2, a arbitrario
16. =de®*+x+3)+C 21, x*(1 + log x)

17. 2V/x = DeVz + C

24, a*x*1 4 ax*1a¢*" log a + a*a® (log a)*
25. 1/[xlog x log (log x)]
26. (1 + €212

1
27. x"’x"’[; + log x + (log x){l

1
28. (logx) (log log x + l—cE;)
29, 2x 1tlog x]og x

30.

———— [x — 2(log x)* + x log x log (log x)]
x :

22. 1 4 (1 +2x + 2x%)e*’
3. 4(e* + e )2

31. (senx)'+°°%% [cot®* x — log (senx)] — (cos x)'**=7 [tg * x — log (cos x)]

32, x¥VE(] — log x)
54x — 36x* + 4x® + 2x*

3. 3(1 — x)%3 — x)¥3(3 + x)*3
n n
by
— . i
34, ]_l[ (x — ay) Z" -
| -

6.19. Exercicios (pg. 293)
16. §

17. 3

18. shx=—5—-, chx=13/12

12
19. 31
20. 24

6.22. Exercicios (pg. 299)

1
12 —— se |x| <2 13
4 —x*

1
a1 4 2x — X%

se lx—l|<\/£

729



730

14.

15

16.

17.

18.

19.

20.

31

32.

33.

34,

35.

36.

37.
38.

39,

40.

41.

47.

Caélculo
1 COS X + senx
—_— se x| > 1 2], ————r— se kn<x<(k +
Ix[v/x2 =1 X 1/ sin 2x mex < B
Cos X 1 o X
. se x # (k + — ) m, k inteiro. 22, — 0 1
|cos x| 2 XV =% se 0 < x| <
/o
Vx 23, 1/(1 4+ x*) se x#1
W+ €x20 4x
24, ——— if |x| <1
I+ x* V1 — x*arccos x2)?
1 + x8
1
25. se x >1
___Zx_ se x %0 2x1/x — 1 arccos (1/V/x)
|x| (1 + x*)
27 3x + (1 + 2x*) arcsenx
sen2x . — 22 — y2)5/2
sen® x + cos? x x # (k + Pr = 4=
x
1 29, arcsenl—a—l + C
2(1 + x?) x +1
30. arcsen + C
1
—arctgi +C V2
a a
|
Tar arctg (\/b/ax) + cseab > 0;
a Va| + xV/]b|
] [ § ] — — | + C se ab <0
2 |a|V —ab 8 Vla| — x V|8
2 arct -1 +C
V7 & V7 ’
1
> [(1 + x*) arctg x — x] +C.
x3 2 +x -
5 arccos x — V1i—-x24+C
1
T(l + x?) (arctg x)? — x arctgx+Tlog(l +x)+C
(l+x)arctg\/;—\/;+c. 1 x
42. — (arctg x — +C
(arctg \/x)* +C. y arctgx————5)
i(arcsenx + xV'1 —x*) + C 43. arctge™ + C
(x —_— l)e.:m:lg: X
Voo + C 44. 5 log (1 + e_z'r) _arccolge ccltge + C.
e
arct -
(x ':/”e‘r 8° +C 45. aarcseng -Va*—-x*+C
2V'1 + x*
45, 20— — +cC
STy arcsen /7 — +

———

116 —alb —a)arcsen//i a+

—a

Wk —a)b—x)[2x —(@+b)] +C



Solugoes dos exercicios

6.25. Exercicios (pg. 310)

2.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22

log jx = 2| +log|x +5| +C
11 (x +20
28+ Dx + 3P

+C

X
— 2
=1 T8 T

3 . 3
@x + 12 2x + 1
2log|x = 1] +log(x* +x +1) + C

log |x + 1] — +C

X+ -;— arctg x — -—g— arctg (x/2) + C

2log|x| —log|x +1| +C
1
P 2 —
log |x| — §log (x +l)+2(x2+1) +C
9x% + 50x + 68 11 (x + 1)(x + 2)¢
G T 3 T | G

1
—_— 4 logilx+1 +C
x+l+ gl I

llog|x* —1| —log|x| + C
x+4loglx —2| —flog|x +3| +C
1 2 4 C
oglx —2[ ——— +
- -2
= arctg(x —2)+ C
4log|x + 1| —3log|x| —flog|x +2| +C
x +1 X
) —
ilog x—ll 2(x‘-'-—-l)+c
(x —1)°
tlog w1t
1
log |x| + 2_H+C
1 1 1 x =2
— o+ — 4z c
n + x2+slog +

lo —x+arctgx+ C
YTy :

|
%log (x—D/x+1) —Tarctgx+C

731



Solugoes dos exercicios 733

2L

"
6. (a) x>1 (c) Flax) — F(a); F(x) —-‘; +e; xell*t —e — F(;)

7. (a) ndo existe tal fungdo. (b) —2%log2 (c) Ix +1
9. (a) g(3x) = 3e*g(x) (b) g(nx) = ne""Vig(x) ) 2 (d C=2
10. f(x) = 6*'%(x), sendo g uma fungio periodica de periodo a.

12. (a) —Ae™® (b) 34 () A+1—le (d) elog2 -4
13. (b) ¢g+ney +n(n — 1)cy + n(n — 1)(n — 2)c,

(c) Sep(x)= kEO ckxk, entdo /™(0) = kEO k! (p ¢

16. (a) Fx*x + |x))
x|

(b) x —4x* se |x| <1; x—-éx|x|+a? se [x| > 1

€) 1 —e* ge x2>0; e —1 se x <0

|x
(d x se |[x| <1; ‘x3+——| se |x >1

17. f(x) = V(2x + 1)/=

18. (a) 3(0 —e®) (b) i#(1 —e™¥) () in[l — e (2t + 1)] (d) =
19. (a) log3 —2log2 (b) nao existe nenhum x real.

20. (a) verdadeira (b) falsa (c) verdadeira (d) falsasex <O0.

'S
25. (d) f “t"dr—n'e“(e’-— f,)
k=

27. (a) f(r)=2vr—ls€ >0
b) f(D=t—-3+4 € 0<r <1
© fy=t-%F+% s |1 <1
(d f(1)=1t s t <0; f(1)=e¢" -1 se t>0

— !
28. (b) C, = —22( LI b=1log2 (d) e*Li(e*2)

29. g(y) = —e¥; todooy
30. (b) constante = §

Capitulo 7

7.8. Exercicios (pg. 331)

2
8. (b) M-&-R,ondele \/— < 210,

7680
9. 0,9461 + R, onde|R|< 2-10%.
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7.11. Exercicios (pg. 338)

25. —ef2
26. e 12
27. eV

28. 4

29. 3

2. MHa* = b)/(a*b?)

1. 1 +xlog2 + ix*log*2
2. cosl + (cos1 —senl)(x —1) — }(2senl + cos 1)}(x — 1) + &(senl — 3 cos 1)}(x — 1)°
3 . x3 + x¥  59x% N x5
- XTETE T 720 T8
4. a=0, b=1, ¢c=—}
5. -3 10. 1 15. & 20. -2
6. alb 1. 1 16. -1 21. §loga
7. 3 12. logaflogh 17. ~—I 2. %
8. —% 13. 1 18. & 23. e
9. } 14. } 19. 1 24, &
30. a=2; limite=3}
33. f(0) =0; f(0)=0; f(0)=4; limite = e?
7.13. Exercicios (pg. 343)
1. 5. (alb)? 9. 1
2. =2 6. & 10. -1
3.} 7. 1V 2a 1. n(n + 1))2
4, —% 8. =2 12
13. 6 quando x —» 0; 4/r quando x — /2.

14. a=-3; b=23

15. a=4; b =1

16. (a) T(x)=tgx/2 — L sen x (b)

17. tE/L
At cos kt

18. - %

2

7.17. Exercicios (pg- 351)

— Ll —

e
-
<_
1

N LR W=

29.

S O b

8. ¢/2
9. 4w
10. 1
1. 0
12. 0
13. 1
14, 0

30. ¢=1; limite=1V3

32. (b) 11,55 anos

(c) 11,67 anos.

S(x):%x—%scnx (c) —;
15, 0 22. 1
16. 1 23. e
17. -1 24, &*'F
18. 1 25. —}
19. e 26. log2
20. 1 27. 1}
21, 1e 28. ¢ =1

limite =

=



Solugoes dos exercicios

8.5. Exercicios (pg. 362)

20.

.y = — ™

y =2 + a8

.y =1/(x* + x — xlog x)

2x

735

Capitulo 8

1/ 1 .
7. y= :‘!(l + ;)(C — e )

8. y =senx + C/senx

x — 2\2 1 !
9. ‘v.= (x_3)(x +;-_—2+C)
10. y =xT(x) + Cx
II. f(x) =1 +logx

12. Somente a fungao dada.

2x

—

(6% + 2 *\l/2 eF + e F\1/2 h
(a) y= (————-—) (b) y= ——(—e ) () y*= _sxx

_Ce3‘+2
Cedr — |

(@) y

8.7. Exercicios (pg. 364)

9.
10.
13.

15.

16.
17.
18.

© N O AW N

100 (1 — 2~ Y16) — 4.2 por cento.
Quatro vezes a quantidade inicial.

F

b+2 e + 2C b —1
sendo C=b—_“i (b) y =———= sendo C = ——

e — C b+2

(@) T=(ognlk (b) w(t)=(00b—-0n/b—a)

256(1 — e 1%) se 0 <t < 10;

v —\ mglk

16 + 166¢20-2" s8¢ ¢ > 10

1
(¢) 54,5 min (d) T=—1[1 +(600 — )k + (1400k — 1)e~*]

55°
19,5 libras.
54,7 libras.

Para a equagao (8.20), x = x, em_"'); para a equagao (8.22), = = Mk.

x =M1 +exp(—M | 'kw du) |
(a) 200 milhoes (b) 217 milhoes.

(a) 0,026 por ano (b) 0,011 por ano; 260 milhGes; 450 milhdes.
dx/dt = kx(1 —at); x = xpe*!t=at*/2);  curva (d)

8.14. Exercicios (pg. 381)

1.y =™ + cpe™®*

2. y =c¢,¢c082x + ¢, sen2x
3.

4. y = + e

Y = ¢y + et

= &*(c, cos Vax + Cy Sen V2x)
€5 + c.e7™

e*(cy cos x + ¢5 senx)

= ¢"(c, cos 2x + ¢, sen2x)

PN A
- e e e
I
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10.
11.
12.

13.

14.
15.
16.
17.
19.
20.

y = e *(¢c; + €3x)

y = e*(cy + px)

y =1 —jen

y = —cos (5x — 15)

a b - -
y=zetV 4 -eale1) ondea=2-V5b=2+V5

y = 2¢ **(cos x + senx)

u(x) = 3e2*-7 senSx; v(x) = 2e—22-7 gen3x

u(x) = 6(e** — e*)[5; v(x) =& —e ™

k =n*r*; fi(x) =Csennnx (n=1,2,3,...)

(b) Nao (c) se k# 0 a condigdo ¢é a, —a, # nn/k.
(@ y " —y=0

(b) y' =4y +4y =0

© y +y +3y=0

d y +4y =0

(e y—y=0

8.17. Exercicios (pg. 387)

@WNAMER LN -

e et e
WP = ow

14.
15.
16.

17.

Yy =0 + et —x

y =06 +0y —2x —x* =}

y =6 +cg + §x°

y = €*(c, cos V2x + ¢, senV2x) — & + Ex + §a% + §x°

y =€ + e + % +ix + 1x?

y =01 + e — 5 + jx —xF = 1P

y =(c; + }x)e** + coe™

= ¢, €OS 2x + Cysen2x + e~

= e ¥ + (c; + §x)e*

= 1€ % + coe* + 1e*

= e + (cy + §x)e* + }e**

=(c; + cox + 2% + x + 2

) = (c; + cox — log |x|)e ™

y=c, sen x + (¢, + log|cosec x + cotg x|) cos x — 2.

y =" + e + (e —e*)log(l + €) — xe* — 1

y =(c; + §x)e* + Je ™ + cpe ™ — § — §(e* + e ™) log (1 + &)
f(er + cox)e ™ se x<1oux>2,

y_|(a+bx)e“3*+},- se 1<x<2

y =, + e + Jxe™*

y = (¢; — §x)cos 3x + (¢c; — '5) sen3x

y =(c; — 4x)cos x + ¢, senx

y =¢;c08 x + (¢ + 3x) senx

y = ¢, €08 2x + cysen2x + xcos x + § senx

y = ¢, €08 2x + cysen2x + x senx — § COS X

y = ¢ + e — 1e¥(3 senx + €OS x)

y = ¢, senx + €, €08 X + 5¢*(3 sen3x — cos 3x)

S e e e e e
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8.19. Exercicios (pg. 393)

10.

11.

12.

NN IAhWN-

2V2
+ 140
A=C, m=k, f=a—1n
y = 3¢cos 4nx

C = (y; + vp)V2
y=4iVv6, y =-12y = -4/6
nx
3

; {senr+l—cosr se 0<t< 2n,
[I) =

y = —A sen —, sendo A positivo.

sent se > 2n

(@ 1/2=V2) () R<V2

r(t) =4gr* —ct + c(r - ;‘_v) log (l - ——)

“P
_ W ' kit
r(r) =ct + c(; — t) log (I - —-)

w

s

wvol W
r(r) = _k— og

w — kt

8.22. Exercicios (pg. 396)

“hWN -

11.
12.
14.
15.

y+3=0 6. (x2—)2 —1)) —2xy =0
y +2y=0 7. x =1y —xy=0

Yy —x=0 8. (x*—=4)y'—y=0
xy+y=0 9. y'+ytg x=0.

2xy' =y =0 10 VI=x2y +)2+1=0
(2= =1y —2xy=0

(X +2xy =y =2y =y =y +x*+2=0

X + y=—1 e simultaneamente uma curva integral e uma isoclinica.

y = Cx + C*envolvente: y = —1x*

8.24. Exercicios (pg. 400)

B

N

11.
12.
13.

14.
15.

y=ix*+cC

cos x = Cellcosy

HC +log|x + 1)) =1

y—=2=0C(y —1)e*

YP+2Vl-x2=C I
(y + 3)e® = e*(cos x —senx) + C
xX=1=C0O*+1)

f(x) = 2e571

f(x) =V5x% 4+ 1

f(x) = =log (1 + x?%)

y = C(x = 1)e*

arctg y + arcsen x = C.
(1 + (1 + x*) = Cx?
P(x +2) =Cx —2)

I +)* = Cx®*

S ©® N o

737

16. f(x) = £ 1; f{x) = sen (x + C); também aquelas fungdes continuas cujos graficos podem
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obter-se unindo porg¢oes das curvas y = sen(x +C) com partes das retas y = + 1. Um de tais

exemplos € f{x) = —1 para x = 0, f{x) = sen (x — %) paraQ <x < 3 n,f(x) = I para x = 3.

17. f(x) =C
18. f(x) = Ae"/C
19. f(x)=0
20. f(x) =0

8.26. Exercicios (pg. 403)

2. x* +y2 = y x y3
3. y=xlog|Cx| 2. }—}+log;=C
4. xX* +y* =Cx?
5. pF=C0x* + %) 10. tg 2 —ce
6. x*+2Cy=C% C>0 2x
7. HCx* —1) =x I (x + )P = CxYy?
8. arctg%-&-loglyI:C
8.28. Exercicios (pg. 412)
. 3x=2y=C 7. xy=C
2. x*=y'=C 8. y* —log(sen®*x) = C
3. X¥* 4y —-—Cx+1=0 9. (x —CP +)y* =C* —1
4. 2* +)y* =C 10. x* +)* =Clx +y) +2=0
5. 2 =x*=C 1. y = —2xlogx
6. ¥*=x+C
12 = : I 16 =31 —e1); b 3 3
. Y= —pxlogx .y =130 - ); =3 =
13. f(x) = Cx", ou f(x) = Cxi/" 17. y = —6x% + 5x + 1
14. f(x) = Cx"2, ou f(x) = CxV/&0 18. 59,6 sec
13 6 x
T ax 42

2
20. M sec, sendo R o raio da base e h a altura do cone.

94,
21, y=¢e"
22, ﬁ:—%x-r—Cx‘“’parax)0,ouy’=—%xparatodoox.
23. m=—l;y’log|y|=Le—h+ .

2
24. (a) a=0,b=1/4 (b) f(x)=2x"

25, (b)) y=e¥—e 73,
26. (a) 1/(t + 1) gramasemanos (b) 1 grama ' ano .

1
27. [1 — - (2- \/5) t]* gramas em ¢ anos; 2 + \/5 anos.
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28. (a) 365 e >%cidaddos em 7 anos  (b) 365(1 — &> 651 mortes em ¢ anos.
29. 6,96 milhas por segundo = 25,056 milhas por hora.

30. (a) minimo relativoem 0 (b) a = —%—, b= %Q (d) %
31. (b) minimo (c) %
Capitulo 9

9.6. Exercicios (pg. 422)

1. (@ 2i (b =i (@ =4 (d 184+i () =1+3 () 1+
(g O (h) 1 4+

2. V2 (b 5 © 1 @1 (@ V2 (@) V65

3@ r=20=}r (0 r=30=-kr () r=10=x () r=10=0
(e) r=2x30=5n/6 f) r=1,0=}x (g) r—2\2(}—41r
(h) r=2V20=~}= () r=0V20==}r () r=30=—}r

4, (a) y=0, x arbitrario (b) x>0,y=0 (c) Todooxey (d x=0,
yarbitrario; ou y =0, x arbitrario (e) x=1,y=0 0 x=1,y=0

9.10. Exercicios (pg. 429)

. @ i (b)) =27 (© =3 @ 1 (e 1+i () (42
(g v2i (h) =i

2. (@ y=0,xarbitrario (b) x=y =0 (c) x =0,y =(2n + 1)=, sendo n um
inteiro qualquer. (d) x =1,y == + 2n=, sendo n um inteiro qualquer.

3. (b) z=2nni, sendo n um inteiro qualquer.

6. c_=13a_ +ib_y) para k=1,2,.,n

10. (© V3 + 1 SV 3 +3i, —i

(d) a + bi, —a—b; =b +ai, b - ai, sendoa—‘,/"+\’ e b=
() a—bi, —a+bi, b+ai, —b —ai,sendoa e b os de (d)

1. (@ le"2 e (c) —w <arg(z) +arg(z,) < =

13. B = A/(b — &* + awi)

D

Capitulo 10

10.4. Exercicios (pg. 442)

1. (a) Converge  (b) 0 8. (a) Diverge

2. (a) Converge (b) -1 9. (a) Converge. (b) 1
3. (a) Diverge 10. (a) Diverge

4. (a) Converge (b) I1. (a) Converge (b) O
5. (a) Converge (b) O 12. (a) Converge (b) }
6. (a) Diverge 13. (a) Converge (b) O
7. 0

(a) Converge (b) O 14. (a) Converge (b)

Jrz -V

/!

(]
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15. (a) Converge (by O 23. N> 1/e

16. (a) Converge (b) O 2. N > /e

17. (a) Converge (b) &* 25. N > 1/e

18. (a) Diverges 26. N > 1/e

19. (a) Converge (b) O 27. N> \/ﬂ

20. (a) Diverges lo

21. (a) Converge (b) O 28. N> g <
22. (a) Diverge log (9/10)

b—a

—a ﬂfl ( k
+
k=0fa n

. b .
34. (c) Sejas,= ; ), e definir 7, analogamente como uma soma de 1

a n. Ambas as sucessdes {s | e [z, | convergem para o integral _l'z f(x)dx.

10.9. Exercicios (pg. 452)

22. (a) 1 (b) 2¢ -3 (c) e+1
23. (b) 5
24. (a) Idéntica (b) nao idéntica (c) ndo idéntica (d) idéntica.

*10.10. Exercicios sobre desenvolvimentos decimais (pg. 455)

1
2.
3. 3
4
5

10.14. Exercicios (pg. 461)

1. Divergente 8. Convergente
2. Convergente 9. Divergente
3. Convergente 10. Convergente
4. Convergente 11. Divergente
5. Convergente 12. Convergente
6. Convergente 13. Divergente
7. Convergente 14. Convergente

15. Convergente para s > 1; divergente para § <1
16. Convergente
17. Convergente
18. Convergente

10.16. Exercicios (pg. 465)

1. Convergente
2. Convergente
3. Convergente
4. Divergente
5. Divergente
6. Divergente

7. Divergente
8. Convergente
9. Convergente
10. Divergente
11. Convergente

12. Divergente
13. Convergente
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14. Convergente se 0 < r < 1, ou quando x = k , k inteiro qualquer.

10.20. Exercicios (pg. 474)

1. Simplesmente convergente.
2. Simplesmente convergente.

3. Divergente para s < 0, simplesmente convergente para 0 < s < 1; absolutamente con-
vergente para s > 1.

4. Absolutamente convergente 15. Divergente

5. Absolutamente convergente 16. Absolutamente convergente
6. Absolutamente convergente 17. Absolutamente convergente
7. Divergente 18. Absolutamente convergente
8. Divergente 19. Simplesmente convergente

9. Divergente 20. Simplesmente convergente

10. Simplesmente convergente 21. Divergente

11. Absolutamente convergente 22. Simplesmente convergente

12. Divergente 23. Divergente

13. Absolutamente convergente 24. Simplesmente convergente

14. Absolutamente convergente
25. Divergente para s < 0, simplesmente convergente para 0 < s < 1: absolutamente con-

vergente para s > 1. 38. Todo o z # | que satisfaga a |z| < 1.
26. Absolutamente convergente 39. |z| < i8S
27. Absolutamente convergente 40. Todo o=
28. Divergente 41. Todoo z#0quesatisfacaa0< |z—1] < 1
29. Absolutamente convergente 42. Todoo z#—1 que satisfaga @ |2z+3| < 1
30. Absolutamente convergente 43. Todooz=x +fycomx > 0
31. Absolutamente convergente 44. Todo o z que satisfaga a {2 + 1/z| > 1
32. Absolutamente convergente 45. Todo o z que satisfaga a |2 + 1/z| > 1
33. z=0 46. Todoo z # 0
34. Todo o0 z 47. |x¥ — k| < /4, k inteiro qualquer.
35. Todo o z que satisfaga a |z| < 3. 48. |x — k| < /6, k inteiro qualquer.
36. Todo o z

37. Todo o z excepto inteiros negativos.

l(]) 22(. )Exemcios de revisdo (pg. 480)
a) 0

(b) Convergesec < 1;0limiteé0sec < I;0limiteé 1 sec = 1; divergese ¢ > 1.

2. (@ 1  (b) omaior dos dois nuimeros a e b.

3. la + ia,

4. 31 +1/5)

5. 0 10. Divergente
7. Divergente 11. Divergente
8. Convergente se s < }; divergente se s > } 14. ¢ <3

9. Convergente 15. a>3
17. Quandoa = —1, ohmntee ar ; :quando a £ —1, o limite &€ 0.
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10.24. Exercicios (pg. 488)

1. Divergente

2. Convergente

3. Convergente

4. Convergente

5. Convergente
11. C
12.
13. 2
14, a=b=2¢ -2
15. a=1; b=1-3

T

16. (b) Ambos divergem

17. (¢) Divergem

11.7. Exercicios (pg. 500)

C = }: ointegral tem o valor } log §
C = }: ointegral tem o valor } log §

3

Convergente
Convergente

Divergente
Convergente

Sw©®ao

C = §V'2; o integral tem o valor 7 log V2

Capitulo 11

1. r=2;convergente para|z| < 2
2. r=2;convergenteparalz| < 2, z # 2
3. r=2;convergente para|z + 3| < 2, z# —1
4. r=}; convergente para |z| < }
5. r=1J; convergente para |z| < }
6. r=e; convergente para |z| < e
7. r=1; convergente para |z + 1< 1
8. r=+ =
9. r=4; convergente para |z| < 4
10. r=1; convergente para |z| < 1
11. r =
12. r=1/e
13. r=+oosea=kn, kinteiro; r= 1 sea # k.
14, r=e
15. r = max (a, b)
16. r = min(1/a, 1/b)

11.13. Exercicios (pg. 509)

1
2
3.
4. |x| <1; =x/(1 +x)*

A

lx| <1; 1/ + x?)
|x| <3; 1/3 —x)
x| <1; x/(1 —x)*

1

log (1 + 2x)

Xl <¥ T3

2x

Convergente

se s > I; divergente se §

<

—_—

1
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6. -3 <x<i$; —log(l —2x)

7. -2<x<2; —i— arctg x/2.

8. Todoo x; e~
9. Todoox;x*(ex— 1 —x—3ix*)sex#0,0se x=0

10. Todo o x; fr_—l)z sex#l;isex=1
22 Va2
BETY

23. a4 =4V2, 4, =0, a,=5V2, a;=0, a,=%V2

11.16. Exercicios (pg. 515)

3n — 2
L. apy, zzz IZ;E: T l;a" paran 2 0; f(x) =1 —3x*
(n + 4)n - 3) 10

= > =2x ——=x°
Qg (n+2)("+l)aﬂparan 0; f(x) X — 73X

2

3. Todoo x

4. Todoo x

5. Todoox;a=1,b=0
6. Todo o x; f(x)= ex
7. Todo o x; f(x)=ex— x— 1

8. Todo o x; f(x) = cos 2x

9. Todo o x, f(x) = x + sh 3x.

12 y=14+x+x*+43+---

13y = + bt 4+ o’ + o dhoat® + o
14,y =§x% + {435 + 5iox® + gygox" + -

mﬂxﬂ

15. y =

|
i

n!
n:

x xan .
16. )’=¢'o( +Zl(2 3I5-6)---[(3n = 1) (JHJ])

x3n+l .
+ "‘(x + Z G467 - [OBn) Gn + 1)])

= (___l)nxzn (_l)onEn 1
17. y=co(l+ on )) Zl Ten =1

18. @ =~1, a;, =0, a3 =3%; f(x)=(x+ 1)e*

-1
xnx o8 x2 se x #0; f(0) =4; f(r) = —2/*

7
19. 4, =0, g,=—5; f(x) = .

20. (c) V2 =1,4142135623
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21. (b) V3 = 1.732050807568877

Capitulo 12

12.4. Exercicios (pg. 525)

. @ 5,0,9) (b) (-3,6,3) (0 G,-1,4 (@ (=7,24,21) (o) (0,0,0)
5. x =13¢c; —¢3), y=3(2¢—0¢)

6. (a) (x+z,x+y+z,x+y () x=2 y=1 z=-I

7. (@ (x+2z,x+y+z,x+y+z (b) Un exemplo, x=-2, y=z= 1

8. (a) x+zx+y+z,x+yy (© x=-1, y=4 z=12
12. As diagonais de um paralelogramo intersetam-se ao meio.

12.8. Exercicios (pg. 531)

(a) -6 (b)y 2 (c) 6 (d) 0 (e) 4
(@) (A4-B)C =(21,28,-35) (b) A-(B+C)=64 (c) (A+B)C=72

-

2 4 =7
d) A(B-C) = (30,60, —105) () AJ(B-C) = (,E'TE'F,
5. Um exemplo: (1, =5, -3)
6. Umexemplo: x =—2,y = 1.
7. C=3-1,-2,2), D= 522, —1,10)
8. C=14(1,2,3,4,5) D=(i T 1=
' LR 11°44°33" 88 ' 55

9. (a) V74 (b) V14 (¢ V53 (d 5
10. @ (1,=Dou(~=L, 1 (® (L Dou(-L-1) © G 2) ou (=3, —2)
(d) (b, —a) ou (—b, a)

11. (a)

| I
— (@4, -1,5) (b)) —=(=2,-3,1) () —=(1,0,1)
V42 V14 V2

(d) :-.-(-5, —4, —1) (e) ,l-- (=1, =5,4)
V42 V42
122 Ae B, Ce D, CeE, DeE.
13. @ 2, -De(=2,1) ® @ De(=2-) () (1,2e(-1,-2)
14. Um exemplo: C=(8, 1, 1)
15. Um exemplo: C = (1, -5, —3).
16. P =11(3,4), = %(—4,3)
17. P=3(1,1,L1), Q= =3, -1,1,3)

1
18. +£—=(0,1,1)
V2
20. A soma dos quadrados dos lados dum paralelogramo qualquer ¢ igual a soma dos qua-
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drados das diagonais:
22. 4; 12¢/2

1
23. C =441,23,4,5), D=ﬁb&

2. C=1A, D=B —1A, sendo ' =(A  B)/(A A)

12.11. Exercicios (pg. 536)

1. B

2. 3B

3 6 3 -2 b 3 - e (—6 -3 2
® 577 © (75.7) 7 3)

5. 0, V3L vk

6. Tn/8

8. =/6

9. 0

10. (b) A equagdo € valida para x e y quaisquer se cos § = 1; se cos f# # 1 a unica solugao
ex=y=0.

14. Todas excepto (b).
17. (c) Todas excepto o teorema 12.4 (a).
18. (a) Todas

12.15. Exercicios (pg. 545)

1. @ x=y=1} b) x=-4, y=1 () x=4, y=—I

d x=1, y=6

x=% y=%

x=3,y=—4

Todoot # 0

(€) 7i—4G +j)

(b) j=B—A, k=¥C-B) (c) 3154 —14B + 50)

11. {4}, {B}, {C}, {D}, {4, B}, {4, C}, {4, D}, {B, C}, {C, D}

12. (a) Independente (b) Um exemplo; D=4 (c) Um exemplo: E=(0, 0, 0, 1);
(d) Escolhendo £=(0, 0, 0, 1) temos X =24 + B— C + 3E.

' 13. () t=0,v2, —\2
14. (a) {(1,0,1,0),(0,1,0,1),(2,0, —1,0)} (b) O conjunto dado (c¢) O conjunto dado.
17. {(0,1,1),(1,1,1),(0,1,0)}, {(0,1,1),(1,1,1),(0,0, 1)}
18. {(1,1,1,1),(0,1,1,1),(0,0, 1, 1),(0,0,0, 1)},
{(1,1,1,1),(0,1, 1, 1),(0, 1,0, 0), (0, 0, 1, 0)}
19. L(U) € L(T) < L(S)
20. Umexemplo: A ={E,,...,E,}, B={E, +E,E; +E,,...,E,, +E,E, +E}

f—
SYNwWN

12.17. Exercicios (pg. 548)
1. (@ -1-—i (b) —1+1i c) 1 —i (d -1+ () —1—1i
) 2—-i @ —i L) —-1+2i @ -3-2i () 2
2, Um exemplo: (1 + 4, =5 = 3i,1 = 3i)
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8. =/3
9. 34 —B +2C

Capitulo 13

13.5. Exercicios (pg. 557)

1. (b), (d) e (e).

2. (a) e (e).

3. (c), (d) e (e).

4. (b), (e), e (.

5. (a) Nao (b) Nao (c) Nao.
6. A, B, C, D, F sao colineares.

7. Intersetam-se em (5, 9, 13).

8. (b) Nio.

9. (@ 92 +8 +9 (b) }V65

13.8. Exercicios (pg. 563)

1. (c) e (e).
2. (a), (b) e (c).
3. () =14+t y=2+s+1 z=1+4
b) x=s5+t, y=1+s, z=5+4
4. (a)(1,2,00e(2, —3,-3. (b M={1,20 +s(1,1,2) +1(-2,4, 1)}
6. (a),(b), e () x=2y+z=-3
7. (a) (0, =2, —=1) e (-1, -=2,2)

(b) M ={0, -2, —1) +s(—1,0,3) + (3, 3, 6)}
8. Dois exemplos: (=5, 2, 6) e (—14, 3, 17).
9. (a) Sim (b) Dois exemplos: (1, 0, —1) e (—1, 0, 1).
0. (=25, -9
11. (a), (b) e (c) Nao.
13, x—y= -1

13.11. Exercicios (pg. 569)

1. (a) ("_21 3! _1) (b) (43 _5! 3) (C) (41 _49 2) (d) (8' lOs 4)
(e) (8,3,-7) () (10,11,5) (g (-2, -8, —-12) (h) (2, -2,0)

(i) (=2,0,4)
1 1
V26 V2054 V6
3@ Y (b)) W35 (o W3
4. 8i+j — 2k
6. (b) cos 6 € negativo. (c) \V'5
9. (a) uma solugdo é B = —i —3k (b) i—j— k ¢ a Unica solugdo.
11. (a) Trés possibilidades; D =B + C — 4 = (0, 0, 2, D=A+C—B=(4,-22),

D=A+B—-C=(-220 (b)) 16
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11.
12.
13.

d=35, r=25/(5+4cosbt + 3 senf)

d=13V2, r=1/(cost +send +3V/2), r=1/(cost +senf — } 2)
(a) r=1,5x 108/(1 + cos ); 7,5 x 107 quilometros (b) r=5 x 10"/(1 — cos 6);
2,5 x 107 quilometros

13.24. Exercicios (pg.592)

1.

2
3
4.
5
6
7

10.
11.

12.

13.
14.
15.
16.
17.
18.

19.
20.

21.

23.

24,
25.
26.

217.

Centro em (0, 0); focos em (+8, 0); vértices em (+ 10, 0); e=%

. Centro em (0, 0); focos em (0, +8); vértices em (0, +10); e=%
. Centro em (2, —3); focos em (2 + \/7, —3); vértices em (6, —3), (—2, —3); e= \/7/4

Centro em (0, 0); focos em (+4, 0); vértices em (+§, 0); e =4

. Centro em (0, 0); focos em (+ ﬁ/ 6, 0); vertices em (+ \/3/3, 0); e=}
. Centro em (—1, —2); focos em (—1, 1), (—1, —5); vértices em (-1, 3), (=1,=T7); e=1%

Tx2 + 16y* =7

(x +3) (y—4)y
6 T 9

(x +3)2  (y — 4y
9 T 16

(x + 4)*
9

(x — 8)° N (y + 2)*
25 9

(x = 2)° N (y — 1)
16 4

Centro em (0, 0); focos em (iZ\/fl—l, 0); vertices em (+10, 0); e=\/ﬁ/5

Centro em (0, 0); focos em (0, i2\/ﬁ); vértices em (0, +10); e=\/ﬁ/5

Centro em (—3, 3); focos em (—3 + \/3', 3); vertices em (—1, 3), (=5, 3); e=\/§/2

Centro em (0, 0); focos em (+5, 0); vértices em (+4, 0); e=5/4

Centro em (0, 0); focos em (0, +3); vértces em (0, +2); e=}

Centro em (1, —2); focosem (1 + \/1_3, —2); vértices em (3, —2),(—1,-2); e= }\/ﬁ

Xy

+(y—2p7 =1

=1

8(y +3)* S(x—2°
27 21

+1/23

4x* — y* =11

Vértice em (0, 0); diretriz x=2; eixo y=0

Vértice em (0, 0); diretriz x=—}; eixo y=0

1



28
29
30
31

32.
33.
34,
35.
36.
37.
38.

Vértice em (}, 1); diretriz x=—14; eixoy =1
Vertice em (0, 0); diretriz y=—1; eixo x=0
Vértice em (0, 0); diretriz y = 2; eixo x=0

Solugoes dos exercicios

Vértice em (—2, —}); diretriz y = —12; eixo x =—2

X2 = —y

y? = 8x

(x +4) = =8(y —3)

(y + 1) = 5(x — 3)
x=3=200+

(y —3)* = —8(x — 1)

x* —4xy +4y* +40x + 20y — 100 =0

13.25. Exercicios variados sobre cénicas (pg. 594)

0o NARW

15.
16.
17.
18.

B>0, A=1}1+V5)8

3bh

167

@ & (b) 2 (c) 48x/S
X212 + y*16 = 1
xX2—2xy+y2—-2x =2y =1
VP —4x* —4y +4x =0

@) e =v2/(p +2); focos em (V/2,0) e (—1/2,0)
(b) y=Cx* C#0

(4, 8)

(@ x=4%a (b) 27pq* =4d®
=3+ -9 =4

Capitulo 14

14.4 Exercicios (pg. 601)

1
2
3
4,
5
6

e

9.

10.

1.
12.
15.
20.

F(t) =(1,21,3* + 4F); F'(r) = (0,2, 61, 12%)

F'(r) = (—sent,sen2t, 2 cos 2t, sec® 1); F'(1) = (—cost,2cos 2t, —4 sen2t, 2 sec® 1tg 1)

(b) 6x* —3y* =4

F(r) = ((1 =22, —(1 =37, F(1) = (1 + )72, (1 + 12)32)

F(1) = (2¢',3¢*); F'(1) = (2¢', 3¢)

F(0) = @2t)(1 + 2, 1J(1 + %), =2t/(1 + %));

F' (1) = (2 = 29)J(1 + 22, =2t/(1 + ), (662 — 2)/(1 +
(3,.5.e—1)

(1 - V2, 1V2,l0g 1V2)

l l+el , 1l +e
(°g 2 T %3
(e —2,1 = 2/e)

0

G'(t) = F(r) x F'(r)
F(1) = }PA + 3B +1C + D

APOSTOL — 25

. F'() =(sht,2ch2t, =3¢ >, F"(t) = (cht,4sh 21,9 ¢ ).

%)%

749
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22, F(1) =A, F(3)=(6+3log3)A
23, F(x) =e"(x + 1)A — eA

14.7. Exercicios (pg. 610)

1. o) =03 —=3%i + 61 + (3 +3°)k:; a(r) = —61i + 6j + 6rk; v(t) = 32 (1 + )
2. o(t) = —senti +costj+ e'k: a(r) = —costi —sentj + e'k; v(r) =(1 + &)
3. o(t) =3(cost —rsent)i + 3(sent + tcost)j + 4k; a(r) = —3(2sent + tcos )i +
3(2cost — tsent)j; wv(r) = (9r* + 25)12
&

t t _
4, v(r)=(l—cosr)i+senrj+2cos;k: a(r)=senri+c05r;'—senik; (1) =2

5. or) =61i + 614 + 3k; a(r) =6i + 121j; v(t) =612 +3 )
6. v(r) =i +cosrj+sentk; a(r)= —sentj +costk; uv(1) = V2
9. A =abo®, B =a*w?

11. (b) 8eé*'/cos®* O

15. (a) x(r) =4cos2r, y(r) =3sen2t (b) x*16 + y*/9 =1

16. 37/4

14.9. Exercicios (pg. 615)

. (@) T=%V2(=3 +4j +5k); N=—8$i—2j (b) a=12V2T +6N
(1 4 )i + €*7j + ek

(1 + ez=)lf2(] b 2,_,2:)1;2

2. @ T=—(1 +e&*)13% +e7(1 +e*)yV2%; N =
(b) a=( + e2:)—1;'2[e2:.-7' + (1 + 2('2"')1-'I2N]

(@) T=3%+2%k; N=j (b) a=6N

@@ T=i; N==W2@G+k; (b) a=+v2N

(@) T=132+2j+k); N=1LIi+2j—2%k) (b) a =12T + 6N
@@ T=W2i+lj+3; N=-W2j+IV2k (b) a=N
Contra exemplo para b) e d): movimento sobre uma hélice.

Cownsw

. Um exemplo r(7) = 2 e cos tdti+ 2_|'e2' sentdtj+ ez’k; v(t) forma um angulo cons-
tante com k, mas a(?) nunca é zero nem paralelo a »(1).

12. (a) Sentido positivo. (b) 3  (¢) 2#/V/3

13. X3 +)¥4 =1

14. y* =4x; y* =8 —4x

15. (b) |A| || B| sen6

14.13. Exercicios (pg. 623)
1. 8a

2. V2@ -1)
3. 2%
4. 4(a® — b®)/(ab)

5. 2a(ch-T~/HT — 1)~ /3 alog (Y 2T/ + /chT
2 1 +/2
2V2n

7. 50

4
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16.

17.

. . T . . " .
qual r - 0 quando ¢ cresce indefinidamente; para «a = — € uma circunferéncia em torno

2
da origem; para 7/2 < « < = € uma espiral para a qual r cresce indefinidamente quando 6
cresce indefinidamente. :
Tome-se como semi-eixo positivo x a reta que vai desde a posigao observada a quatro
milhas de distancia a base de langamento. Continui-se ao longo desta reta trés milhas

(para evitar a possibilidade de o projectil voltar a base) e depois siga-se a espiral r = e’/ﬁ.
log Vx* + y* + arctg (y/x) = C

14.21. Exercicios de revisao (pg. 638)

1.

tg a = tg 6/(2 + tg?0)

3. (¢/m?, 2¢c/m)
4. (@) y —yo = mlx — xy) + c¢/m; tangente em (x, + c/m’, y, + 2¢c/m)
(b) y —yo = m(x — xo) — cm®; tangente em (x, + 2cm, y, + cm?)
6. (1 — Yoy — yo) =20(x 4+ x; = 2xp); Xpy = 2pyx — X1 )3
(x; = X0y = Yo) = 2(y; = yodx = xo) = (xy = x)(y; = Yo)
7. (@ (0,%)
(b) Escrever Q =(0, b(x)). Sef(0)+ 0 entao b(x) — f(0) + % quando x — 0. Doutro
modo, | b(x)|— + o quando x - 0.
8. r= : -;c — ; quando ¢ — 0.
13. (2,1),(=2, —1)
14. W2
A(r) 1
2 _ 2 — 3,2 ———
15. 3x% — ) =3 — —o—
2l. (a) f(9) = ksen(ﬂ_+ C), ouf(b) =k
(b) f(6) = Ce’’V¥*-1 onde k* > 1
(©) f(0) =(2/k)sec (8 + C), ou f(0) = 2/k
Capitulo 15
15.5. Exercicios (pg. 645)
1. Sim 8. Sim 15. Sim 22. Sim
2. Sim 9. Sim 16. Sim 23. Nao
3. Sim 10. Sim 17. Sim 24. Sim
4. Sim 11. Nao 18. Sim 25. Nio
5. Nao 12. Sim 19. Sim 26. Sim
6. Sim 13. Sim 20. Sim 27. Sim
7. Sim 14. Nao _ 2L Sim ' 28. Sim
31. (a) Nao (b) Nao (c) Nao (d) Nao
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15.9. Exercicios (pg. 651)

1. Sim; 2 5. Sim; 1 9. Sim; 1 13. Sim; n
2. Sim; 2 6. Nao 10. Sim; 1 14. Sim; n
3. Sim; 2 7. Nao 11, Sim; n 15. Sim; n
4. Sim; 2 8. Nio 12. Sim; n 16. Sim; n
: . 1 , 1 ..

17. sim;dim =1 +——2—nscnepar;—2—(n + 1) se n € impar.

18. sim;dim =lTnsenépar;—;—(n + 1) se n é impar.

19. Sim; k+ 1

20. N':w

21. (a) dim =3 (b) dim =3 (¢c) dim =2 (d) dim =2

23. (a) sea# 0e b+ 0, 0 conjunto € independente, dim = 3; se a ou b sao nulos, o conjunto

¢ dependente; dim = 2 (b) independente, dim = 2 (c) se a # 0, independente, dim = 3; se
a =0, dependente, dim = 2 (d) independente; dim = 3 (e) dependente; dim = 2 (f) inde-
pendente dim = 2 (g) independente dim = 2 (h) dependente; dim = 2 (i) independente;
dim = 2 (j) independente; dim = 2.

15.12. Exercicios (pg. 658)

1.
8.

10.

11.
12,
13.
14.

(a) Nao (b) Nao (c) Nao (d) Nao (e) Sim.

et

+ 1 L.
2 ),b arbitrario

@@ Ve +1 (b) glx) = b(x -

(m+1D2n+1) n+l
6n e+t

(c) 43 (d) g(1) = a(l — i1, a arbitrario

(a) Nao (b) Nao (c) Nao (d) Nao.

(c) 1 (d) e ~1

(c) m2n+d

2n + 1
In

b © g = u(ll -

(b) ) a arbitrario

15.16. Exercicios (pg. 669)

]‘

Se ® No

(@ e (b) W3, 1,1), Ve, =21
(@ I2(1,1,0,0), IV6(—1,1,2,0), V3, —1,1,3)

- 1
14/ — (1, =2,6,1)
(b) J\ 3(Il I! 0! l)l \42

—3log*3
-1

%uu

3
e —e) + - X3 1 —7e?

m — 2senx
§—ix
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Capitulo 16
16.4. Exercicios (pg. 675)

Linear, nulidade 0, ordem 2.

Linear, nulidade 0, ordem 2.

Linear, nulidade 1, ordem 1.

Linear, nulidade 1, ordem 1.

Nao linear.

Nao linear.

Nao linear.

Nao linear.

Linear, nulidade 0, ordem 2.

Linear, nulidade 0, ordem 2.

. Linear, nulidade 0, ordem 2.

Linear, nulidade 0, ordem 2.

Nao linear.

Linear, nulidade 0, ordem 2.

. Nao linear.

. Linear, nulidade 0, ordem 3

. Linear, nulidade 1, ordem 2.

. Linear, nulidade 0, ordem 3.

. Nao linear.

Nao linear.

. Nao linear.

Nao linear.

. Linear, nulidade 1, ordem 2.

. Linear, nulidade 0, ordem » + 1.

. Linear, nulidade 1, ordem infinita.

Linear, nulidade infinita, ordem 2.

. Linear, nulidade 2, ordem infinita.

N(T) € o conjunto das sucessOes constantes; 7(¥) é o conjunto das sucessoes com li-
mite 0.

(d) {1, cos x, sen x|} € uma base para T(V); dim T(V) =3, (e) N(T)=S (f) Se
T(f) = ¢f sendo ¢+ 0, entdo ¢ € T(V) pelo que se tem f{(x) = ¢, + ¢, COS X + ¢, sen X, se
¢, =0, entao ¢ =7 e f{x) = ¢, cos x + ¢, sen x onde c, € ¢, sao arbitrarios,mas nao simul-
taneamente nulos; se ¢, # 0, entdo ¢ = 2n e f(x) = ¢,, com ¢, arbitrario, mas nao nulo.

16.8. Exercicios (pg. 684)
Sim; x=uv, y=Uu

Sim; x=u, y=—v

Nao

Nao

Nao

Sim; x=log u, y=log v
Nao

—
IS P A ol ol e

B B B B B D B B B e et o et et et b b

)
hd

R R
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10. Sim; x =u—1, y=v-1
11. Sim; x =4 +w), y =130 —u)
12. Sim; x =4 +u), y =42 —w
13. Sim; x=w, y=v, z=u

14. Nio

15. Sl.l'n; X =u, y=%v, z=%w

16. Sim; X=u y=v, Z=W=—u-—10

17.Sim; x=u—l, y=v‘-—l, Z=W+]

18. Sim; x =4 —1, y=v-2 z=w-3

19. Sim; X=u, y=v—u z=w=—uv

20. Sim; x = }(u — v + w), y=3v—=-w+uw; z=%¥w—u+v)

25. (S4+ TP =S*+ST+TS+T7T%
(S+TP=S+TS*+STS +S*T+ST*+TST+T*S+7T°
26, (@) (S, y,z2)=x+y+z,x+y,x); (TSx,y,2) =(z,z+y,z+y +x);
(ST =TS)(x,y,z2) =(x + y,x —z, =y —2); S¥x,y,2) =(x,),2);
T*x,y,2z) =(x,2x + y,3x + 2y + 2);
(STP(x,y,z2) =(Bx +2y +2,2x + 2y + z,x + y + z);
(TSY(x,p,2) =(x +y +z,x +2y + 2z, x + 2y + 32);
(ST—TSP=Qx +y —z,x+2y +z, —x +y + 22);
(b) S Hu,v,w) =(w,v,u); T Nu,v,w)=w,v—uw=—r)),
(STYy N u,v,w) =(w,v —w,u —v); (TS)y Y u,v,w) =(w —v,0 — u,u)
© (T=Dxy,2)=0,x,x+y); (T=D¥x,yz2) =(0,0,x);
(T —D™x,y,2z) =(0,0,0) s¢ n>3
28. (a) Dp(x) =3 —2x + 12x%;, Tp(x) = 3x — 2x* + 12x%; (DT)p(x) = 3 — 4x + 36x%;
(TD)p(x) = —2x + 24x%; (DT — TDp(x) =3 —2x + 12x2;
(T2D* — D*T*p(x) =8 — 192x  (b) p(x) = ax, a um escalar arbitrario.
(c) p(x) =ax* + b,a e b escalares arbitrarios. (d) Todo o p de V.
31. (@) Rp(x) =2; Sp(x) =3 —x +x% Tp(x) =2x +3x* —x* + x4;
(STp(x) =2 +3x —x2 + x%; (TS)p(x) = 3x — x* + x*; (TS)Pp(x) = 3x — x* + x¥%;
(T2S%)p(x) = —x* 4+ x*; (S*T¥p(x) =2 + 3x — x* + x%; (TRS)p(x) = 3x;
(RST)p(x) = 2
(b) N(R) ={p|p(0) =0}; R(V)={p|p & constante}; N(S)={p|p é constante};
S(V)=V; NT)={0}; T(V)={p|p0) =0} () T =S
(d (TS =1—-R; S'T"=1
32. T ndo é biunivoca em V porque aplica todas as sucessOes constantes na mesma sucessao.

16.12. Exercicios (pg. 692)
1. (a) A matriz identidade I = (9,), ondc 9, = 1sej=kep, =0sej+*k.
(b) A matriz zeroO= (g ), onde cadaa = 0.

(c) A matriz (¢, onde (§,) é a matriz identidade da alinea (a).
' 01 0 00

1 0 0 01 0
2. (a)|: } (b)[ jl (c) OO 1 0O

010 0 0 1
0001 0
3. (@) —5i+7, 9 —12j

I 21 3 0 —7 -1 [3 0]
©) [1 —l:l’ [0 3] ) [ 12 Lo 3l

-
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4.

10.

11.

12.

13.

14.

15.

(a)

S I

(a)

(c)

(a)

(c)

(a)

(c)

Caélculo

o) |

4
0

|

(b) 1

I
(b) |0 O
I

we = (0,0, 2),
1

1
w, = (0, 1, 0),

-1 2
3
-5 5

1
1
1

0 1 1
0 1 -1

wy = (0, 1, 0)

wy = (0,0, 1)

|

} (d) f’] =j, ()2 = k, (’3 = i, ”'1 — (ln l), “"2 =(l! _l)

' 1 2
e, — ¢,; nulidade 0, ordem 2. (b) [5 4:| (c) a=35 b=4

3i + 4j + 4k; nulidade 0, ordem 3.
0 =2
-1 1
1 0
T(4i —j + k) = (0, =2): nulidade 1, ordem 2. (b) |:
0 1 3
0 0 =2
(5,0, —1); nulidade 0, ordem 2.
ey =i, ey =i+j, w =(,0,1),
(=1, =3, —1); nulidade O, ordem 2. (b) |0
ey =i, e;=j—i, w, =(1,0,1),
-1 -1 0
0l 0 -1
1 0 0O 0 0
0 0], 0O 0 0
0 1 0 0 1
1 1‘| P 0
0 -1 ! 10 -1
o 1/ |o 1
1 1 2
1" 1o 1
-1 -1 0
0| 0 -1



0 -1 1 0 -1 0
1 0 1 0 -1
16. 0 ,
0 0 0 -1 0 0
0o 0 1 0 0 0
L o L
1 —-1] [0 =2
17. ,
(1 1) |2 o]
2 =3] [-5 -12
18. ,
3 2| [ 12 —s]
0 0 0 0] 0 1
0100 0 0
19. (a) (b)
0020 0 0
0 0 0 3] 0 0
0 -1 0 ]
0 0 =2
(d) (e)
0 0 0 =3
0 0 0 0
20. Escolher (x*, x*, x, 1) co
. .[6000]
mamZdeTDCI:O200_'

16.16. Exercicios (pg. 700)

S © 2 O

o o o

0

Solugoes dos exercicios 757
-2
0
0
-1
0] 0 0 0 0]
0 0 0 2 0
(c)
9 0 0 0 6
0_ L0 0O 0 0
0 0 0] 0 0 -8 0
1 0 0 0 0 0 -—48
(f)
0 4 0 0 0 0 0
0 0 9 _0 0 0 0

mo uma base para V, e (x*, x) como uma base para W. Entdo a

3 4 - -
. B+C=10 2-|, AB=[ 2 _14], BA = —l 1: —z
-15 14 '
6 —5_] 7 =28 14
0 0 0
AC-B g], CA=|2 -8 4|, A(_2B—3C)=[_ig _f:]
4 —16 8 B
2. (a) ¢ b:l. a e b arbitrarios (b) {—20 a:l. a e b arbitrarios
I_0 0 -2b b
3. @) a=9, b=6, c=1, d=5 (b) a=1, b=6, ¢=0, d= =2
(-9 -2 =10 -3 5 -4
4. (a) 6 14 8 (b) 0 3 24
| -7 5 =5 12 =27 0
6. !
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0 ! 0 1
1 0 0 0 0 0
0o 0 0 1 0 -l
16.
-3 0 1 0 0 0
o 0o 0 0 0 1}
9 0 -3 0 1 0]

16.21. Exercicios variados sobre matrizes (pg. 712)
2 1
= [5 —1]
a

0 0] 10 fa b , , .
4. [ ] [ ] , € L } onde b e ¢ sao arbitrarios ¢ a € uma solugao qualquer
0 0 0 1 ¢c 1 —a

daequagao a’ —a + bc =0.
1 1 | 1 -1 1 | I | -1 =1 -1 -1
10. @) [—1 J‘ [1 -J‘{ l 1}‘[1 1}[ I —1}’[—1 1]‘
[ -1] [—1 1}
L—1 —=1J L=1 =1
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