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PREFACE

This preface expresses some personal thoughts. It is my chance to write about how
linear algebra can be taught and learned. If we teach pure abstraction, or settle for
cookbook formulas, we miss the best part. This course has come a long way, in living
up to what it can be.

It may be helpful to mention the web pages connected to this book. So
many messages come back with suggestions and encouragement, and 1 hope that
professors and students will make free use of everything. You can directly access
wehb.mit.edu/18.06/www, which is continually updated for the MIT course that is taught
every semester. Linear Algebra is also on the OpenCourseWare site ocw.mit.edu, where
18.06 became exceptional by including videos (which you definitely don’t have to watch
... ). 1 can briefly indicate part of what is available now:

Lecture schedule and current homeworks and exams with solutions
The goals of the course and conceptual questions

Interactive Java demos for eigenvalues and least squares and more
A table of eigenvalue/eigenvector information (see page 362)
Glossary: A Dictionary for Linear Algebra

Linear Algebra Teaching Codes and MATLAB problems

7.  Videos of the full course (taught in a real classroom).

I A

These web pages are a resource for professors and students worldwide. My goal is to
make this book as useful as possible, with all the course material I can provide.

After this preface, the book will speak for itself. You will see the spirit right
away. The goal is to show the beauty of linear algebra, and its value. The emphasis
is on understanding—/ try to explain rather than to deduce. This is a book about real
mathematics, not endless drill. 1 am constantly working with examples (create a matrix,
find its nullspace, add another column, see what changes, ask for help!). The textbook
has to help too, in teaching what students need. The effort is absolutely rewarding, and
fortunately this subject is not too hard.

The New Edition
A major addition to the book is the large number of Worked Examples, section by

section. Their purpose is to connect the text directly to the homework problems. The
complete solution to a vector equation Ax = b is Xpanicular + Xnulispace —and the steps

v
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are explained as clearly as I can. The Worked Example 3.4 A converts this explanation
into action by taking every step in the solution (starting with the test for solvability). 1
hope these model examples will bring the content of each section into focus (see 5.1 A
and 5.2 B on determinants). The “Pascal matrices™ are a neat link from the amazing
properties of Pascal’s triangle to linear algebra.

The book contains new problems of all kinds—more basic practice, applications
throughout science and engineering and management, and just fun with matrices. North-
west and southeast matrices wander into Problem 2.4.39. Google appears in Chapter 6.
Please look at the last exercise in Section 1.1. I hope the problems are a strong point
of this book—the newest one is about the six 3 by 3 permutation matrices: What are
their determinants and pivots and traces and eigenvalues?

The Glossary is also new, in the book and on the web. | believe students will
find it helpful. In addition to defining the important terms of linear algebra, there was
also a chance to include many of the key facts for quick reference.

Fortunately, the need for linear algebra is widely recognized. This subject is ab-
solutely as important as calculus. 1 don’t concede anything, when I look at how mathe-
matics 1s used. There is even a light-hearted essay called “Too Much Calculus™ on the
web page. The century of data has begun! So many applications are discrete rather
than continuous, digital rather than analog. The truth is that vectors and matrices have
become the language to know.

The Linear Algebra Course

The equation Ax = b uses that language right away. The matrix A times any vector x
is a combination of the columns of A. The equation is asking for a combination that
produces b, Our solution comes at three levels and they are all important:

1.  Direct solution by forward elimination and back substitution.
2. Matrix solution x = A~'b by inverting the matrix.
3.  Vector space solution by looking at the column space and nullspace of A.

And there is another possibility: Ax = b may have ne solution. Elimination may lead
to 0 = 1. The matrix approach may fail to find A~'. The vector space approach can
look at all combinations Ax of the columns, but b might be outside that column space.
Part of mathematics is understanding when Ax = b is solvable, and what to do when
it is not (the least squares solution uses AT A in Chapter 4).

Another part is learning to visualize vectors. A vector v with two components
is not hard. Its components vy and v, tell how far to go across and up—we draw
an arrow. A second vector w may be perpendicular to v (and Chapter | tells when).
If those vectors have six components, we can’t draw them but our imagination keeps
trying. In six-dimensional space, we can test quickly for a right angle. It is easy to
visualize 2v (twice as far) and —w (opposite to w). We can almost see a combination
like 2v — w.
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Most important is the effort to imagine all the combinations cv+dw. They fill a
“two-dimensional plane” inside the six-dimensional space. As [ write these words, 1 am
not at all sure that | can see this subspace. But linear algebra works easily with vectors
and matrices of any size. If we have currents on six edges, or prices for six products, or
just position and velocity of an airplane. we are dealing with six dimensions. For image
processing or web searches (or the human genome), six might change to a milhon. It
is still linear algebra, and linear combinations still hold the key.

Structure of the Texthook

Already in this preface, you can see the style of the book and its goal. The style is
informal but the goal is absolutely serious. Linear algebra is great mathematics, and |
certainly hope that each professor who teaches this course will learn something new.
The author always does. The student will notice how the applications reinforce the
ideas. 1 hope you will see how this book moves forward, gradually and steadily.

| want to note six points about the organization of the book:

1.  Chapter | provides a brief introduction to vectors and dot products. If the class
has met them before, the course can begin with Chapter 2. That chapter solves
n by n systems Ax = b, and prepares for the whole course.

2. | now use the reduced row echelon form more than before. The MATLAB com-
mand rref(A) produces bases for the row space and column space. Better than
that, reducing the combined matrix [ A /| produces total information about all
four of the fundamental subspaces.

3.  Those four subspaces are an excellent way to learn about linear independence and
bases and dimension. They go to the heart of the matrix, and they are genuinely
the key to applications. 1 hate just making up vector spaces when so many im-
portant ones come naturally. If the class sees plenty of examples, independence
is virtually understood in advance: A has independent columns when x = 0 is
the only solution to Ax = ().

4. Section 6.1 introduces eigenvalues for 2 by 2 matrices. Many courses want to
see eigenvalues early. It is absolutely possible to go directly from Chapter 3 to
Section 6.1. The determinant is easy for a 2 by 2 matrix, and eigshow on the
web captures graphically the moment when Ax = Ax.

5. Every section in Chapters | to 7 ends with a highlighted Review of the Key Ideas.
The reader can recapture the main points by going carefully through this review,

6.  Chapter 8 (Applications) has a new section on Matrices in Engineering.

When software is available (and time to use it), | see two possible approaches.
One is to carry out instantly the steps of testing linear independence, orthogonalizing
by Gram-Schmidt, and solving Ax = b and Ax = ix. The Teaching Codes follow
the steps described in class—MATLAB and Maple and Mathematica compute a little
differently. All can be used (oprionally) with this book. The other approach is to ex-
periment on bigger problems—like finding the largest determinant of a 1 matrix, or
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the average size of a pivot. The time to compute A~'b is measured by tic; inv(A)=b;
toc. Choose A = rand(1000) and compare with tic; A/b; toc by direct elimination.

A one-semester course that moves steadily will reach eigenvalues. The key idea
is to diagonalize A by its eigenvector matrix 5. When that succeeds, the eigenvalues
appear in S'AS. For symmetric matrices we can choose $~' = §T. When A is
rectangular we need UTAV (U comes from eigenvectors of AAT and V from ATA).
Chapters | to 6 are the heart of a basic course in linear algebra—rheory plus applica-
tions. The beauty of this subject is in the way those come together.

May | end with this thought for professors. You might feel that the direction
is right, and wonder if your students are ready. Just give them a chance! Literally
thousands of students have written to me, frequently with suggestions and surprisingly
often with thanks. They know when the course has a purpose, because the professor
and the book are on their side. Linear algebra is a fantastic subject, enjoy it.

Acknowledgements
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INTRODUCTION TO VECTORS

The heart of linear algebra is in two operations—both with vectors. We add vectors to
get v+ w. We multiply by numbers ¢ and o to get cv and dw. Combining those two
operations (adding cv to dw) gives the linear combinarion cv + dw.

Linear combinations are all-important in this subject! Sometimes we want one
particular combination, a specific choice of ¢ and 4 that produces a desired cv + dw.
Other times we want to visualize all the combinations (coming from all ¢ and d). The
vectors cv lie along a line. The combinations cv + dw normally fill a two-dimensional
plane. (I have to say “two-dimensional” because linear algebra allows higher-dimen-
sional planes.) From four vectors u, v, w, z in four-dimensional space, their combina-
tions are likely to fill the whole space.

Chapter | explains these central ideas, on which everything builds. We start with
two-dimensional vectors and three-dimensional vectors, which are reasonable to draw.
Then we move into higher dimensions. The really impressive feature of linear algebra
is how smoothly it takes that step into n-dimensional space. Your mental picture stays
completely correct, even if drawing a ten-dimensional vector is impossible.

This is where the book is going (into n-dimensional space), and the first steps
are the operations in Sections 1.1 and 1.2:

1.1 Vector addition v + w and linear combinations cv + dw.

1.2 The dot product v - w and the length |v| = /v v.

VECTORS AND LINEAR COMBINATIONS = 1.1

“You can’t add apples and oranges.” In a strange way, this is the reason for vectors!
If we keep the number of apples separate from the number of oranges, we have a pair
of numbers. That pair is a two-dimensional vector v, with “components™ v; and va:

vy vy = number of apples
P=
vz vz = number of oranges.

1



2  Chapter | Introduction to Vectors

We write v as a column vector. The main point so far is to have a single letter v (in
boldface italic) for this pair of numbers vy and vy (in lightface italic).

Even if we don’t add vy to v2, we do add vectors. The first components of v
and w stay separate from the second components:

VECTOR [ o [ w _[ v 4w
ADDITION "‘[n:] e “"[w»] litp "+w_[vz+w::l'

You see the reason. We want to add apples to apples. Subtraction of vectors follows
the same idea: The components of v — w are vy —wy and

The other basic operation is scalar multiplication. Vectors can be multiplied by
2 or by —1 or by any number ¢. There are two ways to double a vector. One way is
to add v 4+ v. The other way (the usual way) is to multiply each component by 2:

SCALAR o[ 2] g —w[ ™
MULTIPLICATION I 2m “Lew |

The components of cv are cvy and cvz. The number ¢ is called a “scalar”,

Notice that the sum of —v and v is the zero vector. This is 0, which is not
the same as the number zero! The vector 0 has components 0 and (0. Forgive me for
hammering away at the difference between a vector and its components. Linear algebra
is built on these operations v+ w and cv—adding vectors and multiplying by scalars.

The order of addition makes no difference: v + w equals w + v. Check that
by algebra: The first component is vy + wy which equals w; 4 vy. Check also by an

example: u+w=[;}+[;}=[;]=[;]+[;]=w+a

Linear Combinations

By combining these operations. we now form “linear combinations”™ of v and w. Mul-
tiply v by ¢ and multiply w by . then add cv 4+ dw.

DEFINITION The sum of cv and dw is a linear combination of v and w.

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv;

lv+ lw = sum of vectors in Figure 1.1

lv — lw = difference of vectors in Figure 1.1
Ov+0w = zero vector

cv+0w = vector cv in the direction of v

The zero vector is always a possible combination (when the coefficients are zero).
Every time we see a “space” of vectors, that zero vector will be included. It is this
big view, taking all the combinations of v and w. that makes the subject work.



1.1 Vectors and Linear Combinations 3

The figures show how you can visualize vectors. For algebra, we just need the
components (like 4 and 2). In the plane, that vector v is represented by an arrow. The
arrow goes vy = 4 units to the right and v, = 2 units up. It ends at the point whose
x, v coordinates are 4,2. This point is another representation of the vector—so we
have three ways to describe v, by an arrow or a peint or a pair of numbers.

Using arrows, you can see how to visualize the sum v + w:

Vector addition (head to tail) At the end of v, place the start of w.

We travel along v and then along w. Or we take the shortcut along v + w. We could
also go along w and then v. In other words, w + v gives the same answer as v + w.
These are different ways along the parallelogram (in this example it is a rectangle).
The endpoint in Figure 1.1 is the diagonal v + w which is also w + v.

|4 -1] _ |3 |4 -1] IS5
r+u=a]+[3]=[d] -w=[z]-[3]-[]
Figure 1.1  Vector addition v + w produces the diagonal of a parallelogram. The

linear combination on the right is v — w.

The zero vector has vy =0 and v» = 0. It is too short to draw a decent arrow,
but you know that v+0 = v. For 2v we double the length of the arrow. We reverse its
direction for —p. This reversing gives the subtraction on the right side of Figure 1.1.

2 A P .

\

Figure 1.2 The arrow usually starts at the origin (0,0); cv is always parallel to v.



4 Chapter 1 Introduction to Vectors

Vectors in Three Dimensions

A vector with two components corresponds to a point in the xy plane. The components
of v are the coordinates of the point: x = vy and y = v>. The arrow ends at this point
{v1, v7), when it starts from (0,0). Now we allow vectors to have three components
(v, 12, v3). The xy plane is replaced by three-dimensional space.

Here are typical vectors (still column vectors but with three components):

| 2 3
v=|2 and w= 3 and v4+w= |35
2 -1 |

The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the origin,
where the xyv: axes meet and the coordinates are (0, 0, 0), The arrow ends at the point
with coordinates v, v2, v3. There is a perfect match between the column vector and
the arrow from the origin and the point where the arrow ends.

From now on v = is also written as v =(].2.2).

bFd Iod

The reason for the row form (in parentheses) is to save space. But v = (1, 2, 2) is not
a row vector! It is in actuality a column vector, just temporarily lying down. The row
vector [ 1 2 2] is absolutely different, even though it has the same three components.
It is the “transpose™ of the column v.

Figure 1.3 Vectors [} ] and [E] correspond to points (x, v) and (x, v, 2).

In three dimensions, v + w is still done a component at a time. The sum has
components vy + w; and vz + w; and vs + ws. You see how to add vectors in 4 or
5 or n dimensions. When w starts at the end of v, the third side is v + w. The other
way around the parallelogram is w+ v. Question: Do the four sides all lie in the same
plane? Yes. And the sum v + w — v — w goes completely around to produce

A typical linear combination of three vectors in three dimensions is u +4v —2w:

| 1 2 1
Linear combination O|+4]12]|=2] 3|=12

3 | —1 9




1.1 Vectors and Linear Combinations 5

The Important Questions

For one vector u, the only linear combinations are the multiples cu. For two vectors,
the combinations are cu+dv. For three vectors, the combinations are cu+dv4ew. Will
you take the big step from one linear combination to all linear combinations? Every ¢
and d and e are allowed. Suppose the vectors &, v, w are in three-dimensional space:

1 What is the picture of all combinations cu?
2 What is the picture of all combinations cu + dv?
3  What is the picture of all combinations cu + dv + ew?

The answers depend on the particular vectors u, v, and w. If they were all zero vec-
tors (a very extreme case), then every combination would be zero. If they are typical
nonzero vectors (components chosen at random), here are the three answers. This is
the key to our subject:

1 The combinations cu fill a line.
2 The combinations cu + dv fill a plane.
3  The combinations cu + dv + ew fill three-dimensional space.

The line is infinitely long, in the direction of u (forward and backward, going through
the zero vector). It is the plane of all cu + dv (combining two lines) that 1 especially
ask you to think about.

Adding all cu on one line to all dv on the other line fills in the plane in Figure 1.4.

Plane from
all cu + dv

Line from

L]
L~
L]

AN

L ARAY
ALY

AN AN

(@) (b)

Figure 1.4 (a) The line through m. (b) The plane containing the lines through
u and v.

When we include a third vector w, the multiples ew give a third line. Suppose
that line is not in the plane of ¥ and v. Then combining all ew with all cu + dv fills
up the whole three-dimensional space.
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This is the typical situation! Line, then plane, then space. But other possibilities
exist. When w happens to be cu +dv. the third vector is in the plane of the first two.
The combinations of u, v, w will not go outside that wv plane. We do not get the full
three-dimensional space. Please think about the special cases in Problem 1.

®= REVIEW OF THE KEY IDEAS =

1. A vector v in two-dimensional space has two components vy and v;.

2. v+w=(v;+w, v2+w;z) and ¢v = (cvy, cvz) are executed a component at a
time,

3. A linear combination of u and v and w is cu 4 dv + ew,

4.  Take all linear combinations of u, or # and v, or @ and v and w. In three di-
mensions, those combinations typically fill a line, a plane, and the whole space.

® WORKED EXAMPLES =

1.1 A Describe all the linear combinations of v = (1, 1,0) and w = (D, 1, 1). Find
a vector that is nor a combination of v and w.

Solution  These are vectors in three-dimensional space R*. Their combinations cv+
dw fill a plane in R?. The vectors in that plane allow any ¢ and d:

1 0 (o
cv+dw=c| 1 +d| 1 =| c+d
0 | d

Four particular vectors in that plane are (0,0,0) and (2,3.1) and (5,7,2) and
(+/2,0, —/2). The second component is always the sum of the first and third compo-
nents. The vector (1, 1, 1) is nor in the plane.

Another description of this plane through (0,0,0) is to know a vector perpen-
dicular to the plane. In this case m = (1, —1, 1) is perpendicular, as Section 1.2 will
confirm by testing dot products: v« n=0and w-n = 1.

11 B Forv=(10)and w= (0, 1), describe all the points ¢v and all the combi-
nations cv + dw with any d and (1) whole numbers ¢ (2) nonnegative ¢ = 0.
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Solution

(1) The vectors cv = (¢, 0) with whole numbers ¢ are equally spaced points along
the x axis (the direction of v). They include (-2, 0), (—1, 0), (0,0}, (1,0), (2, 0).
Adding all vectors dw = (0, d) puts a full line in the y direction through those
points. We have infinitely many parallel lines from cv + dw = (whole number,
any number). These are vertical lines in the xy plane, through equally spaced
points on the x axis.

(2) The vectors cv with ¢ = 0 fill a “half-line”. It is the positive x axis, starting at
(0,0) where ¢ = 0. It includes (x. () but not (—m.0). Adding all vectors dw
puts a full line in the y direction crossing every point on that half-line. Now we
have a half-plane. It is the right half of the xy plane, where x = 0.

Problem Set 1.1

Problems 1-9 are about addition of vectors and linear combinations.

1 Describe geometrically (as a line, plane, ... ) all linear combinations of
| 4 | 0 | 0 |
(a) 1| and | 4 (b) 0] and | 1 (c) Oland | 1| and | |
I 4 0 1 0 | |
2 Draw the vectors v = [}] and w = [}] and v + w and v — w in a single
xy plane.

3 IKfv+w=[]]and v—w=][}]. compute and draw v and w.

4 From v =[}]and w = [}]. find the components of 3v + w and v — 3w and
cv + dw.

5 Compute u + v and u + v+ w and 2u + 2v + w when

6  Every combination of v = (1, =2, 1) and w = (0, 1, —1) has components that
add to . Find ¢ and d so that cv + dw = (4, 2. —6).

7 In the xv plane mark all nine of these linear combinations:

f[?]+d[?] with ¢=0,1,2 and d=0,1,2.
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*

The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum.

If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all the
possible fourth corners? Draw two of them.

0,0,1)

(1.0.0)

Figure 1.5  Unit cube from i, j, k: twelve clock vectors.

Problems 10-14 are about special vectors on cubes and clocks.

10

1

12

13

14

Copy the cube and draw the vector sum of i = (1,0,0) and j = (0, 1,0) and
k = (0,0,1). The addition i + j yields the diagonal of

Four comers of the cube are (0,0,0), (1.0,0), (0, 1,0), (0,0, 1). What are the
other four corners? Find the coordinates of the center point of the cube. The
center points of the six faces are

How many comers does a cube have in 4 dimensions? How many faces? How
many edges? A typical comer is (0,0, 1, 0).

(a) What is the sum V of the twelve vectors that go from the center of a clock
to the hours 1:00, 2:00, ..., 12:00?

(b) If the vector to 4:00 is removed, find the sum of the eleven remaining vec-
tors.

{c) What is the unit vector to 1:007
Suppose the twelve vectors start from 6:00 at the bottom instead of (0, 0) at the

center. The vector to 12:00 is doubled o 2j = (0,2). Add the new twelve
vectors.

Problems 15-19 go further with linear combinations of v and w (Figure 1.6)

15
16

The figure shows %n+ %w. Mark the points %u+ ;:-w and ﬁt:ai- lxw and v 4 w.

Mark the point —v + 2w and any other combination cv +dw with ¢ +d = 1.
Draw the line of all combinations that have ¢ + d = 1.
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17  Locate fv+ iw and 3v+ w. The combinations cv + cw fill out what line?
Restricted by ¢ > 0 those combinations with ¢ = d fill out what half line?
18 Restricted by 0 <¢ <1 and 0 < d < 1, shade in all combinations cv + dw.
19 Restricted only by ¢ = 0 and d = 0 draw the “cone” of all combinations cv+dw.
Problems 20-27 deal with &, v, w in three-dimensional space (see Figure 1.6).

20 Locate ‘i“ + ju + 3—w and 1 s+ =,-w in the dashed triangle. Challenge problem:
Under what restrictions on |f' d,e, “will the combinations cu + dv + ew fill in the
dashed triangle?

21  The three sides of the dashed triangle are v — w and w — v and u — w. Their
sum is . Draw the head-to-tail addition around a plane triangle of (3, 1)
plus (=1, 1) plus (-2, =2).

22  Shade in the pyramid of combinations cu+dv+ew withc > 0,d >0, ¢ > 0 and
c+d+e < |. Mark the vector %{u +v+ m) as inside or outside this pyramid.

Figure 1.6  Problems 15-19 in a plane Problems 20-27 in 3-dimensional space

23 If you look at all combinations of those m, v, and w, is there any vector that
can't be produced from cu + dv + ew?
24 Which vectors are combinations of u and v, and alse combinations of v and w?

25 Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line.
Draw vectors &, v, w so that their combinations cu + dv + ew fill only a plane.

26 What combination of the vectors [;! and [;:] produces [1;}? Express this

question as two equations for the ients ¢ and & in the linear combination.

27  Review Question. In xvz space, where is the plane of all linear combinations of
i=1(1,0,0) and j = (0, 1,0)?
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28 If (a,b) is a multiple of (¢, d) with abed # 0, show that (a, c) is a multiple of
(b, d). This is surprisingly important; call it a challenge question. You could use
numbers first to see how a, b, ¢, d are related. The question will lead to:

If A=[2%] has dependent rows then it has dependent columns.
And eventually: If AB = [} %] then BA = [} 1]. That looks so simple. ..

LENGTHS AND DOT PRODUCTS = 1.2

The first section mentioned multiplication of vectors, but it backed off. Now we go
forward to define the “dor product” of v and w. This multiplication involves the sepa-
rate products vyw; and vaws, but it doesn’t stop there. Those two numbers are added
to produce the single number v - w.

DEFINITION The dot preduct or inner product of v = (vy, v2) and w = (wy, wa)
15 the number

V= vy = v3un (1)

Example 1 The vectors v = (4,2) and w = (-1, 2) have a zero dot product:

g

In mathematics, zero is always a special number. For dot products, it means that these
fwo vectors are perpendicular. The angle between them is 90°. When we drew them
in Figure 1.1, we saw a rectangle (not just any parallelogram). The clearest example
of perpendicular vectors is i = (1,0) along the x axis and j = (0, 1) up the y axis.
Again the dot product is i - j =040 =10. Those vectors i and j form a right angle.

The dot product of v = (1,2) and w = (2, 1} is 4. Please check this. Soon that
will reveal the angle between v and w (not 90°).

Example 2 Put a weight of 4 at the point x = —1 and a weight of 2 at the point
x = 2. The x axis will balance on the center point x = 0 (like a see-saw). The weights
balance because the dot product is (4)(=1) + (2)(2) = 0.

This example is typical of engineering and science. The vector of weights is
{wy, ws) = (4,2). The vector of distances from the center is (v, 12) = (=1, 2). The
weights times the distances, wyv) and wsvs, give the “moments”. The equation for the
see-saw 1o balance is wyuvy + waws =0,

The dot product w - v equals v - w. The order of v and w makes no difference.

Example 3 Dot products enter in economics and business. We have three products to
buy and sell. Their prices are (py, p2, p3) for each unit—this is the “price vector” p.
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The quantities we buy or sell are (q1, g2, g3)—positive when we sell, negative when
we buy. Selling g, units of the first product at the price py brings in ¢y p. The total
income is the dot product g - p:

Income = (g1.q2.q3)« (p1. p2. p3) = qupi + q2p2 + Gaps.

A zero dot product means that “the books balance.” Total sales equal total purchases
if ¢ - p = 0. Then p is perpendicular to g (in three-dimensional space). With three
products, the vectors are three-dimensional. A supermarket goes quickly into high
dimensions.

Small note: Spreadsheets have become essential in management. They compute
linear combinations and dot products. What you see on the screen is a matrix.

Main point To compute the dot product v « w, multiply each v; times w;. Then add.

Lengths and Unit Vectors

An important case is the dot product of a vector with itself. In this case v = w. When
the vector is v = (1, 2, 3), the dot product with itself is v.v = 14:

1 1
v.o=|2]-|2|=14+44+9= 14,
3 3

The answer is not zero because v is not perpendicular to itself. Instead of a 90° angle
between vectors we have 0°, The dot product v - v gives the length of v squared.

DEFINITION The length (or norm) of a vector v is the square root of v

length = |lv]| = v -1,
E |

In two dimensions the length is ,/vi + vi. In three dimensions it is \/v7 + v + v
By the calculation above, the length of v = (1,2, 3) is |v]| = /14

We can explain this definition. |[v]| is just the ordinary length of the arrow that
represents the vector. In two dimensions, the arrow is in a plane. If the components
are | and 2, the arrow is the third side of a right triangle (Figure 1.7). The formula
a® 4+ b* = 2, which connects the three sides, is 12 + 22 = [v|%.

For the length of v = (1,2, 3), we used the right triangle formula twice. The
vector (1, 2,0) in the base has length /5. This base vector is perpendicular to (0,0, 3)
that goes straight up. So the diagonal of the box has length ||v]] = /5 + 9 = V4.

The length of a four-dimensional vector would be v/ u_'f + ug + v +v;. Thus
(1.1,1,1) has length ¥17+ 17+ 12417 = 2. This is the diagonal through a unit
cube in four-dimensional space. The diagonal in n dimensions has length /.
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©,2) gy /(1,2,3) has length V14

u'2 =+ u—z. + lr§
2

+2¢ .
14 = 12422432

Ln
|

: *(0,2,0)
{I.!'.}.'I})/‘ T :*‘I{I.Z.{]]l has length /3

Figure 1.7  The length /v - v of two-dimensional and three-dimensional vectors.

The word “unit™ is always indicating that some measurement equals “one.” The
unit price is the price for one item. A unit cube has sides of length one. A unit circle
is a circle with radius one. Now we define the idea of a “umt vector.”

DEFINITION A unit vector u is a vector whose length equals one. Then u-u = 1.

An example in four dimensions is u = (§. 3. %, 3). Then w-wis j+3+5+3=1
We divided v = (1, 1,1, 1) by its length ||v|| = 2 to get this unit vector.

Example 4 The standard unit vectors along the x and y axes are written i and j. In
the xy plane, the unit vector that makes an angle “theta” with the x axis is (cos#, sin#):

s £=[1] i 1= [7] o [250],

When & = 0, the horizontal vector u is i. When 8 = 9%0° (or } radians), the vertical
vector is j. At any angle, the components cos# and sin@ produce u - u = 1 because
cos® A +sin®# = 1. These vectors reach out to the unit circle in Figure 1.8, Thus cos@
and sinf are simply the coordinates of that point at angle # on the unit circle.
In three dimensions, the unit vectors along the axes are i, j, and k. Their components
are (1,0.0) and (0, 1,0) and (0,0, 1). Notice how every three-dimensional vector is
a linear combination of i, j, and k. The vector v = (2,2, 1) is equal to 2i 4+ 2j + k.
Its length is v/2% 4+ 2% + 12, This is the square root of 9, so v = 3.

Since (2,2, 1) has length 3, the vector (3, 3, §) has length 1. Check that u-u =
% + % +{1’. = |. To create a unit vector, just divide v by its length |v||.

1A Unit vectors Divide any nonzero vector v by its length. Then u = v/|jv| is a
unit vector in the same direction as v.
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j:[‘U.]] i+j=(1 o msﬂ]

sin #

Figlm‘.' 1.8 The coordinate vectors i and j. The unit vector u at angle 45° (left)
and the unit vector (cosf. sinf) at angle #.

The Angle Between Two Vectors

We stated that perpendicular vectors have v+ w = 0. The dot product is zero when
the angle is 90°. To explain this, we have to connect angles to dot products. Then we
show how v - w finds the angle between any two nonzero vectors v and w,

1B Right angles The dot product is v - w = 0 when v is perpendicular to w,

Proof When v and w are perpendicular, they form two sides of a right triangle. The
third side is v — w (the hypotenuse going across in Figure 1.7). The Pvthagoras Law
for the sides of a right triangle is a® + b* = ¢%;

Perpendicular vectors |[v|* + ||w|® = [|v — w|* (2)

Writing out the formulas for those lengths in two dimensions, this equation is
(v +03) + (w] +wd) = 01 — w)? + (2 — wo)”. @)

The right side begins with v{ — 2vywy + w}. Then v{ and w} are on both sides of
the equation and they cancel, leaving —2vyw;. Similarly v% and w% cancel, leaving
—2vaw3. (In three dimensions there would also be —2vyws.) The last step is to divide

by —2:
0=-2vyw; —2vsw2 which leads to vyw| + 12wy =0. (4)

Conclusion Right angles produce v - w = 0. We have proved Theorem 1B. The dot
product is zero when the angle is # = 90°. Then cosf# = 0. The zero vector v =0 is
perpendicular to every vector w because 0 - w is always zero.
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vew=0 angle above 90° H,. angle below 90°
in this half-plane v in this half-plane

Figure 1.9  Perpendicular vectors have v - w = 0. The angle is below 90° when
vew > 0.

Now suppose v « w is not zero. It may be positive, it may be negative. The
sign of v - w immediately tells whether we are below or above a right angle. The
angle is less than 90° when v - w is positive. The angle is above 90° when v - w is
negative. Figure 1.9 shows a typical vector v = (3, 1). The angle with w = (1, 3) is
less than 90°.

The borderline is where vectors are perpendicular to v. On that dividing line
between plus and minus, where we find w = (1, —3), the dot product is zero.

The next page takes one more step. to find the exact angle 8. This is not neces-
sary for linear algebra—you could stop here! Once we have matrices and linear equa-
tions, we won't come back to #. But while we are on the subject of angles, this is the
place for the formula.

Start with unit vectors u# and U. The sign of u - U tells whether # <= 90° or
# = 90°. Because the vectors have length 1, we learn more than that. The dot product
u - U is the cosine of . This is true in any number of dimensions.

1C If u and U are unit vectors then wu - U =cosf , Cerainly |u-U| < 1.

Remember that cos# is never greater than 1. It is never less than —1. The dot product
of unit vectors is between —| and .

Figure 1.10 shows this clearly when the vectors are # = (cos#,sin&) and i = (1,0).
The dot product is u - i = cos#. That is the cosine of the angle between them.

After rotation through any angle o, these are stll umit vectors. Call the vectors
u = (cos f,sin f) and U = (cose, sine). Their dot product is cosa cos f + sin e sin f.
From trigonometry this is the same as cos(f —«). Since f — o equals # (no change
in the angle between them) we have reached the formula u - U = cos .

Problem 26 proves |u-U| < | directly, without mentioning angles. The inequality
and the cosine formula & - U = cos# are always true for unit vectors.

What if v and w are not unit vectors? Divide by their lengths to get u = v/||v|| and
U =w/||lw||. Then the dot product of those unit vectors u and U gives cos#.
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cos B
U=|".
[cm‘.ﬂ] [-"‘mﬁ
sin &
% | cosa
b Lina]
%) X [g]] o«
u-i=cost =—-a

Figure 1.10  The dot product of unit vectors is the cosine of the angle #.

Whatever the angle, this dot product of v/||v|| with w/||w|| never exceeds one.
That is the “Schwarz inequality” for dot products—or more correctly the Cauchy-
Schwarz-Buniakowsky inequality. It was found in France and Germany and Russia (and
maybe elsewhere—it is the most important inequality in mathematics). With the divi-
sion by |lv|l lw|| from rescaling to unit vectors, we have cosf:

: v w
1D (a) COSINE FORMULA If v and w are nonzero vectors then o el = cosf,
e e

(b) SCHWARZ INEQUALITY If v and w are any vectors then v - w| < [v] |w]l.

Example 5  Find cos® for v =[}] and w =[] in Figure 1.9b.
Solution The dot product is v-w = 6. Both v and w have length +/10. The cosine is

6= veow 6 _E
T vlllwl  V10v10 5

The angle is below 90° because v - w = 6 is positive. By the Schwarz inequality.
vl lw|| = 10 is larger than v - w = 6.

Example 6 The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are
va? 4+ b?. The Schwarz inequality says that 2ab < a*® 4 b*.
Reason The difference between a® + b* and 2ab can never be negative:

at +b* —2ab = (a —b)* = 0.

This is more famous if we write x = a” and y = b°. Then the “geometric mean™ /Xy
is not larger than the “arithmetic mean,” which is the average %[.t + ¥):

;) ¥
2 4 p? +y
-4 3 becomes Jﬁﬁxz"r.

ab <
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Notes on Computing

Write the components of v as v(l).. . .. v(N) and similarly for w. In FORTRAN, the
sum v + w requires a loop to add components separately. The dot product also loops

to add the separate v(i)w(i):

DO 101 =1N DO 101 =1,N
10 VPLUSWIL) = vil}+wil) 10 VDOTW = VDOTW + V(l) = WIl)

MATLAB works directly with whole vectors, not their components. No loop is
needed. When v and w have been defined, v + w is immediately understood. It is
printed unless the line ends in a semicolon. Input v and w as rows—the prime ' at the
end transposes them to columns. The combination Zv + 3w uses * for multiplication.

v=1[2 3 4 ; w=((1 1 1] ;: w=2%=xv+3*xw

The dot product v+ w is usually seen as a row fimes a column (with no dot):

L] 3 '
Instead of [i} . [4] we more often see [1 2] [4:| or v xw

The length of v is already known to MATLAB as norm (v). We could define it our-
selves as sqrt (v = v), using the square root function—also known. The cosine we have
to define ourselves! Then the angle (in radians) comes from the arc cosine (acos)
function:

cosine = v * w/(norm (v) = norm (w));
angle = acos (cosine)

An M-file would create a new function cosine (v, w) for future use. (Quite a few M-
files have been created especially for this book. They are listed at the end.)

= REVIEW OF THE KEY IDEAS ®

1.  The dot product v+ w multiplies each component v; by w; and adds the v;w;.
The length |lv|| is the square root of v - v.
The vector v/||v| is a unit vector. Its length is 1.

The dot product is v+ w =0 when v and w are perpendicular.

I O

The cosine of € (the angle between any nonzero v and w) never exceeds |:
vew
B =
vl wl

Schwarz inequality |v-w| < |Jv]| |Jw].
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= WORKED EXAMPLES =

1.2 A For the vectors v = (3,4) and w = (4, 3) test the Schwarz inequality on
v-w and the triangle inequality on ||v + w||. Find cos# for the angle between v and
w. When will we have equality |v-w| = ||v]| [|[w] and |Jv + w| = ||v| + ||w||?

Solution The dot product is v - w = (3)(4) + (4)(3) = 24. The length of v is
lell = +/9+ 16 =5 and also ||w|| = 5. The sum v+ w = (7,7) has length v+ w| =
TV2=99.

Schwarz inequality lv«w| < |v| lw| is 24 < 25.
Triangle inequality e+ wl < flvll + llwll is 72 < 10.

Cosine of angle cosf = %"‘3 (Thin angle!)
If one vector is a multiple of the other as in w = —2v, then the angle is 0° or 180°

and |cosf| = | and |v - w| equals ||v| ||w|. If the angle is 0°, as in w = 2v, then
lv 4+ w| = [lvll + [lw]|. The triangle is flat.

1.2 B Find a unit vector u in the direction of v = (3.4). Find a unit vector U/
perpendicular to u. How many possibilities for U?

Solution  For a unit vector u, divide v by its length |v|| = 5. For a perpendicular
vector V we can choose (—4, 3) since the dot product v -V is (3)(—4) 4+ (4)(3) = 0.
For a unit vector U, divide V by its length ||V |:

_“L_@_ _:‘Ei _ Vv _{—4.3}_ 4 3
“E T s '(5‘5) U=vi= s _('3'5)

The only other perpendicular unit vector would be —U = ( %, - %}.

Problem Set 1.2

1 Calculate the dot products u -v and u - w and v+ w and w . v:

R I3 w4
8 14 =l NS
2 Compute the lengths ||u]| and ||v| and ||w| of those vectors. Check the Schwarz

inequalities | « v| < |lu| [lv]| and v - w| < [v] [w].

3 Find unit vectors in the directions of v and w in Problem 1. and the cosine of
the angle #. Choose vectors that make 0°, 90°, and 180° angles with w.

4 Find unit vectors u; and u; in the directions of v = (3,1) and w = (2, 1, 2).
Find unit vectors U; and U, that are perpendicular to u; and u>.
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For any unit vectors v and w, find the dot products (actual numbers) of
(a) v and —v (b)) v+ wand v —w fc) v—2wand v+ 2w
Find the angle ¢ (from its cosine) between

I I 2 2
(a) wv= [«ﬁj| and w= [U} (b) v= _? and w= |-

N S O R P

(a) Describe every vector w = (wy, w3) that is perpendicular to v = (2, —1).
(b) The vectors that are perpendicular to V =(1,1,1) liec on a
{c) The vectors that are perpendicular to (1,1, 1) and (1, 2, 3) lie on a

True or false (give a reason if true or a counterexample if false):

(a) If u is perpendicular (in three dimensions) to v and w, then v and w
are parallel.

(b) If u is perpendicular to v and w, then u is perpendicular to v + Zw.
(¢) If u and v are perpendicular unit vectors then [l — v]| = V2.
The slopes of the arrows from (0, 0) to (vy, v2) and (wy, wy) are v2 /vy and w3 /wy.

If the product vows/vyw; of those slopes is —1, show that v - w = () and the
vectors are perpendicular.

Draw arrows from (0,0} to the points v = (1,2) and w = (-2, 1). Multiply
their slopes. That answer is a signal that v w =0 and the arrows are

If v-w is negative, what does this say about the angle between v and w? Draw a
2-dimensional vector v (an arrow). and show where to find all w’'s with v-w = 0.

With v = (1, 1) and w = (1, 5) choose a number ¢ so that w—cv is perpendicular
to v. Then find the formula that gives this number ¢ for any nonzero v and w.

Find two vectors v and w that are perpendicular to (1,0, 1) and to each other.
Find three vectors u, v, w that are perpendicular to (1,1, 1, 1) and to each other.

The geometric mean of x = 2 and y = 8 is /xy = 4. The arithmetic mean is
larger: %[x +yv)= . This came in Example 6 from the Schwarz inequality
for v = (v/2, v/8) and w = (+/8, v/2). Find cosf for this v and w.

How long is the vector v = (1, 1,. . ., 1) in 9 dimensions? Find a unit vector u
in the same direction as v and a vector w that is perpendicular to v.

What are the cosines of the angles «, 8, # between the vector (1,0, —1) and the unit
vectors i, j. k along the axes? Check the formula cos® & + cos® B + cos’ 6 = 1.
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Problems 18-31 lead to the main facts about lengths and angles in triangles.
18 The parallelogram with sides v = (4, 2) and w = (-1, 2) is a rectangle. Check
the Pythagoras formula a® + b* = ¢* which is for right triangles only:
(length of v)* + (length of w)* = (length of v + w)”.

19 In this 90° case, a* + b* = ¢* also works for v — w:
(length of v)* + (length of w)*> = (length of v — w)”.
Give an example of v and w (not at right angles) for which this equation fails.

20 (Rules for dot products) These equations are simple but useful:
Dv-w=w-v Qu-(v+w=w-v+u-w (I (cv)-w=clv-w)
Use (1) and (2) with u=v + wtoprove v + w|’=v-v + 2v-w + w- w.

21  The triangle inequality says: (length of v+ w) < (length of v) + (length of w).
Problem 20 found [[v+ w|? = [|v]> +2v-w+ [|w|>. Use the Schwarz inequality
v-w < ||v] |lw|| to turn this into the triangle inequality:

o+ wl? < (o] + [wl)® or [o+w] < [o] + |wl.
22 A right trangle in three dimensions still obeys lol® + flw)i® = [lv + w||*. Show
how this leads in Problem 20 to vyuy + vaws + vaws = 0.
w = {w).ua)
flwl

vl
NI

v = (v}, 02)

23 The figure shows that cose = v;/||v|l and sine = v /||v|l. Similarly cos B is
and sinf is . The angle # is 8 — w. Substitute into the formula
cos ficosa + sin fsing for cos{f — o) to find cos@ = v w/|v| |w].

24 With v and w at angle #, the “Law of Cosines” comes from (v — w) - (v — w):
lo — wli? = o)) = 2{fv] lw]| cos & + [lw]*.
If 8 < 90° show that ||v||*> + ||w]||® is larger than ||v — w||* (the third side).
25 The Schwarz inequality |v - w| < |lv|| |w] by algebra instead of trigonometry:

(a) Multiply out both sides of (vywy +v2w2)? < (v} + v3)(w] + wi).
(b) Show that the difference between those sides equals (vjun — vawy)®. This
cannot be negative since it is a square—so the inequality is true.
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One-line proof of the Schwarz inequality |u - U| < | for unit vectors:
2412 2 2
uy + ,+u4+u;.=1+1=1_
2 2 2
Put (uy, u2) = (.6, 8) and (), Uz) = (.8, .6) in that whole line and find cos#.

lu« Ul <y [UL]| + uz] |U2] <

Why is |cosf| never greater than 1 in the first place?

Pick any numbers that add to x 4+ y 4z = 0. Find the angle between your vector
v = (x,y,z) and the vector w = (z,x, ¥). Challenge question: Explain why
v-w/|vllw] is always —3.

(Recommended) If ||v]] = 5 and ||w|| = 3, what are the smallest and largest
values of ||v — w||? What are the smallest and largest values of v - w?

If v=1(1,2) draw all vectors w = (x, v) in the xv plane with v- w = 5. Which
is the shortest w?

Can three vectors in the xv plane have u-v <Oand v-w <O and u-w <07 |
don’t know how many vectors in xyz space can have all negative dot products.
(Four of those vectors in the plane would be impossible. . . ).



SOLVING LINEAR EQUATIONS

VECTORS AND LINEAR EQUATIONS = 2.1

The central problem of linear algebra is to solve a system of equations. Those equations
are linear, which means that the unknowns are only multiplied by numbers—we never
see x times y. Ouwr first example of a linear system is certainly not big. It has two
equations in two unknowns. But you will see how far it leads:

1
T (1)

x = 2y
Ix + 2y

i

We begin a row at a time. The first equation x —2y = | produces a straight line in the
xy plane. The point x = 1, y = 0 is on the line because it solves that equation. The
point x = 3,y = 1 is also on the line because 3 —2 = 1. If we choose x = 101 we
find y = 50. The slope of this particular line is % (v increases by 50 when x changes
by 100). But slopes are important in calculus and this is linear algebra!

=

Figure 2.1 Row picture: The point (3, 1) where the lines meet is the solution.

Figure 2.1 shows that line x — 2y = 1. The second line in this “row picture”
comes from the second equation 3x + 2y = 11. You can’t miss the intersection point

21
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where the two lines meet. The point x = 3, v = | lies on both lines. That point solves
both equations at once. This is the solution to our system of linear equations.

R The row picture shows two lines meeting at a single poini.

Turn now to the column picture. | want to recognize the linear system as a “vec-
tor equation”, Instead of numbers we need to see vectors. If you separate the original
system into its columns instead of its rows, you get

L3[4

This has two column vectors on the left side. The problem is to find the combination
of those vectors that equals the vector on the right. We are multiplying the first col-
umn by x and the second column by v, and adding. With the right choices x = 3 and
y = 1, this produces 3(column 1) + 1(column 2) = b.

C The column picture combines the column vectors on the left side to produce the
vector b on the right side.

Figure 2.2 Column picture: A combination of columns produces the right side (1.11).

Figure 2.2 is the “column picture” of two equations in two unknowns. The first
part shows the two separate columns, and that first column multiplied by 3. This mul-
tiplication by a scalar (a number) is one of the two basic operations in linear algebra:

Scalar multiplication 1[;}=[3]
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If the components of a vector v are vy and vz, then cv has components cvy and cuvs.
The other basic operation is vector addition. We add the first components and
the second components separately. The vector sum is (1, 11) as desired:

ot [3]+[ ][]

The graph in Figure 2.2 shows a parallelogram. The sum (1, 11) is along the diagonal:

2 942 11

et e [ ] 3] ]

We have multiplied the original columns by x = 3 and y = 1. That combination
produces the vector b = (1, I1) on the right side of the linear equations.

To repeat: The left side of the vector equation is a linear combination of the
columns. The problem is to find the right coefficients x = 3 and v = 1. We are
combining scalar multiplication and vector addition into one step. That step is crucially
important, because it contains both of the basic operations:

e (][ 2] 1]

Of course the solution x = 3,y = | is the same as in the row picture. | don’t
know which picture you prefer! | suspect that the two intersecting lines are more fa-
miliar at first. You may like the row picture better, but only for one day. My own
preference is to combine column vectors. It is a lot easier o see a combination of
four vectors in four-dimensional space, than to visualize how four hyperplanes might
possibly meet at a point. (Even one hvperplane is hard enough. . .)

The coefficient matrix on the left side of the equations is the 2 by 2 matrix A:

Coefficient matrix A=[.§ _i]

This is very typical of linear algebra, to look at a matrix by rows and by columns.
Its rows give the row picture and its columns give the column picture. Same num-
bers, different pictures, same equations. We write those equations as a matrix problem

e 1200

The row picture deals with the two rows of A, The column picture combines the columns.
The numbers x = 3 and y = 1 go into the solution vector x. Then

wer o [ 3]0
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Three Equations in Three Unknowns

The three unknowns are x, v, z. The linear equations Ax = b are

x + 2y + 3z
2x + S5y + 2z
6x — 3y + z

6
4 (3
2

Il

We look for numbers x, y, z that solve all three equations at once. Those desired num-
bers might or might not exist. For this system, they do exist. When the number of un-
knowns matches the number of equations, there is usuallv one solution. Before solving
the problem, we visualize it both ways:

R The row picture shows three planes meeting at a single point.

C The column picture combines three columns to produce the vector (6,4,2).

In the row picture, each equation is a plane in three-dimensional space. The first plane
comes from the first equation x + 2y + 3z = 6. That plane crosses the x and y and
z axes at the points (6,0,0) and (0, 3,0) and (0,0, 2). Those three points solve the
equation and they determine the whole plane.

The vector (x, v,z) = (0,0,0) does not solve x + 2y + 3z = 6. Therefore the
plane in Figure 2.3 does not contain the origin.

ling L is on
both planes

line L meets
third plane
at solution

+Iy+hz=

Figure 2.3 Row picture of three equations: Three planes meet at a point.
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The plane x + 2y + 3z = 0 does pass through the origin, and it is parallel to
x4+ 2y + 3z = 6. When the right side increases to 6, the plane moves away from the
origin.

The second plane is given by the second equation 2x +5v + 2z = 4. It intersects
the first plane in a line L. The usual result of two equations in three unknowns is a
line L of solutions.

The third equation gives a third plane. It cuts the line L at a single point. That
point lies on all three planes and it solves all three equations. It is harder to draw
this triple intersection point than to imagine it. The three planes meet at the solution
(which we haven't found yet). The column form shows immediately why z = 2!

The column picture starts with the vector form of the equations:

1 2 3 6
x| 2 |+y 5 |+z] 2 |=]| 4 ]. (4)
4] -3 | 2

The unknown numbers x, v, z are the coefficients in this linear combination. We wani
to multiply the three column vectors by the correct numbers x, v, z to produce b =
(6,4, 2).

2 | = column 1
6
3
i 2
! 5 | = column 2
i) -3
b=|4| =2 times column 3
2

Figure 2.4  Column picture: (x,y,z) = (0,0, 2) because 2(3,2,1) = (6.4,2) = b.

Figure 2.4 shows this column picture. Linear combinations of those columns can
produce any vector b! The combination that produces b = (6, 4,2) is just 2 times the
third column. The coefficients we need are x =0, y =0, and z = 2. This is also the
intersection point of the three planes in the row picture. It solves the system:

| 2 3 6
Correct combination 0| 2 | +0 5 |4+2] 2 |=]| 4
3] =3 | 2
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The Matrix Form of the Equations

We have three rows in the row picture and three columns in the column picture (plus
the right side). The three rows and three columns contain nine numbers. These nine
numbers fill a 3 by 3 marrix. The “coefficient matrix™ has the rows and columns that
have so far been kept separate:

The coefficient matrix is A =

fad LN

3
2
I

o b =

The capital letter A stands for all nine coefficients (in this square array). The
letter b denotes the column vector with components 6,4, 2. The unknown x is also
a column vector, with components x, v, z. (We use boldface because it is a vector, x
because it is unknown.) By rows the equations were (3), by columns they were (4),
and now by matrices they are (5). The shorthand is Ax = b:

Matrix equafion

wd LA bd

3 6
2 4 1. (5)
I 2

o bd =
Fi e
Il

We multiply the matrix A times the unknown vector x to get the right side b.

Basic question: What does it mean to “multiply A times x"? We can multiply
by rows or by columns. Either way, Ax = b must be a correct representation of the
three equations. You do the same nine multiplications either way.

Multiplication by rows  Ax comes from dot products. each row times the column x:
[ row 1)« x
Ax = (row d)-x |. (6
(row 3) + x
Multiplication by columns  Ax is a combination of column vectors:

Ax = x (column I) + y (column 2) + z (column 3). (7

When we substitute the solution x = (0, 0, 2), the multiplication Ax produces b:

| 2 3 0 f
2 5 2 0 | =2 times column 3=| 4
6 =3 |1 2 2

The first dot product in row multiplication is (1,2,3) + (0,0,2) = 6. The other dot
products are 4 and 2. Multiplication by columns is simply 2 times column 3.
This book sees Ax as a combination of the columns of A.
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Example 1  Here are 3 by 3 matrices A and [, with three ones and six zeros:

1 0 0 4 4 1 0 0 4 4
0 0 6 4 0 0 1 ) f

If you are a row person, the product of every row (1,0,0) with (4,5,6) is 4. If you
are a column person, the linear combination is 4 times the first column (1,1, 1). In
that matrix A, the second and third columns are zero vectors.

The example with /x deserves a careful look, because the matrix [ is special. It
has ones on the “main diagonal”, Off that diagonal, all the entries are zeros. Whatever
vector this matrix multiplies, that vector is not changed. This is like multiplication
by I, but for matrices and vectors. The exceptional matrix in this example is the 3 by 3
identity matrix:

I=|1 010 always yields the multiplication Jx =x.

Matrix MNotation

The first row of a 2 by 2 matrix contains aj; and aj>. The second row contains ax)
and az;. The first index gives the row number, so that a;; is an entry in row i. The
second index j gives the column number. But those subscripts are not convenient on
a keyboard! Instead of a;; it is easier to type A(i. j). The entry as; = A(5.7) would
be in row 5, column 7.

A= ay aiz | | AL D) A(l,2)
“lay an || AQ.D AR |
For an m by n matrix, the row index i goes from | to m. The column index j stops
at n. There are mn entries in the matrix. A square matrix (order n) has n? entries.

Multiplication in MATLAB

I want to express A and x and their product Ax using MATLAB commands. This is a
first step in learning that language. | begin by defining the matrix A and the vector x.
This vector is a 3 by | matrix, with three rows and one column. Enter matrices a row
at a time, and use a semicolon to signal the end of a row:

A=[1 2 3; 2 5 2;: 6 -3 1]
x=[0:0:2]
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Here are three ways to multiply Ax in MATLAB. In reality, A +x is the way to do it
MATLAB is a high level language, and it works with matrices:

Matrix multiplication b= A +x

We can also pick out the first row of A (as a smaller matrix!). The notation for
that | by 3 submatrix is A(l,:). Here the colon symbol keeps all columns of row 1:

Row atatime b=[A(l,:)+x; A(2,:)#x; A(3,) %x ]

Those are dot products, row times column, 1 by 3 matrix times 3 by | matrix.

The other way to multiply uses the columns of A. The first column is the 3 by 1
submatrix A(:,1). Now the colon symbol : is keeping all rows of column 1. This
column multiplies x(1) and the other columns multiply x(2) and x(3):

Column at a time b= A(:,1)xx(1)+ A, 20 x(2)+ A, 3) *x(3)

I think that matrices are stored by columns. Then multiplying a column at a time will
be a little faster. So A *x is actually executed by columns.

You can see the same choice in a FORTRAN-type structure, which operates on
single entries of A and x. This lower level language needs an outer and inner “DO
loop”. When the outer loop uses the row number [, multiplication is a row at a time.
The inner loop J = 1,3 goes along each row /.

When the outer loop uses J, multiplication is a column at a time. 1 will do that
in MATLAB , which needs two more lines “end” “end” to close “for I and “for J™:

FORTRAN by rows MATLAB by columns
DO10 =13 forJ=1:3

DO J=1.,3 forl =1:3

10 B(I)=B(I+ Al J)*X(J) B(Iy=b{l)+ A(I, J) % x(J)

Notice that MATLAB is sensitive to upper case versus lower case (capital letters and
small letters). If the matrix is A then its entries are A(/, J) not a(/, J).

I think you will prefer the higher level A +x. FORTRAN won't appear again in
this book. Maple and Mathematica and graphing calculators also operate at the higher
level. Multiplication is A. x in Mathematica. It is multiply(A, x); or evalm(A&s*x); in
Maple. Those languages allow symbolic entries a, b, x, ... and not only real numbers.
Like MATLAB’s Symbolic Toolbox, they give the symbolic answer.

® REVIEW OF THE KEY IDEAS =

1.  The basic operations on vectors are multiplication cv and vector addition v + w.

2.  Together those operations give linear combinations cv + dw.
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3.  Matrix-vector multiplication Ax can be executed by rows (dot products). But it
should be understood as a combination of the columns of A!

4. Column picture: Ax = b asks for a combination of columns to produce b.

Row picture: Each equation in Ax = b gives a line (n = 2) or a plane (n = 3)
or a “hyperplane” (n > 3). They intersect at the solution or solutions.

= WORKED EXAMPLES =

2.1A  Describe the column picture of these three equations. Solve by careful inspec-
tion of the columns (instead of elimination):

x+3y4+2z=-3 T R -3
2x+2y+2z=-2 whichisAx=¥b: 2 2 2 yl=1]-2
Ix+5y+4z=-5 35 4]]|: -5

Solution  The column picture asks for a linear combination that produces b from the
three columns of A. In this example b is minus the second column. So the solution
isx =0,y = -1,z = 0. To show that (0, —1,0) is the only solution we have to
know that “A is invertible” and “the columns are independent”™ and “the determinant
isn't zero”. Those words are not yet defined but the test comes from elimination: We
need (and we find!) a full set of three nonzero pivots,

If the right side changes to b = (4,4, 8) = sum of the first two columns, then
the right combination has x = 1, y = 1, z = 0. The solution becomes x = (1, 1,0).

2.1 B This system has no solution, because the three planes in the row picture don’t
pass through a point. No combination of the three columns produces b:

HAfoR

(1) Multiply the equations by 1,1, —1 and add to show that these planes don’t meet
at a point. Are any two of the planes parallel? What are the equations of planes
parallel to x + 3y + 5z =47

r+2y—3z=5

x+3y+5:=4 1
1
2x+5y+2z= 2

LA b L
[

(2) Take the dot product of each column (and also b) with y = (1,1, —1). How do
those dot products show that the system has no solution?

(3) Find three right side vectors b* and 5** and b*™* that do allow solutions.
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Solution

(1)

(2)

i3

Multiplying the equations by 1, 1, —1 and adding gives

x+3y45:=4

x+2y—3z=5

~[2x + 5y + 2z = 8]
Ox +0yv 40z =1 No Solution

The planes don’t meet at any point, but no two planes are parallel. For a plane
parallel to x+3y+5z = 4, just change the “4". The parallel plane x4+3y+5z =
goes through the origin (0.0,0). And the equation multiplied by any nonzero
constant still gives the same plane, as in 2x 4+ 6y + 10z = 8.

The dot product of each column with y = (1.1, —1) is zere. On the right side,
y-b=1(11,-1)-(4,58) = 1 is not zero. So a solution is impossible. (If
a combination of columns could produce b, take dot products with y. Then a
combination of zeros would produce 1.)

There is a solution when &b is a combination of the columns. These three exam-
ples &*, b**, b*** have solutions x* = (1,0,0) and x** = (1,1, 1) and x*** =
(0,0, 0):

l 9 0
b*=|1|= firstcolumn b, =|0| = sum of columns & =[0].
2 9 0

Problem Set 2.1

Problems 1-9 are about the row and column pictures of Ax = b.

1

With A = [/ (the identity matrix) draw the planes in the row picture, Three sides
of a box meet at the solution x = (x, y.z) = (2. 3. 4):

lx+0y40z=2 0

1 0
Ox+1y+0z=3 or 01 0
Ox+0y+1z=4 00 1

(S
Il
Wk
| I—

Draw the vectors in the column picture of Problem 1. Two times column 1 plus
three times column 2 plus four times column 3 equals the right side b.

If the equations in Problem 1 are multiplied by 2, 3, 4 they become AT = b:

x40y +0:=4 2.0 0ffx 4
Ox+3vy+0z= or 0 3 0||v]=1]29
Or+0v+4z= 16 0 0 4 2 16

Why is the row picture the same? Is the solution X the same as x? What is
changed in the column picture —the columns or the right combination to give b?
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If equation 1 is added to equation 2, which of these are changed: the planes in
the row picture, the column picture, the coefficient matrix, the solution? The new
equations in Problem | would be x =2, x + vy =35,z =4.

Find a point with z = 2 on the intersection line of the planes x 4+ y + 3z =46 and
x — v+ z=4. Find the point with z =0 and a third point halfway between.

The first of these equations plus the second equals the third:

The first two planes meet along a line. The third plane contains that line, because
if x., v, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions on L.

Move the third plane in Problem 6 to a parallel plane 2x 4 3y 4+ 2z = 9. Now
the three equations have no solution—why not? The first two planes meet along
the line L, but the third plane doesn’t _ that line.

In Problem 6 the columns are (1,1,2) and (1,2, 3) and (1, 1,2). This is a “sin-
gular case” because the third column is . Find two combinations of the

columns that give b = (2.3,5). This is only possible for b = (4,6,¢) if ¢ =

Normally 4 “planes™ in 4-dimensional space meet at a . Normally 4 col-
umn vectors in 4-dimensional space can combine to produce b. What combination
of (1,0,0,0), (1, 1,0,0), (1, 1, 1,0), (1,1, 1. 1) produces b = (3,3,3.2)7 What
4 equations for x, y, z, 1 are you solving?

Problems 10-15 are about multiplving matrices and vectors.

10 Compute each Ax by dot products of the rows with the column vector:

11

0

]
[
o
| |
By o=
= sl hJd

0
0
I
2

g = =

472 2 1
M w3
2 3

00

Compute each Ax in Problem 10 as a combination of the columns:

I
2
I

1 2 4
I{a) becomes Ax=2|-2|+2|3|43|1]|=
—4 | 2

How many separate multiplications for Ax, when the matrix is “3 by 3”7
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12

13

14

15
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Find the two components of Ax by rows or by columns:

2 - B A 2]

Multiply A times x to find three components of Ax:
0 0 1 x 21 3 1 z 'l |
01 0]y and 1 2 3 | and F 2 [l]
1 0 0)]: 3 3 6]]-1 i 3
(a) A matrix with m rows and n columns multiplies a vector with _ com-
ponents to produce a vector with _ components.
{(b) The planes from the m equations Ax = b are in _ -dimensional space.
The combination of the columns of A is in -dimensional space.
Write 2x + 3y + 2+ 5t = 8 as a matrix A (how many rows?) multiplying the

column vector x = (x, v, z,t) to produce b. The solutions x fill a plane or “hy-
perplane” in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 16-23 ask for matrices that act in special ways on vectors.

16

17

18

19

20

21

(a) What is the 2 by 2 identity matrix? / times [y ] equals [y].
(b) What is the 2 by 2 exchange matrix? P times [;] equals H]

(a) What 2 by 2 matrix R rotates every vector by 90°? R times [y] is [_].
(b} What 2 by 2 matrix rotates every vector by 180°7

Find the matrix P that multiplies (x, v, z) to give (y,z.x). Find the matrix Q
that multiplies (y. z, x) to bring back (x, v, z).

What 2 by 2 matrix E subtracts the first component from the second component?
What 3 by 3 matrix does the same?

3 3
E[H:[;] and E|5|=|2].
7 7

What 3 by 3 matrix £ multiplies (x, v, z) to give (x, ¥, z+x)? What matrix E~/
multiplies (x, v, z) to give (x, v,z —x)? If you multiply (3,4, 5) by E and then
multiply by E~', the two results are ( ) and ( ).

What 2 by 2 matrix P, projects the vector (x, v) onto the x axis to produce
(x,0)? What matrix P> projects onto the y axis to produce (0, v)? If you mul-
tiply (5,7) by P, and then multiply by P>, you get (_ )and ().
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25
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What 2 by 2 matrix R rotates every vector through 45°7 The vector (1,0) goes
to (v2/2.+/2/2). The vector (0. 1) goes to (—v/2/2. v/2/2). Those determine
the matrix. Draw these particular vectors in the xy plane and find R.

Write the dot product of (1,4, 5) and (x, v, z) as a matrix multiplication Ax. The
matrix A has one row. The solutions to Ax = 0 lie on a perpendicular
to the vector _. The columns of A are only in -dimensional space.

In MATLAB notation, write the commands that define this matrix A and the col-
omn vectors ¥ and b. What command would test whether or not Ax = b7

B L] el

The MATLAB commands A = eye(3) and v = [3:5]" produce the 3 by 3 iden-
tity matrix and the column vector (3, 4, 5). What are the outputs from A +v and
v «v? (Computer not needed!) If you ask for v+ A, what happens?

If you multiply the 4 by 4 all-ones matrix A = ones(4,4) and the column v =
ones(4,1), what is A+v? (Computer not needed.) If you multiply B = eye(4) +
ones(4,4) times w = zeros(4,1) + 2+ones(4,1), what is B+w?

Questions 27-29 are a review of the row and column pictures.

27

28

19

30

Draw the two pictures in two planes for the equations x — 2y =0, x + y = 6.

For two linear equations in three unknowns x, y, z, the row picture will show
(2 or 3) (lines or planes) in (2 or 3)-dimensional space. The column picture is
in (2 or 3)-dimensional space. The solutions normally lie on a

For four linear equations in two unknowns x and y, the row picture shows four
. The column picture is in -dimensional space. The equations have
no solution unless the vector on the right side is a combination of

Start with the vector up = (1, 0). Multiply again and again by the same “Markov
matrix”™ A below. The next three vectors are uy, 2, w3y

o 15[ 3 [ S

What property do you notice for all four vectors ug, 1y, u2, u3?
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With a computer, continue from gy = (1.0) to w7, and from vy = (0, 1) to v.
What do you notice about u7 and v7?7 Here are two MATLAB codes, one with
while and one with for. They plot &g to w7 —you can use other languages:

u={1;0;A=|8.3;.2.7: u=[1;0:A=1[8.3;:.2.7]
x=wk=1[0:7] x=wk=[0:7]
while size(x,2) <= 7 W=l o7
u=A»u x =[x ul; u=A=u; x = [x ul;
end end
plot(k, x) plotik, x}

The u's and v's in Problem 31 are approaching a steady state vector 5. Guess
that vector and check that As = 5. If you start with 5, you stay with s.

This MATLAB code allows you to input xo with a mouse click, by ginput. With
t = 1, A rotates vectors by theta. The plot will show Axp, A’xp, ... going
around a circle (¢ = | will spiral out and r < | will spiral in). You can change

theta and the stop at j=10. We plan to put this code on web.mit.edu/18.06/www:

theta = 15=pi/180; t = 1.0;

A = t»[cositheta) —sin(theta) ; sin{theta) cos(theta)];
disp('Click to select starting point’)

[x1 , x2] = ginput(1); x = [x1 ; x2];

for j=1:10

x =[x A=x( :, end)];
end
plotix(1,:), x(2,:), "o')
hold off

Invent a 3 by 3 magic matrix M with entries 1,2, ..., 9. All rows and columns
and diagonals add to 15. The first row could be 8, 3. 4. What is M3 times (1, 1, 1)?
What is My times (1, 1, 1, 1) if this magic matrix has entries 1. ..., 167
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THE IDEA OF ELIMINATION = 2.2

This chapter explains a systematic way to solve linear equations. The method is called
“elimination™, and you can see it immediately in our 2 by 2 example. Before elimi-
nation, x and y appear in both equations. After elimination, the first unknown x has
disappeared from the second equation:

x—-2y=1 After * 2y=1 (multiply by 3 and subtract)

Defore Ix+2y=11 8y=8 (x has been eliminared)

The last equation 8y = 8 instantly gives v = 1. Substituting for v in the first equation
leaves x — 2 = 1. Therefore x = 3 and the solution (x, v) = (3, 1) is complete.

Elimination produces an upper triangular system —this is the goal. The nonzero
coefficients 1, —2, 8 form a triangle. The last equation 8y = 8 reveals v = 1, and we
go up the triangle to x. This quick process is called back substitution. It is used for
upper triangular systems of any size, after forward elimination is complete.

Important point: The original equations have the same solution x = 3 and vy = |.
Figure 2.5 repeats this original system as a pair of lines, intersecting at the solution
point (3, 1). After elimination, the lines still meet at the same point! One line is hor-
izontal because its equation By = 8 does not contain x.

How did we get from the first pair of lines to the second pair? We subtracted
3 times the first equation from the second equation. The step that eliminates x from

equation 2 is the fundamental operation in this chapter. We use it so often that we
look at it closely:

To eliminate x: Subtract a multiple of equation 1 from equation 2.

Three times x —2y = 1 gives 3x —6y = 3. When this is subtracted from 3x 42y =11,
the right side becomes 8. The main point is that 3x cancels 3x. What remains on the
left side is 2y — (—6y) or 8y, and x is eliminated.

Before elimination After elimination

¥ ¥

A

Jx+2v=11

x—2y=1

PN

Figure 2.5 Two lines meet at the solution. So does the new line 8y = 8.
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Ask vourself how that multiplier £ = 3 was found. The first equation contains x.
The first pivot is 1 (the coefficient of x). The second equation contains 3x, so the first
equation was multiplied by 3. Then subtraction 3x — 3x produced the zero.

You will see the multiplier rule if we change the first equation to 4x — By = 4.
(Same straight line but the first pivot becomes 4.) The correct multiplier is now £ = 3.
To find the multiplier, divide the coefficient “ 3" to be eliminated by the pivot “4":

da| s

4x — 8y =4 Multiply equation 1 by 3 4x — 8y =4
Ix+2vy=11 Subtract from eguation 2 By =8.

The final system is triangular and the last equation still gives y = 1. Back substitution
produces 4x — 8 = 4 and 4x = 12 and x = 3. We changed the numbers but not the
lines or the solution. Divide by the pivot to find that multiplier £ = %:

Pivor = first nonzero in the row that does the elimination
Multiplier = (entry to eliminate) divided by (pivot) = 7.

The new second equation starts with the second pivot, which is 8. We would use it to
eliminate y from the third equation if there were one. To solve n equations we want
n pivors. The pivots are on the diagonal of the triangle after elimination.

You could have solved those equations for v and v without reading this book. It
is an extremely humble problem, but we stay with it a little longer. Even for a 2 by 2
system, elimination might break down and we have to see how. By understanding the
possible breakdown (when we can't find a full set of pivots), you will understand the
whole process of elimination.

Breakdown of Elimination

Normally, elimination produces the pivots that take us to the solution. But failure is
possible. At some point, the method might ask us to divide by zero. We can't do it
The process has to stop. There might be a way to adjust and continue —or failure may
be unavoidable. Example | fails with no solution. Example 2 fails with too many
solutions. Example 3 succeeds by exchanging the equations.

Example 1 Permanent failure with no solution. Elimination makes this clear:

x—2y=1 Subtract 3 times xr—2y=1
3x—6y=11 egn | from egn. 2 0y =8,

The last equation is Oy = 8. There is no solution. Normally we divide the right side
8 by the second pivot, but this svstem has no second pivot. (Zero is never allowed as
a pivot!) The row and column pictures of this 2 by 2 system show that failure was
unavoidable. If there is no solution, elimination must certainly have trouble.

The row picture in Figure 2.6 shows parallel lines—which never meet. A solution
must lie on both lines. With no meeting point, the equations have no solution.
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first [ 1:|
column | 3

Columns don't combine to give plane

second
column

4]
-6
Figure 2.6 Row picture and column picture for Example 1: no solution.

The column picture shows the two columns (1, 3) and (—2, —6) in the same di-
rection. All combinations of the columns lie along a line. But the column from the
right side is in a different direction (1, 11). No combination of the columns can pro-
duce this right side—therefore no solution.

When we change the right side to (1. 3). failure shows as a whole line of solu-
tions. Instead of no solution there are infinitely many:

Example 2 Permanent failure with infinitely many solutions:

xr—2y=1 Subtract 3 times x—2y
3x—6y=3 eqn. | from eqn. 2 Oy

1
0.

Every y satisfies Oy = 0, There is really only one equation x — 2y = 1, The unknown
y is “free”. After v is freely chosen, x is determined as x = 1 + 2y.

In the row picture, the parallel lines have become the same line. Every point on
that line satisfies both equations. We have a whole line of solutions.

In the column picture, the right side (1, 3) is now the same as the first column.
S50 we can choose x = | and v = 0. We can also choose ¥ = 0 and v = —%:
the second column times -% equals the right side. There are infinitely many other
solutions. Every (x, y) that solves the row problem also solves the column problem.

Elimination can go wrong in a third way —but this time it can be fixed. Suppose
the first pivot position contains zero. We refuse to allow zero as a pivot. When the
first equation has no term involving x, we can exchange it with an equation below:

Example 3 Temporary failure but a row exchange produces two pivols:

Ox+2y=4 Exchangethe 3x-2y=35
3r—2y=5 two equations 2y =4,
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right hand side [;]

lies on the line of columns

Same line from both equations
" Solutions all along this line

1 |
ok {second column) = [ 3]

Figure 2.7 Row and column pictures for Example 2: infinitely many solutions.

The new system is already triangular. This small example is ready for back substitution.
The last equation gives v = 2, and then the first equation gives x = 3. The row
picture is normal (two intersecting lines). The column picture is also normal (column
vectors not in the same direction). The pivots 3 and 2 are normal—but an exchange
was required to put the rows in a good order.

Examples | and 2 are singular—there is no second pivot. Example 3 is nonsin-
gular—there is a full set of pivots and exactly one solution. Singular equations have
no solution or infinitely many solutions. Pivots must be nonzero because we have to
divide by them.

Three Equations in Three Unknowns

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by
three is enough to see the pattern. For now the matrices are square—an equal number
of rows and columns. Here is a 3 by 3 sysiem, specially constructed so that all steps
lead to whole numbers and not fractions:

2x+4y—-2z=2
4x +9y —3: =8 (1
~-2x—-3y+T7z=10

What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we
want to create zeros. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equa-
tion by £2;) =2 and subtract. Subtraction removes the 4x from the second equation:
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Step 1 Subtract 2 times equation | from equation 2.

We also eliminate —2x from equation 3—still using the first pivot. The quick way is
to add equation | to equation 3. Then 2x cancels —2x. We do exactly that, but the
rule in this book is to subrract rather than add. The systematic pattern has multiplier
f31 = =2/2 = —1. Subtracting —1 times an equation is the same as adding:

Step 2 Subtract —1 times equation | from equation 3.
The two new equations involve only v and z. The second pivot (boldface) is 1:

ly+1lz:=4
ly+35z=12

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by |:

Step 3 Subtract equation 2pew from 3pew. The multiplier is 1. Then 4z = 8.

The original system Ax = b has been converted into a triangular system Ux = ¢:

2x +4y—2: =2 2t +4y —2z2=2
4x +9y -3z =8 | has become ly+1lz=4 (2)
-2x =3y +Tz=10 4; = 8.

The goal is achieved—forward elimination is complete. Notice the pivots 2,1,4 along
the diagonal. Those pivots | and 4 were hidden in the original system! Elimination
brought them out. This triangle is ready for back substitution, which is quick:

(4z=8 gives z=2) (y+z=4 gives y=2) (equation | gives x =—1)

The solution is (x.y.z) = (=1,2,2). The row picture has three planes from three
equations. All the planes go through this solution. The original planes are sloping, but
the last plane 4z = 8 after elimination is horizontal.

The column picture shows a combination of column vectors producing the right
side b. The coefficients in that combination Ax are —1, 2, 2 (the solution):

4 -2 2
+2] 9|4+2| -3 | equals | B]. (3)

(=1

—_

[ R S |

-3 7 10

The numbers x, v, z multiply columns 1, 2, 3 in the original system Ax = b and also
in the triangular system Ux = ¢.

For a 4 by 4 problem, or an n by n problem, elimination proceeds the same way.
Here is the whole idea of forward elimination, column by column:

Column 1. Use the first equation to create zeros below the first pivot.

Column 2. Use the new equation 2 to create zeros below the second pivot.
Columns 3 to n. Keep going to find the other pivots and the triangular U.
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X X X X X X X X

After column 2 we have O & ® X We want AT 4)
0 0 x x r x
0 0 x x x

The result of forward elimination is an upper triangular system. It is nonsingular if
there is a full set of n pivots (never zero!). Question: Which x could be changed to
boldface x because the pivot is known? Here is a final example to show the original
Ax = b, the triangular system Ux = ¢, and the solution from back substitution:

X+ y+ z= x+vy+z=6 b 5 3
x+2y+2:=9 y+z=3 y |=| 2
x+2y+3z=10 z=1 z 1

All multipliers are 1. All pivots are 1. All planes meet at the solution (3,2, 1). The
columns combine with coefficients 3,2, 1 to give b = (6,9, 10) and ¢ = (6, 3, 1).

® REVIEW OF THE KEY IDEAS =

I. A linear system becomes upper triangular after elimination.
2. The upper triangular system is solved by back substitution (starting at the bottom).

3. Elimination subtracts £;; times equation j from equation i, to make the (i, j)
entry zero.

4. The multiplier is ¢;; = S5 ';If;:“;':‘"ﬁ:;v’ﬁ TOW I pivots can mot be zero!

5. A zero in the pivot position can be repaired if there is a nonzero below it.

6.  When breakdown is permanent, the system has no solution or infinitely many,

" WORKED EXAMPLES =

2.2 A When elimination is applied to this matrix A, what are the first and second
pivots? What is the multiplier £2) in the first step (£2; times row | is subtracted from
row 2)7 What entry in the 2, 2 position (instead of 9) would force an exchange of rows
2 and 3?7 Why is the multiplier £3; = (), subtracting 0 times row | from row 3?

3140
A=]| 6 9 2
0 1 5
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Solution  The first pivot is 3. The multiplier £2 is g = 2. When 2 times row 1 is
subtracted from row 2, the second pivot is revealed as 7. If we reduce the entry “9”
to “27, that drop of 7 in the (2, 2) position would force a row exchange. (The second
row would start with 6, 2 which is an exact multiple of 3, 1 in the first row. Zero will
appear in the second pivot position.) The multiplier £3; is zero because a3 = 0. A
zero at the start of a row needs no elimination.

2.2 B Use elimination to reach upper triangular matrices /. Solve by back substi-
tution or explain why this is impossible. What are the pivots (never zero)? Exchange
equations when necessary. The only difference is the —x in equation (3).

xX+y+z=7 x4+y+z=17
x+y—z2=3 xt+y—z=
x=y+z=3 —Xx=y+z=:

Solution  For the first system, subtract equation 1 from equations 2 and 3 (the mul-
tipliers are £3; = 1 and £3; = 1). The 2, 2 entry becomes zero, so0 exchange equations:

x+y+z= 7 x+y+z= 7
Oy — 2z = -2  exchanges into =2y+0z=—4
~2y+0z=—4 ~27=-2

Then back substitution gives z = | and y =2 and x = 4. The pivots are 1, -2, -2.
For the second system, subtract equation 1 from equation 2 as before. Add equa-
tion 1 to equation 3. This leaves zero in the 2, 2 entry and below:

x+y+z= 17 There is no pivot in column 2.
Oy -2z=-2 A further elimination step gives 0z = 8
Oy+2z= 10 The three planes don't meet!

Plane | meets plane 2 in a line. Plane | meets plane 3 in a parallel line. No solution.

If we change the “3" in the original third equation to “—5" then elimination would
leave 2z = 2 instead of 2z = 10. Now z = | would be consistent—we have moved
the third plane. Substituting z = 1 in the first equation leaves x + y = 6. There are
infinitely many solutions! The three planes now meet along a whole line.

Problem Set 2.2

Problems 1-10 are about elimination on 2 by 2 systems.

1 What multiple £ of equation 1 should be subtracted from equation 27
x4+ 3y=1
10x + 9y = 11.

After this elimination step, write down the upper triangular system and circle the
two pivots. The numbers 1 and 11 have no influence on those pivots.



42

Chapter 2 Solving Linear Equations

Solve the triangular system of Problem | by back substitution, y before x. Verify
that x times (2, 10) plus y times (3.9) equals (1, 11). If the right side changes
to (4, 44), what is the new solution?

What multiple of equation | should be subtracred from equation 27

2r—4y=06
—x+5y=0.

After this elimination step, solve the triangular system. If the right side changes
to (—6,0), what is the new solution?

What multiple £ of equation 1 should be subtracted from equation 27

ax+by=f
cx +dy =g.

The first pivot is a (assumed nonzero). Elimination produces what formula for
the second pivot? What is v? The second pivot is missing when ad = be.

Choose a right side which gives no solution and another right side which gives
infinitely many solutions. What are two of those solutions?

Ix+2y=10
fx +4_‘,' —

Choose a coefficient b that makes this system singular. Then choose a right side
¢ that makes it solvable. Find two solutions in that singular case.

2x + by = 16
4x + By = g.
For which numbers a does elimination break down (1) permanently (2) temporarily?

ax 4+ 3y = -3
4x + ﬁ}‘ = 6.

Solve for x and y after fixing the second breakdown by a row exchange.

For which three numbers &k does elimination break down? Which is fixed by a
row exchange? In each case, is the number of solutions 0 or 1 or o0?

kx+3y= 6
Ix + ky = —6.
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9  What test on by and by decides whether these two equations allow a solution?
How many solutions will they have? Draw the column picture.
ix—2y=¥h
bx —dy = bs.

10 In the xy plane, draw the lines x + v = 5 and x + 2y = 6 and the equation
3 that comes from elimination. The line 5x — 4y = ¢ will go through
the solution of these equations if c =

Problems 11-20 study elimination on 3 by 3 systems (and possible failure).

y =

11 Reduce this system to upper triangular form by two row operations:
2x+3y+z = 8
4x+Ty+5z=2

—2y+2z= 0.
Circle the pivots. Solve by back substitution for z, y, x.
12 Apply elimination (circle the pivots) and back substitution to solve

2x — 3y =3
4x —5y+ z=17
2y — y—3z=35.

List the three row operations: Subtract _ times row from row _

13 Which number 4 forces a row exchange, and what is the triangular system (not
singular) for that d? Which d makes this system singular (no third pivot)?

2x4+S5v+z=

4x+dy+4z=
y-z=3.

14 Which number b leads later o a row exchange? Which b leads to a missing
pivot? In that singular case find a nonzero solution x, v, z.

x+ by =0
x=2y =z2=10
y+z=0.

15 (a) Construct a 3 by 3 system that needs two row exchanges to reach a trian-
gular form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but
breaks down later.
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If rows | and 2 are the same, how far can you get with elimination (allowing
row exchange)? If columns 1 and 2 are the same, which pivot is missing?

x—y+z=0 2x+2y+z=0
x—y+z=0 dr+4yv4+:=0
dx+y+z=2 6x + 6y 4z =

Construct a 3 by 3 example that has 9 different coefficients on the left side, but
rows 2 and 3 become zero in elimination. How many solutions to your system
with b = (1, 10, 100) and how many with b = (0,0, 0)?

Which number ¢ makes this system singular and which right side ¢ gives it in-
finitely many solutions? Find the solution that has z = I.

x+d4y—-2z=1
X+Ty—62=6
Iv+gz=1

{Recommended) It is impossible for a system of linear equations to have exactly
two solutions. Explain why.

(a) If (x,y,z)and (X, Y, Z) are two solutions, what is another one?
(b) If 25 planes meet at two points, where else do they meet?

Three planes can fail to have an intersection point, when no two planes are par-
allel. The system is singular if row 3 of A is a of the first two rows.
Find a third equation that can’t be solved if x + y+z=0and x -2y —z=1.

Problems 21-23 move up to 4 by 4 and n by n.

Find the pivots and the solution for these four equations:

x4+ vy =0
x+2y+ z = ()
y+42z4 t=0
z+2 =5.

This system has the same pivots and right side as Problem 21. How is the solu-
tion different (if it is)?

2x— ¥ =0
—-x+2y— 2z =0
— y+2z— =0

- z4+ 2t =5
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If you extend Problems 21-22 following the 1,2, | pattern or the —1,2, —1 pat-
tern, what is the fifth pivot? What is the nth pivot?

If elimination leads to these equations, find three possible original matrices A:

xX+y+zI=
y+z=
3z=0.

For which iwo numbers ¢ will elimination fail on A = [z ﬂ?

For which three numbers a will elimination fail to give three pivots?

2 B M
2 oW

A=|a
“

Look for a matrix that has row sums 4 and 8, and column sums 2 and s:

Matri:r.:[': .‘}] a+b=4 a+ec=2

d c+d=8 b+d=s

The four equations are solvable only if s = . Then find two different ma-
trices that have the correct row and column sums, Extra credit: Write down the 4
by 4 system Ax = b with x = (a, b, ¢, d) and make A triangular by elimination.

Elimination in the usual order gives what pivot matrix and what solution to this
“lower triangular” system? We are really solving by forward substitution:

3x =3
Gx + 2y =8
Ox —2y+z=09.

Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3
times row | from the existing row 2 if the matrix A is already known.

Find experimentally the average first and second and third pivot sizes (use the ab-
solute value) in MATLAB’s A = rand(3, 3). The average of abs(A(1, 1)) should
be 0.5 but | don"t know the others.



46 Chapter 2 Solving Linear Equations

ELIMINATION USING MATRICES = 2.3

We now combine two ideas—elimination and matrices. The goal is to express all the
steps of elimination (and the final result) in the clearest possible way. In a 3 by 3
example, elimination could be described in words. For larger systems, a long list of
steps would be hopeless. You will see how to subtract a multiple of one row from
another row —using martrices.

The matrix form of a linear system is Ax = b. Here are b, x, and A:

1 The vector of right sides is b.

2 The vector of unknowns is x. (The unknowns change to x;, x», xi, . . . because
we run out of letters before we run out of numbers.)

3 The coefficient matrix is A. In this chapter A is square.

The example in the previous section has the beautifully short form Ax = b:

i +4x—2x3= 2 2 4 -2 X 2
4x; 4+9x3 —3x3= 8 is the same as 4 9 -3 nl|l=| 8. (1)
=2 =304+ Tx:3=10 -2 =3 1 X3 10

The nine numbers on the left go into the matrix A. That matrix not only sits beside x,
it mulriplies x. The rule for A times x” is exactly chosen to yield the three equations.

Review of A times x. A matrix times a vector gives a vector. The matrix is square
when the number of equations (three) matches the number of unknowns (three). Our
matrix is 3 by 3. A general square matrix is n by n. Then the vector x is in n-
dimensional space. This example is in 3-dimensional space:

X -1
The unknown is x = | x2 and the solution is x = 2
X3 2

Key point: Ax = b represents the row form and also the column form of the equations.
We can multiply by taking a column of A at a time:

2 4 -2 2
Ar=(-1)| 4|+2| 9|+2[-3|=]| 8]. (2)
59 -3 7 10

This rule is used so often that we express it once more for emphasis.

2A The product Ax is a combination of the columns of A. Components of x mul-
tiply columns: Ax = x| times (column [)+ -+ x, times (column n).

One point to repeat about matrix notation: The entry in row 1, column 1 (the top
left comer) is called a;;. The entry in row l. column 3 is a;3. The entry in row 3,
column 1 is a3;. (Row number comes before column number.) The word “entry™ for
a matrix corresponds to the word “component” for a vector. General rule: The entry
in row i, column j of the matrix A is aj;.
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Example 1 This matrix has a;; = 2i + j. Then a;) = 3. Also aj2 =4 and ay; = 5.
Here is Ax with numbers and letters:

3 4|2 _ 3-2+4+4-1 ayp  dap x| _[anx +apx

5 6||1] |52+6-1 ay an||x|  layxi+anx|’
The first component of Ax is 64+ 4 = 10. That is the product of the row [3 4| with
the column (2, 1). A row times a column gives a dot product!

The ith component of Ax involves row i, which is [a;; a2 -+ aj, |. The shon
formula for its dot product with x uses “sigma notation™:

2B The ith component of Ax is a;1x) + a1 + -« +ajpx,. This is Z-a,, X
j=l

The sigma symbol ¥~ is an instruction to add. Start with j = | and stop with j = n.
Start the sum with a; x; and stop with a;,x,."

The Matrix Form of One Elimination Step

Ax = b is a convenient form for the original equation. What about the elimination
steps? The first step in this example subtracts 2 times the first equation from the second
equation. On the right side, 2 times the first component of b is subtracted from the
second component:

2 2
b= 8 changes to  bpew = 4
10 10

We want to do that subtraction with a matrix! The same result bpew = Eb is achieved
when we multiply an “elimination matrix™ E times b. It subtracts 2by from bs:

| 0 0
The elimination matrix is E=|-2 1 0
0 ) 1

Multiplication by E subtracts 2 times row 1 from row 2. Rows | and 3 stay the
same:

1o o[ 2 2 1 0 075 by
2 1 || 8|l=| * -2 1 o||l&:|=]|bb-25
o o 1|10 10 0 0 1|/|b by

Notice how by = 2 and b3 = 10 stay the same. The first and third rows of E are the
first and third rows of the identity matrix /. The new second component is the number
4 that appeared after the elimination step. This is b, — 2by.

!Einstein shortened this even more by omitting the 3. The repeated j in a; j%; automatically meant
addition. He also wrote the sum as :1:."_:!. Not being Einstein, we include the ¥ .
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It is easy to describe the “elementary matrices™ or “elimination matrices™ like E.
Start with the identty matrix [. Change one of its zeros to the multiplier —€:

2C The identity matrix has 1's on the diagonal and otherwise 0°s. Then /b = b.
The elementary matrix or elimination matrix E,; that subtracts a multiple £ of row j
from row i has the extra nonzero entry —£ in the 7, j position.

Example 2

Idﬂl“l’j I

=N =

0
1
0

-0

1 0 0
Elimination Eyw=| 0 | 0].
—£ 0 |

When you multiply [ times b, you get b. But E3; subtracts £ times the first component
from the third component. With £ =4 we get 9—-4=35:

1 00 1 ! 10 0 1 1
=0 1 B]|3]|=1]3 and Eb=| 0 1 O0|]3]|=]|3].
0 0 1 9 9 -4 0 1 9 5

What about the left side of Ax = b7 The multiplier £ = 4 was chosen to produce a
zero, by subtracting 4 times the pivot. Ey creates a zero in the (3, 1) position.

The notation fits this purpose. Start with A. Apply E's to produce zeros below
the pivots (the first £ is Ez). End with a triangular /. We now look in detail at
those steps.

First a small point. The vector x stays the same. The solution is not changed by
elimination. (That may be more than a small point.) It is the coefficient matrix that is
changed! When we start with Ax = b and multiply by E, the result is EAx = Eb.
The new matrix EA is the result of multiplying E times A.

Matrix Multiplication

The big question is: How do we multiply two matrices? When the first matrix is E (an
elimination matrix), there is already an important clue. We know A, and we know what
it becomes after the elimination step. To keep everything right, we hope and expect
that EA is

1 0 0 2 4 2 2 4 =2
-2 1 0 4 95 3|1=| 0 1 1 (with the zero).
o o t}}|-2 -3 7 -2 -3 7

This step does not change rows | and 3 of A. Those rows are unchanged in £A—only
row 2 is different. Twice the first row has been subtracted from the second row. Matrix
multiplication agrees with elimination —and the new system of equations is EAx = Eb.

E Ax is simple but it involves a subtle idea. Multiplying both sides of the original
equation gives E{(Ax) = Eb. With our proposed multiplication of matrices, this is also
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(EA)x = Eb. The first was E times Ax, the second is EA times x. They are the
same! The parentheses are not needed. We just write EAx = Eb.

When multiplying ABC, you can do BC first or you can do AB first. This is
the point of an “associative law™ like 3 x (4 x 5) = (3 x 4) x 5. We multiply 3 times
20, or we multiply 12 times 5. Both answers are 60. That law seems so obvious that
it is hard to imagine it could be false. But the “commutative law” 3 x4 =4 x 3 looks
even more obvious. For matrices, EA is different from AE.

2D ASSOCIATIVE LAW ABC) = (AB)C
NOT COMMUTATIVE LAW Often AB # BA |

There is another requirement on matrix multiplication. Suppose B has only one
column (this column is b). The matrix-matrix law for EB should be consistent with
the old matrix-vector law for Eb. Even more, we should be able to mulriply matrices
a column ar a time:

If B has several columns by, by, by, then EB has columns Eby, Eby, Eb;.

This holds true for the matrix multiplication above (where the matrix is A instead of
B). If you multiply column 1 of A by E, you get column | of EA:

1 0 0 2 2

-2 1 0 41=| 0 and E(column j of A) =column j of EA.
|: 0 0 1]|-2 —2]

This requirement deals with columns, while elimination deals with rows. The next sec-

tion describes each individual entry of the product. The beauty of matrix multiplication

is that all three approaches (rows, columns, whole matrices) come out right.

The Matrix P;; for a Row Exchange

To subtract row j from row i we use Ej;. To exchange or “permute” those rows we
use another matrix P;;. Row exchanges are needed when zero is in the pivot position.
Lower down that pivot column may be a nonzero. By exchanging the two rows, we
have a pivot (never zero!) and elimination goes forward,

What matrix 3 exchanges row 2 with row 37 We can find it by exchanging
rows of the identity matrix /:

Permutation matrix Py =

oD
-0
L= =
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This is a row exchange matrix. Multiplying by P»3; exchanges components 2 and 3 of
any column vector. Therefore it also exchanges rows 2 and 3 of any matrix:

1 0 0 | 1 1 0 0|2 4 1 2 41
0 0 1 J|l=1§ and 0 0 1 0 I|=10 086 3
0 1 0f1]5 3 01 0]]l0 6 5 0 0 3

On the right, P:3 is doing what it was created for. With zero in the second pivot
position and “6" below it, the exchange puts 6 into the pivot.

Matrices act. They don't just sit there. We will soon meet other permutation
matrices, which can change the order of several rows. Rows 1, 2, 3 can be moved to
3, 1. 2. Our Py3 1s one particular permutation matrix —it exchanges rows 2 and 3.

2E Row Exchange Matrix F;; is the identity matrix with rows ;i and j reversed.
When P;; multiplies a matrix A. it exchanges rows i and j of A.

0ol
To exchange equations 1 and 3 multiply by Pj3 = [HE]'
Usually row exchanges are not required. The odds are good that elimination uses only

the E;;. But the F;; are ready if needed. to move a pivot up to the diagonal.

The Augmented Matrix

This book eventually goes far beyond elimination. Matrices have all kinds of practical
applications, in which they are multiplied. Our best starting point was a square E times
a square A, because we met this in elimination—and we know what answer to expect
for EA. The next step is to allow a recrangular marrix. 1t still comes from our original
equations, but now it includes the right side b.

Key idea: Elimination does the same row operations to A and to b. We can
include b as an extra column and follow it through elimination. The matrix A is
enlarged or “augmented” by the extra column b:

2. $u=2 2
Augmented matrix  [A b] =| 4 9 -3 8
-2 =3 77 10

Elimination acts on whole rows of this marrix. The left side and right side are both
multiplied by E, to subtract 2 times equation |1 from equation 2. With [A b ] those
steps happen together:

1 0 o][2 4 -2 2 2 vf =3 2
2 1 o||l 4 9 -3 8|=[0 1 1 4
0 0 1f|-2-3 7 10 2 -3 7 10

The new second row contains 0, 1, 1, 4. The new second equation is x: 4+ x5 = 4,
Matrix multiplication works by rows and at the same time by columns:
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R (by rows): Each row of E acts on [A b] to give arow of [ EA Eb|.

C (by columns): E acts on each column of [A b ] to give a column of | EA Eb|.

Notice again that word “acts.” This is essential. Matrices do something! The matrix A
acts on x to produce b. The matrix E operates on A to give EA. The whole process
of elimination is a sequence of row operations, alias matrix multiplications. A goes 1o
E2y A which goes to E3jE91A. Finally Ej2E3)E2 A is a triangular matrix.

The right side is included in the augmented matrix. The end result is a triangular
system of equations. We stop for exercises on multiplication by E, before writing down
the rules for all matrix multiplications (including block multiplication).

® REVIEW OF THE KEY IDEAS =

1. Ax = times column 1 +--- 4 x, times column n. And (Ax); = 37, a;;x;.
2. Identity matrix = /, elimination matrix = E;;, exchange matrix = F;;.

3.  Multiplying Ax = b by E3) subtracts a multiple €7 of equation 1 from equa-
tion 2. The number —¢5; is the (2, 1) entry of the elimination matrix E.

4.  For the augmented matrix [A b]. that elimination step gives [Ezm Eab].

5. When A multiplies any matrix B, it multiplies each column of B separately.

= WORKED EXAMPLES =

23 A What 3 by 3 matrix E»| subtracts 4 times row | from row 27 What matrix
P32 exchanges row 2 and row 37 If you multiply A on the right instead of the left,
describe the results AE>; and A Pio.

Solution By doing those operations on the identity matrix /, we find

1 0 0 1 0 0
Exy=| 4 1 0 and Pp=]| 0 0 |
0o o0 1 01 0
Multiplying by E3; on the right side will subtract 4 times column 2 from column 1.

Multiplying by Ps» on the right will exchange columns 2 and 3.

2.3 B  Write down the augmented matrix [A b] with an extra column:

x+2y+2z=1
4x+8y+9:=3
v+ 2z =1

Apply Ez; and then Pj; to reach a triangular system. Solve by back substitution. What
combined matrix P32 E7; will do both steps at once?
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Solution The augmented matrix and the result of using E;; are

1 2 21 1 2 2
A bl=| 4 8 9 3 and  En[A bl=| 0 0 1 -1
0 3 2 1 0 3 2

P> exchanges equation 2 and 3. Back substitution produces (x, v, z):

2.2 1 x 1
32 1 and yl=1] 1
01 -1 z —1

For the matrix Pi; E7; that does both steps at once, apply Pz to Ey!

=090 =

Py En[A bl = {

1 0O
Py» Exy = exchange the rows of E; = 0 0
-4 1

=N =]

2.3 C  Multiply these matrices in two ways: first, rows of A times columns of B
to find each entry of AB, and second, columns of A times rows of B to produce two
matrices that add to AB. How many separate ordinary multiplications are needed?

3 4
wn={i 5|[2 4

} = (3 by 2)(2 by 2)
2 0

Solution Rows of A times columns of B are dot products of vectors:

{row 1)+ (column 1) = [3 4] [f = 10 is the (1, 1) entry of AB

Gow:2) < (ostomn 1= 11 31 [f = 7 isthe (2 1) entry of AB

The first columns of AB are (10,7,4) and (16,9, 8). We need 6 dot products, 2 mul-
tiplications each, 12 in all (3+2.2). The same AB comes from columns of A times
rows of B:

31 [2 4] 41 [1 1] 6 12 4 4 10 16
AB=| 1| + 13 =12 4|+4+|5 5|=|"7 9
2 0 4 8 0 0 4 8
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Problem Set 2.3

Problems 1-15 are about elimination matrices.
1 Write down the 3 by 3 matrices that produce these elimination steps:

(a) E5 subtracts 5 times row | from row 2.
{b) Ey subtracts =7 times row 2 from row 3.
(c) P exchanges rows | and 2, then rows 2 and 3.
2 In Problem 1, applying E;; and then E3; to the column b = (1,0, 0) gives Ey2Ez b =

. Applying E3; before E; gives E; Enb = . When E3 comes
first, row feels no effect from row

3 Which three matrices Ez, E3;, Esz put A into triangular form U7

1 1 0
A= 4 6 1 and EpnEyEnA=U.
-2 2 0

Multiply those E’s to get one matrix M that does elimination: MA = U,

4 Include b = (1,0,0) as a fourth column in Problem 3 to produce [A b]. Carry
out the elimination steps on this augmented matrix to solve Ax = b.

5 Suppose a3z = 7 and the third pivot is 5. If you change a3y to 11, the third pivot
15 . If you change a3z to _ , there is no third pivot.

6  If every column of A is a multiple of (1, 1, 1), then Ax is always a multiple of
(1,1.1). Do a 3 by 3 example. How many pivots are produced by elimination?

7  Suppose E3; subtracts 7 times row | from row 3. To reverse that step you should
T times row to row ___. This “inverse matrix™ is K3 = __

8 Suppose E3; subtracts 7 times row | from row 3. What matrix R3; is changed
into /? Then E3 Ry = | where Problem 7 has Ry E3s; = . Both are true!

9 (a) E; subtracts row | from row 2 and then 3 exchanges rows 2 and 3.
What matrix M = Py1E7| does both steps at once?

{(b) Ps3; exchanges rows 2 and 3 and then Es; subtracts row 1 from row 3,
What matrix M = E3; Po3 does both steps at once? Explain why the M's
are the same but the E’'s are different.

10 (a) What 3 by 3 matrix E;3 will add row 3 to row 17
(b) 'What matrix adds row | to row 3 and ar rthe same time row 3 to row 17
{¢) What matrix adds row 1 to row 3 and then adds row 3 to row 17
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13

14
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Create a matrix that has @) = a2 = a3 = 1 but elimination produces two
negative pivots without row exchanges. (The first pivot is 1.)
Multiply these matrices:
0 0 1 1 2 3|10 0 1 1 0 0 1
01 0|4 5 6[|]0 10 -1 1 0]]1

1 0 O}|7 B 9)|1 0 O -1 0 1}]1

b

3
1
0

S

Explain these facts. If the third column of B is all zero, the third column of EB
is all zero (for any E). If the third row of B is all zero, the third row of EB
might not be zero.

This 4 by 4 matrix will need elimination matrices E2; and Es; and Egs. What
are those matrices?

2 -1 0 0
(|1 2-1 0
Tl o0 -1 2 -1

0 0 -1 2

Write down the 3 by 3 matrix that has a;; = 2i —3j. This matrix has a3; = 0, but
elimination still needs E37 to produce a zero in the 3, 2 position. Which previous
step destroys the original zero and what is E3y?

Problems 16-23 are about creating and multiplying matrices.

16

17

18

19

Write these ancient problems in a 2 by 2 matrix form Ax = b and solve them:

{a) X is twice as old as ¥ and their ages add to 33.
(b) (x,¥)=1(2,5) and (3,7) lie on the line y = mx 4 ¢. Find m and c.

The parabola vy = a + bx +ex? goes through the points (x, v) = (1, 4) and (2, 8)
and (3, 14). Find and solve a matrix equation for the unknowns (a. b, c).

Multiply these matrices in the orders EF and FE and E*:

1 0 0 1 0 0
E=]a 1 0 F=10 1 0
h 0 |1 0 ¢ 1

Also compute E* = EE and F* = FFF,

Multiply these row exchange matrices in the orders PQ and QP and P?:

010 0 0 1
P=|1 00| and 0=|0 1 0
0 0 1 1 0 0

Find four matrices whose squares are M* = [.
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21
22

23
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{a) Suppose all columns of B are the same. Then all columns of EB are the
same, because each one is E times

(b) Suppose all rows of B are [1 2 4]. Show by example that all rows of
EB are not |1 2 4]. It is true that those rows are
If E adds row | to row 2 and F adds row 2 to row 1, does EF equal FE?

The entries of A and x are a;; and x;, So the first component of Ax is }_ayjx; =
ajjxy +---+ ajpxy. If Es; subtracts row | from row 2, write a formula for
(a) the third component of Ax

(b) the (2,1) entry of E5 A

(c) the (2,1) entry of E2(EyA)

(d) the first component of EAx.

The elimination matrix E = [_} II]] subtracts 2 times row | of A from row 2 of
A. The result is EA. What is the effect of E(EA)? In the opposite order AE.
we are subtracting 2 times of A from . (Do examples.)

Problems 24-29 include the column b in the augmented matrix [A b

24

25

26

27

Apply elimination to the 2 by 3 augmented matrix [ A b ]. What is the triangular
system Ux = ¢7 What is the solution x7

et -1

Apply elimination to the 3 by 4 augmented matrix [A b]. How do you know
this system has no solution? Change the last number 6 so there is a solution.

1
Ax = =|2
(i

[T -
LI T L
=] =

[

The equations Ax = b and Ax* = b* have the same matrix A. What double
augmented matrix should you use in elimination to solve both equations at once?

Solve both of these equations by working on a 2 by 4 matrix:

1 47«1 _[1 4 [V 4[]0

2 Fllx] T ol ™= |2 e T )
Choose the numbers a, b, c.d in this augmented matrix so that there is (a) no
solution (b) infinitely many solutions.

Which of the numbers a, b, ¢, or d have no effect on the solvability?
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28 If AB =1 and BC = I use the associative law to prove A = C.

29 Choose two matrices M = [: :] with det M = ad — bc = | and with a. b, c. d
positive integers. Prove that every such matrix M either has

EITHER row |l = row 2 OR row 2 < row 1,

Subtraction makes [ _} §]M or [} =1 |M nonnegative but smaller than M. If you
continue and reach I, write your M's as products of the inverses [H] and [é} .

30 Find the triangular matrix E that reduces “Pascal’s marrix” to a smaller Pascal:

1 0 0 0 1 0 0 0
E 1 1.9 0] |9 1 @0
T O ¢ Sl | S
| S e g 1 2 1
Challenge question: Which M (from several E’s) reduces Pascal all the way to [?

RULES FOR MATRIX OPERATIONS = 2.4

I will start with basic facts. A matrix is a rectangular array of numbers or “entries.”
When A has m rows and n columns, it is an “m by n” matrix. Matrices can be added
if their shapes are the same. They can be multiplied by any constant ¢. Here are
examples of A+ B and 2A, for 3 by 2 matrices:

1 2 2 2 3 4 1 2 2 4
3 4|4+|4 4|=|7 B8 and 2|3 4|=|6 B
0 0 9 9 5 9 0 0 0 0

Matrices are added exactly as vectors are—one entry at a time. We could even regard
a column vector as a matrix with only one column (so n = 1). The matrix —A comes
from multiplication by ¢ = —1 (reversing all the signs). Adding A to —A leaves the
zero marrix, with all entries zero.

The 3 by 2 zero matrix is different from the 2 by 3 zero matrix. Even zero has
a shape (several shapes) for matrices. All this is only common sense.

The entry in row i and column | is called a;; or A(i, j). The n entries along
the first row are ayy,ay2,. . ., dyp. The lower left entry in the matrix is a, and the
lower right is d@py. The row number i goes from 1 to m. The column number j goes
from | to n.

Matrix addition is easy. The serious question is matrix multiplication. When can we
multiply A times B. and what is the product AB? We cannot multiply when A and B
are 3 by 2. They don’t pass the following test:

To multiply AB: If A has n columns, B must have n rows.

If A has two columns, 8 must have two rows. When A is 3 by 2, the matrix B can
be 2 by | (a vector) or 2 by 2 (square) or 2 by 20. Every column of B is ready to
be multiplied by A. Then AB is 3 by | (a vector) or 3 by 2 or 3 by 20.
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Suppose A is m by n and B is n by p. We can multiply. The product AB is m

by p.
m rows n rows e m rows
[n miumm] [p mlumns] - |:p mlmnns:"

A row times a column is an extreme case. Then 1 by n multiplies n by 1. The result
is 1 by 1. That single number is the “dot product.”

In every case AB is filled with dot products. For the top comer, the (1, 1) entry
of AB is (row 1 of A) « (column 1 of B). To multiply matrices, take all these dot
products: (each row of A) - (each column of B).

2F The entry in row ¢ and column | of AB is (row i of A) - (column j of B) .

Figure 2.8 picks out the second row (i = 2) of a 4 by 5 matrix A. It picks out the third
column (j = 3) of a 5 by 6 matrix B. Their dot product goes into row 2 and column 3
of AB. The matrix AB has as many rows as A (4 rows), and as many columns as B.

—

* = by = * =
* b *
W e s d (AB)i; * * *
* . *
* 3. *
. bsj 4
Ais4by5 Bis 5by6 AB is 4 by 6

Figure 28 Herei=2and j =3 Then (AB)y; is (row2) - (column 3} = Zanbys.

Example 1  Square matrices can be multiplied if and only if they have the same size:

E B2 27 _ 5 6

2 =1]|3 4| |1 O}
The first dot product is 1 -2+ 1+3 = 5. Three more dot products give 6, 1, and 0.
Each dot product requires two multiplications —thus eight in all.

If A and B are n by n, so is AB. It contains n® dot products, row of A times
column of B. Each dot product needs n multiplications, so the computation of AB
uses n° separate multiplications. For n = 100 we multiply a million times. For n = 2
we have n’ = 8.

Mathematicians thought until recently that AB absolutely needed 2° = 8 mul-
tiplications. Then somebody found a way to do it with 7 (and extra additions). By
breaking n by n matrices into 2 by 2 blocks, this idea also reduced the count for large
matrices. Instead of n” it went below n®®, and the exponent keeps falling.' The best

"Maybe the exponent won't stop falling before 2. No number in between looks special.
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at this moment is n2-7%. But the algorithm is so awkward that scientific computing is
done the regular way: n” dot products in AB, and n multiplications for each one.

Example 2 Suppose A is a row vector (1 by 3) and B is a column vector (3 by 1).
Then AB is 1 by 1 (only one entry, the dot product). On the other hand B times A
(a column times a row) is a full 3 by 3 matrix. This multiplication is allowed!

0 0 0
Column times row: 1 [1 2 3]= 1

A row times a column is an “inner” product—that is another name for dot product.
A column times a row is an “owter” product. These are extreme cases of matrix mul-
tiplication, with very thin matrices. They follow the rule for shapes in multiplication:
(n by 1) times (1 by n). The product of column times row is n by n.

Example 3 will show how to multiply AB using columns times rows.

Rows and Columns of AR
In the big picture, A multiplies each column of B. The result is a column of AB. In
that column, we are combining the columns of A. Each column of AR is a combi-
nation of the columns of A. That is the column picture of matrix multiplication:

Column of AB is (matrix A) times (column of B).

The row picture is reversed. Each row of A multiplies the whole matrix B. The result
is a row of AB. It is a combination of the rows of B:

= [row i of AR ].

oc Lh pJ
L =R - O

l
[row i of A]| 4
7

We see row operations in elimination (£ times A). We see columns in A times x. The
“row-column picture” has the dot products of rows with columns. Believe it or not,
there is also a “column-row picture.” Not everybody knows that columns 1, ... ,n of
A multiply rows 1,... ,n of B and add up to the same answer AB.

The Laws for Matrix Operations

May | put on record six laws that matrices do obey, while emphasizing an equation
they don't obey? The matrices can be square or rectangular, and the laws involving
A+ B are all simple and all obeyed. Here are three addition laws:

A+B=8B+A (commutative law)
clA+B)=cA+cB (distributive law)
A4+ (B4+C)=(A+ B)+C (associative law),
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Three more laws hold for multiplication, but AB = BA is not one of them:

AB # BA (the commutative “law” is usually broken)
CiA+B)=CA+CB (distributive law from the left)
(A+ B)C = AC + BC (distributive law from the right)
A(BC) = (AB)C (associative law for ABC) (parentheses not needed).

When A and B are not square, AB is a different size from BA. These matrices can’t
be equal —even if both multiplications are allowed. For square matrices, almost any
example shows that AB is different from BA:

an=[ S1[8 o]=[5 3] s ma=[3 3][2 ]=[ 5]

It is true that AJ = JA. All square matrices commute with [ and also with ¢/. Only
these matrices ¢/ commute with all other matrices.

The law A(B+C) = AB + AC is proved a column at a ime. Start with A(b +
¢) = Ab + Ac¢ for the first column. That is the key to everything—linearity. Say no

more.

The law A(BC) = (AB)C means that you can multiply BC first or AB first.
The direct proof is sort of awkward (Problem 16) but this law is extremely useful. We
highlighted it above; it is the key to the way we multiply matrices.

Look at the special case when A = B = C = square matrix. Then (A times A =
(A? times A). The product in either order is A*. The matrix powers A” follow the
same rules as numbers:

AP = AAA A (p fictors)  (AP)AT) =APTE  (AP)T =AM,

Those are the ordinary laws for exponents. A* times A* is A7 (seven factors).
A? to the fourth power is A'? (twelve A's). When p and g are zero or negative these
rules still hold, provided A has a “—1 power”—which is the inverse matrix A~'. Then
A" = | is the identity matrix (no factors).

For a number, a~' is 1/a. For a matrix, the inverse is written A", (It is never
I/A, except this is allowed in MATLAB.) Every number has an inverse except a = (.
To decide when A has an inverse is a central problem in linear algebra. Section 2.5
will start on the answer. This section is a Bill of Rights for matrices, to say when A
and B can be multiplied and how.
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Block Matrices and Block Multiplication

We have to say one more thing about matrices. They can be cut into blocks (which
are smaller matrices). This often happens naturally. Here is a 4 by 6 matrix broken
into blocks of size 2 by 2—and each block is just /:

| 1 | 1T 0
0 0 1/0 1 7 A T
i | e =[1 ; .-*]'
|

—_—

If B is also 4 by 6 and its block sizes match the block sizes in A, you can add A+ B
a block at a time.

We have seen block matrices before. The right side vector b was placed next to A
in the “augmented matrix.” Then [ A b ] has two blocks of different sizes. Multiplying
by an elimination matrix gave [ EA Eb]. No problem to multiply blocks times blocks,
when their shapes permit:

2G Block multiplication If the cots between columns of A match the cuts between
rows of B, then block multiplication of AB is allowed:

A A || 8n | _ |AuBn+ApBy - )
.'\:; .'1:] B” - .Jn:|B[| + ."ljol] con |

This equation is the same as if the blocks were numbers (which are 1 by 1 blocks).
We are careful to keep A's in front of B’s, because BA can be different. The cuts
between rows of A give cuts between rows of AB. Any column cuts in B are also
column cuts in AB.

Main point  When matrices split into blocks, it is often simpler to see how they act.
The block matrix of I's above is much clearer than the original 4 by 6 matrix A.

Example 3  (Important special case) Let the blocks of A be its # columns. Let the
blocks of B be its n rows. Then block multiplication AB adds up columns times rows:

| il Rl M
AB=|ay -+ a, : = |aiby+---+aub, |. (2)
| | — B

This is another way to multiply matrices! Compare it with the usual rows times columns.
Row 1 of A times column 1 of B gave the (1, 1) entry in AB. Now column 1 of A
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times row | of B gives a full matrix —not just a single number. Look at this example:

1o - e
[g §]+[‘; g] 3)

We stop there so you can see columns multiplying rows. If a 2 by | matrix (a column)
multiplies a 1 by 2 matrix (a row), the result is 2 by 2. That is what we found. Dot
products are “inner products,” these are “outer products.”

When you add the two matrices at the end of equation (3), you get the correct
answer AB. In the top left comer the answer is 3 + 4 = 7. This agrees with the
row-column dot product of (1, 4) with (3, 1).

Summary The usual way, rows times columns, gives four dot products (8 multiplica-
tions). The new way, columns times rows, gives two full matrices (8 multiplications).

The eight multiplications, and also the four additions, are all the same. You just execute
them in a different order.

Il

Example 4  (Elimination by blocks) Suppose the first column of A contains 1,3, 4.
To change 3 and 4 to 0 and 0, multiply the pivot row by 3 and 4 and subtract. Those
row operations are really multiplications by elimination matrices E;; and E3:

1 0 0 1 0 0
Ey=|-3 1 0 and Eyy=| 0 1 0O
o o0 1 -4 0 1

The “block idea” is to do both eliminations with one matrix E. That matrix clears out
the whole first column of A below the pivot a = 2:

1 0 0 1 ¥ % %
E=|-3 1 O multiplies 3 x x togive EA=|0 x «x
-4 0 |1 4 x x $x X

Block multiplication gives a formula for EA. The matrix A has four blocks a, b, ¢, D:
the pivot, the rest of row 1, the rest of column 1, and the rest of the matrix. Watch
how E multiplies A by blocks:

1 |10 a | b a | b
EA = ' = ’ BT 4)
—c/a W, c | D 0 D—ch/a
Elimination multiplies the first row [a b] by ¢/a. It subtracts from ¢ to get zeros in

the first column. It subtracts from D to get D —cb/a. This is ordinary elimination, a
column at a time—written in blocks.
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= REVIEW OF THE KEY IDEAS =

1. The (i. j) entry of AB is (row i of A)-(column j of B).

2. An m by n matrix times an n by p matrix uses mnp separate multiplications.
3. A umes BC equals AB times C (surprisingly important).

4. AR is also the sum of these matrices: (column j of A) times (row j of B).
5. Block multiplication is allowed when the block shapes match correctly.

® WORKED EXAMPLES =

2.4 A Put yourself in the position of the author! | want to show you matrix mul-
tiplications that are special, but mostly 1 am stuck with small matrices. There is one
terrific family of Pascal matrices, and they come in all sizes, and above all they have
real meaning. 1 think 4 by 4 is a good size to show some of their amazing patterns.

Here is the lower triangular Pascal matrix L. Its entries come from “Pascal’s
reiangle”. T will multiply L times the ones vector, and the powers vector:

| 1 1 | 1 1
Pascal | 1 2 A x| | 1+x
matrix |1 2 | 1|7 |4 L2 2|7 | (d4x)?
i e S Wl 8 i Tl W (14x)*
Each row of L leads to the next row: Add an entry to the one on its left to get the
entry below. In symbols € ; + £; ;_y = €41 ;. The numbers after 1,3,3,1 would

be 1,4,6.4, 1. Pascal lived in the 1600’s, long before matrices, but his triangle fits
perfectly mto L.

Multiplying by ones is the same as adding up each row, to get powers of 2. In
fact powers = ones when x = 1. By writing out the last rows of L times powers, you
see the entries of L as the “binomial coefficients™ that are so essential to gamblers:

142+ Le2 = (1 +x)2 14+3x+32+12% = (1 +x)°

The number *3"” counts the ways to get Heads once and Tails twice in three coin flips:
HTT and THT and TTH. The other “3” counts the ways to get Heads twice: HHT
and HTH and THH. Those are examples of “i choose ;" = the number of ways to
get j heads in i coin flips. That number is exactly £;;, if we start counting rows and
columns of L at i =0 and j =0 (and remember 0! = 1):

i i! 4 4!
i’.'."= =ich e S S — = —— =0
/ (;) VERORES =TG- (z) 21721

There are six ways to choose two aces out of four aces. We will see Pascal’s triangle
and these matrices again. Here are the questions I want to ask now:
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1. What is H = L*? This is the “hypercube matrix".
2. Multiply H times ones and powers.

3. The last row of H is 8, 12,6, 1. A cube has 8 corners, 12 edges, 6 faces, | box.
What would the next row of H tell about a hvpercube in 4D?

Solution  Multiply L times L to get the hypercube matrix H = L:

1 1 1
11 11 21
1 2 1 121 [Fla a1 [TF
1 3 3 1 1 3 3 1 8 12 6 1
Now multiply H times the vectors of ones and powers:
1 i 1 1 1 1
2 1 1 |3 2 1 x| | 24x
4 4 | 1|~ |9 4 4 | 2T 2422
8 12 6 1 1 27 8 12 6 | x3 2+x)7

If x =1 we get the powers of 3. If x = 0 we get powers of 2 (where do 1,2,4,8
appear in H?). Where L changed x to 1+x, applying L again changes 1+x to 2+x.

How do the rows of H count corners and edges and faces of a cube? A
square in 2D has 4 corners, 4 edges, | face. Add one dimension at a time:

Connect two squares to get a 3D cube. Connect two cubes to get a 4D hypercube.

The cube has 8 corners and 12 edges: 4 edges in each square and 4 between the squares.
The cube has 6 faces: 1 in each square and 4 faces between the squares. This row
8,12,6,1 of H will lead to the next row (one more dimension) by 2h; ; + h; ;- =
hit j.

Can you see this in four dimensions? The hypercube has 16 corners, no problem.
It has 12 edges from one cube, 12 from the other cube, 8 that connect corners between

those cubes: total 2 x 12 + 8 = 32 edges. It has 6 faces from each separate cube and
12 more from connecting pairs of edges: total 2 x 6 4 12 = 24 faces. It has one box

from each cube and 6 more from connecting pairs of faces: total 2 x | +6 = 8 boxes.
And sure enough, the next row of H is 16,32, 24,8, 1.

24 B For these matrices. when does AB = BA? When does BC = CB? When
does A times BC equal AB times C? Give the conditions on their entries p, g, r, =:

a=[2 9] e=[i )] e=[b i

It p.g.r. 1,z are 4 by 4 blocks instead of numbers, do the answers change?
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Solution  First of all, A times BC always equals AB times C. We don’'t need paren-
theses in A(BC) = (AB)C = ABC. But we do need to keep the matrices in this order
A, B.C. Compare AB with BA:

AB:[P P] ﬂA:["’""? '].
q q+r qg r
We only have AB = BA if ¢ =0 and p = r. Now compare BC with CB:
0 z 0 z
o e

B and C happen to commute. One explanation is that the diagonal part of B is [,
which commutes with all 2 by 2 matrices. The off-diagonal part of B looks exactly
like C (except for a scalar factor ) and every matrix commutes with itself.

When p,q,r, z are 4 by 4 blocks and 1 changes to the 4 by 4 identity matrix,
all these products remain correct. So the answers are the same. (If the /'s in B were
changed to blocks 1,1, ¢, then BC would have the block rz and CB would have the
block zt. Those would normally be different—the order is important in block multi-
plication.)

2.4 C A directed graph starts with n nodes. There are n’ possible edges—each
edge leaves one of the n nodes and enters one of the n nodes (possibly itself). The n
by n adjacency matrix has a;; = | when an edge leaves node i and enters node j; if
no edge then a;; = 0. Here are two directed graphs and their adjacency matrices:

node 1 to node 2 ;

11 1
node | to node 1 2 ﬂ.:‘:l l] 1 00
1 00
3
node 2 to node |
The i, j entry of A* is ajrayj+---+ajpay;j. Why does that sum count the rwo-step
paths from i to any node to j? The i, j entry of A* counts k-step paths:

I 177 _[2 1] countsthepaths [ltw2tw 1, 1toltol Itolto2
1 o] |1 1 with two edges 2t 1to1 20 1to2

List all of the 3-step paths between each pair of nodes and compare with A>. When
A* has ne zeros, that number k is the diameter of the graph—the number of edges
needed to connect the most distant pair of nodes. What is the diameter of the second

graph?

Solution  The number a; ag; will be “17 if there is an edge from node i to k and
an edge from k to j. This is a 2-step path. The number a;zay; will be “0” if either of
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those edges (i to k, k to j) is missing. So the sum of g;ay; is the number of 2-step
paths leaving i and entering j. Matrix multiplication is just right for this count.
The 3-step paths are counted by A%; we look at paths to node 2:

43— 3 2 counts the paths - lwlwlw2, lw2wlto?
Y b with three steps 2toltolto?2

These A* contain the Fibonacci numbers 0, 1,1,2,3,5,8,13.... coming in Section 6.2.
Fibonacci's rule Fji» = Fiy) + Fj (as in 13 =8 4 3) shows up in {A]Mk] = Ak+!.

[l l] [Fu-l Fi }= [FH: Fi.-+1] — AR+
1 0] Fe Fi— Fis1 Fi '
There are 13 six-step paths from node | to node 1, but | can’t find them all.

A* also counts words. A path like 1 to 1 to 2 to | corresponds to the number
1121 or the word aaba. The number 2 (the letter b) is not allowed to repeat because
the graph has no edge from node 2 to node 2. The i, j entry of A* counts the allowed

numbers (or words) of length k 4 1 that start with the ith letter and end with the jth.
The second graph also has diameter 2; A has no zeros.

Problem Set 2.4

Problems 1-17 are about the laws of matrix multiplication.

1 Ais3by5 BisSby 3, Cis5by I, and D is 3 by 1. All entries are 1. Which
of these matrix operations are allowed, and what are the results?

BA AB ABD DBA A(B +C).
2 What rows or columns or matrices do you multiply to find

(a) the third column of ARB?

(b) the first row of AB?

{c) the entry in row 3, column 4 of AB?
(dy the entry in row |, column | of CDE?

3 Add AE 1o AC and compare with A(B + C):
1 5 0 2 31
a=[t 3] w02 2] wa e[} 1]
4  In Problem 3, multiply A times BC. Then multiply AB times C.
5  Compute A* and A®. Make a prediction for A3 and A":

oot w3 )
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Show that (A + B)® is different from A® + 2ARB + B*, when

S |

Write down the correct rule for (A + B)(A + B) = A2 + + B2,
True or false. Give a specific example when false:

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.
(b If rows | and 3 of B are the same, so are rows |1 and 3 of AB.

{c) If rows | and 3 of A are the same, so are rows | and 3 of ABC.
(d) (AB)’ = A’B°.

How is each row of DA and EA related to the rows of A, when

30 01 a b
D=|:ﬁ 5] and E=[n I] and A:[r d}?

How is each column of AD and AE related to the columns of A?

Row | of A is added to row 2. This gives EA below. Then column | of EA is
added to column 2 to produce (EA)F:

I Olla b i b
EA:[I 1][:- d]:[d—l-c b—i—d}

B I 1] [ a a+b
and tEA}F—[EM[ﬂ |]—[ﬂ+f a+f+b+ﬂr]-

{a) Do those steps in the opposite order. First add column 1 of A to column
2 by AF. then add row | of AF to row 2 by E(AF).

(b) Compare with (EA)F. What law is obeyed by matrix multiplication?

Row 1 of A is again added to row 2 to produce EA. Then F adds row 2 of EA
to row 1. The result is F{EA):

_NE J a b | _|2a+c 2b+d
F{EM_[D 1]L+[- h+d]‘[u+r b+d]‘
(a) Do those steps in the opposite order: first add row 2 to row | by FA, then
add row | of FA to row 2.

(b}  What law is or is not obeyed by matrix multiplication?
{3 by 3 matrices) Choose the only B so that for every matrix A

a) BA=44
iby BA=4R
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{c) BA has rows | and 3 of A reversed and row 2 unchanged

id)  All rows of BA are the same as row | of A.

Suppose AB = BA and AC = CA for these two particular matrices B and C:

a b 3 v o L
A-[c d] commutes with B..[ﬂ l'.l:| and E‘_[U ﬂ]'

Prove that a = d and b=¢ = 0. Then A is a multiple of /. The only matrices
that commute with B and C and all other 2 by 2 matrices are A = multiple of /.

Which of the following matrices are guaranteed to equal (A — B)*: A® - B2,
(B—A), A’-2AB+ B>, A(A-B)-B(A-B), A>— AB—- BA+ B™

True or false:
(a) If A? is defined then A is necessarily square.

(b) If AB and BA are defined then A and B are square.
(¢c) If AB and BA are defined then AB and BA are square.

I:l;]:l If AB= B8 then A=1.
If Ais m by n, how many separate multiplications are involved when

(a) A multiplies a vector x with n components?
(b) A multiplies an n by p matrix B?
(¢) A multiplies itself to produce A®? Here m = n.

To prove that (AB)C = A(BC), use the column vectors by, ..., b, of B. First
suppose that C has only one column ¢ with entries ¢y, .... Cy:
AB has columns Aby..... Ab, and Be has one column cyby + -+ + cuby.

Then (AB)e = c | Aby + -+ + ¢, Ab, equals A(ciby + --- +caby) = A(Be).

Linearity gives equality of those two sums, and (AB)e = A(Bc). The same is
true for all other of €. Therefore (AB)C = A(BC).

For A=[321] and B =[1)¢]. compute these answers and nothing more:

(a) column 2 of AB

(by row 2 of AB

(¢) row 2 of AA = A?
(d) row 2 of AAA = A%,

Problems 18-20 use a;; for the entry in row i, column j of A.

18

Write down the 3 by 3 matrix A whose entries are
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(a) a;; = minimum of / and j
3] tjj = {_I}j-{-.f
{C]‘ ﬂu' - jjfj-

19  What words would you use to describe each of these classes of matrices? Give
a 3 by 3 example in each class. Which matrix belongs to all four classes?

(@) aj=0ifi#j
by a;=0ifi<j
(¢} a;j=ay
[d} .ﬂ‘:J: = a|J.
20 The entries of A are a;;. Assuming that zeros don’t appear, what is
(a) the first pivot?
(b) the multiplier £3; of row | to be subtracted from row 37

(c) the new entry that replaces as; after that subtraction?
(d) the second pivot?

Problems 21-25 involve powers of A.

21 Compute A%, A%, A* and also Av, A%v, A'v, A% for

020 0 x
00 20 y
A=lg o g 2| ad »=|7
0 0 0 0 i

22  Find all the powers A%, A*,. . . and AB, (AB)%,. . . for
S 5 1 0
Az[,ﬁ ,5] o B=[n —1}'
23 By tnal and error find real nonzero 2 by 2 matrices such that

Al=—1 BC =0 DE = —ED (not allowing DE = 0),

24 (a) Find a nonzero matrix A for which A? = 0.
(b) Find a matrix that has A® # 0 but A* =0,

25 By experiment with n =2 and n = 3 predict A" for

2 | 1o b
A]:[G |] and A::I:] 1] and A;:[E n]‘
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Problems 26-34 use column-row multiplication and block multiplication.

26

27

28

30

31

Multiply AB using columns times rows:

1 0 1
AB=|2 a4 [’:' g ?]: 21[330]+ __ =
2 1 2

The product of upper triangular matrices is always upper triangular:

X X x X X
AB=|0 x «x 0 x x|=1|0 :
0 0 =x 0 0 x 0 0

Row times column is dot product (Row 2 of A):(column | of B) =0. Which
other dot products give zeros?

Column times row is full marrix  Draw x's and 0's in (column 2 of A) times
(row 2 of B) and in (column 3 of A) times (row 3 of RB).

Draw the cuts in A (2 by 3) and B (3 by 4) and AB to show how each of the
four multiplication rules is really a block multiplication:

(1) Matrix A times columns of B.
(2) Rows of A times matrix B.
(3) Rows of A times columns of B.

(4) Columns of A times rows of B.
Draw cuts in A and x to multiply Ax a column at a time: xj(column 1) 4 .-,

Which matrices Ez and Es produce zeros in the (2, 1) and (3. 1) positions of
Ezn A and Ey A7

Find the single matrix £ = Ej3)E»; that produces both zeros at once. Multi-
ply EA.

Block multiplication says in the text that column 1 is eliminated by

1 O0)la b a b
EA:[—-:_IH I][c D]z[ﬂ ﬂ—tﬁ;"u]'

In Problem 30, what are ¢ and D and what is D) —chb/a?
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32

33

34

35

36

37

38

39
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With i = —1, the product of (A+iB) and (x4iy) is Ax+iBx+iAy—By. Use
blocks to separate the real part without i from the imaginary part that multiplies §:

A —B||x|_|Ax — By/| real part
T 2yl ? imaginary parn

Suppose you solve Ax = b for three special right sides b:

1 0 0
Ax1=10 and Ax:=]1 and Axs=|0]|.
|

0 0
If the three solutions x. x2. x3 are the columns of a matrix X. what 15 A umes X7

If the three solutions in Question 33 are x; = (1. 1.1) and x> = (0. 1. 1) and
x3=(0,0,1), solve Ax = b when b = (3, 5, 8). Challenge problem: What is A?

Elimination for a 2 bv 2 block matrix: When you multiply the first block row
by CA~" and subtract from the second row, what is the “Schur complement™ §

that appears?
I 01[A B] _[A B
-ca™' 1||lc D|T |0 S|

Find all matrices A = [* 1] that satisfy A[11]=[11]a.

Suppose a “circle graph” has 5 nodes connected (in both directions) by edges
around a circle. What is its adjacency matrix from Worked Example 2.4 C? What
are A and A® and the diameter of this graph?

If 5 edges in Question 37 go in one direction only, from nodes 1, 2, 3, 4, 5 to
2,3,4,5, 1, what are A and A® and the diameter of this one-way circle?

If you multiply a northwest matrix A and a southeast matrix B, what type of
matrices are AR and BA? “Northwest” and “southeast™ mean zeros below and
above the antidiagonal going from (1, n) to (n. 1).
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INVERSE MATRICES = 2.5

Suppose A is a square matrix. We look for an “inverse matrix” A~ of the same size.
such that A~! times A equals 1. Whatever A does, A~' undoes. Their product is the
identity matrix —which does nothing. But A™! might not exist.

What a matrix mostly does is to multiply a vector x. Multiplying Ax = b by A~/
gives A"'Ax = A~'b. The left side is just x! The product A~'A is like multiplying
by a number and then dividing by that number. An ordinary number has an inverse if
it is not zero—matrices are more complicated and more interesting. The matrix A~/
is called “A inverse.”

DEFINITION The matrix A is imvertible if there exists a matrix A~ such that

A 'A=1! and AAT' =1 (1)

Not all matrices have inverses. This is the first question we ask about a square
matrix: Is A invertible? We don’t mean that we immediately calculate A~'. In most
problems we never compute it! Here are six “notes” about A~

Note |  The inverse exists if and only if elimination produces n pivots (row ex-
changes allowed). Elimination solves Ax = b without explicitly using A~

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also
AC = [. Then B = C, according to this “proof by parentheses™

B(AC)=(BA)C gives BI=1C or B=C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (mul-
tiplying A from the right to give AC = I') must be the same matrix.

Note 3 If A is invertible, the one and only solution to Ax = b is x = A~ 'h:

Multiply Ax =b by A7 Then x=A"Ax=A""b.

Note 4  (Important) Suppose there is a nonzero vector x such that Ax = 0. Then
A cannot have an inverse. No matrix can bring 0 back to x.
If A is invertible, then Ax = 0 can only have the zero solution x = 0.

Note 5 A 2 by 2 matrix is invertible if and only if ad — bc is not zero:
b1 | d —=b
2by 21 " _———
y 2 Inverse L_ d] o I:—" H], (3)

This number ad — bc is the determinant of A. A matrix is invertible if its determinant
is not zero (Chapter 5). The test for n pivots is usually decided before the determinant
appears.
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Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero:
d) 1/d)
If A= then A~'= i
dy 1 /dy
Example 1 The 2 by 2 matrix A =[13] is not invertible. It fails the test in Note

5, because ad — be equals 2—2 = 0. It fails the test in Note 3, because Ax = 0 when
x = (2,—1). It fails to have two pivots as required by Note |. Elimination turns the
second row of A into a zero row.

The Inverse of a Product AR

For two nonzero numbers a and b, the sum a + & might or might not be invertible.
The numbers @ = 3 and b = —3 have inverses % and —_%, Their sum a + b = 0 has

no inverse. But the product ab = —9 does have an inverse, which is % times —i,

For two matrices A and B, the situation is similar. It is hard to say much about
the invertibility of A + B. But the product AB has an inverse, whenever the factors A
and B are separately invertible (and the same size). The important point is that Al
and B~' come in reverse order:

2H If A and B are invertible then so is AB. The inverse of a product AB is

(ABYy '=8"'a"" (4)

To see why the order is reversed, multiply A B times B~'A~!. The inside stepis BB~ = I:
(ABYB'A ™ Y=AIA""'=AA"" = 1.

We moved parentheses to multiply BB~ first. Similarly B~'A~! times AB equals /.

This illustrates a basic rule of mathematics: Inverses come in reverse order. It is also

common sense: If you put on socks and then shoes, the first to be taken off are the
. The same idea applies to three or more matrices:

Reverse order (ABC) ' =C7'B'A°". (5)

Example 2 Inverse of an Elimination Matrix. If E subtracts 5 times row 1 from
row 2, then E~' adds 5 times row 1 to row 2:

1 0 0 1 0 0
E=|-5 1 0| and E'= |51 0
0 0 1 00 1

Multiply EE~' to get the identity matrix /. Also multiply E~'E to get I. We are
adding and subtracting the same 5 times row 1. Whether we add and then subtract
(this is £E~") or subtract and then add (this is E~'E), we are back at the start.
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For square matrices, an inverse on one side is automatically an inverse on the other
side. 1f AB = I then automatically BA = . In that case B is A~!. This is very
useful to know but we are not ready to prove it

Example 3  Suppose F subtracts 4 times row 2 from row 3, and F~' adds it back:

1 0 0 1 0 0
F=|0 1 0| and F'=|0 1 0
0 =4 1 0 4 1

Now multiply F by the matrix E in Example 2 to find FE. Also multiply E~' times
F~' to find (FE)~'. Notice the orders FE and E~'F~"!

10 0 1 0 0
FE=| -5 1 0| isinvetedby E-'F'=|5 1 0], (6)
2 -4 1 0 4 1

The result is strange but correct. The product FE contains “20" but its inverse doesn't.
E subtracts 5 times row | from row 2. Then F subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order FE, row 3 feels an effect from row 1.

In the order E~' F~', that effect does not happen. First F~' adds 4 times row
2 to row 3. After that, E~' adds 5 times row 1 to row 2. There is no 20, because
row 3 doesn't change again. In this order, row 3 feels no effect from row I.

For elimination with normal order FE, the product of inverses E~'F~!
is quick. The multipliers fall into place below the diagonal of 1s.

This special property of E~'F~" and E-'F~'G~' will be useful in the next sec-
tion. We will explain it again, more completely. In this section our job is A~', and we
expect some serious work to compute it. Here is a way to organize that computation.

Calculating A~! by Gauss-Jordan Elimination

1 hinted that A~! might not be explicitly needed. The equation Ax = b is solved by
x = A~ 'b. But it is not necessary or efficient to compute A~' and multiply it times
b. Elimination goes directly to x. Elimination is also the way to calculate A™', as we
now show, The Gauss-Jordan idea is to solve AA™' = [, finding each column of A™'.

A multiplies the first column of A~ (call that x;) to give the first column of [/
{call that e,). This is our equation Ax; = e; = (1,0,0). Each of the columns x{, x2,
x3 of A~ is multiplied by A to produce a column of [:

AA = H[.n X2 13]=[¢| € ﬁ;} = (7T

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax; =
) and Ax; = e; = (0,1,0) and Ax; = e; = (0,0, 1). This already shows why
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computing A~" is expensive. We must solve n equations for its n columns. To solve
Ax = b without A~', we deal only with one column.

In defense of A~!, we want to say thal its cost is not n times the cost of one
system Ax = b. Surprisingly, the cost for n columns is only multiplied by 3. This
saving is because the n equations Ax; = ¢; all involve the same matrix A. Working
with the right sides is relatively cheap, because elimination only has to be done once
on A. The complete A™' needs n® elimination steps. where a single x needs n”/3.
The next section calculates these costs.

The Gauss-Jordan method computes A1 by solving all n equations together. Usually
the “augmented matrix” has one extra column b, from the right side of the equations.
Now we have three right sides ey, 2. 3 (when A is 3 by 3). They are the columns of
I, so the augmented matrix is really the block matrix [ A [/ ]. Here is a worked-out
example when A has 2's on the main diagonal and —1"s next to the 2's:

2 -1 01 0 0 Start Gauss-Jordan
[A e 2 e3]=[ -1 2-1 0 1 0
| 0-1 20 0 1
- 2 =1 0 | 0 07
—+| 0 3 -1 1 1 0 [l row 1+ row 2)
2 2 3
Lo -1 2 0 0 1]
2 =1 0 1 0 07
el M et L 3 6
' 1 2
L0 0 g 311 % 1 (§ row 2+ row 3)

We are now halfway. The matrix in the first three columns is U (upper triangular).
The pivots 2, 3. 7 are on its diagonal. Gauss would finish by back substitution. The
contribution of Jordan is fre continwe with elimination! He goes all the way to the
“reduced echelon form"™. Rows are added to rows above them, to produce zeros above
the pivols:

[ -1 0 1 0 0
- % 0 % % % [%mwS—i—me]
o o 3 3 § 1|
Z2 0 0 3 1 3 (3 row 2+ row 1)
o 3 0 3 ) k]
3 i 3 i
Lo 0o % 3 §F 1]
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The last Gauss-Jordan step is to divide each row by its pivot. The new pivots
are 1. We have reached [/ in the first half of the matrix, because A is invertible. The
three columns of A~' are in the second half of [ 1 A7 |:

(divide by 2) 0 0 % % i
(divide by 3) 0 1 0 ] 1 1 | =[1 x1 x2 x3]
divide by 2 i I 3
(divide by 3) 0 0 1 i i 3

Starting from the 3 by 6 matrix [ A /], we ended with [/ A~']. Here is the whole
Gauss-Jordan process on one line:

Multiply [A 1] by A~ toget [I A~

The elimination steps gradually create the inverse matrix. For large matrices, we prob-
ably don't want A~" at all. But for small matrices, it can be very worthwhile to know
the inverse. We add three observations about this particular A~' because it is an impor-
tant example. We introduce the words symmetric, tridiagonal, and determinani
(Chapter 5):

1. A is symmetric across its main diagonal. So is A~

2. A is tridiagonal (only three nonzero diagonals). But A~' is a full matrix with
no zeros. That is another reason we don't often compute A~

3. The product of pivots is 2(3)(3) = 4. This number 4 is the determinant of A,

A~Y involves division by the determinant A~ = (8)

P
B
wd bd —

| =
%]

Example 4 Find A~' by Gauss-Jordan elimination starting from A = [33]. There
are two row operations and then a division to put 1's in the pivots:

[an=[3 7 0 3-00 12 1]

7
2 0 7 -3 G
. | -1
"’[ﬂ 1 =2 |]_"[n | =2 1]‘“’1 J

The reduced echelon form of [A []is [/ A~']. This A~' involves division by the
determinant 27 —3-4 = 2. The code for X = inverse(A) has three important lines'

I = eye (n,n); % Define the identity matrix
R = rref ([A I]); % Eliminate on the augmented matrix
X=R(:.n+1:n+n) %Pick A~ from the last n columns of R

A must be invertible, or elimination will not reduce it (in the left half of B) o [.
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Singular versus Invertible

We come back to the central question. Which matrices have inverses? The start of this
section proposed the pivot test: A~V exists exactly when A has a full set of n pivots.
(Row exchanges allowed.) Now we can prove that by Gauss-Jordan elimination:

1.  With n pivots, elimination solves all the equations Ax; = e;. The columns x; go
into A™'. Then AA™' =1 and A" is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E’s and P's and D'

(D' E...P...EYA=1. (9)

D~ divides by the pivots. The matrices E produce zeros below and above the pivots.
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9)
is evidently a left-inverse. With n pivots we reach A™'A = [,

The right-inverse equals the left-inverse. That was Note 2 in this section. So a
square matrix with a full set of pivots will always have a two-sided inverse,

Reasoning in reverse will now show that A must have n pivots if AC = [. Then
we deduce that C is also a left-inverse. Here is one route to those conclusions:

1. If A doesn’t have n pivots, elimination will lead to a zero row.
2. Those elimination steps are taken by an invertible M. So a row of MA is zero.

3. If AC =1 then MAC = M. The zero row of MA, times C, gives a zero row
of M.

4.  The invertible matrix M can't have a zero row! A must have n pivots if AC = [.

5.  Then equation (9) displays the left inverse in BA = [/, and Note 2 proves B = C.
That argument took five steps, but the outcome is short and important.

21 A complete test for invertibility of a square matrix A comes from elimination.
A~ exists (and Gauss-Jordan finds it) exactly when A has n pivots. The full ar-
gument shows more:

If AC=/ then CA=1 and C=A""' !
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Example 5 If L is lower triangular with 1's on the diagonal, so is L™,

Use the Gauss-Jordan method to construct L~'. Start by subtracting multiples of pivot
rows from rows below. Normally this gets us halfway to the inverse, but for L it gets
us all the way. L™ appears on the right when I appears on the left:

1 0 0 1 0 0
[L 7]=]3 1 0 0 1 0
4 5 1 0 0 1]
10 0 1 0 07
= |0 | 0 -3 1 0 (3 times row | from row 2)
=10 5 1 -4 0O I_| (4 times row 1 from row 3)
10 0 1 0 0
0 1 0-3 1 of=[1L"]
— _D 0 1 11 =5 l_

When L goes to I by elimination, I goes to L~'. In other words, the product of
elimination matrices E33E3E2; is L™'. All pivots are 1's (a full set). L~' is lower
triangular. The strange entry “11” in L~ does not appear in E;,' E'Eq) =

" REVIEW OF THE KEY IDEAS =

The inverse matrix gives AA~! =/ and A~'A = 1.
A is invertible if and only if it has n pivots (row exchanges allowed).
If Ax =0 for a nonzero vector x, then A has no inverse.

The inverse of AR is the reverse product B~'A~",

L B o e

The Gauss-Jordan method solves AA~! = [ to find the n columns of A~!. The
augmented matrix [ A /] is row-reduced to [7 A~T].

= WORKED EXAMPLES =

2.5 A Three of these matrices are invertible, and three are singular. Find the in-
verse when it exists. Give reasons for noninvertibility (zero determinant, too few pivots,
nonzero solution v Ax = 0) for the other three, in that order. The matrices

A B C,DE,F are
11 1
I 1 0
I 1 1

ERII L
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Solution

1 0 0

o 7 =y 1To 6
B'=—[ ] E‘"=—[ ] E-l=] -1 10
4 B 4 n| 6 6H 0 -1 1

A is not invertible because its determinant is 4 -6 — 3.8 = 24 - 24 =0, D is
not invertible because there is only one pivot; the second row becomes zero when the
first row i1s subiracted. F is not invertible because a combination of the columns (the
second column minus the first column) is zero—in other words Fx = () has the solution
x=(-110).

Of course all three reasons for noninvertibility would apply to each of A, D, F.

2.5 B Apply the Gauss-Jordan method to find the inverse of this triangular “Pascal
matrix” A = abs(pascal(4,1)). You see Pascal’s triangle—adding each entry to the
entry on its left gives the entry below. The entries are “binomial coefficients™:

1 00 0
Triangular Pascal matrix A =

U
fad = 3
oo

—

Solution  Gauss-Jordan starts with [A /] and produces zeros by subtracting row 1:

10001000 1000 1000
anllt}{)(}l{lﬂ_’[]]ﬂﬂlvllt}t}
12100010 0210|/-1010
1331|000 1 0331|1001

The next stage creates zeros below the second pivot, using multipliers 2 and 3. Then
the last stage subtracts 3 times the new row 3 from the new row 4:

1000 1 000 1000 1 0 00
ﬁ(}l(}ﬂ—l Iﬂﬂ_ﬁrﬂlﬂ{}-l Iﬂﬂ_[f&"‘]

0010, 1 =210 0010 1 =2 10

0031 2 -301 00o01/=-1 3 =31

All the pivots were 1! So we didn’t need to divide rows by pivots to get /. The inverse

matrix A~! looks like A itself, except odd-numbered diagonals are multiplied by —1.
Please notice that 4 by 4 matrix A~', we will see Pascal matrices again. The same

pattern continues to n by n Pascal matrices —the inverse has “alternating diagonals”,

Problem Set 2.5

1 Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

0 3 2 0 3 4
ﬂ=[4 ﬂ'] E.nd B=[¢ 2} and E:[fr .II,].



10

1

2.5 lnverse Matrices 79

For these “permutation matrices” find P~' by trial and error (with 1's and 0's);
o 0 1 0 1 0
P=|101 0 and P=|0 0O 1
1 00 I 0 0

Solve for the columns of A~' =[}}]:

o %][]=lo] = [ ][]

Show that [} 2] has no inverse by trying to solve for the column (x, y):

B A0 l=lo ] mmense 3 2103 -o]

Find an upper triangular U (not diagonal) with U® = [ and U = U ~\.

(a) If A is invertible and AB = AC, prove quickly that B = C.
(b) If A=[}1]. find two matrices B # C such that AB = AC.

(Important) If A has row 1 + row 2 = row 3, show that A is not invertible:

{a) Explain why Ax = (1,0, 0) cannot have a solution.
(b) Which right sides (by, b2, b3) might allow a solution to Ax = b?
(c) What happens to row 3 in elimination?

If A has column 1 4 column 2 = column 3, show that A is not invertible:

(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Explain why there
is no third pivot.

Suppose A is invertible and you exchange its first two rows to reach B. Is the
new matrix B invertible and how would you find B~' from A~'?

Find the inverses (in any legal way) of

00 0 2 3 20 0
00 30 4 300
A=1g 4 00| ™ B=|4 o 6 s
500 0 00 7 6

(a) Find invertible matrices A and B such that A 4+ B is not invertible.
(b) Find singular matrices A and B such that A + B is invertible.



12

13

14

15
16
17

18
19

20
21

Chapter 2 Solving Linear Equations

If the product C = AB is invertible (A and B are square), then A itself is in-
vertible. Find a formula for A~' that involves C~' and B.

If the product M = ABC of three square matrices is invertible, then B is invert-
ible. (So are A and C.) Find a formula for B! that involves M~ and A and C.

If you add row 1 of A to row 2 to get B, how do you find B~! from A~'?

Notice the order. The inverse of B = [: ?][ A ] s :

Prove that a matrix with a column of zeros cannot have an inverse.
Multiply [*2] times [ _9 -P]. What is the inverse of each matrix if ad # bc?

(a)  What matrix E has the same effect as these three steps? Subtract row |
from row 2. subtract row 1 from row 3, then subtract row 2 from row 3.

(b)  What single matrix L has the same effect as these three reverse steps? Add
row 2 to row 3, add row 1 to row 3, then add row 1 to row 2.

If B is the inverse of A2, show that AB is the inverse of A.

Find the numbers a and b that give the inverse of 5= eye(4) — ones(4,4):

4 -1 -1 -1 a b b b
-1 4 -] -l b a b b
-1 -1 4 -l “|b b a b
-1 -1 =1 4 b b b a

L

What are a and b in the inverse of 6 *eye(5) - ones(5,5)?
Show that A = 4 =eye(4) — ones(4,4) is nor invertible: Multiply A =ones(4,1).

There are sixteen 2 by 2 matrices whose entries are 1's and 0's. How many of
them are invertible?

Questions 22-28 are about the Gauss-Jordan method for calculating A-L

22

23

Change [ into A~' as you reduce A to [ (by row operations):

[aaj=[3 35 ] = sa=[535 3 1]

Follow the 3 by 3 text example but with plus signs in A. Eliminate above and
below the pivots to reduce [A [t [/ A7)

210100
[A1]=]1 21010
012001
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Use Gauss-Jordan elimination on [A [] to solve AA~! = [I:
l a & 1 O 0
01 c||lxy x2 x3|=|0 10
0o o0 1 0 0 1

Find A=' and B~ (if thev exisr) by elimination on [A []and [B [I]:

2 -1 =1
and B =|-1 2 =1

2 1
1 ]
2 =1 =1 2

1
A= 2
11

What three matrices Ez; and Ej; and D™' reduce A = [}2] 1o the identity
matrix? Multiply D~'E;2E3 to find A~

Invert these matrices A by the Gauss-Jordan method starting with [A [ |:

1 00 1 1 1
A=12 } 3 and A=|1 2 2
0 0 1 ¥ 23

Exchange rows and continue with Gauss-Jordan to find A~':

(4= 30 1)

True or false (with a counterexample if false and a reason if true):

{a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) A matrix with 1's down the main diagonal is invertible.
(c) If A is invertible then A~ is invertible.

(d) If A is invertible then A° is invertible.

For which three numbers ¢ is this matrix not invertible, and why not?

2 ¢ ¢
c
7 ¢

A=|c
8

Prove that A is invertible if @ # 0 and a # b (find the pivots or A~'):

a b b
ﬂ:ﬂﬂb
a a a
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This matrix has a remarkable inverse. Find A~' by elimination on [A [I]. Ex-
tend to a 5 by 5 “alternating matrix™ and guess its inverse; then multiply to con-
firm.

i
0
0
0

Use the 4 by 4 inverse in Question 32 to solve Ax = (1,1, 1, 1).

Suppose P and @ have the same rows as / but in any order. Show that P — @
is singular by solving (P — Q)x = 0.

Find and check the inverses (assuming they exist) of these block matrices:

I 0 A 0 0 1
C 1 C D I DI’
If an invertible matrix A commutes with C (this means AC = CA) show that

A~ commutes with C. If also B commutes with C, show that AB commutes
with €. Translation: If AC =CA and BC = CB then (AR)C = C{AB).

Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1,2, 3
in some order? What if every row of B contains 0, 1,2, =3 in some order?

In the worked example 2.5 B, the triangular Pascal matrix A has an inverse with
“alternating diagonals”. Check that this A~' is DAD, where the diagonal matrix
D has alternating entries 1, —1,1, =1. Then ADAD = [, so what is the inverse
of AD = pascal (4,1)?

The Hilbert matrices have H;; = 1/(i + j — 1). Ask MATLAB for the exact 6
by 6 inverse invhilb(6). Then ask for inv(hilb{6)). How can these be different,
when the computer never makes mistakes?

Use inv(S) to invert MATLAB's 4 by 4 symmetric matrix S = pascal(4). Create
Pascal’s lower triangular A = abs(pascal(4,1)) and test inv(5) = inv(A) = inv(A).

If A= ones(4,4) and b = rand(4,1), how does MATLAB tell you that Ax = b
has no solution? If b = ones(4,1), which solution to Ax = b is found by A\b?

If AC =1 and AC* = I (all square matrices) use 2I to prove that C = C".

Direct multiplication gives MM ~' = [, and 1 would recommend doing #3. M~"
shows the change in A~ (useful to know) when a matrix is subtracted from A:

1 M=1—-uv and M~ =1 +uv/(l —vu)

2 M=A-uv and M '=A"4+A'wvA " /(1 —vA " u)

3 M=I-UV and M '=1,+U(l.—VU)'V

4 M=A—-UW- and M '=A"+A"'U(W-=-VA~ 1) VA~
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The Woodbury-Morrison formula 4 is the “matrix inversion lemma” in engineer-
ing. The four identities come from the 1. 1 block when inverting these matrices
(vislbyn uwisnby |, Vismbyn Uisnbym m<n)

I u A u I U A U
v | v | Y Iy V W
ELIMINATION = FACTORIZATION: A = LU wm 2.6

Students often say that mathematics courses are too theoretical. Well, not this section.
It is almost purely practical. The goal is to describe Gaussian elimination in the most
useful way. Many key ideas of linear algebra, when you look at them closely, are really
Jactorizations of a matrix. The original matrix A becomes the product of two or three
special matrices. The first factorization—also the most important in practice —comes
now from elimination. The factors are triangular matrices. The factorization that
comes from elimination is A = LU.

We already know U, the upper triangular matrix with the pivots on its diagonal.
The elimination steps take A to U. We will show how reversing those steps (taking
U back to A) is achieved by a lower triangular L. The entries of L are exactly the
multipliers €£;;—which multiplied row j when it was subtracted from row i.

Start with a 2 by 2 example. The matrix A contains 2, 1,6, 8. The number to
eliminate is 6. Subtract 3 times row | from row 2. That step is E»; in the forward
direction. The return step from U/ to A is L = E-_,‘I' (an addition using +3):

e | L2 G 2 1
Forward from A to U : f:zrr"-—[_gl |][ﬁ 3} [U 5] v

Back from U to A : E;,'U:[i T][ﬁ ,'J:[i ;] = A,

The second line is our factorization. Instead of E_1U = A we write LU = A. Move
now to larger matrices with many E’s. Then L wrﬂ include all their inverses.

Each step from A to U multiplies by a matrix E;; to produce zero in the (i, f)
position. To keep this clear, we stay with the most frequent case—when no row ex-
changes are involved. If A is 3 by 3, we multiply by E>; and E3; and Ey. The
multipliers ¢;; produce zeros in the (2, 1) and (3, 1) and (3, 2) positions—all below
the diagonal. Elimination ends with the upper triangular U.

Now move those E’'s onto the other side, where their inverses mudtiply U

(EppEynEn)A=U becomes A= {.-T:'_,'I:i:';,'k',?‘]t-’ whichis A=LU. (1)

The inverses go in opposite order, as they must. That product of three inverses is L.
We have reached A = LU. Now we stop to understand it.
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Explanation and Examples

First point: Every inverse matrix E;-]' is fower triangular. lts off-diagonal entry is
£ij, to undo the subtraction with —£;;. The main diagonals of £ and E~' contain 1.
Our example above had £3; =3 and £ =[_}7] and E-' =[11¢].
Second point:  Equation (1) shows a lower triangular matrix (the product of E;;) mul-
tiplying A. It also shows a lower triangular matrix (the product of E '}E} multiplying
U to bring back A. This product of inverses is L.

One reason for working with the inverses is that we want to factor A, not U.
The “inverse form™ gives A = LU. The second reason is that we get something extra,
almost more than we deserve. This is the third point, showing that L is exactly right.
Third point: Each multiplier £;; goes directly into its {, j position—unchanged —in
the product of inverses which is L. Usually matrix multiplication will mix up all the
numbers. Here that doesn’t happen. The order is right for the inverse matrices, to keep
the £'s unchanged. The reason is given below in equation (3).

Since each E~! has 1's down its diagonal, the final good point is that L does
o0,

2] (A = LU) This is elimination without row exchanges. The upper triangular [/
has the pivots on its diagonal. The lower triangular L has all 1's on its diagonal. The
multipliers t,; are below the diagonal of L.

Example 1 The matrix A has 1,2, 1 on its diagonals. Elimination subtracts 1|' times
row | from row 2. The last step subtracts § times row 2 from row 3. The lower
triangular L has £y = % and £3; = % Multiplying LU produces A:

219 1 0 02 1 0
A=|12 1]|l=|3 1 0||0 3 1]|=LU.
012 0§ 1]J[o o0 3

The (3. 1) multiplier is zero because the (3, 1) entry in A is zero. No operation needed.

Example 2 Change the top left entry from 2 to 1. The pivots all become 1. The
multipliers are all 1. That pattern continues when A is 4 by 4:

A=

==

I 10
1
1

1
1 1

o — R -
_— k= 2
=0 D

1
I
0
0

[

These LU examples are showing something extra, which is very important in practice.
Assume no row exchanges. When can we predict zeros in L and U?

When a row of A starts with zeros, so does that row of L.
When a column of A starts with zeros, so does thar column of U.
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If a row starts with zero, we don’t need an elimination step. L has a zero, which saves
computer time. Similarly, zeros at the starr of a column survive into U/. But please
realize: Zeros in the middle of a matrix are likely to be filled in, while elimination
sweeps forward. We now explain why L has the multipliers £;; in position, with no
mix-up.

The key reason why A equals LU: Ask yourself about the pivot rows that are sub-
tracted from lower rows. Are they the original rows of A? Ne, elimination probably
changed them. Are they rows of UU? Yes, the pivot rows never change again. When
computing the third row of U/, we subtract multiples of earlier rows of U (not rows of
Al

Row 3 of U = (Row 3 of A) — £3(Row 1 of U) — €32(Row 2 of U). (2)
Rewrite this equation to see that the row [£3; €32 1] is multiplying U:

(Row 3 of A) = £3;(Row 1 of U) +&n(Row 2 of U) + 1(Row 3 of U).  (3)

This is exactly row 3 of A = LU. All rows look like this, whatever the size of A.
With no row exchanges, we have A = LU.

Remark The L U/ factorization is “unsymmetric” because {/ has the pivots on its di-
agonal where L has 1's. This is easy to change. Divide U by a diagonal matrix D
that contains the pivots. That leaves a new matrix with 1's on the diagonal:

d| I w2/dy upz/d

1 u/d>
Split U into & 5

d, 1
It is convenient (but a little confusing) to keep the same letter U for this new upper
triangular matrix. It has 1's on the diagonal (like L). Instead of the normal LU, the

new form has D in the middle: Lower triangular L times diagonal D times upper
triangular U.

The triangular factorization can be written A =LU or A=LDU.

Whenever you see LDU, it is understood that U has 1's on the diagonal. Each row
is divided by its first nonzero entry—the pivot. Then L and U are treated evenly in

LDl
| 0|2 8 r : 1 0)([2 1 4
]i:* ]] [[] 5:l splits further into [3 l] [ 5] [[I l]‘ (4)

The pivots 2 and 5 went into D. Dividing the rows by 2 and 5 left the rows [ 4]
and [0 1] in the new U/. The multiplier 3 is still in L.

My own lectures sometimes stop at this point. The next paragraphs show how
elimination codes are organized, and how long they take. If MATLAB (or any software)
is available, I strongly recommend the last problems 32 to 35. You can measure the
computing time by just counting the seconds!
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One Square System = Two Triangular Systems

The matrix L contains our memory of Gaussian elimination. It holds the numbers that
multiplied the pivot rows, before subtracting them from lower rows. When do we need
this record and how do we use it?

We need L as soon as there is a righr side b. The factors L and U/ were com-
pletely decided by the left side (the matrix A). On the right side of Ax = b, we use
Solve:

1 Factor (into L and U. by forward elimination on A)

2 Solve (forward elimination on b using L, then back substitution using U').

Earlier. we worked on b while we were working on A. No problem with that—
just augment A by an extra column b. But most computer codes keep the two sides
separate. The memory of forward elimination is held in L and U, at no extra cost in
storage. Then we process b whenever we want to. The User's Guide to LINPACK
remarks that “This situation is so common and the savings are so important that no
provision has been made for solving a single system with just one subroutine.”

How does Solve work on b7 First, apply forward elimination to the right side (the
multipliers are stored in L, use them now). This changes b to a new right side e—we
are really solving Le = b. Then back substitution solves Ux = ¢ as always. The
original system Ax = b is factored into two triangular systems:

Solve Le=Db and thensolve Ux=c. (5)

To see that x is correct, multiply Ux = ¢ by L. Then LUx = Lc is just Ax = b.

To emphasize: There is nothing new about those steps. This is exactly what we
have done all along. We were really solving the triangular system Le = b as elimina-
tion went forward. Then back substitution produced x. An example shows it all.

Example 3  Forward elimination on Ax = b ends at Ux =¢:

Hu+2v=>5 u+2v=>5
4u +9v =21 becomes v=1.

The multiplier was 4, which is saved in L. The right side used it to find ¢:

5 : 5
Le = b The lower triangular system [l ?] ]:c} = [21] gives ¢= [l] g

3
Ux = ¢ The upper triangular system [[!J ?:I [x} = [?jl gives x = [l]

It is satisfying that L and U can take the n? storage locations that originally held A.
The £'s go below the diagonal. The whole discussion is only looking to see what elim-
ination actually did.
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The Cost of Elimination

A very practical question is cost—or computing time. Can we solve 1000 equations
on a PC? What if n = 10,0007 Large systems come up all the time in scientific
computing, where a three-dimensional problem can easily lead to a million unknowns.
We can let the calculation run overnight, but we can’t leave it for 100 years.

The first stage of elimination, on column 1, produces zeros below the first pivot.
To find each new entry below the pivot row requires one multiplication and one sub-
traction. We will count this first stage as n® multiplications and n* subtractions. It is
actually less, n? — n, because row | does not change.

The next stage clears out the second column below the second pivot. The work-
ing matrix is now of size n — 1. Estimate this stage by (n — 1)* multiplications and
subtractions. The matrices are getting smaller as elimination goes forward. The rough
count to reach U is the sum of squares n® + (n — 1)> + ... 422 4 12,

There is an exact formula '{-n{n + %}[n + 1) for this sum of squares. When n is
large, the § and the | are not important. The number that matters is §n*. The sum of
squares is like the integral of x*! The integral from 0 to n is {n™:

. - . L] T . .
Elimination on A requires about in‘ mudtiplications and %n" subtractions.

What about the right side »7 Going forward, we subtract multiples of b; from the
lower components by, ..., b,. This is n — | steps. The second stage takes only n — 2
steps, because by is not involved. The last stage of forward elimination takes one step.

Now start back substitution. Computing x, uses one step (divide by the last pivot).
The next unknown uses two steps. When we reach x; it will require n steps (n — |
substitutions of the other unknowns, then division by the first pivot). The total count
on the right side, from b to ¢ to x —forward to the bottom and back to the top—is
exactly n:

(m=D+m=2)+--+1] + [14+2+ -+ (n—1)+n]=n (6)

To see that sum, pair off (n—1) with 1 and (n—2) with 2. The pairings leave n terms,
each equal to n. That makes n’. The right side costs a lot less than the left side!

Each right side needs n* multiplications and n* subtractions.

Here are the MATLAB codes to factor A into LU and to solve Ax = b. The program
slu stops right away if a number smaller than the tolerance “fol™ appears in a pivot
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position. Later the program plu will look down the column for a pivot, to execute a row
exchange and continue solving. These Teaching Codes are on web.mit.edu/18.06/www.

function [L, U] = slu(A)
% Square LU factorization with no row exchanges!
[n,n] =size(A); tol=l.e—6;
fork=1:n
if abs(A(k, k)) < 1ol
end % Cannot proceed without a row exchange: stop
Lk, k)=1;
for i =k+1:n % Multipliers for column k are put into L
Lii, k) = A(i, k) /A(k, k);
for j=k+1:n % Elimination beyond row k and column k
Ali, j)y = A, j) — L{i. k) = A(k, j): % Matrix still called A
end
end
for j=k:n
Uik, j) = Alk, j); % row k is settled. now name it U
end
end

% Solve Ax = b using L and U/ from slu(A). No row exchanges!

|L, U] = slu(A);
fork=1:n

for j=1:k—-1

s=s5+ Lk, j)*clj):

end

c(k) = b(k) —5; % Forward elimination to solve Lc = b
end
fork=n:—1:1 % Going backwards from x(n) to x(1)

for j=k<+1:n % Back substitution
t=r+ Uk, j)*x(j):
end
x(k) = (c(k) — )/ U (k. k); % Divide by pivot
end
x =x'; % Transpose to column vector

How long does it take to solve Ax = b? For a random matrix of order n = 1000,
we tried the MATLAB command tic; A\b; toc. The time on my PC was 3 seconds.
For n = 2000 the time was 20 seconds, which is approaching the n* rule. The time is
multiplied by about 8 when n is multiplied by 2.

According to this n” rule, matrices that are 10 times as large (order 10.000) will
take thousands of seconds. Matrices of order 100,000 will take millions of seconds.
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This is too expensive without a supercomputer, but remember that these matrices are
full. Most matrices in practice are sparse (many zero entries). In that case A = LU
is much faster. For tridiagonal matrices of order 10,000, storing only the nonzeros,
solving Ax = b is a breeze.

® REVIEW OF THE KEY IDEAS =

1.  Gaussian elimination (with no row exchanges) factors A into L times [/.

2.  The lower triangular L contains the numbers that multiply pivot rows, going from
A to U. The product LU adds those rows back to recover A.

3. On the right side we solve Le = b (forward) and Ux = ¢ (backwards).

4.  There are _—i_{uj — n) multiplications and subtractions on the left side.

5.  There are n° multiplications and subtractions on the right side,

= WORKED EXAMPLES =

2.6 A The lower triangular Pascal matrix Py was in the worked example 2.5 B.
(It contains the “Pascal triangle” and Gauss-Jordan found its inverse.) This problem
connects P to the symmetric Pascal matrix Py and the upper triangular Pp. The sym-
metric Pg has Pascal's triangle tilted, so each entry is the sum of the entry above and
the entry to the left. The n by n symmetric Ps is pascal(n) in MATLAB.

Problem: Establish the amazing lower-upper factorization Ps = Py Py

AR TR DR
1 2 3 4 L1100/ lo1 23
pascald)=| 3 ¢ =l 1 210|001 3 |=PP
I 4 10 20 1 33 1||loo o1

Then predict and check the next row and column for 5 by 5 Pascal matrices.

Solution You could multiply P; Py to get Ps. Better to start with the symmetric
Ps and reach the upper triangular Py by elimination:

1 1 1 1 1 11 1 111 1 1111
bo_|12 34| |0123) le123] |0123
ST113 610 0259 001 3 0013 L

1 4 10 20 039 19 003 10 0001

The multipliers £;; that entered these steps go perfectly into Pr. Then Ps = PPy is
a particularly neat example of A = LU. Nortice that every pivot is 1! The pivots are
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on the diagonal of Py, The next section will show how symmetry produces a special
relationship between the triangular L and U. You see Py as the “transpose™ of Pp.

You might expect the MATLAB command lu(pascali4)) to produce these factors
Pp and Py. That doesn't happen because the lu subroutine chooses the largest avail-
able pivot in each column (it will exchange rows so the second pivot is 3). But a dif-
ferent command chol factors without row exchanges. Then [L, U] = chol(pascal(4))
produces the triangular Pascal matrices as L and U. Try i

In the 5 by 5 case the new fifth rows do maintain Ps = Pp Py:

Next Row 1 5 15 35 70 for Ps 1 46 41 forP,

I will only check that this fifth row of P; times the (same) fifth column of Py gives
12 + 42 + 6% + 4% 4+ 12 = 70 in the fifth row of Ps. The full proof of Ps = PLPy
is quite fascinating—this factorization can be reached in at least four different ways. 1
am going to put these proofs on the course web page web.mit.edu/18.06/www, which
is also available through MIT's OpenCourseWare at ocw.mit.edu.

These Pascal matrices Ps, Pp. Py have so many remarkable properties—we will
see them again. You could locate them using the Index at the end of the book.

2.6 B The problem is: Solve Psx = b = (1,0,0,0). This special right side means
that x will be the first column of Pg ' That is Gauss-Jordan, matching the columns
of Pg P;’ = I. We already know the triangular P; and Py from 2.6 A, so we solve

P; e = b (forward substitution) Py x = ¢ (back substitution).

Use MATLAB to find the full inverse matrix Pg .

Solution The lower triangular system Ppe = b is solved rop 1o bottom:

C =] cp = +1
cr+C2 == 2 c; =—1
ci+2ca+ o =0 & 3 = +1
cr+3cr+3c3+cy =0 cy = —1

Forward elimination is multiplication by P, '. It produces the upper triangular system
Pyx = ¢. The solution x comes as always by back substitution, bottom to top:

Y+x+ un+ = 1 x = +4
X4+ 2y + 3y = —1 oo x3 = -6
x3+3x = | B x3=+4

xy = —1 xy = —1

The complete inverse matrix Py ' has that x in its first column:

4 -6 4. ]
A —-b 14 =11 3
invipascal(4)) = 4 —11 0 —3

-1 3 -3 1
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Problem Set 2.6

Problems 1-14 compute the factorization A = LU (and also A = LDU).

1 (Important) Forward elimination changes H i]x = b to a triangular é{]x =

x+ y=35 e R N > I 1 5 o 1 1 §
x+2y=T7 y=2 I 27 0 1 2
That step subtracted £2) = times row | from row 2. The reverse step

adds €77 times row | to row 2. The matrix for that reverse step is L =
Multiply this L times the triangular system [} 1]x =[3]toget =
In letters, L multiplies Ux = ¢ 1o give

2 {Move to 3 by 3) Forward elimination changes Ax = b to a triangular Ux = ¢:

x4+ y+ z= x4+ v+ z= X+ y+ z=35
x+2y+3z= y+2r=2 y+2z=2
x+3y+6z=11 2y4+5z=6 z=
The equation z = 2 in Ux = ¢ comes from the original x + 3v 4+ 62z = 11 in
Ax = b by subtracting £3) = __ times equation | and €3, = _ times

the final equation 2. Reverse that to recover [1 3 6 11]in A and b from the
final [1 1 1 5]and [O 1 2 2] and [0 O 1 2]in U and ¢:

Row 3 of [A b]= (31 Row 1 + £33 Row 2+ 1 Row 3)of [U ¢].
In matrix notation this is multiplication by L. So A = LU and b = Le.

3 Write down the 2 by 2 triangular systems Le = b and Ux = ¢ from Problem 1.
Check that ¢ = (5, 2) solves the first one. Find x that solves the second one.

4 What are the 3 by 3 triangular systems Le = b and Ux = ¢ from Problem 27
Check that ¢ = (5. 2, 2) solves the first one. Which x solves the second one?

5 What matrix £ puts A into triangular form EA = U7 Multiply by E-'=L1w
factor A into LU

-
I
= =N & ]
tad B
th b o=

6  What two elimination matrices E3; and E3; put A into upper triangular form
ExEy A =U? Multiply by E3;' and E3)' to factor A into LU = E;'EL'U:

A=[ ]

S o=
P -
S Lh—
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Chapter 2 Solving Linear Equations
What three elimination matrices E»j, Esy, E52 put A into upper triangular form

ExE3Exn A = U? Multiply by £33, E3;' and E3)' to factor A into LU where
L =E; E;'E3,'. Find L and U:

A=

=
£ S o i we=]

I
2
5

Suppose A is already lower triangular with 1's on the diagonal. Then U = [!

1 0 0
A=L=|a | 0
b ¢ 1

The elimination matrices E>;, E3;, E32 contain —a then —b then —c.
{a) Multiply E3:E3 E7 to find the single matrix E that produces EA = [.
(b) Multiply E;'E5'ES;) to bring back L (nicer than E).

When zero appears in a pivot position, A = LU is not possible! (We are requiring
nonzero pivots in U.) Show directly why these are both impossible:

0 1 1 01[d e 1.0 ! a4 & 8
2 3= 1llo ¥ 11 2]=]|¢t 1 f h
1 2 1 m n | i

This difficulty is fixed by a row exchange. That needs a “permutation™ P.

Which number ¢ leads to zero in the second pivot position? A row exchange is
needed and A = LU is not possible. Which ¢ produces zero in the third pivot
position? Then a row exchange can’t help and elimination fails:

1 ¢ 0
A=12 4 1
3 5 1

What are L and D for this matrix A? What is U in A = LU and what is the
new U in A= LDU?

|
== N
L
~ o ®

A and B are symmetric across the diagonal (because 4 = 4). Find their triple
factorizations LDU and say how U is related to L for these symmetric matrices:

1 4 0
A:[i ]‘:‘] and B=|4 12 4
0 4 0
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13 (Recommended) Compute L and U for the symmetric matrix

=T~ T~ ~1
=~ - -
L T T - o~

i T~ ol =1

d
Find four conditions on a, b, ¢, d to get A = LU with four pivots.

14 Find L and U for the nonsymmetric matrix

B = W =

r
5
[
&

|~ ~ T -~
- G~ B

Find the four conditions on a, b, ¢, d,r, 5,1 to get A= LU with four pivots.
Problems 15-16 use L and U (without needing A) to solve Ax = b.

15 Solve the triangular system Le = b to find ¢. Then solve Ux = ¢ to find x:

o[l ol ] i)

For safety find A = LU and solve Ax = b as usual. Circle ¢ when you see it.

16 Solve Le = b to find e. Then solve Ux = ¢ to find x. What was A7

1 0 0 1 1 1 4
L=|1120 and U=|0 1 1 and b=|5
1 1 1 0o o0 1 6

17 (a) When you apply the usual elimination steps to L. what matrix do you reach?

1 o 0
L=|Iy 1 0{.
I3yl 1

(b) When you apply the same steps to /, what matrix do you get?
(c) When you apply the same steps to LU, what matrix do you get?

18 If A= LDU and also A = Ly DU, with all factors invertible, then L. = L and
D =Dy and U = U,. “The factors are unigue.”

Derive the equation L,"LD = DU U, Are the two sides triangular or diag-
onal? Deduce L = L) and U = U, (they all have diagonal 1's). Then D = D,.
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19

20

21

22

23

24

Tridiagonal matrices have zero entries except on the main diagonal and the two
adjacent diagonals. Factor these into A = LU and A = LDL":

] a a 0
A= l and A=|a a+b b
2

0 b b+c
When T is tridiagonal, its L and U factors have only two nonzero diagonals.
How would you take advantage of the zeros in 7' in a computer code for Gaussian
elimination? Find L and U.

D e
L e

= =T &
==L BN I S ]
[PV S
E =N e e

If A and B have nonzeros in the positions marked by x, which zeros (marked
by 0) are still zero in their factors L and U?

X X X X x x x 0
x x x 0 x x 0 x
A= 0 » x x ad B= x 0 x x
0 0 x «x 0 x x =x

After elimination has produced zeros below the first pivot, put x’s to show which
blank entries are known in the final L and U:

L S S | 1 O 0
X x x| = 1 0 0
X X 1 0

Suppose you eliminate upwards (almost unheard of). Use the last row to produce
zeros in the last column (the pivot is 1). Then use the second row to produce
zero above the second pivot. Find the factors in A = UL(!):

5 3 1
A=13 3 1
L 1 A

Collins uses elimination in both directions, meeting at the center. Substitution
goes out from the center. After eliminating both 2's in A, one from above and
one from below, what 4 by 4 matrix is left? Solve Ax = b his way.

A= and b=

d —

0
0
2
I

b3 0O 06 La

|
I
!
0

[ B e B S

1
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26

27

28

29

30

3

32

33

34

35
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(Important) If A has pivots 2,7, 6 with no row exchanges, what are the pivols
for the upper left 2 by 2 submatrix B (without row 3 and column 3)? Explain
why.

Starting from a 3 by 3 matrix A with pivots 2, 7, 6, add a fourth row and column
to produce M. What are the first three pivots for M, and why? What fourth row

and column are sure to produce 9 as the fourth pivot?

Use chol(pascal(5)) to find the triangular Pascal factors as in Worked Example
2.6 A. Show how row exchanges in [ L, U ] = luipascal(5)) spoil Pascal’s pattern!

(Careful review) For which numbers ¢ is A = LU impossible —with three pivots?

s
Il
= el
—_— b
——

Change the program slu(A) into sldu(A), so that it produces L, D, and U. Put
L, D, U into the n” storage locations that held the original A. The extra storage
used for L is not required.

Explain in words why x(k) is (c(k) — 1)/ Uk, k) at the end of slv(A, b).

Write a program that multiplies a two-diagonal L times a two-diagonal U. Don't
loop from 1 to n when you know there are zeros! L times U should undo slu.

I just learned MATLAB's tic—toc command. which measures computing time.
Previously I counted seconds until the answer appeared, which required very large
problems—now A = rand(1000) and & = rand(1000,1) is large enough.
How much faster is tic; A\b; toc for elimination than tic; inv(A)=b; toc which
computes A~'?

Compare tic; inv(A); toc for A = rand(500) and A = rand(1000). The n"
operation count says that doubling n should multiply computing time by 8.

I = eye(1000); A = rand(1000); B = triu(A); produces a random triangular
matrix B. Compare the times for inv(B) and B \ /. Backslash is engineered
to use the zeros in B, while inv uses the zeros in / when reducing [B ] by
Gauss-Jordan. (Compare also with inv(A) and A\ I for the full matrix A.)

Estimate the time difference for each new right side & when n = 800, Create
A = rand(800) and b = rand(800,1) and B = rand(800,9). Compare tic; A\b;
toc and tic; A\B; toc (which solves for 9 right sides).
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36 Show that L= has entries j/i on and below its main diagonal:

I 00 0 1 0 0 0
=% 1 0 L1 00

Lo | A and L'=|2
0-3 1 i3 0
0 0-3 1 b3

I think this pattern continues for L = eye(5)-diag(1:5)\diag(1:4,-1) and inv(L).

TRANSPOSES AND PERMUTATIONS = 2.7

We need one more matrix, and fortunately it is much simpler than the inverse. It is the
“transpose” of A, which is denoted by A'. The columns of AT are the rows of A.
When A is an m by n matrix, the transpose is n by m:

1 0
If ."l=|:él 3 i} then AT= ia 01.
3 4

You can write the rows of A into the columns of AT, Or you can write the columns
of A into the rows of AT, The matrix “flips over” its main diagonal. The entry in row
i, column j of AT comes from row j, column i of the original A:

(AT = Aji.

The transpose of a lower triangular matrix is upper triangular. (But the inverse is still
lower triangular.) The transpose of AT is A.

Note  MATLAB’s symbol for the transpose of A is A". Typing [1 2 3] gives a row

vector and the column vectoris v=]1 2 3]. To enter a matrix M with second col-
umn w =|[ 45 6] you could define M =[ v w ]. Quicker to enter by rows and
then transpose the whole matrix: M =[1 2 3; 4 5 6].

The rules for transposes are very direct. We can transpose A+ B to get (A+B)T.

Or we can transpose A and B separately, and then add AT 4+ B" —same result. The
serious questions are about the transpose of a product AB and an inverse A™';

The transpose of A4 B is A' + B (1)

The transpose of AB is (AB) = BTAT, (2)

The transpose of A~' is (A™HT = (A7)~ (3)
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Notice especially how BTAT comes in reverse order. For inverses, this reverse
order was quick to check: B~'A~! times AB produces /. To understand (AB)T =
BTAT, start with (Ax)T = xTAT:

A x combines the columns of A while x " A" combines the rows of A".

It is the same combination of the same vectors! In A they are columns, in AT they
are rows. So the transpose of the column Ax is the row x" AT, That fits our formula
(Ax)T = xTAT. Now we can prove the formula for (AB)T,

When B = [x| x;] has two columns, apply the same idea to each column. The
columns of AB are Ax; and Ax,. Their transposes are the rows of BTAT:

ITAT

Transposing AB=|Ax | Ax3 --- | gives I}'AT which is BTAT . (4)

The right answer BT AT comes out a row at a time. There is also a “transparent proof™
by looking through the page at the end of the problem set. Here are numbers!

O | 4 B e | B B

The reverse order rule extends to three or more factors: (ABC)" equals CTBTAT.

If A=LDU then AY=UYDYLY. The pivot matrix has D = D" .

Now apply this product rule to both sides of A='A = /. On one side, I7 is .
We confirm the rule that (A~")T is the inverse of AT:

A7'A=1 s transposed to AT(A1)T =1, (5)

Similarly AA~" = I leads to (A~")TAT = I. We can invert the ranspose or transpose
the inverse. Notice especially: AT is invertible exactly when A is invertible.

Example 1 The inverse of A = [19] is A™' = [_19]. The transpose is

(A" and (AT)"' are both equal to [} ~%].

Before leaving these rules, we call attention to dot products. The following state-
ment looks extremely simple, but it actually contains the deep purpose for the transpose.
For any vectors x and y,

(Ax)Ty ~ equals f&"}w xT(ATy). (6)

When A moves from one side of a dot product to the other side, it becomes AT,
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Here are two quick applications to electrical engineering and mechanical engi-
neering (with more in Chapter 8). The same A and A" appear in both applications.

node 3 voltage x3 floor 3 2/ movement x3
edge 23 current y» column 23 force y-
node 2 voltage x; floor 2 V7 movement X3
edge 12 current v column 12 force y)
node | voltage x floor | 2V 7 movement X

Figure 2.9 A line of resistors and a structure. both governed by A and AT,

Electrical Networks The vector x = (xy, x2, x3) gives voltages at 3 nodes, and Ax
gives the voltage differences across 2 edges. The “difference matrix™ A is 2 by 3:

I =1 0 * X) — X3
AI:[{} | —l] X3 =[" "]zvﬂltagcdiffcmnccs,

X3 — X3
X3

The vector ¥ = (v;. v2) gives currents on those edges (node 1 to 2. and node 2 to 3).
Look how A"y finds the total currents leaving each node in Kirchhoff’s Current Law:

| 0 g ¥ current leaving node |
A.Ty =| —I | [ : ] =| v»—yv |=| out minus in at node 2
0 =1 32 -V current leaving node 3

Section 8.2 studies networks in detail. Here we look at the energy x' AT y lost as heat:
Energy (voltages x) - (inputs A" y) = Hear loss (voltage drops Ax) - (currents y) .

Forces on a Structure  The vector x = (xj, x2, x3) gives the movement of each fAoor
under the weight of the floors above. The matrix A takes differences of the x's to give
the strains Ax, the movements between floors:

S| I =1 1 :: [ xi=x2 ] _ [ movement between 1 and 2

—|lo0 1 —1 e T = movement between 2 and 3 |’
The vector y = (y;. v2) gives the stresses (internal forces from the columns that resist
the movement and save the structure). Then ATI gives the forces that balance the
weight:

. 10 ; vi weight of floor 1
ATy=1| -1 | [ .1;: ] =| »—¥ balances weight of floor 2
0 -1 . - V2 weight of floor 3

In resistors, the relation of y to Ax is Ohm’s Law (current proportional to voltage dif-
ference). For elastic structures this is Hooke's Law (stress proportional to strain). The
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catastrophe on September 11 came when the fires in the World Trade Center weakened
the steel columns. Hooke's Law eventually failed. The internal forces couldn’t balance
the weight of the tower. After the first columns buckled, the columns below couldn’t
take the extra weight.

For a linearly elastic structure, the work balance equation is (Ax)"y = xT(ATy):

Internal work (strain Ax) - (stress y) = External work (movement x) - (force A" y).

Symmetric Matrices

For a symmetric matrix—these are the most important matrices—transposing A to AT
produces no change. Then AT = A. The matrix is symmetric across the main diagonal.
A symmetric matrix is necessarily square. Its (7, ¢) and (i, j) entries are equal.

DEFINITION A symmetric matrix has A" = A. This means that  «,; = a;, |

L 2] T O op
Example 2 A_[z 5]_A and D_[ﬂ H}:I"D'

A is symmetric because of the 2's on opposite sides of the diagonal. The rows agree

with the columns. In D those 2's are zeros. Every diagonal matrix is symmetric.
The inverse of a symmetric matrix is also symmetric. (We have to add: “If A is

invertible.") The transpose of A~ is (A~HT = (AT = A~! 50 A~ is symmetric:

. § 8 5 TE 0
"—[-2 1| P 2=l )

Now we show that multiplying any matrix R by R" gives a symmetric matrix,

Symmetric Products R"R and RR" and LDL"

Choose any matrix R, probably rectangular. Multiply RT times R. Then the product
RTR is automatically a square symmetric matrix:

The transpose of R'R is RY(R™)T whichis RR. (7)

That is a quick proof of symmetry for RTR. We could also look at the (i, j) entry of
RTR. 1t is the dot product of row i of RT (column i of R) with column j of R. The
(f, i) entry is the same dot product, column j with column i. So RTR is symmetric.
The matrix RR" is also symmetric. (The shapes of R and RT allow multipli-
cation.) But RRT is a different matrix from RTR. In our experience, most scientific
problems that start with a rectangular matrix R end up with RTR or RR" or both.
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Example 3 R=[1 2] and RT=B] produce nW:[é i] and RRT =[5].

The product RTR is n by n. In the opposite order, RRT is m by m. Even if m = n,
it is not very likely that RTR = RR". Equality can happen, but it is abnormal.

When elimination is applied to a symmetric matrix, AT = A is an advantage. The
smaller matrices stay symmetric as elimination proceeds, and we can work with half
the matrix! It is true that the upper triangular U/ cannot be symmetric. The symmetry
is in LDU. Remember how the diagonal matrix D of pivots can be divided out, to
leave 1's on the diagonal of both L and U:

1 2] _[t o 1 2 (L U misses the symmetry)
2 7] |2 1] |0 3

= [; ?] [[I] (3]] {{lj ﬂ (L DU captures the symmetry)
Now U is the transpose of L.

When A is symmetric, the usual form A = LDU becomes A = LDL". The final U
(with 1's on the diagonal) is the transpose of L (also with 1's on the diagonal). The
diagonal D —the matrix of pivots—is symmetric by itself.

2K If A = AT can be factored into LDU with no row exchanges, then U = LT,
The symmetric factorization of a symmetric matrix is A = LDL H

Notice that the transpose of LDLT is automatically (LT)TDTLT which is LDLT
again. The work of elimination is cut in half, from n®/3 multiplications to n®/6. The
storage is also cut essentially in half. We only keep L and D, not U.

Permutation Matrices

The transpose plays a special role for a permutation marrix. This matrix P has a single
“1" in every row and every column. Then PT is also a permutation matrix—maybe the
same or maybe different. Any product P; P> is again a permutation matrix. We now
create every P from the identity matrix, by reordering the rows of /.

The simplest permutation matrix is P = I (no exchanges). The next simplest are
the row exchanges Pjj. Those are constructed by exchanging two rows i and j of /.
Other permutations reorder more rows. By doing all possible row exchanges to I, we
get all possible permutation matrices:

DEFINITION A permutation mairix P has the rows of I in any order.
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Example 4  There are six 3 by 3 permutation matrices. Here they are without the zeros:

b= ' Pa=|1 PPy = !

Ps) Py = | F3|F'32 =1

There are n! permutation matrices of order n. The symbol n! means “n factorial,” the
product of the numbers (1)(2)---(n). Thus 3! = (1)(2)(3) which is 6. There will be
24 permutation matrices of order n = 4. And 120 permutations of order 5.

There are only two permutation matrices of order 2, namely [} 9] and [§1].

Important: P~ is also a permutation matriv. Among the six 3 by 3 P’s dis-
played above, the four matrices on the left are their own inverses. The two matrices
on the right are inverses of each other. In all cases. a single row exchange is its own
inverse. If we repeat the exchange we are back to /. But for P3;P3. the inverses go
in opposite order (of course). The inverse is Py Pya.

More important: P~V is always the same as PY. The two matrices on the right are
transposes—and inverses—of each other. When we multiply P PT, the “1” in the first
row of P hits the “1” in the first column of PT (since the first row of P is the first
column of PT). It misses the ones in all the other columns. So PPT = 1.

Another proof of PT = P~! looks at P as a product of row exchanges. A row
exchange is its own transpose and its own inverse. P7 and P~ both come from the
product of row exchanges in the opposite order. So PT and P! are the same.
Symmetric matrices led to A = LDL". Now permutations lead to PA = LU.

The L U Factorization with Row Exchanges

We sure hope you remember A = L U. It started with A = i_ElT]] : ~-E;' --- ). Every
elimination step was carried out by an E;; and it was inverted by E‘-_-j. Those inverses
were compressed into one matrix L, bringing U back to A. The ﬂc-wer triangular L
has 1's on the diagonal, and the result is A = L U.

This is a great factorization, but it doesn’t always work! Sometimes row ex-
changes are needed to produce pivots. Then A = (E~!...p~ ... E-l...p=l.. U,
Every row exchange is carried out by a P;; and inverted by that P;;. We now compress
those row exchanges into a single permuration marrix P. This gives a factorization for
every invertible matrix A—which we naturally want.

The main question is where to collect the P;;'s. There are two good possibilities—
do all the exchanges before elimination, or do them after the E;;’s. The first way gives
PA = L U. The second way has a permutation matrix P; in the middle.

1.  The row exchanges can be done in advance. Their product P puts the rows of A
in the right order, so that no exchanges are needed for PA. Then PA=LU.
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2.  If we hold row exchanges until after elimination, the pivot rows are in a strange
order. Py puts them in the correct triangular order in Uy. Then A = L1 PUy.

PA = LU is constantly used in almost all computing (and always in MATLAB). We
will concentrate on this form PA = L U. The factorization A = L, P U; might be
more elegant. If we mention both, it is because the difference is not well known. Prob-
ably you will not spend a long time on either one. Please don’t. The most important
case has P = [, when A equals L U with no exchanges.

For this matrix A, exchange rows | and 2 to put the first pivot in its usual place.
Then go through elimination on FA:

0 1 1 . @ ] 1 2 ] 1 2 1

1 2 1|— 01 1|— g 1 1|— 0o 1 1

2 79 2 79 0 -3 7 0 0 4

PA I3 =2 {ypp=3

The matrix PA is in good order, and it factors as usual into L U:
1 00 1 "2
PA=|0 1 0]|0 1 1]|=LU. (8)

2 3 1110 0 4

We started with A and ended with U. The only requirement is invertibiliry of A.

2L If A is invertible. a permutation P will put its rows in the right order to factor
PA = LU . There must be a full set of pivots, after row exchanges.

In the MATLAB code, A([r k], :) = A(lk r], ;) exchanges row k with row r below
it (where the kth pivot has been found). Then we update L and P and the sign of P:

Allr k).:) = A(lk 7], 2):

L([r k.1 :k=1)=L{lkr), 1 : k= 1)
P([r k),2) = P(lk r],:):

sign = —sign

The “sign” of P tells whether the number of row exchanges is even (sign = +1)
or odd (sign = —1). At the start, P is / and sign = +1. When there is a row exchange,
the sign is reversed. The final value of sign is the determinant of P and it does not
depend on the order of the row exchanges.

For PA we get back to the familiar L U. This is the usual factorization. In re-
ality, MATLAB might not use the first available pivot. Mathematically we can accept a
small pivot—anything but zero. It is better if the computer looks down the column for
the largest pivot. (Section 9.1 explains why this “partial piveting” reduces the round-
off error.) P may contain row exchanges that are not algebraically necessary. Still
PA=LI.



2.7 Transposes and Permutations 103
Our advice is to understand permutations but let MATLAB do the computing, Cal-
culations of A = LU are enough to do by hand, without P. The Teaching Code

splu (A) factors PA = L U and splv (A, b) solves Ax = b for any invertible A. The
program splu stops if no pivot can be found in column k. That fact is printed.

® REVIEW OF THE KEY IDEAS =

1. The transpose puts the rows of A into the columns of AT, Then (AT);; = A;;.

2. The transpose of AB is B'AT, The transpose of A~ is the inverse of AT,

3. The dot product (Ax)Ty equals the dot product xT(AT y).

4.  When A is symmetric (AT = A), its LDU factorization is symmetric: A =
LDLT.

5. A permutation matrix P has a 1 in each row and column, and PT = P!,

6. If A is invertible then a permutation P will reorder its rows for PA =L U.

" WORKED EXAMPLES =

2.7 A Applying the permutation P to the rows of A destroys its symmetry:

010 1 4 5 4 2 6
P=]0 0 1 A=|4 2 6 PA=|5 6 3
1 0 0 56 3 1 4 5

What permutation matrix @ applied to the columns of PA will recover symmetry in
PAQ? The numbers 1,2, 3 must come back to the main diagonal (not necessarily in
order). How is () related to P. when symmetry is saved by PAQ?

Solution  To recover symmetry and put “2” on the diagonal, column 2 of PA must
move to column 1. Column 3 of PA (containing “3”) must move to column 2. Then
the “1" moves to the 3, 3 position. The matrix that permutes columns is Q:

4 2 6 0 0 1 2 6 4
PA=]5 6 3 g=(1 0 0 PAQ=|6 3 5| is symmetric.
1 4 5 01 0 4 5 1

The matrix Q is P'. This choice always recovers symmetry, because PAPT is guar-
anteed to be symmetric. (Its transpose is again PAPT.) The matrix Q is also P!,
because the inverse of every permutation matrix is its ranspose.



104 Chapter 2 Solving Linear Equations

If we look only at the main diagonal D of A, we are finding that PDPT is
guaranteed diagonal. When P moves row 1 down to row 3, PT on the right will move
column 1 to column 3. The (1, 1) entry moves down to (3, 1) and over to (3, 3).

2.7 B Find the symmetric factorization A = LDLT for the matrix A above. Is A
invertible? Find also the PQ = L U factorization for Q. which needs row exchanges.

Solution To factor A into LDL" we eliminate below the pivots:

1 4 5 1 4 5 1 4 5
A=14 2 6|— |0 =14 —14| — |0 —14 14| =V.
53 6 3 0 —-14 =22 0O 0 -8

The multipliers were €3 =4 and £33 = 5 and £33 = 1. The pivots 1, —14, —8 go into
D. When we divide the rows of U by those pivots, LT should appear:

| 011
A=LDLT = | 4 0 —14
5 |

—_—

3
1
1

=R =
= =

-8

This matrix A is invertible because it has three pivots. lis inverse 1s (LH=-1p-ig-1
and it is also symmetric. The numbers 14 and 8 will turn up in the denominators of
A~!. The “determinant” of A is the product of the pivots (1)(—14)(—8) = 112.

The matrix  is certainly invertible. But elimination needs two row exchanges:

0o 0 1 rows 1 0 0 rOWS 1 0 0
Og=|1 0 0 I 0 0 1 —_— 0 1 0)|=1.
0 1 0 1«2 |0 1 0 2«3 |0 0 1

Then L =1 and U = I are the L U factors. We only need the permutation P that put
the rows of @ into their right order in /. Well, P must be @~'. It is the same P as
above! We could find it as a product of the two row exchanges, 1 <+ 2 and 2 < 3:

1 0 00O 1 O 0 1 0
P=PuPp=|0 0 1||1 0 0|=|0 0 1| reorders @ into PQ = 1.
01 0110 0 1 I 00

Problem Set 2.7

Questions 1-7 are about the rules for transpose matrices.
1 Find AT and A" and (A™")T and (A7)~ for

1 0 i |1 c
A=[g 3] and also A—L_ {J.
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2 Verify that (AB)" equals BTAT but those are different from ATBT:

[0 eef] )

In case AB = BA (not generally true!) how do you prove that BTAT = ATBT?
3 (a) The matrix ((AB)™")T comes from (A~")T and (B~")". In whar order?
(b) If U is upper triangular then (U~")T is __ triangular.
4  Showthat A> = 0 is possible but AT A = 0 is not possible (unless A = zero matrix).

5 (a) The row vector x' times A times the column y produces what number?

0
:T,q_;r:[ni][i i ;} 1|=__
0

(b} This is the row x7TA =  times the column ¥y =(0,1,0).
(c) This is the row x7 = [0 1] times the column Ay = _

6  When you transpose a block matrix M = [AB] the result is MT = . Test

it. Under what conditions on A, B, C, D is the block matrix symmetric?
7 True or false:

(a) The block matrix [ § 8] is automatically symmetric.

(b) If A and B are symmetric then their product AB is symmetric.
{c) If A is not symmetric then A~ is not symmetric.

(d) When A, B, C are symmetric, the transpose of ABC is CBA,

Questions 8-15 are about permutation matrices.

8  Why are there n! permutation matrices of order n?

9 If P, and P, are permutation matrices, so is Py Ps. This still has the rows of |
in some order. Give examples with P\ P; # PPy and P3Py = Py Ps.

10 There are 12 “even” permutations of (1, 2, 3, 4), with an even number of exchanges.
Two of them are (1, 2, 3, 4) with no exchanges and (4, 3, 2, 1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, use the numbers 4, 3, 2, |
to give the position of the | in each row.

11 (Try this question) Which permutation makes P A upper triangular? Which permu-
tations make Py AP lower triangular? Multiplying A on the right by P> exchanges
the of A,

2
]

o —0o

= a2

b e O
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12

13

14

15

Explain why the dot product of x and y equals the dot product of Px and Py.
Then from (Px)T(Py) = xTy deduce that PTP = I for any permutation. With
x=1(1,2,3)and y = (1,4, 2) choose P to show that Px -y is not always equal
ox-Py.

Find a 3 by 3 permutation matrix with P* =T (but not P = I). Find a 4 by 4
permutation P with P* £ [

If you take powers of a permutation matrix, why is some P* eventually equal
to I7

Find a 5 by 5 permutation P so thal the smallest power to equal [ is P°.
(This is a challenge gquestion. Combine a 2 by 2 block with a 3 by 3 block.)

Row exchange matrices are symmetric: P’ = P. Then PTP = [ becomes P? =
I. Some other permutation matrices are also symmetric.

(a) If P sends row 1 to row 4, then PT sends row  to row
When PT = P the row exchanges come in pairs with no overlap.

(b) Find a 4 by 4 example with PT = P that moves all four rows.

Questions 1621 are about symmetric matrices and their factorizations.

16

17

18

19

If A= AT and B = BT, which of these matrices are certainly symmetric?

(a) A*’—B?

(b) (A+ BWA - B)

(c) ABA

idy ABAB,.

Find 2 by 2 symmetric matrices A = A" with these properties:

(a) A is not invertible.

(b) A is invertible but cannot be factored into L U/ (row exchanges needed).
(¢c) A can be factored into LDL" but not into LLT (because of negative D).
(a) How many entries of A can be chosen independently, if A = AT is 5 by 57
(b) How do L and D (still 5 by 5) give the same number of choices?

(¢) How many entries can be chosen if A is skew-symmerric? (AT = —A).
Suppose R is rectangular (m by n) and A is symmetric (m by m).

(a) Transpose RTAR to show its symmetry. What shape is this matrix?

(b) Show why RTR has no negative numbers on its diagonal.
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20 Factor these symmetric matrices into A = LDL". The pivot matrix D is diagonal:

3 1 0
ﬂ=|:; ;] and ;‘!.=|:i_r b:l and A=1|-1 2 -1
. 0 =1 2

21 After elimination clears out column 1 below the first pivot, find the symmetric 2
by 2 matrix that appears in the lower right corner:

Questions 22-30 are about the factorizations PA= LU and A = L, U,.
22 Find the PA = L U factorizations {(and check them) for
0
A=]1
2

—_— o J
= = )
| —

P

23 Find a 3 by 3 permutation matrix (call it A) that needs two row exchanges to
reach the end of elimination. For this matrix, what are its factors P, L, and U7

24  Factor the following matrix into PA = L U. Factor it also into A = L Pl
(hold the exchange of row 3 until 3 times row | is subtracted from row 2):

25 Write out P after each step of the MATLAB code splu, when

6 | 0 0 1
H=|:2 1} and A=12 3 4]|.
. 0 5 6

= oo
— L)
— Q0 b

26 Write out P and L after each step of the code splu when

01 2
A=|1 1 0].
2 5 4

27 Extend the MATLAB code splu to a code spldu which factors PA into LDU.
28 'What is the matrix L) in A= L, P U,?

1 b3 [
A=|1 |00 2|=pPUu=]|0
2 03 6 0

LA e
0 L =
[l = I = |
Lo B =
[ I e ]
2 L e
Pd O =
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29 Prove that the identity matrix cannot be the product of three row exchanges (or
five). It can be the product of two exchanges (or four).

30 (a) Choose E to remove the 3 below the first pivot. Then multiply Ey AEJ,
to remove both 3's:

1 30 1 0 0
A=13 11 4 is going toward D= (0 2 0
0 4 9 0 0 1

(b) Choose E3; to remove the 4 below the second pivot. Then A is reduced
to D by ExEyAEY EJ, = D. Invert the E£'s to find L in A= LDLT.

The next questions are about applications of the identity (Ax)Ty = ;T[ATJ.-}.

31 Wires go between Boston, Chicago, and Seattle. Those cities are at voltages xg, xe.
x5. With unit resistances between cities, the currents between cities are in y:

YBC 1 =1 0| | xs
y=Ax is yes =10 1 =1 7o
VES I 0 -1 xs

(a) Find the total currents AT_r out of the three cities.
(b) Verify that [AJ:}TJI' agrees with J:T(AT_H—six terms in both.

32 Producing x; trucks and x; planes needs x; + 50x2 tons of steel, 40x) + 1000x2
pounds of rubber, and 2x; 4 50x> months of labor. If the unit costs y;, vz, v3 are
$700 per ton, $3 per pound, and $3000 per month, what are the values of one
truck and one plane? Those are the components of ATy,

33 Ax gives the amounts of steel, rubber, and labor to produce x in Problem 32.
Find A. Then Ax-y isthe  of inputs while .'I'.'-.H"-Tj is the value of

34 The matrix P that multiplies (x, v,z) to give (z,x, v} is also a rotation matrix.
Find P and P°. The rotation axis @ = (1. I, 1) doesn't move, it equals Pa. What
is the angle of rotation from v = (2,3, —5) to Pv = (-5, 2,3)?

35 Write A = [42] as the product EH of an elementary row operation matrix E
and a symmetric matrix H.

36 Here is a new factorization of A into triangular times syvmmetric:
Start from A = LDU. Then A = L(UT]_’ times U T DU.
Why is L(UT)"" triangular? Its diagonal is all 1's. Why is U DU symmetric?

37 A group of matrices includes AB and A1 if it includes A and B. “Products
and inverses stay in the group.” Which of these sets are groups? Lower trian-
gular matrices L with 1's on the diagonal, symmetric matrices §. positive ma-
trices M. diagonal invertible matrices D, permutation matrices P, matrices with
Q" = @', Invent two more matrix groups.
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40
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If every row of a 4 by 4 matrix contains the numbers 0, 1,2, 3 in some order,
can the matrix be symmetric?

Prove that no reordering of rows and reordering of columns can transpose a typ-
ical matrix.

A square northwest matrix B is zero in the southeast comner, below the antidiag-
onal that connects (1,n) to (n, 1). Will BT and B? be northwest matrices? Will
B~' be northwest or southeast? What is the shape of BC = northwest times
southeast? OK to combine permutations with the usual L and U (southwest and
northeast).

If P has I's on the antidiagonal from (1, n) to (s, 1), describe PAP.

- F -
B

TATg

L
® RRXRR

Transparent proof that (AB)" = BTAT. Matrices can be transposed by looking
through the page from the other side. Hold up to the light and practice with B.
Its column with four entries (X) becomes a row, when you look from the back
and the symbol B is upright.

The three matrices are in position for matrix multiplication: the row of A times
the column of B gives the entry in AB. Looking from the reverse side, the row
of BT times the column of AT gives the correct entry in BTAT = (AB)T.






VECTOR SPACES
AND SUBSPACES

SPACES OF VECTORS = 3.1

To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vec-
tors. The columns of Ax and AB are linear combinations of n vectors—the columns
of A. This chapter moves from numbers and vectors to a third level of understand-
ing (the highest level). Instead of individual columns, we look at “spaces™ of vectors.
Without seeing vector spaces and especially their subspaces, you haven't understood
everything about Ax = b.

Since this chapter goes a little deeper, it may seem a little harder. That is natural.
We are looking inside the calculations, to find the mathematics. The author's job is to
make it clear. These pages go to the heart of linear algebra.

We begin with the most important vector spaces. They are denoted by R', R?,
R3, RY, . ... Each space R" consists of a whole collection of vectors. R’ contains
all column vectors with five components. This is called “5-dimensional space.”

DEFINITION The space R" consists of all column vectors v with n components.

The components of v are real numbers, which is the reason for the letter R. A vector
whose n components are complex numbers lies in the space C"

The vector space R? is represented by the usual xy plane. Each vector v in R? has
two components. The word “space”™, asks us to think of all those vectors—the whole
plane. Each vector gives the x and y coordinates of a point in the plane.

Similarly the vectors in R? correspond to points (x, v, z) in three-dimensional
space. The one-dimensional space R' is a line (like the x axis). As before, we print
vectors as a column between brackets, or along a line using commas and parentheses:

4

0| isin R, (1,1.0,1,1) is in R?, [
|

H‘.:[ i inCL
| =i

111
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The great thing about linear algebra is that it deals easily with five-dimensional
space. We don't draw the vectors, we just need the five numbers (or n numbers). To
multiply v by 7, multiply every component by 7. Here 7 is a “scalar.” To add vectors
in R, add them a component at a time. The two essential vector operations go on
inside the vector space:

We can add any vectors in R", and we can multiply any vector by any scalar.

“Inside the vector space” means that the result stays in the space. If v is the vector
in R* with components 1,0, 0, 1, then 2w is the vector in R* with components 2, 0,0, 2.
(In this case 2 is the scalar.) A whole series of properties can be verified in R", The
commutative law is v + w = w + v; the distributive law is c{v + w) = cv + cw. There
1S a unique “zero vector” satisfying 0+ v = v. Those are three of the eight conditions
listed at the start of the problem set.

These eight conditions are required of every vector space. There are vectors other
than column vectors, and vector spaces other than R", and they have to obey the eight
reasonable rules.

A real vector space is a set of “vectors” together with rules for vector addition
and for multiplication by real numbers. The addition and the multiplication must pro-
duce vectors that are in the space. And the eight conditions must be satisfied (which
is usually no problem). Here are three vector spaces other than R":

M  The vector space of all real 2 by 2 matrices.
F  The vector space of all real functions f(x).
Z  The vector space that consists only of a zere vector.

In M the “vectors™ are really matrices. In F the vectors are functions. In Z the only
addition is 0 + 0 = 0. In each case we can add: matrices to matrices, functions to
functions, zero vector to zero vector. We can multiply a matrix by 4 or a function by
4 or the zero vector by 4. The result is still in M or F or Z. The eight conditions are
all easily checked.

The space Z is zero-dimensional (by any reasonable definition of dimension). It is
the smallest possible vector space. We hesitate to call it R”, which means no
components—you might think there was no vector. The vector space Z contains ex-
actly one vector (zero). No space can do without that zero vector. Each space has its
own zero vector—the zero matrix, the zero function, the vector (0,0,0) in R

Subspaces

At different times, we will ask you to think of matrices and functions as vectors. But at
all times, the vectors that we need most are ordinary column vectors. They are vectors
with n components—but maybe not all of the vectors with n components. There are
important vector spaces inside R".

Start with the usual three-dimensional space R®. Choose a plane through the
origin (0, 0,0). That plane is a vector space in its own right. If we add two vectors
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[ub
c d

|
p |

[ﬂ 1] smallest vector space

Figure 3.1 “Four-dimensional™ matrix space M. The “zero-dimensional” space Z.

in the plane, their sum is in the plane. If we multiply an in-plane vector by 2 or -5,
it is still in the plane. The plane is not R? (even if it looks like R?). The vectors have
three components and they belong to R?. The plane is a vector space inside R?.

This illustrates one of the most fundamental ideas in linear algebra. The plane is
a subspace of the full vector space R’

DEFINITION A subspace of a vector space 15 a set of vectors (including 0) that
satisfies two requirements: If v and w are vectors in the subspace and ¢ is any
scalar, then (i) v+ w is in the subspace = and (ii) cv is in the subspace.

In other words, the set of vectors is “closed” under addition v 4+ w and multiplication
cv (and cw). Those operations leave us in the subspace. We can also subtract, because
—w is in the subspace and its sum with v is v—w. In short, all linear combinations
stay in the subspace.

All these operations follow the rules of the host space, so the eight required con-
ditions are automatic. We just have to check the requirements (i) and (ii) for a sub-
space.

First fact: Every subspace contains the zero vector. The plane in R? has 1o go
through (0, 0, 0). We mention this separately, for extra emphasis, but it follows directly
from rule (ii). Choose ¢ =0, and the rule requires Ov to be in the subspace.

Planes that don’t contain the origin fail those tests. When v is on such a plane,
—v and Ov are nor on the plane. A plane that misses the origin is not a subspace.

Lines through the origin are also subspaces. When we multiply by 5, or add
two vectors on the line, we stay on the line. But the line must go through (0,0, 0).

Another subspace is all of R®. The whole space is a subspace (of irself). Here
is a list of all the possible subspaces of R*:

(L) Any line through (0, 0, 0) (R?) The whole space
(P) Any plane through (0,0,0) (Z) The single vector (0,0,0)
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If we try to keep only part of a plane or line, the requirements for a subspace don'’t
hold. Look at these examples in R%.

Example 1 Keep only the vectors (x, y) whose components are positive or zero (this
is a quarter-plane). The vector (2, 3) is included but (-2, —3) is not. So rule (ii) is
violated when we try to multiply by ¢ = —1. The quarter-plane is not a subspace.

Example 2  Include also the vectors whose components are both negative. Now we
have two quarter-planes. Requirement (ii) is satisfied; we can multiply by any ¢. But
rule (i) now fails, The sum of v = (2,3) and w = (=3, =2) is (=1, 1), which is
outside the guarter-planes. Two gquarter-planes don’t make a subspace.

Rules (i) and (ii) involve vector addition v+ w and multiplication by scalars like
¢ and d. The rules can be combined into a single requirement —the rule for subspaces:

A subspace containing v and w must contain all linear combinations cv + dw.
Example 3  Inside the vector space M of all 2 by 2 matrices, here are two subspaces:

(U) All upper triangular matrices [g z.] (D) All diagonal matrices [E 3]

Add any two matrices in U, and the sum is in U. Add diagonal matrices, and the sum
is diagonal. In this case D is also a subspace of U! Of course the zero matrix is in
these subspaces, when a, b, and d all equal zero.

To find a smaller subspace of diagonal matrices, we could require @ = d. The
matrices are multiples of the identity matrix /. The sum 2/ + 3/ is in this subspace,
and so is 3 times 4/. It is a “line of matrices” inside M and U and D.

Is the matrix / a subspace by itself? Certainly not. Only the zero matrix is. Your
mind will invent more subspaces of 2 by 2 matrices —write them down for Problem 5.

The Column Space of A

The most important subspaces are tied directly to a matrix A. We are trying to solve
Ax = b. If A is not invertible, the system is solvable for some b and not solvable for
other b. We want to describe the good right sides b—the vectors that can be written
as A times some vector x.

Remember that Ax is a combination of the columns of A. To get every possible
b, we use every possible x. So start with the columns of A, and take all their linear
combinations. This produces the column space of A, It is a vector space made up of
column vectors—not just the n columns of A, but all their combinations Ax.

DEFINITION The column space consists of all linear combinations of the columns.
The combinations are all possible vectors Ax. They fill the column space C(A).

This column space is crucial to the whole book, and here is why. To solve Ax =
b is to express b as a combination of the columns. The right side b has to be in the
column space produced by A on the left side, or no solution!
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Figure 3.2 The column space C(A) is a plane containing the two columns. Ax = b
is solvable when b is on that plane. Then b is a combination of the columns.

3A The system Ax = b is solvable if and only if b is in the column space of A,

When & is in the column space, it is a combination of the columns. The coeffi-
cients in that combination give us a solution x to the system Ax = b.

Suppose A is an m by n matrix. Its columns have m components (not n). So the
columns belong to R™. The column space of A is a subspace of R™ (not R"). The
set of all column combinations Ax satisfies rules (i) and (ii) for a subspace: When we
add linear combinations or multiply by scalars, we still produce combinations of the
columns. The word “subspace™ is justified by taking all linear combinarions.

Here is a 3 by 2 matrix A, whose column space is a subspace of R, It is a plane.

10 1 0
Ax is |4 3 [“‘”] whichis x| 4|+x ]3]
2 3|L* 2 3

The column space consists of all combinations of the two columns—any x; times the
first column plus any x> times the second column. Those combinations fill up a plane in
R* (Figure 3.2). If the right side b lies on that plane, then it is one of the combinations
and (x;, x2) is a solution to Ax = b. The plane has zero thickness. so it is more likely
that b is not in the column space. Then there is no solution to our 3 equations in 2
unknowns.

Of course (0,0,0) is in the column space. The plane passes through the origin.
There is certainly a solution to Ax = 0. That solution, always available, is x =

Example 4
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To repeat, the attainable right sides b are exactly the vectors in the column space.
One possibility is the first column itself —take x| = | and x> = (. Another combination
is the second column—take x; = 0 and x; = 1. The new level of understanding is to
see all combinations—the whole subspace is generated by those two columns.

Notation The column space of A is denoted by C(A). Start with the columns and
take all their linear combinations, We might get the whole R™ or only a subspace.

Example 5 Describe the column spaces (they are subspaces of R?) for

1 0 | 2 1 2 3
fz[n |i| and ,-1=[2 4] and Hz[ﬂ 0 4]

Solution The column space of / is the whole space R*. Every vector is a combination
of the columns of I. In vector space language, C(/) is R,

The column space of A is only a line. The second column (2, 4) is a multiple
of the first column (1, 2). Those vectors are different, but our eye is on vector spaces.
The column space contains (1.2) and (2,4) and all other vectors (c, 2¢) along that
line. The equation Ax = b is only solvable when b is on the line.

The third matrix (with three columns) places no restriction on b. The column
space C(B) is all of R’ Every b is attainable. The vector b = (5.4) is column 2
plus column 3, so x can be (0.1, 1). The same vector (5. 4) is also 2(column 1) +
column 3, so another possible x is (2,0, 1). This matrix has the same column space as
[ —any b is allowed. But now x has extra components and there are more solutions.

The next section creates another vector space, to describe all the solutions of Ax = 0.
This section created the column space, to describe all the attainable right sides b.

= REVIEW OF THE KEY IDEAS =

1. R" contains all column vectors with n real components.

2. M (2 by 2 matrices) and F (functions) and Z (zero vector alone) are vector spaces.
3. A subspace containing v and w must contain all their combinations cv + dw.
4.  The combinations of the columns of A form the column space C(A).

5. Ax = b has a solution exactly when b is in the column space of A.

= WORKED EXAMPLES =

3.0 A We are given three differemt vectors by, b>, by, Construct a matrix so that the
equations Ax = b; and Ax = b, are solvable, but Ax = b3 is not solvable, How can
you decide if this is possible? How could you construct A?
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Solution We want to have by and b; in the column space of A. Then Ax = b and
Ax = b> will be solvable. The quickest way is to make by and b the two columns of
A. Then the solutions are x = (1,0) and x = (0, 1).

Also, we don’t want Ax = b3 to be solvable. So don’t make the column space
any larger! Keeping only the columns of by and bz, the question is:

IsAx=| b, b [ o }: b; solvable?  Is b3 a combination of b; and by?

X2

If the answer is no, we have the desired matrix A. If the answer is ves, then it is nor
possible to construct A. When the column space contains by and by, it will have to
contain all their linear combinations. So by would necessarily be in that column space
and Ax = b3 would necessarily be solvable.

31 B Describe a subspace S of each vector space V, and then a subspace SS of §.

Y = all combinations of (1, 1.0, 0)and (1, 1, 1,00 and (1, 1, 1, 1)
Vi = all vectors perpendicular tou = (1,2,2, 1)

V3 = all symmetric 2 by 2 matrices

Vi = all solutions to the equation d*y Jdx* = 0.

Describe each V two ways: All combinations of . ..., all solutions of the equations .. ..

Solution A subspace S of V| comes from all combinations of the first two vectors
(1,1,0,0) and (1,1, 1,0). A subspace 88 of § comes from all multiples (¢, ¢, 0,0) of
the first vector.

A subspace S of V; comes from all combinations of two vectors (1,0,0, —1)
and (0,1, —1,0) that are perpendicular to u. The vector x = (1,1, =1, —1) is in §
and all its multiples cx give a subspace S8.

The diagonal matrices are a subspace S of the symmetric matrices. The multiples
¢l are a subspace SS of the diagonal matrices.

V4 contains all cubic polynomials y = a+bx+cx”+dx?. The quadratic polyno-
mials give a subspace S. The linear polynomials are one choice of S8. The constants
could be SSS.

In all four parts we could have chosen § = V itself, and 8S = the zero sub-
space Z.

Each V¥ can be described as all combinations of .... and as all solutions of....:

V| = all combinations of the 3 vectors = all solutions of vy —v2 =0
V> = all combinations of (1,0,0,—1),(0,1, —1,0), (2, —1,0,0)
= all solutions of uTv =0
V3 = all combinations of [ § §].
2

¥4 = all combinations of 1, x, x

911.[39] = all solutions [2B]of b=¢
,x* = all solutions to d*y/dx* = 0.
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Problem Set 3.1

The first problems 1-8 are about vector spaces in general. The vectors in those
spaces are not necessarily column vectors. In the definition of a vector space, vec-
tor addition x + y and scalar multiplication cx must obey the following eight rules:

(6)
(7)

(8)

X+y=y+x

r+y+)=x+y)+z

There is a unigue “zero vector” such that x +0 = x for all x
For each x there is a unigue vector —x such that x + (—-x) =0
| umes x equals x

(cpeadx = cpleax)

clx+y)=cx +cy

() + )y =01 x +1x.

Suppose (xy, x2) 4 (y1, y2) is defined to be (x) + y2, x2 + vy). With the usual
multiplication ex = (cxy, ¢x), which of the eight conditions are not satisfied?

Suppose the multiplication cx is defined to produce (cx;,0) instead of (cxy, exa).
With the usual addition in R?, are the eight conditions satisfied?

(a)  Which rules are broken if we keep only the positive numbers x > 0 in R'?
Every ¢ must be allowed. The half-line is not a subspace.

(b) The positive numbers with x + y and cx redefined to equal the usual xy
and x° do satisfy the eight rules. Test rule 7 when c = 3. x =2,y = L.
(Then x + y = 2 and cx = 8.) Which number acts as the “zero vector™?

The matrix A = i:i] is a “vector” in the space M of all 2 by 2 matrices.
Write down the zero vector in this space, the vector $A, and the vector —A.
What matrices are in the smallest subspace containing A7

(a) Describe a subspace of M that contains A =[J9] but not B =3 1]
(b} If a subspace of M comtains A and B, must it contain /7

{c) Describe a subspace of M that contains no nonzero diagonal matrices.
The functions f(x) = x” and g(x) = 5x are “vectors” in F. This is the vector

space of all real functions. (The functions are defined for —oo < r < no.) The
combination 3 f(x) — 4g(x) is the function h(x) =
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Which rule is broken if multiplying f(x) by ¢ gives the function f(cx)? Keep
the usual addition f(x) + g(x).

If the sum of the “vectors™ f(x) and g(x) is defined to be the function f(g(x}),
then the “zero vector” is g(x) = x. Keep the usual scalar multiplication ¢ f(x)
and find two rules that are broken.

Questions 9-18 are about the “subspace requirements™: xr + y and cx (and then
all linear combinations cx + dy) must stay in the subspace.

9

10

1

12

13

14

15

One requirement can be met while the other fails. Show this by finding

(a) A set of vectors in R? for which x + y stays in the set but 11.: may be
outside.

(b} A set of vectors in R? (other than two guarter-planes) for which every cx
stays in the set but x + y may be outside.

Which of the following subsets of R? are actually subspaces?

(a) The plane of vectors (by, b2, b3) with by = ba.

(b) The plane of vectors with by = 1.

(c) The vectors with bybaby = 0.

(dy All linear combinations of v =(1.4.0) and w = (2, 2, 2).
(e) All vectors that satisfy by + bs + b3 = 0.

(f) All vectors with by < bs < b3,

Describe the smallest subspace of the matrix space M that contains
1 0 0 1
(a) [{J D] and [{1 ﬂ]
1 1 0 1 0
(b) [ {J (c) [G ﬂ] and [G l]'

Let P be the plane in R* with equation x + y — 2z = 4. The origin (0,0,0) is
not in P! Find two vectors in P and check that their sum is not in P.

e S

Let Py be the plane through (0,0, 0) parallel to the previous plane P. What is
the equation for Py? Find two vectors in Py and check that their sum is in Py.

The subspaces of R? are planes, lines, R itself, or Z containing only (0,0, 0).

(a) Describe the three types of subspaces of RZ.
(b) Describe the five types of subspaces of R*.

(a) The intersection of two planes through (0,0,0) is probably a ~ but it
could bea _ . It can’t be Z!
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(b} The intersection of a plane through (0,0, 0) with a line through (0,0, 0} is
probably a but it could be a
(¢) If S and T are subspaces of R?, prove that their intersection SN'T (vectors

in both subspaces) is a subspace of R®. Check the requirements on x + y
and cx.

16  Suppose P is a plane through (0,0.0) and L is a line through (0,0,0). The
smallest vector space containing both P and L is either or .

17 (a) Show that the set of invertible matrices in M is not a subspace.
(b) Show that the set of singular matrices in M is not a subspace.

18 True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with AT = A) form a subspace.
(b) The skew-symmetric matrices in M (with A’ = —A) form a subspace.
(c) The unsymmetric matrices in M (with AT # A) form a subspace.

Questions 19-27 are about column spaces C(A) and the equation Ax = b.

19  Describe the column spaces (lines or planes) of these particular matrices:

1 2 1 0O 1 0
A= 0 o0 and B = ﬂ' 2 H.I'Id C= 1 l]
0 0 ] 0 0

20 For which right sides (find a condition on b, ba, b3) are these systems solvable?

TR - e

21 Adding row | of A to row 2 produces B. Adding column | to column 2 produces
C. A combination of the columns of is also a combination of the columns
of A. Which two matrices have the same column 7

a1 2 4 gzl 2 4« a1 3
=2 4] ™ =|a ] =2 gl

22  For which vectors (by, by, b3) do these systems have a solution?

1 1 1 x| by 1 1 x) by
0 1 1 xal|l=|b and 11 n|l=|h
g 0 1 x i 0 0 xa by

|
0
u -
1 1 1] [x by
and o o0 1 xl=|m|.
0 0 ]
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25

26
27

28

29
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{Recommended) If we add an extra column b to a matrix A, then the column
space gets larger unless . Give an example where the column space gets
larger and an example where it doesn't. Why is Ax = b solvable exactly when
the column space doesn't get larger—it is the same for A and [A b ]?

The columns of AB are combinations of the columns of A. This means: The
column space of AB is contained in (possibly equal to) the column space of A.
Give an example where the column spaces of A and AB are not equal.

Suppose Ax = b and Ay = b* are both solvable. Then Az = b+ b* is solvable.
What is z? This translates into: If b and b® are in the column space C(A), then
b+b" is in C(A).

If Aisany 5 by 5 invertible matrix, then its column space is . Why?

True or false (with a counterexample if false):

(a) The vectors b that are not in the column space C(A) form a subspace.
{(b) If C(A) contains only the zero vector, then A is the zero matrix.

(¢} The column space of 2A equals the column space of A.

(d) The column space of A — [ equals the column space of A.

Construct a 3 by 3 matrix whose column space contains (1, 1,0) and (1,0, 1) but
not (1,1, 1). Construct a 3 by 3 matrix whose column space is only a line.

If the 9 by 12 system Ax = b is solvable for every b, then C(A) =
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THE NULLSPACE OF A: SOLVING AX =0 u 3.2

This section is about the space of solutions to Ax = 0. The matrix A can be square or
rectangular, One immediate solution is x = 0. For invertible matrices this is the only
solution. For other matrices, not invertible, there are nonzero solutions to Ax = (.
Each solution x belongs 1o the nullspace of A.

Elimination will find all solutions and identify this very important subspace.

DEFINITION The nullspace of A consists of all solutions to Ax = 0. These solu-
tion vectors x are in R". The nullspace containing all solutions is denoted by N(A).

Check that the solution vectors form a subspace. Suppose x and y are in the nullspace
(this means Ax =0 and Ay = 0). The rules of matrix multiplication give A(x + y) =
0+ 0. The rules also give A(cx) = 0. The right sides are still zero. Therefore x + ¥
and cx are also in the nullspace N(A). Since we can add and multiply without leaving
the nullspace, 1t 15 a subspace.

To repeat: The solution vectors x have n components. They are vectors in R”,
so the nullspace is a subspace of R". The column space C(A) is a subspace of R™.

If the right side b is not zero, the solutions of Ax = b do nor form a subspace.
The vector x = 0 is only a solution if # = 0. When the set of solutions does not
include x = 0, it cannot be a subspace. Section 3.4 will show how the solutions to
Ax = b (if there are any solutions) are shifted away from the origin by one particular
solution.

Example 1 The equation x + 2y + 3z = 0 comes from the 1 by 3 matrix A =
[1 2 3]. This equation produces a plane through the origin. The plane is a subspace
of RY. It is the nullspace of A.

The solutions to x + 2y + 3z = 6 also form a plane, but not a subspace.

Example 2 Describe the nullspace of A = [; z]

Solution Apply elimination to the linear equations Ax = 0:

X3+ 2x2=0 . 1+ 2vs=0
3x; +6x; =0 0=0
There is really only one equation. The second equation is the first equation multiplied

by 3. In the row picture, the line x; 4+ 2x2 = 0 is the same as the line 3x; 4+ 6x2 =0,
That line is the nullspace N(A).

To describe this line of solutions, here is an efficient way. Choose one point on
the line (one “special solution™). Then all points on the line are multiples of this one,
We choose the second component to be x2 = | (a special choice). From the equation
x| + 2x2 = 0, the first component must be x; = —2. The special solution is (=2, 1):

-’
The nullspace N(A) contains all multiples of 5 = [ ;] .
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This is the best way to describe the nullspace, by computing special solutions to Ax = 0.
The nullspace consists of all combinations of those special solutions. This example
has one special solution and the nullspace is a line.

The plane x 4+ 2y + 3z = 0 in Example 1 had mvo special solutions:

x -2 -3
[1 2 3]| ¥y | =0 has the special solutionss; = | 1| andss=| 0
Z 0 1

Those vectors s| and s2 lie on the plane x + 2y + 3z = 0, which is the nullspace of
A=[1 2 3] All vectors on the plane are combinations of s; and s.

Notice what is special about s; and s2. They have ones and zeros in the last
two components. Those components are “free” and we choose them specially. Then
the first components —2 and —3 are determined by the equation Ax = 0.

The first column of A = [1 2 3] contains the pivor, so the first component
of x is nor free. The free components correspond to columns without pivots, This
description of special solutions will be completed after one more example.

The special choice (one or zero) is only for the free variables,

Example 3  Describe the nullspaces of these three matrices A, B, C:

1 2
12 Al |3 s L 32 4
‘4'[3 5] B‘[za]‘ i g | e=[A 1,4]=[3 8 6 Iﬁ]
6

6

Solution The equation Ax = 0 has only the zero solution x = 0. The nullspace is
Z. It contains only the single point x =0 in R®. This comes from elimination:

1 21| x 0 : 1 21| x 0 =20
5 s)[a]=[o] e o Z][a]=[o] = [22 5]

A is invertible. There are no special solutions. All columns have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in
Bx = 0 again require x = 0. The last two equations would also force x = 0. When
we add extra equations, the nullspace certainly cannot become larger. The extra rows
impose more conditions on the vectors x in the nullspace.

The rectangular matrix C is different. It has extra columns instead of extra rows.

The solution vector x has four components. Elimination will produce pivots in the first
two columns of C, but the last two columns are “free”. They don't have pivots:

1 2 2 4 1 2 3 4
C‘[a 8 6 |ﬁ}"mm""5”_[ﬂ 20 4]

tt t 1
pivot columns  free columns

For the free variables x3 and xs, we make special choices of ones and zeros. First
x3 =1, x4 = 0 and second x3 = 0, x4y = 1. The pivot variables x; and x» are
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determined by the equation Ux = 0. We get two special solutions in the nullspace of
C (and also the nullspace of U). The special solutions are:

—2 0] <« pivot
d -2 «—  variables
1= | and s = 0 «— free

0 1 «—  variables

One more comment to anticipate what is coming soon. Elimination will not stop
at the upper triangular /! We can continue to make this matrix simpler, in two ways:

1.  Produce zeros above the pivots, by eliminating upward.

2.  Produce ones in the pivots. by dividing the whole row by its pivol.

Those steps don’t change the zero vector on the right side of the equation. The
nullspace stays the same. This nullspace becomes easiest to see when we reach the
reduced row echelon form R. It has [ in the pivot columns:

| 2 2 & 1 0 20
”‘[n 20 4] beeomes "—[ﬂ 10 1]'
™1

pivot columns contain /

1 subtracted row 2 of U from row 1, and then multiplied row 2 by % The original
two equations have simplified to x; +2x; =0 and x; + 2xy = 0.

The first special solution is still sy = (=2,0, 1,0), and 52 is unchanged. Special
solutions are much easier to find from the reduced system Rx = 0.

Before moving to m by n matrices A and their nullspaces N(A) and special so-
lutions, allow me to repeat one comment. For many matrices, the only solution to
Ax =0 is x = 0. Their nullspaces N(A) = Z contain only that one vector. The only
combination of the columns that produces b = 0 is then the “zero combination™ or
“trivial combination”, The solution is trivial (just x = 0) but the idea is not trivial.

This case of a zero nullspace Z is of the greatest importance. It says that the
columns of A are independent. No combination of columns gives the zero vector (ex-
cept the zero combination). All columns have pivots and no columns are free. You will
see this idea of independence again ...

Solving Ax = 0 by Elimination

This is important. A is rectangular and we still use elimination. We solve m equations
in n unknowns when b = 0. After A is simplified by row operations, we read off the
solution (or solutions). Remember the two stages in solving Ax = 0.
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1. Forward elimination from A to a triangular U (or its reduced form R).
2.  Back substitution in Ux =0 or Rx =0 to find x.

You will notice a difference in back substitution, when A and U have fewer than
n pivots. We are allowing all matrices in this chapter, not just the nice ones (which
are square matrices with inverses).

Pivots are still nonzero. The columns below the pivots are still zero. But it might
happen that a column has no pivot. In that case, don't stop the calculation. Ge on to
the next column. The first example is a 3 by 4 matrix with two pivots:

11 2 3
3 3 10 13

Certainly aj; = 1 is the first pivot. Clear out the 2 and 3 below that pivot:

A —s

=R =T

]
0
0

o k2

3
4 (subtract 2 x row 1)
4 (subtract 3 x row 1)

The second column has a zero in the pivot position. We look below the zero for a
nonzero entry, ready to do a row exchange. The entry below that position is also zero.
Elimination can do nothing with the second column. This signals trouble, which we
expect anyway for a rectangular matrix. There is no reason to quit, and we go on to
the third column.

The second pivot is 4 (but it is in the third column). Subtracting row 2 from
row 3 clears out that column below the pivot. We arrive at

2 3 (only two pivols)
4 4 (the last equation
0 0 became 0 = ()

Triangular U : [/ =

o0 -
0 O

The fourth column also has a zero in the pivot position—but nothing can be done.
There is no row below it to exchange, and forward elimination is complete. The matrix
has three rows, four columns, and enly mwe pivors. The original Ax = 0 seemed to
involve three different equations, but the third equation is the sum of the first two. It is
automatically satisfied (0 = 0) when the first two equations are satisfied. Elimination
reveals the inner truth about a system of equations. Soon we push on from U/ to R.

Now comes back substitution, to find all solutions to Ux = 0. With four un-
knowns and only two pivots, there are many solutions. The question is how to write
them all down. A good method is to separate the pivoet variables from the free vari-
ables.

P The pivet variables are x; and x3. since columns | and 3 contain pivots.
F The free variables are x; and x4, because columns 2 and 4 have no pivots.
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The free variables x> and x4 can be given any values whatsoever. Then back substitu-
tion finds the pivot variables x; and x3. (In Chapter 2 no variables were free. When A
15 invertible, all variables are pivot variables.) The simplest choices for the free vari-
ables are ones and zeros. Those choices give the special solurions.

Special Solutions 10 x) 4+ x5 + 2x3+3xg =0 and 4x3 4+ 4x4 =0
» Set xa =1 and x4 = 0. By back substitution x3 = 0. Then x| = —1.
. Set x; =0 and x4y = 1. By back substitution x3 = —1. Then x; = —1.

These special solutions solve Ux = 0 and therefore Ax = 0. They are in the nullspace.
The good thing is that every solution is a combination of the special solutions.

| | —X3 — X3
Complete Solution x = ; o V|
Spicle yolufion X = 13 0 + X4 1 — 2% ' )
0 1 X4
special special complete

Please look again at that answer. It is the main goal of this section. The vector 5, =
{(—=1.1.0,0) 1s the special solution when x2 = | and x5 = 0. The second special
solution has xs = 0 and xa = 1. All selutions are linear combinations of s, and
83. The special solutions are in the nullspace N(A), and their combinations fill out the
whole nullspace.

The MATLAB code nullbasis computes these special solutions. They go into the
columns of a nullspace matrix N. The complete solution to Ax = 0 is a combination
of those columns. Once we have the special solutions, we have the whole nullspace.

There is a special solution for each free variable. If no variables are free—this
means there are n pivots—then the only solution to Ux =0 and Ax = 0 is the trivial
solution ¥ = 0. All variables are pivot variables. In that case the nullspaces of A and
[/ contain only the zero vector. With no free variables, and pivots in every column,
the output from nullbasis is an empty matrix.

Example 4  Find the nullspace of U = [I} 3 ; .
The second column of U has no pivot. So xz is free. The special solution has x; = 1.
Back substitution imto 9x3 = 0 gives x3 = 0. Then x; + 5x2 = 0 or x; = =5. The
solutions to Ux = 0 are multiples of one special solution:
e The nullspace of U/ is a line in R,
x=ux 1 It contains multiples of the special solution.

0 One variable is free, and N = nullbasis ({/) has one column,
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In a minute we will continue elimination on U, to get zeros above the pivots and ones
in the pivots. The 7 is eliminated and the pivot changes from 9 to 1. The final result
of this elimination will be the reduced row echelon matrix R:

1 5 7 1 5 0
U:[n 0 9] reducest:l:ﬂ 0 ]]

This makes it even clearer that the special solution (column of N) is s = (=5, 1,0).

Echelon Matrices

Forward elimination goes from A to UU. The process starts with an m by n matrix A. It
acts by row operations, including row exchanges. It goes on to the next column when
no pivot is available in the current column. The m by n “staircase,” U is an echelon
matrix.

Here is a 4 by 7 echelon matrix with the three pivots highlighted in boldface:

X X gl R R - L\ . . .
Three pivot variables x;. 13, ¥4
D » x x * x x ;
U= Four free variables x3, x4, x5, x7
USRIV N 2 Four special 5::-Iulinn;. in "u'iUI
H L ]
0000000 i

Question What are the column space and the nullspace for this matrix?

Answer The columns have four components so they lie in R*. (Not in R*!) The fourth
component of every column is zero. Every combination of the columns—every vector
in the column space—has fourth component zero. The column space C(U) consists of
all vectors of the form (by, ba, b3, 0). For those vectors we can solve Ux = b by back
substitution. These vectors b are all possible combinations of the seven columns.

The nullspace N(U) is a subspace of R”. The solutions to Ux = 0 are all the
combinations of the four special solutions —one for each free variable:

I.  Columns 3.4.5, 7 have no pivots. So the free variables are x3, x4, x5, x7.
2.  Set one free variable to 1 and set the other free variables to zero.

3. Solve Ux = 0 for the pivot variables xi, x2, x4.

4.  This gives one of the four special solutions in the nullspace matrix N.

The nonzero rows of an echelon matrix go down in a staircase pattern. The pivots
are the first nonzero entries in those rows. There is a column of zeros below every
pivot.

Counting the pivots leads to an extremely important theorem. Suppose A has
more columns than rows. With n = m there is at least one free variable. The system
Ax =0 has at least one special solution. This solution is nor zero!
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3B If Ax = 0 has more unknowns than equations (n > m, more columns than rows),
then it has nonzero solutions. There must be free columns, without pivots.

In other words, a short wide matrix (n > m) always has nonzero vectors in its nullspace.
There must be at least n—m free variables, since the number of pivots cannot exceed m.
(The matrix only has m rows, and a row never has two pivots.) Of course a row might
have no pivot—which means an extra free variable. But here is the point: When there
is a free variable, it can be set to 1. Then the equation Ax = 0 has a nonzero solution.

To repeat: There are at most m pivots. With n > m, the system Ax = 0 has a
nonzero solution. Actually there are infinitely many solutions, since any multiple cx
is also a solution. The nullspace contains at least a line of solutions. With two free
variables, there are two special solutions and the nullspace is even larger.

The nullspace is a subspace. lts “dimension” is the number of free variables. This
central idea— the dimension of a subspace —is defined and explained in this chapter.

The Reduced Row Echelon Matrix R

>From an echelon matrix U/ we can go one more step. Continue with our example

11 2 3
U=|0 0 4 4
0000

We can divide the second row by 4. Then both pivots equal 1. We can subtract 2 times
this new row [ﬂ 011 Iﬁom the row above, The reduced row echelon matrix R has
zeros above the pivots as well as below:

T ¥ 0
ER=10 0 1 1
00 0 0

R has 1's as pivots. Zeros above pivots come from upward elimination.

If A is invertible, its reduced row echelon form is the identity matrix R = 1. This
is the ultimate in row reduction. Of course the nullspace is then Z.

The zeros in R make it easy to find the special solutions (the same as before):
1. Setx:=1 and x4 =0. Solve Rx =0. Then xy = —1 and x3 =0.

Those numbers —1 and 0 are sitting in column 2 of R (with plus signs).

2. Setx;=0and xy=1. Solve Rx =0. Then x; = -1 and x; = —1.

Those numbers —1 and —1 are sitting in column 4 (with plus signs).
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By reversing signs we can read off the special solutions directly from R. The nullspace
N(A) = N(U) = N(R) contains all combinations of the special solutions:
—1 —1

I
' B

0 1

X=1x = (complete solution of Ax =0).

The next section of the book moves firmly from U to R. The MATLAB command
[ R, pivcol ]| = rref(A) produces R and also a list of the pivot columns.

= REVIEW OF THE KEY IDEAS =

1.  The nullspace N(A), a subspace of R", contains all solutions to Ax = 0.

2.  Elimination produces an echelon matrix U/, and then a row reduced R. with pivot
columns and free columns.

3.  Every free column of U/ or R leads to a special solution. The free variable equals
| and the other free variables equal 0. Back substitution solves Ax = 0.

4. The complete solution to Ax = 0 is a combination of the special solutions.

5. If n > m then A has at least one column without pivots, giving a special solution.
So there are nonzero vectors x in the nullspace of this rectangular A.

" WORKED EXAMPLES =

32 A Create a 3 by 4 matrix whose special solutions to Ax = 0 are 5 and s;:

—3 -2
1 0 pivot columns 1 and 3
- 0 ind. 7=\ free variables x> and iy
0 |

You could create the matrix A in row reduced form R. Then describe all possible
matrices A with the required nullspace N(A) = all combinations of &; and s».

Solution The reduced matrix R has pivots = 1 in columns 1 and 3. There is no
third pivot, so the third row of R is all zeros. The free columns 2 and 4 will be
combinations of the pivot columns:

1 3 0 2
R=] 0 0 1 6 has Rs; =0 and Rs;=0.
0 0 0 0

The entries 3, 2, 6 are the negatives of —3, —2, —6 in the special solutions!
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R is only one matrix (one possible A) with the required nullspace. We could
do any elementary operations on R —exchange rows, multiply a row by any ¢ # 0,
subtract any multiple of one row from another. R can be multiplied by any invertible
matrix, without changing the row space and nullspace.

Every 3 by 4 matrix has at least one special solution. These A's have two.

32 B Find the special solutions and describe the complete solution to Ax =0 for

A| = 3 by 4 zero matrix Az = [ f g ] Az=[ Az Az ]

Which are the pivot columns? Which are the free variables? What is R in each case?

Solution  Ajx = 0 has four special solutions. They are the columns s, 52, 83, 54 of
the 4 by 4 identity matrix. The nullspace is all of R*. The complete solution is any
X = 18] + 251 + 383 + casg in RY. There are no pivot columns; all vanables are
free; the reduced R is the same zero matrix as Aj.

Azx = 0 has only one special solution s = (=2, 1). The multiples x = ¢s give
the complete solution. The first column of A is its pivot column, and x> is the free
variable. The row reduced matrices K> for A> and Ry for Az =[A> A>] have 1's 1In

the pivot:
1 2 1 2 1 2
Rz:[u u] R]=[IJDIJ[I}

Notice that R3 has only one pivot column (the first column). All the variables
X3, 13, x4 are free. There are three special solutions to Asx = 0 (and also Rix = 0):

-2 ~1
51 = I = ﬂ
Gl 11 Il (K

0 0

i

Complete solution x = c5| + 253 + 383,

2
T
ll

0
I

With r pivots, A has n — r free variables and Ax =0 has n — r special solutions.

Problem Set 3.2

Questions 14 and 5-8 are about the matrices in Problems 1 and 5.

1 Reduce these matrices to their ordinary echelon forms U:

1 2 2 46 2 4 2
@ A=]|1 23 6 9 b B=|0 4 4
001 23 0 8 8

Which are the free vanables and which are the pivot variables?
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For the matrices in Problem 1, find a special solution for each free variable. (Set
the free varnable to 1. Set the other free variables to zero.)

By combining the special solutions in Problem 2, describe every solution to Ax =
0 and Bx = 0. The nullspace contains only x = 0 when there are no

By further row operations on each U in Problem 1, find the reduced echelon
form R. True or false: The nullspace of R equals the nullspace of U.

By row operations reduce each matrix to its echelon form U. Write down a 2
by 2 lower triangular L such that B = LU.

1 3 5 -1 3 S
o ,4=[_2 6 m} ® Bz[-z 6 ?]'

Find the special solutions to Ax = 0 and Bx = 0. For an m by n matrix, the
number of pivot variables plus the number of free variables is

In Problem 5. describe the nullspaces of A and B in two ways. Give the equa-
tions for the plane or the line, and give all vectors x that satisfy those equations
as combinations of the special solutions.

Reduce the echelon forms UV in Problem 5 to R. For each R draw a box around
the identity matrix that is in the pivot rows and pivot columns.

Questions 9-17 are about free variables and pivot variables,

9

10

1

True or false (with reason if true or example to show it is false):

(a) A square matrix has no free variables.

(b)  An invertible matrix has no free variables.

(c) An m by n matrix has no more than n pivot variables.
(d) An m by n matrix has no more than m pivot variables.

Construct 3 by 3 matrices A to satisfy these requirements (if possible):

(a) A has no zero entries but IJ = [.

(b} A has no zero entries but R = [.

{c) A has no zero entries but & = U/,

(d) A=U=2R.

Put as many 1's as possible in a 4 by 7 echelon matrix [/ whose pivot variables
are

fa) 2,4, 5

() 1,3,6,7

{(c) 4 and 6.
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12

13

14

15

16

17

18

19

20

Put as many 1's as possible in a 4 by 8 reduced echelon matrix R so that the
free variables are

{a) 2,4, 5 6
(b} 1.3.6.7. 8

Suppose column 4 of a 3 by 5 matrix is all zero. Then x4 is certainly a
variable. The special solution for this variable is the vector x =

Suppose the first and last columns of a 3 by 5 matrix are the same (not zero).
Then is a free variable. Find the special solution for this variable.

Suppose an m by n matrix has r pivots. The number of special solutions is
The nullspace contains only x = 0 when r = . The column space is all of
R"™ when r =

The nullspace of a 5 by 5 matrix contains only x = ) when the matrix has
pivots. The column space is R® when there are pivots. Explain why.

this equation? Which are the free variables? The special solutions are (3, 1,0)

and

The equation x — 3y — z = 0 determines a plane in R®. What is the matrix A in

(Recommended) The plane x —3v —z = 12 is parallel to the plane x —3y—z =
in Problem 17. One particular point on this plane is (12,0, 0). All points on the
plane have the form (fill in the first components)

0 0 |

Fa e e

Prove that IV and A = LU have the same nullspace when L is invertible:

If Ux =0 then LUx=0. If LUx =0, how do you know Ux =07

Suppose column | + column 3 + column 5 = 0 in a 4 by 5 matrix with four
pivots. Which column is sure to have no pivot (and which variable is free)? What
is the special solution? What is the nullspace?

Questions 21-28 ask for matrices (if possible) with specific properties.

21

22
23

Construct a matrix whose nullspace consists of all combinations of (2,2, 1,0)
and (3,1,0,1).

Construct a matrix whose nullspace consists of all multiples of (4, 3, 2, 1).

Construct a matrix whose column space contains (1, 1, 5) and (0, 3. 1) and whose
nullspace contains (1, 1, 2).



24

25

26

27
28

29

30

3

32

33

34
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Construct a matrix whose column space contains (1. 1,0) and (0, 1, 1) and whose
nullspace contains (1,0, 1) and (0,0, 1).

Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is
the line of multiples of (1, 1, 1, 1).

Construct a 2 by 2 matrix whose nullspace equals its column space. This is pos-
sible.

Why does no 3 by 3 matrix have a nullspace that equals its column space?

If AB = 0 then the column space of B is contained in the of A. Give
an example of A and B.

The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost
sure to be . What R is virtually certain if the random A is 4 by 37

Show by example that these three statements are generally false:

(a) A and AT have the same nullspace.
(b) A and AT have the same free variables.
(c) If R is the reduced form rref(A) then RT is rref(A”).

If the nullspace of A consists of all multiples of x = (2, 1,0, 1), how many pivots
appear in UU? What is R7

If the special solutions to Rx = 0 are in the columns of these N, go backward
to find the nonzero rows of the reduced matrices R:

2 3 0
N=|1 10 and N=1|0 and N = (empty 3 by 1).
0 1 1

(a) What are the five 2 by 2 reduced echelon matrices R whose entries are all
0’s and 1's?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1's? Are all
eight of them reduced echelon matrices R?

Explain why A and —A always have the same reduced echelon form R.
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THE RANK AND THE ROW REDUCED FORM = 3.3

This section completes the step from A to its reduced row echelon form R. The matrix
A 18 m by n (completely general). The matrix R is also m by n, but each pivot column
has only one nonzero entry (the pivot which is always 1). This example is 3 by 5:

I 3 0 2 -1
Reduced Row Echelon Form £ = |0 0 1 4 -3
0 0 0 0 i)

You see zero above the second pivot as well as below. R is the final result of elimi-
nation, and MATLAB uses the command rref. The Teaching Code elim for this book
has rref built into it. Of course rref(R) would give R again!

MATLAB: [ R, pivcol | = rref(A) Teaching Code: [E,R]= elim(A)

The extra output pivcel gives the numbers of the pivot columns. They are the same in
A and R. The extra output E is the m by m elimination matrix that puts the original
A (whatever it was) into its row reduced form R:

EA=R. (1)

The square matrix E is the product of elementary matrices E;; and P;; and D~!. Now
we allow j = i, when E;; subtracts a multiple of row j from row i. P;; exchanges
these rows. D! divides rows by their pivots to produce 1's.

If we want E, we can apply row reduction to the matrix [A /] with n + m
columns. All the elementary matrices that multiply A (to produce R) will also multiply
I (to produce E). The whole augmented matrix is being multiplied by E:

Ela T) = [R E] (2)

This is exactly what “Gauss-Jordan” did in Chapter 2 to compute A~!. When A is
square and invertible, its reduced row echelon form is R = I. Then EA = R becomes
EA = 1. In this invertible case., E is A~'. This chapter is going further, to any
(rectangular) matrix A and its reduced form R. The matrix E that multiplies A 15 still
square and invertible, but the best it can do is to produce R. The pivot columns are
reduced to ones and zeros.

The Rank of a Matrix

The numbers m and n give the size of a matrix—but not necessarily the frue size of
a linear system. An equation like 0 = 0 should not count. If there are two identical
rows in A, the second one disappears in R. Also if row 3 is a combination of rows |
and 2, then row 3 will become all zeros in R. We don’t want to count rows of zeros.
The true size of A is given by its rank:
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DEFINITION The rank of A is the number of pivots. This number is r.

The matrix R at the start of this section has rank r = 2. It has two pivots and
two pivot columns. So does the unknown matrix A that produced R. This number
r =2 will be crucial to the theory, but its first definition is entirely computational. To
execute the command r = rank (A), the computer just counts the pivots. When piveol
gives a list of the pivot columns, the length of that list is r.

Actually the computer has a hard time to decide whether a small number is really
zero. When it subtracts 3 times { from 1, does it obtain zero? Our Teaching Codes
treat numbers below the tolerance 10~° as zero.

We know right away that r < m and v < n. The number of pivots can’t be
greater than the number of rows. It can’t be greater than the number of columns. The
cases r = m and r = n of “full row rank” and “full column rank™ will be especially
important. We mention them here and come back to them soon:

. A has full row rank if every row has a pivot: r = m. No zero rows in R.

. A has full column rank if every column has a pivot: r = n. No free variables.

A square invertible matrix has r = m =n. Then R is the same as /.

At the other extreme are the matrices of rank ene. There is only one pivor. When
elimination clears out the first column, it clears out all the columns. Every row is a
multiple of the pivot row. At the same time, every column is a multiple of the pivot
column!

1 3 10 1 3 10
Rank one matrix A=|2 6 20 — R=(0 0 0
3 9 30 0 0 0O

The column space of a rank one matrix is “one-dimensional”, Here all columns are on
the line through u = (1,2, 3). The columns of A are & and 3w and 10u. Put those
numbers into the row »' = [ 1 3 10 ] and you have the special rank one form
A=uv':

1 3 10 1701 3 10]
A = column times row = uv' 2.6 20 =] 2 i 13
3 9 30 3

Example 1 When all rows are multiples of one pivot row, the rank is r = 1:

1 3 4 0 3 3
[2 6 R} and |i” 5] and [2:| and [{s] all have rank 1.

The reduced row echelon forms R = rref (4) can be checked by eye:

3
R= [[Il [] :] and [E é] and [ll):| and [ I]h:m: only one pivot.

Our second definition of rank is coming at a higher level. It deals with entire
rows and entire columns—vectors and not just numbers. The matrices A and U and R
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have r independent rows (the pivot rows). They also have r independent columns (the
pivot columns). Section 3.5 says what it means for rows or columns to be independent.

A third definition of rank, at the top level of linear algebra, will deal with spaces
of vectors. The rank r is the “dimension™ of the column space. [t is also the dimension
of the row space. The great thing is that r also reveals the dimension of the nullspace.

The Pivot Columns

The pivot columns of R have 1's in the pivots and 0's everywhere else. The r pivot
columns taken together contain an r by r identity matrix /. It sits above m —r rows
of zeros. The numbers of the pivot columns are in the list pivcol.

The pivot columns of A are probably nor obvious from A itself. But their column
numbers are given by the same list pivcol. The r columns of A that eventually have
pivots (in U/ and R) are the pivot columns. The first matrix R in this section is the
row reduced echelon form of this matrix A, with piveel = (1, 3):

Pivot 1302 -] 1 3 0 2 -1
Cobusms =|0 01 4 —3| yieldsR=|® 0 1 4 —3
1 316 —4 0 0 0 0 0

The column spaces of R and A can be different! All columns of this R end with
zeros. E subtracts rows | and 2 of A from row 3 (to produce that zero row in R):

1 0 0 1 0 0
E=|0 10 and E'=[0 1 0
-1 -1 1 -

The r pivot columns of A are also the first r columns of E~'. The reason is
that each column of A is £~ times a column of R. The r by r identity matrix inside
R just picks out the first r columns of E~'.

One more fact about pivot columns. Their definition has been purely computa-
tional, based on R. Here is a direct mathematical description of the pivot columns of A:

3C The pivot columns are not combinations of earlier columns. The free columns
are combinations of earlier columns. These combinations are the special solutions!

A pivot column of R (with | in the pivot row) cannot be a combination of ear-
lier columns (with 0°s in that row). The same column of A can't be a combination of
earlier columns, because Ax = 0 exactly when Rx = 0. Now we look at the special
solution ¥ from each free column.
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The Special Solutions

Each special solution to Ax = 0 and Rx = 0 has one free variable equal to 1. The
other free variables are all zero. The solutions come directly from the echelon form R:

X
F columns 1 3 0 2 =1 X7 0
Free variabiles Fr=10 0 1 4 -3 X3 = | 0
00 0 0 0fxs 0
X5
The free variables are in boldface. Set the first free variable to x2 = | with x4 = x5 =

0. The equations give the pivot variables x| = —3 and x; = 0. This says that column 2
(a free column) is 3 times column 1. The special solution is s, = (=3, 1,0, 0, 0).

The next special solution has x4 = 1. The other free variables are x> = x5 = 0.
The solution is 55 = (—2,0, —4, 1,0). Notice —2 and —4 in R, with plus signs. ‘

The third special solution has x5 = 1. With x2 =0 and x4 = 0 we find 53 =
(1,0,3,0,1). The numbers x; = 1 and x3 = 3 are in column 5 of R, again with oppo-
site signs. This is a general rule as we soon verify. The nullspace matrix N contains
the three special solutions in its columns:

-3 -2 1| not free
1 0 0| free

Nullspace matrix N=| 0 —4 3| not free
0 I 0| free
0 0 1] free

The linear combinations of these three columns give all vectors in the nullspace. This
1s the complete solution to Ax = 0 (and Rx = 0). Where R had the identity matrix
(2 by 2) in its pivot columns, N has the identity matrix (3 by 3) in its free rows.

There is a special solution for every free variable. Since r columns have pivots,
that leaves n — r free variables. This is the key to Ax = 0.

3D Ax =0 has n—r free variables and special solutions: n columns minus r pivol
columns. The nullspace matrix N has n — r columns (the special solutions).

When we introduce the idea of “independent” vectors, we will show that the spe-
cial solutions are independent. You can see in N that no column is a combination of
the other columns. The beautiful thing is that the count is exactly right:

Ax = 0 has r independent equations so n — r independent solutions.
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To complete this section, look again at the special solutions. Suppose for sim-
plicity that the first r columns are the pivot columns, and the last n — r columns are
free (no pivots). Then the reduced row echelon form looks like

R O r pivol rows
R_{ll II] m —r Zero rows @)

r pivot columns  n — r free columns
3E The pivot variables in the n — r special solutions come by changing F to —F:

(5}

Hullspm:g matrix N = ["f‘] . r pivol variables

r free variables

Check RN = 0. The first block row of RN is (f times —F)+ (F times [) =

zero. The columns of N solve Rx = 0. When the free part of Rx = 0 moves to the
right side, the left side just holds the identity matrix:

peot f . free
d ]:\-'ﬂ.riﬂblfh:| el [vuriahle_u:l' (6)

In each special solution, the free variables are a column of /. Then the pivot variables
are a column of —F. Those special solutions give the nullspace matrix N.

The idea is still true if the pivot columns are mixed in with the free columns.
Then I and F are mixed together. You can still see —F in the solutions. Here is an
example where / = [1] comes first and F =[2 3] comes last.

Example 2  The special solutions of Rx = xj + 2x2+3x3 = 0 are the columns of N:

—2 -3
R=[1 2 3] N=| £
0 1

The rank is one. There are n — r = 3 — | special solutions (—2,1,0) and (=3,0, 1).
Final Note  How can | write confidently about R when I don’t know which steps MAT-
LAB will take? A could be reduced to R in different ways. Very likely you and Math-
ematica and Maple would do the elimination differently. The key point is that the final
matrix R is always the same. The original A completely determines the I and F and
zero rows in R, according o 3C;

The pivot columns are not combinations of earlier columns of A.

The free columns are combinations of earlier columns (F tells the combinations).
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A small example with rank one will show two E's that produce the
correct EA = R:

2 2 1 1
A—[] l] reduces to R_[(} ﬂ:l and no other R.

You could multiply row | of A by 12 and subtract row | from row 2:
1 0)]1/2 O _ UE{J_E
-1 1o 1| =12 1]
Or you could exchange rows in A, and then subtract 2 times row | from row 2:

L3000 8]=[8 3]~

Multiplication gives EA = R and also E.wA = R. Different E’s but the same K.

= REVIEW OF THE KEY IDEAS =

1.  The rank of A is the number of pivots (which are 1's in R).
The r pivot columns of A and R are in the same list pivcol.
Those r pivot columns are not combinations of earlier columns.

The n — r free columns are combinations of earlier columns.

L B

Those combinations (using —F taken from R) give the n —r special solutions to
Ax =0 and Rx = 0. They are the n — r columns of the nullspace matrix N.

" WORKED EXAMPLES =

3.3 A Factor these rank one matrices into A = uv! = row times column:
1 2 3 b
A= 2 4 6 A:[ﬂ d} (find d from a=', b,c)
36 9 5

Split this rank two matrix into & v] + wav] = (3 by 2) times (2 by 4) using E~!

and R:
i 10 2 1 1 0 1 0 0 1
A=|1 2 03 |=]|120 01 01 |=E'R
5 305 2 3 1 00 0 0
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Solution  For the 3 by 3 matrix A, all rows are multiples of 7 = [1 2 3]. All
columns are multiples of the column u = (1, 2, 3). This symmetric matrix has u = v
and A is uu'. Every rank one symmetric matrix will have this form or else —uu’.

If the 2 by 2 matrix [* 2] has rank one, it must be singular. In Chapter 5, its
determinant is ad —bc = (0. In this chapter, row 2 is a multiple of row 1. That multiple
is £ (the problem assumes a # 0). Rank one always produces column times row:

a b | _ 1 [a ] | a b _ be
[c d]_[rf‘a] _[r bffﬂ:l' % d_:f'

The 3 by 4 matrix of rank two is a sum of rvo marrices of rank one. All columns
of A are combinations of the pivot columns 1 and 2. All rows are combinations of the
nonzero rows of R. The pivot columns are u; and u: and those nonzero rows are u}"
and u:I_,'. Then A is Hll.!.{ + u;u{. multiplying columns of E~! times rows of R:

0 2 | [1 0 0 1] l [0 1 0 1]
0D 3 = 1 + 2
0D 5 2 3

fed b =

B

33 B Find the row reduced form R and the rank r of A (those depend on ¢). Which
are the pivot columns of A? Which variables are free? What are the special solutions

and the nullspace matrix N (always depending on c¢)?
1 2 1 -
A=|3 6 3 | and .4:[‘ :]
4 B ¢

c

Solution The 3 by 3 matrix A has rank r = 2 except if ¢ = 4. The pivots are in
columns | and 3. The second variable x> is free. Notice the form of R:

1 20 E 2 ]
c#4 R=|0 0 1 c=4 R=|0 0 0
0 00 000

When ¢ = 4, the only pivot is in column | (one pivot column). Columns 2 and 3
are multiples of column 1 (so rank = 1). The second and third variables are free,
producing two special solutions:

-2

¢ #4 Special solution with x; = | goes into N = |
0

-2 =1

¢ =4 Another special solution goes into N = ! 0
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The 2 by 2 matrix [§§] has rank r = | except if ¢ =0, when the rank is zero!

1 1 0 0
c#0 R=[{} {}} c=0 R=[ﬂ El]

The first column is the pivot column if ¢ # 0, and the second variable is free (one
special solution in N). The matrix has no piver columns if ¢ =0, and both variables

are free:
c#£0 N:[“:] c=0 N=[$?jl.

Problem Set 3.3

1 Which of these rules gives a correct definition of the rank of A?

{a) The number of nonzero rows in R.

{b) The number of columns minus the total number of rows.
ic) The number of columns minus the number of free columns.
{d) The number of 1's in the matnx R.

2 Find the reduced row echelon forms R and the rank of these matrices:

{a) The 3 by 4 matrix of all ones.
{b) The 3 by 4 matrix with a;; =i+ j — L.
(¢) The 3 by 4 matrix with a;; = (—1)/.

3 Find R for each of these (block) matrices:

a:[g g 2] B=[A A] c:{: ‘3]

2 406

4  Suppose all the pivot variables come [ast instead of first. Describe all four blocks
in the reduced echelon form (the block B should be r by r):

A B
x| 2.
What is the nullspace matrix N containing the special solutions?

5 (Silly problem) Describe all 2 by 3 matrices A; and Az, with row echelon forms
Ry and R», such that Ry + R> is the row echelon form of A; + As. Is is true
that Ry = A; and R; = A; in this case?
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6  If A has r pivot columns, how do you know that AT has r pivot columns? Give
a 3 by 3 example for which the column numbers are different.

7 What are the special solutions to Rx =0 and y'R = 0 for these R?

1 0 2 3 0 1 2
R=|0 1 4 5 R=|0 0 0
0 0 0 0 0 00
Problems 8-11 are about matrices of rank r = 1.
8  Fill out these matrices so that they have rank 1:

1 2 4 2 b
Ak 2 and B=|1 and M=[“, ]
4 2 6 -3

9 If Ais an m by n matrix with r = 1, its columns are multiples of one column
and its rows are multiples of one row. The column space is a in R™. The
nullspace is a  in R". Also the column space of Al is a in R",

T

10 Choose vectors  and v so that A = uv' = column times row:

3 6 6
A=[1 2 2| and A=[_f Bl _;].
48 8 :

T is the natural form for everv matrix that has rank r = 1.

A =uv
11 If A is a rank one matrix, the second row of U is . Do an example.
Problems 12-14 are about r by r invertible matrices inside A.

12 If A has rank r, then it has an r by r submatrix § that is invertible. Remove
m —r rows and n — r columns to find an invertible submatrix § inside each A
{you could keep the pivot rows and pivot columns of A):

o 1 0

1 2 3 1 2 3
r"n:[ ] A=[,’ } A=10 0 0
1 2 4 2 4 6 0 0 1

13 Suppose P is the submatrix of A containing only the pivot columns. Explain
why this m by r submatrix P has rank r.

14  In Problem 13, we can transpose P and find the r pivot columns of PT. Trans-
posing back, we have an r by r invertible submatrix S inside P:

For A = find P (3 by 2) and then § (2 by 2).

[
o fa B2
-] O L
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Problems 15-20 show that rank(AB) is not greater than rank(A) or rank(RB).

15 Find the ranks of AB and AM (rank one matrix times rank one matrix):
I 2 2 1 4 1 b
""[2 4] " B‘[a 1.5 6] o M‘[u bc-]'

16  The rank one matrix uv' times the rank one matrix wz! is uz! times the number
. This has rank one unless _=0.

17 (a) Suppose column j of B is a combination of previous columns of B. Show
that column j of A8 is the same combination of previous columns of AB.
Then rank(AB) < rank(B). because AB cannot have new pivot columns.

(b) Find Ay and A3 so that rank(A,B) = 1 and rank(A2B) =0 for B = H 1' 4

18 Problem 17 proved tha_t rank(AB) =< rank(B). Then the same reasoning gives
rank(BTAT) < rank(A"). How do you deduce that rank(AB) < rank 4?

19 (Important) Suppose A and B are n by n matrices, and AB = [. Prove from
rank(AB) < rank(A) that the rank of A is n. So A is invertible and B must be
its two-sided inverse (Section 2.5). Therefore BA = I (which is not so obvious!).

20 IfAis2by3and Bis 3 by 2 and AB = I, show from its rank that BA #£ [.
Give an example of A and B. For m < n, a right inverse is not a left inverse.

21  Suppose A and B have the same reduced row echelon form R.

(a) Show that A and B have the same nullspace and the same row space.
(b) Weknow EfA= R and E;B=R. So Aequals an  matrix times B.

22 Every m by n matrix of rank r reduces to (m by r) times (r by n):

A = (pivot columns of A) (first » rows of R) = (COL)(ROW)".

Write the 3 by 5 matrix A at the start of this section as the product of the 3 by
2 matrix from the pivot columns and the 2 by 5 matrix from R.

23 A= {CGLHRDW‘]T is a sum of r rank one matrices (multiply columns times
rows). Express A and B as the sum of two rank one matrices:

1 10
A=|[11 4 B=[A A].
11 8

24 Suppose A is an m by n matrix of rank r. Its reduced echelon form is R. De-
scribe exactly the matrix Z (its shape and all its entries) that comes from rrans-
posing the reduced row echelon form of R' (prime means transpose):

R= rref(A) and Z = (rref(R")).
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25 Instead of transposing R (Problem 24) we could transpose A first. Explain in
one line why ¥ = Z:

V= rref(A') and Y = rref(V').

26 Answer the same questions as in Worked Example 3.3 B for

I —¢ 2
and A__[ 0 Iuc:]'

Mg =
S ]
b e D

!
A= |2
|

27 What is the nullspace matrix N (containing the special solutions) for A, B, C?

I 1

A=[I 1] and B:[{} 0

] and C=[1 1 I].

THE COMPLETE SOLUTION TO AX =B = 34

The last section totally solved Ax = 0. Elimination converted the problem to Rx = 0.
The free variables were given special values (one and zero). Then the pivot variables
were found by back substitution. We paid no attention to the right side b because it
started and ended as zero. The solution x was in the nullspace of A.

Now b is not zero. Row operations on the left side must act also on the right
side. One way to organize that is to add b as an extra column of the matrix. We keep
the same example A as before. But we “augment” A with the right side (by, b3, b3) =
(1.6, 7)

X

1 30 2 17 has the 1 30 21
00 1 4f[|™|=|6| augmented [0 0 1 4 6[=[A b].
|3lﬁf‘ 7| matrix 1 31 6 7

4

The augmented matrix is just [ A b]. When we apply the usual elimination steps to
A, we also apply them to b. In this example we subtract row | from row 3 and then
subtract row 2 from row 3. This produces a complete row of zeros:

13[12? 17 has the 55 ]
001 4|[|™[=|6] augmented [0 0 1 4 6|=[R d].
»:}{:ul:ll:];il 0| matrix 0000 0

4

That very last zero is crucial. It means that the equations can be solved; the third
equation has become 0 = 0. In the original matrix A, the first row plus the second
row equals the third row. If the equations are consistent, this must be true on the right
side of the equations also! The all-important property on the right side was 1+6 =17.
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Here are the same augmented matrices for a general b = (by, b2, b3 ):

1 30 2 M 1 3 0 2 b
001 4 bo|— |0 0 1 4 by
1 3 1 6 b; 00 0 0 bs—5b—b

Now we get 0 = 0 in the third equation provided bs—b;—bz = 0. This is by+b; = bs.

One Particular Solution

Choose the free variables to be x3 = x4 = (. Then the equations give the pivot vari-
ables x; = | and x3 = 6. They are in the last column d of the reduced augmented
matrix. The code x = partic (A, b) gives this particular solution (call it x,) to Ax = b.
First A and b reduce to R and d. Zero rows in R must also be zero in d. Then the r
pivot variables in x are taken directly from d, because the pivot columns in R contain
the identity matrix. After row reduction we are just solving /x =d.

Notice how we choose the free variables (as zero) and selfve for the pivot vari-
ables. After the row reduction to R, those steps are quick. When the free variables are
zero, the pivot variables for x, are in the extra column:

The particular solution solves Axp = b
The n — r special solutions solve Ax, =0,

In this example the particular solution is (1,0,6,0). The two special (nullspace) so-
lutions to Rx = 0 come from the two free columns of R, by reversing signs of 3, 2,
and 4. Please notice how I write the complete solution x, + x, to Ax = b:

1 -3 =2
0 1 0
0 0 1

Question  Suppose A is a square invertible matrix, m = n = r. What are x,
and x,7?

Answer  The particular solution is the one and only solution A~'b. There are
no special solutions or free variables. R = I has no zero rows. The only vector in the
nullspace is x, = 0. The complete solution is x = x, + x, = A~'b+0.

This was the situation in Chapter 2. We didn’t mention the nullspace in that chap-
ter. N(A) contained only the zero vector. Reduction goes from [A b]to [1 A™'b].
The original Ax = b is reduced all the way to x = A~'b. This is a special case here,
but square invertible matrices are the ones we see most often in practice. So they got
their own chapter at the start of the book.

For small examples we can put [A b] into reduced row echelon form. For a
large matrix, MATLAB can do it better. Here is a small example with full column rank.
Both columns have pivots.
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Example 1 Find the condition on (by, b2, b3) for Ax = b 10 be solvable, if

I 1 b,
A= 1 2| and b=|b
-2 -3 by

This condition puts b in the column space of A. Find the complete x = x, + x,,.
Solution Use the augmented matrix, with its extra column b. Elimination subtracts
row | from row 2, and adds 2 times row | to row 3:

| I b | 1 b 1 0 2b—b;
| 2 2| — |0 | k-HK —= |0 1 b—b
=2 =3 kK 0 =1 b+ 2b 0 0 bi+b+b

The last equation is 0 = 0 provided b3 + b + b = 0. This is the condition to put b
in the column space; then the system is solvable. The rows of A add to the zero row.
So for consistency (these are equations!) the entries of b must also add to zero.

This example has no free variables and no special solutions. The nullspace so-
lution is x, = 0. The (only) particular solution x, is at the top of the augmented

column:
X=Xxp,+x, = [2.':21 _-;:2] + {g] .

If by + by + b2 is not zero, there is no solution to Ax = b (x, doesn’t exist).

This example is typical of the extremely important case when A has full column
rank. Every column has a pivot. The rank is r = n. The matrix is tall and thin
(m = n). Row reduction puts / at the top, when A is reduced to R:

Full column rank R = |7 Y " Wentity matrix | _ {7} ()
m —n rows of zeros 0

There are no free columns or free variables. The nullspace matrix is empty!
We will collect together the different ways of recognizing this type of matrix.
3F Every matrix A with full column rank (r = n) has all these properties:
1. All columns of A are pivot columns.
2.,  There are no free variables or special solutions.
3. The nullspace N(A) contains only the zero vector x = 0.

4. If Ax = b has a solution (it might not) then it has only one solution.

In the language of the next section, this A has independent columns. In Chapter 4 we
will add one more fact to the list: The square matrix AVA is invertible,



34 The Complete Solution to Ax =6 147

In this case the nullspace of A (and R) has shrunk to the zero vector. The solu-
tion to Ax = b is unigue (if it exists). There will be m — n (here 3 — 2) zero rows in
R. So there are m — n (here |1 condition) conditions on b in order to have 0 = 0 in
those rows. If bs + by + b2 = 0 is satisfied, Ax = b has exactly one solution.

The Complete Solution

The other extreme case is full row rank. Now Ax = b either has one or infinitely may
solutions. In this case A is short and wide (m < n). The number of unknowns is at
least the number of equations. A matrix has full row rank if r = m. The nullspace of
AT shrinks to the zero vector. Every row has a pivot, and here is an example.

Example 2  There are n = 3 unknowns but only two equations. The rank is r =
m=2

X + y +

3
x + 2y — 4

o B o |
]

These are two planes in xyz space. The planes are not parallel so they intersect in
a line. This line of solutions is exactly what elimination will find. The particular
solution will be one point on the line. Adding the nullspace vectors x,, will move us
along the line. Then x = x, + x, gives the whole line of solutions.

We find x; and x, by elimination. Subtract row | from row 2 and then subtract
row 2 from row 1:

1 1 1 3 1 1 1 3 1 0 3 2
[1 2 -1 4}"’[0 | -2 1]_‘[{& 1 -2 l}‘“”" 4],
The particular solution has free variable x5 = 0. The special solution has x3 = |:

X particalar COMes directly from d the right side: x, = (2,1,0)
Xpecial cOmes from the third column (free column F) of R: 5 =(-3.2, 1)

It is wise to check that x, and s satisfy the original equations Ax, = b and As = O

241 = 3 -34+2+1 = 0
242 4 -34+4-1 = 10

The nullspace solution x, is any multiple of 5. It moves along the line of solutions,
starting at Xpanicular. Please notice again how to write the answer:

Complete Solution: r=xp+Xy=|1|+x3] 2
]

This line is drawn in Figure 3.3. Any point on the line could have been chosen as
the particular solution; we chose the point with x3 = 0. The particular solution is nor
multiplied by an arbitrary constant! The special solution is, and you understand why.



148 Chapter 3 Vector Spaces and Subspaces

X =Xxp+Xx, Line of solutions
Ax =b

In particular
Ax, =b

Nullspace

“ AIH =1

Figure 3.3 The complete solution is one particular solution plus all nullspace solu-
tions.

Now we summarize this short wide case (m < n) of full row rank:

3G Every matrix A with full row rank {r = m) has all these properties:
1.  All rows have pivots, and R has no zero rows.

2.  Ax = b has a solution for every right side b.

3.  The column space is the whole space R"™.

4. There are n — r = n — m special solutions in the nullspace of A.

In this case with m pivots, the rows are “linearly independent”. In other words,
the columns of AT are linearly independent. We are more than ready for the definition
of linear independence, as soon as we summarize the four possibilities —which depend
on the rank. Notice how r, m, n are the critical numbers!

The four possibilities for linear equations depend on the rank r:

r=m and r=n Square and invertible Ax =50 has | solution

r=m and r<n Short and wide Ax = b has oo solutions
r=m and r=n Tall and thin Ax =b has 0 or | solution
r<m and r <n Unknown shape Ax = b has 0 or oo solutions

The reduced R will fall in the same category as the matrix A. In case the pivot columns
happen to come first, we can display these four possibilities for R:

f=tn v o] ool

r=m=n Fr=m=~n r=n=m r<m,r=<a~n
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Cases | and 2 have full row rank r = m. Cases | and 3 have full column rank r = n.
Case 4 is the most general in theory and the least common in practice.

Note In the first edition of this textbook, we generally stopped at [/ before reach-
ing R. Instead of reading the complete solution directly from Rx = d, we found it by
back substitution from Ux = ¢. That combination of reduction to U and back substi-
tution for x is slightly faster. Now we prefer the complete reduction: a single “1” in
each pivot column. We find that everything is so much clearer in R (and the computer
should do the hard work anyway) that we reduce all the way.

®  REVIEW OF THE KEY IDEAS =
The rank r is the number of pivots. The matrix R has m — r zero rows.
Ax = b is solvable if and only if the last m — r equations reduce to 0 = 0.
One particular solution x, has all free variables equal to zero.

The pivot variables are determined after the free variables are chosen.

Full column rank r = n means no free variables: one solution or none.

O S A

Full row rank r = m means one solution if m = n or infinitely many if m < n.

® WORKED EXAMPLES =

3.4 A This question connects elimination-pivot columns-back substitution to column
space-nullspace-rank-solvability (the full picture). The 3 by 3 matrix A has rank 2:

X1+ 224+ 3x3+ Sxy=b
Ax=b is 2xi+40+8n+12xa=8
3x) 4+ 6x2 4+ Txz 4+ 1304 = b3

Reduce [A bt [U ], so that Ax = b becomes a triangular system Ux = ¢.
Find the condition on by, b2, by for Ax = b to have a solution.

3.  Describe the column space of A. Which plane in R*?

4.  Describe the nullspace of A. Which special solutions in R*?

5.  Find a particular solution to Ax = (0,6, —6) and then the complete solution.

6. Reduce [U c]to[R d]: Special solutions from R, particular solution from d.

ol

Solution
1.  The multipliers in elimination are 2 and 3 and —1. They take [A b]into [U e¢].

123 5 b 12 3 5|b 123 5]|b
248120 |00 2 2|ba—2bi|=|00 2 2|5:=28
36713 b 00 —2 —2|by—3b 00 0 0|by+by—5b
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2.  The last equation shows the solvability condition b3 + b2 — 5k = 0. Then 0 =0,
3. First description: The column space is the plane containing all combinations of
the pivot columns (1, 2, 3) and (3, 8, 7), since the pivots are in columns 1 and 3.
Second description: The column space contains all vectors with bs 4+ by —5b) =
0. That makes Ax = b solvable, so b is in the column space. All columns of A
pass this test by + by — 5by = 0. This is the equation for the plane in the first

description.
4.  The special solutions have free variables x2 = |, x4 = 0 and then x; =0, x3 = I:
-2 -2
Special solutions to Ax =0 - 1 —_— 0
Back substitution in Ux = 0 =1 o 2= =
0 1

The nullspace N(A) in R* contains all x, = ¢|5+c282 = (—2¢1—2¢3, €1, —C3, c3).
5. One particular solution x, has free variables = zero. Back substitute in Ux = ¢:

Particular solution to Ax, = (0,6, —6) ”
This vector b satisfies bz + by — 5b; =0 S

The complete solution to Ax = (0,6, —6) is x = x, + all x,.
6. In the reduced form R, the third column changes from (3, 2, 0) in U to (0, 1, 0). The
right side ¢ = (0, 6. 0) now becomes d = (-9, 3, 0) showing —9 and 3 in x:

1 2350 1 2 0 2
[Uel=|002 2 6|—[Rd]=| 001 1 3
0000 0 000 0

3.4 B If you have this information about the solutions to Ax = b for a specific b,
what does that tell you about the shape of A (and A itself)? And possibly about b.

There is exactly one solution.

All solutions to Ax = b have the form x = [%] +f[}].
There are no solutions. ) '
All solutions to Ax = b have the form x = [II'] +c [?]

There are infinitely many solutions.

h BN

Solution  In case 1, with exactly one solution, A must have full column rank r = n.
The nullspace of A contains only the zero vector. Necessarily m = n.

In case 2, A must have n = 2 columns (and m is arbitrary). With “] in the
nullspace of A, column 2 is the negative of column 1. With x = [}] as a solution,
b = (column 1)+ 2 (column 2) = column 2. The columns can’t be zero vectors.
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In case 3 we only know that b is not in the column space of A. The rank of A
must be less than m. [ guess we know b 0, otherwise x = 0 would be a solution.

In case 4, A must have n = 3 columns. With (1,0, 1) in the nullspace of A,
column 3 is the negative of column 1. Column 2 must not be a multiple of column 1.
or the nullspace would contain another special solution. So the rank of A is 3—1=2.
Necessarily A has m > 2 rows. The right side b is column 1 + column 2.

In case 5 with infinitely many solutions, the nullspace must contain nonzero vec-
tors. The rank r must be less than n (not full column rank), and & must be in the
column space of A. We don’t know if every b is in the column space, so we don’t
know if r = m.

3.4 C Find the complete solution x = x, + x,, by forward elimination on [A b]:

1 2 1 0 *:‘ 4

2 4 4 8 2 1= 2

4 8 6 8 3 10
X4

Find numbers yy, y2, ¥3 so that y; (row 1)+ 2 (row 2)+ y3 (row 3) = zere row. Check
that b = (4, 2, 10) satisfies the condition yi&) + y2b2 + y3bs = (. Why is this the
condition for the eguations to be solvable and b to be in the column space?

Solution Forward elimination on [A b] produces a zero row in [U ¢]. The third
equation becomes 0 =0 and the equations are consistent (and solvable):

1 210 4 1 21 0 4 1 210 4
2 448 2|=—|00228 =6 |—|0028 -6
4 8 6 8 10 00 2 8 -6 00 00 0

Columns | and 3 contain pivots. The variables x; and x4y are free. If we set those to
zero we can solve (back substitution) for the particular solution x, = (7,0, =3,0). We
see 7 and —3 again if elimination continues all the way tw [R d]:

1 21 0 4 121 0 4 1 20 -4 7
0028 -6|—]|0014 3|—|001 4 -3
0000 0 0000 0 Oo00 0 0

For the nullspace part x,, with b = 0, set the free variables x», x4 to 1, () and also 0, 1:
Special solutions s1=(-2,1,0,0) and s;=(4,0,—4.1)

Then the complete solution to Ax = b (and Rx =d) is Xcomplete = Xp + €151 + 02852

The rows of A produced the zero row from 2(row 1) + (row 2) — (row 3) =
(0,0,0,0). The same combination for b = (4, 2, 10) gives 2(4)+(2) —(10) =0. If a
combination of the rows (on the left side) gives the zero row, then the same combina-
tion must give zero on the right side. Of course! Otherwise no solution.
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Later we will say this again in different words: If every column of A is per-
pendicular to y = (2, 1, —1), then any combination b of those columns must also be
perpendicular to y. Otherwise b is not in the column space and Ax = b is not solvable.

And again: If y is in the nullspace of AT then y must be perpendicular to every
b in the column space. Just looking ahead ...

Problem Set 3.4

1 (Recommended) Execute the six steps of Worked Example 3.4 A to describe the
column space and nullspace of A and the complete solution to Ax = b:

2 4 6 4 b 4
A=|2 576 pe=| by |=]| 3
235 2 by 5

2 Carry out the same six steps for this matrix A with rank one. You will find rwo
conditions on by, bz, by for Ax = b to be solvable. Together these two conditions
put b into the space (two planes give a line):

| 2 1 3 by 10
A= 3 (2 1 3] = 6 3 9 b=| b = 30
2 4 6 b 20

Questions 315 are about the solution of Ax = b. Follow the steps in the text to
xp and x,. Use the augmented matrix with last column b.

b3

3  Write the complete solution as x, plus any multiple of s in the nullspace:

x4+3y+3z=
2x +6y+9z=35
—x—3y+3z=35.

4 Find the complete solution (also called the general solution) o

1 3 - I
2 6 * laks
0 0 f

[ -
P

5 Under what condition on by, b>, by is this system solvable? Include b as a fourth
column in elimination. Find all solutions when that condition holds:
x+2y—-2z=b
2x+5y—d4z=by
dx +9y — Bz = bs.
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What conditions on by, b2, b3, by make each system solvable? Find x in that case:

1 2 by 12 37 by
2 4|[x]_ | & 2 4 6| |k
2 S [_q]“ b 2 5 12T |s
39 b 3 9 12|L® by

Show by elimination that (b, b2, b3) is in the column space if bs—2bs+4b; = 0.

1 3 1
A=|3 8 2].
2 40

What combination of the rows of A gives the zero row?

Which vectors (by, by, b3) are in the column space of A? Which combinations
of the rows of A give zero?

1 2 1 111
(a) A=1[2 6 3 b A=]|1 2 4
0 25 2 4 8

(a) The Worked Example 3.4 A reached (U ¢] from [A b]. Put the multi-
pliers into L and verify that LU equals A and Le equals b.

(b) Combine the pivot columns of A with the numbers —9 and 3 in the par-
ticular solution x,. What is that linear combination and why?

Construct a 2 by 3 system Ax = b with particular solution x, = (2,4,0) and
homogeneous solution x, = any multiple of (1, 1, 1).

Why can't a | by 3 system have x, = (2,4, 0) and x, = any multiple of (1, 1, 1)?

(a) If Ax = b has two solutions x; and x3, find two solutions to Ax = 0.
{b) Then find another solution to Ax = 0 and another solution to Ax = b.

Explain why these are all false:

(a) The complete solution is any linear combination of x, and x,.
(b) A system Ax = b has at most one particular solution.

(c) The solution x, with all free variables zero is the shortest solution (mini-
mum length ||x||). Find a 2 by 2 counterexample.

(d) If A is invertible there is no solution x, in the nullspace.
Suppose column 5 of U has no pivol. Then x5 is a variable. The zero

vector (is) (is not) the only solution to Ax = 0. If Ax = b has a solution, then
it has solutions.
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15 Suppose row 3 of U has no pivot. Then that row is . The equation Ux =¢
is only solvable provided . The equation Ax = b (is) (is not) (might not
be) solvable.

Questions 16-20 are about matrices of “full rank” r =m or r = n.

16 The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution to Ax = b (always exists) (is unigue).
The column space of Ais . An example is A =

17  The largest possible rank of a 6 by 4 matrix is _. Then there is a pivot in
every of U and R. The solution to Ax = b (always exists) (is unigue).
The nullspace of A is . An example is A =

18 Find by elimination the rank of A and also the rank of A™:

1 4 0 1 0
A=]| 2 11 5| and A= |1

1
1 2| (rank depends on g).
-1 2 10 1 1 g

19 Find the rank of A and also of ATA and also of AAT:

20

A=[:é?] and A=]1 1
1 2

20 Reduce A to its echelon form U. Then find a triangular L so that A = LU.

3410
2=[2 417 o [ ]

21 Find the complete solution in the form x, + x,; to these full rank systems:

o

0 1
20
6 5

=10

x+y+z=

4
(a) x4+v+z=4 (b)
x—=y+z=4

22 If Ax = b has infinitely many solutions, why is it impossible for Ax = B (new
right side) to have only one solution? Could Ax = B have no solution?

23 Choose the number g so that (if possible) the ranks are (a) 1, (b) 2. (c) 3:
6 4 2

A=|-3 =2 —1| and 3=[3 é 3].
9 6 g q q
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24  Give examples of matrices A for which the number of solutions to Ax = b is

{a) 0 or 1, depending on b
(b) oo, regardless of b

{c) 0 or oo, depending on b
{d) 1, regardless of b.

25  Write down all known relations between r and m and n if Ax = b has

(a) no solution for some b

{(b) infinitely many solutions for every b

{c) exactly one solution for some b, no solution for other b
(d) exactly one solution for every b.

Questions 26-33 are about Gauss-Jordan elimination (upwards as well as down-
wards) and the reduced echelon matrix RE.

26 Continue elimination from U/ to R. Divide rows by pivots so the new pivots are
all 1. Then produce zeros above those pivots to reach R:

and U =

e

Il

=
= e d=
=T S 44
==
oW od
h o &

27 Suppose U is square with n pivots (an invertible matrix). Explain why R = 1.

28 Apply Gauss-Jordan elimination to Ux = 0 and Ux = ¢. Reach Rx = 0 and
Rx =d:

[vo]=[o 5 3 0] ™ [vel=[o 533

Solve Rx =0 to find x, (its free variable is x; = 1), Solve Rx =d o find x,
(its free variable is xo = 0).

29  Apply Gauss-Jordan elimination to reduce to Rx =0 and Rx = d:

)

—

3 6 0 306 9
U ol=|00 2 0 and U e|l=(0 0 2 4

oo o0 0 00 0 5
Solve Ux =0 or Rx =0 to find x, (free variable = 1). What are the solutions
to Rx =d"?



156 Chapter 3 Vector Spaces and Subspaces

30 Reduce to Ux = ¢ (Gaussian elimination) and then Rx = d (Gauss-Jordan):

3

32

33
34

: 'y 2 37| 2
Ax=113 2 0||®|=| 5|=5b.
2 0 4 9™ 10
X4

Find a particular solution x, and all homogeneous solutions x,.

Find matrices A and B with the given property or explain why vou can't: The
only solution of Ax = [é] is x = [{]. The only solution of Bx = [{] is

=[1]

Find the LU factorization of A and the complete solution to Ax = b:

and b= and then b=

el
L i S
L O Ll e
U O =
o0 O -

The complete solution to Ax =[] is x =[1]+¢[}] Find A.

Suppose you know that the 3 by 4 matrix A has the vector s = (2,3,1,0) as a
basis for its nullspace

(a) What is the rank of A and the complete solution to Ax =07
(b) What is the exact row reduced echelon form R of A"
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INDEPENDENCE, BASIS AND DIMENSION = 3.5

This important section is about the true size of a subspace. There are n columns in
an m by n matrix, and each column has m components. But the true “dimension™ of
the column space is not necessarily m or n. The dimension is measured by counting
independent columns —and we have to say what that means. We will see that the true
dimension of the column space is the rank r.

The idea of independence applies to any vectors vy, ..., ¥, In any vector space.
Most of this section concentrates on the subspaces that we know and use—especially
the column space in R™ and the nullspace in R". In the last part we also study “vec-
tors” that are not column vectors. They can be matrices and functions; they can be
linearly independent (or not). First come the key examples using column vectors.

The final goal is to understand a basis for a vector space. A basis contains in-
dependent vectors that “span the space”. We are at the heart of our subject, and we
cannot go on without a basis. The four essential ideas in this section (with first hints
at their meaning) are:

I.  Independent vectors (not too many)

2, Spanning a space (not too few)

Y. Basis for a space (nent too many or too few)
4.

Dimension of a space (the right number of vectors).

Linear Independence

Our first definition of independence is not so conventional, but you are ready for it.

DEFINITION The columns of A are linearly independent when the only solution to
Ax =0 is x = 0. No other combination Ax of the columns gives the zero vector.

With linearly independent columns, the nullspace N(A) contains only the zero vector.
Let me illustrate linear independence (and linear dependence) with three vectors in R:

1. If three vectors are not in the same plane, they are independent. No combination
of v|, vz, v3 in Figure 3.4 gives zero except Ov; + Ovy + Ov;.

2. If three vectors w,, wz, w3 are in the same plane, they are dependent.

This idea of independence applies to 7 vectors in 12-dimensional space. If they
are the columns of A, and independent, the nullspace only contains x = 0. Now we
choose different words to express the same idea. The following definition of indepen-
dence will apply to any sequence of vectors in any vector space. When the vectors are
the columns of A, the two definitions say exactly the same thing.
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v

0

) e my
Lk ] L wz

Figure 3.4  Independent vectors vy, vz, v3. Dependent vectors w), w2, w3. The com-
bination w; — w> 4+ wy is (0,0, 0),

DEFINITION The sequence of vectors vy, ... , v, is linearly independent if the only
combination that gives the zero vector is Dy +0v: + -« - +0wu,. Thus linear indepen-
dence means that

xjvy +x3v3 4 -+ ayv, =0 only happens when all x’s are zero. (1)

If a combination gives 0, when the x's are not all zero, the vectors are dependent.
Correct language: “The sequence of vectors is linearly independent.” Acceptable
shortcut: “The vectors are independent.” Unacceptable: “The matrix is independent.”
A sequence of vectors is either dependent or independent. They can be combined
to give the zero vector (with nonzero x’s) or they can’t. So the key question is: Which
combinations of the vectors give zero? We begin with some small examples in R*:

(a) The vectors (1,0) and (0, 1) are independent.

(b} The vectors (1, 1) and (1, 0.00001) are independent.
(c) The vectors (1, 1) and (2, 2) are dependent.

(d) The vectors (1, 1) and (0, 0) are dependent.

Geometrically, (1, 1) and (2, 2) are on a line through the origin. They are not indepen-
dent. To use the definition, find numbers x; and x> so that x;(1, 1) +x32(2, 2) = (0. 0).
This is the same as solving Ax = O

[: i] I:':;] = [E} for x; =2 and x» = —1.

The columns are dependent exactly when there is a nonzero vector in the nullspace.
If one of the v's is the zero vector, independence has no chance. Why not?
Now move to three vectors in R®. If one of them is a multiple of another one,
these vectors are dependent. But the complete test involves all three vectors at once.
We put them in a matrix and try to solve Ax = 0.
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Example 1 The columns of A are dependent. Ax =0 has a nonzero solution;

1 9 F]/[=3 1 0 3 0
Ax=|2 1 5 1 is =3|2|4+1|1]+1]|5]|=]|0
1 0 3 1 1 0 3 0

The rank of A is only r = 2. Independent columns would give full column rank r =
[ B

In that matrix the rows are also dependent. Row | minus row 3 is the zero row.
For a square marrix, we will show that dependent columns imply dependent rows (and
vice versa).

Question How do you find that solution to Ax = 07 The systematic way is elimina-
tion.

1 0 3 1 0 3
A=12 1 5| reducestoR=|0 1 -1l
I 0 3 00 0

The solution x = (=3, 1, 1) was exactly the special solution. It shows how the free
column (column 3) is a combination of the pivot columns. That kills independence!

3H The columns of A are independent exactly when the rank is r = n. There are n
pivots and no free variables. Only x = 0 is in the nullspace.

One case is of special importance because it is clear from the start. Suppose
seven columns have five components each (m = 5 is less than n = 7). Then the
columns must be dependent. Any seven vectors from R’ are dependent. The rank of
A cannot be larger than 5. There cannot be more than five pivots in five rows. The
system Ax = 0 has at least 7—5 = 2 free variables, so it has nonzero solutions—which
means that the columns are dependent.

31 Any set of n vectors in R™ must be linearly dependent if n > m.

The matrix has more columns than rows—it is short and wide. The columns are cer-
tainly dependent if n > m, because Ax = 0 has a nonzero solution. The columns
might be dependent or might be independent if n < m. Elimination will reveal the
pivot columns. It is those pivot columns that are independent.

Note Another way to describe linear independence is this: “One vector is a combi-
nation of the other vectors.” That sounds clear. Why don’t we say this from the start?
Our definition was longer: “Some combination gives the zero vector, other than the
trivial combination with every x = 0. We must rule out the easy way to get the zero
vector. That trivial combination of zeros gives every author a headache. If one vector
is a combination of the others, that vector has coefficient x = 1.



160 Chapter 3 Vector Spaces and Subspaces

The point is, our definition doesn’t pick out one particular vector as guilty. All
columns of A are treated the same. We look at Ax = 0, and it has a nonzero solution
or it hasn’t. In the end that is better than asking if the last column (or the first, or a
column in the middle) is a combination of the others.

Vectors that Span a Subspace

The first subspace in this book was the column space. Starting with columns vy, --- , v,
the subspace was filled out by including all combinations xyvy+- - -+x,v,. The column
space consists of all combinations Ax of the columns. We now introduce the single
word “span” to describe this: The column space is spanned by the columns.

DEFINITION A set of vectors spans a space if their linear combinations fill the
space.

Example 2 v, = [{;] and v; = [?] span the full two-dimensional space RZ.

Example 3 v, = [{1]], v = [?:I ¥ = [;’] also span the full space R?.

Example 4 w, = ” and wy = [:::] only span a line in R%. So does w; by

itself. So does w. by itself.

Think of two vectors coming out from (0,0,0) in 3-dimensional space. Gener-
ally they span a plane. Your mind fills in that plane by taking linear combinations.
Mathematically you know other possibilities: two vectors spanning a line, three vec-
tors spanning all of R?, three vectors spanning only a plane. It is even possible that
three vectors span only a line, or ten vectors span only a plane. They are certainly not
independent!

The columns span the column space. Here is a new subspace —which is spanned
by the rows. The combinations of the rows produce the “row space".

DEFINITION The row space of a matrix is the subspace of R" spanned by the rows.

The rows of an m by n matrix have n components. They are vectors in R"—
or they would be if they were written as column vectors. There is a quick way to fix
that: Transpose the matrix. Instead of the rows of A, look at the columns of AT, Same
numbers, but now in columns.

The row space of A is C(AV). It is the column space of AT. It is a subspace
of R". The vectors that span it are the columns of AT, which are the rows of A.
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Example 5
1 4
A=|2 7 andATz[; ?ﬂ, ";]Herem=3andn=z.
3 5

The column space of A is spanned by the two columns of A. It is a plane in
R®. The row space of A is spanned by the three rows of A (which are columns of
AT). This row space is all of R>. Remember: The rows are in R". The columns are
in R™. Same numbers, different vectors, different spaces.

A Basis for a Vector Space

In the xy plane, a set of independent vectors could be quite small— just one vector. A
set that spans the xy plane could be large—three vectors, or four, or infinitely many.
One vector won't span the plane. Three vectors won't be independent. A “basis” is
just right. We want enough independent vectors to span the space.

DEFINITION A basis for a vector space is a sequence of vectors that has two prop-
erties al once:

1.  The vectors are linearly independent.

2.  The vectors span the space.

This combination of properties is fundamental to linear algebra. Every vector v in the
space 1s a combination of the basis vectors, because they span the space. More than
that, the combination that produces v is unigue, because the basis vectors vy,... ., v,
are independent:

There is one and only one way to write v as a combination of the basis vectors.

Reason: Suppose v = ajv|+---+ayv, and also v = byvy+---+b,v,. By subtraction
(ay — by + -+ + (an — by)vy is the zero vector. From the independence of the v's,
each a; — b; = 0. Hence a; = b;.

Example 6 The columns of I = [l!] ?] produce the “standard basis™ for RZ,

The basis vectors § = [é] and j = [?] are independent. They span R,

Everybody thinks of this basis first. The vector i goes across and j goes straight up.
The columns of the 3 by 3 identity matrix are the standard basis i, j, k. The columns
of the n by n identity matrix give the “standard basis” for R". Now we find other
bases.
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Example 7  (Important) The columns of any imvertible n by n matrix give a basis
for R":

10
I
: 2 4

A:B ﬁ] S A :

0

0 but not A = [l 2} .
l

When A is invertible, its columns are independent. The only solution to Ax = 0is x =
0. The columns span the whole space R" —because every vector b is a combination of
the columns. Ax = b can always be solved by x = A~'b. Do you see how everything
comes together for invertible matrices? Here it is in one sentence:

3] The vectors vy, ... . v, are a basis for R" exactly when they are the columns of
an n by n invertible matrix. Thus R" has infinitely many different bases.

When any matrix has independent columns, they are a basis for its column space.
When the columns are dependent, we keep only the pivor columns—the r columns with
pivots. They are independent and they span the column space.

3K The pivot columns af A are a basis for its column space. The pivol rows of A
are a basis for its row space. So are the pivot rows of its echelon form K.

Example 8  This matrix is not invertible. Its columns are not a basis for anything!

2 4 , 1 2
A=[3 ﬁ] which reduces IDRI[U D]'

Column | of A is the pivot column. That column alone is a basis for its column space.
The second column of A would be a different basis. So would any nonzero multiple
of that column. There is no shortage of bases! So we often make a definite choice:
the pivol columns.

Notice that the pivot column of this R ends in zero. That column is a basis for
the column space of R, but it is not even a member of the column space of A. The
column spaces of A and R are different. Their bases are different.

The row space of A is the same as the row space of K. It contains (2,4) and
(1,2) and all other multiples of those vectors. As always, there are infinitely many
bases to choose from, | think the most natural choice is to pick the nonzero rows of
R (rows with a pivot). So this matrix A with rank one has only one vector in the basis:

Basis for the column space: [g] . Basis for the row space: [;] 3

The next chapter will come back to these bases for the column space and row space.
We are happy first with examples where the situation is clear (and the idea of a basis
is still new). The next example is larger but still clear.
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Example 9  Find bases for the column and row spaces of a rank two matrix:

R =

o e

2 0
0 1
0o o

o bW

Columns 1 and 3 are the pivot columns. They are a basis for the column space (of R!).
The vectors in that column space all have the form b = (x, y,0). The column space
of R is the “xy plane” inside the full 3-dimensional xvz space. That plane is not RZ,
it is a subspace of R?. Columns 2 and 3 are a basis for the same column space. So
are columns | and 4, and also columns 2 and 4. Which pairs of columns of R are nor
a basis for its column space?

The row space of R is a subspace of R*. The simplest basis for that row space
is the two nonzero rows of R. The third row (the zero vector) is in the row space too.
But it is not in a basis for the row space. The basis vectors must be independent.

Question Given five vectors in R', how do you find a basis for the space they span?

First answer Make them the rows of A, and eliminate to find the nonzero rows of R.
Second answer  Put the five vectors into the columns of A. Eliminate to find the pivot
columns (of A not R!). The program colbasis uses the column numbers from piveol.

Could another basis have more vectors, or fewer? This is a crucial question with
a good answer. All bases for a vector space contain the same number of vectors. This
number is the “dimension” of the space.

Dimension of a Vector Space

We have to prove what was just stated. There are many choices for the basis vectors,
but the number of basis vectors doesn’t change.

3L Ifvy, ... vy and wy, ... , w, are both bases for the same vector space, thenm = n.

Proof Suppose that there are more w's than v's. From n > m we want to reach a
contradiction. The v's are a basis, so w; must be a combination of the v's. If w,
equals @) vy + - - + dyy| Uy, this is the first column of a matrix multiplication V A:

ayy

W= wiwy...w, | = |V -+ Um = VA.

€

We don’t know each a;;, but we know the shape of A (it is m by n). The second
vector w> is also a combination of the v's. The coefficients in that combination fill
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the second column of A. The key is that A has a row for every v and a column for
every w. A is a short wide matrix, since n = m. There is a nonzero solution to
Axr =0. Then VAx = 0 which is Wx = 0. A combination of the w's gives zero! The
w's could not be a basis—so we cannot have n > m.

If m = n we exchange the v's and w’s and repeat the same steps. The only way
to avoid a contradiction is to have m = n. This completes the proof that m = n.

The number of basis vectors depends on the space—not on a particular basis.
The number is the same for every basis, and it tells how many “degrees of freedom”
the vector space allows. The dimension of R" is n. We now introduce the important
word dimension for other vector spaces too.

DEFINITION The dimension of a space is the number of vectors in every basis.

This matches our intuition. The line through v = (1, 5, 2) has dimension one. It is a
subspace with one vector v in its basis. Perpendicular to that line is the plane
x + 5v+ 2z =0. This plane has dimension 2. To prove it, we find a basis (=5, 1,0)
and (—2.0, 1). The dimension is 2 because the basis contains two vectors.

The plane is the nullspace of the matrix A = [I 5 2}. which has two free
variables. Our basis vectors (—5,1,0) and (—2,0, 1) are the “special solutions” to
Ax = 0. The next section shows that the n — r special solutions always give a basis
for the nullspace. So N(A) has dimension n — r. Here we emphasize only this: All
bases for a space contain the same number of vectors.

Note about the language of linear algebra We never say “the rank of a space™ or “the
dimension of a basis” or “the basis of a matrix”. Those terms have no meaning. It is
the dimension of the column space that equals the rank of the matrix.

Bases for Malrix Spaces and Function Spaces

The words “independence” and “basis™ and “dimension” are not at all restricted to col-
umn vectors. We can ask whether three 3 by 4 matrices A;, Az, Az are independent.
They are members of the space of all 3 by 4 matrices: some combination might give
the zero matrix. We can also ask the dimension of that matrix space (it is 12).

In differential equations, the space of solutions to d”y/dx® = v contains func-
tions. One basis is v = ¢' and v = ¢™*. Counting the basis functions gives the
dimension 2 (for the space of all solutions).

We think matrix spaces and function spaces are optional. Your class can go past
this page—no problem. But in some way, you haven't got the ideas of basis and di-
mension straight until you can apply them to “vectors” other than column vectors.

Matrix spaces The vector space M contains all 2 by 2 matrices. Its dimension is 4.

1 0 0 0 0
One basis is A|.A:.A3~ﬂ4=[u u]l: é][] D}[g ?]
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Those matrices are linearly independent. We are not looking at their columns, but at
the whole matrix. Combinations of those four matrices can produce any matrix in M,
s0 they span the space:

A FoAr + Azt Ay = [” -:.‘:] .
3 €4
This is zero only if the ¢'s are all zero—which proves independence.

The matrices Ay, A2, Ay are a basis for a subspace—the upper triangular matri-
ces. Its dimension is 3. Ay and Ay are a basis for the diagonal matrices. What is a
basis for the symmetric matrices? Keep A; and A4, and throw in A; + A,

To push this further, think about the space of all n by n matrices. For a basis,
choose matrices that have only a single nonzero entry (that entry is 1). There are n?
positions for that |, so there are n® basis matrices:

The dimension of the whole n by n matrix space is n°.
The dimension of the subspace of upper triangular matrices is =_'gn2 + %ﬂ,
The dimension of the subspace of diagonal matrices is n.

The dimension of the subspace of symmetric matrices is in” + in.

Function spaces The equations d >y/dx® =0 and d?y/dx* = —y and d*y/dx* = y
involve the second derivative. In calculus we solve to find the functions vix):

v'=0  is solved by any linear function vy = cx + d
y" = —y is solved by any combination y = ¢sinx + d cosx
¥ is solved by any combination y = ce* 4+ de™*.

i

v

The second solution space has two basis functions: sinx and cosx. The third
solution space has basis functions e* and ¢ . The first space has x and 1. It is the
“nullspace” of the second derivative! The dimension is 2 in each case (these are second-
order equations).

The solutions of yv" = 2 don’t form a subspace—the right side b = 2 is not zero.
A particular solution is y(x) = x2. The complete solution is y(x) = x* +ex+d. Al
those functions satisfy y" = 2. Notice the particular solution plus any function cx +d
in the nullspace. A linear differential equation is like a linear matrix equation Ax = b.
But we solve it by calculus instead of linear algebra.

We end here with the space Z that contains only the zero vector. The dimension
of this space is zero. The empty set (containing no vectors at all) is a basis. We can
never allow the zero vector into a basis, because then linear independence is lost.
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® REVIEW OF THE KEY IDEAS =

1.  The columns of A are independent if x =0 is the only solution to Ax = 0.
2, The vectors vy, ..., v, span a space if their combinations fill that space.

3. A basis consists of linearly independent vectors that span the space. Every vec-
tor is a unigue combination of the basis vectors.

4.  All bases for a space have the same number of vectors. This number is the di-
mension of the space.

5.  The pivot columns are a basis for the column space and the dimension is r.

® WORKED EXAMPLES =

3.5 A Start with the vectors vy = (1,2,0) and va = (2, 3,0). (a) Are they linearly
independent? (b) Are they a basis for any space? (¢) What space V do they span? (d)
What is the dimension of that space? (e) Which matrices A have V as their column
space? (f) Which matrices have V as their nullspace? (g) Describe all vectors v3 that
complete a basis vy, vy, v3 for R

Solution

(a) v, and vy are independent—the only combination to give 0 is Ov| 4 Ow;.
(b) Yes, they are a basis for whatever space V they span.

(c) That space V contains all vectors (x, y,0). It is the xy plane in R

{(d) The dimension of V is 2 since the basis contains two vectors.

(e) This V is the column space of any 3 by n matrix A of rank 2, if every column is a
combination of v; and v2. In particular A could just have columns v, and v,.

()  This V is the nullspace of any m by 3 matrix B of rank 1, if every row is a multiple
of (0.0, 1). In particular take B = [0 0 1]. Then Bvy; = 0 and Bvs = 0.

(g) Any third vector v3 = (a, b, ¢) will complete a basis for R? provided ¢ # 0.

3.5 B  Start with three independent vectors w;, w2, w3. Take combinations of those
vectors to produce vy, vz, v3. Write the combinations in matrix form as V = WM:

vVp=w + w;
v =w; +2w>+ w3 which is vivaUy | = | W) W ws
v = wr + cwsi

1 0
2 1
1l ¢

S



1.5 Independence, Basis and Dimension 167

What is the test on a matrix V to see if its columns are linearly independent? If ¢ &£ |
show that vy, vy, v3 are linearly independent. If ¢ = | show that the v's are linearly
dependent.

Solution  The test on V for independence of its columns was in our first definition:
The nullspace of V must contain only the zero vector. Then x = (0,0,0) is the only
combination of the columns that gives Vx = zero vector.

In ¢ = 1 in our problem, we can see dependence in two ways. First, vy + vy will
be the same as vo. (If you add w) + w> to w2 4+ wi you get w; + 2w> + w3 which
is v2.) In other words vy — v2 4+ v3 = 0—which says that the v’s are not independent.

The other way is to look at the nullspace of M. If ¢ = 1, the vectorx = (1, =1, 1)
is in that nullspace, and Mx = 0. Then certainly WMx = 0 which is the same as
Vx = (0. So the v's are dependent. This specific x = (1, —1, 1) from the nullspace
tells us again that vy — v2 4+ v3 = 0.

Now suppose ¢ # 1. Then the matrix M is invertible. So if x is any nonzero
vector we know that Mx is nonzero. Since the w’s are given as independent, we further
know that WMx is nonzero, Since V = WM, this says that x is nor in the nullspace
of V. In other words vy, vz, v3 are independent.

The general rule is “independent v’s from independent w’s when M is invertible”.
And if these vectors are in R?, they are not only independent—they are a basis for R®.
“Basis of v's from basis of w’s when the change of basis matrix M is invertible.”

3.5 C Suppose vy,...,v, is a basis for R" and the n by n matrix A is invertible.
Show that Avy,..., Av, is also a basis for R”,

Solution In matrix language: Put the basis vectors vy.....v, in the columns of
an invertible(!) matrix V. Then Av,.....Av, are the columns of AV. Since A is
invertible, so is AV and its columns give a basis.

In vector language: Suppose ciAvy + -+ + c,Av, = 0. This is Av = 0 with
UV=cV| + -+ €0, Multiply by A~ to get v = 0. By linear independence of the
v's, all ¢; =0. So the Av’s are independent.

To show that the Av’s span R", solve cjAw; + -+ + e,Av, = b which is the
same as cyv; + -+ + c,v, = A~'b. Since the v's are a basis, this must be solvable.

Problem Set 3.5

Questions 1-10 are about linear independence and linear dependence.

1 Show that v, v2, v3 are independent but vy, vy, v3, vy are dependent:

1 1 1 2
vy = 1|0 =11 pi= | | =13
0 0 1 4

Solve either cjvy +cava+cavy =0 or Ax = 0. The v’s go in the columns of A.
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2

10

(Recommended) Find the largest possible number of independent vectors among

l | 1 0 0 0
"= = m= g = 0 Py = : s = I g = g
0 -1 : 0 -1 0 1
0 0 -1 0 -1 -1

Prove that if a =0 ord =0 or f =0 (3 cases), the columns of U are dependent:

=
Il
=~ -1
=3

—mon

If @, d, f in Question 3 are all nonzero, show that the only solution to Ux =0
is x = 0. Then U/ has independent columns.

Decide the dependence or independence of

{a) the vectors (1,3,2) and (2,1,3) and (3,2, 1)
{(b) the vectors (1, —3,2) and (2,1, =3) and (=3, 2, 1}.

Choose three independent columns of U/, Then make two other choices. Do the
same for A.

and A=

== = T
oD W
= — R T
=TI = T
OO
= O = - O]
D~ e
[ T - =

If wy, ws, wy are independent vectors, show that the differences v; = wy — w3
and v; = w) — w3 and vy = w; — w; are dependent. Find a combination of the
v's that gives zero.

If wy, w;, wy are independent vectors, show that the sums vy = ws + w3 and
v; =w;+w; and vz = w| + w; are independent. (Write ¢yv) + 202 +cav3 =0
in terms of the w's. Find and solve equations for the c's.)

Suppose vy, v, v3, vy are vectors in R,

(a) These four vectors are dependent because

(b) The two vectors v, and vz will be dependent if ;

(c) The vectors v and (0,0, 0) are dependent because

Find two independent vectors on the plane x +2y —3z —t = 0 in R*. Then find

three independent vectors. Why not four? This plane is the nullspace of what
matrix?
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Questions 11-15 are about the space spanned by a set of vectors. Take all linear
combinations of the vectors.

1

12

13

14

15

Describe the subspace of R* (is it a line or plane or R*?) spanned by

{a) the two vectors (1,1,—1) and (—1,—1,1)

(b) the three vectors (0,1, 1) and (1, 1,0) and (0, 0, 0)
(c) the columns of a 3 by 5 echelon matrix with 2 pivots
(d) all vectors with positive components.

The vector b is in the subspace spanned by the columns of A when there is a
solution to . The vector ¢ is in the row space of A when there is a solution
to

True or false: 1If the zero vector is in the row space. the rows are dependent.

Find the dimensions of these 4 spaces. Which two of the spaces are the same?
(a2) column space of A, (b) column space of U, (c¢) row space of A, (d) row
space of U:

1 1 ¥ 1 1 0
A=]1 3 1 and U=|0 2 1
3 1 -1 000

Choose x = (x|, x2, X3, x4) in R® It has 24 rearrangements like (x2, ¥y, x3, x4)
and (x4, x3,x7, x2). Those 24 vectors, including x itself, span a subspace S. Find
specific vectors x so that the dimension of S is: (a) zero, (b) one, (c) three,
(d) four.

v+ w and v — w are combinations of v and w, Write v and w as combinations
of v+ w and v — w. The two pairs of vectors the same space. When are
they a basis for the same space?

Questions 16-26 are about the requirements for a basis.

16

17

If vy,..., v, are linearly independent, the space they span has dimension
These vectors are a for that space. If the vectors are the columns of an

m by n matrix, then mis _ than n.

Find a basis for each of these subspaces of R*:

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1, 1,0,0) and (1,0, 1, 1).

(d) The column space (in R?) and nullspace (in R%) of U = [19191],
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18

19

20

21

22

23

24

25

Find three different bases for the column space of U above. Then find two dif-
ferent bases for the row space of U.

Suppose vy, v2, ..., vg are six vectors in R*.

{a) Those vectors (do)(do not)(might not) span R*.

(b) Those vectors (are)(are not)(might be) linearly independent.

(c) Any four of those vectors (are)(are not)(might be) a basis for R

The columns of A are n vectors from R™. If they are linearly independent, what

is the rank of A? If they span R™, what is the rank? If they are a basis for R™,
what then?

Find a basis for the plane x — 2y + 3z = 0 in R’. Then find a basis for the
intersection of that plane with the xv plane. Then find a basis for all vectors
perpendicular to the plane.

Suppose the columns of a 5 by 5 matrix A are a basis for R,

(a) The equation Ax = 0 has only the solution x = 0 because
(b) If b is in R® then Ax = b is solvable because

Conclusion: A is invertible. Its rank is 5.
Suppose S is a S-dimensional subspace of R®. True or false:

(a) Ewvery basis for § can be extended to a basis for R by adding one more
vector.

(b) Every basis for R® can be reduced to a basis for § by removing one vector.

U comes from A by subtracting row | from row 3:

i 3 2 1 3 2
A=|0 1 1 and U=|0 1 1].
1 3 2 0 0 0

Find bases for the two column spaces. Find bases for the two row spaces. Find
bases for the two nullspaces.

True or false (give a good reason):

(a) If the columns of a matrix are dependent, so are the rows.
{(b) The column space of a 2 by 2 matrix is the same as its row space.

{c) The column space of a 2 by 2 matrix has the same dimension as its row
space.

(d) The columns of a matrix are a basis for the column space.
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26 For which numbers ¢ and d do these matrices have rank 27

1 2 5 05 ¢ i
A=|0 0 ¢ 2 2 and E=Lf c]
0 00 d 2

Questions 27-32 are about spaces where the * rs” are matrices.
27 Find a basis for each of these subspaces of 3 by 3 matrices:

(a) All diagonal matrices.
(b) All symmetric matrices (AT = A).
(c) All skew-symmetric matrices (AT = —A).

28 Construct six linearly independent 3 by 3 echelon matrices Uy, ..., Us.

29 Find a basis for the space of all 2 by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.

30 Show that the six 3 by 3 permutation matrices (Section 2.6) are linearly depen-
dent.

31 What subspace of 3 by 3 matrices is spanned by

(a) all invertible matrices?

(b) all echelon matrices?

(c) the identity matrix?
32 Find a basis for the space of 2 by 3 matrices whose nullspace contains (2, 1, 1).
Questions 33-37 are about spaces where the *vectors” are functions.

33 (a) Find all functions that satisfy ¥ = 0.

(b) Choose a particular function that satisfies 5% =3,

(c) Find all functions that satisfy 4* = 3.

34 The cosine space F3 contains all combinations y(x) = A cos x+ B cos 2x+C cos 3x.
Find a basis for the subspace with y(0) = 0.

35 Find a basis for the space of functions that satisfy

@ $-2y=0
b P-1=p,

X

36 Suppose yi(x), y2(x), ya(x) are three different functions of x. The vector space
they span could have dimension 1, 2, or 3. Give an example of y;, ¥2, v3 to show
each possibility.
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37

38

39

4

42

Find a basis for the space of polynomials p(x) of degree < 3. Find a basis for
the subspace with p(1) =0.

Find a basis for the space S of vectors (a, b, ¢, d) with a+c+d = 0 and also for
the space T with a+b =0 and ¢ = 24, What is the dimension of the intersection
sNT?

Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices! Then show that those five matrices are linearly independent. (Assume
a combination gives zero, and check entries to prove each term is zero.) The
five permutations are a basis for the subspace of 3 by 3 matrices with row and
column sums all equal.

If AS = §A for the shift matrix §, show that A must have this special form:

a b c 010 010 ab ¢
If | de f 001 |l=]001 de f | thenA= .
g hi 0000 000 g hi

“The subspace of matrices that commute with the shift S has dimension

b
a
0

Do R
& on

Which of the following are bases for R*?

{El] I:Irzl{” and {ﬂ!]h-lul

{h} '._I,l._l-}- {213-4}-{4-11_1}5 [ﬂf ]i_l}

() (1.2,2).(=1.2,1),(0,8,0)

(dy (1,2,2),(-1,2,1),(0,8,6)

Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the

5 by S matrix [A b] is invertible. Show that Ax = b is solvable when [A b]
is singular.
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DIMENSIONS OF THE FOUR SUBSPACES = 3.6

The main theorem in this chapter connects rank and dimension. The rank of a matrix

is the number of pivots. The dimension of a subspace is the number of vectors in a

basis. We count pivots or we count basis vectors. The rank of A reveals the dimensions

of all four fundamental subspaces. Here are the subspaces, including the new one.
Two subspaces come directly from A, and the other two from AT:

Four Fundamental Subspaces
1. The row space is C(AY), a subspace of R".
The column space is C(A), a subspace of R™.

The nullspace is N(A), a subspace of R".

T )

The left nullspace is N(AT), a subspace of R™. This is our new space.

In this book the column space and nullspace came first. We know C(A) and N(A)
pretty well. Now the other two subspaces come forward. The row space contains all
combinations of the rows. This is the column space of AT,

For the left nullspace we solve ATy = O0—that system is n by m. This is the
nullspace of AT. The vectors y go on the left side of A when the equation is written
as y'A =0". The matrices A and A" are usually different. So are their column spaces
and their nullspaces. But those spaces are connected in an absolutely beautiful way.

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces.
One fact stands out: The row space and column space have the same dimension r
(the rank of the matrix). The other important fact involves the two nullspaces: Their
dimensions are n —r and m — r, to make up the full dimensions n and m.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit to-
gether (two in R" and two in R™). That completes the “right way” to understand
Ax = b. Stay with it—you are doing real mathematics.

The Four Subspaces for R

Suppose A is reduced to its row echelon form R. For that special form, the four sub-
spaces are easy to identify. We will find a basis for each subspace and check its di-
mension. Then we watch how the subspaces change (or don’t change!) as we look
back at A. The main point is that the four dimensions are the same for A and R.
As a specific 3 by 5 example, look at the four subspaces for the echelon matrix R:

m=23 1 3 5 0 9 pivot rows | and 2
n=73 00 0 1 8
r=2 0O 0 0 00 pivot columns | and 4
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The rank of this matrix R is r = 2 (two pivors). Take the subspaces in order:

1. The row space of R has dimension 2, matching the rank.

Reason: The first two rows are a basis. The row space contains combinations of all
three rows, but the third row (the zero row) adds nothing new. So rows 1 and 2 span
the row space.

The pivot rows | and 2 are also independent. That is obvious for this example,
and it is always true. If we look only at the pivot columns, we see the r by r iden-
tity matrix. There is no way to combine its rows to give the zero row (except by the
combination with all coefficients zero). So the r pivot rows are independent and the
dimension is r.

The dimension of the row space is r. The nonzero rows of R form a basis.

2. The column space of R also has dimension r = 2.

Reason: The pivot columns | and 4 form a basis. They are independent because they
start with the r by r identity matrix. No combination of those pivot columns can give
the zero column (except the combination with all coefficients zero). And they also span
the column space. Every other (free) column is a combination of the pivot columns.
Actually the combinations we need are the three special solutions:

Column 2 is 3 (column 1). The special solution is (-3, 1,0,0,0).
Column 3 is 5 (column 1). The special solution is (=5,0,1,0,0,).
Column 5 is 9 (column 1) + 8 (column 4). That solution is (—9,0,0, —8, 1).

The pivot columns are independent, and they span, so they are a basis for C(A).
The dimension of the column space is r. The pivot columns form a basis.

3. The nullspace has dimension n —r = 5 — 2, There are n — r = 3 free variables.
Here x2, x3, x5 are free (no pivots in those columns), They yield the three special
solutions to Rx = 0. Set a free variable to 1, and solve for x; and xs:

-3 -5 -9
1 0 0 Rx =0 has the
s2=| 0 g1 = 1 ss=] 0 complete solution
0 0 —8 X = X282 + x5y + xs85
0 0 1
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There is a special solution for each free variable. With n vanables and r pivot variables,
that leaves n — r free variables and special solutions:

The nullspace has dimension n — r. The special solutions form a basis.

The special solutions are independent, because they contain the identity matrix in rows 2,
3, 5. All solutions are combinations of special solutions, x = x282 + x353 4+ xs585, be-
cause this gets x;, x3 and xs in the correct positions. Then the pivot variables x; and
x4 are totally determined by the equations Rx = (.

4. The nullspace of R' has dimension m —r =3 — 2.

Reason: The equation R"y = 0 looks for combinations of the columns of RT (the
rows of R) that produce zero. This equation RTy =0 or yTR =07 is

vill, 3, 5, 0, 9]

+y2[0, 0, O, 1, 8]

+1310, 0, 0, 0, 0] (1)
(0. 0, 0. 0, 0]

The solutions y;, v2, v3 are pretty clear. We need y; =0 and y; = 0. The variable y3
is free (it can be anything). The nullspace of R contains all vectors y = (0,0, v3).
It is the line of all multiples of the basis vector (0,0, 1).

In all cases R ends with m —r zero rows. Every combination of these m —r rows
gives zero. These are the enly combinations of the rows of R that give zero, because
the pivot rows are linearly independent. So we can identify the left nullspace of R.
which is the nullspace of R7:

RTy=0: The left nullspace has dimension m — r.
The solutions are y = (0,. . .,0, Voi1,. . o, ¥m).

To produce a zero combination, y must start with r zeros. This leaves dimension m —r.

Why is this a “left nullspace™? The reason is that R” y = 0 can be transposed to
yTR=0". Now y7 is a row vector to the left of R. You see the y’s in equation (1)
multiplying the rows. This subspace came fourth, and some linear algebra books omit
it—but that misses the beauty of the whole subject.

In R" the row space and nullspace have dimensions r and n — r (adding 10 n),
In R™ the column space and left nullspace have dimensions r and m — r (total m).

So far this is proved for echelon matrices R. Figure 3.5 shows the same for A.
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C(A)
dim r

left

nullspace
AT y=0

nullspace
Ax=0

N(A)
dimension n—r

N(AT)
dimension m—r

Figure 3.5 The dimensions of the four fundamental subspaces (for R and for A).

The Four Subspaces for A

We have a small job still to do. The subspace dimensions for A are the same as
for R. The job is to explain why. Remember that those matrices are connected by an
invertible matrix E (the product of all the elementary matrices that reduce A to R):

EA=R and A=E"'R (2)

1 A has the same row space as K. Same dimension r and same basis.

Reason: Every row of A is a combination of the rows of R. Also every row of R
is a combination of the rows of A. In one direction the combinations are given by
E~', in the other direction by E. Elimination changes the rows, but the row spaces
are identical.

Since A has the same row space as R, we can choose the first r rows of R as a
basis. Or we could choose r suitable rows of the original A. They might not always
be the first r rows of A, because those could be dependent. The good r rows of A
are the ones that end up as pivot rows in R.

2 The column space of A has dimension r. For every matrix this is essential: The
number of independent columns equals the number of independent rows.

Wrong reason: “A and R have the same column space.” This is false. The columns
of R often end in zeros. The columns of A don’t often end in zeros. The column
spaces are different, but their dimensions are the same—equal to r.
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Right reason: The same combinations of the columns are zero, for A and K. Say that
another way: Ax = 0 exactly when Rx = 0. So the r independent columns match.

Conclusion The r pivot columns of A are a basis for irs column space.

3 A has the same nullspace as R. Same dimension n — r and same basis.
Reason: The elimination steps don’t change the solutions. The special solutions are
a basis for this nullspace. There are n — r free variables, so the dimension is n — r.
Notice that r 4+ (n — r) equals n:

(dimension of column space) + (dimension of nullspace) = dimension of R".

4  The left nullspace of A (the nullspace of AT) has dimension m —r.

Reason: AT is just as good a matrix as A. When we know the dimensions for every
A, we also know them for AT. Its column space was proved to have dimension r.
Since AT is n by m, the “whole space” is now R™. The counting rule for A was
r+(n —r) = n. The counting rule for AT is r + (m —r) = m. So the nullspace of
AT has dimension m — r. We now have all details of the main theorem:

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.
The nullspaces have dimensions n —r and m — r.

By concentrating on spaces of vectors, not on individual numbers or vectors, we get
these clean rules. You will soon take them for granted —eventually they begin to look
obvious. But if you write down an 11 by 17 matrix with 187 nonzero entries, we don’t
think most people would see why these facts are true:

dimension of C(A) = dimension of C(A")
dimension of C(A) + dimension of N(A) = 17.

Example 1 A=[1 2 3] has m=1 and n=3 and rank r =1,

The row space is a line in R?. The nullspace is the plane Ax = x| + 2x2 + 3x3 =0,
This plane has dimension 2 (which is 3 — 1). The dimensions add to 1 +2 = 3.

The columns of this 1 by 3 matrix are in R'! The column space is all of R'. The
left nullspace contains only the zero vector. The only solution to ATy =0 is y = 0,
the only combination of the row that gives the zero row. Thus N(AT) is Z, the zero
space with dimension 0 (which is m — r). In R™ the dimensions add to 1 +0 = 1.

I 2 3

Example 2 A:[] 5 3

] has m=2 with n=3 and rank r=1.

The row space is the same line through (1,2, 3). The nullspace is the same plane
x| + 2x» + 3x3 = 0. Their dimensions still add to 1 4+ 2 = 3.
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The columns are multiples of the first column (1, 1). But there is more than the
zero vector in the left nullspace. The first row minus the second row is the zero row.
Therefore ATy = 0 has the solution y = (1. =1). The column space and left nullspace
are perpendicular lines in R?. Their dimensions are 1 and 1, adding to 2:

column space = line through [:] left nullspace = line through Ii_:} :

If A has three equal rows, its rank is . What are two of the y’s in its left nullspace?
The y’s combine the rows to give the zero row.

Matrices of Rank One

That last example had rank r = | —and rank one matrices are special. We can describe
them all. You will see again that dimension of row space = dimension of column space.
When r = 1, every row i5 a multiple of the same row:

1 2 3 1
2 4 6 : 2| .

A= _3 —6 -9 equals _3 times [I 2 3].
0 0 0 0

A column times a row (4 by | times | by 3) produces a matrix (4 by 3). All rows are
multiples of the row (1,2, 3). All columns are multiples of the column (1, 2, -3, 0).
The row space is a line in R", and the column space is a line in R".

Every rank one matrix has the special form A = uv" = column times row,

The columns are multiples of u. The rows are multiples of v¥. The nullspace is the
plane perpendicular to v. (Ax = 0 means that u(v'x) =0 and then v'x =0.) It is
this perpendicularity of the subspaces that will be Part 2 of the Fundamental Theorem.

® REVIEW OF THE KEY IDEAS =

1. The r pivot rows of R are a basis for the row spaces of R and A (same space).
2. The r pivot columns of A (!) are a basis for its column space.

3. The n—r special solutions are a basis for the nullspaces of A and R (same space).
4. The last m — r rows of [ are a basis for the left nullspace of R.

5. The last m — r rows of E are a basis for the left nullspace of A.
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= WORKED EXAMPLES =

3.6 A Find bases and dimensions for all four fundamental subspaces if you know
that

1 0 0 1 3 0 5
A=l 3 1D 0 01 6 |=E'R
50 1 000 0

By changing only one of those numbers, change the dimensions of all four subspaces.

Solution  This matrix has pivots in columns 1 and 3. Its rank is r = 2.

Row space: Basis (1,3,0,5) and (0,0, 1,6) from R. Dimension 2.
Column space: Basis (1,2, 5) and (0, 1,0) from E~'. Dimension 2.
Nullspace: Basis (—3,1,0,0) and (-5,0, =6, 1) from K. Dimension 2.

Nullspace of AT Basis (=5.0, 1) from row 3 of E. Dimension 3 —2 =1,

We need to comment on that left nullspace N(AT), EA=R says that the last row
of E combines the three rows of A into the zero row of R. So that last row of E is
a basis vector for the left nullspace. If R had twe zero rows, then the last rwo rows
of E would be a basis for the left nullspace (which combines rows of A to give zero
Tows),

To change all these dimensions we need to change the rank r. The way to do
that is to change an entry (any entry) in the last row of R.

3.6 B Suppose you have to put four 1's into a 5 by 6 matrix (all other entries are
zero). Describe all the ways to make the dimension of its row space as small as pos-
sible. Describe all the ways to make the dimension of its column space as small as
possible. Describe all the ways to make the dimension of its nullspace as small as
possible. What are those smallest dimensions? What to do if you want the sum of the
dimensions of all four subspaces as small as possible?

Solution  The rank is 1 if the four 1's go into the same row, or into the same col-
umn, or into woe rows and two columns (so a;; = a;j = a;; = aj; = 1). Since the
column space and row space always have the same dimensions, this answers the first
two questions: Dimension 1.

The nullspace has its smallest possible dimension 6 — 4 = 2 when the rank is
r = 4. To achieve rank 4, the four 1's must go into four different rows and four
different columns. You can’t do anything about the sum r+(n—r)+r+(m—r) = n+m.
It will be 645 = 11 no matter how the 1's are placed. The sum is 11 even if there
aren’'t any 1’s...

If all the other entries of A are 2's instead of ()'s, how do these answers change?
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Problem Set 3.6

1 (a) 1If a7 by 9 matrix has rank 5, what are the dimensions of the four sub-
spaces? What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases for the four subspaces associated with A and B:

1 2 4 1 2 4
"’“[2 4 5} and H‘[z 5 a]‘

3  Find a basis for each of the four subspaces associated with

01 2 3 4 1 0 0|0 1 2 3 4
A=101 2 4 6|=|1 1 0|0 0 0 1 2
0 00 1 2 0 1 1 00 000

4  Construct a matrix with the required property or explain why this is impossible:
(a) Column space contains [i] [E], row space contains [} ].[2].

(b) Column space has basis [i] nullspace has basis ﬁ]

(c) Dimension of nullspace :‘l + dimension of left nullspace.
(d) Left nullspace contains [}]. row space contains [ ].

(e) Row space = column space, nullspace #£ left nullspace.

5 If V is the subspace spanned by (1,1, 1) and (2, 1,0), find a mawrix A that has
V as its row space and a matrix B that has V as its nullspace.

6 Without elimination, find dimensions and bases for the four subspaces for

] =[]

7 Suppose the 3 by 3 matrix A is invertible. Write down bases for the four sub-
spaces for A, and also for the 3 by 6 matrix B=[A A].

Qoo

3
0
I

=== I VY]
—_— 0
n b —

8  What are the dimensions of the four subspaces for A, B, and C, if [ is the 3 by
3 identity matrix and 0 is the 3 by 2 zero matrix?

I

.."1=[a‘I D] and Bz[ﬂT []T

] and C=[0].

9 Which subspaces are the same for these matrices of differemt sizes?
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A A A A
(a) [A] and [A] (b) [}J and I:A A]'
Prove that all three matrices have the same rank r.

If the entries of a 3 by 3 matrix are chosen randomly between 0 and 1, what are
the most likely dimensions of the four subspaces? What if the matrix is 3 by 57

(Important) A is an m by n matrix of rank r. Suppose there are right sides b for
which Ax = b has no selution.

{a) What are all inequalities (< or <) that must be true between m,n, and r?
(h) How do you know that ATy = 0 has solutions other than y = 0?

Construct a matrix with (1,0, 1) and (1, 2, 0) as a basis for its row space and its
column space. Why can't this be a basis for the row space and nullspace?

True or false:

(a) [If m =n then the row space of A equals the column space.
(b) The matrices A and —A share the same four subspaces.
(c) If A and B share the same four subspaces then A is a multiple of B.

Without computing A, find bases for the four fundamental subspaces:

1 0 0|1 2 3 4
A=|6 1 0|0 1 2 3].
9 8 1{]0 O 1 2

If you exchange the first two rows of A, which of the four subspaces stay the
same? If v = (1.2,3,4) is in the column space of A, write down a vector in
the column space of the new matrix.

Explain why » = (1,0, —1) cannot be a row of A and also be in the nullspace.

Describe the four subspaces of R¥ associated with

0 1 0 1 1 0
A=10 0 1 and f+A=1|0 1 1].
0 0 0 0o o0 1

(Left nullspace) Add the extra column & and reduce A to echelon form:
1 2 3 B 1 2 3 &
[A B]=|4 5 6 ba| — |0 -3 —6 by—4b ;
7 8 9 bs 0 0 0 by=2by+bh

A combination of the rows of A has produced the zero row. What combination is
it? (Look at b3 — 2b2 + by on the right side.) Which vectors are in the nullspace
of AT and which are in the nullspace of A?
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Following the method of Problem 18, reduce A to echelon form and look at zero
rows. The b column tells which combinations you have taken of the rows:

1 2 b
LE b 2 3 b
@ |3 4 b ® |5 5 p
2 s b

=From the b column after elimination. read off m — r basis vectors in the left
nullspace of A (combinations of rows that give zero).

{a) Describe all solutions to Ax = 0 if

I
A=|2
3

b=
-0 o
(= B =T 9
ook
=
o L =

(b) How many independent solutions are there to A’y = 07

(c) Give a basis for the column space of A.

Suppose A is the sum of two matrices of rank one: A = uv' +wz'.

ia) Which vectors span the column space of A?

(b) Which vectors span the row space of A7

{c) The rank is less than 2 if or if

(d) Compute A and its rank if k =2=(1,0.0) and v =w = (0,0, I).

Construct A = uv' 4+ wz' whose column space has basis (1,2,4), (2,2, 1) and
whose row space has basis (1,0,0), (0, 1, 1).

Without multiplying matrices, find bases for the row and column spaces of A:

1 2
walw 7[5 2 8]
3 112

How do you know from these shapes that A is not invertible?

ATy = d is solvable when the right side d is in which of the four subspaces?
The solution is unique when the contains only the zero vector.

True or false (with a reason or a counterexample):

(a) A and AT have the same number of pivots.

(b) A and AT have the same left nullspace.

(c) If the row space equals the column space then AT = A.

(d) If AT = —A then the row space of A equals the column space.
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(Rank of AB) If AB = C, the rows of C are combinations of the rows of .
So the rank of C is not greater than the rank of . Since BTAT = CT7, the
rank of C is also not greater than the rank of 3

If a, b, ¢ are given with a # 0, how would you choose d so that A = [:5] has
rank one? Find a basis for the row space and nullspace.

Find the ranks of the 8 by 8 checkerboard matrix B and chess matrix C:

10101010 r nb gk b anr
01010101 pPpPPPPPP
B=|10101010 and C= four zero rows
R N e L P PP P P P PP
01010101 r n b g k b n r

The numbers r,n, b, g, k, p are all different. Find bases for the row space and

left nullspace of B and C. Challenge problem: Find a basis for the nullspace
of C.

Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (A) = 2 but
neither side passed up a winning move?



ORTHOGONALITY

ORTHOGONALITY OF THE FOUR SUBSPACES = 4.1

Two vectors are orthogonal when their dot product is zero: v« w = O or v'w = 0. This
chapter moves up a level, from orthogonal vectors to orthogonal subspaces. Orthogo-
nal means the same as perpendicular.

Subspaces entered Chapter 3 with a specific purpose—to throw light on Ax = b.
Right away we needed the column space (for b) and the nullspace (for x). Then the
light turned onto AT, uncovering two more subspaces. Those four fundamental sub-
spaces reveal what a matrix really does.

A matrix multiplies a vector: A times x. At the first level this is only numbers.
At the second level Ax is a combination of column vectors. The third level shows sub-
spaces. But | don’t think you have seen the whole picture until you study Figure 4.1.
It fits the subspaces together, to show the hidden reality of A times x. The 90° angles
between subspaces are new—and we have to say what they mean.

The row space is perpendicular to the nullspace. Every row of A is perpen-
dicular to every solution of Ax = 0. That gives the 90° angle on the left side of the
figure. This perpendicularity of subspaces is Part 2 of the Fundamental Theorem of
Linear Algebra.

May we add a word about the left nullspace? It is never reached by Ax, so it
might seem useless. But when b is outside the column space—when we want to solve
Ax = b and can’t do it—then this nullspace of AT comes into its own. It contains
the error in the “least-squares” solution. That is the key application of linear algebra
in this chapter.

Part | of the Fundamental Theorem gave the dimensions of the subspaces. The
row and column spaces have the same dimension r (they are drawn the same size).
The two nullspaces have the remaining dimensions n — r and m — r. Now we will
show that the row space and nullspace are orthogonal subspaces inside R".

DEFINITION Two subspaces V and W of a vector space are orthogonal if every
vector v in V is perpendicular to every vector w in W:

v.w=0 or vVw=0 Jforall vin V and all w in W.

184
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dimension dimension

=r

nullspace

of AT
nullspace

of A

dimension
=Mm-=r

dimension
= H—r

Figure 4.1  Two pairs of orthogonal subspaces. Dimensions add to n and add to m.

Example 1 The floor of your room (extended to infinity) is a subspace V. The line
where two walls meet is a subspace W (one-dimensional). Those subspaces are orthog-
onal. Every vector up the meeting line is perpendicular to every vector in the floor. The
origin (0,0,0) is in the corner. We assume you don't live in a tent.

Example 2 Suppose V is still the floor but W is a wall (a two-dimensional space).
The wall and floor look like orthogonal subspaces but they are not! You can find vectors
in V and W that are not perpendicular. In fact a vector running along the bottom of the
wall is also in the floor. This vector is in both V and W —and it is not perpendicular
to itself.

When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular
to itself. It is v and it is w, so v"v = 0. This has to be the zero vector.

The crucial examples for linear algebra come from the fundamental subspaces.

Zero is the only point where the nullspace meets the row space. The spaces meet
at 90°.

4A Every vector x in the nullspace of A is perpendicular to every row of A, because
Ax = 0. The nullspace and row space are orthogonal subspaces.
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To see why x is perpendicular to the rows, look at Ax = 0. Each row multi-

plies x:
row | 0
Ax = : [1]= : |5 (1)
row m 0

The first equation says that row 1 is perpendicular to x. The last equation says that row
m is perpendicular to x. Every row has a zero dot product with x. Then x is perpen-
dicular to every combination of the rows. The whole row space C (AT) is orthogonal
to the whole nullspace N(A).

Here is a second proof of that orthogonality for readers who like matrix shorthand. The
vectors in the row space are combinations A"y of the rows. Take the dot product of
ATy with any x in the nullspace. These vectors are perpendicular:

ATy =AanTy =0Ty =0. (2)

We like the first proof. You can see those rows of A multiplying x to produce zeros
in equation (1), The second proof shows why A and AT are both in the Fundamental
Theorem. AT goes with vy and A goes with x. At the end we used Ax = 0.

Example 3 The rows of A are perpendicular to x = (1, 1, —1) in the nullspace:

1 43-4=0

1
1 3 4 0 :
Ax_[ ] 1 _[ﬂ] gives the dot products 54+2-7=0

32 7] 3

Now we turn to the other two subspaces. In this example, the column space is all
of R2. The nullspace of AT is only the zero vector. Those two subspaces are also
orthogonal.

4B Every vector y in the nullspace of A" is perpendicular to every column of A.
The left nullspace and the column space are orthogonal in R™.

Apply the original proof to A'. Its nullspace is orthogonal 1o its row space—and the
row space of AT is the column space of A. Q.E.D.
For a visual proof, look at ATy = 0. Each column of A multiplies y to give 0

(column 1)7 0
AT"I‘ — Falid .F —] iwld . [3}
(column n)" 0

The dot product of y with every column of A is zero. Then y in the left nullspace is
perpendicular to each column—and to the whole column space.
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Orthogonal Complements

Very Important The fundamental subspaces are more than just orthogonal (in pairs).
Their dimensions are also right. Two lines could be perpendicular in R?, but they could
not be the row space and nullspace of a 3 by 3 matrix. The lines have dimensions |
and |, adding to 2. The correct dimensions r and n — r must add to n = 3. The
fundamental subspaces have dimensions 2 and |, or 3 and (. The subspaces are not
only orthogonal, they are orthogonal complements.

DEFINITION The orthogonal complement of V contains every vector that is perpen-
dicular to V. This orthogonal subspace is denoted by V* (pronounced “V perp”).

By this definition, the nullspace is the orthogonal complement of the row space.
Every x that is perpendicular to the rows satisfies Ax = 0.

The reverse is also true (automatically). If v is orthogonal to the nullspace, it
must be in the row space. Otherwise we could add this v as an extra row of the matrix,
without changing its nullspace. The row space would grow, which breaks the law r +
(n — r) = n. We conclude that N(A)* is exactly the row space C(AT).

The left nullspace and column space are not only orthogonal in R™, they are also
orthogonal complements. Their dimensions add to the full dimension m.

Fundamental Theorem of Linear Algebra, Part 2

The nullspace is the orthogonal complement of the row space (in R").
The left nullspace is the orthogonal complement of the column space (in R™).

Part 1 gave the dimensions of the subspaces. Part 2 gives the 90° angles between
them. The point of “complements” is that every x can be split into a row space com-
ponent x, and a nullspace component x,. When A multiplies x = x, +x,,, Figure 4.2
shows what happens:

The nullspace component goes to zero: Ax, = 0.

The row space component goes to the column space: Ax, = Ax.

Every vector goes to the column space! Multiplying by A cannot do anything else.
But more than that: Every vector in the column space comes from one and only one
vector x, in the row space. Proof: If Ax, = Ax|, the difference x, — x| is in the
nullspace. It is also in the row space, where x; and x, came from. This difference
must be the zero vector, because the spaces are perpendicular. Therefore x, = x_.

There is an r by r invertible matrix hiding inside A, if we throw away the two
nullspaces. From the row space to the column space, A is invertible. The “pseudoin-
verse” will invert it in Section 7.4.

Example 4 Every diagonal matrix has an r by r invertible submatrix:

300 0 O 30
A=|0 5 0 0 0O contains [{] 5} ;
00 0 0 0

The rank is r = 2. The other eleven zeros are responsible for the nullspaces.
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Figure 4.2  The true action of A times x = x, +x,. Row space vector x, to column
space, nullspace vector x, to zero,

Section 7.4 will show how every A becomes a diagonal matrix, when we choose the
right bases for R" and R™. This Singular Value Decomposition is a part of the theory
that has become extremely important in applications.

Combining Bases from Subspaces

What follows are some valuable facts about bases. They were saved until now—when
we are ready to use them. After a week you have a clearer sense of what a basis is
(independent vectors that span the space). Normally we have to check both of these
properties. When the count is right, one property implies the other:

4C Any n linearly independent vectors in R must span R". They are a basis. Any
n vectors that span R" must be independent. They are a basis.

Starting with the correct number of vectors, one property of a basis produces the
other. This is true in any vector space, but we care most about R". When the vectors
go into the columns of an n by n square matrix A, here are the same two facts:
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4D If the n columns of A are independent, they span R". So Ax = b is solvable,
If the n columns span R", they are independent. So Ax = b has only one solution,

Uniqueness implies existence and existence implies uniqueness. Then A is invertible.

If there are no free variables (uniqueness), there must be n pivots. Then back sub-
stitution solves Ax = b (existence). Starting in the opposite direction, suppose Ax = b
can always be solved (existence of solutions). Then elimination produced no zero rows.
There are n pivots and no free variables. The nullspace contains only x = 0 (unique-
ness of solutions).

With a basis for the row space and a basis for the nullspace, we have r4(n—r) =n
vectors —the right number. Those n vectors are irlvdﬂpendl:nl.: Therefore they span R".
They are a basis:

Each x in R" is the sum x, + x, of a row space vector x, and a nullspace vector x,.

This confirms the splitting in Figure 4.2. It is the key point of orthogonal complements—
the dimensions add to » and all vectors are fully accounted for.

Example 5 For A=[1 I]=[1%239]. write any vector x as x, + x,.
(1,0,1,0) and (0, 1,0, 1) are a basis for the row space. (1.0, —1,0) and (0, 1,0, —1)

are a basis for the nullspace of A. Those four vectors are a basis for R*. Any x =
{(a, b,c,d) can be split into x, in the row space and x, in the nullspace:

1 0 1
a+ec |0 b+d |1 a—c| D b—d
+
1 0
0 1

0
I
7 |1 |T 7| o
0 <1

2

2

R TR

® REVIEW OF THE KEY IDEAS =

1.  Subspaces V and W are orthogonal if every v in V is orthogonal to every w
in W.

2. V and W are “orthogonal complements” if W contains all vectors perpendicular
to V (and vice versa). Inside R", the dimensions of V and W add to n.

3. The nullspace N(A) and the row space C (AT) are orthogonal complements, from
Ax = 0. Similarly N(AT) and C(A) are orthogonal complements.

2If a combination of the vectors gives xr + Xy = 0, then x, = —x, is in both subspaces. It is
orthogonal to itself and must be zero. All coefficients of the row space basis and nullspace basis must
be zero—which proves independence of the n vectors together,
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4. Any n independent vectors in R" will span R",

5. Every x in R" has a nullspace component x, and a row space component x,.

® WORKED EXAMPLES =

4.1 A Suppose § is a six-dimensional subspace of R”. What are the possible dimen-
sions of subspaces orthogonal to §7 What are the possible dimensions of the orthogonal
complement $§~ of §? What is the smallest possible size of a matrix A that has row
space S7 What is the shape of its nullspace matrix N7 How could you create a matrix
B with extra rows but the same row space? Compare the nullspace matrix for B with
the nullspace matrix for A.

Solution If § is six-dimensional in R®. subspaces orthogonal to § can have dimen-
sions 0, 1,2, 3. The orthogonal complement §* will be the largest orthogonal subspace,
with dimension 3. The smallest matrix A must have 9 columns and 6 rows (its rows
are a basis for the 6-dimensional row space §). Its nullspace matrix N will be 9 by
3, since its columns contain a basis for §*.

If row 7 of B is a combination of the six rows of A, then B has the same row
space as A. It also has the same nullspace matrix N. (The special solutions 5y, 52, 53
will be the same. Elimination will change row 7 of B to all zeros.)

4.1 B The equation x — 4y — 5z = 0 describes a plane P in R’ (actually a subspace).
The plane P is the nullspace N(A) of what 1 by 3 matrix A? Find a basis 5, 52 of special
solutions of x — 3y — 4z = () (these would be the columns of the nullspace matrix N).
Also find a basis for the line P that is perpendicular to P. Then split v = (6, 4, 5) into its
nullspace component v, in P and its row space component v, in P+,

Solution The equation x — 3y — 4z = 0 is Ax = 0 for the 1 by 3 matrix
A=][l -3 —4]. Columns 2 and 3 are free (no pivots). The special solutions
with free variables “1 and 0" are 5; = (3, 1.0) and 5; = (4,0, 1). The row space of
A (which is the line P*) certainly has basis z = (1, =3, —4). This is perpendicular to
51 and s; and their plane P.

To split v into v, + v, = (151 + €252) + 3z, solve for the numbers cy, c2, ca:

3 4 1 C 6 leads to c; =1, 2=1, ec3=—1
1 0 -3 o |=] 4 v, =851 +852=(7.1,1) isin P =N(A)
0 1 -4 €3 5 v, =—-z=(-1.3,4) isin P+ =C(AT).
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Problem Set 4.1

Questions 1-12 grow out of Figures 4.1 and 4.2.

Construct any 2 by 3 matrix of rank one. Copy Figure 4.1 and put one vector
in each subspace (two in the nullspace). Which vectors are orthogonal?

Redraw Figure 4.2 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R? is x, =

Construct a matrix with the required property or say why that is impossible:

(a) Column space contains L%] and [—E] nullspace contains [”

. 1 2 f 1
(b) Row space contains [_ﬂ and [-g] nullspace contains [t]
It ; T 1] = [n]
(c) Ar-[:} has a solution and A [H = g
(d) Every row is orthogonal to every column (A is not the zero matrix)

{e) Columns add up to a column of zeros, rows add to a row of 1’s.

If AB =0 then the columns of B are in the of A. The rows of A are in
the of B. Why can't A and B be 3 by 3 matrices of rank 2?

(a) If Ax = b has a solution and ATy = 0, then y is perpendicular to
(b) If ATy = ¢ has a solution and Ax = 0, then x is perpendicular to

This is a system of equations Ax = b with no solution:

x+2y+2z = 5
2x42y+3z = 5
Ix+4y+52 = 9

Find numbers yi, y2, v3 to multiply the equations so they add to 0 = 1. You have
found a vector y in which subspace? Its dot product y'b is 1.

Every system with no solution is like the one in Problem 6. There are numbers
Yiveoo o Vi that multiply the m equations so they add up to 0 = 1. This is called
Fredholm’s Alternative: Exactly one of these problems has a solution
Ax=b OR ATy=0 with y'b=1.

If b is not in the column space of A, it is not orthogonal to the nullspace of AT,

Multiply the equations x| —x2 = | and x2 —x3 = | and x; —x3 = | by numbers
¥i.¥2, v3 chosen so that the equations add up to 0 = 1.



192 Chapter 4 Orthogonality

10

1

12

In Figure 4.2, how do we know that Ax, is equal to Ax? How do we know that
this vector is in the column space? If A=[]1] and x =[}] what is x,?

If Ax is in the nullspace of AT then Ax = 0. Reason: Ax is also in the
of A and the spaces are . Conclusion: AT A has the same nullspace as A.

Suppose A is a symmetric matrix (AT = A).

(a) Why is its column space perpendicular to its nullspace?

(h) If Ax =0 and Az = 5z, which subspaces contain these “eigenvectors” x
and z?7 Symmetric matrices have perpendicular eigenvectors.

{Recommended) Draw Figure 4.2 to show each subspace correctly for

I 2 1 0
Au[3 6] and H-[3 U:|'

Find the pieces x, and x, and draw Figure 4.2 properly if

sofd §) = oefl}

Questions 13-23 are about orthogonal subspaces.

13

14

15

16

17

Put bases for the subspaces V and W into the columns of matrices V and W. Ex-
plain why the test for orthogonal subspaces can be written VT W = zero matrix.
This matches v"w = 0 for orthogonal vectors.

The floor V and the wall W are not orthogonal subspaces, because they share a
nonzero vector (along the line where they meet). No planes V and W in R? can
be orthogonal! Find a vector in the column spaces of both matrices:

1 2 5 4
A=|1 3 and B=1]|6 3

1 2 3 A
This will be a vector Ax and also BX. Think 3 by 4 with the matrix [A B].

Extend problem 14 to a p-dimensional subspace V and a g-dimensional subspace
W of R". What inequality on p+¢ guarantees that V intersects W in a nonzero
vector! These subspaces cannot be orthogonal.

Prove that every y in N(A") is perpendicular to every Ax in the column space,
using the matrix shorthand of equation (2). Start from ATy = 0.

If § is the subspace of R containing only the zero vector, what is §+7 If §
is spanned by (1.1, 1), what is $*7 If § is spanned by (2,0,0) and (0,0, 3),
what is §+7




18

19

20

21

22

23
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Suppose § only contains two vectors (1.5, 1) and (2, 2, 2) (not a subspace). Then
S+ is the nullspace of the matrix A= . §* is a subspace even if § is not.

Suppose L is a one-dimensional subspace (a line) in R*. Its orthogonal complement
L*isthe ____ perpendicular to L. Then (L) isa perpendicular to L*.
In fact (L1)* is the same as ,

Suppose V is the whole space R®. Then V* contains only the vector .
Then (V)L is . So (V)" is the same as

Suppose § is spanned by the vectors (1, 2,2, 3) and (1, 3, 3, 2). Find two vectors
that span $—. This is the same as solving Ax = 0 for which A?

If P is the plane of vectors in Rr* satisfying x| 4+ x2 + x3 4 x4 = (), write a basis
for PL. Construct a matrix that has P as its nullspace.

If a subspace § is contained in a subspace V, prove that §* contains V*.

Questions 24-30 are about perpendicular columns and rows.

24

25
26

27

28

29

30
31

Suppose an n by n matrix is invertible: AA~! = [. Then the first column of
A~ is orthogonal to the space spanned by which rows of A?

Find ATA if the columns of A are unit vectors, all mutually perpendicular.

Construct a 3 by 3 matrix A with no zero entries whose columns are mutually
perpendicular. Compute ATA. Why is it a diagonal matrix?

The lines 3x + y = b; and 6x + 2y = b, are . They are the same line
if . In that case (b, by) is perpendicular to the vector . The nullspace
of the matrix is the line 3x +y = . One particular vector in that nullspace
is

Why is each of these statements false?
(a) (1,1,1) is perpendicular to (1,1, —2) so the planes x + y +z = 0 and
x +y— 2z =0 are orthogonal subspaces.

(b) The subspace spanned by (1,1,0,0,0) and (0,0,0, 1, 1) is the orthogonal
complement of the subspace spanned by (1, —1,0,0,0) and (2, =2, 3,4, —4).

(c) If two subspaces meet only in the zero vector, the subspaces are orthogonal.

Find a matrix with v = (1, 2, 3) in the row space and column space. Find another
matrix with v in the nullspace and column space. Which pairs of subspaces can
v not be in?

Suppose Ais 3 by 4 and B is4 by 5 and AB = 0. Prove rank(A)+rank(B) < 4.

The command N = null{A) will produce a basis for the nullspace of A. Then
the command B = null(N") will produce a basis for the of A.
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PROJECTIONS = 4.2

May we start this section with two questions? (In addition to that one.) The first ques-
tion aims to show that projections are easy to visualize. The second question is about
“projection matrices™:

1 What are the projections of b = (2, 3,4) onto the z axis and the xy plane?

2 What matrices produce those projections onto a line and a plane?

When b is projected onto a line, its projection p is the part of b along that line.
If b is projected onto a plane, p is the part in that plane. The projection p is Pb.

There is a projection matrix P that multiplies b to give p. This section finds p
and P,

The projection onto the £ axis we call p;. The second projection drops straight down to
the xy plane. The picture in your mind should be Figure 4.3. Start with b = (2, 3, 4).
One projection gives p, = (0,0,4) and the other gives p, = (2,3,0). Those are the
parts of b along the z axis and in the xy plane.

The projection matrices P; and P; are 3 by 3. They multiply # with 3 compo-
nents to produce p with 3 components. Projection onto a line comes from a rank one
matrix. Projection onto a plane comes from a rank two matrix:

00 0 1 0 0
Onto the z axis: Pi=|0 0 0 Onto the xy plane: Po= |0 1 0
0 0 1 0o 0 0

P, picks out the z component of every vector. Py picks out the x and y components.
To find p; and p,, multiply b by Py and P> (small p for the vector, capital P for the
matrix that produces it):

00 0] [x 0 1 0 07 [x x
pr=Pb=10 0 0||y|[=|0] p=Pb=|0 1 0|]|y]|=|»
0 0 1]]z z 00 0f]: 0

In this case the projections Py and P, are perpendicular. The xy plane and the z axis
are orthogonal subspaces, like the floor of a room and the line between two walls.

Figure 4.3 The projections of b onto the z axis and the xy plane.
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More than that, the line and plane are orthogonal complements. Their dimensions add
to 1 + 2 = 3—every vector b in the whole space is the sum of its parts in the two
subspaces. The projections p, and p, are exactly those parts:

The vectors give p, + p, =b. The matrices give Py + P, = [. (1)

This is perfect. Our goal is reached—for this example. We have the same goal for any
line and any plane and any n-dimensional subspace. The object is to find the part p
in each subspace, and the projection matrix P that produces that part p = Pb. Every
subspace of R™ has its own m by m projection matrix. To compute P, we absolutely
need a good description of the subspace that it projects onto.

The best description of a subspace is a basis. We put the basis vectors into the
columns of A. Now we are projecting onto the column space of A! Certainly the z
axis is the column space of the 3 by | matrix A;. The xy plane is the column space
of A;. That plane is also the column space of A3 (a subspace has many bases):

0 1 0 1 2
A=|0 and A =10 1 and Az3=|2 3
1 0 o0 0 0

Our problem is to project onto the column space of any m by n matrix.
Start with a line (dimension n = 1). The matrix A has only one column. Call it a.

Projection Onto a Line

We are given a line through the origin, in the direction of @ = (ay,. . .,ay). Along
that line. we want the point p closest to b = (by,. . ., by). The key to projection
is orthogonality: The line from b to p is perpendicular to the vector a. This is the
dotted line marked e in Figure 4.4—which we now compute by algebra.

The projection p is some multiple of @. Call it p = ¥a = “x hat” times a. Our
first step is to compute this unknown number X. That will give the vector p. Then
from the formula for p, we read off the projection matrix P. These three steps will
lead to all projection matrices: find X, then find the vector p, then find the matrix P.

The dotted line b — p is b—Xa. It is perpendicular 10 @ —this will determine ¥.
Use the fact that two vectors are perpendicular when their dot product is zero:

- .
=
-1
=

a-(b—xa)=0 or a-b-—xa-a=0 or ?:a- = —_—, (2)
a-s

=

=1
il

=1

For vectors the multiplication @b is the same as a - b. Using the transpose is better,
because it applies also to matrices, (We will soon meet ATh.) Our formula for ¥
immediately gives the formula for p:
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Figure 4.4 The projection p, perpendicular to e, has length ||b] cosé.

4E The projection of b onto the line through a is the vector =xa=%"2gq

Special case |: If b = a then ¥ = 1. The projection of a onto a is itself.
Special case 2: If b is perpendicular to @ then a'h=0. The projection is p = 0.

Example 1 Project b= [ E] onto a = [i] to find p = ¥a in Figure 4.4.

Solution The number X is the ratio of a'b = 5 to a'a = 9. So the projection is
=§a. The error vector between b and p is € = b — p. Those vectors p and e will

add 1o b:
5 510 10 4 1 1
_ = =, — — and e=b-p=[-.—=,—=1].
P=3% (9 9 9) ’ P (9 9 9)

The error e should be perpendicular to @ = (1,2,2) and it is: e'a = g - % - % =0.
Look at the right triangle of b, p, and e. The vector b is split into two parts—its

component along the line is p. its perpendicular part is e. Those two sides of a right

triangle have length ||b|| cosé and ||| siné. Trigonometry matches the dot product:

T !
a'b . . llall libl cos @
P = ——a so its length is ﬂp[] =T

a'a
The dot product is a lot simpler than getting involved with cosé and the length of b.
The example has square roots in cosé = 5/34/3 and ||b]| = +/3. There are no square
roots in the projection p = ﬂa,

lall = |ibflcosé. (3)

Now comes the projection matrix. In the formula for p, what matrix is multi-
plying b? You can see it better if the number ¥ is on the right side of a:

T T
a' b

p=ax =a—— = Pb when the matrix is P8
a'a a'a
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P is a column times a row! The column is a, the row is @'. Then divide by the number
a'a. The projection matrix P is m by m, but its rank is one. We are projecting onto
a one-dimensional subspace, the line through a.

o
Example 2  Find the projection matrix P = E-g; onto the line through @ = {

Tl I

Solution Multiply column times row and divide by a'a = 9:

. 1 L2 2
p=2 _l2|[122]=2]|2 4 4
e 2 (2 4 4

This matrix projects any vector b onto @. Check p = Pb for the particular b = (1, 1, 1)
in Example 1:

! 1. 2 2 1 5
p=Pb=-12 4 4|1 |==|10]| which is correct.
912 4 4|1 10

If the vector a is doubled, the matrix P stays the same. It still projects onto the same
line. If the matrix is squared, P* equals P. Projecting a second time doesn’t change
anything, so P2 = P. The diagonal entries of P add up to %[i +444)=1

The matrix / — P should be a projection too. It produces the other side e of the
triangle—the perpendicular part of b. Note that (I — P)b equals b — p which is e.
When P projects onto one subspace, | — P projects onto the perpendicular subspace.
Here I — P projects onto the plane perpendicular to a.

Now we move beyond projection onto a line. Projecting onto an n-dimensional
subspace of R™ takes more effort. The crucial formulas will be collected in equa-
tions (5}~(6)~7). Basically you need to remember them.

Projection Onto a Subspace

Start with n vectors ay, ..., a, in R"™. Assume that these a's are linearly independent.
Problem: Find the combination X \a, + - - - + X,a, that is closest to a given vector b.
We are projecting each b in R™ onto the subspace spanned by the a’s.

With n = | (only one vector &) this is projection onto a line. The line is the col-
umn space of A, which has just one column. In general the matrix A has n columns
aj,...,ay. Their combinations in R™ are the vectors Ax in the column space. We
are looking for the particular combination p = AX (the projection) that is closest to
b. The hat over X indicates the best choice, to give the closest vector in the column
space. That choice is a'b/a"a when n = 1. For n > 1, the best X is to be found.

We solve this problem for an n-dimensional subspace in three steps: Find the
vector X, find the projection p = AX, find the matrix P.
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The key is in the geometry! The dotted line in Figure 4.5 goes from & to the
nearest point AX in the subspace. This error vector b — AX is perpendicular to the
subspace. The error b — Ax makes a right angle with all the vectors a,, ..., a,. That
gives the n equations we need to find X:

aj(b— A¥) =0 —a) —
: or - b—Ax|=|0|. (4)
al(b— AT) =0 —ay —

The matrix in those equations is AT, The n equations are exactly AT(b— AX) =0,

Rewrite AT(b— AX) = 0 in its famous form ATAX = ATh. This is the equation
for ¥, and the coefficient matrix is ATA. Now we can find ¥ and p and P:

4F The combination T4y + +-- + X,a, = AX that is closest to b comes from
AT(b—AF) =0 or ATAT = ATh. (5)

The symmetric matrix AT A is n by n. 1t is invertible if the a's are independent, The
solution is ¥ = (ATA)"'ATh. The projection of b onto the subspace is the vector

p=Ax = A(ATA) 'ATb. (6)
This formula shows the n by n projection matrix that produces p = FPb:
P=A(ATA)1AT, (7

Compare with projection onto a line, when the matrix A has only one column a:

. a'b a'b aa’

::E and p=aﬁ and P=aT—a'
Those formulas are identical with (5) and (6) and (7)! The number a'a becomes the
matrix ATA. When it is a number. we divide by it. When it is a matrix, we invert it.
The new formulas contain (ATA)~! instead of 1/a"a. The linear independence of the
columns ay, ..., a, will guarantee that this inverse matrix exists.

The key step was AT(b — AX) = 0. We used geometry (e is perpendicular to all

the a's). Linear algebra gives this “normal equation™ too, in a very quick way:

1.  Our subspace is the column space of A.

2.  The error vector b — Ax is perpendicular to that column space.

3.  Therefore b — AX is in the left nullspace. This means AT(b — AX) = 0.

The left nullspace is important in projections. This nullspace of AT contains the error

vector ¢ = b — Ax. The vector b is being split into the projection p and the error
¢ = b — p. Figure 4.5 shows the right triangle with sides p, e, and b.
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column

nTe:ﬂ

a{c =0

ATe=ATb-A¥) =0

column a-

Figure 4.5 The projection p is the nearest point to b in the column space of A.
The perpendicular error e must be in the nullspace of AT.

Example 3 If A = [H] and b:[E] find ¥ and p and P.

Solution Compute the square matrix ATA and also the vector ATh:
1 0
T, [1 11 I3 3 . _[1 11
AA_[I‘.}IE]]]_I:E'-S and Ab—ulz
1 2
Now solve the normal equation ATA¥ = ATb to find ¥

3 e L) o

The combination p = AX is the projection of b onto the column space of A:

T ] -

That solves the problem for one particular b. To solve it for every b, compute
the matrix P = A(ATA)"'AT. The determinant of ATA is 15-9 = 6: (ATA)™! is
easy. Then multiply A times (ATA)~! times AT to reach P:

s 2 -1

1 B |

AT ' ==| 2 73] ad P=2| 2 2 2]|. (10)
6—3 3 611 2 5
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Two checks on the calculation. First, the error e = (1, —2, 1) is perpendicular to both
columns (1.1, 1) and (0, 1, 2). Second, the final P times & = (6,0, 0) correctly gives
p = (5,2, —1). We must also have P = P, because a second projection doesn't
change the first projection.

Warning The matrix P = A(ATA)"'AT is deceptive. You might try to split (ATA)™!
into A~! times (AT)™!. If you make that mistake, and substitute it into P, you will
find P = AA~'(AT)"'AT. Apparently everything cancels. This looks like P = I, the
identity matrix. We want to say why this is wrong.

The matrix A is rectangular. It has no inverse matrix. We cannot split (ATA.)_'
into A~! times (AT)™! because there is no A~ in the first place.

In our experience, a problem that involves a rectangular matrix almost always
leads to ATA. We cannot split up its inverse, since A~" and (AT)~! don't exist. What
does exist is the inverse of the square matrix AT A. This fact is so crucial that we state
it clearly and give a proof.

4G ATA is invertible if and only if A has linearly independent columns.

Proof ATA is a square matrix (n by n). For every matrix A, we will now show that
AT A has the same nullspace as A. When the columns of A are linearly independent, its
nullspace contains only the zero vector. Then AT A, with this same nullspace, is invertible.
Let A be any matrix. If x is in its nullspace, then Ax = 0. Multiplying by AT
gives ATAx = 0. So x is also in the nullspace of AT A.
Now start with the nullspace of ATA. From AT Ax = 0 we must prove that Ax = 0.
We can't multiply by (AT)~!, which generally doesn’t exist. Just multiply by X

(xT)ATAx =0 or (Ax)T(Ax)=0 or [Ax|*=0.

The vector Ax has length zero. Therefore Ax = 0. Every vector x in one nullspace
is in the other nullspace. If A has dependent columns, so does ATA. If A has inde-
pendent columns, so does ATA. This is the good case:

When A has independent columns, AT A is square, symmetric, and invertible.

To repeat for emphasis: ATA is (n by m) times (m by n). It is square (n by n). It
is symmetric, because its transpose is (ATA)T = AT(AT)T which equals ATA. We
just proved that ATA is invertible—provided A has independent columns. Watch the
difference between dependent and independent columns:

AT A ATA AT A ATA

[110]{3_[14] [119]:2_[14]
: 2ol & 4 8 2 & )¢ 5 4 9

dependent  singular indep.  invertible
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Very brief summary To find the projection p = Xja;+- - -+X,@y, solve ATAT = ATh.
This gives ¥. The projection is AX and the error is ¢ = b— p = b— Ax. The projection
matrix P = A(ATA)"1AT gives p = Pb.

This matrix satisfies P2 = P. The distance from b to the subspace is |ell.

® REVIEW OF THE KEY IDEAS =

1.  The projection of b onto the line through a is p = aX = a(a'b/a’a).
The rank one projection matrix P = aa’ /a"a multiplies b to produce p.

Projecting b onto a subspace leaves ¢ = b — p perpendicular to the subspace.

I

When the columns of A are a basis, the equation ATA¥ = ATb leads to ¥ and
P= AX.

5. The projection matrix P = A(ATA)"'AT has PT = P and P? = P. Another
projection leaves p = Pb unchanged so P? = P.

® WORKED EXAMPLES =

4.2 A Project the vector b = (3,4, 4) onto the line through a = (2,2, 1) and then
onto the plane that also contains @* = (1,0,0). Check that the first error vector b — p
is perpendicular to a, and the second error vector b — p* is also perpendicular to a*.
Find the 3 by 3 projection matrix P onto that plane. Find a vector e* whose projection
onto the plane of @ and a* is the zero vector.

Solution  The projection of b = (3,4,4) onto the line through a = (2,2, 1) is 2a:

b'a 18
pP= a—TEﬂ'— ?{2.2.]]—[4,4.2}.
The error vector e = b — p = (—1,0, 2) is perpendicular to a. So p is correct.
The plane containing @ = (2,2, 1) and a* = (1,0,0) is the column space of A:

2 1 1 0 0
A=[2 0| ATa= [g f] (ATA)™! =é[_é '3] P=|0 8 4
1 0 0 4 2
Then p* = Pb = (3,4.8,24) and e* = b — p* = (0, —.8, 1.6) is perpendicular to

a and a*. This vector * is in the nullspace of P and its projection is zero! Note
Pi=P.
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4.2 B Suppose your pulse is measured at x = 70 beats per minute, then at x = 80,
then at x = 120. Those three equations Ax = b in one unknown have AT =[11 1]
and b = (70,80, 120)., The best X is the  of 70,80, 120. Use calculus and
projection:

1 Minimize E = (x — 70)* + (x — 80)> + (x — 120)* by solving dE /dx = 0.
2 Project b= (70, 80, 120) onto @ = (1,1, 1) to find ¥ = a"b/a"a.

In recursive least squares, a new fourth measurement 130 changes X,1q 10 Xpew.
Compute Tnew and verify the update formula new = Foig + 3(130 — T1q). Going
from 999 to 1000 measurements, Tpew = Xg|d + leibmm — Xold) would only need
Xold and the latest value bjppg. We don’t have to average all 1000 numbers!

Solution  The closest horizontal line to the heights 70, 80, 120 is the average X = 90:

70 4 80 + 120

Calculus : ‘;—E =2(x —70) + 2(x — 80) + 2(x — 120) = 0 gives ¥ = -
X ke

(1,1, 1)T(70,80,120) 70 + 80 + 120
(L1 DT, Ly 3

%
~ a'b
Projection: x =& =
a'a
ATAT = A"h is 1 by 1 because A has only one column (1, 1, 1). The new measure-

ment by = 130 adds a fourth equation and X is updated to 100, either by averaging
by, bz, b3, by or by recursively using the old average of by, bs, by:

- 70 4+ 80+ 120 + 130
Xnew = 3

1 _ 1
=100 is also Xgg + E{bq. — Xp1d) =90+ E(‘“})

The update from 999 to 1000 measurements shows the “gain matrix” {5 in a Kalman
filter multiplying the prediction error bpew — Xoid- Notice o = 535 — 59050
by+:--+boow bi+:+byg |

e = T 000 999 ' 1000 (b“’"" =

b1+--~+b999)
=5 ,

Problem Set 4.2

Questions 1-9 ask for projections onto lines. Also errors ¢ = b — p and matrices P.

1 Project the vector b onto the line through a. Check that e is perpendicular to a:

1
and a=|1 (by b=
1

—1
and a = -3
-1

(ay b=

bt bl
L
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Draw the projection of b onto @ and also compute it from p = xa:

o s[zl) wefi] @ o= o]

In Problem 1, find the projection matrix P = aa'/a'a onto the line through
each vector a. Verify in both cases that P? = P. Multiply Pb in each case to
compute the projection p.

Construct the projection matrices Py and P; onto the lines through the a’s in

Problem 2. Is it true that (P; + P»)* = Py + P>? This would be true if P, P> =0,

Compute the projection matrices aa'/a’a onto the lines through a; = (—1,2,2)
and @y = (2,2, —1). Multiply those projection matrices and explain why their
product Py P; is what it is.

Project b = (1,0, 0) onto the lines through @; and a@; in Problem 5 and also onto
a3 = (2, —1,2). Add up the three projections p, + p> + ps.

Continuing Problems 5-6, find the projection matrix Py onto a3 = (2, -1, 2).
Verify that P; + P+ 4+ Py = I. The basis ay, a3, az is orthogonal!

Pray
= a=g]
I=
Py Pyay ¢

Questions 5-6-7 Questions 8-9-10
Project the vector b = (1, 1) onto the lines through a; = (1,0) and a; = (1, 2).
Draw the projections p; and p, and add p; 4+ p;. The projections do not add
to b because the a’s are not orthogonal.

In Problem 8, the projection of b onto the plane of a; and a> will equal b. Find
P =A(ATA) AT for A = [ﬂl ,,3] S [IH _

Project a; = (1, 0) onto @2 = (1, 2). Then project the result back onto a@;. Draw
these projections and multiply the projection matrices Py P>: Is this a projection?

Questions 11-20 ask for projections, and projection matrices, onto subspaces.

1

Project b onto the column space of A by solving ATAX = ATh and p = AX:
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L 4 2 11 4
fa) A=|0 1| and b= |3 by A=|[1 1| and b= |4
0 0 - 0 1 6

Find e = b — p. It should be perpendicular to the columns of A.

12  Compute the projection matrices P; and P> onto the column spaces in Problem
11. Verify that Pyb gives the first projection p;. Also verify Py = P,

13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last
column removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of
A. What shape is the projection matrix P and what is P?

14 Suppose b equals 2 times the first column of A. What is the projection of b onto
the column space of A? Is P = [ for sure in this case? Compute p and P when
b=1(0,2,4) and the columns of A are (0, 1,2) and (1, 2,0).

15 If A is doubled, then P = 2A(4ATA)"'2AT. This is the same as A(ATA)~ 1 AT
The column space of 24 is the same as . Is X the same for A and 247

16 'What linear combination of (1,2, —1) and (1.0, 1) is closest to b= (2,1, 1}?

17 (Important) If P? = P show that (I — P)* =1 — P. When P projects onto the
column space of A, I — P projects onto the _

18 (a) If P is the 2 by 2 projection matrix onto the line through (1, 1), then / — P
is the projection matrix onto

(b) If P is the 3 by 3 projection matrix onto the line through (1, 1, 1), then
I — P is the projection matrix onto

19 To find the projection matrix onto the plane x — y — 2z = 0, choose two vectors
in that plane and make them the columns of A. The plane should be the column
space. Then compute P = AATA) AT,

20 To find the projection matrix P onto the same plane x — y—2z = 0, write down a
vector e that is perpendicular to that plane. Compute the projection @ = ee'/ele
and then P=1 - Q.

Questions 21-26 show that projection matrices satisfy P2 = P and PT = P.

21 Multiply the matrix P = A(ATA)"'AT by itself. Cancel to prove that P = P.
Explain why P(Pb) always equals Pb: The vector Pb is in the column space
50 its projection is

22  Prove that P = A(ATA)"'AT is symmetric by computing PT. Remember that
the inverse of a symmetric matrix is symmetric.

23 If A is square and invertible, the warning against splitting (ATA)~' does not
apply. Itis true that AA~Y(AT)"'AT = 1. When A is invertible, why is P = 1"
What is the error e
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The nullspace of AT is to the column space C(A). So if ATh = 0, the
projection of b onto C(A) should be p = . Check that P = A(ATA)"TAT

gives this answer.

The projection matrix P onto an n-dimensional subspace has rank r = n.
Reason: The projections Pb fill the subspace S. So S isthe  of P.

If an m by m matrix has A*> = A and its rank is m, prove that A = /.

The important fact in Theorem 4G is this: If ATAx = 0 then Ax = 0. The
vector Ax is in the nullspace of _ . Ax is always in the column space of
__. To be in both perpendicular spaces, Ax must be zero.

Use PT = P and P? = P to prove that the length squared of column 2 always
. . 2 _ 4 .4 , 4
equals the diagonal entry py;. This number is § = & + ¢ + 5 for

1 5 2 ~1
an 2 2 2
-1 2 5

If B has rank m (full row rank, independent rows) show that BB" is invertible.

(a) Find the projection matrix Pc onto the column space of A (after looking

closely at the matrix!)
3 6 6
o [ 4 8 8 ]

(b) Find the 3 by 3 projection matrix Pg onto the row space of A. Multiply
B = PrAPgr. Your answer B should be a little surprising—can you ex-
plain it?
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LEAST SQUARES APPROXIMATIONS = 4.3

It often happens that Ax = b has no solution. The usual reason is: too many equations.
The matrix has more rows than columns. There are more equations than unknowns (m
is greater than n). The n columns span a small part of m-dimensional space. Unless
all measurements are perfect, b is outside that column space. Elimination reaches an
impossible equation and stops. But these are real problems and they need an answer.

To repeat: We cannot always get the error e = b — Ax down to zero. When e is
zero, x 1s an exact solution to Ax = b. When the length of e is as small as possible,
X is a least squares solution. Our goal in this section is to compute X and use it.

The previous section emphasized p (the projection). This section emphasizes ¥
(the least squares solution). They are connected by p = AX. The fundamental equation
is still ATAT = ATh. Here is a short unofficial way to derive it:

When the original Ax = b has no solution, multiply by A" and solve ATAT = ATh.

Example 1 A crucial application of least squares is fitting a straight line to m points.
Start with three points: Find the closest line to the points (0, 6), (1,0), and (2,0).

No straight line goes through those points. We are asking for two numbers C and
D that satisfy three equations. The line is b = C + Dr. Here are the equations at
1=0,1,2 to match the given values b= 6,0, 0:

The first point is on the line b = C + Dr if C+D-0=6
The second point ison the lineb=C+ Dt if C+D-1=0
The third point is on the line b = C + Dt if C+D-2=0.

This 3 by 2 system has no solution; b = (6,0, 0) is not a combination of the columns
(1,1,1) and (0, 1, 2):

10 c 6
A=|1 1 .r=[ :l b= |0 Ax = b is not solvable.
D
1 2 0
The same numbers were in Example 3 in the last section. We computed ¥ = (5, —3).
Those numbers are the best C and D, so 5 — 3¢ is the best line for the 3 points.
In practical problems, there easily could be m = 100 points instead of m = 3.

They don’t exactly match any C + Dt. Our numbers 6,0, 0 exaggerate the error so
you can see it clearly.

Minimizing the Error

How do we make the error € = b — Ax as small as possible? This is an important
question with a beautiful answer. The best x (called ¥) can be found by geometry or
algebra or calculus:
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By geometry Every Ax lies in the plane of the columns (1.1, 1) and (0, I, 2). In that
plane, we look for the point closest to b. The nearest point is the projection p.

The best choice for Ax is p. The smallest possible error is € = & — p. The three
points at heights p = (py, p2. p3) do lie on a line, because p is in the column space.
Ax = p has the same solution X, the best choice for (C, D).

By algebra Every vector b splits into two parts. The part in the column space is p.
The perpendicular part in the left nullspace is e. There is an equation we cannot solve
(Ax = b). There is an equation we do solve (by removing e):

Ax =b=p+e isimpossible;  AX = p is solvable. (1)
The solution AX = p makes the error as small as possible, because for any x:
lAx — BII* = | Ax — pI* + lle]*. (2)

This is the law ¢ = a® + b* for a right triangle. The vector Ax — p in the column
space is perpendicular to e in the left nullspace. We reduce Ax — p to zero by choosing
x to be x. That leaves the smallest possible errors, namely e = (e}, £2, €3).

Notice what “smallest” means. The squared length of Ax — b is minimized:

The least squares solution ¥ makes E = ||Ax — b||* as small as possible.

By calculus Most functions are minimized by calculus! The graph bottoms out and
the derivative in every direction is zero. Here the error function to be minimized is a
sum of squares e% + f% + f% (the square of the error in each equation 1, 2. 3):

E=||Ax=bP=(C+D-0-62+(C+D-1)24+(C+D-2)2 (3)

The unknowns are C and D. With two unknowns there are two derivatives—both zero
at the minimum. They are “partial derivatives™ because dE /dC treats D as constant
and dE/AD treats C as constant:

dEfoC=2A0C+D-0-6) +2(C+D-1) +2C+D.2) =0
JE[AD=2(C+D-0-6)(0)+2(C+D-1){1)+2(C+ D-2)(2)=0.

dE /0D contains the extra factors 0, 1,2 from the chain rule. (The derivative of (4 +
5x)? is 2 times 4+ 5x times an extra 5.) In the C derivative the corresponding factors
are 1, 1, |, because C is always multiplied by 1. It is no accident that I, 1, 1 and 0,
1, 2 are the columns of A.
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Now cancel 2 from every term above and collect all C's and all D’s:

The C derivative 3& is zero: 3C +3D =6 3 3
This matrix [ ] isATA (4)
The D derivative 3% is zero: 3C +5D =0 33

These equations are identical with A" AX = A"b. The best C and D are the compo-
nents of X¥. The equations from calculus are the same as the “normal equations” from
linear algebra. These are the key equations of least squares:

The partial derivatives of |Ax — bl|* are zero when ATAT = A”b.

The solution is C = 5 and D = —=3. Therefore b = 5 — 31 is the best line—it comes
closest to the three points. At r = 0, 1, 2 this line goes through p = 5, 2, —1.
It could not go through b= 6, 0, 0. The errors are 1, —2, 1. This is the vector e!

Figure 4.6a shows the closest line. It misses by distances e, ez, e3 = 1, -2, 1.
Those are vertical distances. The least squares line minimizes the total squared error
E=ﬁ+%+¢

Figure 4.6  Best line and projection: Two pictures, same problem. The line has
heights p = (5,2, —1) with errors e = (1, =2, 1). The equations ATAX = ATh give
¥ = (5. —3). The best line is b = 5 — 3¢ and the projection is p = 5a; — 3a,.

Figure 4.6b shows the same problem in 3-dimensional space (bpe space). The
vector b is not in the column space of A. That is why we could not solve Ax = b
and put a line through the three points. The smallest possible error is the perpendicular
vector e. This is € = b — AX, the vector of errors (1, —2, 1) in the three equations—
and the distances from the best line, Behind both figures is the fundamental equation
ATAx = ATb.

Notice that the errors 1, =2, 1 add to zero. The error e = (e, €2, €3) is perpen-
dicular to the first column (1,1, 1) in A. The dot product gives e; +e3 +e3 = 0.
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The Big Picture

The key figure of this book shows the four subspaces and the true action of a matrix.
The vector x on the left side of Figure 4.2 went to b = Ax on the right side. In that
figure x was split into x, + x,. There were many solutions to Ax = b.

In this section the situation is just the opposite. There are no solutions to Ax = b.
Instead of splitting up x we are splitting up b. Figure 4.7 shows the big picture for
least squares. Instead of Ax = b we solve AXY = p. The error ¢ = b—p is unavoidable.

column space

Ax=p

Ax=b o
——————— not possible -~ =— % b=p+e
b not in column space \

0

Independent columns
No nullspace

Figure 4.7  The projection p = AX is closest to b, so ¥ minimizes E = [|b — Ax|?.

Notice how the nullspace N(A) is very small—just one point. With independent
columns, the only solution to Ax =0 is x = 0. Then AT A is invertible. The equation
ATAX = ATb fully determines the best vector ¥.

Chapter 7 will have the complete picture—all four subspaces included. Every x
splits into x, + x,,, and every b splits into p + e. The best solution is still X (or X,)
in the row space. We can't help e and we don’t want x, —this leaves AY = p.

Fitting a Straight Line

Fitting a line is the clearest application of least squares. It starts with m > 2 points—

hopefully near a straight line. At times 1y, ..., Im those points are at heights by, ..., by,.

Figure 4.6a shows the best line b = C 4+ Dt, which misses the points by vertical dis-

tances ey, ..., en. No line is perfect, and the least squares line minimizes E = :’f e
2

e

The first example in this section had three points. Now we allow m points (m
can be large). The two components of X are still C and D.

A line goes through the m points when we exactly solve Ax = b. Generally we
can’t do it. Two unknowns C and D determine a line, so A has only n = 2 columns.
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To fit the m points, we are trying to solve m equations (and we only want two!):

C+ Dy = by I {
1 = i1 I n

vy g BEMmmn oy a=ll Z. (5)
C+Brm=bm | Im

The column space is so thin that almost certainly b is outside of it. When b happens
to lie in the column space, the points happen to lie on a line. In that case b = p.
Then Ax = b is solvable and the errors are e = (0. ..., 0).

The closest line C + Dt has heights py, ..., pm with errors ey, ..., €.
ATAT = AVb will give T = (C, D). The errors are ¢; = b; — C = Di;.
Fitting points by a straight line is so important that we give the two equations

ATAX = ATb, once and for all. The two columns of A are independent (unless all
times f; are the same). So we turn to least squares and solve ATAY = ATh, The

“dot-product matrix™ ATA is 2 by 2:
Ll
l  sew 1 m 3
ATA = = ' 6
Eipe | 5 5 v

On the right side of the normal equation is the 2 by | vector ATh:

by
- | T | g Eb;‘
ATp = [fl i‘m] b: = [Ef;bi:l. (7)

In a specific problem, all these numbers are given. A formula for C and D is coming.

4H The line € + Dr which minimizes ] + -+ - +¢;, is determined by ATAX = ATb:
m 3 C 3
" £ = | 5 (8)
20 e | LB 2 tibi

The vertical errors at the m points on the line are the components of e = b — p. This
error vector (the residual) b — AX is perpendicular to the columns of A (geometry). It
is in the nullspace of AT (linear algebra). The best ¥ = (C, D) minimizes the total
error E, the sum of squares:

E(x) = |Ax = b|* = (C + Dty — b))* + -+ + (C + Dt — bm)*.
When calculus sets the derivatives dE /dC and dE/aD w zero, it produces 4H.
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Other least squares problems have more than two unknowns. Fitting by the best
parabola has n = 3 coefficients C, D, E (see below). In general we are fitting m data
points by n parameters xy,...,x,;. The matrix A has n columns and n = m. The
derivatives of ||Ax — b||* give the n equations ATAX = ATh. The derivative of a
square is linear—this is why the method of least squares is so popular.

Example 2 A has orthogonal columns when the measurement times ; add to zero.
Suppose b = 1,2,4 at times t = —2,0, 2. Those times add to zero. The dot product
with the other column 1, 1, | is zero:

C+D{-2) =1 1 =2 c 1
C+ D{0) =2 or Ax=1|1 0 [D] = |2
C+ D(2) =4 1 2 4

Look at the matrix ATA in the least squares equation for ¥

N A8

Main point: Now ATA is diagonal. We can solve separately for C = % and D = g.
The zeros in AT A are dot products of perpendicular columns in A. The diagonal matrix
ATA, with entries m = 3 and 1] +t5 417 = 8, is virtually as good as the identity matrix.

Orthogonal columns are so helpful that it is worth moving the time origin to
produce them. To do that, subtract away the average time 1 = (1} + - + I,)/m.
The shifted times 7; = t; — 7 add to zero. With the columns now orthogonal, ATA is
diagonal. Its entries are m and T} +---+7,2. The best C and D have direct formulas:

bi4--+b byTy+ -+ buT,
=_Lj_-___m i D= WA R o m

E G A
m Ti 4.+ T}

(9)

The best line is C + DT or C + D(t —1). The time shift that makes ATA diagonal
is an example of the Gram-Schmidt process: orthogonalize the columns in advance.

Fitting by a Parabola

If we throw a ball, it would be crazy to fit the path by a straight line. A parabola
b = C + Dt + Et* allows the ball to go up and come down again (b is the height at
time ¢). The actual path is not a perfect parabola, but the whole theory of projectiles
starts with that approximation.

When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated.
The distance contains a quadratic term %grz, (Galileo’s point was that the stone’s mass
is not involved.) Without that term we could never send a satellite into the right or-
bit. But even with a nonlinear function like %, the unknowns C, D, E appear linearly.
Choosing the best parabola is still a problem in linear algebra.
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Prablem Fit heights by, . ... by at times 1. ..., tm by a parabola b = C + Dt + Et2.

With m = 3 points, the m equations for an exact fit are generally unsolvable:

C + D + Etf = b |
has the m by 3 matrix A=]: : |, (l0)

2 1 e £2
C+Dl’m+El'm:hm m

Least squares The best parabola chooses ¥ = (C, D, E) to satisfy the three normal
equations ATAY = ATbh.

May [ ask you to convert this to a problem of projection? The column space
of A has dimension . The projection of b is p = AX, which combines the
three columns using the coefficients C, D, E. The error at the first data point is ) =
by —=C=Dn— Er] The total squared error is E‘ + . If you prefer to minimize
by calculus, take the partial derivatives of E wuh rcspect o § ,

These three derivatives will be zero when X = (C, D, E) solves the 3 by 3 system t}f
equations .

Section 8.5 has more least squares applications. The big one is Fourier series—
approximating functions instead of vectors. The error to be minimized changes from a
sum e + -+ + e, to an integral. We will find the straight line closest to f(x).

Example 3 For a parabola b = C + Dt + Er? 1o go through the three heights b =
6,0,0 when r =0, 1,2, the equations are

C+D-Q+E-0*=6
C+D-1+E-12=0 (11)
C+D-24E-22=0.

This is Ax = b. We can solve it exactly. Three data points give three equations and a
square matrix. The solution is x = (C, D, E) = (6, =9, 3). The parabola through the
three points in Figure 4.8a is b =6 — 91 + 31,

What does this mean for projection? The matrix has three columns, which span
the whole space R®. The projection matrix is the identity matrix! The projection of b
is b. The error is zero. We didn’t need ATA¥ = ATb, because we solved Ax = b. Of
course we could multiply by AT, but there is no reason to do it.

Figure 4.8a also shows a fourth point by at time t4. If that falls on the parabola,
the new Ax = b (four equations) is still solvable. When the fourth point is not on the
parabola, we turn to ATAX = ATh. Will the least squares parabola stay the same, with
all the error at the fourth poimt? Not likely!

The smallest error vector (), €1, €3, €4) is perpendicular to (1, 1, 1, 1), the first
column of A. Least squares balances out the four errors, and they add to zero.
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A 2
b=6-=9+3 is in RY

(=0 =}

Figure 4.8 From Example 3: An exact fit of the parabola through three points means
p=~5 and e = 0. The fourth point will require least squares.

® REVIEW OF THE KEY IDEAS =

1. The least squares solution ¥ minimizes E = ||Ax — b||>. This is the sum of
squares of the errors in the m equations (m > n).

The best ¥ comes from the normal equations ATAT = ATbh.
To fit m points by a line b = C + Dr, the two normal equations give C and D.

4.  The heights of the best line are p = (py, ..., pm). The vertical distances to the
data points are the errors e = (e, ..., ey).

5. If we try to fit m points by a combination of n < m functions, the m equations
are generally unsolvable. The n normal equations give the least squares solution.

= WORKED EXAMPLES =

4.3 A Start with nine measurements by to bg, all zero, at times t = 1,...,9. The
tenth measurement byp = 40 is an outlier. Find the best horizontal line v = C 1o fit the
ten points (1,0),(2,0),....(9,0), (10, 40) using three measures for the error E: (1)

Least squares ef + - - + 7, (2) Least maximum error |emax| (3) Least sum of errors
ler] + - - + lerol

Then find the least squares straight line C + Dr through those ten points. What
happens to C and D if you multiply the b; by 3 and then add 30 to get bpew =
(30, 30,...,150)? What is the best line if you multiply the times r; = 1,..., 10 by
2 and then add 10 to get mew = 12, 14,... , 307

Solution
erage C =

—

1) The least squares fit to 0,0, ... ,0,40 by a horizontal line is the av-
= 4. (2) The least maximum error requires C = 20, halfway between

Si&
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0 and 40. (3) The least sum requires C = 0 (!!). The sum of errors 9|C| + |40 — C]|
would increase if C moves up from zero.

The least sum comes from the median measurement (the median of 0, ... ,0,40
is zero), Changing the best v = C = byedian increases half the errors and decreases
half. Many statisticians feel that the least squares solution is too heavily influenced by
outliers like 519 = 40, and they prefer least sum. But the equations become nonlinear.

The least squares straight line C 4 D1 requires ATA and AThwitht =1,..., 10:

AM:["’ EIL]Z[H} 55] A«.-b:{gb‘-]z[dﬂ]

Yot et 55 385 3 b 400

Those come from equation (9). Then ATAT = ATh gives C = —8 and D = 24/11.
Linearity allows us to rescale the measurements & = (0,0, ... ,40). Multplying b by
3 will multiply C and D by 3. Adding 30 to all b; will add 30 to C.

Multiplying the times ¢ by 2 will divide D by 2 (so the line reaches the same
heights at the new times). Adding 10 to all times will replace r by t — 10. The new
line C+ D{’-‘f—g} reaches the same heights at r = 12, 14, ... , 30 {with the same errors)
that it previously did at r = 1,2,...,10. In linear algebra language, these matrices
Agld and Apew have the same column space (why?) so no change in the projection:

I EFEAEAEE FT M E 4 % 1 8 £ 4 E P
1 2345678910 12 14 16 1B 20 22 24 26 28 30
4.3 B Find the parabola C + Dt + Et® that comes closest (least squares error) to
the values b = (0,0, 1,0,0) at the times ¢+t = =2, —1,0,1, 2. First write down the
five equations Ax = b in three unknowns x = (C, D, E) for a parabola to go through
the five points. No solution because no such parabola exists. Solve Ax = b by least

squares (using ATAX = ATb).

I would predict that D = 0. Why should the best parabola be symmetric around
t =07 In ATAX = ATb, equation 2 for D should uncouple from equations 1 and 3.

Solution  The five equations Ax = b and the 3 by 3 matrix ATA are

C+D(-2)+ E(-2*=0 1 -2 4
C+D(-1)+E(=1)!=0 ] =¥ 1 5 0 10
C+D O+ E =0 A=|1 00 ATA=| 0 10 0
C+D (H+E (V=0 S O 10 0 34
C+D MH+E D=0 ] 2 4

Those zeros in AT A mean that column 2 of A is orthogonal to columns 1 and 3. We
see this directly in A (because the times —2, —1,0, 1, 2 are symmetric). The best C, D, E
in the parabola C + Dr + Er* come from ATAY = ATb. and equation 2 for D is un-
coupled:

34 17
5 0 10 c ! C=%=1
0 10 0 D |=]|0 leads to D =0 as predicted
10 0 34 E 0 0 _ 1

e
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The symmetry of 1's uncoupled equation 2. The symmetry of & = (0,0, 1,0,0) made
its right side zero. Symmetric inputs produced a symmetric parabola _-1,_-; - -5:1.
Column 3 can be orthogonalized by subtracting its projection (2, 2, 2, 2, 2) onto col-
umn 1:

1 =2 2 0
1 =1 =1 C+2E 0
Anew Xnew = b is | 0o -2 D = | tNhﬂi:ldﬁcuI:i:;m
1 1 -1 E 0
1 2 2 0
5 0 0 C +2E |
(Afew Anew) Xnew = Apjenb is 0 10 0 D -1 o0
0 0 14 E —2

All equations are now uncoupled! Apew has orthogonal columns. Immediately 14E =
~2and E = —§ and D = 0. Then C +2E = { gives C = { + 7 = 4 as before.
ATA becomes easy when the work of orthogonalization (which is Gram-Schmidt) is
done first,

Problem Set 4.3

Problems 1-11 use four data points b = (0, 8, 8, 20) to bring out the key ideas.

1 With b = 0,8, 8,20 at ¢+ = 0,1,3.4, set up and solve the normal equations
ATAT = ATh. For the best straight line in Figure 4.9a, find its four heights p;
and four errors ¢;. What is the minimum value E = ef +e_3 + e_% - e}?

2 (Line C + Dt does go through p's) With b = (0, 8, 8,20 at times r = 0, 1, 3, 4,
write down the four equations Ax = b (unsolvable). Change the measurements
to p=1,5,13,17 and find an exact solution to AX = p.

3  Check that e = b — p = (-1, 3, -5, 3) is perpendicular to both columns of A.
What is the shortest distance |e| from b to the column space of A?

4  (By calculus) Write down E = ||Ax —b||* as a sum of four squares—the last one
is (C + 4D — 20). Find the derivative equations 3£ /3C =0 and dE/3D = 0.
Divide by 2 to obtain the normal equations ATA¥ = ATh,

5 Find the height C of the best horizontal line to fit b = (0, & 8, 20). An exact fit
would solve the unsolvable equations C =0, C =8, C = 8§, C = 20. Find the
4 by 1 matrix A in these equations and solve ATAT = ATh. Draw the horizontal
line at height ¥ = C and the four errors in e.



216 Chapter 4 Orthogonality

6  Project b = (0, 8, 8, 20) onto the line through a = (1,1, 1, 1). Find ¥ = a"b/a"a
and the projection p = Ya. Check that e = b— p is perpendicular to a, and find
the shortest distance ||e|| from b to the line through a.

7 Find the closest line b = Dt, through the origin, to the same four points. An
exact fit would solve D-0=0,D.1=8,D.-3=8,D-4 = 20. Find the
4 by 1 matrix and solve ATAY = ATh. Redraw Figure 4.9a showing the best
line b = Dr and the e's.

8  Project b = (0,8, 8, 20) onto the line through @ = (0,1,3,4). Find ¥ = D
and p = xa. The best C in Problems 56 and the best D in Problems 7-8 do
not agree with the best (C, D) in Problems 1-4. That is because (1, 1,1, 1) and
(0,1, 3, 4) are perpendicular.

9 For the closest parabola b= C + Dt + E 2 1o the same four points, write down
the unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the
three normal equations AT A¥ = ATh (solution not required). In Figure 4.9a you
are now fitting a parabola to 4 points —what is happening in Figure 4.9b7

10  For the closest cubic b = C + Dt + Ei* + Fr® to the same four points, write
down the four equations Ax = b. Solve them by elimination. In Figure 4.9a this
cubic now goes exactly through the points. What are p and 7

11 The average of the four times is T= 41{!‘]+ 1 +3+4) =2. The average of the
four b's is b= J(0+8 +8+20) = 9.

(a) Verify that the best line goes through the center point (’I-F} = (2,9).
(b) Explain why C + Dt = b comes from the first equation in ATAT = AT,

Questions 12-16 introduce basic ideas of statistics—the foundation for least squares.

by=20
b=(0, 8, 8, 20)
\\.
t.‘\
\\
p=Ca+Da,
by=by=8
(0, 1,3,4)
p: ﬂ]'_"“tlrli ”
b, =0 & } | 'r |

Figure 4.9 Problems 1-11: The closest line C + Dr matches Ca; + Da; in R
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12 (Recommended) This problem projects b = (by, ..., by) onto the line through
a=(l,...,1). We solve m equations ax = b in | unknown (by least squares).

r

(a) Solve a'ax =a'b to show that ¥ is the mean (the average) of the b's.

(b) Find ¢ = b — a7 and the variance |e]> and the standard deviation |e||.

(¢} The horizontal line b = 3 is closest to b = (1,2,6). Check that p =
(3, 3, 3) is perpendicular to e and find the matrix P.

13 First assumption behind least squares: Each measurement error has mean zero.
Multiply the 8 error vectors b— Ax = (%1, £1, 1) by (ATA)~'AT to show that
the 8 vectors ¥ — x also average to zero. The estimate X is unbiased.

14  Second assumption behind least squares: The m errors e; are independent with
variance o>, so the average of (b — Ax)(b — Ax)" is o>/. Multiply on the lefi
by (ATA)"'AT and on the right by A(ATA)~" to show that the average of (¥ —
x)(x —x)" is a2(ATA)~'. This is the covariance matrix for the error in X.

15 A doctor takes 4 readings of your heart rate. The best solutionto x = by, ..., =
by is the average x of by, ..., by. The matrix A is a column of 1's. Problem 14
gives the expected error (¥ — x)? as a2(ATA)™! = . By averaging, the
variance drops from o? to o‘lfrl,

16  If you know the average Xo of 9 numbers by, ..., by, how can you quickly find
the average Xjp with one more number bjp 7 The idea of recursive least squares
is to avoid adding 10 numbers. What coefficient correctly gives Xio?

-
K

Xo = q5(b1 + - + bio).

-~ I
X0 = b0 +

Questions 17-25 give more practice with ¥ and p and e. Note Question 26.

17 Write down three equations for the line b = C + Dr to go through b = 7 at
t=—=l.b=Tatr=1,and b =21 at t = 2. Find the least squares solution
X = (C, D) and draw the closest line.

18 Find the projection p = AX in Problem 17. This gives the three heights of the

closest line. Show that the error vector is € = (2, —6, 4).

19  Suppose the measurements at r = —1, 1, 2 are the errors 2, —6, 4 in Problem 18.
Compute X and the closest line to these new measurements. Explain the answer:
b=(2,—6,4) is perpendicular to _____ so the projection is p = 0.

20 Suppose the measurements at = —1,1,2 are b = (5, 13, 17). Compute X and
the closest line and e. The error is e = 0 because this b is

21 Which of the four subspaces contains the error vector e? Which contains p?
Which contains x? What is the nullspace of A?

22 Find the best line C+ Dr to fit b=4,2,-1,0,0 at times 1 = -2, -1,0,1, 2,
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23

yL

25

26

27

(Distance between lines) The points P = (x, x, x) are on a line through (1, 1, 1)
and Q = (y. 3y, —1) are on another line. Choose x and y to minimize the squared
distance | P — Q.

Is the error vector e orthogonal to b or p or e or ¥7 Show that |le]|* equals e'h
which equals b'b — pTh. This is the smallest total error E.

The derivatives of ||Ax||* with respect to the variables xi, ..., x, fill the vector
2ATAx. The derivatives of 2b" Ax fill the vector 2ATh. So the derivatives of
|Ax — b|* are zero when

What condition on (t), by), (f2, b2), (13, b3) puts those three points onto a straight
line? A column space answer is: (by, b2, b3) must be a combination of (1, 1, 1)
and (1), 2, 13). Try to reach a specific equation connecting the 's and b’s. |
should have thought of this question sooner!

Find the plane that gives the best fit to the 4 values b = (0, 1, 3, 4) at the corners
(1,0) and (0, 1) and (—1,0) and (0, —1) of a square. The equations C + Dx +
Ey = b at those 4 points are Ax = b with 3 unknowns x = (C, D, E). At the
center (0,0) of the square, show that C 4+ Dx + Ey = average of the b's.
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ORTHOGONAL BASES AND GRAM-SCHMIDT = 4.4

This section has two goals. The first is to see how orthogonality can make calculations
simpler. Dot products are zero—so A' A becomes a diagonal matrix. The second goal
is to construct orthogonal vectors. We will pick combinations of the original vectors
to produce right angles. Those original vectors are the columns of A, probably nor
orthogonal. The orthogonal vectors will be the columns of a new matrix ().

You know from Chapter 3 what a basis consists of —independent vectors that span
the space. The basis vectors could meet at any angle (except 0° and 180°). But every
time we visualize axes, they are perpendicular. In our imagination, the coordinate axes
are practically always orthogonal. This simplifies the picture and it greatly simplifies
the computations.

The vectors ¢, ....q, are orthogonal when their dot products ¢, - ¢, are zero.

More exactly ¢ g ; =0 whenever i # j. With one more step—just divide each vector
by its length—the vectors become orthogonal unit vectors. Their lengths are all |.
Then the basis is called orthonormal.

DEFINITION The vectors gy, ....q, are orthonormal if

0 wheni # ;j (orthogonal vectors)
1 wheni=j (unitvectors: ||g;||=1)
A matrix with orthonormal columns is assigned the special letter (.

'?rT'?J =

The matrix Q is easy to work with because Q7 Q = I. This repeats in matrix
language that the columns g,...,q, are orthonormal. It is equation (1) below, and
{ is not required to be square.

When Q is square, 0" Q = I means that QT = QO : transpose = inverse.

41 A matrix Q with orthonormal columns satisfies QY Q = I:

 ghetop.ot 3 1 0 v O

: T ULFE 4T o e o
o'o = 42 g 4 4 |=|. . . .|=1. ()

. e~ o e

=R 00 -+ 1

When row i of @7 multiplies column j of Q. the dot product is q;rq ;. Off the diagonal
(i # j) that dot product is zero by orthogonality. On the diagonal (i = j) the unit
vectors give ¢7¢q; = llg;I* = 1.
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If the columns are only orthogonal (not unit vectors), then Q7@ is a diagonal
matrix (not the identity matrix). We wouldn’t use the letter Q. But this matrix is
almost as good. The important thing is orthogonality —then it is easy to produce unit
vectors.

To repeat: Q' Q = I even when Q is rectangular. In that case Q7 is only an
inverse from the left. For square matrices we also have QQ" = I, so Q7 is the two-
sided inverse of 0. The rows of a square Q are orthonormal like the columns. The
inverse is the transpose. In this square case we call Q an orthogonal matrix.’

Here are three examples of orthogonal matrices—rotation and permutation and
reflection. The quickest test is to check oTo=1.

Example 1 (Rotation) Q rotates every vector in the plane through the angle #:

Q:[E‘(}SH‘ —sinﬂ] wd QT':Q_J:[ cos @ sin{?]_

sinf cos# —sinf  cosf

The columns of Q are orthogonal (take their dot product). They are unit vectors be-
cause sin® # 4 cos? @ = 1. Those columns give an orthonormal basis for the plane R,
The standard basis vectors i and j are rotated through @ (see Figure 4.10a).

Q! rotates vectors back through —6. It agrees with Q7, because the cosine of
—# is the cosine of #, and sin(—0) = —sinf. We have Q"Q =17 and QQT = I.

Example 2 (Permutation) These matrices change the order to (v, z, x) and (y, x):

2] = [G)-E]

All columns of these Qs are unit vectors (their lengths are obviously 1). They are also
orthogonal (the 1's appear in different places). The inverse of a permutation matrix is
its transpose. The inverse puts the components back into their original order:

1 0
0 1
00

= =

P e e

0 0 1 ¥ x 0 110y S
Inverse = transpose: 1 00 z2l=|>» and [I g] [;]=[‘]
0 1 0f]x Z g

Every permutation matrix is an orthogonal matrix.

Example 3 (Reflection) If u is any unit vector, set ¢ = / — 2uu'. Notice that
uu" is a matrix while #"u is the number ||u[® = 1. Then Q" and Q' both equal Q:

QT=I—2HIT=Q and Q'Q=1 — duu" + dun"uu" = 1. (2)

24Orthonormal matrix™ would have been a befter name for (), but it’s not wsed. Any matrix with
orthonormal columns has the letter @, but we only call it an orthogonal matriy when it is square.
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Reflection matrices / — 2uu” are symmetric and also orthogonal. If you square them,
you get the identity matrix: Q% = Q7(Q = I. Reflecting twice through a mirror brings
back the original. Notice #"u = 1 inside 4uu"uu" in equation (2),

As examples choose two unit vectors, u = (1,0) and then u = {lf«./i -l,fﬁ}.
Compute 2uu’ (column times row) and subtract from / to get Q:

ei=i=2fgir ol=[ T e eamr=zl 3 75]= [ o]

Q) reflects (1, 0) across the v axis to (—1,0). Every vector (x, y) goes into its image
{(—x, v), and the v axis is the mirror:

o s [ 4[]

¥ ¥

Q3 is reflection across the 45° line. Every (x, y) goes to (y, x)—this was the permu-
tation in Example 2. A vector like (3, 3) doesn’t move when you exchange 3 and 3—it
is on the mirror line. Figure 4.10b shows the 45° mirror.

Rotations preserve the length of a vector. So do reflections. So do permutations.
So does multiplication by any orthogonal matrix—lengths and angles don’t change.

4) If Q has orthonormal columns (Q" Q = I), it leaves lengths unchanged:

1@x| = |lx|l for every vector x. (3)

@ also preserves dot products: (Qx)"(Qy) =x"TQTQy =x"y. Justuse Q70 = 1!

Figure 4.10  Rotation by Q = [§ ~%] and reflection across 45° by Q = [} ]].
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Proof ||Qx|® equals |lx||> because (Qx)T(Qx) = xTQ'Qx = xTIx = x'x
Orthogonal matrices are excellent for computations — numbers can never grow too large
when lengths of vectors are fixed. Good computer codes use Q's as much as possible.
That makes them numerically stable.

Projections Using Orthogonal Bases: (0 Replaces A

This chapter is about projections onto subspaces. We developed the equations for x
and p and P. When the columns of A were a basis for the subspace. all formulas
involved ATA. The entries of ATA are the dot products a'a;.

Suppose the basis vectors are actually orthonormal. The a’s become ¢’s. Then
AT A simplifies to 0"Q = I. Look at the improvements in ¥ and p and P. Instead
of @TQ we print a blank for the identity matrix:

=0 and p=0F and P=0Q or. (4)
The least squares solution of Qx = bis¥ = Q"b. The projection matrixis P = Q Q".

There are no matrices to invert. This is the point of an orthonormal basis. The best
X = Q"b just has dot products of b with the rows of QT, which are the ¢’s:

- q - qib
X = : b|= : {dot products)
— ga — q,b

We have n separate |-dimensional projections. The “coupling matrix” or “correlation
matrix” ATA is now QTQ = [. There is no coupling. Here is p = Q%:

| | ?ﬁrb
Projection p =|q; - q,|| i |=qqb)+ --+q,q,b). (5
’ | 1 qlb

Important case: When (0 is square and m = n, the subspace is the whole space.
Then Q7 = Q" and ¥ = Qb is the same as x = O~ 'b. The solution is exact! The
projection of b onto the whole space is b itself. In this case P = QQ' = I.

You may think that projection onto the whole space is not worth mentioning. But
when p = b, our formula assembles b out of its 1-dimensional projections, If g, ..., G,
is an orthonormal basis for the whole space, so ( is square, then every b is the sum
of its components along the g’s:

b=gq,(q]b)+q2(q1b) +- - +q,(q.b). (6)

That is QQ7 = /. It is the foundation of Fourier series and all the great “transforms™
of applied mathematics. They break vectors or functions into perpendicular pieces. Then
by adding the pieces, the inverse transform puts the function back together.




4.4 Orhogonal Bases and Gram-Schmidt 223

|
!
|
I
]
o

P
onto AR
plane

Figure 4.11  First project & onto the line through a and find B as b— p. Then project
¢ onto the AB plane and find C as ¢ — p. Then divide by ||A], | B, and ||C]||.

Example 4 The columns of this matrix (0 are orthonormal vectors ¢, ¢-, §;:

-1 2 2 -1
Q=1%| 2 =1 2| has first column ¢, =| 3
2 2 -1 2

3

The separate projections of b= (0,0, 1) onto g, and g, and g are
q1(gib)=3q, and ¢:(q1b) =3q> and qs(qib) = —igs.

The sum of the first two is the projection of b onto the plane of g, and g,. The sum
of all three is the projection of b onto the whole space —which 15 b itself:

. B 0
M +ig— =5 4-2-2|=|0]|=0b
44441 |

The Gram-Schmidt Process

The point of this section is that “orthogonal is good." Projections and least squares
always involve AT A. When this matrix becomes QT Q = I, the inverse is no problem.
The one-dimensional projections are uncoupled. The best ¥ is QTh (n separate dot
products). For this to be true, we had to say “If the vectors are orthonormal.”
Now we find a way to create orthonormal vectors.

Start with three independent vectors a, b, e. We intend to construct three orthog-
onal vectors A, B, C. Then (at the end is easiest) we divide A, B, C by their lengths.
That produces three orthonormal vectors g, = A/||All, g, = B/|B|. g = C/|C]|.

Gram-5chmidt Begin by choosing A = a. This first direction is accepted. The next
direction B must be perpendicular to A. Start with b and subtract its projection along
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A. This leaves the perpendicular part, which is the orthogonal vector B:

ATh
Gram-Schmidt iden B=5b- f"’r: A, (7

A and B are orthogonal in Figure 4.11. Take the dot product with A to verify that
ATB = ATh — ATb = 0. This vector B is what we have called the error vector e,
perpendicular to A. Notice that B in equation (7) is not zero (otherwise @ and b would
be dependent). The directions A and B are now set.

The third direction starts with ¢. This is not a combination of A and B (because
¢ is not a combination of @ and b). But most likely ¢ is not perpendicular to A and
B. So subtract off its components in those two directions to get C:

Ale B'c
C=c¢ .=tT.4A BTEE' (8)
This is the one and only idea of the Gram-Schmidt process. Subtract from every new
vector its projections in the directions already set. That idea is repeated at every step.”
If we also had a fourth vector d, we would subtract its projections onto A, B, C to
get . At the end. divide the orthogonal vectors A, B, C., D by their lengths. The
resulting vectors ¢, §,, 3. g4 are orthonormal.

Example 5 Suppose the independent non-orthogonal vectors a, b, ¢ are

1 2 3
a=|-—1 and b= 0 and c¢=|-3
0 -2 3

Then A = a has ATA = 2. Subtract from b its projection along A = (1, —1,0):
1
A=b-3A=| 1
-2

ATh

B=bh— ——
ATA

Check: ATB =0 as required. Now subtract two projections from ¢ to get C:

Check: € = (1,1,1) is perpendicular to A and B. Finally convert A, B, C to unit
vectors (length 1, orthonormal). The lengths of A, B, € are +/2 and +/6 and /3.
Divide by those lengths, for an orthonormal basis:

nE g |3 W E
g=—|-1 and g, = — 1 and g;=—4 | |
i V2 0 L \-"ﬁ i, 4 \-ﬁ |

Usually A, B, C contain fractions. Almost always ¢, g., g3 contain square roots.

2| think Gram had the idea. 1 don't really know where Schmidt came in.
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The Factorization A = OR

We started with a matrix A, whose columns were a, b, ¢. We ended with a matrix Q,
whose columns are q,. ¢,. ¢;. How are those matrices related? Since the vectors a, b, ¢
are combinations of the ¢’s (and vice versa), there must be a third matrix connecting
At Q. Call t R.

The first step was g, = a/||a|| (other vectors not involved). The second step was
equation (7), where b is a combination of A and B. At that stage C and g5 were not
involved. This non-involvement of later vectors is the key point of Gram-Schmidt:

. The vectors @ and A and g are all along a single line.
*  The vectors a,b and A, B and g, g, are all in the same plane.
- The vectorsa. b, cand A, B, C and q,, §,. g5 are in one subspace (dimension 3).

Al every step ay, ..., a; are combinations of g,,..., g,. Later ¢’s are not involved.
The connecting matrix R is triangular, and we have A = OR:

gla qib gjc
a b c|l=|q ¢ 44 gib gle| or A=QR (9)
qic

A = QR is Gram-Schmidt in a nutshell. Multiply by QT to see why R = QT A.

4K (Gram-Schmidt) From independent vectors ay. ..., a,. Gram-Schmidt constructs
orthonormal vectors ¢, ....q,. The matrices with these columns satisfy A = QR.
Then R = QVA is triangular because later ¢'s are orthogonal 1o earlier a's.

Here are the a's and ¢’s from the example. The i, j entry of R = QT A is row i
of QT times column j of A. This is the dot product of g; with a;:

1 2 3 /2 V6 13 [V2 V2 V18
A=|-1 0 3|=]|-1/42 1/6 1/3]] 0 V6 —qﬁ}:@R.
0 -2 3 0 -2/v6 1/3]JLO0 o0 V3

The lengths of A, B, C are the numbers +/2, v/6, +/3 on the diagonal of R. Because of
the square roots, @R looks less beautiful than LU. Both factorizations are absolutely
central to calculations in linear algebra.

Any m by n matrix A with independent columns can be factored into QR. The
m by n matrix Q has orthonormal columns, and the square matrix R is upper triangular
with positive diagonal. We must not forget why this is useful for least squares: AT A
equals RY QY QR = RTR. The least squares equation ATAZ = ATh simplifies to

RTRs=R"0" or Rx=0"b (10)
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Instead of solving Ax = b, which is impossible, we solve R¥ = Q7b by back substitu-
tion—which is very fast. The real cost is the mn® multiplications in the Gram-Schmidt
process, which are needed to construct the orthogonal Q and the triangular R.

Here is an informal code. It executes equations (11) and (12), for k = | then k = 2
and eventually & = n. Equation (11) normalizes to unit vectors: Fork=1,..., n
m 172 it
o i .
Fig = ﬂ'-') and gik=— for i=1,....m (1
Ea)" = -
Equation (12) subtracts from a; its projection onto g;: For j =k +1...., n
i
rkj =E:Ma,-,- and aij =ajj—qiere; for i=1,....m. (12)

i=1
Starting from a. b, ¢ = @, a2, a3 this code will construct q,, B, ¢, C, ¢3:
1 g =ai/|la] in{11)
2 B=a—(qlayg, and C" =as;—(q]as)g, in (12)
3 g.=B/IB| in(1])
4 C=C"—(qiC*)g,in (12)
5 gq3=C/|C| in(11)

Equation (12) subtracts off projections as soon as the new vector g, is found. This
change to “subtract one projection at a tume” is called modified Gram-Schmidt. 1t is
numerically more stable than equation (8) which subtracts all projections at once,

® REVIEW OF THE KEY IDEAS =
1. If the orthonormal vectors g, .... g, are the columns of Q. then q}"q ;=0 and
q'q; =1 translate into Q7Q = 1.
2. If Q is square (an orthogonal matrix) then 0" = Q0.
3. The length of Qx equals the length of x: ||Qx| = |x]l.
The projection onto the column space spanned by the ¢'s is P = QQ7.

If Q is square then P =/ and every b=gq,(g]b) + - + g, (g} b).

oo e

Gram-Schmidt produces orthonormal vectors g, ¢-. g5 from independent a, b, ¢.
In matrix form this is the factorization A = QR = (orthogonal Q)(triangular R).
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= WORKED EXAMPLES =

44 A Add two more columns with all entries 1 or —1, so the columns of this 4 by 4
“Hadamard matrix” are orthogonal. How do you turn H into an orthogonal matrix Q7

and 0=

X
1 x
X
X

HoW NN

Why can’t a 5 by 5 matrix have orthogonal columns of 1's and —1's? Actually the
next possible size is 8 by 8, constructed from four blocks:

H H] is a Hadamard matrix with orthogonal

The block matri Hy =
€ DIOCK malrix fig [H‘ —-H columns. What is the product Hér Hg?

The projection of b = (6,0, 0, 2) onto the first column of H is p; =(2,2,2,2)
and the projection onto the second column is p, = (1,1, —1, —1). What is the pro-
jection p; » of b onto the 2-dimensional space spanned by the first two columns, and
why?

Solution Columns 3 and 4 of this H could be multiplied by —1 or exchanged:

E A A I

1 1 =1 H
H= I has orthogonal columns. Q = = has orthonormal columns.
1

|
-1 1 -1
-1 -1 1
Dividing by 2 gives unit vectors in Q. Orthogonality for 5 by 5 is impossible because
the dot product of columns would have five 1's and/or —1's and could not add to zero.
The 8 by 8 matrix Hy does have orthogonal columns (of length +/B). Then Qg will
be Hg/+/8:

BT [H. HY|[H H]|_[2d"H 0 ] _[81 0
8= |HT —HT||H -H|T| 0 2HTH|T|O 81
When columns are orthogonal, we can project (6,0,0,2) onto (1,1.1.1) and

(1,1,—1,—1) and add:

Prﬂjﬂctiﬂ‘n FI.Z = F' +P_‘_|‘ = {212|212}+{]r I. _11“]} = {3f3l I-- !-L

This is the value of orthogonal columns. A quick proof of p;, = p, + p; is 1o
check that columns 1 and 2 (call them a; and a;) are perpendicular to the error e =

b—p, - py

T T T

ah asb ab

e=b- ——a - .rz ay and afe:arb—T'—aTm:D and also ale =0.
Eld| ﬂzﬂz alﬁ[

So p,+ p, is in the space of a; and a3, and its error e is perpendicular to that space.
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The Gram-Schmidt process on those orthogonal columns a; and a; would be

happy with their directions. It would only divide by their lengths. Bur if @) and a;
are not orthogonal, the projection p » is not generally p,+ p,. For example, if b = a,
then py=b and p;, =b but p; #0.

Problem Set 4.4

Problems 1-12 are about orthogonal vectors and orthogonal matrices.

1

10

Are these pairs of vectors orthonormal or only orthogonal or only independent?

w [oJm[] ® [§Jm[5] @ [We]me[me]

Change the second vector when necessary to produce orthonormal vectors.

The vectors (2, 2, —1) and (=1, 2, 2) are orthogonal. Divide them by their lengths
to find orthonormal vectors g, and g,. Put those into the columns of @ and mul-
tiply Q7 Q and QQ".

(a) If A has three orthogonal columns each of length 4, what is ATA?
(b) If A has three orthogonal columns of lengths 1,2, 3, what is ATA?

Give an example of each of the following:

(a) A matrix Q that has orthonormal columns but QQT # /.
{b) Two orthogonal vectors that are not linearly independent.

(¢} An orthonormal basis for R*, where every component is § or —3.
Find two orthogonal vectors in the plane x+ v+ 2z = (. Make them orthonormal.

If ¢y and Q> are orthogonal matrices, show that their product @) Q2 is also an
orthogonal matrix. (Use Q"Q = 1)

If @ has orthonormal columns, what is the least squares solution X to Qx = b?

If ¢, and g, are orthonormal vectors in R®, what combination ¢+ qs
is closest to a given vector b?

(a) Compute P = QQ7 when ¢, = (.8,.6,0) and ¢, = (—.6, .8,0). Verify
that P2 = P,

(b) Prove that always (QQ")(QQ") = QQ" by using Q"Q = /. Then P =
QQ" is the projection matrix onto the column space of Q.

Orthonormal vectors are automatically linearly independent. Two proofs:
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(a) Vector proof: When ¢1q, + c2g, + cigy = 0, what dot product leads to
¢y =07 Similarly ¢2 =0 and ¢3 = 0. Thus the ¢'s are independent.

(b) Matrix proof: Show that Qx = 0 leads to x = 0. Since Q may be rectan-
gular, you can use Q7 but not Q.

{a) Find orthonormal vectors ¢, and g, in the plane of @ = (1,3,4.5,7) and
b=(-6,680,8).

{b) Which vector in this plane is closest to (1,0,0,0,0)?

If @y, a>,as is a basis for R°, any vector b can be written as

X]
b = xja; + x2a; + x3a;3 or a) a2 a; x|=0b
X3

(a) Suppose the a’s are orthonormal. Show that x) = adlrb.
(b) Suppose the a’s are orthogonal. Show that 1, = a?b;’a?a;,
(c) If the a’s are independent, x; is the first component of ~ times b,

Problems 13-25 are about the Gram-Schmidt process and A = OR.

13

14

15

16

17

What multiple of @ = [ ] | should be subtracted from b = [3] to make the result
B orthogonal to a? Sketch a figure to show a, b, and B.

Complete the Gram-Schmidt process in Problem 13 by computing ¢, = a/|la||
and ¢, = B/||B| and factoring into QR:

[: 3]‘["‘ ‘“MHEH n;rl]‘

(a)  Find orthonormal vectors ¢,. ¢5. g5 such that . ¢+ span the column space of

(b)  Which of the four fundamental subspaces contains g7
(c) Solve Ax = (1,2,7) by least squares.

What multiple of @ = (4.5, 2, 2) is closest to b = (1,2,0,0)? Find orthonormal
vectors ¢, and g, in the plane of a and b.

Find the projection of b onto the line through a:

1 1
a=|1 and b= |3 and p="7 and e=b—p="7"
1 5

Compute the orthonormal vectors ¢, = a/|la|| and g, = e/||e|l.
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18

19

20

21

22

23

24

(Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, ¢:
a=(1.-1,00) b=1(0,1,-1,0) c=1{0.0,1,-1).
A, B,C and a, b, ¢ are bases for the vectors perpendicular to d = (1,1, 1, 1).

If A= QR then ATA = RTR = triangular times _ triangular.
Gram-Schmidr on A corresponds to elimination on ATA. Compare the pivots
for ATA with [la]]* =3 and [le]* =8 in Problem 17:

11

A=]1 3 and. WA l2 22
| s 9 35

True or false (give an example in either case):

(a) Q' is an orthogonal matrix when Q is an orthogonal matrix.
(b) If Q@ (3 by 2) has orthonormal columns then ||Qx|| always equals |lx|.

Find an orthonormal basis for the column space of A:

-2 —4

0 -3

A= | and b= 3
3

1
!
1
I 0
Then compute the projection of b onto that column space.
Find orthogonal vectors A, B. C by Gram-Schmidt from

I | |
a=|1 and b= |-—1 and ¢= |0
2 0 4

Find q,.q,. g, (orthonormal) as combinations of a, b, ¢ (independent columns).
Then write A as QR:

(a) Find a basis for the subspace S in R* spanned by all solutions of

ok
I
o e
W S
oo

X +xr+x3—xg =0,

(b) Find a basis for the orthogonal complement S+,
(cy Findd,inSand b; in St sothat by +ba=b=1(1.1.1,1).
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25 If ad — be = 0, the entries in A = QR are

a —c|[a*+¢2 ab+ed
[H b] c d 0 ad — be
c d| [a? + 2 fa? + o2 '

Write A = QR when a, b,c,d =2,1,1,1 and also 1,1, 1, 1. Which entry of R
becomes zero when the columns are dependent and Gram-Schmidt breaks down?

Problems 26-29 use the QR code in equations (11-12). It executes Gram-Schmidt.
26 Show why C (found via C* in the steps after (12)) is equal to C in equation (8).

27  Equation (8) subtracts from ¢ its components along A and B. Why not subtract
the components along @ and along b?

28 Write a working code and apply ittoa = (2,2, —-1), b= (0, =3,3), ¢ = (1,0,0).
What are the g's?

29 Where are the mn? multiplications in equations (11) and (12)?
Problems 30-35 involve orthogonal matrices that are special.

30 The first four wavelets are in the columns of this wavelet matrix W:

1 1 2 0
wolll 1 =v2 0
211 =1 0 V2
1 -1 0 -2

What is special about the columns? Find the inverse wavelet transform W'
31 (a) Choose ¢ so that {0 is an orthogonal matrix:

1 -1 -1 =1
£ R T [
@=c]_, i =1

=1 =1 =1l |

(b) Change the first row and column to all 1's and fill in another orthogonal

0.

32  Project b = (1,1,1,1) onto the first column in Problem 31(a). Then project b
onto the plane of the first two columns.

33 If w is a unit vector, then Q¢ = I — 2uu" is a Householder reflection matrix
(Example 3). Find Q) from u = (0,1) and Q; from u = (0, v2/2. JEIZ}.
Draw the reflections when Q) and Q> multiply (x, ¥) and (x, v, z).



232

34

35

36
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Q=1 —2uu" is a reflection matrix when u'u = 1.

{a) Show that Qu = —u. The mirror is perpendicular to u.
(b) Find Qv when u"v = 0. The mirror contains v. It reflects to itself.

(MATLAB) Factor [Q, R]=qri{A) for A =eye(4)—diag([]1 1 1], —1). Can
you renormalize the orthogonal columns of @ to get nice integer components?

Find all matrices that are both orthogonal and lower triangular.



DETERMINANTS

THE PROPERTIES OF DETERMINANTS = 5.1

The determinant of a square maitrix is a single number. That number contains an amaz-
ing amount of information about the matrix. It tells immediately whether the matrix
is invertible. The determinant is zero when the matrix has no inverse. When A is
invertible, the determinant of A~! is 1/(det A). If det A =2 thendetA~' = % In fact
the determinant leads to a formula for every entry in A=,

This is one use for determinants—to find formulas for inverse matrices and pivots
and solutions A~'b. For a matrix of numbers, we seldom use those formulas. (Or
rather, we use elimination as the quickest way to the answer.) For a matrix with entries
a, b, e, d, its determinant shows how A~ changes as A changes:

[a b = d —b
A_[-:' d] has inverse A _ud-h-‘:[—t' a]' (1)

Multiply those matrices to get /. The determinant of A is ad — bc. When det A = 0,
we are asked to divide by zero and we can’t—then A has no inverse. (The rows are
parallel when a/c = b/d. This gives ad = be and a zero determinant.) Dependent
rows lead to det A = 0.

The determinant is also connected to the pivots. For a 2 by 2 matrix the pivots
are a and d — (¢/a)b. The product of the pivots is the determinant:

a(d—fh)=ad—bc which is det A.
i

After a row exchange the pivots are ¢ and b — (a/c)d. Those pivots multiply to give
be — ad. The row exchange reversed the sign of the determinant.
Looking ahead The determinant of an n by n matrix can be found in three ways:

1 Multiply the n pivots (times | or —1). This is the pivot formula.
2 Add up n! terms (times | or —1). This is the “big" formula.
3 Combine n smaller determinants (times | or —1). This is the cofactor formula.

233
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You see that plus or minus signs—the decisions between | and —1—play a big part in
determinants. That comes from the following rule for n by n matrices:

The determinant changes sign when two rows (or two columns) are exchanged.

The identity matrix has determinant 4-1. Exchange two rows and det P = —1. Ex-
change two more rows and the new permutation has det P = +1. Half of all permu-
tations are even (det P = 1) and half are odd (det P = —1). Starting from /. half of
the P’s involve an even number of exchanges and half require an odd number. In the
2 by 2 case, ad has a plus sign and bc has minus—coming from the row exchange:

1 0 0 1
Y | IR L

The other essential rule is linearity—but a warning comes first. Linearity does
not mean that det{(A + B) = det A + det B. This is absolutely false. That kind of
linearity is not even true when A = [ and B = I. The false rule would say that
det2/ =1+ 1 = 2. The true rule is det 2/ = 2". Determinants are multiplied by 2"
{(not just by 2) when matrices are multiplied by 2.

We don’t intend to define the determinant by its formulas. It is better to start
with its properties —sign reversal and linearity. The properties are simple (Section 5.1).
They prepare for the formulas (Section 5.2). Then come the applications, including
these three:

(1) Determinants give A~' and A~'b (this formula is called Cramer’s Rule).
(2) When the edges of a box are the rows of A, the volume is |det Al.

(3) The numbers A for which A — A/ is singular and det(A — A/) = 0 are the eigen-
values of A. This is the most important application and it fills Chapter 6.

The Properties of the Determinant

There are three basic properties (rules 1, 2, 3). By using those rules we can compute
the determinant of any square matrix A. This number is written in two ways, det A
and |A|. Notice: Brackets for the matrix, straight bars for its determinant. When A
is @ 2 by 2 matrix, the three properties lead to the answer we expect:

a b

The determinant of [f ”] is S

d

‘=ad—hr.

We will check each rule against this 2 by 2 formula, but do not forget: The rules apply
to any n by n matrix. When we prove that properties 4-10 follow from 1-3, the proof
must apply to all square matrices.

Property 1 (the easiest rule) matches the determinant of / with the volume of a unit cube.
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1 The determinant of the n by n identity mairix is 1.
1
‘:1 and e =]
|

1 0
0 1

2 The determinant changes sign when two rows are exchanged (sign reversal):
¢ d‘ -

__ub
b_.

d
Because of this rule, we can find det P for any permutation matrix. Just exchange rows
of I until you reach P. Then det P = +1 for an even number of row exchanges and

det P = —1 for an odd number.
The third rule has to make the big jump to the determinants of all matrices.

Check: {both sides equal be — ad).

3 Thedeterminant is a linear function of each row separately (all other rows stay fixed).
If the first row is multiplied by 7, the determinant is multiplied by r. If first rows are added,
determinants are added. This rule only applies when the other rows do not change! Notice
how ¢ and d stay the same:

ta th|  |a b|

f A |
l:i‘lI (€ @

multiply row 1 by any number f:

a+a b+

add row | of A o row 1 of A" ’ d

||I
= | | =
{

In the first case. both sides are rad —the. Then t factors out. In the second case, both
sides are ad + a'd — bc — b'c. These rules still apply when A is n by n, and the last
n — | rows don’t change. May we emphasize rule 3 with numbers:

5 Q90 I 0 0 1 2 3 1 0 0 0 2 s
0 1 0)j=5|0 1 0 and |0 1 O|=]0 1 O|+(0 1 0O}.
0 0 1 o o0 1 0 0 1 0 0 1 0 0 1

By itself, rule 3 does not say what any of those determinants are. But with rule 1, the
first determinant is 5 (and the second is 1).

Combining multiplication and addition, we get any linear combination in the first
row: t(row | of A) + r'(row | of A"). With this combined row, the determinant is ¢
times det A plus ¢’ times det A". The other rows must stay the same.

This rule does not mean that det 2/ = 2det /. To obtain 2/ we have to multiply
both rows by 2, and the factor 2 comes out both times:

2 0 r 0
o 2 0 1

-5
i

=22=4 and =12,

This is just like area and volume. Expand a rectangle by 2 and its area increases by 4.
Expand an n-dimensional box by r and its volume increases by ¢". The connection is
no accident—we will see how determinants equal volumes.
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Pay special attention to rules 1-3. They completely determine the number det A —
but for a big matrix that fact is not obvious. We could stop here to find a formula
for n by n determinants. It would be a little complicated —we prefer to go gradually.
Instead we write down other properties which follow directly from the first three. These
extra rules make determinants much easier to work with.

4 If two rows of A are equal, then det A = 0.

a b

Check 2 by 2: b

-0

Rule 4 follows from rule 2. (Remember we must use the rules and not the 2 by 2
formula.) Exchange the two equal rows. The determinant D is supposed to change
sign. But also D has to stay the same, because the matrix is not changed. The only
number with —D = D is D = 0—this must be the determinant. (Note: In Boolean
algebra the reasoning fails, because —1 = 1. Then D is defined by rules 1, 3, 4.)

A matrix with two equal rows has no inverse. Rule 4 makes detA = 0. But
matrices can be singular and determinants can be zero without having equal rows! Rule
5 will be the key. We can do row operations without changing det A.

5 Subtracting a multiple of one row from another row leaves det A unchanged.

a b

c d|’

i b =
c—+fa d—ib|

Linearity splits the left side into the right side plus another term —f| :E . This extra
term is zero by rule 4. Therefore rule 5 is correct. Note how the second row changes
while the first row stays the same—as required by rule 3.

Conclusion The determinant is not changed by the usual elimination steps from A 1o
U. Thus det A equals det U. If we can find determinants of triangular matrices U,
we can find determinants of all matrices A. Every row exchange reverses the sign, so
always det A = +detU. Rule 5 has narrowed the problem to triangular matrices,

6 A matrix with a row of zeros has det A = 0.

a b

0 o
|=III and 0 0

¢ d

-
For an easy proof, add some other row to the zero row. The determinant is not changed

(rule 5). But the matrix now has two equal rows. So det A =0 by rule 4.
7 If A is triangular then det A = ayaz; - - - ay, = product of diagonal entries.

a b
0 d

a 0

= ad and also d

= ad.

Suppose all diagonal entries of A are nonzero. Eliminate the off-diagonal entries by
the usual steps. (If A is lower triangular, subtract multiples of each row from lower
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rows. If A is upper triangular, subtract from higher rows.) By rule 5 the determinant
is not changed—and now the matrix is diagonal:

ajp 0

: a
We must still prove that det ) =ayax - aun-

0 Ay

For this we apply rules | and 3. Factor a; from the first row. Then factor az> from
the second row. Eventually factor a,, from the last row. The determinant is a;; times
@z times --- times a,, times det /. Then rule 1 (used at last!) is det/ = 1.

What if a diagonal entry a;; is zero? Then the triangular A is singular. Elim-
ination produces a zere row. By rule 5 the determinant is unchanged, and by rule 6
a zero row means detA = 0. Thus rule 7 is proved—triangular matrices have easy
determinants,

8 If A is singular then det A = 0. If A is invertible then det A # 0.

[S 3] is singular if and only if ad — be =0.

Proof Elimination goes from A to U. If A is singular then U/ has a zero row. The
rules give det A =det U = 0. If A is invertible then U/ has the pivots along its diago-
nal. The product of nonzero pivots (using rule 7) gives a nonzero determinant:

det A = 2 det U = £ (product of the pivots). (2)
The pivots of a 2 by 2 matrix (if @ # 0) are a and d — (be/a):

i b

The determinant is 0 d-—(be/a)

= ad — be,

a b|_
P

This is the first formula for the determinant. MATLAB would use it to find det A
from the pivots. The plus or minus sign depends on whether the number of row ex-
changes is even or odd. In other words, +1 or —1 is the determinant of the permuta-
tion matrix P that exchanges rows. With no row exchanges, the number zero is even

and P = [ and det A = det U = product of pivors. Always det L = 1, because L is
triangular with 1's on the diagonal. What we have is this:

If PA=LU then detP detA =detl detl. (3)

Again, det P = +1 and det A = +det U. Equation (3) is our first case of rule 9.
9 The determinant of AB is det A times det B: |AB| = |A||B|.

a b
c d

ap+br aqg+bs
cp+dr ecqg+ds|

rq
r s
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When the matrix B is A~', this rule savs that the determinant of A~" iy 1/det A:

AA V=1 so  (detA)detA™ ) =det/ =1.

This product rule is the most intricate so far. We could check the 2 by 2 case by algebra:
|A| |B| = (ad — be)(ps — gr) = (ap + bricg + ds) — (ag + bs)(ep 4+ dr) = |AB)|.

For the n by n case, here is a snappy proof that |AB| = |A| |B|. When |B| is not zero,
consider the ratio D(A) = |AB|/|B|. If this ratio has properties 1.2,3—which we now
check —it has to be the determinant |A|.

Property 1 (Determinant of 1) 1f A =1 then the ratio becomes |B|/|B| = I.

Property 2 (Sign reversal) When two rows of A are exchanged, so are the same two
rows of AB. Therefore |AB| changes sign and so does the ratio |AB|/|8].

Property 3 (Linearity) When row | of A is multiplied by 1, so is row | of AB. This
multiplies |[AB| by r and multiplies the ratio by t—as desired.

If row | of A is added to row 1 of A', then row | of AB is added to row | of
A'B. By rule 3, the determinants add. After dividing by |B|, the ratios add.

Conclusion This ratio |AB|/|B| has the same three properties that define |A|. There-
fore it equals |A|. This proves the product rule |AB| = |A||B|. The case |B| =0 is
separate and easy, because AR is singular when B is singular. The rule |AB| = |A| | B|
becomes 0 = 0.

10 The transpose AY has the same determinant as A.

a b| _
1=

a c

Check: b d

since both sides equal ad — be.

The equation [AT| = |A| becomes 0 = 0 when A is singular (we know that AT is also
singular). Otherwise A has the usual factorization PA = LU. Transposing both sides
gives ATPT = UTLT. The proof of |A| = |AT| comes by using rule 9 for products:

Compare det Pdet A =det Ldetl/ with detA' det PT =det/ T det LT,

First, det L = det LT = 1 (both have 1's on the diagonal). Second, detU = detUT
(transposing leaves the main diagonal unchanged, and triangular determinants only in-
volve that diagonal). Third, det P = det PT (permutations have PT = P~!, 50 |P||PT| =
| by rule 9: thus |P| and |PT| both equal 1 or both equal —1). Fourth and finally, the
comparison proves that det A equals det AT,

Important comment Rule 10 practically doubles our list of properties. Every rule for
the rows can apply also to the columns (just by transposing, since |A| = |AT|). The
determinant changes sign when two columns are exchanged. A zero column or two
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equal columns will make the determinant zero. If a column is multiplied by ¢, so is
the determinant. The determinant is a linear function of each column separately.

It is time to stop. The list of properties is long enough. Next we find and use
an explicit formula for the determinant.

® REVIEW OF THE KEY IDEAS =

1.  The determinant is defined by det /] = 1, sign reversal, and linearity in each row.
2,  After elimination det A is = (product of the pivots).
3.  The determinant is zero exactly when A is not invertible.

4. Two remarkable properties are det AB = (det A)(det B) and det AT = det A.

= WORKED EXAMPLES =

5.1 A Apply these operations to A and find the determinants of M|, My, M3, My:
In My, each a;; is multiplied by (—1)'*/. This gives the sign pattern shown
below,
In Mz, rows 1,2,3 of A are subtracted from rows 2, 3, 1.
In M3, rows 1,2,3 of A are added to tows 2,3, 1.
The i, j entry of My is (row i of A)-(row j of A).
How are the determinants of My, M2, M3, My related to the determinant of A?

ay —a;z a3 row | —row 3 row | + row 3 row | -row | « «
—az] A —an row 2 — row | row 2 + row | ow 2.row [ «»
a3 —d3 a3 row 3 — row 2 row 3 4+ row 2 row 3-row | -

Solution The four determinants are det A, 0, 2det A, and (det A)®. Here are rea-
SOns:

1 ay ap apa| |1
M, = =1 a3 a3 an -1 50 det M = (—1)(det A)(—1).
1| lan a2 asxn 1

The matrix M5 is singular because its rows add to the zero row. Then det Mz = 0.
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The matrix M3 can be split into eight marrices by Rule 3 (linearity in each row):

row | row 3 row | row 3
detMi=|row 2|4+ |row 2|+ |row 1|4+ -4 | row 1].
row 3 row 3 row 3 row 2

All but the first and last have repeated rows and zero determinant. The first is A and
the last has rwo row exchanges. So det M3 =det A +det A, (Try A = 1.)
The matrix My is exactly AAT. Its determinant is (det A)(det AT) = (det A)2.

5.1 B Find the determinant of A by subtracting row 1 from row 2, then column 3
from column 2, then row or column exchanges to make the matrix lower triangular;

I .
A=la 1 1 is singular for which a and b?
0 b 1

Solution  Subtract row 1 from row 2, then column 3 from column 2. Two exchanges
make the matrix triangular. Then det A = (a — 1)(b — 1).

1 0 | rows | == 2 a=1 0 0
A— |a—1 0 0 —_ I 1 0
0 b—-1 1| columns2 « 3 0 1 b-1

Note that @ = 1 gives equal rows in A and b = 1 gives equal columns. So not sur-
prising that (e — 1) and (b — 1) are factors of det A.

Problem Set 5.1

Questions 1-12 are about the rules for determinants.

1 If a 4 by 4 matrix has det A = 3, find det(24) and det(—A) and det(A*) and
det(A~").

2 If a3 by 3 mairix has det A = —1, find det(3A) and det(—A) and det(A?) and
det(A~").

3  True or false, with a reason if true or a counterexample if false:
(a) The determinant of / + A is 1 +det A.
(b) The determinant of ABC is |A||B||C|.

(¢) The determinant of 44 is 4|A|.
(d) The determinant of AB — RA is zero. (Try an example.)
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11

12
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Which row exchanges show that these “reverse identity matrices™ J3 and J; have

|Jal = =1 but |Js] = +17

but det = +1.

cu

L]

-
-0 0
= ==
= = =

Il

[

0
0
0
1

o= 0O
o e R e
=00 0 -—

For n = 5,6,7, count the row exchanges to permute the reverse identity J, to
the identity matrix /,. Propose a rule for every size n and predict whether Jyo
has determinant 41 or —1.

Show how Rule 6 (determinant= 0 if a row is all zero) comes from Rule 3.

Find the determinants of rotations and reflections:

Q= cosf —sin# il Qi 1 —2cos’@ —2cosfsind
~ | sinf  cos® ~ |-2cosfsin® 1 —2sin?8 |’

Prove that every orthogonal matrix (Q'Q = [) has determinant | or —1.

{a) Use the product rule |[AB| = |A||B| and the transpose rule |Q| = 1071.

{(b) Use only the product rule. If |det Q| = | then det Q" = (det Q)" blows
up. How do you know this can’t happen to Q"7

Do these matrices have determinant 0, 1, 2, or 37

A=

——

= = =
—_—

1 1
0 B = 0
0 1

D 2
-0 2

If the entries in every row of A add to zero, solve Ax =0 to prove det A = 0.
If those entries add to one, show that det(A = 1) = 0. Does this mean det A = 17

Suppose that CD = —DC and find the flaw in this reasoning: Taking determi-
nants gives |C||D| = —|D||C|. Therefore |C| =0 or |D| = 0. One or both of
the matrices must be singular. (That is not true.)

The inverse of a 2 by 2 matrix seems to have determinant = 1:

| [d —ﬁ]_ad-bf

T ad —be

det A~ = det ——
ad —bec |—Cc a

What is wrong with this calculation? What is the correct det A~'?
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Questions 13-27 use the rules to compute specific determinants.
13  Reduce A to U/ and find det A = product of the pivols:

=liza] w233

14 By applying row operations to produce an upper triangular U, compute

et L

bd =
fad bd

2
2
3

LFY]

1 2 3 0 2 =1 0 0O
2 6 6 1 1 2 -1 0
det| | o 0 3 and det] ooy 2o
02 0 7 0 0 -1 2

15 Use row operations to simplify and compute these determinants:

101 201 301 1 ¢
det | 102 202 302 and det| ¢+ 1 1
103 203 303 o1

16  Find the determinants of a rank one matrix and a skew-symmetric matrix:

! 0 1 3
A=|2|[1 -4 5] ad K=([-1 0 4],
3 -3 -4 0

17 A skew-symmetric matrix has KT = —K. Insert a. b, ¢ for 1,3,4 in Question

16 and show that [K|=0. Write down a 4 by 4 example with |K| = 1.

18  Use row operations to show that the 3 by 3 “Vandermonde determinant™ is

1 a a2
det| 1 b b* | =(b—a)c—a)c—b).

2

1 ¢ ¢
19  Find the determinants of U/ and /! and U/*:
1 4 a b
v=|0o 2 5 and U:H J.
0 0 3
20 Suppose vou do two row operations at once, going from
a b o a—Le b—Ld
c d c—=la d-=Ib |’

Find the second determinant. Does it equal ad — be?
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22

23

24

25
26
27

28

29
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Row exchange: Add row 1 of A to row 2, then subtract row 2 from row 1. Then
add row 1 to row 2 and multiply row 1 by —1 to reach B. Which rules show

a b
- d

detﬂ:‘; equals —detA =— ?

|
Those rules could replace Rule 2 in the definition of the determinant.

From ad — be, find the determinants of A and A~ and A — A[:

1201 i1 1] 2 =1 ” 2—4 1
il 4] w20 e g 10
Which two numbers A lead to det(A — A7) =07 Write down the maitrix A — A7

for each of those numbers A —it should not be invertible.

From A = [4}] find A% and A~ and A — A/ and their determinants. Which
two numbers A lead to |[A =A7| =07

Elimination reduces A to /. Then A = LU:

3 3 4 1 0 0 3 3 4
A=] 6 & 7=} 2 1 0 0 2 -1|=LU.
-3 5 -9 -1 4 1 0 0 -l

Find the determinants of L, U, A, U™'L™!, and U~ 'L 'A.
If the i, j entry of A is i times j, show that det A = 0. (Exception when A =[1].)
If the , j entry of A i5 7 + j, show that det A = 0. (Exception whenn = 1 or 2.)

Compute the determinants of these matrices by row operations:

0 a 0 0
0 a 0 00 b 0 a a a
A=10 0 b and B = and C=|a b b
i@ o 000 ¢ i
‘ d 000 @ ¢

True or false (give a reason if true or a 2 by 2 example if false):

(a) If A is not invertible then AB is not invertible.

(b) The determinant of A is always the product of its pivots.
(c) The determinant of A — B equals det A — det B.

(d) AB and BA have the same determinant.

What is wrong with this proof that projection matrices have det P = 1?

P=AATA)'AT  so  |P|=]A| 1AT| = 1.

|AT||Al
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30

3

32

33

34

(Calculus question) Show that the partial derivatives of In(det A) give A~'!

= _ . dffda dffdc| _
fla,b,c,d) = Inlad — be) leads to [fiﬂﬂb aﬂﬁd]—.& ;

(MATLAB) The Hilbert matrix hilb(n) has i, j entry equal to 1/(i + j —1). Print
the determinants of hilb(1). hilb(2). .... hilb{10). Hilbert matrices are hard to
work with! What are the pivots?

(MATLAB) What is a typical determinant (experimentally) of rand(n) and randn(n)
for m = 50, 100, 200, 4007 (And what does “Inf” mean in MATLAB?)

(MATLAB) Find the largest determinant of a 6 by 6 matrix of 1's and —1’s.
If you know that det A = 6. what is the determinant of B?

row 3 4+ row 2 4+ row |
row 2+ row |
row 1

row |
row 2
row 3

detA = =6 det B =

=7
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PERMUTATIONS AND COFACTORS = 5.2

A computer finds the determinant from the pivots. This section explains two other ways
to do it. There is a “big formula™ using all n! permutations. There is a “cofactor

formula” using determinants of size n — 1. The best example 15 my favorite 4 by 4
matrix:
2 =1 0 0
-1 2 -1 0
A= 0 -1 2 -1 has det A =35.

0 0 =1 2

We can find this determinant in all three ways: pivots, big formula, cofactors.

1.  The product of the pivots is 2 - % . % . 3—. Cancellation produces 5.

2. The *big formula™ in equation (8) has 4! = 24 terms. Only five terms are nonzero:
detA=16—4—-4—-4+1=35.

The 16 comes from 2-2-2-2 on the diagonal of A. Where do —4 and +1 come
from? When you can find those five terms, you have understood formula (8).

3.  The numbers 2, —1,0, 0 in the first row multiply their cofactors 4,3, 2, 1 from the
other rows. That gives 2:4 —1-3 =5, Those cofactors are 3 by 3 determinants,
They use the rows and columns that are not used by the entry in the first row.
Every term in a determinant uses each row and column once!

The Pivot Formula

Elimination leaves the pivots dy, . . ., d, on the diagonal of the upper triangular U, If
no row exchanges are involved, multiply those pivots to find the determinant:

det A = (det L)(detU) = (1)(d\dy - - -dpy). (1)

This formula for det A appeared in the previous section, with the further possibility of

row exchanges. The permutation matrix in PA = L U has determinant —1 or +1. This
factor det P = X1 enters the determinant of A:

(det P)(det A) = (det L)(detU). gives det A = £(d\d2---d,). (2)

When A has fewer than n pivots, det A = 0 by Rule 8. The matrix is singular.
Example 1 A row exchange produces pivots 4, 2, 1 and that important minus sign:

0 0 1 4 5 6
A=10 2 3 PA=]|0 2 3 det A = —(4)(2)(1) = —8.
4 5 6 00 1

The odd number of row exchanges (namely one exchange) means that det P = —1.
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The next examplL has no row exchanges. It may be the first matrix we factored
into L U (when it was 3 by 3). What is remarkable is that we can go directly to n by
n. Pivots give the determinant. We will also see how determinants gwc the pivots.

Exampie 2 The first pivots of this tridiagonal matrix A are 2, ‘_ . The next are ;
and £ and eventually L Factoring this n by n matrix reveals its determinant:

F 2 -1 il TT2=1

-1 2 -1 -3 1 3 -1

=4 = -3 1 31
L] L] —1 L] L] . L
- | +1
L 2] L o g

The pivots are on the diagonal of U (the last matrix). When 2 and 5 > and % and ; are
multiplied, the fractions cancel. The determinant of the 4 by 4 matrix is 5 The 3 by
3 determinant is 4. The n by n determinant is n + 1:

dctA:fJJ(%)(g)-u(E«?,J)=n+1.

Important point: The first pivots depend only on the upper left corner of the
original matrix A. This is a rule for all matrices without row exchanges.

The first k pivots come from the & by k& matrix Ag in the top left cor-
ner of A. The determinant of that corner submatrix Ay is d\dz>---d;.

The | by 1 matrix A; contains the very first pivot ;. This is det A;. The 2 by 2
matrix in the comner has det Ay = did2. Eventually the n by n determinant uses the
product of all n pivots to give det A, which is det A.
Elimination deals with the corner matrix A; while starting on the whole matrix.
We assume no row exchanges—then A = L U and Ay = L;U;. Dividing one determi-
nant by the previous determinant (det A; divided by det A;—y) cancels everything but
the latest pivot dy. This gives a ratio of determinants formula for the pivots:
Pivots from

dydr - dy det . ‘u_

determinants 06 U PRyt W o == flTI(I-r co-dpoy B det Ap—_y » 3
In the =1, 2, =1 matrices this ratio correctly gives the pivots § 1 5 ; iy # The

Hilbert matrices in Problem 5.1.31 also build from the upper left c:}mer
We don't need row exchanges when all these corner submatrices have det A £ 0,
The Big Formula for Determinants

Pivots are good for computing. They concentrate a lot of information—enough to find
the determinant. But it is hard to connect them to the original a;;. That part will be
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clearer if we go back to rules 1-2-3, linearity and sign reversal and det / = 1. We want
to derive a single explicit formula for the determinant, directly from the entries a;;.

The formula has n! terms. Its size grows fast because n! = 1,2, 6,24, 120, . . ..
For n = 11 there are forty million terms. For n = 2, the two terms are ad and bc.
Half the terms have minus signs (as in —bc). The other half have plus signs (as in
ad). For n = 3 there are 3! = (3}(2)(1) terms. Here are those six terms:

ayy dyy sy
3 b}' 3 ; ! + dradss + Gyadazdy) + dyjyda days
. @y an an|= (4)
determinant =) | @23d32 — dpardyy — dypdda)
ai; a2 diz

Notice the pattern. Each product like ajja23as2 has one entry from each row. It also
has one entry from each column. The column order 1, 3, 2 means that this particular
term comes with a minus sign. The column order 3, 1, 2 in aj3azja32 has a plus sign.
It will be “permutations” that tell us the sign.

The next step (n = 4) brings 4! = 24 terms. There are 24 ways to choose one
entry from each row and column. Down the main diagonal, a)ja;2a33a44 with column
order 1,2, 3,4 always has a plus sign. That is the “identity permutation”.

To derive the big formula 1 start with n = 2. The goal is to reach ad — be in a
systematic way. Break each row into two simpler rows:

[a b]=[a ﬂ]+[ﬂ b and e d]-=fe ﬂ]-i—[ﬂ' d].

Now apply linearity, first in row | (with row 2 fixed) and then in row 2 (with row 1|
fixed):

a bl _la 0 0 b
c d| |e d c d
] ] 0 b 0 b 22
a a
_cﬂ1+ﬁ n"+c{]‘ ‘0 a’"

The last line has 22 = 4 determinants, The first and fourth are zero because their
rows are dependent—one row is a multiple of the other row. We are left with 2! =2
determinants to compute:

1 0
0 1

0 1
1 0

aﬂ' I{'.ii’:i

0 d 0 =”"T‘

‘+bt" ‘=ﬂ'd-bf.

The splitting led to permutation matrices. Their determinants give a plus or minus sign.
The 1’s are multiplied by numbers that come from A. The permutation tells the column
sequence, in this case (1,2) or (2, 1).

Now try n = 3. Each row splits into 3 simpler rows like [a); 0 0]. Using
linearity in each row, det A splits into 3* = 27 simple determinants. If a column choice
is repeated —for example if we also choose [a2; 0 0]—then the simple determinant
is zero. We pay attention only when the nonzero terms come from different columns.
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[@ a2 IEIIE."ll g | )2 | TR
ldz21 a3 an|= Y ] + a3 | - [
a1 a1 t’!_t_!.] il | a1 (3
I|I|-| I ‘ £y | | 13
- a1 | + (a2 + [Tk

1y

There are 3! = 6 ways to order the columns, so six determinants. The six
permutations of (1. 2, 3) include the identity permutation (1,2, 3) from P = I:

Column numbers = (1,2,3),(2,3,1),(3,1,2),(1,3,2),(2,1,3),(3,2,1). (6)

The last three are odd permutations (one exchange). The first three are even permuta-
tions (0 or 2 exchanges). When the column sequence is (@, f, w), we have chosen the
entries a)qazsas,—and the column sequence comes with a plus or minus sign. The
determinant of A is now split into six simple terms. Factor out the a;;:

1 1

det A = ayarax + ay2ardas) || +apzanas; |1

(7)

+ ayjaxnas;z 1| + ajppanasz |l

l 1 I

The first three (even) permutations have det P = 41, the last three (odd) permutations
have det P = —1. We have proved the 3 by 3 formula in a systematic way.
Now you can see the n by n formula. There are n! orderings of the columns.
The columns (1, 2,. . .,n) go in each possible order (@, A, . . ., @). Taking aj, from
row | and aap from row 2 and eventually a,, from row n, the determinant contains
the product a\yazs - - - ape times +1 or —1. Half the column orderings have sign —1.
The complete determinant of A is the sum of these n! simple determinants, times

I or —1. The simple determinants ayya2p - - * @n choose one entry from every row and
column:

+ ayaazzas)

det A = sum over all #! column permutations P = (a, 8, . . ., w)

(8)
= Zidi‘l Ph.ﬂu.ﬁ'jlr; iy, = BlIG FORMULA,

The 2 by 2 case is +ajjaz — ajzaz; (which is ad — be). Here P is (1,2) or (2, 1),

The 3 by 3 case has three products “down to the right” (see Problem 30) and
three products “down to the left”. Warning: Many people believe they should follow
this pattern in the 4 by 4 case. They only take 8 products—but we need 24.
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Example 3 (Determinant of ) When U is upper triangular, only one of the n! prod-
ucts can be nonzero. This one term comes from the diagonal: det U = +uyjuaz -« -ty
All other column orderings pick at least one entry below the diagonal, where U has
zeros. As soon as we pick a number like u2; =0 from below the diagonal, that term
in equation (8) is sure to be zero.

Of course det / = |. The only nonzero term is +(1)(1)--- (1) from the diagonal.

Example 4 Suppose Z is the identity matrix except for column 3. Then

1 0 a 0O

; 01 b 0O
determinant of Z = 00 ¢ 0= c. (k]

0 0 4 1

The term (1)(1)(c)(1) comes from the main diagonal with a plus sign. There are 23
other products (choosing one factor from each row and column) but they are all zero.
Reason: If we pick a, b, or d from column 3, that column is used up. Then the only
available choice from row 3 is zero.

Here is a different reason for the same answer. If ¢ = 0, then Z has a row of
zeros and det Z = ¢ = 0 is correct. If ¢ is not zero, use elimination. Subtract multiples
of row 3 from the other rows, to knock out a, b, d. That leaves a diagonal matrix and
det Z = c.

This example will soon be used for “Cramer’'s Rule”. If we move a, b, ¢, d into
the first column of £, the determinant is det Z = a. (Why?) Changing one column of
I leaves Z with an easy determinant, coming from its main diagonal only.

Example 5 Suppose A has 1's just above and below the main diagonal. Here n = 4:

01 0 0 0O 1 00
1 0 1 0 1 0 0 0 ;

Ay = 010 1 and Py = 00 0 1 have determinant 1.
0O 0120 0 0 1 0

The only nonzero choice in the first row is column 2. The only nonzero choice in row
4 is column 3. Then rows 2 and 3 must choose columns 1 and 4. In other words Fy
is the only permutation that picks out nonzeros in A4. The determinant of Py i1s +1
(two exchanges to reach 2, 1,4, 3). Therefore det Ay = +1.

Determinant by Cofactors

Formula (8) is a direct definition of the determinant. It gives you everything at once —
but you have to digest it. Somehow this sum of n! terms must satisfy rules 1-2-3 (then
all the other properties follow). The easiest is det/ = |, already checked. The rule
of linearity becomes clear, if you separate out the factor aj; or a2 or aj, that comes
from the first row. With n = 3 we separate the determinant into

det A =ay) (ana3; —anan) +-ﬂ§ti_ (a3 — ayaz) + a3 (azja3; — anay)).
S, s . 10)
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Those three quantities in parentheses are called “cofactors”. They are 2 by 2 deter-
minants, coming from matrices in rows 2 and 3. The first row contributes the factors
dyy, 42, d13. The lower rows contribute the cofactors Cyy, Ci2, Cjs. Certainly the
determinant @y Cy| +a;2C 2 +a3C 3 depends linearly on ayy, ay2, aj3—this is rule 3.
The cofactor of ay) is €y = axa33 — axza3z. You can see it in this splitting:

ay  dyz a3 dap a2 a3
daz) a1 1| = ax  ax|+ |az) a3 | + |dn  an
a3 a3z a3 a3r  d33 as) a3y ayp aiz

We are still choosing one entry from each row and column. Since a;; uses up row |
and column 1, that leaves a 2 by 2 determinant as its cofactor.

As always, we have to watch signs. The 2 by 2 determinant that goes with a>
looks like azjaiz — azzas;. But in the cofactor C3, its sign is reversed. Then a|2C)2
is the correct 3 by 3 determinant. The sign pattern for cofactors along the first row is
plus-minus-plus-minus. You cross out row | and column j to get a submatrix M
of size n — 1. Multiply its determinant by (—1)'*/ to get the cofactor:

The cofactors along row | are Cj; = [ det My ;.
The cofactor expansion is det A = a1 Cy) +a)2C12 +--- + a1, Cin. (11}

In the big formula (8), the terms that multiply a;; combine to give det My;. The sign
is (—1)!+1, meaning plus. Equation (11) is another form of equation (8) and also equa-
tion (10), with factors from row | multiplying cofactors from the other rows.

Note Whatever is possible for row | is possible for row i. The entries a;; in that row
also have cofactors C;;. Those are determinants of order n — 1, multiplied by (—1 )i+,
Since a;; accounts for row i and column j, the submatrix M;; throws out row | and
column j. The display shows agy and Ma3 (with row 4 and column 3 crossed out). The
sign (—1)43 multiplies the determinant of Ms3; to give C43. The sign matrix shows
the £+ pattern:

+

L

|+
| +

4+ ]+ |

2 aatl] WS, 3
I

signs (—1)7/ =

+

5A The determinant is the dot product of any row i of A with its cofactors:
COFACTOR FORMULA det A =g, Ci) +a2C2 4+ -+ + wjnCin. (12)

Each cofactor Cj; (order n— 1, without row ¢ and column j) includes its correct sign:

Cij = (—1)'™* det M;;.
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A determinant of order s is a combination of determinants of order n — 1. A recursive
person would keep going. Each subdeterminant breaks into determinants of order n—2.
We could define all determinants via equation (12). This rule goes from order n 1o n—1
to n —2 and eventually to order 1. Define the 1 by | determinant |a| to be the number
a. Then the cofactor method is complete.

We preferred to construct det A from its properties (linearity, sign reversal, and
det 7 = 1). The big formula (8) and the cofactor formulas (10)(12) follow from those
properties. One last formula comes from the rule that det A = det AT. We can expand
in cofactors, down a column instead of across a row. Down column j the entries are
apj to ayj. The cofactors are Cy; to C,;. The determinant is the dot product:

Cofactors down column ;: detA =a1;C1j+az;Caj+ -+t anjCoj. (13)

Cofactors are most useful when the matrices have many zeros—as in the next examples.

Example 6 The —1, 2, —1 matrix has only two nonzeros in its first row. So only
two cofactors Cyy and Cj2 are involved in the determinant. I will highlight Cya:

2 -1

=f B ooq 2 -1 -1 -1
Ty _ql=2r 2 A= 2 -1, (4
-1 2 -1 2

-1 2

You see 2 times Cyy first on the right, from crossing out row | and column 1. This
cofactor has exactly the same —1, 2, —1 pattern as the original A—but one size smaller.

To compute the boldface Cy3. use cofactors down its first column. The only nonzero
is at the top. That contributes another —| (so we are back to minus). Its cofactor is
the —1, 2, —1 determinant which is 2 by 2, rwo sizes smaller than the original A.
Summary Equation (14) gives the 4 by 4 determinant Dy from 205 minus D>, Each
D, (the —1,2, —| determinant of order n) comes from D,_, and D, _-:

Dy =2Dy— D and generally Dy, =2Dy_1 — Dy_1. (15)

Direct calculation gives D; = 3 and D3 = 4, Therefore Dy = 2(4) — 3 = 5. These
determinants 3, 4, 5 fit the formula D, = n+1. That “special tridiagonal answer” also
came from the product of pivots in Example 2.

The idea behind cofactors is to reduce the order one step at a time. The de-
terminants D, = n + | obey the recursion formula n + 1 = 2n — (n — 1). As they

must.

Example 7  This is the same matrix, except the first entry (upper left) is now I:

1 -1
| 2 —1
-1 2 -1
-1 2

B =



252 Chapter 5 Determinants

All pivots of this matrix turm out to be |. So its determinant is 1. How does that
come from cofactors? Expanding on row 1, the cofactors all agree with Example 6.
Just change aj; =2 to by, = 1:

detBy=Ds— Dy instead of detAy =2D; — D5,

The determinant of By is 4 —3 = 1. The determinant of every B, isn—(n—1) = 1.
Problem 13 asks you to use cofactors of the lasr row. You still find det B, = 1.

® REVIEW OF THE KEY IDEAS =

1.  With no row exchanges. det A = (product of the pivors). In the upper left corner,
det Ay = (product of the first k pivots).

2.  Every term in the big formula (8) uses each row and column once. Half of the
n! terms have plus signs (when det P = +1) and half have minus signs.

3.  The cofactor Cj; is (—1)'*/ times the smaller determinant that omits row i and
column j (because a;; uses that row and column).

4. The determinant is the dot product of any row of A with its row of cofactors.
When a row of A has a lot of zeros, we only need a few cofactors.

= WORKED EXAMPLES =

5.2 A A Hessenberg matrix is a triangular matrix with one extra diagonal. Use co-
factors of row | to show that the 4 by 4 determinant satisfies Fibonacei's rule |Hy| =
|H3|+ |H2]. The same rule will continue for all sizes, |Hy| = |Hy—1| + |Hy—2|. Which
Fibonacci number is |H,|?

21
m=[f;] fﬁ:{l! q Hy=
112

Solution The cofactor Cy, for Hy is the determinant |Hi:|. We also need C)2 (in
boldface):

e
— s g —
— e -
b -

110 210 |1 00
co==It 2 t]l=<{1 2 1|l&h 2 1
1 1 2 t b 2| 11 2
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Rows 2 and 3 stayed the same and we used linearity in row 1. The two determinants
on the right are —|H3| and +|H>|. Then the 4 by 4 determinant is

|Hs|l =2C + 1C 2 = 2|H3| — |Ha| 4 |Hz2| = |H3| + |Hzl.

The actual numbers are |H>| = 3 and |H3| = 5 (and of course |H,| = 2). Since |H,|
follows Fibonacci's rule |H,_| + |Hy—2]|. it must be |H,| = F,+2.

5.2 B These questions use the *+ signs (even and odd P’s) in the big formula
for det A:

1. If Ais the 10 by 10 all-ones matrix, how does the big formula give det A =07

2. If you multiply all n! permutations together into a single P, is it odd or even?

3. If you multiply each a;; by the fraction f;-, why is det A unchanged?

Solution  In Question 1, with all a;; = 1, all the products in the big formula (8)
will be 1. Half of them come with a plus sign, and half with minus. So they cancel
to leave det A = 0. (Of course the all-ones matrix is singular.)

In Question 2, multiplying [§1][3]] gives an odd permutation. Also for 3 by
3, the three odd permutations multiply (in any order) to give odd. But for n = 3 the
product of all permutations will be even. There are n!/2 odd permutations and that is
an even number as soon as it includes the factor 4.

In Question 3, each a;; is multiplied by i/j. So each product ajga25 - --@pe in
the big formula is multiplied by all the row numbers i = 1,2, ... ,n and divided by all
the column numbers j = 1,2,... ,n. (The columns come in some permuted order!)
Then each product is unchanged and det A stays the same,

Another approach to Question 3: We are multiplying the matrix A by the diagonal
matrix [ = diag(l : n) when row § is multiplied by i. And we are postmultiplying
by D~ when column j is divided by j. The determinant of DAD™" is det A by the
product rule.

Problem Set 5.2

Problems 1-10 use the big formula with n! terms: [A| =} *ajqa25 + - - Gne-

1 Compute the determinants of A, B, C from six terms. Are their rows indepen-

dent?
1 2 3 1 2 3 1 1 1
A=13 1 2 B=14 4 4 C=|1120
3 2 1 5 &6 7 1 0 0
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2 Compute the determinants of A, B, C. Are their columns independent?

110 |23
a=|10 1| B=|4 5 6 C=[“" “].
01 | 789

3 Show that det A = 0, regardless of the five nonzeros marked by x’s:

X X X
A=10 0 x|. {(What is the rank of A7)
0O 0 «x

4  This problem shows in two ways that det A = 0 (the x's are any numbers):

X
X
0
0
0

L=R ==
oD o
-k = =
o T S |

(a) How do you know that the rows are linearly dependemt?
(b)  Explain why all 120 terms are zero in the big formula for det A.

5 Find two ways to choose nonzeros from four different rows and columns:
1 @0 1 I s S -
0 1 1 1 0 3 4 5 .
A= 110 1 8= 5 4 0 3 (B has the same zeros as A).
1 0 0 | 2 000 1

Is det A equal to I +1 or 1 =1 or =1 =17 What is det B?

6  Place the smallest number of zeros in a 4 by 4 matrix that will guarantee det A =
0. Place as many zeros as possible while still allowing det A # (0.
7 (a) W ayy = a2 = a3 =0, how many of the six terms in det A will be zero?
(b) If ayy = ax = asz = agy =0, how many of the 24 products a) jaxasaym
are sure to be zero?

8 How many 5 by 5 permutation matrices have det P = +17 Those are even per-
mutations. Find one that needs four exchanges to reach the identity matrix.

9 If det A 15 not zero, at least one of the n! terms in formula (8) is not zero. Deduce
that some ordering of the rows of A leaves no zeros on the diagonal. (Don’t use
P from elimination; that PA can have zeros on the diagonal.)

10  Show that 4 is the largest determinant for a 3 by 3 matrix of 1's and —17s,
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11 How many permutations of (1,2, 3,4) are even and what are they? Extra credit:
What are all the possible 4 by 4 determinants of [ + Feven?

Problems 12-24 use cofactors C;; = (=1)i+1 det M;;. Remove row i and column j.

12  Find all cofactors and put them into a cofactor matrix C. Find det B by cofactors:
> 1 2 3
A= [3 6] B=14 5 6
700

13  Find the cofactor matrix C and multiply A times CT. Compare ACT with A~

% =y D 1 [3 21
A=]=1 2 =1 A—‘=Ez42
0 -1 2 1 2 3

14 The matrix B, is the —1, 2, —1 matrix A, except that b;; = | instead of a;; = 2.
Using cofactors of the last row of By show that |B4| = 2| B3| —|B>| and find |By|:

== [ = k=l

By = 1 s | By=|-I ._? —é
-1 2
The recursion |B,| = 2|B,—1| — |By—-2| 15 satisfied when every |B,| = 1. This
recursion is the same as for the A's, The difference is in the starting values 1, 1, |
forn=123

15 The n by n determinant C,, has 1's above and below the main diagonal:

0 1 9 3 19 ?r_!:?g

Ci=0] C= Ci=[1 0 1| Ci= :
10 A % up 01 0 1

0010

(a) What are these determinants C, C3, C3, Cs?

(b) By cofactors find the relation between C, and C,_; and C,_s. Find Cyg.
16 The matrices in Problem 15 have 1's just above and below the main diagonal.

Going down the matrix, which order of columns (if any) gives all 1's? Explain

why that permutation is even for n = 4,8, 12, ... and odd forn =2.6,10, .. ..
Then

Cy =0 (odd n) Ch=1(n=4,8,--.) Cai==-1(n=2,6,--:).
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17

18

19

20

21

The tridiagonal 1, |, | matrix of order n has determinant E,:

| 1o 1110
Ei=|ll Ez= Ex=|(1 } ] Eys= ;
1 1 01 1 011 1
001 1
{a) By cofactors show that £, = E,_| — E,_3.
(b) Starting from E; =1 and E; =0 hnd E3, Ey,. . ., E;.
{c) By noticing how these numbers eventually repeat. find Ejpg.
F, is the determinant of the 1, 1, —1 tridiagonal matrix of order n:
1 -1 i I : _: -1
= =2 F=]l 1 -1|=3 Fi= #4.
1 | 0 1 | I 1 =1

Expand in cofactors to show that F, = F,_) + F,—>. These determinants are Fi-
bonacci numbers 1,2,3,5,8,13,. . .. The sequence usually starts 1, 1, 2, 3 (with
two 17s) so our F, is the usual F, .

Go back to By in Problem 14. It is the same as A, except for by = 1. So use
linearity in the first row, where [1 —1 O] equals [2 —1 O] minus [1 O O]
1 =1 0 2 =1 0 1 0O 0
-1 -1 -1
B,| = = —
1 "l ﬂn—I An=1 Anwl
] 0 0

Linearity gives |By| = |Ap| — |An—1] =

Explain why the 4 by 4 Vandermonde determinant contains x° but not x* or x°:

1l a t;'2 a’
: 1 b b b
Vy = det
. 1l ¢ & &
1 x x2 .1:3'
The determinant is zero at x = . .and . The cofactor of x* is

Vi=(b—a)ic—alle=Fb). Then Vs = (b—allc—alc=b)x—a)x—b)x—=rc).
Find G; and G3 and then by row operations G4. Can you predict G,?

: D1

——

l
0
|

1
1
0

0 1 I
1 0 1
11 !
11 0

S
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22 Compute the determinants Sj, S2, 53 of these 1, 3, | tridiagonal matrices:

Si=|3 &=

&

3
1 3

W — O

l
3
1

D o= L

| -

Make a Fibonacci guess for Sy and verify that you are right.

23 Cofactors of the 1,3, 1 matrices in Problem 22 give a recursion S, = 35,-) —
Sn—2.
Challenge: Show that S, is the Fibonacci number Fi,i2 by proving Fa,in =
3F>y — Fay—2. Keep using the Fibonacci’s rule Fy = Fp— + Fi-2.

24 Change 3 to 2 in the upper left corner of the matrices in Problem 22, Why does
that subtract §,_; from the determinant §,? Show that the determinants become
the Fibonacci numbers 2, 5, 13 (always Fa,.1).

Problems 25-28 are about block matrices and block determinants.
25 With 2 by 2 blocks in 4 by 4 matrices, you cannot always use block determinants:

‘AH

0 D|=M||01 but

A B
C Di # [Al1D] = |C]|B].

{a) Why is the first statement true? Somehow B doesn’t enter.
{(b) Show by example that equality fails (as shown) when C enters.
{c) Show by example that the answer det(AD — CB) is also wrong.

26  With block multiplication, A = LU has Ay = LiUi in the top left comer:

[A;; *} [L;_- {'.i:[ I:U;; *]

A= = -

* % * % 0 =

(a) Suppose the first three pivots of A are 2. 3, —1. What are the determinants

of Ly, LI'I‘ L3 {with diagnnﬂ] 1's) and U;. U:, U3 and A|. A:. Ag?
(b) If Ay. Az, A3 have determinants 5, 6, 7 find the three pivots from equation (3).

27 Block elimination subtracts CA~! times the first row [A B from the second
row [C D). This leaves the Schur complement D — CA~'B in the comer:

i 0l|A B| _|[A B
-CA™' 1||lc D|T|0 D-cA'B]
Take determinants of these block matrices to prove correct rules for square blocks:

= |A||D-CA~'B| = |AD-CB|

if A~ exists if AC =CA.

A B
C D
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28 If Aism by n and B is n by m, block multiplication gives det M = det AB:

- - 4L )

If A is a single row and B is a single column what is det M? If A is a column
and B is a row what is det M? Do a 3 by 3 example of each.

29 (A calculus question based on the cofactor expansion) Show that the derivative
of det A with respect to aj is the cofactor €. The other entries are fixed —we
are only changing a;;.

30 A 3 by 3 determinant has three products “down to the right” and three “down to
the left” with minus signs. Compute the six terms in the figure to find D. Then
explain without determinants why this matrix is or is not invertible:

31 For E; in Problem 17, five of the 4! = 24 terms in the big formula (8) are
nonzero. Find those five terms to show that Ey = —1.

32 For the 4 by 4 tndiagonal matrix (entries =1, 2. =1) find the five terms in the
big formula that give detA =16 —4 -4 —4 + |.

33  Find the determinant of this cyclic P by cofactors of row | and then the “big

formula”. How many exchanges reorder 4, 1.2, 3 into 1,2,3,47 Is [P?| =1 or
=17

00 0 1 0010
1000 {000 1| _[o1

=10 100 P_l{llﬂﬂ'[.'ﬂ}
00 1 0 o1 0 0

34 The —1.2, —1 matrix is 2%eye(n)—diag(ones(n—1, 1), 1)—diag(ones(n—1, 1), —1).
Change A(1.1) to 1 so det A = 1. Predict the entries of A™" based on n = 3
and test the prediction for n = 4.

35 (MATLAB) The —1, 2, —1 matrices have determinant n+ 1. Compute (n+ 1)A~"
for n = 3 and 4, and verify your guess for n = 5. (Inverses of tridiagonal
matrices have the rank one form uv' above the diagonal.)
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36 The symmetric Pascal matrices have determinant 1. If 1 subtract | from the n, n
entry, why does the determinant become zero? (Use rule 3 or cofactors in row
n.)

1 1 1 | 1 1 1 |
1 2 3 4 1 2 3 4 :

det 13 6 101 1 (known) det L 3 6 10 = 0 (to explain).
1 4 10 20 1 4 10 19

CRAMER’S RULE, INVERSES, AND VOLUMES = 5.3

This section applies determinants to solve Ax = b and also to invert A. In the entries
of A=', you will see det A in every denominator—we divide by it. (If det A = 0 then
we can’t divide and A~' doesn’t exist.) Each number in A~ is a determinant divided
by another determinant. So is every component of x = A~ ',

Cramer's Rule solves Ax = b. A neat idea gives the first component x). Replacing
the first column of / by x gives a matrix with determinant x;. When you multiply by
A, the first column becomes Ax which is b, The other columns are copied from A:

n 00 by a2 ap
A x» 1 0|=|by a»x axn|=B8. (1)
x3 0 1 by axn ai

We multiplied a column at a time. Now take determinants. The product rule is:

det B

det AN =det B = ;
( Maxy) | or x| 3% A

This is the first component of x in Cramer’s Rule! Changing a column of A gives B).
To find x, put the vector x into the second column of the identity matrix:

I x O
ap ax a; 0 x» O|l=|a, b az|=5B:. (3)
0 x 1

Take determinants to find (det A)(x;) = det B;. This gives x; in Cramer’s Rule:

5B (CRAMER’s RULE) If det A is not zero, Ax = b has the unique solution

det By det B+ det B,
X = =———— 1 = m— Xy = =————
; det A & det A det A

The matrix B; has the jth column of A replaced by the vector b.
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A MATLAB program for Cramer’s rule only needs one line to find B; and x;:
x(j)=det([A(:,1:j—=1) b A(:,j+1:n)])/det(A)

To solve an n by n system, Cramer's Rule evaluates n+ 1 determinants (of A and
the n different B's). When each one is the sum of n! terms—applying the “big formula”
with all permutations—this makes a total of (n + 1)! terms. It would be crazy to solve
equations that way. But we do finally have an explicit formula for the solution x.

Example 1 Use Cramer's Rule (it needs four determinants) to solve

Xi+x4r13 =1 1 11
-2x1+x2 =0 with detA=|-2 1 0|=7.
4y, 4x3=0 -4 0 1
The right side (1,0,0) goes into columns 1, 2, 3 to produce the matrices By, B;, Bs:
1 1 1 1 1 1 1 1 1
1Bil=10 1 Ol=1 |Baj=|-2 0 O|=2 |Bsl=|-2 1 0O|=4.
0 0 1 -4 0 1 -4 0 0
Cramer's Rule takes ratios to find the components of x. Always divide by det A:
LB B2 Bl _4
il VYt B I VT T

I always substitute x|, x>, x3 back into the equations, to check the calculations.

A Formula for A~!

In Example 1, the right side & was the first column of [. The solution [%. % ;1 must
be the first column of A~!. Then the first column of AA~! = [ is correct.

Important point: When b = (1,0, 0) replaces a column of A, the determinant is
| times a cofactor. Look back to see how the determinants |B;| are 2 by 2 cofactors
of A;

|By| =1 is the cofactor Cy) = ‘E' ?‘ Cross out row 1, column 1|
. -2 0

|B2l =2 is the cofactor (2 = — 4 1 Cross out row |, column 2
g =2 1

|B3] =4 is the cofactor Ci3 = 4 0 Cross out row |, column 3

Main point: The numerators in A~ are cofactors. They are divided by det A.

For the second column of A™!, change b to (0, 1, 0). The determinants of By, By, B3
are cofactors (in bold) from crossing out row 2. The cofactor signs are (—=)(+)(—=):

011 1 0 1 1 1 0
1 1 0|=-1 -2 1 0|=5 -2 1 1| =—4.
0 01 -4 0 1 -4 0 0

Divide —1,5, —4 by |A| = 7 to get the second column of AT,
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For the third column of A~', the right side is b = (0,0, 1). The determinants
of the three B's become cofactors of the third row. Those are —1,—2,3. We always
divide by |A| = 7. Now we have all columns of AL

1 -1 -1

1 fact fA
Inverse matrix A~'=-[2 § —2|= 2
4 -4 3 determinant of A

Summary In solving AA~! = I, the columns of [ lead to the columns of A~'. Then
Cramer's Rule using b = columns of I gives the short formula (4) for A='. We will
include a separate direct proof of this formula below.

5C The i, j entry of A~ is the cofactor C;; (not C,)) divided by det A:

Cy
FORMULA FOR A~! (A~ = and A~ = —, B
det A det A

The cofactors C;; go into the “cofactor matrix” C. Its transpose leads to AL

To compute the i, j entry of AL, cross out row j and column i of A. Multiply
the determinant by (—1)'*/ to get the cofactor, and divide by det A.
I-Exil,mPle 2 The matrix A = [gg] has cofactor matrix C = [_‘g ] Look at A
times the transpose of C:

T_J|a b|| d —b)| _ |ad—bc 0

A€ “[c d][—r a}“[ 0 ad—-bcl (%)
The matrix on the right is det A times /. So divide by det A. Then A times C'/det A
is I, which reveals A~

c? I =
A~ s = which is ad_w[j j] (6)

This 2 by 2 example uses letters. The 3 by 3 example used numbers. Inverting a 4 by
4 matrix would need sixteen cofactors (each one is a 3 by 3 determinant). Elimination
is faster—but now we know an explicit formula for A~',

Direct proof of the formula A=' = C"/det A The idea is to multiply A times CT:

ayp a3 Cit Cxn Gy det A 0 0
a1 ar an Ei2 T Cnl|= (4] det A ] x ()
az; ap an || Cizx Cxx Ca 0 0 detA

Row | of A times column 1 of the cofactors yields the first det A on the right:
anCn +apCiz+a3C;3 =det A by the cofactor rule.

Similarly row 2 of A times column 2 of CT yields det A. The entries a2; are multi-
plying cofactors C;; as they should, to give the determinant.
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How to explain the zeros off the main diagonal in equation (7)7 Rows of A are
multiplying cofactors from different rows. Row 2 of A times column 1 of CT gives
zero, but why?

ax1Cn +anCi2 +anCiz =0. (8)

Answer: This is the cofactor rule for a new matrix, when the second row of A is
copied into its first row. The new matrix A* has two equal rows, so det A* = 0 in
equation (8). Notice that A* has the same cofactors Cy;, Cy2, C3 as A—because all

rows agree after the first row. Thus the remarkable matrix multiplication (7) is correct:
T Ny
AC' = (det A)J A7 = ——,

Wetd)s o det A

Example 3 A triangular matrix of 1's has determinant 1. Then A~' contains
cofactors:

1 0 0 0 : 1 0 0 0
|1 00 - q4_€C |- 1 0 0
A= I 11 0 has inverse A = T 0 —1 : 0
11 1 1 0 0 -1 1
Cross out row | and column 1 of A to see the 3 by 3 cofactor Cy; = 1. Now cross out

row | and column 2 for Cy2. The 3 by 3 submatrix is still triangular with determinant
1. But the cofactor C}3 is —1 because of the sign (—1)'*2. This number —1 goes into
the (2, 1) entry of A~!'—don't forget to transpose C'!

The inverse of a rriangular marrix is triangular. Cofactors give a reason why.

Example 4  If all cofactors are nonzero, is A sure to be invertible? No way.

Example 5 Here is part of a direct computation of A~' (see Problem 14):

D 1 3 |A| =5 1 EE.
A=|1 0 1| and Cjp=-(-2) and A"I:E 2 -6 «x
2 10 Cay = —6 i B x

Area of a Triangle

Everybody knows the area of a rectangle—base times height. The area of a triangle is
half the base times the height. But here is a question that those formulas don’t answer.
If we know the corners (xy, y1) and (x2, y2) and (x3, y3) of a triangle, what is the
area?

Using the comers to find the base and height is not a good way. Determinants
are much better. There are square roots in the base and height, but they cancel out
in the good formula. The area of a triangle is half of a 3 by 3 determinant. If one
corner is at the origin, say (x3, v3) = (0,0), the determinant is only 2 by 2.
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(x2, ¥2)

(xy. vp)
(. v

Figure 5.1 General triangle; special triangle from (0, 0); general from three specials.

The triangle with corners (xy. vj) and (x2, v2) and (x3, y3) has area = 1 (determi-
nant):

lxr w1 I
. I
Area ol triangle 3 |.1'; 2 1| Area =

lxz »w 1]

g

=

when (x3. yva) = (0, 0).

-
[

When you set x3 = y3 =0 in the 3 by 3 determinant, you get the 2 by 2 determinant.
These formulas have no square roots—they are reasonable to memorize. The 3 by 3
determinant breaks into a sum of three 2 by 2’s, just as the third triangle in Figure 5.1
breaks into three triangles from (0, 0):

x y 1 +'£;{I:}‘z = x2V¥1)
Area = {r n y» l|= +1}{13y3 — X3yz) 9)
x3 09 1 i@y —xxm).

This shows the area of the general triangle as the sum of three special areas. If (0,0)
is outside the triangle, two of the special areas can be negative—but the sum is still
correct. The real problem is to explain the special area %I:n_‘vz — X2¥1)-

Why is this the area of a triangle? We can remove the factor L and change to
a parallelogram (twice as big, because the parallelogram contains two equal triangles).

We now prove that the parallelogram area is the determinant xjy; — x2v;. This area in
Figure 5.2 is 11, and therefore the triangle has area 4.

(x2, y2) (1,3) Parallelogram

4 1
Aod = ‘1 3‘ =11

(0, 0) (x1, ¥1) (0,0) 4, 1)

Triangle: Area = —’1.'—

Figure 5.2 A triangle is half of a parallelogram. Area is half of a determinant.
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Proof that a parallelogram starting from (0,0) has area = 2 by 2 determinant.

There are many proofs but this one fits with the book. We show that the area has the
same properties 1-2-3 as the determinant, Then area = determinant! Remember that
those three rules defined the determinant and led to all its other properties.

1 When A = [, the parallelogram becomes the unit square, Its area is det [ = |.

2 When rows are exchanged, the determinant reverses sign. The absolute value (posi-
tive area) stays the same—it is the same parallelogram.

3 If row | is multiplied by t. Figure 5.3a shows that the area is also multiplied by r.
Suppose a new row (x,,y) is added to (x;, y;) (keeping row 2 fixed). Figure 5.3b
shows that the solid parallelogram areas add to the dotted parallelogram area (because
the two triangles completed by dotted lines are the same).

Dotted area = Solid area=A + A’

* ¥
(x4, vty

0,0y (0, 0y
Figure 5.3  Areas obey the rule of linearity (keeping the side (x3, y2) constant).

That is an exotic proof, when we could use plane geometry. But the proof has a
major attraction—it applies in n dimensions. The n edges going out from the origin are
given by the rows of an n by n matrix. This is like the triangle with two edges going
out from (0. 0). The box is completed by more edges, just as the parallelogram was
completed from a triangle. Figure 5.4 shows a three-dimensional box—whose edges
are not at right angles.

The volume of the box in Figure 5.4 equals the absolute value of det A. Our
proof checks again that rules 1-3 for determinants are also obeyed by volumes. When
an edge is stretched by a factor 1, the volume is multiplied by . When edge 1 is added
to edge 1°, the new box has edge | + 1'. Its volume is the sum of the two original
volumes. This 15 Figure 5.3b lifted into three dimensions or n dimensions. 1 would
draw the boxes but this paper is only two-dimensional.
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4

(@31, asz, ai3)

-
(ayy. ay2, a13) (a21, a2, ax)

Figure 5.4 Three-dimensional box formed from the three rows of A.

The unit cube has volume = 1, which is det /. This leaves only rule 2 to be
checked. Row exchanges or edge exchanges leave the same box and the same abso-
lute volume. The determinant changes sign, to indicate whether the edges are a right-
handed triple (det A = 0) or a left-handed triple (det A < 0). The box volume follows
the rules for determinants, so volume of the box (or parallelipeped) = absolute value
of the determinant.

Example 6 Suppose a rectangular box (90° angles) has side lengths r, s, and 1. Its
volume is r times s times t. The diagonal matrix with entries r,s, and ¢ produces
those three sides. Then det A also equals rsr.

Example 7 In calculus, the box is infinitesimally small! To integrate over a circle,
we might change x and v to r and #. Those are polar coordinates: x = rcosf and
y=rsin#. The area of a “polar box” is a determinant J times dr d6:

dx/dr dx/o6
dyvfar dy/a0

cosf —rsin@
sinf  rcoséd

J =

This determinant is the r in the small area dA = r dr df. The stretching factor J goes
into double integrals just as dx/du goes into an ordinary integral [ dx = [(dx/du)du.
For triple integrals the Jacobian matrix J with nine derivatives will be 3 by 3.

The Cross Product

This is an extra (and optional) application, special for three dimensions. Start with vec-
tors & = (uy, w2, u3) and v = (vy, vz, va). These pages are about their cross product.
Unlike the dot product, which is a number, the cross product is a vector—also in three
dimensions. It is written w x v and pronounced “u cross v.”" We will quickly give the
components of this vector, and also the properties that make it useful in geometry and
physics.
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This nme we bite the bullet, and write down the formula before the properties.

DEFINITION The eross product of w = (uy, uz,u3) and v = (v, v2, v3) is the

vector

i f ok
Hxv= |uy uzx uz| =(uavza —uata)i + (Havy —I.‘||!'3}f+i_ilti'1—H':T.'Mk.
(] L' 13
(10)
This vector is perpendicular to & and v. The cross product v = o is —(u x v).

Comment The 3 by 3 determinant is the easiest way to remember u x v. It is not
especially legal, because the first row contains vectors i, j, k and the other rows contain
numbers. In the determinant, the vector i = (1,0,0) multiplies uyv3 and —usv2. The
result is (w203 — wav2, 0,0), which displays the first component of the cross product.

Notice the cyclic pattern of the subscripts: 2 and 3 give component 1, then 3 and
| give component 2, then 1 and 2 give component 3. This completes the definition of
u x v. Now we list the properties of the cross product:

Property 1 v x w reverses rows 2 and 3 in the determinant so it equals —(u x v).

Property 2 The cross product u x v is perpendicular to u# (and also to v). The direct
proof is to watch terms cancel. Perpendicularity is a zero dot product:

e lu % v) =up(uovy — uava) + wxlusvy — wpva) + wzlugvr — uavy) = 0. (11}

The determinant now has rows u, u and v so it is zero.

Property 3 The cross product of any vector with itself (two equal rows) is u x u = 0.

When u and v are parallel, the cross product is zero. When u and v are perpendicular,
the dot product is zero. One involves sinf and the other involves cos#:

ll x w]| = |||l lv] | sin &} and | = w| = flu)l ||l | cosé|. {12)
Example 8 Since u = (3,2,0) and v = (1. 4,0) are in the xv plane, u x v goes up

the z axis:

HXD=

i j ok
3 2 0|=10k. The cross product is u x v = (0, 0, 10).
1 4 0

The length of u x v equals the area of the parallelogram with sides u and v. This
will be important: In this example the area is 10.
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Example 9  The cross product of u = (1,1, 1) and v = (1,1,2) is (I, —1,0)

i j ok
T U
O

This vector (1, —1,0) is perpendicular to (1, 1, 1) and (1, 1, 2) as predicted. Area = /2.

Example 10  The cross product of (1,0,0) and (0, 1,0) obeys the right hand rule.
It goes up not down:

NI N R T L T
o 0 R A A

ixj=4k

i j k& Rule wu x v points along
1 0 0|=k your right thumb when the
o1 0 . g fingers curl from u to v.

Thus § x j = k. The right hand rule also gives j x k = { and k x i = j. Note
the cyclic order. In the opposite order (anti-cyclic) the thumb is reversed and the cross
product goes the other way: k x j = —i and i x k= —j and j x i = —k. You see
the three plus signs and three minus signs from a 3 by 3 determinant.

The definition of u x v can be based on vectors instead of their components:

DEFINITION The cross product 1s a vector with length [[u] |lv] | sin@|, Its direc-
tion is perpendicular to & and v, It points “up™” or “down”™ by the right hand rule.

This definition appeals to physicists, who hate to choose axes and coordinates. They
see (uy, Uz, u3) as the position of a mass and (F,, F,, F.) as a force acting on it. If F
is parallel to u, then u x F = 0—there is no turning. The mass is pushed out or pulled
in. The cross product u x F is the turning force or rorque. It points along the uring
axis (perpendicular to u and F). Its length |ju] || F|| sin @ measures the “moment™ that
produces turning.

Triple Product = Determinant = Volume
Since u v is a vector, we can take its dot product with a third vector w. That produces

the triple product (u x v) - w. It is called a “scalar” triple product, because it is a
number. In fact it is a determinant;

wyp  up Wi ey M2 M3
(xw):w =|u; wr wuz|l=|vy v wvs|. (13
] v 13 up, wa w3

We can put w in the top or bottom row. The two determinants are the same because
row exchanges go from one to the other. Notice when this determinant is zero:

(w4 xv)-w=0 exactly when the vectors u, v, w lie in the same plane.
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First reason u x v is perpendicular 1o that plane so its dot product with w is zero.
Second reason Three vectors in a plane are dependent. The matrix is singular {det = 0).

Third reason Zero volume when the u, v, w box is squashed onto a plane.

It is remarkable that (u x v) - w equals the volume of the box with sides u, v, w.
This 3 by 3 determinant carries tremendous information. Like ad — be for a 2 by 2
matrix. it separates invertible from singular. Chapter 6 will be looking for singular.

= REVIEW OF THE KEY IDEAS =

I. Cramer’s Rule solves Ax = b by ratios like x; = |B|/|A| = |baz---ag|/|Al
When C is the cofactor matrix for A, the inverse is A~' = CT/ det A,
The volume of a box is |det A|, when the box edges are the rows of A.

Area and volume are needed to change variables in double and triple integrals.

B

In R, the cross product u x v is perpendicular to & and v.

= WORKED EXAMPLES =

5.3 A Use Cramer’s Rule with ratios det B;/det A to solve Ax = b. Also find the

inverse matrix A~! = C7/det A. Why is the solution x in the first part the same as
column 3 of A~'? Which cofactors are involved in computing that column x?
2 6 2 ¥ 0
Ax=b is 1 4 2 vy |=1] 0
5 90 z 1

Find the volumes of the boxes whose edges are columns of A and then rows of A~

Solution  The determinants of the B; (with right side b placed in column j) are

0 6 2 2 0 2 2 6 0
Bil=|0 4 2|=4 |B)=|10 2|==2 |B=|1 4 0]|=2

1 9 0 510 5 9 ]
Those are cofactors Ci, C3z, Czz of row 3. Their dot product with row 3 is det A;

det A =a3Cy) +a3Ca +aiCa=(5,9,00-(4,=-2,2) =2,

The three ratios det B;/det A give the three components of x = (2, —1, 1). This x is
the third column of A~ because b = (0,0, 1) is the third column of /. The cofactors

T
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along the other rows of A, divided by det A = 2, give the other columns of A~':

cr [-18 18 4
Al = =- 10 —10 =2 |. Multiply to check AA~'=1
detA 21 ;1 12 2

The box from the columns of A has volume = det A = 2 (the same as the box from the
rows, since |AT| = |A]). The box from rows of A~' has volume [A~'| = 1/|A| = 3.

5.3 B If A is singular, the equation ACT = (det A)/ becomes ACT = zero matrix.
Then each column of CV is in the nullspace of A. Those columns contain cofactors
along rows of A. So the cofactors quickly find the nullspace of a 3 by 3 matrix—my
apologies that this comes so late!

Solve Ax = 0 by x = cofactors along a row, for these singular matrices of rank 2:

1 4 7 2
A=\| 2 3 9 A=]111 1
2 2 8 1

Any nonzero column of CT will give the desired solution to Ax = 0 (with rank 2, A
has at least one nonzero cofactor). If A has rank 1 we get x = 0 and the idea will
not work.

Solution  The first matrix has these cofactors along its top row (note the minus sign):
‘ 2 3 ’ -

2 8 y

g g ‘:ﬁ -| 42 l: 2
Then x = (6,2,-2) solves Ax = 0. The cofactors along the second row are
(=18, —6, 6) which is just —3x. This is also in the one-dimensional nullspace of A.

The second matrix has zero cofactors along its first row. The nullvector
x = (0,0,0) is not interesting. The cofactors of row 2 give x = (1, —1,0) which
solves Ax = 0.

Every n by n matrix of rank n — 1 has at least one nonzero cofactor by
Problem 3.3.9. But for rank n — 2, all cofactors are zero. In that case cofactors only
find x = 0.

Problem Set 5.3

Problems 1-5 are about Cramer’s Rule for x = A~'b,
1 Solve these linear equations by Cramer’s Rule x; = det B;/ det A:

24+ x =]
(b) n+2n+ x3=0
x4+ 2x3 =0.

2x; 4+ 50 =1

@) X +4x =2
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2

Use Cramer's Rule to solve for v (only). Call the 3 by 3 determinant D:

ax+byv+ cz=1
{(b) dx+ey+ fz=0
gx+hy+ iz=0.

(@) ax+ by =1
cx+dyv=10
Cramer’s Rule breaks down when det A = 0. Example (a) has no solution while
(b) has infinitely many. What are the ratios x; = det B;/ det A in these two cases?

2rp 430 =1

1 ;
l (paralle]l lines) (b) dx) 4+ 6x3 =2

(same line)

Quick proof of Cramer’s rule. The determinant is a linear function of column [,
It is zero if two columns are equal. When b = Ax = xja + x2a2 + x3a; goes
into the first column of A, the determinant of this matrix B is

b ay a3l =|xvia) +x:a:+x3ay ax aiz|==xla; a: az|=xjdet A.

(a) What formula for x; comes from left side = right side?
(b)  What steps lead to the middle equation?

If the right side b is the first column of A, solve the 3 by 3 system Ax = b,
How does each determinant in Cramer’s Rule lead to this solution x7

Problems 6-16 are about A~! = C"/det A. Remember to transpose C.

6

10
11

Find A~! from the cofactor formula CT/det A. Use symmetry in part (b).

1 2 0 2 -1 0
fa) A=|0 3 0 by A=|-1 2 -1].
0 4 1 o -1 2

If all the cofactors are zero, how do you know that A has no inverse? If none
of the cofactors are zero, is A sure 1o be invertible?

Find the cofactors of A and multiply ACT to find det A:

]
A= |1
:

6 —3 (1]
and C=|. . . and ACT =

Bl bl =
L T oS I =

If you change that 4 to 100, why is det A unchanged?
Suppose det A = | and you know all the cofactors. How can you find A?
From the formula ACT = (det A)/ show that det C = (det A)"~ .

(for professors only) If you know all 16 cofactors of a 4 by 4 invertible matrix
A. how would vou find A?




12

13

14

15

16
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If all entries of A are integers, and det A = | or —1, prove that all entries of
A~ are integers. Give a 2 by 2 example.

If all entries of A and A~ are integers, prove that det A = | or —1. Hint: What
is det A times det A~'?

Complete the calculation of A~! by cofactors in Example 5.

L is lower triangular and § is symmetric. Assume they are invertible:

a 0O 0 a b d
L=|b ¢ 0 S=1|b ¢ e
d e f d e [

(a) Which three cofactors of L are zero? Then L~ is lower triangular,
(b)  Which three pairs of cofactors of § are equal? Then S~' is symmetric.
For n = 5 the matrix C contains __ cofactors and each 4 by 4 cofactor

contains __ terms and each term needs  multiplications. Compare with
5% = 125 for the Gauss-Jordan computation of A~' in Section 2.4.

Problems 17-27 are about area and volume by determinants.

17

18

19

20

21

(a) Find the area of the parallelogram with edges v = (3, 2) and w = (1, 4).
(b) Find the area of the triangle with sides v. w, and v + w. Draw it.

(c) Find the area of the triangle with sides v, w, and w — v. Draw it

A box has edges from (0,0,0) to (3,1,1) and (1,3, 1) and (1,1,3). Find its
volume and also find the area of each parallelogram face using |lu = v|.

(a) The comers of a triangle are (2, 1) and (3, 4) and (0, 5). What is the area?

(b) Add a comer at (—1,0) to make a lopsided region (four sides). What is
the area?

The parallelogram with sides (2, 1) and (2, 3) has the same area as the parallel-
ogram with sides (2, 2) and (1, 3). Find those areas from 2 by 2 determinants
and say why they must be equal. (I can’t see why from a picture. Please write
to me if you do.)

The Hadamard matrix H has orthogonal rows. The box is a hypercube!

1 1 |
1 -1 -
-1 -1 1
-1 1 =l

What is |H| = = volume of a hypercube in R*?

—_— e —
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22

23

24

25

26

27

If the columns of a 4 by 4 matrix have lengths Ly, L2, L3, Ls, what is the largest
possible value for the determinant (based on volume)? If all entries are 1 or —1,
what are those lengths and the maximum determinant?

Show by a picture how a rectangle with area x|y minus a rectangle with area
x2vy produces the same area as our parallelogram.

When the edge vectors a, b, ¢ are perpendicular, the volume of the box is |lal|
times ||b|| times |le]. The matrix ATA is . Find det ATA and det A.

The box with edges § and j and w = 2i + 3j + 4k has height . What is
the volume? What is the matrix with this determinant? What is i x j and what
is its dot product with w?

An n-dimensional cube has how many comers? How many edges? How many
(n — 1)-dimensional faces? The cube whose edges are the rows of 2/ has vol-
ume . A hypercube computer has parallel processors at the corners with
connections along the edges.

The triangle with corners (0, 0), (1,0), (0, 1) has area % The pyramid with four
comners (0,0,0), (1,0,0), (0, 1,0), (0,0, 1) has volume . What is the vol-
ume of a pyramid in R* with five corners at (0,0,0,0) and the rows of I7?

Problems 28-31 are about areas d A and volumes 4V in calculus.

28

29

30

31

Polar coordinates satisfy x = rcosf and y = rsinf. Polar area Jdrdf in-
cludes J:

Jo dx/dr ox/o8| |cos8 —rsinf
~ |ay/ar 8y/a6| " |sinf  rcosf|’
The two columns are orthogonal. Their lengths are . Thus J =

Spherical coordinates p, ¢, ¢ satisfy x = psingcos# and y = psingsiné and
z = pcos¢. Find the 3 by 3 matrix of partial derivatives: dx/dp, dx/d¢, dx /a6
in row 1. Simplify its determinant to J = p°sing. Then dV in a sphere is
psing dpdedo.

The matrix that connects r.# to x, y is in Problem 27. Invert that 2 by 2 matrix:

drfodx drfdy
08 /dx o8 /dy

cos
?

I =

?
=9
p !

It is surprising that dr/dx = dx/dr (Caleulus, Gilbert Strang, p. 501). Multiply-

: F : : . ) ix B dx d9
ing the matrices in 28 and 30 gives the chain rule 57 = 5~ 5= + 55 5; = L.

The triangle with corners (0,0), (6,0), and (1,4) has area . When you
rotate it by & = 60° the area is . The determinant of the rotation matrix is
?
?

cosf —sinf
sind  cosé

== = =17

1
2
?
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Problems 32-39 are about the triple product (¢ x v) - w in three dimensions.

32 A box has base area ||u x v|. Its perpendicular height is [jw| cos#. Base area
times height = volume = ||u x v|| ||Jw|lcos# which is (# x v) - w. Compute base
area, height, and volume for u = (2,4,0), v = (—1,3,0), w = (1. 2, 2).

33 The volume of the same box is given more directly by a 3 by 3 determinant.
Evaluate that determinant.

34 Expand the 3 by 3 determinant in equation (13) in cofactors of its row uy, 2, us.
This expansion is the dot product of u with the vector

35 Which of the triple products (#x w).v and (w xu)-v and (vx w)-u are the same
as (u x v) » w? Which orders of the rows u, v, w give the correct determinant?

36 letP=(1,0,—1)and Q=(1,1,1)and R = (2, 2, 1). Choose § so that PQRS
is a parallelogram and compute its area. Choose T, U,V so that OPQRSTUV
is a tilted box and compute its volume.

37 Suppose (x,y,z) and (1, 1,0) and (1.2.1) lie on a plane through the origin.
What determinant is zero? What equation does this give for the plane?

38 Suppose (x, v,z) is a linear combination of (2,3, 1) and (1, 2, 3). What deter-
minant is zero? What equation does this give for the plane of all combinations?

39 (a) Explain from volumes why det2A = 2" det A for n by n matrices.
(b) For what size matrix is the false statement det A +det A = det(A+ A) true?



EIGENVALUES AND
EIGENVECTORS

INTRODUCTION TO EIGENVALUES = 6.1

Linear equations Ax = b come from steady state problems. Eigenvalues have their
greatest importance in dynamic problems. The solution of du/dt = Au is changing
with time —growing or decaying or oscillating. We can't find it by elimination. This
chapter enters a new part of linear algebra. All matrices in this chapter are square.

A good model comes from the powers A, A%, A, ... of a matrix. Suppose you need
the hundredth power A'™. The starting matrix A becomes unrecognizable after a few

steps:
R 3 .70 .45 650 5257 6000 6000
3 3 30 .55 350 475 ' 4000 4000

A A? A3 A0

A was found by using the eigenvalues of A, not by multiplying 100 matrices. Those
eigenvalues are a new way to see into the heart of a matrix.

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change
direction, when they are multiplied by A. Certain exceptional vectors x are in the
same direction as Ax. Those are the “eigenvectors”. Multiply an eigenvector by A,
and the vector Ax is a number A times the original x.

The basic equation is Ax = jx. The number A is the “eigenvalue”. It tells
whether the special vector x is stretched or shrunk or reversed or left unchanged—
when it is multiplied by A. We may find A = 2 or 5 or —1 or 1. The eigenvalue A
could be zero! Then Ax = Ox means that this eigenvector x is in the nullspace.

If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors.
The eigenvalue (the number lambda) is 4 = 1. This is unusual to say the least. Most 2
by 2 matrices have rwo eigenvector directions and rwo eigenvalues. This section teaches

274
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how to compute the x's and A's. It can come early in the course because we only need
the determinant of a 2 by 2 matrix.

For the matrix A in our model above, here are eigenvectors x; and x;. Multi-
plying those vectors by A gives x| and jx2. The eigenvalues are A; = | and 4y = 3:

6 ' 8 3176
x.:[_4] - Ax'z[.z .T}[A]:x' (Ax = x means that A = 1)

r1=[_:] and A:z:[ig ,ﬂ[_:]:[_;] (this is §x2 s0 Ay =

If we again multiply x; by A, we still get xy. Every power of A will give
A"x; = x|. Multiplying x> by A gave {g.rg. and if we multiply again we get {%_}Jx;.
When A is squared, the eigenvectors xy and x3 stay the same. The A's are now 1°
and [%}2. The eigenvalues are squared! This pattern keeps going, because the eigen-
vectors stay in their own directions (Figure 6.1) and never get mixed. The eigenvectors
of A'™ are the same x; and x3. The eigenvalues of A" are 1'™ = | and ()" =
very small number. i

Bl
™

[.6:| _43:. =[1]2.1'|
Axy=x) = 4

Axs = hxs = [_:]

[}

Figure 6.1 The eigenvectors keep their directions. A® has eigenvalues 17 and (.5)%.

Other vectors do change direction. But all other vectors are combinations of the
two eigenvectors. The first column of A is the combination x; + (.2)x:

8] . . .
[‘2] is x1+(2xx= [‘2] + [_ g] (1

Multiplying by A gives the first column of A%, Do it separately for x; and (.2)x,. Of
course Ax; =x;. And A multiplies x; by its eigenvalue 1';:

a[2]=[3] # mezeam=[{]+[1]

Each eigenvector is multiplied by its eigenvalue, when we multiply by A. We didn’t
need these eigenvectors to find A%, But it is the good way to do 99 multiplications.
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At every step x| is unchanged and x; is multiplied by (3), so we have ()™

go|-B] . I 09 6 7Y
A 4| is really .rq+{.2]:;} rn=|,+ small

vector

This is the first column of A'™. The number we originally wrote as .6000 was not
exact. We left out {.Il{al_;jw which wouldn’t show up for 30 decimal places.

The eigenvector x| is a “steady state” that doesn’t change (because 4y = 1). The
eigenvector X7 is a “decaying mode™ that virtually disappears (because i; = .5). The
higher the power of A, the closer its columns approach the steady state.

We mention that this particular A is a Markov matrix. Its entries are positive
and every column adds to 1. Those facts guarantee that the largest eigenvalue is A = |
(as we found). Its eigenvector x| = (.6, .4) is the steady stare—which all columns of
A* will approach. Section 8.3 shows how Markov matrices appear in applications.

For projections we can spot the steady state (A = 1) and the nullspace (A = 0).

Example 1 The projection matrix P = [ § 3] has eigenvalues 1 and 0.

Its eigenvectors are x| = (1, 1) and x> = (1, —1). For those vectors, Px| = x| (steady
state) and Pxz = 0 (nullspace). This example illustrates three things that we mention
now:

1. Each column of P adds 1o |, so 4 = | is an eigenvalue.
2. P is singular, s0 A =0 is an eigenvalue.
3. P is symmetric, so its eigenvectors (1, 1) and (1, =1) are perpendicular.

The only possible eigenvalues of a projection matrix are 0 and 1. The eigenvectors
for A = 0 (which means Px = Ox) fill up the nullspace. The eigenvectors for A = |
(which means Px = x) fill up the column space. The nullspace is projected to zero.
The column space projects onto itself.

An in-between vector like v = (3, 1) partly disappears and partly stays:

B ) U [ W |

The projection keeps the column space part of v and destroys the nullspace part. To
emphasize: Special properties of a marrix lead ro special eigenvalues and eigenvectors.
That is a major theme of this chapter (it is captured in a table at the very end).

Projections have A =0 and |. Permutations have all |4| = 1. The next matrix R
(a reflection and at the same time a permutation) is also special.

T
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Example 2 The reflection matrix R = [{]] has eigenvalues 1 and —1.

The eigenvector (1, 1) is unchanged by R. The second eigenvector is (1, —1)—its signs
are reversed by R. A matrix with no negative entries can still have a negative eigen-
value! The eigenvectors for R are the same as for P, because R =2P — I

0 1 5 5 1 0
R=2P -1 or [l ﬂ]zz[.ﬁ .5]_[0 ]:r. (2)
Here is the point. If Px = Ax then 2Px = 2ix. The eigenvalues are doubled when

the matrix is doubled. Now subtract /x = x. The result is (2P — [)x = (24 — 1)x.
When a matrix is shifted by I, each ). is shifted by 1. No change in eigenvectors.

X3 Px =X X3 Rx) =x,

Px: =0x2

Projection Reflection ®Rx; =-x

Figure 6.2  Projections have eigenvalues 1 and 0. Reflections have 2 = 1 and —1.
A typical x changes direction, but not the eigenvectors x| and x;.

The eigenvalues are related exactly as the matrices are related:

R=2P -1 so the eigenvalues of R are 2ly)—1=1land 2(0) — | = —1.
The eigenvalues of R* are A2, In this case R> = I. Check (1)* =1 and (—1)* = 1.

The Equation for the Eigenvalues

In small examples we found A's and x’s by trial and error. Now we use determinants

and linear algebra. This is the key calculation in the chapter—to solve Ax = ix.
First move Ax to the left side. Write the equation Ax = Jx as (A —2ANx = 0.

The matrix A — A/l times the eigenvector x is the zero vector. The eigenvectors make

up the nullspace of A —iI! When we know an eigenvalue A, we find an eigenvector
by solving (A — Alx =0.

Eigenvalues first. If (A — Af)x = 0 has a nonzero solution, A — A/ is not invertible.
The determinant of A — LI must be zero. This is how to recognize an eigenvalue A:

6A The number 4 is an eigenvalue of A if and only if A — A/ is singular:

det(A =11 =0. (3
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This “characteristic equation” involves only A, not x. When A isn by n.det(A — A1) =0is
an equation of degree n. Then A has n eigenvalues and each A leads to x:

For each A solve (A—=Alx =0 or Ax =ix to find an eigenvector x. (4)

Example 3 A= [}3] is already singular (zero determinant). Find its A’s and x's.
When A is singular, A = 0 is one of the eigenvalues. The equation Ax = Ox has

solutions, They are the eigenvectors for A = (0. But here is the way to find all 1's and
x’s! Always subtract A/ from A:

2 4-2

Take the determinamt “ad — be” of this 2 by 2 matrix. From | — A times 4 — A, the
“ad" part is A% — 5i 4+ 4. The “bc” part, not containing A, is 2 times 2,

Subtract ). from the diagonal to find A-M=[l_l 2 ]

1-4 2 .
dﬂ[ 2 4_}_]-{]—1114—11—(2}(2]-1 - 35A. (5)

Set this determinant A* — 5\ fo zero. One solution is . = 0 (as expected, since A is
singular). Factoring into A times A — 5. the other root is 4 = 5:

det(A —Al) =2 —5.1 =0 yields the cigenvalues 3, =0 and i =5.
Now find the eigenvectors. Solve (A — Al)x = 0 separately for A; =0 and A; = 5:

1 21> .19 . : yl | 2 .
(A—=0Nx = [2 4] [;] = [t}] yields an eigenvector [‘:I = [_ I] fori; =0
(A=-35hx = [_; _l;] [:] = [g] yields an eigenvector [i] = [;] for A2 = 3.

The matrices A —0/ and A — 51 are singular (because 0 and 5 are eigenvalues).
The eigenvectors (2, —1) and (1, 2) are in the nullspaces: (A —Al)x =0 is Ax = Ax.

We need to emphasize: There is nothing exceptional about & = (). Like every
other number, zero might be an eigenvalue and it might not. If A is singular, it is.
The eigenvectors fill the nullspace: Ax = Ox = 0. If A is invertible, zero is not an
eigenvalue. We shift A by a multiple of I to make ir singular. In the example, the
shifted matrix A — 5/ was singular and 5 was the other eigenvalue.

Summary To solve the eigenvalue problem for an n by n matrix, follow these steps:

1. Compuite the determinant of A — il. With ) subtracted along the diagonal,
this determinant starts with 2" or —4". It is a polynomial in A of degree n.

2.  Find the roots of this polynomial, by solving det(A — A7) = 0. The n roots
are the n eigenvalues of A. They make A — i/ singular.

3.  For each eigenvalue i, sofve (A — il)x =0 to find an eigenvector x.
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A note on quick computations, when A is 2 by 2. The determinant of A — Al is a
quadratic (starting with 2?). >From factoring or the quadratic formula, we find its two
roots (the eigenvalues). Then the eigenvectors come immediately from A — A/, This
matrix is singular, so both rows are multiples of a vector (a, b). The eigenvector is
any multiple of (b, —a). The example had A =0 and A = 5:

A =0:rows of A =0/ in the direction (1, 2): eigenvector in the direction (2, —1)
A =5:r1ows of A— 5/ in the direction (—4, 2); eigenvector in the direction (2, 4).

Previously we wrote that last eigenvector as (1, 2). Both (1.2) and (2, 4) are correct.
There is a whole line of eigenvectors—any nonzero multiple of x is as good as x.
MATLAB s eig(A) divides by the length, to make the eigenvector into a unit vector.

We end with a warning. Some 2 by 2 matrices have only one line of eigenvectors.
This can only happen when two eigenvalues are equal. (On the other hand A = [
has equal eigenvalues and plenty of eigenvectors.) Similarly some n by n matrices
don’t have n independent eigenvectors, Without n eigenvectors, we don’t have a basis.
We can't write every v as a combination of eigenvectors. In the language of the next
section, we can’t diagonalize a matrix without n independent eigenvectors.

Good News, Bad News

Bad news first: If you add a row of A to another row, or exchange rows, the eigen-
values usually change. Elimination does not preserve the A's. The triangular U has
its eigenvalues sitting along the diagonal—they are the pivots. But they are not the
eigenvalues of A! Eigenvalues are changed when row 1 is added to row 2:

| .

U=[[ I] has A=0and A = 1; A=[I :

0 0 ] has A=0and 4 = 2.

Good news second: The product i, times A: and the sum i)+ k2 can be found quickly
Jfrom the matrix. For this A, the product is 0 times 2. That agrees with the determinant
(which is 0). The sum of eigenvalues is 0 4 2. That agrees with the sum down the
main diagonal (which is 1 4 1). These quick checks always work:

6B The product of the n eigenvalues equals the determinant of A.

6C The sum of the n eigenvalues equals the sum of the n diagonal entries of A.
This sum along the main diagonal is called the trace of A:

M+Ar4-4 Ay =trace =a) +an + -+ ay,. (6G)
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Those checks are very useful. They are proved in Problems 16-17 and again in the next
section. They don't remove the pain of computing A's. But when the computation is
wrong, they generally tell us so. To compute correct A's, go back to det(A — Al) = 0.

The determinant test makes the product of the A’s equal to the proeduct of the
pivots (assuming no row exchanges). But the sum of the A's is not the sum of the
pivots—as the example showed. The individual A's have almost nothing to do with
the individual pivots. In this new part of linear algebra, the key equation is really
nonlinear: 3 multiplies x.

Imaginary Eigenvalues

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

Example 4 The 90° rotation Q = [_{ }] has no real eigenvectors or eigenvalues.
No vector x stays in the same direction as x (except the zero vector which is useless).
There cannot be an eigenvector, unless we go to imaginary numbers. Which we do.

To see how i can help, look at O which is —f. If Q is rotation through 90°,
then (* is rotation through 180°. Its eigenvalues are —1 and —1. (Certainly —/x =

—1x.) Squaring Q is supposed to square its eigenvalues 4, so we must have A* = —1,

The eigenvalues of the 90° rotation matrix Q are +i and —i, because i* = —1.
Those A’s come as usual from det(Q — A/) = 0. This equation gives 4> +1 =0,

Its roots are &4 =i and &; = —i. They add to zero (which is the trace of Q). The

product is (i)(—i) = 1 (which is the determinant).
We meet the imaginary number i also in the eigenvectors of (:

0 1|[1]_.|1 St LI oIl I\ Y 5] [

=1 0 5] =0 4 o L sl I )
Somehow these complex vectors x; = (1,/) and x> = (i, 1) keep their direction as
they are rotated. Don’t ask me how. This example makes the all-important point that

real matrices can easily have complex eigenvalues. The particular eigenvalues i and —i
also illustrate two special properties of Q:

1. ( is an orthogonal matrix so the absolute value of each A is || = L.
L. (O is a skew-symmetric matrix so each A is pure imaginary.

A symmetric matrix (A" = A) can be compared to a real number. A skew-symmetric
matrix (AT = —A) can be compared to an imaginary number. An orthogonal matrix
(ATA = I) can be compared to a complex number with |4| = 1. For the eigenvalues
those are more than analogies—they are theorems to be proved in Section 6.4. The
eigenvectors for all these special matrices are perpendicular. Somehow (i, 1) and (1, 47)
are perpendicular (in Chapter 10).
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Eigshow

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for
a 2 by 2 matrix. It starts with the unit vector x = (1,0). The mouse makes this vector
move around the unit circle. At the same time the screen shows Ax, in color and
also moving. Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is
paralflel to x. At that parallel moment, Ax = Ax (twice in the second figure).

A_[G.E {I.3:| L ——
y= ({L ” 0.2 07 IE - - ..'LI.'! = x|
Ax; ='0.5x3 \

g
0.3,0.7) L }

\ ‘| ellipse of Ax’s /
Ax = (0.8,0.2) TS

e _.—Circle of x's
x=(1,0)

The eigenvalue 4 is the length of Ax, when the unit eigenvector x is parallel.
The built-in choices for A illustrate three possibilities:

1.  There are no real eigenvectors. Ax stays behind or ahead of x. This means the
eigenvalues and eigenvectors are complex, as they are for the rotation Q.

2.  There is only one line of eigenvectors (unusual). The moving directions Ax and
x meet but don’t cross. This happens for the last 2 by 2 matrix below.

3.  There are eigenvectors in fweo independent directions. This is typical! Ax crosses
x at the first eigenvector x, and it crosses back at the second eigenvector x;.

Suppose A is singular (rank one). Its column space is a line. The vector Ax
has to stay on that line while x circles around. One eigenvector x is along the line.
Another eigenvector appears when Ax: = 0. Zero is an eigenvalue of a singular matrix.

You can mentally follow x and Ax for these six matrices. How many eigenvectors
and where? When does Ax go clockwise, instead of counterclockwise with x7

=[] S0 a] (8] [ ]
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= REVIEW OF THE KEY IDEAS =

1.  Ax = ix says that x keeps the same direction when multiplied by A.

Ax = ix also says that det{A — A/) = (. This determines n eigenvalues.
The eigenvalues of A2 and A~ are A7 and A~', with the same eigenvectors.

The sum and product of the 4's equal the trace (sum of a;;) and determinant.

MR m

Special matrices like projections P and rotations ¢ have special eigenvalues !

= WORKED EXAMPLES =

6.1 A Find the eigenvalues and eigenvectors of A and A% and A~' and A + 41

2 -1 2 [ 5 —4
A—[_l 2] and A —{_4 5]

Check the trace A + A2 and the determinant A;i> for A and also A2,

Solution  The eigenvalues of A come from det(A — AJ) =0

2—-a -1

o al=¥-a4+3=0

dctm—u]—_—l

This factors into (A — 1)(A — 3) = 0 so the eigenvalues of A are 4, = 1 and A2 = 3.
For the trace, the sum 2 4 2 agrees with 1 4+ 3. The determinant 3 agrees with the
product 44> = 3. The eigenvectors come separately by solving (A — i/)x = 0 which
i5 Ax = Ax:

[ 1 =17[xT7 [o] . ; [
iA=L (A-DNx = 1 : f =g | &ives the eigenvector x; = ::|
A=3 (A-3Nx = :: :: ’: 2= g gives the eigenvector x; = _:]

A% and A~ and A + 4] keep the same eigenvectors. Their eigenvalues are 12, A7,

P
3 o | I.
A has I"=land 3- =9 A"hasiaml% A4+4lhasl +4=5and3+4=7

The trace of A2 is 5+5=1+9 = 10. The determinant is 25 — 16 =9,

Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric
matrices). A can be diagonalized (Section 6.2). A is similar to any 2 by 2 matrix with
eigenvalues | and 3 (Section 6.6). A is a positive definite matrix (Section 6.5) since
A= AT and the A's are positive.




6.1 Introduction to Eigenvalues 283

6.1 B For which real numbers ¢ does this matrix A have (a) two real eigenvalues
and eigenvectors (b) a repeated eigenvalue with only one eigenvector (¢) two complex
eigenvalues and eigenvectors”

| & —e ; G 5 =2c-2

"“[—t 2] ‘““[—zc—z 4+c3]'

What is the determinant of ATA by the product rule? What is its trace? How do you
know that ATA doesn’t have a negative eigenvalue?

Solution The determinant of A is 4 — ¢. The determinant of A — A/l is

2-4  —c 2 B
dct[ Ly 2_}.]=l —4+@-0=0.

The formula for the roots of a quadratic is

jo Z2EVE —dac  4EVI16—16+4c
- - 2

: =2+ /¢

Check the trace (it is 4) and the determinant (2 + /¢)(2 = J/€) = 4 —c. The eigenval-
ues are real and different for ¢ > 0. There are two independent eigenvectors (/c, 1)
and (—./c, 1). Both roots become i = 2 for ¢ = 0, and there is only one indepen-
dent eigenvector (0, 1). Both eigenvalues are complex for ¢ < 0 and the eigenvectors
(€. 1) and (—4/c. 1) become complex.

The determinant of ATA is det(AT)det(A) = (4 — ¢)®. The trace of ATA is
5+4+c*. If one eigenvalue is negative, the other must be positive to produce this trace
Ay + 2 =9+¢*. But then negative times positive would give a negative determinant.

In fact every ATA has real nonnegative eigenvalues (Section 6.5).

Problem Set 6.1

1 The example at the start of the chapter has
8 3 2 _ |70 45 x~_|6 6
e [.2 .?] o A% [.3& .55] - B [.4 .4]‘
The matrix A” is halfway between A and A®. Explain why A% = 1(A + A™)
from the eigenvalues and eigenvectors of these three matrices.

(a) Show from A how a row exchange can produce different eigenvalues.
(b) Why is a zero eigenvalue not changed by the steps of elimination?

2  Find the eigenvalues and the eigenvectors of these two matrices:

1 4 2 4
an[l 4] wa avraf2 4]

A+ 1 has the ___ eigenvectors as A. Its eigenvalues are by 1.
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Compute the eigenvalues and eigenvectors of A and A~

To 2] o [-3/4 122
‘4_[2 3} and A ‘[ 1/2 n]'

A~ has the eigenvectors as A. When A has eigenvalues A; and A, its
inverse has eigenvalues

Compute the eigenvalues and cigenvectors of A and A%

1 3 i [7 -3
A_[l D] and A—[_z 6]‘
A? has the same as A. When A has eigenvalues A and 3, A? has eigen-

values

Find the eigenvalues of A and B and A + B:

1 0 1 1 2 1
A—[] 1] and B-_[ﬂ l] and A+E_|:] 2].

Eigenvalues of A+ B (are equal to)(are not equal to) eigenvalues of A plus eigen-
values of B.

Find the eigenvalues of A and B and AR and BA:

1 0 11 11 21
A-[] I] and E-_[ﬂ I] and AB—[I 1] and Hﬂ:[] I]'
Eigenvalues of AB (are equal to)are not equal to) eigenvalues of A times eigen-
values of B. Eigenvalues of AB (are equal to)(are not equal to) eigenvalues of BA.

Elimination produces A = LU. The eigenvalues of I/ are on its diagonal. they
are the . The eigenvalues of L are on its diagonal; they are all
The eigenvalues of A are not the same as

{a) If you know x is an eigenvector, the way to find 2 is to
{b) If you know A is an eigenvalue, the way to find x is to

What do you do to Ax = ix, in order to prove (a), (b), and (c)?

(a) A% is an eigenvalue of A2, as in Problem 4.
(b) A~ is an eigenvalue of A~', as in Problem 3.
(¢) A+1 is an eigenvalue of A + I, as in Problem 2.

Find the eigenvalues and eigenvectors for both of these Markov matrices A and
A%, Explain why A'% is close to A™:

[6 2 w13 173
"“[.4 .s] ad A ‘[2,.#3 2;3]‘
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Here is a strange fact about 2 by 2 matrices with eigenvalues A} # A2: The
columns of A—J;/ are multiples of the eigenvector x2. Any idea why this should
be?

Find the eigenvalues and eigenvectors for the projection matrices P and P
2 4 0
P=|4 B 0
0 0 1

If two eigenvectors share the same A, so do all their linear combinations. Find
an eigenvector of P with no zero components.

From the unit vector # = (4, #. 2, ) construct the rank one projection matrix
P = HHT.

(a) Show that Pu = u. Then u is an eigenvector with A = 1.

(b) If v is perpendicular to u show that Pv = 0. Then A = 0.

{c) Find three independent eigenvectors of P all with eigenvalue A = 0.
Solve det(Q — A/) = 0 by the quadratic formula to reach A = cosf £ isinf:

__ | cosé — sin#
Q= sinf cosf

] rotates the xy plane by the angle 6.

Find the eigenvectors of Q by solving (Q — Al)x =0. Use i’ = —1.

Every permutation matrix leaves x = (1, 1, .. ., 1) unchanged. Then . = 1. Find
two more A's for these permutations:

1

0]-

0

Prove that the determinant of A equals the product A4z ---A,. Start with the
polynomial det(A — Al) separated into its n factors. Then set A = :

0D 1 0 0D 0
P=|0 0 1 and P=|0 1
1 00 1 0

det(A —Al) =y =AM A2 —=A) - (A —A) s0o detA=
The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

A:[i 3] has dﬂl{ﬂ—lf]:"—i.z—[ﬂ+d']l+ﬂd—bf——.-ﬂ.

If A has Ay =3 and A2 =4 then det(A —Al)= . The quadratic formula
gives the eigenvalues ). = (a+d+/ )/2and A = . Their sum is
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18

19

20

21

22

23

24

25

26

27

If Ahas Ay =4 and A; = 5 then det(A — AJ) = (A —4)(A = 5) = A2 — 9 + 20,
Find three matrices that have trace a +d = 9 and determinant 20 and A = 4, 5.

A 3 by 3 matrix B is known to have eigenvalues 0, 1,2. This information is
enough to find three of these:

(a) the rank of B

(b) the determinant of BT B

(c) the eigenvalues of BTB

(d) the eigenvalues of (B + I)~L

Choose the second row of A = I:E 1} sO that A has eigenvalues 4 and 7.

Choose a, b. ¢, so that det(A —AJ) = 94 — ", Then the eigenvalues are —3, 0, 3:

010
A=|0 0 1].
a b ¢

The eigenvalues of A equal the eigenvalues of AY. This is because det(A — Al)
equals det(AT — A7). That is true because . Show by an example that the
eigenvectors of A and AT are nor the same.

Construct any 3 by 3 Markov matrix M: positive entries down each column add
to 1. If e =(1,1,1) verify that MTe = e. By Problem 22, A = 1 is also an
eigenvalue of M. Challenge: A 3 by 3 singular Markov matrix with trace % has
eigenvalues A =

Find three 2 by 2 matrices that have A; = A; = 0. The trace is zero and the
determinant is zero. The matrix A might not be 0 but check that A% = 0.

This matrix is singular with rank one. Find three A's and three eigenvectors:
1 - R
A=|2]|[212]=|4 2 4
1 2 1 2

Suppose A and B have the same eigenvalues X;,. . ., 4, with the same inde-
pendent eigenvectors xj,. . ..X,. Then A = B. Reason: Any vector x is a
combination ¢ ;x| +. . . + cyx,. What is Ax? What is Bx?

The block B has eigenvalues 1,2 and C has eigenvalues 3,4 and D has eigen-
values 5. 7. Find the eigenvalues of the 4 by 4 matrix A:

B c]_|-
=[5 5]-

= T ]
[ T R PV
—_— O D W
= B~ =
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Find the rank and the four eigenvalues of

11 |
1 1 0
11 ad C=]|,
11 0

™ =
=
= ==

Subtract [ from the previous A. Find the L's and then the determinant:

When A (all ones) is 5 by 5, the eigenvalues of A and B = A — [ are
and

(Review) Find the eigenvalues of A, B, and C:

1 2 3 0 0 1 2 2 2
A=]|0 4 5 and B=|0 2 0O and C=|2 2 2
0 0 6 300 2 2 2

When a + b = ¢ +d show that (1, 1) is an eigenvector and find both eigenvalues
of
a b
s [ 4

When P exchanges rows 1 and 2 and columns | and 2, the eigenvalues don’t
change. Find eigenvectors of A and PAP for A = 11:

121 6 3 3
A=|3 6 3| and PAP=|2 1 1
4 8 4 8 4 4

Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w.

(a) Give a basis for the nullspace and a basis for the column space.
(b) Find a particular solution to Ax = v 4+ w. Find all solutions.

(c) Show that Ax = u has no solution. (If it did then ~ would be in the
column space.)

Is there a real 2 by 2 matrix {mhqr than 1) wr’fh AP =17 Its eigenvalues must
satisfy A* = I. They can be ¢*™/3 and ¢=>""/3. What trace and determinant
would this give? Construct A.
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35

36

Find the eigenvalues of this permutation matrix P. Which vectors are not changed

by the permutation? They are eigenvectors for A = |. Can you find two more
eigenvectors?
010
P=| 0 0 1
1 0 0

There are six 3 by 3 permutation matrices P. What numbers can be the derer-
minants of P? What numbers can be pivots? What numbers can be the trace of
P? What four numbers can be eigenvalues of P?

DIAGONALIZING A MATRIX = 6.2

When x is an eigenvector, multiplication by A is just multiplication by a single number:
Ax = ix. All the difficulties of matrices are swept away. Instead of an interconnected
system, we can follow the eigenvectors separately. It is like having a diagonal marrix,
with no off-diagonal interconnections. The 100th power of a diagonal matrix is easy.

The point of this section is very direct. The matrix A turns into a diagonal

matrix A when we use the eigenvectors properly. This is the matrix form of our key
idea. We start right off with that one essential computation.

6D Diagonalization Suppose the n by n matrix A has n linearly independent eigen-
vectors Xy, ..., X,. Pul them into the columns of an eigenvector matrix S. Then
5 1AS is the eigenvalue matrix A:

STTAS=A= : (1)

A L4

The matrix A is “diagonalized.” We use capital lambda for the eigenvalue matrix,

because of the small A’s (the eigenvalues) on its diagonal.

Proof Multiply A times its eigenvectors, which are the columns of S. The first col-
umn of AS is Ax;. That is &,x,. Each column of § is multiplied by its eigenvalue:

AS=A|lx1 - xp|=101x1 -+ AyXn
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The trick is to split this matrix AS into § times A:

>

MXL e haXp | = (X1 - Xp = SA.

Keep those matrices in the right order! Then A multiplies the first column x, as shown.
The diagonalization is complete, and we can write AS = SA in two good ways:

ASSSA s S'AS=A ori A=SAS. @

The matrix § has an inverse, because its columns (the eigenvectors of A) were assumed
to be linearly independent. Withour n independent eigenvectors, we can't diagonalize.

The matrices A and A have the same eigenvalues Ay,. . ., Ay. The eigenvectors
are different. The job of the original eigenvectors was to diagonalize A—those eigen-
vectors of A went into §. The new eigenvectors, for the diagonal matrix A, are just the
columns of /. By diagonalizing A and reaching A, we can solve differential equations
or difference equations or even Ax = b.

Example 1 The projection matrix P = ['3:2] has 4 = 1 and 0. Put the eigenvectors
(1,1)and (=1, 1) into S. Then §~'P§ is the eigenvalue matrix A:

[.:i_]:i} 53] [ 7] :[éﬁﬁ}

The original projection satisfied P2 = P. The new projection satisfies A*> = A. The

column space has swung around from (1, 1) to (1, 0). The nullspace has swung around

from (=1, 1) to (0, 1). Diagonalization lines up the eigenvectors with the xy axes.
Here are four small remarks about diagonalization, before the applications.

Remark 1 Suppose the numbers 4y, . . ., A, are all different. Then it is automatic that
the eigenvectors x|, . . ., x, are independent. See 6E below. Therefore any matrix thar
has no repeated eigenvalues can be diagonalized.

Remark 2 The eigenvector matrix § is not unique. We can multiply eigenvectors by
any nonzero constants. Suppose we multiply the columns of § by 5 and —1. Divide
the rows of ! by 5 and —1 to find the new inverse:

) [ a1[s sI[s 1] [r o]_
Sm‘psm”[.s =sll& 5/ls =1]=]o o]= B

The extreme case is A = [, when every vector is an eigenvector. Any invertible matrix
§ can be the eigenvector matrix. Then S~'/S = I (which is A).

Remark 3 To diagonalize A we must use an eigenvector matrix, From S™'AS = A
we know that AS = SA. Suppose the first column of § is x. Then the first columns
of AS and SA are Ax and A)x. For those to be equal, x must be an eigenvector.
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The eigenvectors in § come in the same order as the eigenvalues in A. To reverse
the order in § and A, put (—1, 1) before (1, 1):

-5 3|5 S|[=1 1 0 0 )
[,5 ,5][15 _5][] ]]—[ﬂ ]:l—hlnthuncwnrdtr[].l.

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few
eigenvectors. Those matrices are not diagonalizable. Here are two examples:

a=[} 2] mea=[5 o)

Their eigenvalues happen to be O and 0. Nothing is special about A = 0O—it is the
repetition of A that counts. All eigenvectors of the second matrix are multiples of (1, 0)!

ime o [ Q][e]m 3] s wmef]

There is no second eigenvector, so the unusual matrix A cannot be diagonalized. This

miatrix is the best example to test any statement about eigenvectors. In many true-false
guestions, this matrix leads to false.
Remember that there is no connection between invertibility and diagonalizability:

- Invertibility is concerned with the eigenvalues (zero or not).
~  Diagonalizability i1s concerned with the eigenvectors (too few or enough).

Each eigenvalue has at least one eigenvector! If (A = A/)x = 0 leads you to x = 0, then
5 is mot an eigenvalue. Look for a mistake in solving det(A — A7) = 0. The eigenvectors
for n different A's are independent and A is diagonalizable.

6E  (Independent x from different &) Eigenvectors xy, ... , x; that correspond to dis-
tinct (all different) eigenvilues are linearly independent. An n by n matrix that has n
different eigenvalues (no repeated A's) must be diagonalizable.

Proof Suppose cjx; + cax2 = 0. Multiply by A to find ¢\ x; + c2h0x2 = 0.
Multiply by &> to find cjh2x + c24202 = 0. Now subtract one from the other;

Subtraction leaves (i) — A3)eix) = 0. Therefore ¢ = 0.

Since the A's are different and x| # 0, we are forced to the conclusion that ¢; = 0.
Similarly ¢; = 0. No other combination gives c1x) +cax2 = 0, so the eigenvectors x|
and x» must be independent.
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This proof extends directly to j eigenvectors. Suppose cjx| + -+ ¢jx; = 0.
Multiply by A. multiply by A;, and subtract. This removes x;. Now multiply by A
and by A;-; and subtract. This removes x;_;. Eventually only x, is left:

(A — A2) - (A —l_,-}qx| =0 which forces c¢; =0. (3)

Similarly every ¢; = 0. When the A’s are all different, the eigenvectors are independent.
With n different eigenvalues, the full set of eigenvectors goes into the columns
of the eigenvector matrix 5. Then A is diagonalized.

Example 2  The Markov matrix A = [§-3] in the last section had A; = | and
’3 =.5. Here is A = SAS™! with those eigenvalues in A:

8 3|_[6 1|1 O]J]1 1]_ iy

[.2 .?]"[.4 -I][ﬂ .5] [.4 -.6]‘5‘”‘5 :
The eigenvectors (.6, .4) and (1, —1) are in the columns of S. They are also the eigen-
vectors of A2, because A’x = Aix = A%x. Then A? has the same S. and the eigen-

value matrix of A* is A%:

-

A2 =SASTISAS™! = sA%sT!,

Just keep going, and you see why the high powers Ak approach a “steady state™:

b onket _[6 17[1F 0 J[1 1
AT=SATS ‘[.4 -1][0 {.5}*][.4 -.6]

As k gets larger, (.5) gets smaller. In the limit it disappears completely. That limit 1s

o [€ V][ OY[r 1]_[6 6
4 =11]10 0f| 4 -6 4 4|
The limit has the eigenvector x| in both columns. We saw this A™ on the very first

page of the chapter. Now we see it more quickly from powers like A'® = SA1®g-T,

Eigenvalues of AB and A + B

The first guess about the eigenvalues of AB is not true. An eigenvalue A of A times
an eigenvalue g of B usually does nor give an eigenvalue of AB. It is very tempting
to think it should. Here is a false proof :

ABx = Afx = BAx = Bix. (@)
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It seems that B times A is an eigenvalue. When x is an eigenvector for A and B, this
proof is correct. The mistake is to expect that A and B automatically share the same
eigenvector x. Usually they don’t. Eigenvectors of A are not generally eigenvectors of B.
A and B can have all eigenvalues A =0 and 8 = 0 while 1 is an eigenvalue of AB:

o1 _[o o7, 1o o 1
A_[G {}] and E.—[l U]' then AH-[U IJ] and A+B_[I {J.

For the same reason, the eigenvalues of A+ B are generally not A+ . Here A+ 8 =0
while A + B has eigenvalues |1 and —1. (At least they add to zero.)

The false proof suggests what is true. Suppose x really is an eigenvector for both
A and B. Then we do have ABx = ifx. Sometimes all n eigenvectors are shared, and
we can multiply eigenvalues. The test AB = BA for shared eigenvectors is important
in quantum mechanics—time out to mention this application of linear algebra:

6F Commuting matrices share eigenvectors Suppose A and B can be diagonalized.
They share the same eigenvector matrix S if and only if AB = BA.

Heisenberg’s uncertainty principle In quantum mechanics, the position matrix P
and the momentum matrix @ do not commute. In fact QP — PQ = [ (these are infinite
matrices). Then we cannot have Px = 0 at the same time as ¢x = 0 (unless x = 0). If
we knew the position exactly, we could not also know the momentum exactly. Problem
32 derives Heisenberg’s uncertainty principle from the Schwarz inequality.

Fibonacci Numbers

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers
grow. Every new Fibonacci number is the sum of the two previous F's:

The sequence  0.1,1,2.3,5.8.13, ... comes from = Fi2 = Fi + Fi.

These numbers turn up in a fantastic variety of applications. Plants and trees grow
in a spiral pattern, and a pear tree has 8 growths for every 3 turns. For a willow
those numbers can be 13 and 5. The champion is a sunflower of Daniel O'Connell,
which had 233 seeds in 144 loops. Those are the Fibonacci numbers Fy3 and Fy2. Our
problem is more basic.

Problem: Find the Fibonacci number Fipp The slow way is to apply the rule
Fiy2 = Fpyy + Fi one step at a time. By adding F¢ = 8 to F; = 13 we reach
Fg = 21. Eventually we come to Figp. Linear algebra gives a better way.

The key is to begin with a matrix equation uzy) = Auy. That is a one-step rule
for vectors, while Fibonacci gave a two-step rule for scalars. We match them by putting
two Fibonacci numbers into a vector:
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Froo=Fa+ F

Let up = Fis1 . The rule
Fig1 = Fiy

1 1
Fi becomes up.; = [ ]uk,

1 0

(5)
Every step multiplies by A = [11]. After 100 steps we reach ujo0 = A'™up:

O A A

This problem is just right for eigenvalues. Subtract 4 from the diagonal of A:

s !] leads to det(A — AN =% —A—1.

1 —A

The equation 2> —A—1 =0 is solved by the quadratic formula (—b=++v/b? — 4ac) [2a:

1445

== — 618.
2

~1618 and A»

Al

_1=4/5
T2

These eigenvalues A} and A2 lead to eigenvectors x; and x3;. This completes step 1:
[ (=] =[o] v n=[}]
R R H R
Step 2 finds the combination of those eigenvectors that gives ug = (1,0):
pmmli-t]] «» =5 o

Step 3 multiplies g by A'% to find u)09. The eigenvectors x| and x; stay separate!
They are multiplied by (4;)'® and (x7)'%:

b )% — 02)%x .
100 = o= .

We want F)pp = second component of ujpy. The second components of x; and x; are
1. Substitute the numbers A; and A, into equation (7), to find A; — 22 = V5 and Fioo:

Fioo = v% [(] 2"@) v (1 _,}‘E)m] ~ 3.54. 102, (8)

Is this a whole number? Yes. The fractions and square roots must disappear, because

Fibonacci's rule Fiy2 = Fy4+1 + Fr stays with integers. The second term in (8) is less

than §, so it must move the first term to the nearest whole number:
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1
kth Fibonacci number = nearest integer to —(

N
The ratio of Fg to Fs is 8/5 = 1.6. The ratio Fio1/Fioo must be very close to (1 +

v/5)/2. The Greeks called this number the “golden mean”. For some reason a rect-
angle with sides 1.618 and 1 looks especially graceful.

(9)

1+J3)"
5 ;

Matrix Powers A*

Fibonacci’s example is a typical difference equation up.; = Aug. Each step multiplies
by A. The solution is u; = A¥ug. We want to make clear how diagonalizing the matrix
gives a quick way to compute A*.

The eigenvector matrix S produces A = SAS~!. This is a factorization of the
matrix, like A = LU or A = QR. The new factorization is perfectly suited to com-
puting powers, because every time S™' multiplies S we get I

A = SAST'SAST! =5A%57!
A¥ = (SASH:..(SASTH =SsAks,
The eigenvector matrix for A* is still S, and the eigenvalue matrix is A*. We knew

that. The eigenvectors don’t change, and the eigenvalues are taken to the kth power.
When A is diagonalized, Afug is easy. Here are steps 1,2,3 (taken for Fibonacci):

1. Find the eigenvalues of A and look for n independent eigenvectors.
2. Write up as a combination ¢ x| + - - + ¢px, of the eigenvectors.
3.  Multiply each eigenvector x; by (A;)*. Then
up = Afug = c;()*xy + - + ca(An)x. (10)

In matrix language A* is (SAS™")* which is § times A* times S~'. In vector lan-
guage, the eigenvectors in § lead to the ¢’s:

Cy
Up=cCiX14+:F+cuXp=|XxX1 -+ Xp : . This says that up = Sc.

Cn

The coefficients in Step 2 are ¢ = S~ 'ug. Then Step 3 multiplies by A*. The combi-
nation wp = Ec;{i.—}kx;' in (10} is the product of S and A¥ and ¢:

() i
Afug = SA*S7lug = SAfe=|x; -+ x4 : |1
% W -

This result is exactly u; = (A x4 -+ en(hnxy. It solves upsy = Aug.
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Example 3 Compute A* = SA*S~! when § and A and 5" contain whole numbers:

A:[{; ;] has Ay=1 and :.=[é]. A2=2 and .r;:_=|:::|,

A is triangular, with 1 and 2 on the diagonal. A* is also triangular, with 1 and 2* on
the diagonal. Those numbers stay separate in A*, They are combined in A*:

I e S O B ) 1 =17 _[1 2¢-1
R G N

With k = 1 we get A. With k =0 we get 1. With k = —1 we ger A~

Note The zeroth power of every nonsingular matrix is A" = J. The product SA"S™!

becomes SIS~! which is 1. Every A to the zeroth power is 1. But the rule breaks
down when 4 = 0. Then 0 is not determined. We don’t know A” when A is singular.

Nondiagonalizable Matrices (Optional)

Suppose A is an eigenvalue of A. We discover that fact in two ways:
1.  Eigenvectors (geometric) There are nonzero solutions to Ax = Ax.
2.  Eigenvalues (algebraic) The determinant of A — Al is zero.

The number A may be a simple eigenvalue or a multiple eigenvalue, and we want to
know its multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues).
Then there is a single line of eigenvectors, and det(A — AJ) does not have a double
factor. For exceptional matrices, an eigenvalue can be repeated. Then there are two
different ways to count its multiplicity:

1.  (Geometric Multiplicity = GM) Count the independent eigenvectors for 4. This
is the dimension of the nullspace of A — Al.

2.,  (Algebraic Multiplicity =AM) Count the repetitions of 4 among the eigenvalues.
Look at the n roots of det(A — A1) =0,

The following matrix A is the standard example of trouble. Its eigenvalue i =0
is repeated. It is a double eigenvalue (AM = 2) with only one eigenvector (GM = 1),
The geometric multiplicity can be below the algebraic multiplicity —it is never larger:

-

—A I =52

T (- _
A—[ﬂ ﬂ] has det(A — Al = 0 —i

There “should” be two eigenvectors, because 3? = 0 has a double root. The double
factor 4> makes AM = 2. But there is only one eigenvector x = (1,0). This shortage
of eigenvectors when GM < AM means that A is not diagonalizable.
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The vector called “repeats” in the Teaching Code eigval gives the algebraic mul-
tiplicity AM for each eigenvalue. When repeats = [1 1. . .1] we know that the n
eigenvalues are all different. A is certainly diagonalizable in that case. The sum of all
components in “repeats” is always n, because the nth degree equation det(A—Al) =0
always has n roots (counting repetitions).

The diagonal matrix D in the Teaching Code eigvec gives the geometric multi-
plicity GM for each eigenvalue. This counts the independent eigenvectors. The total
number of independent eigenvectors might be less than n. The n by n matrix A is
diagonalizable if and only if this total number is n.

We have to emphasize: There is nothing special about A = 0. It makes for easy
computations, but these three matrices also have the same shortage of eigenvectors.
Their repeated eigenvalue is L = 5. Traces are 10, determinants are 25:

5 1 6 —1 7 2
A=[D 5] and .4=|:I 4] and ‘-"¢=[_2 3]
Those all have det(A — AI) = (A — 5)°. The algebraic multiplicity is AM = 2. But

A — 5] has rank r = 1. The geometric multiplicity is GM = |. There is only one
eigenvector for 4 = 5, and these matrices are not diagonalizable.

® REVIEW OF THE KEY IDEAS =

1.  If A has n independent eigenvectors (they go into the columns of §), then S~'AS
is diagonal: S~'AS=A and A=SAS'.

2. The powers of A are A* = SA*S™!. The eigenvectors in § are unchanged.
3. The eigenvalues of A* are (3))*, ..., (A,)*. The eigenvalues of A~" are 1/4;.
4. The solution to myy; = Auy starting from ug is up = Afug = SAYS  ug:

g = c1(A)'xr 4+ +calhn)'x, provided wo = cixi+ -+ cukn.

5. A is diagonalizable if every eigenvalue has enough eigenvectors (GM=AM).

= WORKED EXAMPLES =

6.2 A The Lucas numbers are like the Fibonacci numbers except they start with
Ly =1 and L> = 3. Following the rule Ly42 = Lg4y + Lg, the next Lucas numbers

are 4,7, 11, 18. Show that the Lucas number Liop is A]% + A3,
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Solution w1 =[] } Jus is the same as for Fibonacci, because Ly = Ly + Ly
is the same rule (with different starting values). We can copy equation (5):

Bt u, = | LY | SEpe e CRrLE
Liy1 = Ly

becomes wyj = |:| E}m_
L 0

The eigenvalues and eigenvectors of A =[] 3] still come from A* =i + 1.

1 + 'u"'g Ay LalS A2
A= 3 and x;_[]] Ay = 3 and rg_[]].
Now solve cjx) + caox32 = uyp = (3. 1). The coefficients are ¢y = 4y and ¢ = Aa!
Check:

’ _oTxa Ry M+ _[raceofa? ] _[37]_
MATF AR = [1 1][12]_[1.“; = taceofa |[T[ 1 [TH"

The solution w00 = A*u, tells us the Lucas numbers (Lo, Lioo). The second com-
ponents of x| and x; are 1, so the second component of u g is

Ligo =ciAP + 20 = a0 4 100,

Every Ly = J'.j; + lé is a whole number (why)? Since i; is very small. Ly must be
close to l‘i'. Lucas starts faster than Fibonacci, and ends up larger by a factor near v@

6.2 B Find all eigenvector matrices § that diagonalize A (rank 1) to give S~'AS =
A:

I | 157 {1 1 1]

What is A"? Which matrices B commute with A (so that AB = BA)?

Solution  Since A has rank 1, its nullspace is a two-dimensional plane. Any vector
with x + v 4+ z = 0 (components adding to zero) solves Ax = 0. So A = (0 is an
cigenvalue with multiplicity 2. There are two independent eigenvectors (GM = 2).
The other eigenvalue must be . = 3 because the trace of A is 1 + 1+ 1 = 3. Check
these A's:

[=a&. 1 1
det(A — Al) = ] =% 1 = (1 =3P +2=31 =)= =22 +32%
i 1 1-4



298 Chapter 6 FEigenvalues and Eigenvectors

Then 4%(3 — 4) = 0 and the eigenvalues are 4; =0, 42 = 0, A3 = 3. The eigenvectors
for A = 3 are multiples of x3 = (1. 1, 1). The eigenvectors for A} = Ay = 0 are any
two independent vectors in the plane x + v 4+ z = 0. These are the columns of all
possible eigenvector matrices §:

X X c 0 0 0
5= v Y ¢ and S~ 'AS=A=|0 0 0
—-x—y =X-Y ¢ 00 3

where ¢ # 0 and xY # yX. The powers A" come quickly by multiplication:

3 33
A’=]3 3 3 |=34 and A"=3""'4A,

3 3 3

To find matrices B that commute with A, look at AB and BA. The 1's in A produce
the column sums C;, Cs, Cy and the row sums R;, Rz, Ry of B:

Ci C1 G R R R
AB = column sums =| €; €2 3 BA=rowsums =| R R: R>
Ci C Gy Ry R: R;

If AB = BA, all six column and row sums of B must be the same. One possible B
is A itself, since AA= AA. B is any linear combination of permutation matrices!
This is a 5-dimensional space (Problem 3.5.39) of matrices that commute with
A. All B’s share the eigenvector (1.1, 1). Their other eigenvectors are in the plane
x+ v+ z=0. Three degrees of freedom in the A’s and two in the unit eigenvectors.

Problem Set 6.2

Questions 1-8 are about the eigenvalue and eigenvector matrices,

1 Factor these two matrices into A = SAS~!:
1 2 1 1
A= [{} 3} and A= [l 2} :

2 IfA=SAS"then A*=( M W dand A" =( ¥ W ).

3 If A has A = 2 with eigenvector x; = [l] and A2 = 5 with x; = [}], use
SAS~! to find A. No other matrix has the same A’s and x’s.

4 Suppose A = SAS™!. What is the eigenvalue matrix for A + 2/?7 What is the
eigenvector matrix? Check that A +2/ =( ) )( )"\
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True or false: If the columns of § (eigenvectors of A) are linearly independent,
then

(a) A is invertible (b} A is diagonalizable

(c) § is invertible (d) § is diagonalizable.

If the eigenvectors of A are the columns of /, then A is a matrix. If the

eigenvector matrix § 1s triangular, then S=1 is triangular. Prove that A is also
triangular.

Describe all matrices S that diagonalize this matrix A:

4 0
o[ 51,
Then describe all matrices that diagonalize A~".

Write down the most general matrix that has eigenvectors H] and [_i ]

Questions 9-14 are about Fibonacci and Gibonacci numbers.

9

10

11

12

For the Fibonacci matrix A = [11], compute A and A* and A*. Then use the
text and a calculator to find Fap.

Suppose each number G2 is the average of the two previous numbers Gy
and Gi. Then Giiz = 3(Gi+1 + Gy):

Gis2 = 3Gi41 + 3G i [Gk+1] o [ " } [GkH}
Gi+1 = G4l Gie+1 Ge |

(a) Find the eigenvalues and eigenvectors of A.
(b) Find the limit as n — oc of the matrices A" = SA"S™ L,
(¢) If Go=0 and G = | show that the Gibonacci numbers approach

S|

Diagonalize the Fibonacci matrix by completing 5§~

1 1 _ Al Aa 'y 0
@1 1 0 i '
Do the multiplication SA*S—'[} ] to find its second component. This is the kth
Fibonacci number Fi = (Af — %) /(i1 — 22).
The numbers J.’f and J.fj satisfy the Fibonacci rule Fyy2 = Fiyy + Fit
A2kt Lk and AST2 =Rt L0L

Prove this by using the original equation for the A's. Then any combination of
A% and A} satisfies the rule. The combination Fx = (A% — %) /(r1 — A2) gives
the right start Fgp =0 and F) = 1.
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13  Lucas started with Lo =2 and Ly = 1. The rule Lyr2 = Ly + Ly is the same,
so Fibonacci’s matrix A is the same. Add its eigenvectors x| + x5!

[11] p [ﬂ _ [5(1 + \@]} 5 F(I ”/3)} _ H _ I:L]:I‘

1 1 1 ] 2 Lo
After 10 steps the second component of A'%(x| +x1) is }L}ﬂ+léﬂ. Compute that
Lucas number Lig by Lyi2 = Ly1) + Lg, and compute approximately by J.:U.

14 Prove that every third Fibonacci number in 0,1, 1,2,3,... is even.

Questions 15-18 are about diagonalizability.

15 True or false: If the eigenvalues of A are 2,2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (c) not diagonalizable.

16  True or false: If the only eigenvectors of A are multiples of (1.4) then A has
(a) noinverse (b) arepeatedeigenvalue (c) no diagonalization SAS~'.

17 Complete these matrices so that det A = 25. Then check that A = 5 is repeated—
the determinant of A —A[ is (A —5)2. Find an eigenvector with Ax = 5x. These
matrices will not be diagonalizable because there is no second line of eigenvec-

Lors.
8 9 4 10 5
A:[ 2] and A:[ 1] and A:[_S ]

18 The matrix A = [3 i] is not diagonalizable because the rank of A—3/ is
Change one entry to make A diagonalizable. Which entries could you change?

Questions 19-23 are about powers of matrices.

19  A* = SA*S™! approaches the zero matrix as k — oo if and only if every A has
absolute value less than . Which of these matrices has A* — 07

6 4 6 9
““[_4 .6] ane E_|:,l .ﬁ]'

20 (Recommended) Find A and § to diagonalize A in Problem 19. What is the limit
of A¥ as k — oco? What is the limit of SA*S™!? In the columns of this limiting
matrix you see the

21  Find A and § to diagonalize B in Problem 19. What is B'%uq for these up?

o [1] it g 3] s ]
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22 Diagonalize A and compute SA¥S~! to prove this formula for A*:

) T |

23 Diagonalize B and compute SA*S™! to prove this formula for B*:
N R

Questions 24-29 are new applications of A = SAS~!.

24 Suppose that A = SAS™!. Take determinants to prove that det A = LAz -+ 4y =
product of A's. This quick proof only works when A is

25 Show that trace AB = trace BA, by adding the diagonal entries of AB and BA:

A:[a b} and B:I:q r]

c d s 1

Choose A as S and B as AS~!. Then SAS™' has the same trace as AS™'S.
The trace of A equals the trace of A which is

26 AB — BA = is impossible since the left side has trace = . But find an
elimination matrix so that A= E and B = ET give

1

AH—BA:I: 0

?:I which has trace zero.

27 If A = SAS™, diagonalize the block matrix B = [§ ,%]. Find its eigenvalue
and eigenvector matrices.

28 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigen-
vector matrix S. Show that the A’s form a subspace (cA and A| + A> have this
same §). What is this subspace when § = /7 What is its dimension?

29 Suppose A2 = A. On the left side A multiplies each column of A. Which of
our four subspaces contains eigenvectors with A = 17 Which subspace contains
eigenvectors with A = 0?7 From the dimensions of those subspaces, A has a full
set of independent eigenvectors and can be diagonalized.

30 (Recommended) Suppose Ax = Ax. If A = 0 then x is in the nullspace. If A = 0
then x is in the column space. Those spaces have dimensions (n —r) +r = n.
So why doesn’t every square matrix have n linearly independent eigenvectors?
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32

33

34

35

36

37

38

39
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The eigenvalues of A are | and 9, the eigenvalues of B are —1 and O:

5 4 4 5
A=[4 5:1 and H‘=1:5 4].

Find a matrix square root of A from R = $v/A §~'. Why is there no real matrix
square root of B?

(Heisenberg’s Uncertainty Principle) AB — BA = [ can happen for infinite
matrices with A = AT and B = —B". Then

x'x =xTABx — x"BAx < 2)|Ax| || Bx]|.

Explain that last step by using the Schwarz inequality. Then the inequality says
that ||Ax|/llx| times || Bx|/llx]| is at least %_ It is impossible to get the position
error and momentum error both very small.

If A and B have the same A's with the same independent eigenvectors, their fac-
lorizations into are the same. So A = B,

Suppose the same § diagonalizes both A and B, so that A = SA; S~ and B =
SA257'. Prove that AB = BA.

Substitute A = SAS™! into the product (A — A /)(A = Aaf)--- (A — A,f) and
explain why this produces the zero matrix, We are substituting the matrix A for
the number A in the polynomial p(k) = det(A — Al). The Cayley-Hamilton
Theorem says that this product is always p(A) = zero marrix, even if A is not
diagonalizable.

Test the Cayley-Hamilton Theorem on Fibonacci's matrix A = H] The theo-
rem predicts that A2 —A—T1 =0, since the polynomial det(A—AiTl) is A2 —A—1.

If A=[3%] then det(A — Af) is (A — a)(A — d). Check the Cayley-Hamilton
statement that (A — al)(A — dl) = zero matrix.

(a)  When do the eigenvectors for A = () span the nullspace N(A)?
(b)  When do all the eigenvectors for A # 0 span the column space C(A)?

Find the eigenvalues and eigenvectors and the kth power of A. Worked Example
2.4 C described A as the “adjacency matrix™ for this 3-node graph. The i, j
entry of A* counts the k-step paths from i to j—what is the 2,2 entry of A*
and which 4-step paths along edges of the graph begin and end at node 27

2
A=1]1

20 =

1
0
0
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If A=[}9] and AB = BA, show that B = [g 5] is also a diagonal matrix.
B has the same eigen _ as A but different eigen . These diagonal
matrices B form a two-dimensional subspace of matrix space. AB — BA =0
gives four equations for the unknowns a, b, ¢, d—find the rank of the 4 by 4
matrix.

If Ais 5 by 5, then AB—BA = zero matrix gives 25 equations for the 25 entries
in B. How do you know that the 25 by 25 matrix is singular (and there is always
a nonzero solution B)?

The powers Ak approach zero if all |4;| < 1 and they blow up if any |A;| > 1.
Peter Lax gives these striking examples in his book Linear Algebra:

B2 w3 2 o2 3] ool 4]
|Mmz4" - |70 pgl024 _ ! E'HJZQ- = —( "DIL’]24” < 1078

Find the eigenvalues i = ¢ of B and C to show B* =/ and C? = -1
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APPLICATIONS TO DIFFERENTIAL EQUATIONS = 6.3

Eigenvalues and eigenvectors and A = SAS™' are perfect for matrix powers A*. They
are also perfect for differential equations. This section is mostly linear algebra, but to
read it you need one fact from calculus: The derivative of * is »e*. It helps to know
what e is, but 1 am not even sure that is essential. The whole point of the section is
this: To convert differential equations into linear algebra.

The ordinary scalar equation du/dt = u is solved by u = &', The equation
du/dt = 4u is solved by u = ¢*. Constant coefficient equations have exponential
solutions!

g-? = iu has the solutions wul(r) = CeM. (1)

The number C turns up on both sides of du/dt = iu. At t = 0 the solution Ce™
reduces to C (because ¢” = 1). By choosing C = u(0), the solution that starts from
u(0) at t =0 is u(0)e™.

We just solved a | by | problem. Linear algebra moves to n by n. The unknown
is a vector ¥ (now boldface). It starts from the initial vector u(0), which is given. The
n equations contain a square matrix A:

Problem

fu
Solve {—f = Au  starting from the vector u(0) at ¢ =0. (2)
dr

This system of differential equations is linear. 1f u(r) and v(r) are solutions, so is Cu(f) +
Du(r). We will need n constants like C and D to match the n components of u(0). Our
first job is to find n “pure exponential solutions™ to the equation du/dr = Au.

Notice that A is a constanr matrix. In other linear equations, A changes as 1
changes. In nonlinear equations, A changes as u changes. We don’t have either of
these difficulties. Equation (2) is “linear with constant coefficients”. Those and only
those are the differential equations that we will convert directly to linear algebra. The
main point will be: Selve linear constant coefficient equations by exponentials ¢*'x.

Solution of du/dt = Au

Our pure exponential solution will be ¢*' times a fixed vector x. You may guess that
J is an eigenvalue of A, and x is the eigenvector. Substitute u(r) = ¢*x into the
equation du/dt = Au to prove you are right (the factor ¢*' will cancel):

3 d
Au = Ae*'x agrees with E:i =ieMx provided Ax =ix, (3)
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All components of this special solution u = ¢*'x share the same ¢*. The solution
grows when A > 0. It decays when A < 0. In general A can be a complex num-
ber. Then the real part of A decides growth or decay, while the imaginary part gives
oscillation like a sine wave.

Example 1 Solve 9 = Au =9} ]u starting from u(0) = [1].

This is a vector equation for w. It contains two scalar equations for the components y
and z. They are “coupled together” because the matrix is not diagonal:

du dly 0 1|y dy dz
Equation dl—du d;[z]_[l ﬂ][z] means that g and 5 =¥
The idea of eigenvectors is to combine those equations in a way that gets back to
1 by | problems. The combinations y 4+ z and y — z will do it:

d d
—(yt+z)=z+y d ey = gy = =y =12,
o (r+2) y an Pris )=—(y—2)
The combination y + z grows like ¢, because it has A = 1. The combination y —
decays like ¢!, because it has . = —1. Here is the point: We don't have to jug-
gle the original equations du/dr = Au, looking for these special combinations. The
eigenvectors and eigenvalues do it for us.

This matrix A has eigenvalues | and —1. Here are two eigenvectors:
0 1]f1] |1 L% d 0 1 '3 N = T D
DN Y i S i e 1 of|l=1|T| 1|T 7%
The pure exponential solutions u; and u; take the form e*x with A = 1 and —1:
u (1) =e*'x; =¢ [:] and  wa(r) =e*xy = [_:] (4)

Notice: These u's are eigenvectors. They satisfy Awy) = u; and Au; = —usy, just like
x; and x2. The factors ¢’ and e~ change with time. Those factors give du;/dr =
uy = Auy and duy/dt = —u> = Aur. We have two solutions to du,/dr = Au. To find
all other solutions, multiply those special solutions by any C and D and add:

. =y 2 | 1] _|Cée + De™!
General solution wu(r) = Ce [I]+De [—]}_[Ce'—ﬂe" . (5)

With these constants C and D, we can match any starting vector u(0). Set r =0 and
¢ = 1. The problem asked for u(0) = (4, 2):

e[!]+0[1]=[4] siss c=5 wa p=t

With € =3 and D = 1 in the solution (5), the initial value problem is solved.
We summarize the steps. The same three steps that solved mpsy = Awup now
solve du/dr = Au. The powers A* led to A*. The differential equation leads to *
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1.  Find the eigenvalues A; and n independent eigenvectors x; of A.
2.  Write u(0) as a combination ¢ x| + - -- + ¢,X, of the eigenvectors.

3.  Multiply each eigenvector x; by e¢*'. Then u(r) is the combination
u(r) = Cl"'c*_'!'-’l.“j_-b e +qucwx. (6)

Example 2  Solve du/dt = Au knowing the eigenvalues A = 1,2, 3 of A:

A 1 1 1 4]
— =10 2 1 |u starting from u(d)=|35
a 10 0 3 4

Step 1 The eigenvectors are x; = (1,0,0) and x; =(1,1,0) and x3 = (1, 1, 1).
Step 2 The vector u(0) = (6.5,4) is x| + x2 + 4x3. Thus (¢, c2,c3) = (1, 1, 4).
Step 3 The pure exponential solutions are e'x; and ¢ x; and & x1.

Solution: The combination that starts from u(0) is u(1) = e'x| + eXx2 + e x4,
The coefficients 1, 1, 4 came from solving the linear equation cjx| +ec2x2 +c3x3 = u(0):

]
Xy x2 X3 o | =

{'_1

which is Se = u(0). (7)

> Lh

You now have the basic idea—how to solve du/dr = Au. The rest of this section
goes further. We solve equations that contain second derivatives, because they arise so
often in applications. We also decide whether u(r) approaches zero or blows up or
just oscillates. At the end comes the martrix exponential ™. Then e u(0) solves the
equation du/dt = Am in the same way that A*ug solves the equation Mgy = Auy.

All these steps use the A's and x’s. With extra time, this section makes a strong
connection to the whole topic of differential equations. It solves the constant coefficient
problems that turn into linear algebra. Use this section to clarify these simplest but most

important differential equations —whose solution is completely based on 7 ol

Second Order Equations

The most important equation in mechanics is my"” + by’ +ky = 0. The first term is the
mass m times the acceleration a = y”. This term ma balances the force F (Newton's
Law!). The force includes the damping —by' and the elastic restoring force —ky, pro-
portional to distance moved. This is a second-order equation because it contains the
second derivative v = d®v/dt?. It is still linear with constant coefficients m, b, k.
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In a differential equations course, the method of solution is to substitute y = e,
Each derivative brings down a factor . We want y = ¢* to solve the equation:

dz bd + ky = (mA% + bA + k)e™ (8)
e y=um &

mar T dr
Everything depends on mA® + b + k = 0. This equation for A has two roots A; and
42. Then the equation for ¥ has two pure solutions v; = e*!' and v = ¢*2'. Their
combinations ¢ vy + ca2v» give the complete solution.

In a linear algebra course we expect matrices and eigenvalues. Therefore we turn

the scalar equation (with y”) into a vector equation (first derivative only!). Suppose
m = |, The unknown vector u has components v and y'. The equation is du /dt =

—_— =Y ; ’
dr; converts o i I:",] = [ b I] [",] ” (9)
dy _ iy SOy de | ¥ —k —b||¥
T ¥ ]

The first equation dy/dt = y' is trivial (but true). The second equation connects v to
v" and y. Together the equations connect &’ to u. So we solve by eigenvalues:

A=Al= i I has determinant A% 4+ bi + &k =0,
—~k —=b—A
The equation for the X's is the same! Tt is still A> + bi + k = 0, since m = 1. The

roots A; and Az are now eigenvalues of A. The eigenvectors and the complete solution

B S e e )

In the first component of u(t), you see y = cje*!' + c2¢*2! —the same solution as be-
fore.

It can’t be anything else. In the second component of u(r) you see dvy/dt. The vector
problem is completely consistent with the scalar problem.

Note 1 Real engineering and real physics deal with systems (not just a single mass
at one point). The unknown y is a vector. The coefficient of y" is a mass marrix M,
not a number m. The coefficient of y is a stiffness matrix K, not a number k. The
coefficient of y' is a damping matrix which might be zero.

The equation My” + Ky = f is a major part of computational mechanics. It is
controlled by the eigenvalues of M~'K in Kx = AMx.

Note 2 In linear algebra the serious danger is a shortage of eigenvectors. Our eigen-
vectors (1, A1) and (1, A7) are the same if A, = A2. Then we can't diagonalize A. In
this case we don’t yet have a complete solution to du/dr =

In differential equations the danger is also a repeated A. After v = ¢*', a second
solution has to be found. It turns out to be y = re™,

This “impure” solution (with the extra t) will soon appear also in e’
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Example 3 Solve yv” 4 4y’ + 3y = 0 by substituting ¢* and also by linear algebra.

Solution Substituting v = e* yields (1> + 4 + 3)e* = 0. The quadratic factors into
3244443 = (A+1)(A+3) =0. Therefore 4; = —1 and Az = —3. The pure solutions
are v =e ' and v = ¢~ . The complete solution c;y; + c2y2 approaches zero.

To use linear algebra we set u = (v, y'). This leads to a vector equation u' = Au:

dy/dt =y converts 1o d_u = 0 : u
dy'/dt = =3y — 4y’ dt —|-3 —4)"

This A is called a “companion matrix” and we find its eigenvalues:

—i 1

M_“':‘—a 7

‘ =il +40+3=0.
The A's are sull =1 and =3 and the solution is the same. With constant coefficients
and pure exponentials, calculus goes back to algebra.

Stability of 2 by 2 Matrices

For the solution of du/dr = Au, there is a fundamental question. Does the solution
approach u = 0 as t — oc? Is the problem stable? Example 3 was certainly sta-
ble, because both pure solutions e and e~ approach zero. Stability depends on the
eigenvalues —1 and —3, and the eigenvalues depend on A.

The complete solution u(t) is built from pure solutions ¢*'x. If the eigenvalue A
is real, we know exactly when e* approaches zero: The number 3 must be negative.
If the eigenvalue is a complex number A = r + is, the real part r must be negative.
When ™ splits into e”'¢'*’, the factor ¢/*' has absolute value fixed at I:

e = cosst +isinst has |e*|® =cos’st +sin’sr = 1.
The factor ¢”' controls growth (r > 0 is instability) or decay (r < 0 is stability).

The question is: Which matrices have negative eigenvalues? More accurately,
when are the real parts of the A's all negative? 2 by 2 matrices allow a clear answer.

6G Stability The matrix A = [4 g] is stable and u(r) — 0 when the eigenvalues
have negative real parts. The matrix A must pass two lests:

The trace T =a 4+ d must be negative.
The determinant D = ad — be  must be positive.

Reason If the A's are real and negative, their sum is negative. This is the trace T.
Their product is positive. This is the determinant D. The argument also goes in the
reverse direction. If D = A A; is positive, then 4, and A; have the same sign. If
T = A + A2 is negative, that sign will be negative. We can test T and D.
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determinant [

A
N both Re A <0 | both Re &> 0 5"
n stable unstable o
% ’
5 ¢
Y *
S Ca
bul-hl{ﬂ \\Jfﬂb . A f.r bﬂlh ?I.:,'{l
stahic L :13 and T* F.' e unstable
- = == frace T

A, <0and A, > 0: unstable

Figure 6.3 A 2 by 2 matrix is stable (u(r) — 0) when T < 0 and D > 0.

If the A's are complex numbers, they must have the form r 4+ is and r — is.
Otherwise T and D will not be real. The determinant D is automatically positive,
since (r +is)(r—is)=r+s% Thetrace T isr+is+r—is=2r. Soa negative
trace means that the real part r is negative and the matrix is stable. Q.E.D.

Figure 6.3 shows the parabola T2 = 4D which separates real from complex eigen-
values. Solving 22— T+ D =0 leads to /T2 — 4D. This is real below the parabola
and imaginary above it. The stable region is the upper left quarter of the figure — where
the trace T is negative and the determinant D is positive.

Example 4  Which of these matrices is stable?
0 -1 4 5 -8 8
A= 55] Anlea] =3
The Exponential of a Matrix

We return briefly to write the solution #(r) in a new form e u(0). This gives a perfect

parallel with A*ug in the previous section. First we have to say what ¢’ means.
The matrix ¢ has a matrix in the exponent. To define ¢, copy ¢*. The direct

definition of ¢* is by the infinite series 1 +x + i-.tz + é.t“" + ---. When you substitute

the matrix At for x, this series defines the matrix e':

. . A L1 2 | 3
Matrix exponential e’ =14 At+ 5(AN* + (A1) + -+ . (10}

Its 1 derivative is At A%+ AR 4= Al

The number that divides (A7)" is “n factorial.™ This is n! = (1)(2)---(n— 1)in).
The factorials after 1,2, 6 are 4! = 24 and 5! = 120. They grow quickly. The series
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always converges and its derivative is always Ae!. Therefore e'u(0) solves the dif-
ferential equation with one quick formula—even if there is a shortage of eigenvectors.

This chapter emphasizes how to find u(r) = e u(0) by diagonalization. Assume
A does have n eigenvectors, so it is diagonalizable. Substitute A = SAS™! into the
series for eA’. Whenever SAS™'SAS™! appears, cancel 57'5 in the middle:

e =T+ SAS™'t 4+ J(SAST'(SAS T ) + -
=S+ Ar+ A2 4157 (11)

= SeMs—1

That equation says: e’ equals Se®'S~!. To compute e*’, compute the A’s as usual.
Then A is a diagonal matrix and so is e —the numbers e*’ are on its diagonal.
Multiply Se®'S~'u(0) to recognize the new solution u(t) = e*"u(0). It is the old

solution in terms of eigenvalues in A and eigenvectors in §:
E‘}"” (o]
eMu0) =SeMSTu@ = | 5, ... &, Wle LD

E‘J"“" Ch

A combination ¢ x|+ - -+CpXp 155;: This matches the starting value when u(0) = Se.
The column ¢ = §~'u(0) at the end of equation (12) brings back the best form
clelﬂ

u(t) = =1 x| + oo+ cpetixy, (13)

xt 8 s I“

cne’n!

This eAu(0) is the same answer that came from our three steps:

1. Find the 4’s and x's, eigenvalues and eigenvectors.

2 Write u#(0) = cjx; 4+ -+ 4 ¢4x,. Here we need n eigenvectors.

3. Multiply each x; by e*i*. The solution is a combination of pure solutions:

u(t) = c1e"M'xy + - 4 e’ x,,. (14)

Example 5  Use the series to find e’ for A =[_%1]. Notice that A* = I

o[ et ] el el ]

A3, A® A7, A® will repeat these four matrices. The top right comer has 1.0, —1,0

repeating over and over. The infinite series for e’ contains t/1!,0, —3/3!, 0. In other

words 1 — %ﬁ starts that top right corner, and 1 — _’T.'E is in the top left:
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]_|12+... ;_I;J+...
I+Ar+§mr}2+§mn-‘+-~-=[ i ;

~t+ P = 1= 124

On the left side is the series for 4. The top row of the matrix shows the series for
cost and sins, We have found ¢ directly:

‘I,{,:[ cost SIM]. (15)

—sint  Ccost
At 7 = 0 this gives ¢ = I. Most important, the derivative of ¢ is Ae/':
i cost sint| | —sint cost| [ O 1 cost  sint
dr |—sint cost | |—cost —sint | |=1 Of]|—sinr cosr|’
A is a skew-symmetric matrix (AT = —A). Its exponential e is an orthogonal matrix.

The eigenvalues of A are i and —i. The eigenvalues of e’ are ¢/' and ¢~ '. This
illustrates two general rules:

1 The eigenvalues of e are e,

2 When A is skew-symmetric, e is orthogonal.

du 1 1 . 2
Example 6 Solve e Au = [ﬂ 2] u starting from u(0) = I:]

Solution The eigenvalues 1 and 2 are on the diagonal of A (since A is triangular).
The eigenvectors are x; = (1,0) and x; = (1, 1):

o 2llol=lo] = o 2Jl]=201)

Step 2 writes u(0) as a combination x| + x; of these eigenvectors. This is Se¢ = u(0).
In this case ¢; = ¢z = 1. Then u(r) is the same combination of pure exponential

solutions:
s 1 2 I
uir)=ce [[Jire [l]

That is the clearest solution ! x| +e’"1'.r;_. In matrix form, the eigenvectors go into §:

— oeht o=l .11 1][é 1 117! e g L
u(t) = SeM s~ u(0) is [ﬂ 1][ E,ﬂ][ﬂ J w0 =[¢ 3 o

That last matrix is eA'. 1t's not bad to see what a matrix exponential looks like (this
is a particularly nice one). The situation is the same as for Ax = b and inverses. We
don't really need A~' to find x, and we don't need e to solve du/di = Au. But as
quick formulas for the answers, A~'d and e u(0) are unbeatable.

]atr:ﬂ.
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= REVIEW OF THE KEY IDEAS =

1. The equation u’ = Awu is linear with constant coefficients, starting from u(0).
2.  Its solution is usually a combination of exponentials, involving each A and x:

A

u(t) =ce™Vxy + - +ee*x,.

3. The constants cj.. . ..¢, are determined by u(0) = cjx| + -+ + X .
4.  The solution approaches zero (stability) if Real part (L) < 0 for every Ai.
5.  The solution is always u(t) = ¢ u(0), with the matrix exponential e?'.

6. Equations involving ¥" reduce to u' = Aw by combining v and y into u =
O ).

= WORKED EXAMPLES =

6.3 A Find the eigenvalues and eigenvectors of A and write u(0) = (2,0,2) as a
combination ¢jx| 4+ c2x2 + cax3 of the eigenvectors. Then solve both equations:

-2 1 0 2

i d d
%:.-m: 1 =2 1|a andalko d;=ﬂu Wit d—':un:u.

The 1, —2, 1 diagonals make A into a second difference matrix (like a second deriva-
tive). So the first equation &' = Aw is like the hear equation du/dr = 9tu/axt. Its
solution u(r) will decay as the heat diffuses out. The second equation u’" = Au is like
the wave equation 8*u/dt*> = 8%u/dx>. Its solution will oscillate like a string on a
violin.

Solution The eigenvalues and eigenvectors come from det(A — iJ) =0

—2—h 1 0
det(A—aln=| 1 —2—-x 1 |=(=2-x°-2(=2-0=0.
0 1 -2 — A
One eigenvalue is A = —2, when —2 — A is zero. Factor out —2 — A to leave (=2 —

2)2=2 =0 or A24+4.+2 = 0. The other eigenvalues (also negative) are 4 = —24+/2.
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The eigenvectors are found separately:

0 1 0] [x] To V2
A=-2: (A+2Dhx=|1 0 1||y|=|0| forx;=]| ©

[0 1 0][z] [0 —2

V2 1 07 [x (0] 1
A==2-42: A=-ADx=|1 2 1 ¥ | = |0 for x2 = [ =2

0 1 V2]lz] [O] 1

=2 1 0 3 0 1
A=—=2+442: (A-dDx=| 1 —y2 1 yl=|0| forx;=|+2

Y 1 —-v2]lz] L0 1

All those eigenvectors have length 2, so %xl. %rzf %.1'3 are unit vectors. These eigen-
vectors are orthogonal (proved in Section 6.4 for every real symmetric matrix A). Ex-
pand u(0) as a combination x| + c2X2 + c3x; (then ¢y =0 and ¢c; =e¢3 = 1)

Cl ﬁ 1 1 0 2
X|] X3 X3 c2 | = u(0D) is 0 =2 2 1|=1]0
€3 -2 1 1 I 2

From u(0) = x2 4+ x3 the solution decays to u(r) = e 2 x, 4 e *3 x5, Since all
A’s are negative, u(r) approaches zero (stability). The least negative A =2 — V2 gives
the decay rate. This is like Problem 6.3.5 except people are in three rooms (change
people to temperature for the heat equation). The rate u’ of movement between rooms
is the population difference or temperature difference. The total going infe the first
room is uz — 2u; as required by Au. Eventually u(r) — 0 and the rooms empty out.

movement _ movement movement movement
s i 5 13 [———- ux(t) —e us(t) mmmm™
—n uyp —u s — i u
] room 1 I 2 room 2 2 3 room 3 3

Turn now to the “wave equation” d*u fdfz = Au (not developed in the text). The
same eigenvectors lead to oscillations ¢'“"x and ¢ ~'“'x with frequencies from w? = —A:

¥

dr?
There are two square roots of —i, so we have e/“'x and e~*®'x. With three eigenvec-
tors this makes six solutions. A combination will match the six components of u(0)

and u'(0) = velocity. Since ' = 0 in this problem, e'“’x combines with e~“'x into
2coswt x. Our particular #(0}) is again x; + x3. and the solution oscillates:

(' x) = A(e'“ x) becomes (iw) e’ x = 3e'®x and w®=-—i.

u(t) = 2(coswar)xa + 2(coswat)xs with (@)>=2++2 and (3)>=2- V2.

Each A is negative, so w* = —J gives two real frequencies. A symmetric matrix like
A with negative eigenvalues is a negative definite marrix. (Section 6.5 takes a more
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positive viewpoint, for positive definite marrices.) Matrices like A and —A are the key
to all the engineering applications in Section 8.1.

6.3 B Solve the four equations da/dt = 0,db/dt = a,dec/dt = 2b.dz/dt = 3¢ in
that order starting from u(0) = (a(0), b(0). c(0), z(0)). Note the matrix in ' = Au
and solve the same equations by the matrix exponential in u(r) = e u(0):

0
d

dr

[ T o T . B~ 1
Il

[ B - R

o oo

wo oo

M opTR
B
=

o oo

First find A%, A*, A* and then ¢ =] + Ar + %{Ar}ll—i— E[[Ar}@. Why does the series
stop there? Check that e? is Pascal’s triangular matnx at + = 1, and the derivative of
el atr=0is A. Finally, verify (ed)(ed) = (Ez""]. Why is this true for any A?

Solution Integrate da/dt = 0. then db/dt = a, then de/dt = 2b and dz/dt = 3e:

a(r) = a(

b(t) = ra(0)+  b(0)

()= t2a(0) + 2th(0)+ ()

2(0) = 3a(0) + 32b(0) + 3te(0) + z(0)

which must match e u(0).

The powers of A are all zero after A>. So the series for e’ stops after four terms:

00 0 0 0000 00 0 0
{100 0 ., |00 o0 o0 + |0 00 0
A=10 2 0 0 A"=1500 0 A"=10 0 0 0

00 3 0 06 00 6 000

The diagonals move down at each step and disappear for A*. (There must be a diagonal-
diagonal rule to go with the row-column and column-row rules for multiplying matri-
ces.) The matrix exponential is the same one that multiplied (a(0). b(0), c(0), z(0))
above:

1
o (A (A | ¢ 1
e’ =14+ At + 3 4 6 |2 2 1
237 3 1
At t = 1. e is Pascal's triangular matrix Pp. The derivative of eMatr=0is A:
0 0 0 0 0 00 0
l_mef“—f_“m 1 0 00| _|1 000 .,
e 2 ol 249 0T ez woe|T
2 3 3 0 00 3 0
Ay

A is the matrix logarithm of Pascal’s e?! The inverse of Pascal is e~ with two
negative diagonals. The square of e is always e?4 (and also e?fe? = A6 +1) for
many reasons:
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Solving with e fromt =0 to | and then | to 2 agrees with e from 0 to 2.
The squared series (7 + A + 4 +...)? agrees with 7 424 + 340 ... _ 24
If A can be diagonalized (this A can’t!) then (Se™S~")(Se?S~ ') = §5e*A 5.

Problem Sel 6.3

Find A’s and x's so that u = ¢*'x solves

du 4 3
a o 1|*

What combination u = cje*'' x| + c2¢*2' x> stants from u(0) = (5, —=2)?

Solve Problem 1 for u = (y, z) by back substitution:

dz .
First solve 5 = ¢ starting from z(0) = -2.
d .
Then solve d_: = 4y + 3z starting from y(0) = 5.
The solution for y will be a combination of ¢* and e'.

Find A to change the scalar equation y" = 5y’ + 4y into a vector equation for

u=(yy):
du _1y'|_ Yo
a=lvl=l )=~

What are the eigenvalues of A? Find them also by substituting v = ¢
}?.H' == 5}11 +4}'|-

M into

The rabbit and wolf populations show fast growth of rabbits (from 6r) but loss
to wolves (from —2w}):
dr dw

— =6r — 2w d —_— =2 i
dj' r |1k an d; r—+u

Find the eigenvalues and eigenvectors, If r(0) = w(0) = 30 what are the popu-

lations at time r? After a long time, is the ratio of rabbits to wolves 1 to 2 or
is it 2 1o 1?

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10

people. The movement between rooms is proportional to the difference v — w:

dv B d dw o
5 = v an T =v—w.
Show that the total v+w is constant (40 people). Find the matrix in du/dr = An

and its eigenvalues and eigenvectors. What are v and w at r = 17
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6

10

Reverse the diffusion of people in Problem 5 o du/dr = —Au:

duv d dw
— =v-w an — =w—-.
di dt >

The total v + w still remains constant. How are the i's changed now that A is
changed to —A7 But show that v(r) grows to infinity from v(0) = 30.

The solution to y” = 0 is a straight line ¥y = C + Dr. Convert 10 a maltrix
equation:

dly]l_[0 Y]]y —— Y| _ | ¥O)
= [},] = [ﬂ ﬂ] [F,] has the solution [}.*] =¢ [}"l’ﬂ]]'
This matrix A cannot be diagonalized. Find A® and compute ¢ = | + Ar +

%Al’: + -+, Multiply your e’ times (v(0), ¥'(0)) to check the straight line
yir) = y(0) + ¥'(0)1.

Substitute y = ¢* into v = 6y’ — 9y to show that A = 3 is a repeated root.
This is trouble; we need a second solution after ¢, The matrix equation is

=1~ 121

Show that this matrix has 4 = 3,3 and only one line of eigenvectors. Trouble
here too. Show that the second solution is y = re™.

Figure out how to write my” + by' + ky = 0 as a vector equation Mu' = Au.

The matrix in this question is skew-symmetric (AT = —A):
A 0 ¢ —b uy = cuy — buy
i [ 0 alu or W5 = auy — ci)
! b —a 0 uy = buy — aus.

(a) The derivative of [u()||* = u': + u% - ui is Eh'm'I + 2uzus + 2uau’y.
Substitute u, w5, 1} to get zero. Then |lu(1)||® stays equal to (|u(0)]°.

(b) When A is skew-symmetric, Q = e is orthogonal. Prove Q7 = e~
from the series for Q = ¢'. Then Q70 = 1.

(a) Wrte (1,0) as a combination ¢ x| + c2x2 of these two eigenvectors of A:

B [t ] B

by The sulutin[l to dufdt = Anu starting from (1,0) is cre’xy + cze ' xa.
Substitute ¢'" =cosr +isint and e =cost —isint to find w().
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13

14

15
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(a) Write down two familiar functions that solve the equation d*y/di* = —y.
Which one starts with y(0) = 1 and y'(0) = 0?
(b)  This second-order equation v = —y produces a vector equation u' = Au:

¥ du ¥ 1.1 9 11l¥]l.
=[] @=Ll olp] -
Put y(r) from part (a) into u(r) = (v, ). This solves Problem 11 again.

A particular solution to du/dt = Au —b is u, = A~'b, if A is invertible. The
solutions to du/dt = Au give u,. Find the complete solution u, + u, 1o

du du 2 0 ]
{a) - =2u—3 (b) E-[ﬂ 3]""[6]'

If ¢ is not an eigenvalue of A, substitute u = ¢“'v and find v to solve du/dr =
Au—¢“"b. This u = ¢“"v is a particular solution. How does it break down when
¢ is an eigenvalue?

Find a matrix A to illustrate each of the unstable regions in Figure 6.4

{fa) Aj<Oand 42 =0
by Ay =>0and 27 =0
(c) Complex A's with real part a = (.

Questions 16-25 are about the matrix exponential ¢?’.

16

 bg

18

19

20

21

Write five terms of the infinite series for e*’. Take the 1 derivative of each term.
Show that you have four terms of Ae!’. Conclusion: e ugy solves u’ = Aun.

The matrix B = [§~3] has B> = 0. Find ¢®' from a (short) infinite series.
Check that the derivative of €' is BeP'.

Starting from u(0) the solution at time T is e u(0). Go an additional time 1 to
reach e‘“{e"ru[{]}]. This solution at time t 4+ T can also be written as
Conclusion: &' times 7 equals

Write A =[}1] in the form SAS~!. Find e’ from Se’'s~1.

If A2 = A show that the infinite series pmducea eM = | + (¢ — DA. For
[ ] in Problem 19 this gives eM =

Generally ete? is different from ePe?. They are both different from e + &,
Check this using Problems 19-20 and 17:

e d] oY) )
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22 Write A = [}}] as SAS™'. Multiply Se’S~! 1o find the matrix exponential
eV, Check eV when 1 = 0.

23 Put A=[}2] into the infinite series to find e, First compute A*!

e T K A R T

At

24  Give two reasons why the matrix exponential ¢ is never singular:

(a) Wrte down its inverse.
(b) Write down its eigenvalues. If Ax = Ax then e'x = x.

25 Find a solution x(r), y(r) that gets large as t+ — oo. To avoid this instability a
scientist exchanged the two equations:

dy/di = 0x —4y b dyfdt = =2x + 2y
dy/dt = —2x + 2y dx/dt = 0Ox —4y.

Now the matrix [ =2 _%] is stable. It has negative eigenvalues. Comment on this.

SYMMETRIC MATRICES = 6.4

For projection onto a line, the eigenvalues are |1 and 0. Eigenvectors are on the line
(where Px = x) and perpendicular to the line (where Px = 0). Now we open up
to all other symmetric matrices. It is no exaggeration to say that these are the most
important matrices the world will ever see—in the theory of linear algebra and also
in the applications. We come immediately to the key questions about symmetry. Not
only the questions, but also the answers.

What is special about Ax = Ax when A is symmetric? We are looking for
special properties of the eigenvalues A and the eigenvectors x when A = AT,

The diagonalization A = SAS~" will reflect the symmetry of A. We get some
hint by transposing to AT = (§~')TAST. Those are the same since A = AT. Possibly
5~ in the first form equals 57 in the second form. Then STS = /. That makes each
eigenvector in S orthogonal to the other eigenvectors. The key facts get first place in
the Table at the end of this chapter, and here they are:

1. A symmetric matrix has only real eigenvalues.

2. The eigenvectors can be chosen orthonormal.

Those orthonormal eigenvectors go into the columns of S. There are n of them (inde-
pendent because they are orthonormal). Every symmetric matrix can be diagonalized.



6.4 Symmetric Matrices 319

lts eigenvector matrix S becomes an orthogonal matrix . Orthogonal matrices have
0! = 0T —what we suspected about § is true. To remember it we write § = Q.
when we choose orthonormal eigenvectors.

Why do we use the word “choose™? Because the eigenvectors do not have 1o be
unit vectors. Their lengths are at our disposal. We will choose unit vectors —eigenvectors
of length one, which are orthonormal and not just orthogonal. Then A = SAS™! is in
its special and particular form QA Q" for symmetric matrices:

6H (Spectral Theorem) Every symmetric matrix has the factorization A = QA o'
with real eigenvalues in A and orthonormal eigenvectors in Q:

A=0AQ '=0AQ" with @ '=g"

It is easy to see that QA QT is symmetric. Take its transpose. You get (QT)TATQT,
which is QAQT again. The harder part is to prove that every symmetric matrix has
real A’s and orthonormal x’s. This is the “spectral theorem” in mathematics and the
“principal axis theorem” in geometry and physics. We have to prove it! No choice. |
will approach the proof in three steps:

1. By an example (which only proves that A = QA o7 might be true)
2. By calculating the 2 by 2 case (which convinces most fair-minded people)
3. By a proof when no eigenvalues are repeated (leaving only real diehards).

The diehards are worried about repeated eigenvalues. Are there still n orthonormal
eigenvectors? Yes, there are. They go into the columns of § (which becomes Q). The
last page before the problems outlines this fourth and final step.

We now take steps 1 and 2. In a sense they are optional. The 2 by 2 case is
mostly for fun, since it is included in the final n by n case.

. . 1 2 1—2 2
Example 1 Findthelsandx::WHEnA=[2 4:|:mdz’.—l."=[ 2 4—}.]'

Solution The equation det(A — A7) =0 is A2 =51 =0. The eigenvalues are 0 and 5
(both real). We can see them directly: A = 0 is an eigenvalue because A is singular,
and A = 5 is the other eigenvalue so that 0 + 5 agrees with 1 + 4. This is the rrace
down the diagonal of A.

Two eigenvectors are (2, —1) and (1, 2) —orthogonal but not yet orthonormal. The
eigenvector for A =0 is in the nullspace of A. The eigenvector for A =5 is in the col-
umn space. We ask ourselves, why are the nullspace and column space perpendicular?
The Fundamental Theorem says that the nullspace is perpendicular to the row space—

not the column space. But our matrix is symmetric! Its row and column spaces are
the same. Its eigenvectors (2, —1) and (1, 2) must be (and are) perpendicular.
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These eigenveciors have length +/5. Divide them by +/5 to get unit vectors. Put
those into the columns of § (which is Q). Then Q"'AQ is A and 0! = QT:

o-’aa=[i;—1[’ E]Mu[“ 2=

5 12 4] 5 " los

Now comes the calculation for any 2 by 2 symmetric matrix [a b b ¢]. First,
real eigenvalues. Second, perpendicular eigenvectors. The )’s come from

a— A b 2 y : I
det[ b r—l]=l —la+c)h+lac—b") =0, (1)

The test for real roots of A)2 + Bi +C =0 is based on B? —4AC. This must not be
negative, or its square root in the quadratic formula would be imaginary. Our equation
has A=1and B =—(a+c¢) and C = ac — b*. Look at B? — 4AC:

Real eigenvalues: (a + c)* — 4(ac — b*) must not be negative.

Rewrite that as a® + 2ac + ¢ — 4ac +4b*. Rewrite again as (a —c)* +4b*. Those
squares are not negative! So the roots A; and 4> (the eigenvalues) are certainly real.

Perpendicular eigenvectors: Compute x| and x> and their dot product:

B _[a=n b .._ B b from
(A J'.|.";-x|—[ b (,_LI][n]—l} 50 x'_[l;—u} m

— — from
(A—dal)x: = [a A2 i b. ] [:—-] =0 30 x3= [12 t} second
b c— A2 row

The dot product of x; and x; proves that these eigenvectors are perpendicular:
xi*xa=bllha—cl+(A—ap=blly+r2—a-c)=0. (2)

This is zero because Aj + Az equals the trace @ + ¢. Thus x; - x = 0. Eagle eyes

might notice the special case a = ¢, b =0 when x| = x2 = 0. This case has repeated

eigenvalues, as in A = /. It still has perpendicular eigenvectors (1,0) and (0, 1).
Now comes the general n by n case, with real 4’s and perpendicular eigenvectors.

6l Real Eigenvalues The cigenvalues of a real symmetric matrix are real.

Proof Suppose that Ax = ix. Until we know otherwise, A might be a complex
number a + ib (a and b real). Jts complex conjugate is & = a — ib. Similarly the
components of x may be complex numbers, and switching the signs of their imaginary
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parts gives X. The good thing is that A times ¥ is always the conjugate of A times x.
So take conjugates of Ax = jx, remembering that A is real:

Ax =jix leadsto A¥ =A¥. Transpose to X'A =X A. (3)

MNow take the dot product of the first equation with ¥ and the last equation with x:
¥Ar=¥'ir andalso X'Ax =X ir. (4)

The left sides are the same so the right sides are equal. One equation has 4, the other
has 4. They multiply ET.r_which is not zero—it is the squared length of the eigenvector.
Therefore ) must equal i, and a + ib equals a — ib. The imaginary part is b = 0.
Q.E.D.

The eigenvectors come from solving the real equation (A —A/)x = 0. So the x's
are also real. The important fact is that they are perpendicular.

6) Orthogonal Eigenvectors Eigenvectors of a real symmetric matrix (when they
correspond to different 4.'s) are always perpendicular.

A has real eigenvalues and n real orthogonal eigenvectors if and only if A = AT,

Proof Suppose Ax = Ax and Ay = Aay and A = AT, Take dot products of the
first equation with y and the second with x:

[J-..x}T_r =(Ax)y = ITﬂTj’ = .rTAy = IT}.H. (5)

The left side is x"A; y, the right side is xTA2y. Since A 5 A2, this proves that xTy =
(). The eigenvector x (for 4;) 1s perpendicular to the eigenvector y (for A;).

Example 2 Find the A's and x's for this symmetric matrix with trace zero:

A_—.[_i :] has det{ﬂ-—).f]:‘_a_l 4

12
4 3_ 1| = A° —25.
The roots of A> =25 = 0 are 4y = 5 and A3 = —5 (both real). The eigenvectors
x; =(1,2) and x; = (=2, 1) are perpendicular. To make them into unit vectors, divide
by their lengths +/5. The new x; and x; are the columns of Q, and Q' equals Q7:

I U] R

This example shows the main goal of this section—to diagonalize symmetric matrices
A by orthogonal eigenvector matrices S = Q:

ﬁ:@'ﬁgr=
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6H (repeated) Every symmetric matrix A has a complete set of orthogonal eigenvec-
tors:

A=SAS"' becomes A= QﬂQT.

If A= AT has a double eigenvalue A, there are two independent eigenvectors. We
use Gram-Schmidt to make them orthogonal. The Teaching Code eigvec does this for
each eigenspace of A, whatever its dimension. The eigenvectors go into the columns

of Q.

One more step. Every 2 by 2 symmetric matrix looks like

: T
A=QﬁQT=[1—. xz} ["‘ A][ i}] (6)

The columns x| and x, times the rows Jk].r',r and J-.::r:_[ produce A:
A= l]I;IT + lgxzﬂ. (7)

This is the great factorization QA QT, written in terms of A's and x's. When the sym-
metric matrix is n by n, there are n columns in Q multiplying n rows in Q7. The n
pieces are l.-x;x:.r. Those are matrices! Equation (7) for our example is

_[-3 4 _Ts 257 <[ 4/5 =25
A ‘[ 4 3} ‘5[2;5 4;5} - Lz;ﬁ /5] ®)
On the right, each x,-x;r is a projection matrix. It is like uu' in Chapter 4. The

spectral theorem for symmetric matrices says that A is a combination of projection
matrices:

A=41Pi4+---+ 0Py A; = eigenvalue, P; = projection onto eigenspace.

Complex Eigenvalues of Real Matrices

Equation (3) went from Ax = Ax to AX = ).%. In the end. 4 and x were real. Those
two equations were the same. But a nonsymmetric matrix can easily produce A and x
that are complex. In this case, AY = AX is different from Ax = Ax. It gives us a new
eigenvalue (which is ) and a new eigenvector (which is ¥):

For real matrices, complex \’s and x’s come in “conjugate pairs.”

If Ax =ix then AX =)X.
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sinf
Those eigenvalues are conjugate to each other. They are A and A, because the
imaginary part sinf switches sign. The eigenvectors must be x and X. because A is

real;
cosd —sinf 1 . 1
Ax:{sin& msﬁ'] [—i} ={cos¢ -+ sind) [—i}

= cosf —sind 1 css 1
AI_]:sinH cnsﬂ][ J_Lcusﬁ—:smﬂ}[ f]

One is Ax = Ax, the other is AY = Ax. The eigenvectors are (1, —i) and (1, ). For
any real matrix the A’s and also the x’s are complex conjugates.

For this rotation matrix the absolute value is |A| = 1, because cos® A+sin’6 = 1.
This fact |i| = | holds for the eigenvalues of every orthogonal matrix.

We apologize that a touch of complex numbers slipped in. They are unavoidable
even when the matrix is real. Chapter 10 goes beyond complex numbers A and complex
vectors x to complex matrices A. Then you have the whole picture.

We end with two optional discussions.

Example 3 A = [0 ~Sinf ] has 4 =cos@ +isind and A2 = cosf —isiné.

(9)

Eigenvalues versus Pivots

The eigenvalues of A are very different from the pivots. For eigenvalues, we solve
det(A — A7) = 0. For pivots, we use elimination. The only connection so far is this:

product of pivots = determinant = product of eigenvalues.

We are assuming a full set of pivots dy. - - - , dy. There are n real eigenvalues A1, --- , Ay
The d’s and A’s are not the same. but they come from the same matrix. This paragraph
is about a hidden relation for symmetric matrices: The pivots and the eigenvalues have
the same signs.

6K If A is symmetric the number of positive (negative) eigenvalues equals the num-
ber of positive (negative) pivots.

Example 4 This symmetric matrix A has one positive eigenvalue and one positive
pivot:

3 = L 3 has pivots 1 and —8
13 1 eigenvalues 4 and —2.

The signs of the pivots match the signs of the eigenvalues, one plus and one minus.
This could be false when the matrix is not symmetric:

B = 1 6 has pivots 1 and 2
-1 -4 eigenvalues —1 and —2.



324 Chapter 6 Eigenvalues and Eigenvectors

The pivots of B are positive, the eigenvalues are negative. The diagonal has both signs!
The diagonal entries are a third set of numbers and we say nothing about them.

Here is a proof that the pivots and eigenvalues have matching signs, when
A = AT. You see it best when the pivots are divided out of the rows of U, and
A= LDL". The diagonal pivot matrix D goes between triangular matrices L and LT:

1 3] _|1 0Jf!1 1 3 C e T .
[3 ]}_[3 1][ _E:Hﬂ l] This is A = LDL". It is symmetric.

The special event is the appearance of LT. This only happens for symmetric matrices,
because LDLT is always symmetric. (Take its transpose to get LDLT again.)

Watch the eigenvalues when L and LT move toward the identity matrix. At the
start, the eigenvalues of LDLT are 4 and —2. At the end, the eigenvalues of IDIT
are 1 and —8 (the pivots!). The eigenvalues are changing, as the “3” in L moves to
zero. But to change sign, an eigenvalue would have to cross zero. The matrix would
at that moment be singular. Our changing matrix always has pivots 1 and —8, so it is
never singular. The signs cannot change, as the A’s move to the d’s.

We repeat the proof for any A = LDLT. Move L toward I, by moving the off-
diagonal entries to zero. The pivots are not changing and not zero. The eigenvalues A
of LDLT change to the eigenvalues d of IDIT. Since these eigenvalues cannot cross
zero as they move into the pivots, their signs cannot change. Q.E.D.

This connects the two halves of applied linear algebra—pivots and eigenvalues.

All Symmetric Matrices are Diagonalizable

When no eigenvalues of A are repeated. the eigenvectors are sure to be independent.
Then A can be diagonalized. But a repeated eigenvalue can produce a shortage of
eigenvectors. This sometimes happens for nonsymmetric matrices. It never happens for
symmetric matrices. There are always enough eigenvectors to diagonalize A = AT,

Here are three matrices, all with A =—1 and 1 and 1 (a repeated eigenvalue):
0 1 0 -1 0 1 -1 0 0
A=|1 @ 0 B= 0 1 0 C= 0 1 1
0 0 1 0 0 1 0 0 1

A is symmetric. We guarantee that it can be diagonalized. The nonsymmetric B can
also be diagonalized. The nonsymmetric C has only two eigenvectors, not three. It
cannot be diagonalized.

One way to deal with repeated eigenvalues is to separate them a little. Change
the lower right corner of A, B, C from 1 to d. The eigenvalues are —1 and 1 and d.
The three eigenvectors are independent. But when d reaches 1, rwo eigenvectors of C
collapse into one. Its eigenvector matrix S loses invertibility:

10 0 100
Eigenvectors of C: |01 1 approaches | 0 1 1 | Only two eigenvectors!
00d-—1 000
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This cannot happen when A = AT, Reason: The eigenvectors stay perpendicular. They
cannot collapse as d — 1. In our example the eigenvectors don’t even change:

010 1 1 0
1 0 0 has orthogonal eigenvectors = columns of §=|-1 1 0O
00 4 0 0 1
Final note The eigenvectors of a skew-symmetric matrix (AT = —A) are perpendic-

ular. The eigenvectors of an orthogonal matrix (QT = Q~') are also perpendicular.
The best matrices have perpendicular eigenvectors! They are all diagonalizable. 1 stop
there.

The reason for stopping is that the eigenvectors may contain complex numbers.
We need Chapter 10 to say what “perpendicular” means. When x and y are complex
vectors, the test is no longer xT y =0. It will change to -3 y =0. S0 we can’t prove
anything now—but we can reveal the answer. A real matrix has perpendicular eigen-
vectors if and only if ATA = AAT. Symmetric and skew-symmetric and orthogonal
matrices are included among these “normal” matrices. They may be called normal but
they are special. The very best are symmetric.

® REVIEW OF THE KEY IDEAS =

A symmetric matrix has real eigenvalues and perpendicular eigenvectors.
Diagonalization becomes A = QA QT with an orthogonal matrix Q.

All symmetric matrices are diagonalizable, even with repeated eigenvalues.

o A

The signs of the eigenvalues match the signs of the pivots. when A = AT,

" WORKED EXAMPLES =

6.4 A  Find the eigenvalues of Az and By, and check the orthogonality of their first
two eigenvectors. Graph these eigenvectors to see discrete sines and cosines:

1 -1

2 -1 0
Aye=| =1 2 =1 By = = _f _; i
0 -1 2

| 1

The —1, 2, —1 pattern in both matrices is a “second difference”. Section 8.1 will explain
how this is like a second derivative. Then Ax = ix and Bx = ix are like d*x/dt* =

Ax. This has eigenvectors x = sinks and x = cos kr that are the bases for Fourier series.

The matrices lead to “discrete sines” and “discrete cosines” that are the bases for the Dis-
crete Fourier Transform. This DFT is absolutely central to all areas of digital signal pro-

cessing. The favorite choice for JPEG in image processing has been Bg.
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Solution  The eigenvalues of A3 are A =2 — +/2 and 2 and 2 + +/2. Their sum is
6 (the trace of A3) and their product is 4 (the determinant). The eigenvector matrix S
gives the “Discrete Sine Transform™ and the graph shows how the components of the
first two eigenvectors fall onto sine curves. Please draw the third eigenvector onto a
third sine curve!

|
S=| v2 0 =2
1 =2 1

Frat

The eigenvalues of By are 4 = 2 — V2 and 2 and 2 + +/2 and O (the same as
for As, plus the zero eigenvalue). The trace is still 6, but the determinant is now zero.
The eigenvector matrix C gives the 4-point “Discrete Cosine Transform™ and the graph
shows how the first two eigenvectors fall onto cosine curves. (Please plot the third

eigenvector!) These eigenvectors match cosines at the halfway points % 3—’;—“ %‘1 13’1

.

I ! 1 B,
ST =1 1=#2 e
1-+v2 -1 V2-1 ¥ ..

~1 | - '

Both § and C have orthogonal columns (these are the eigenvectors of the sym-
metric A; and Bj). When we multiply an input signal by § or €, we split that signal
into pure frequencies—like separating a musical chord into pure notes. This Discrete
Fourier Transform is the most useful and insightful transform in all of signal process-
ing. We are seeing the sines and cosines (DST and DCT) that go into the DFT. Of
course these beautiful patterns continue for larger matrices. Here is a MATLAB code to
create By and its eigenvector matrix Cy and plot the first four eigenvectors onto cosine
curves:
n=28 e= ones(n—1.1); B=2x eye(n)—diag(e. —1)—diag(e,1); B(1.1) = L
B(n,n)=1: [C, A] = eig(B); plot(C(:,1:4),'-0")

Problem Set 6.4

1 Write A as M + N, symmetric matrix plus skew-symmetric matrix:

A =M+N (MT =M. NT=—N).

oo
(= JLFVRY 5
L W= -

For any square matrix, M = "%"‘—T and N = add up to A.
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If C is symmetric prove that ATCA is also symmetric. (Transpose it.) When A
is 6 by 3, what are the shapes of C and ATCA?

Find the eigenvalues and the unit eigenvectors of

1 1 1
A=|10 0
0O 0

Find an orthogonal matrix Q that diagonalizes A = [~} §].

Find an orthogonal matrix  that diagonalizes this symmetric matrix:

1 0 2
A=|0 -1 -2
2 =2 0

Find all orthogonal matrices that diagonalize A = [Ig :z}

(a) Find a symmetric matrix | }H'] that has a negative eigenvalue.
(b) How do you know it must have a negative pivot?

(c) How do you know it can’t have two negative eigenvalues?

If A* =0 then the eigenvalues of A must be _. Give an example that has
A # 0. But if A is symmetric, diagonalize it to prove that A must be zero,

If . =a+ib is an cigenvalue of a real matrix A, then its conjugate A=a—ib
is also an eigenvalue. (If Ax = Jx then also AX = AX.) Prove that every real 3
by 3 matrix has a real eigenvalue.

Here is a quick “proof™ that the eigenvalues of all real matrices are real:

xTAx

Ax = ix gives xTAx=)x"x so A= is real.

xTx
Find the flaw in this reasoning—a hidden assumption that is not justified.

Write A and B in the form Ajx1x] + Ayxax] of the spectral theorem QAQ”:
31 9 12
= {’ 3] o [12 lﬁ] (keep [lxill = flx2ll = 1).

Every 2 by 2 symmetric matrix is J-.|.t:.tT + J..g.tg.:r} = A Py + i2P. Explain

Pi+ Py = xx] +x2x] = I from columns times rows, P| P, = x x| + x2x] =0
and from row times column.
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What are the eigenvalues of A =[ § ﬂ']? Create a 3 by 3 skew-symmetric matrix
(AT = —-A) and verify that its eigenvalues are all imaginary.

This matrix M is skew symmetric and also . Then its eigenvalues are all
pure imaginary and they have |&| = 1. (||Mx| = |Ix|| for every x so [ix]| = ||x]|
for eigenvectors.) Find all four eigenvalues of

0 1 |1 I
-1 0 -1 I

|
Jl-1 10—l
-1 -1 1 0

M=

Show that A (symmetric but complex) does not have two independent eigenvec-
tors:

A= [{ _:] is not diagonalizable: det(A — AJ) = as,

AT = A is not such a special property for complex matrices. The good property
s ET = A (Section 10.2). Then all A's are real and eigenvectors are orthogonal.

AT g] Is symmetric:

ek . 0O Allry|_.|¥ T Az = Ay
Bx=ix is [AT {}] [z] —l[z] which is Ayt
(a) Show that —A is also an eigenvalue, with the eigenvector (y, —z2).

(b) Show that ATAz = A%z, so that A2 is an eigenvalue of ATA.
(c) If A=1T (2 by 2) find all four eigenvalues and eigenvectors of B.

Even if A is rectangular, the block matrix B = [ Y

If A= H] in Problem 16, find all three eigenvalues and eigenvectors of B.

Another proof that eigenvectors are perpendicular when A = AV, Suppose Ax =
sx and Ay =0y and & #£ 0, Then y is in the nullspace and x is in the column
space. They are perpendicular because . Go carefully —why are these sub-
spaces orthogonal? If the second eigenvalue is a nonzero number 8, apply this
argument to A — B/, The eigenvalue moves to zero and the eigenvectors stay the
same—so they are perpendicular.

Find the eigenvector matrix S for this matrix B. Show that it doesn’t collapse at
d = 1, even though A = 1 is repeated. Are the eigenvectors perpendicular?

-1 0 1
B=]| 01 0 has A=-1,1.d.
0 0 4
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From the trace and the determinant find the eigenvalues of

-3 4
=3 3)
Compare the signs of the A's with the signs of the pivots.

True or false. Give a reason or a counterexample.

(a) A matrix with real eigenvalues and eigenvectors is symmetric.

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
{c) The inverse of a symmetric matrix is symmetric.

(d) The eigenvector matrix S of a symmetric matrix is symmetric.

A normal matrix has ATA = AAT; it has orthogonal eigenvectors. Why is every
skew-symmetric matrix normal? Why is every orthogonal matrix normal? When
is [_% 1] normal?

(A paradox for instructors) If AAT = ATA then A and A" share the same eigen-
vectors (true). A and AT always share the same eigenvalues. Find the flaw in
this conclusion: They must have the same § and A. Therefore A equals AT,

{Recommended) Which of these classes of matrices do A and B belong to: In-
vertible, orthogonal, projection, permutation, diagonalizable, Markov?

0 0 1 1 1 1
A=|0 1 0 B==|11 1

|
1 0.0 31111

Which of these factorizations are possible for A and B: LU, QR, SAS™!, QAQ"?

What number b in [%fﬂ makes A = QAQ" possible? What number makes
A = SAS~! impossible? What number makes A~' impossible?

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two
numbers can be eigenvalues?

This A is nearly symmetric. But its eigenvectors are far from orthogonal:

a[t 10°P o . I
=10 1410~ as eigenvectors | [?]

What is the angle between the eigenvectors?

(MATLAB) Take two symmetric matrices with different eigenvectors, say
A= [H’] and B = [} ] Graph the cigenvalues A \(A + 1B) and A2(A + 1B)
for —8 < ¢ < 8. Peter Lax says on page 113 of Linear Algebra that & and A;
appear to be on a collision course at certain values of r. “Yet at the last minute
they turn aside.” How close do they come?
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29 My file scarymatlab shows what can happen when roundoff destroys symmetry:
A=[1111151:5]"B=A"%A;P=A= inv(B)*A";[Q, E]= eig(P);

B is exactly symmetric and P should be, but isn’t. Multiplying Q' Q will show
two eigenvectors of P with dot product .9999 instead of 0.

POSITIVE DEFINITE MATRICES = 6.5

This section concentrates on symmetric matrices that have positive eigenvalues. If sym-
metry makes a matrix important, this extra property (all & > 0) makes it special. When
we say special, we don’t mean rare. Symmetric matrices with positive eigenvalues enter
all kinds of applications of linear algebra. They are called positive definite.

The first problem is to recognize these matrices. You may say, just find the eigen-
values and test A > 0. That is exactly what we want to avoid. Calculating eigenvalues
is work. When the A's are needed, we can compute them. But if we just want to know
that they are positive, there are faster ways. Here are the two goals of this section:

. To find guick rests on a symmetric matrix that guarantee positive eigenvalues.
. To explain two applications of positive definiteness.

The matrix A is symmetric so the A's are automatically real.
Start with 2 by 2. When does A = [2 "] have 1, > 0 and X3 > 0?

6L The eigenvalues of A are positive if and only if a > 0 and ac — b* = 0.

A=[%3] has a =4 and ac —b* =28 — 25 = 3. So A has positive eigenvalues. The
test is failed by [g g] and also failed by [‘,’] _g]. One failure is because the determi-
nant is 24 — 25 < 0. The other failure is because @ = —1. The determinant of +7 is
not enough to pass, because the test has two parts: the 1 by | determinant @ and the
2 by 2 determinant.

Proof of the 2 by 2 tests: If 4; = 0 and 4> > 0, then their product A;2; and
sum Aj + A> are positive. Their product is the determinant so ac — b2 > 0. Their sum
is the trace so a + ¢ > 0. Then a and ¢ are both positive (if one were not positive
then ac — b* > 0 would have failed).

Now start with @ > 0 and ac — b* = 0. Together they force ¢ = 0. Since AjA2
is the positive determinant, the L’s have the same sign. Since the trace is a + ¢ > 0,
that sign must be +.

This test on @ and ac — b*> uses determinants. The next test requires positive
pivots.
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6M The eigenvalues of A = A" are positive if and only if the pivots are positive:

=
ac — b~

a =10 and = (],

i

The point is to recognize that ratio of positive numbers as the second pivor of A:

c—— =

a i

The first pivot is a The second pivot is

a b a b " 3

b e : 0 c—bp N
The multiplier is b/a a

This connects two big parts of linear algebra. Positive eigenvalues mean positive piv-
ots and vice versa. We gave a proof for all symmetric matrices in the last section
(Theorem 6K). So the pivots give a quick test for A > (. They are a lot faster to
compute than the eigenvalues. It is very satisfying to see pivots and determinants and
eigenvalues come together in this course.

Example 1 This matrix has a = | (positive). But ac — b* = 3 — 27 is negative:

[é g] has a negative determinant and pivot. So a negative eigenvalue.

The pivots are | and —1. The eigenvalues also multiply to give —1. One eigenvalue
is negative (we don’t want its formula, which has a square root, just its sign).

Here is a different way to look at symmetric matrices with positive eigenvalues.
From Ax = ix, multiply by x7 to get xTAx = ixTx. The right side is a positive i
times a positive x'x = ||x|>. So xTAx is positive for any eigenvector.

The new idea is that this number x¥ Ax is positive for all nonzero vectors x. not
just the eigenvectors. Matrices with this property x' Ax > 0 are positive definite ma-
trices. We will prove that exactly these matrices have positive eigenvalues and pivots.

Definition The matrix A is positive definite if x' Ax > 0 for every nonzero vector:
- a b||x > )
T Ax = [.i.' 'I.-'] [ ] |: ] = ax-+2bxv+cy- = 0.
. b ey .

xTAx is a number (I by 1 matrix). The four entries a, b, b, ¢ give the four parts

of xTAx. From a and ¢ come the pure squares ax” and cy®. From b and b off the

diagonal come the cross terms bxy and byx (the same). Adding those four parts gives
T L

x' Ax:

fx,y) =x"Ax = ax® + 2bxy + cy* s “second degree.”
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The rest of this book has been linear (mostly Ax). Now the degree has gone from 1
to 2. The second derivatives of a.t:+1b_ry +lf‘_‘|-': are constant. Those second derivatives
are 2a, 2b, 2b, 2¢. They go into the second derivative matrix 2A:

d 2 2

:—{ = 2ax + 2by ?—fq 9

dx dx=  dydx 2a 2b

af and e 52 = a7 e | = 2A.
= = 2bx + 2cy f {

dy dxdy  dy?

This is the 2 by 2 version of what everybody knows for 1 by 1. There the function is
ax?, its slope is 2ax, and its second derivative is 2a. Now the function is x"Ax, its
first derivatives are in the vector 2Ax, and its second derivatives are in the matrix 2A.

Third derivatives are all zero.

First Application: Test for a Minimum

Where does calculus use second derivatives? When f" is positive, the curve bends up
from its tangent line. The point x = 0 is a minimum point of ¥ = x°. It is a maximum
point of v = —x°. To decide minimum versus maximum for a one-variable function
f(x), calculus looks at its second derivative.

For a two-variable function f(x, v), the mafrix of second derivarives holds the
key. One number is not enough to decide minimum wversus maximum (versus saddle
point). The function f = x' Ax has a minimum at x = y = 0 if and only if A is
positive definite. The statement “A is a positive definite matrix™ is the 2 by 2 version
of “a is a positive number”.

Example 2 This matrix A is positive definite. We test by pivots or determinants:

A= [; g} has positive pivots and determinants (1 and 3).

More directly, xT Ax = x> - 4xy + 7y? is positive because it is a sum of squares:
Rewrite x’ +4dxy+7y" as (x+2y)" +3y°.

The pivots 1 and 3 multiply those squares. This is no accident! By the algebra of
“completing the square,” this always happens. So when the pivols are positive, the
quadratic function f(x,y) = x' Ax is guaranteed to be positive: a sum of squares.

Comparing our examples [} 3] and [ }3]. the only difference is that change from
3 to 7. The borderline is a2 = 4. Above 4, the matrix is positive definite. At az = 4,
the borderline matrix is only semidefinite. Then (> 0) changes to (= 0):

[; i] is singular. It has eigenvalues 5 and 0.

This matrix has @ > 0 but ac — b* = 0. Not quite positive definite!
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We will summarize this section so far. We have four ways to recognize a positive
definite matrix. Right now it is only 2 by 2,

6N When a 2 by 2 symmetric matrix has one of these four properties, it has them all:
1. Both of the eigenvalues are positive.

2. The !l by | and 2 by 2 determinants are positive: a > 0 and ac — b* > 0.

T
:

a = 7 )
The pivols are positive: a > 0 and (ac — b%)/a = 0.

4. The function x"Ax = ax’® + 2bxy + cy? is positive except at (0, 0).

When A has one (therefore all) of these four properties, it is a posifive definite matrix.

Note We deal only with symmetric matrices. The cross derivative %f/dxdy always
equals #2f/dydx. For f(x,y,z) the nine second derivatives fill a symmetric 3 by 3
matrix. It is positive definite when the three pivots (and the three eigenvalues, and the
three determinants) are positive. When the first derivatives d f/dx and 8 f /dy are
zero and the second derivative maltrix is positive definite, we have found a local
minimum.

Example 3 Is f(x,y)= x% + 8xy + 3y? everywhere positive—except at (0,0)?

Solution The second derivatives are f,, = 2 and f,, = f,, = 8 and f,, = 6, all
positive. But the test is not positive derivatives. We look for positive definiteness. The
answer 1s no, this function is not always positive, By trial and error we locate a point
x=1,y=-1 where f(l,—1) =1—8+3 = —4. Better to do linear algebra, and
apply the exact tests to the matrix that produced f(x, y):

2 48y 43y =[x 3'][!1 ﬂ [:]

The matrix has ac — &> = 3 — 16. The pivots are 1 and —13. The eigenvalues are
__ (we don’t need them). The matrix is not positive definite.
Note how 8xy comes from a3 = 4 above the diagonal and a2; = 4 symmetrically
below. That matrix multiplication in x7 Ax makes the function appear.

Main point The sign of b is not the essential thing. The cross derivative 82f/dxdy
can be positive or negative—the test uses b2. The size of b, compared to @ and c,
decides whether A is positive definite and the function f(x, v) has a minimum.

Example 4  For which numbers ¢ is x* + 8xy + cy? always positive (or zero)?

Solution The matrix is A = [}3]. Again a = | passes the first test. The second test
has ac — b* = ¢ — 16. For a positive definite matrix we need ¢ > 16.
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The “semidefinite” borderline is ¢ = 16. At that point [} ,3] has 2 = 17 and 0,
determinants | and 0, pivots 1 and . The function x> +8xy+ 16y7 is (x +4y)>.
Its graph does not go below zero, but it stays at zero all along the line x + 4y = 0.
This is close to positive definite, but each test just misses: x' Ax equals zero for the
vector x = (4, —1). So A is only semidefinite.

Example 5 When A is positive definite, write f(x, v) as a sum of two squares.
Solution This is called “completing the square.” The part ax® +2bxy is correct in the
first square a(x + i—’}'}z. But that ends with a final u[f-:y}:. To stay even, this added
amount b*y2/a has to be subtracted off from cy? at the end:

-

= b 2 »— b= 2
E::em qeﬁnlg ax* +2bxy+cy’ =a (.r + E_v) + (m = )_v‘. (1)

After that gentle touch of algebra, the situation is clearer. The two squares (never
negative) are multiplied by numbers that could be positive or negative. Those numbers

a and (ac — b*)/a are the pivors! So positive pivots give a sum of sqlqares and a
positive definite matrix. Think back to the pivots and multipliers in LDL":

- e Wl 13 Bie 1 bja
A_[b {‘:|_|:|‘J,r'ﬂ I][ im'—bzl,"a}[[l i]' @)

To complete the square, we started with a and b. Elimination does exactly the same.
It starts with the first column. Inside (x + 2y)” are the numbers | and % from L.

Every positive definite symmetric matrix factors inte A = LI!L]' with pasitive piveis
in D. The “Cholesky factorization” is A = (L D) LJ/D)T.

Important to compare A = LDL" with A = QAQ". One is based on pivots
(in D). The other is based on eigenvalues (in A). Please do not think that pivots
equal eigenvalues. Their signs are the same, but the numbers are entirely different.

Positive Definite Matrices: n by n

For a 2 by 2 matrix, the “positive definite test” uses eigenvalues or determinants or
pivots. All those numbers must be positive. We hope and expect that the same three
tests carry over to n by n symmetric matrices. They do.
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60 When a symmetric matrix has one of these four properties, it has them all:
L. All n eigenvalues are positive.
2. All n upper left determinants are positive.

All n pivots are positive.

= -

xTAx is positive except at x = 0. The matrix A is pesitive definite.

The “upper left determinants™ are | by 1, 2 by 2,. . ..n by n. The last one is the
determinant of the complete matrix A. This remarkable theorem ties together the whole
linear algebra course—at least for symmetric matrices. We believe that two examples
are more helpful than a proof (we nearly have a proof already). Then we give two
applications.

Example 6  Test these matrices A and A* for positive definiteness:

2 -1 0 2 -1 b
A= |-l 2 —1 and A'=|-1 2 -1
0 -1 2 b -1 2

Solution This A is an old friend (or enemy). Its pivots are 2 and % and % all positive.

Its upper left determinants are 2 and 3 and 4, all positive. Its eigenvalues are 2 — /2
and 2 and 2 + +/2, all positive. That completes tests 1, 2, and 3.
We can write xT Ax as a sum of three squares (since n = 3). The pivots 2, % %

appear outside the squares. The multipliers —% and —_% in L are inside the squares:

3 3
xTAx =2(xf — xix2 + x3 — x2x3 + x3)

=2(x - :‘;x:]z + a}{,tz - %xa}z + _%[x;]: = 0. This is positive.

Go to the second matrix A*. The determinant test is easiest. The | by 1 de-
terminant is 2, the 2 by 2 determinant is 3. The 3 by 3 determinant comes from the
whole A*:

det A* =44 2b —2b% = (1 + b)(4 — 2b) must be positive.

Atb=—1and b =2 we get det A* = 0. In those cases A* is positive semidefinite
(no inverse. zero eigenvalue, xVA*x = 0). Berween b = —1 and b = 2 the marrix is
positive definite. The corner entry b = 0 in the first matrix A was safely between.

Second Application: The Ellipse ax® + 2bxy + cy* =1

Think of a tilted ellipse centered at (0,0), as in Figure 6.4a. Turn it to line up with
the coordinate axes. That is Figure 6.4b. These two pictures show the geometry behind
the factorization A = QAQ ' = QA QT:
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(0, 1)

Figure 6.4 The tilied ellipse 5x° + 8xy + 5y% = I. Lined up it is 9X% + V% = L.

1.  The tilted ellipse is associated with A. Its equation is xTAx = 1.
2. The lined-up ellipse is associated with A. Its equation is XTAX = 1.

3.  The rotation matrix from x to X that lines up the ellipse is Q.

Example 7  Find the axes of this tilted ellipse 5x* + 8xy +5y* = 1.

Solution Start with the positive definite matrix that matches this equation:

The function is [ x :"]|:i z] [;] = 1. The matrix is A = [i :]

The eigenvalues of A are A; =9 and A; = 1. The eigenvectors are []] and [_]] To
make them unit vectors, divide by +/2. Then A = QAQT is

s 41_ L[t 1][9 o] 1 [t 1
4 5| A1 =)o 1f a1 1)
Now multiply by [x ¥] on the left and [ ]nn the right to get back the function

X
%
xVAx:

i 2 -_ 2
5x? + 8xy + 5y° =9(%) +1 (xﬁ"') : (3)

The function is again a sum of two squares. But this is different from completing the
square. The coefficients are not the pivots 5 and 9/5 from D, they are the eigenvalues
9 and 1 from A. Inside rhese squares are the eigenvectors (1, 1)/+/2 and (1, =1)/+/2.
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The axes of the tilted ellipse point along the eigenvectors. This explains why
A= QAQT is called the “principal axis theorem”—it displays the axes. Not only the
axis directions (from the eigenvectors) but also the axis lengths (from the eigenvalues).
To see it all, use capital letters for the new coordinates that line up the ellipse:
x+;‘=x sfid x=—1

V2 V2

The ellipse becomes 9X* + Y> = 1. The largest value of X* is 1/9. The point at the
end of the shorter axis has X = 1/3 and ¥ = 0. Notice: The bigger eigenvalue i

gives the shorter axis, of half-length 1//%; = 1/3. The point at the end of the major
axis has X = 0 and ¥ = 1. The smaller eigenvalue 4; = 1 gives the greater length
If\f’l_z =1,

In the xy system, the axes are along the eigenvectors of A. In the XY system,

the axes are along the eigenvectors of A —the coordinate axes. Everything comes from
the diagonalization A = QAQT.

=V,

6P Suppose A = QA QT is positive definite. The graph of xTAx =1 is an ellipse:

[x y]oAaQT [f] =[x v]aA [;f] =N X241 =1,

The half-lengths of the axes are 1//A; and 1//%3.

For an ellipse, A must be positive definite. A = / gives the circle x>+ y*> = 1. If an
eigenvalue is negative (exchange 4's and 5's in A). we don’t have an ellipse. The sum
of squares becomes a difference of squares: 9X* — ¥* = 1. This is a hyperbola. For a
negative definite matrix like A = —/, the graph of —x® — y> = 1 has no points at all.

® REVIEW OF THE KEY IDEAS =

1.  Positive definite matrices have positive eigenvalues and positive pivots.
2. A quick test is given by the upper left determinants: a > 0 and ac — b* > 0.
3.  The quadratic function f = xTAx then has a minimum at x = 0:

xTAx = ax® + 2bxy + ¢y’ is positive except at (x, v) = (0,0).

4, The ellipse x" Ax = 1 has its axes along the eigenvectors of A.

5.  Coming: ATA is automatically positive definite if A has independent columns.
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= WORKED EXAMPLES =

6.5 A The great factorizations of a symmetric matrix are A = LDLT from piv-
ots and multipliers, and A = QA Q" from eigenvalues and eigenvectors, Show that
xTAx = 0 for all nonzero x exactly when the pivots and eigenvalues are positive. Try
these n by n tests on pascal(6) and ones(6) and hilb(6) and other matrices in MAT-
LAB’s gallery.

Solution To prove xTAx > 0 put parentheses into xTLDL x and xTQAQ x:
xTAx = (L™0)"™D(L"x) and  xTAx = (Q"x)"A(Q"x).

If x is nonzero, then y = LTx and z = Q" x are nonzero (those matrices are invertible).
So xTAx = yTDy = zT Az becomes a sum of squares and A is positive definite:

xTAx = y'Dy = divi+-+dyy: > 0
xTAx = zTAz = MNzZf+- 403zt > 0
Honesty makes me add one little comment to this fast and beautiful proof. A zero in
the pivot position would force a row exchange and a permutation matrix P. So the
factorization might be PAPT = LDL" (we exchange columns with PT to maintain
symmetry). Now the fast proof applies to A = (P~'L)D(P~'L)" with no problem.
MATLAB has a gallery of unusual matrices (type help gallery) and here are four:

pascal(6) is positive definite because all its pivots are 1 (Worked Example 2.6 A).
ones(6) is positive semidefinite because its eigenvalues are 0,0,0.0,0, 6.

hilb(6) is positive definite even though eig(hilb(6)) shows two eigenvalues very near
zero. In fact x7 hilb(6) x = f{: (x] +x25 + -+ x657)2 ds > 0.

rand(6)+rand(6)’ can be positive definite or not (experiments give only 1 in 10000):

n=20000; p=0; for k=1:n,A=rand(6); p = p + all(eig(A + A") > 0); end,
p/n

6.5 B Find conditions on the blocks A = AT and € = CT and B of this matrix M:

o
Solution  Test M for positive pivots, starting in eippe::: lelt corner. The first pivots
of M are the pivots of A!  First condition The block A must be positive definite.

Multiply the first row of M by BTA~" and subtract from the second row to get
a block of zeros. The Schur complement § = C — BTA~! B appears in the corner:

[ sta 1) 5 ][0 costama]=[0 5]

The last pivots of M are pivots of §! Second condition S must be positive definite.
The two conditions are exactly like @ > 0 and ¢ > b*/a, except they apply to
blocks.

When is the symmetric block matrix M =l 4 = l positive definite?
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Problem Set 6.5

Problems 1-13 are about tests for positive definiteness.

1 Which of Ay, A;, As. A4 has two positive eigenvalues? Use the test, don’t com-
pute the A's. Find an x so that xTA;x < 0.

5 6 -1 -2 I 10 110
A= [6 T] "= [—2 —5] = [m |m} A= [m m]]'
2 For which numbers b and ¢ are these matrices positive definite?

1 b 2 4
A=|:b 'EI] and Az[d f].

With the pivots in D and multiplier in L, factor each A into LDL',

3 What is the quadratic f = ax®+2bxy+cy® for each of these matrices? Complete
the square to write f as a sum of one or two squares dy( )* +da( )%

1 2 1 3

4 Show that f(x, v) = x® + 4xv + 3v* does not have a minimum at (0,0) even
though it has positive coefficients. Write f as a difference of squares and find a
point (x, v) where [ is negative.

5 The function f(x, y) = 2xy certainly has a saddle point and not a minimum at
(0,0). What symmetric matrix A produces this 7?7 What are its eigenvalues?

6  (Important) If A has independent columns then ATA is square and symmetric
and invertible (Section 4.2). Rewrite xY AT Ax to show why it is positive except
when x = 0. Then ATA is more than invertible, it is positive definite.

7 Test to see if ATA is positive definite in each case:

1 1
1 2 I ) 2
ﬂ'"[[} 3] and A=|1 2 and A_.[I b I]'
2 1
8  The function f(x,v) = 3(x+2y)*+4y? is positive except at (0,0). What is the
matrix in f =[x v]A[x y]'? Check that the pivots of A are 3 and 4.
9 Find the 3 by 3 matrix A and its pivots, rank, eigenvalues. and determinant:

x)
[x1 x x;]l: A :l I::|=4{I|—xz+1t311-

X3
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10  Which 3 by 3 symmetric matrices A produce these functions f = xTAx? Why
is the first matrix positive definite but not the second one?

(a) f= 2{1';' - _r,_‘} s ,1'_% - XX — 131’3]

(b) f =2(xf +x3+x] —x1x2 — x1x3 — x3x3),

11 Compute the three upper left determinants to establish positive definiteness. Ver-
ify that their ratios give the second and third pivots.

A=

=k R
fed L B2
gt O

12 For what numbers ¢ and 4 are A and B positive definite? Test the 3 determinants:

c 1 1 1 2% 3
A=|1 ¢ 1 and B=1|2 d 4
1 1 ¢ 3 4 5§

13 Find a matrix with @ = 0 and ¢ = 0 and a+c¢ = 2/ that has a negative eigenvalue.
Problems 14-20 are about applications of the tests.

14 If A is positive definite then A~ is positive definite. Best proof: The eigenvalues
of A~! are positive because . Second proof (only for 2 by 2):

1 =
The entries of A~! = 2 [ ; fj pass the determinant tests
ac— bt | —

15 If A and B are positive definite, then A+ B is positive definite. Pivots and eigen-
values are not convenient for A + B. Much better to prove .t‘TI: A+ Bix = 0.

16 A positive definite matrix cannot have a zero (or even worse. a negative number)
on its diagonal. Show that this matrix fails to have xTAx > 0:

4

[I| X3 ,r_u,] 1
1

1 x)
2 || x2 | i1s not positive when (xj.x0.x3)=( , ., M
5 X3

e =

17 A diagonal entry a;; of a symmetric matrix cannot be smaller than all the A’s.
If it were, then A — a;;/ would have eigenvalues and would be positive
definite. But A —a;;[ has a on the main diagonal.

18 If Ax = Ax then xTAx = . If A is positive definite, prove that 4 > 0.
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20
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Reverse Problem 18 to show that if all % > 0 then xTAx > 0. We must do this
for every nonzero x, not just the eigenvectors. So write x as a combination of
the eigenvectors and explain why all “cross terms” are ¥ x 3 =0:

_TTAI — {CJ;I| S e = EHIHJT{C|;LII1 S R Cn}'-n-rn] =

T ¥ I
quTn + et ciAnx ) xy > 0,
Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is P = I.
(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive def-
inite!

Problems 21-24 use the eigenvalues; Problems 25-27 are based on pivots.

21

22

23

24

25

For which s and r do A and B have all A > 0 (therefore positive definite)?

5 —4 —4 t 3 0
A= |—-4 5 —4 and B=1|3 t 4
-4 —4 g 0 4 1

From A = QA QT compute the positive definite symmetric square root Q:‘Llf . QT
of each matrix. Check that this square root gives R = A:

5 4 0 6
"“[4 5] and A:[ﬁ m]'

You may have seen the equation for an ellipse as {5}: + [%)2 = 1. What are a

and b when the equation is written as Ajx”+A2y” = 1? The ellipse 9x2+16y> =
1 has axes with half-lengths a = and b=

Draw the tilted ellipse x>+ xy+y> = 1 and find the half-lengths of its axes from
the eigenvalues of the corresponding A.

With positive pivots in D, the factorization A = LDL" becomes Lv/Dv/DLT.
(Square roots of the pivots give D = +'D+/D.) Then C = L+/D yields the
Cholesky factorization A = CCT which is “symmetrized L U™

3 0
1. 2

4 B8

From C=[ g 25

:| find A. From A_—.[ ] find C.
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26

27

28

29

30

31

32

In the Cholesky factorization A = CCT, with C = L+/D, the square roots of the
pivots are on the diagonal of C. Find C (lower triangular) for

9 0 0 1 1 1
A=|0 1 2 and A= |1 2 2
0 2 8 2 7

The symmetric factorization A = LDLT means that xTAx = xTLDL x:

S0 P | M R 3 P e | R [ |

The left side is ax” + 2bxy +cy*. The right side is a(x + %y}z—t— y%. The

second pivot completes the square! Test with a =2, b =4, ¢ = 10.

Without multiplying A = [m'ﬂ —sind [5 g][_msﬂ stnﬂ]‘ find

sin # sinf cos#d
(a) the determinant of A (b) the eigenvalues of A
(c) the eigenvectors of A (d) a reason why A is symmetric positive definite.

For fi(x.y) = 3x* + x?y + y* and fa(x.y) = x* + xy — x find the second
derivative matrices A; and As:

Bl a2f/ax?  8%f/dxdy
| Pfrayax  83f/ay |

A\ is positive definite so f; is concave up (= convex). Find the minimum point
of fi and the saddle point of f> (look where first derivatives are zero).

The graph of ; = 24 }'3 is a bowl opening upward. The graph of z = x— ;.-'3

is a saddle. The graph of z = —x* — y? is a bowl opening downward. What is
a test on a, b, ¢ for z = ax® 4+ 2bxy + cy* to have a saddle at (0, 0)?

Which values of ¢ give a bowl and which give a saddle point for the graph of
z = 4x* 4 12xy + ¢y*? Describe this graph at the borderline value of c.

A group of nonsingular matrices includes AB and A~! if it includes A and B.
“Products and inverses stay in the group.” Which of these sets are groups (updat-
ing Problem 2.7.37)7 Positive definite symmetric matrices A, orthogonal matrices
Q. all exponentials ¢’? of a fixed matrix A. matrices P with positive eigenvalues,
matrices D with determinant 1. Invent a “subgroup™ of one of these groups (not
the identity I by itself—this is the smallest group).
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SIMILAR MATRICES = 6.6

The key step in this chapter was to diagonalize a matrix. That was done by §—the
eigenvector matrix. The diagonal matrix S~'AS is A —the eigenvalue matrix. But di-
agonalization was not possible for every A. Some matrices resisted and we had to
leave them alone. They had too few eigenvectors to produce §. In this new section, §
remains the best choice when we can find it, but we allow any invertible matrix M.

Starting from A we go to M~!AM. This new matrix may happen to be diagonal —
more likely not. It still shares important properties of A. No matter which M we choose,
the eigenvalues stay the same. The matrices A and M~' AM are called “similar”. A typical
matrix A is similar to a whole family of other matrices because there are so many choices
of M.

DEFINITION Let M be any invertible matrix. Then B = M~'AM is similar to A,

If B=M"'AM then immediately A = MBM ~'. That means: If B is similar to A then
A is similar to B. The matrix in this reverse direction is M~ — just as good as M.

A diagonalizable matrix is similar to A. In that special case M 15 §. We have
A=SAS"" and A = §~'AS. They certainly have the same eigenvalues! This section
is opening up to other similar matrices B = M~'AM.

The combination M~'AM appears when we change variables in a differential
equation. Start with an equation for & and set u = Muv:

d d d
2% — Au bocomes MIL = AMe whichis 2% =M'AMv.
di dt dr

The original coefficient matrix was A, the new one at the right is M~'AM. Changing
variables leads to a similar matrix. When M = § the new system is diagonal —the
maximum in simplicity. But other choices of M also make the new system easier 1o

solve. Since we can always go back to u, similar matrices have to give the same growth
or decay. More precisely, the eigenvalues of A and B are the same.

6Q (No change in A’s) Similar matrices A and M ' AM have the same eigenvalues.
If x is an eigenvector of A then M ~'x is an eigenvector of B = M~ 'AM.

The proof is quick, since B = M~'AM gives A = MBM~'. Suppose Ax = ix:
MBM™'x = ix means that BM 'x =AM 'x.

The eigenvalue of B is the same i. The eigenvector is now M~ 'x.
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The following example finds three matrices that are similar to one projection matrix.

Example 1

5 = e NI iy 11 0
The projection A = [‘5 _5] is similar to A =5 'AS = [U U]

Now choose M = I:I ﬂ]: the similar matrix M~"AM is [I Ijl.

| 12 0 0

0 -1 S . i a S5 =5
: n]' the similar matrix M™"AM 15 [_‘5 _5].

Also choose M = [
These matrices M~ AM all have the same eigenvalues | and 0. Every 2 by 2 matrix
with those eigenvalues is similar to A, The eigenvectors change with M.

The eigenvalues in that example are 1 and (0, mot repeated. This makes life easy.
Repeated eigenvalues are harder. The next example has eigenvalues 0 and 0. The zero
matrix shares those eigenvalues, but it is in a family by itself: M~'0M = 0.

The following mairix A is similar to every nonzero matrix with eigenvalues 0 and 0.

Example 2

a=[? M ssmmswosymmmn=| 2 £
= 0 0 15 sumilar (o every maltn - —I’_'E o

] except B =10.
These martrices B all have zero determinant (like A). They all have rank one (like A).
Their trace 15 cd — cd = 0. Their eigenvalues are 0 and 0 (like A). 1 chose any M =
[#2] with ad —bc =1, and B=M~'AM.

These matrices B can't be diagonalized. In fact A is as close to diagonal as
possible. It is the “Jordan form™ for the family of matrices B. This is the outstanding
member (my class says “Godfather”) of the family. The Jordan form J = A is as near
as we can come to diagonalizing these matrices, when there is only one eigenvector.

Chapter 7 will explain another approach to similar matrices. Instead of changing
variables by u = Mv, we “change the basis”. In this approach, similar matrices will
represent the same transformation of n-dimensional space. When we choose a basis for
R", we get a matrix. The standard basis vectors (M = /) lead to /="' Al which is A,
Other bases lead to similar matrices B = M~'AM.

In this “similarity transformation™ from A to B, some things change and some
don’t. Here is a table to show connections between similar matrices A and B:

Not changed Changed
Eigenvalues Eigenvectors
Trace and determinant MNullspace
Rank Column space
Number of independemt Row space
eigenvectors Left nullspace

Jordan form Singular values
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The eigenvalues don’t change for similar matrices: the eigenvectors do. The trace
is the sum of the A's (unchanged). The determinant is the product of the same A’s.'
The nullspace consists of the eigenvectors for A = 0 (if any), so it can change. Its
dimension n —r does not change! The number of eigenvectors stays the same for each
A, while the vectors themselves are multiplied by M.

The singular values depend on ATA, which definitely changes. They come in the
next section. The table suggests good exercises in linear algebra. But the last entry in
the unchanged column—the Jordan form—is more than an exercise. We lead up to it
with one more example of similar matrices.

Example 3 This Jordan matrix J has triple eigenvalue 5,5,5. Its only eigenvectors

are multiples of (1,0,0)! Algebraic multiplicity 3, geometric multiplicity 1:

If J= has rank 2.

=l = ¥ ]
= Lh -
oo o
2D -
D - =

0
! then J-351=
5

Every similar matrix B = M~'JM has the same triple eigenvalue 5,5,5. Also B —5]
must have the same rank 2. Its nullspace has dimension 3 — 2 = 1. So each similar
matrix B also has only one independent eigenvector.

The transpose matrix J7 has the same eigenvalues 5,5,5, and J7 — 5/ has the
same rank 2. Jordan’s theory says that JV is similar to J. The matrix that produces
the similarity happens to be the reverse identity M:

500 5
JT=M'"IM is |1 5 0]= 1 0
01 5 0

(=T

0
I 1
3

All blank entries are zero. An eigenvector of JVis M~'(1,0,0) = (0,0, 1). There is one
line of eigenvectors (xy, 0, 0) for J and another line (0, 0, x3) for AT,

The key fact is that this matrix J is similar to every matrix A with eigenvalues
5,5.5 and one line of eigenvectors. There is an M with M~ 'AM = J,

Example 4 Since J is as close to diagonal as we can get, the equation du/di = Ju
cannot be simplified by changing variables. We must solve it as it stands:

5 1 0 X dx/dt =5x+y
=Ju=|0 5 1 ¥ is dy/dt =5v+z
0 5 z

0 drjfdt = 5z.

B

IThe determinant is unchanged because det B = (det M~ )(det A)(det M) = det A.
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The system is triangular. We think naturally of back substitution. Solve the last equa-

tion and work upwards. Main point: All solutions contain €'
‘5 = 5z yields z = z(0)e™
dy :
== Sy+z yields y=(y(0)+rz(0))e™
dx . 1,2 St
e Sx+y yields x = (x(0)+ry(0) + 31°2(0))e.

The two missing eigenvectors are responsible for the re>! and 12 terms in vy and z.

The factors ¢ and 1* enter because i = 5 is a triple eigenvalue with one eigenvector.

The Jordan Form

For every A, we want to choose M so that M~ 'AM is as nearly diagonal as possible.
When A has a full set of n eigenvectors, they go into the columns of M. Then M = §,
The matrix 5~'AS is diagonal, period. This matrix is the Jordan form of A—when
A can be diagonalized. In the general case, eigenvectors are missing and A can’t be
reached.

Suppose A has 5 independent eigenvectors. Then it is similar to a matrix with s
blocks. Each block is like J in Example 3. The eigenvalue is on the diagonal and the
diagonal above it contains 1's. This block accounts for one eigenvector of A. When
there are n eigenvectors and n blocks, they are all 1 by 1. In that case J is A.

6R (Jordan form) If A has s independent eigenvectors, it is similar to a matrix J
that has s Jordan blocks on its diagonal: There is a matrix M such that

Ji
M~ 'AM =

I
—

(1)
J,
Each block in J has one eigenvalue A;, one eigenvector, and 1's above the diagonal:

Jr= IR I (2)

Ai

A is similar to B if they share the same Jordan form J—not otherwise.

This is the big theorem about matrix similarity. In every family of similar ma-
trices, we are picking one outstanding member called J. It is nearly diagonal (or if
possible completely diagonal). For that J, we can solve du/dt = Ju as in Example 4.
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We can take powers J* as in Problems 9-10. Every other matrix in the family has the
form A = MJM~!. The connection through M solves du/dt = Au.

The point you must see is that MJM'MJM~! = MJ*M~'. That cancellation
of M~"M in the middle has been used through this chapter (when M was §). We found
A'® from SA'™§~! _by diagonalizing the matrix. Now we can't quite diagonalize A.
So we use MJ'M 1 instead.

Jordan's Theorem 6R is proved in my textbook Linear Algebra and Its Applica-
rions, published by Brooks-Cole. Please refer to that book (or more advanced books)
for the proof. The reasoning is rather intricate and in actual computations the Jordan
form is not at all popular—its calculation is not stable. A slight change in A will sepa-
rate the repeated eigenvalues and remove the off-diagonal 1's—switching to a diagonal
A. Proved or not, you have caught the central idea of similarity —to make A as simple
as possible while preserving its essential properties.

= REVIEW OF THE KEY IDEAS =

1. B is similar to A if B = M~'AM, for some invertible matrix M.
2, Similar matrices have the same eigenvalues. Eigenvectors are multiplied by M ™',
3.  If A has n independent eigenvectors then A is similar to A (take M = §).

4. Every matrix is similar to a Jordan matrix J (which has A as its diagonal part).
J has a block for each eigenvector, and 1's for missing eigenvectors.

" WORKED EXAMPLES =

6.6 A The 4 by 4 triangular Pascal matrix P; and its inverse (alternating diagonals)
are

10
-1 1
1 =2
-1 3

P = and P;'=

wWo— O
—ooo

0
0
1
-3

W b ==
_ 0 oo

Check that Py and P ! have the same eigenvalues. Find a diagonal matrix D with
alternating signs that gives P;' = D~'P.D, so Py is similar to P;'. Show that P D
with columns of alternating signs is its own inverse. Py D is pascal(4, 1) in MATLAB.

Since P and P,__' are similar they have the same Jordan form J. Find J by
checking the number of independent eigenvectors of P; with A = 1.
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Solution  The triangular matrices P and P, ! both have 4 = 1, 1, 1, 1 on their
main diagonals. Choose D with alternating 1 and —1 on its diagonal. D equals D™':
-1 0 -1
. 0 I

1 =
DT'Pi D= i 0
1

1

1 |
|

I I

W k=D
W e—a o

Check: Changing signs in rows | and 3 of Py, and columns 1 and 3, produces the
four negative entries in P . We are multiplying row i by (—1)" and column j by
(—1)/, which gives the alternating diagonals. Then P; D = pascal(n, 1) has columns
with alternating signs and equals its own inverse!

(PLDY(PLD) = PLD™"PLD = PLP' =1.

P; has only one line of eigenvectors x = (0,0, 0, x4), with A = 1. The rank of
P; — I is certainly 3. So its Jordan form J has only ene block (also with A = 1):

1 0
Py and also PL_i are somehow similar to Jordan's J = (I] :
0 0

o0 0 -
_—— D

6.6 B If A is similar to A™!, explain why its eigenvalues come in racipm::/al_pairs
»=aand A = 1/a. The 3 by 3 Pascal matrix Ps has paired eigenvalues 4+ /15,4 —
V15,1. Use P;' = D~'P.D and the symmetric factorization Ps = PP} in Worked

Example 2.6 A to prove that Ps is similar to Ps_]'

Solution When A has nonzero eigenvalues Aj, ..., An, its inverse has eigenvalues
Ar'...., A7'. Reason: Multiply Ax =Ax by A~' and A~' 1o get A”'x =27 'x,

If A and A~' are similar they have the same set of eigenvalues. So an even
number of A's must pair off in the form a and 1/a. The product (4++/15)(4—+/15) =
16 — 15 = 1 shows that 4 + /15,4 — /15, 1 do pair off properly.

The symmetric Pascal matrices have paired eigenvalues because Pg is similar to
P;'. To prove this similarity, using D = D~ = DT, start from Ps = Pp P}

P =) prYy = (D7 PDY (DT PLD) = DT P PLD = (PLD) N (PLP)(PLD).

This is P;' = M~'PsM (similar matrices!) for the matrix M = P D,

The eigenvalues of larger matrices Ps don’t have nice formulas. But eig(pascal (n))
will confirm that those eigenvalues come in reciprocal pairs a and 1/a. The Jordan
form of Ps is the diagonal A, because symmetric matrices always have a complete set
of eigenvectors.
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Problem Set 6.6

If B=M""AM and also C = N~'BN, what matrix T gives C = T~'AT?
Conclusion: If B is similar to A and C is similar to B, then

If C = F7'AF and also C = G~'BG, what matrix M gives B = M~ 1AM?
Conclusion; If C is similar to A and also to B then

Show that A and B are similar by finding M so that B = M~ 1AM:

1 0] 0
A—-l D- and B=_{] l}

(1 1] ] ==
A=|f g W JH=LG 1]

(1 2] 4 3
A—-j' 4- and B=_2 l}

If a 2 by 2 matrix A has eigenvalues 0 and 1, why is it similar to A = [{"g]'?
Deduce from Problem 2 that all 2 by 2 matrices with those eigenvalues are similar.

Which of these six matrices are similar? Check their eigenvalues.

o il o] Loo] [3] [o) [o1]

There are sixteen 2 by 2 matrices whose entries are 0's and 1's. Similar matrices
go into the same family. How many families? How many matrices (total 16) in
each family?

(a) If x is in the nullspace of A show that M~ x is in the nullspace of M~ LAM.
(b) The nullspaces of A and M ! AM have the same (vectors)(basis)(dimension).

If A and B have the exactly the same eigenvalues and eigenvectors, does A = B?
With n independent eigenvectors we do have A = B. Find A # B when both
have eigenvalues 0, 0 but only one line of eigenvectors (x;, 0).

By direct multiplication find A% and A® and A° when

Guess the form of A*. Set k =0 to find A and k = —1 to find A~ L.
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Questions 10-14 are about the Jordan form.

10

11

12

13

14
15

16

17

By direct multiplication, find J? and J* when

Fusll |
r=[2 1]
Guess the form of J*. Set k=0 to find J°. Set k=—1 to find J .

The text solved du/di = Ju for a 3 by 3 Jordan block J. Add a fourth equation
dw/dt = 5w + x. Follow the pattern of solutions for z, v, x to find w.

These Jordan matrices have eigenvalues 0,0,0,0. They have two eigenvectors
(one from each block). But the block sizes don’t match and they are nor similar:

0 1[0 0 n|ﬂ|
S 00 0 0 5 o n{}iu
= — an —]
Dﬂ‘ﬂ] 09 0]09
0o 0olo o 00010

For any matrix M, compare /M with MK. If they are equal show that M is
not invertible. Then M~'JM = K is impossible.

Prove that A" is always similar to A (we knew the A’s are the same):

l. For one Jordan block J;: Find M; so that M; ' J;M; = JT (see Example 3).
2. For any J with blocks J;: Build My from blocks so that My ' J My = J7.

3. Forany A= MJM~": Show that AT is similar to JT and so to J and to A.

Find two more matrices similar to J in Example 3.

Prove that det(A — Al) = det(M~'AM — iI). (You could write / = M~'M and
factor out det M~' and det M.) This says that A and M~ 'AM have the same
characteristic polynomial. So their roots are the same eigenvalues.

Which pairs are similar? Choose a, b, ¢, d to prove that the other pairs aren’t:

B I P

True or false, with a good reason:

{a) An invertible matrix can’t be similar to a singular matrix.

(b) A symmetric matrix can’t be similar to a nonsymmetric matrix.
{c) A can’t be similar to —A unless A = 0.

(dy A can't be similar to A + /.
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20
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If B is invertible prove that AB has the same eigenvalues as BA.

If Ais6by4and B is 4 by 6, AB and BA have different sizes. But sull

(a)
(b)

5004 00 41-[¢ -0

What sizes are the blocks of G? They are the same in each matrix.

This equation is M~'FM = G, so F and G have the same 10 eigenvalues.
F has the eigenvalues of AB plus 4 zeros; G has the eigenvalues of BA
plus 6 zeros. AB has the same eigenvalues as BA plus _ ZEros.

Why are these statements all true?

(a)
(b)
(c)
(d)
(e)

If A is similar to B then A® is similar to B,

A? and B? can be similar when A and B are not similar (try A =0, 0).
[%2] is similar to [g: ;

23] is not similar to [3 3]
If we exchange rows | and 2 of A, and then exchange columns | and 2,
the eigenvalues stay the same.

If J is the 5 by 5 Jordan block with L = 0, find J? and count its eigenvectors
and find its Jordan form (two blocks).
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SINGULAR VALUE DECOMPOSITION (SVD) = 6.7

The Singular Value Decomposition is a highlight of linear algebra. A is any m by
n matrix, square or rectangular. We will diagonalize it, but not by §~'AS. Its row
space is r-dimensional (inside R"). Its column space is also r-dimensional (inside R™).
We are going to choose special erthonormal bases v, .... v, for the row space and
uy,... . u, for the column space. For those bases, we want each Av; to be in the
direction of w;. In matrix form, these equations Av; = o;u; become AV = UL or
A = UZVT. This is the SVD.

Image Compression

Unusually, I am going to stop the theory and describe applications. This is the century
of data, and often that data is stored in a matrix. A digital image is really a matrix of
pixel values. Each little picture element or “pixel” has a gray scale number between
black and white (it has three numbers for a color picture). The picture might have
512 = 2% pixels in each row and 256 = 2® pixels down each column. We have a
256 by 512 pixel matrix with 2'7 entries! To store one picture, the computer has no
problem. But if you go in for a CT scan or Magnetic Resonance, you produce an
image at every cross section—a ton of data. If the pictures are frames in a movie. 30
frames a second means 108,000 images per hour. Compression is especially needed
for high definition digital TV, or the equipment could not keep up in real time.

What is compression? We want to replace those 2! matrix entries by a smaller
number, without losing picture qualiry. A simple way would be to use larger pixels—
replace groups of four pixels by their average value. This is 4 : | compression. But if
we carry it further, like 16 : 1, our image becomes “blocky”™. We want to replace the
mn entries by a smaller number, in a way that the human visual system won’t notice.

Compression is a billion dollar problem and everyone has ideas. Later in this
book I will describe Fourier transforms (used in jpeg) and wavelets (now in JPEG2000).
Here we try an SVD approach: Replace the 256 by 512 pixel matrix by a matrix of
rank one: a column times a row, If this is successful, the storage requirement for a
column and row becomes 256 + 512 (plus instead of times!). The compression ratio
(256)(512)/(256 + 512) is better than 170 : 1. This is more than we hope for. We
may actually use five matrices of rank one (so a matrix approximation of rank 5). The
compression is still 34 : 1 and the crucial guestion is the picture quality.

Where does the SVD come in? The best rank one approximation 1o A is the
matrix armpr. It uses the largest singular value oy and its left and right singular
vectors u; and vy. The best rank 5 approximation includes {r;ugu;r R ﬂ'jﬂjﬁ}".
If we can compute those u’s and v's quickly (a big “if”" since you will see them as
eigenvectors for ATA and AAT) then this SVD algorithm is competitive.

I will mention a different matrix, one that a library needs to compress. The rows
correspond to key words. The columns correspond to titles in the library. The entry in
this word-title matrix is a;; = 1 if word i is in title j (otherwise a;; = 0). We might
normalize the columns to be unit vectors, so that long titles don't get an advantage.
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Instead of the title, we might use a table of contents or an abstract that better captures
the content. (Other books might share the ttle “Introduction to Linear Algebra”. If you
are searching for the SVD, you want the right book.) Instead of a;; = 1, the entries
of A can include the frequency of the search words in each document.

Once the indexing matrix is created, the search is a linear algebra problem. If
we use 100,000 words from an English dictionary and 2,000,000,000 web pages as
documents, it is a long search. We need a shortcut. This matrix has to be compressed.
I will now explain the SVD approach, which gives an optimal low rank approximation
to A. (It works better for library matrices than for natural images.) There is an ever-
present tradeoff in the cost to compute the u’s and v’s, and I hope you will invent a
better way.

The Bases and the SVD

Start with a 2 by 2 matrix. Let its rank be r = 2, so this matrix A is invertible.
Its row space is the plane R*. We want v; and v; to be perpendicular unit vectors,
an orthonormal basis. We alse want Av, and Avy to be perpendicular. (This is the
tricky part. It is what makes the bases special.) Then the unit vectors u; = Av; /||Av; ||
and u2 = Ava/|[Ava| will be orthonormal. As a specific example, we work with the

unsymmetric matrix
2 2
A= [_1 l] ! (1)

First point Why not choose one orthogonal basis in @, instead of two in U and V?
Because no orthogonal matrix Q will make Q~"AQ diagonal. We need U™'AV,

Second point Why not choose the eigenvectors of A as the basis? Because thar basis -
is not orthonormal. A is not symmetric and we need two different orthogonal matrices.

We are aiming for orthonormal bases that diagonalize A. The two bases will be different—
one basis cannot do it. When the inputs are v and v3, the outputs are Av; and Av;. We
want those to line up with u| and u>. The basis vectors have to give Av, = o1u, and also
Avs = oyu>. The “singular values™ o) and o7 are the lengths [|Av, | and || Ava||. With v,
and vz as columns of V you see what we are asking for:

S R S N S

In matrix notation that is AV = UZ, or U"!AV = I, or UTAV = E. The diagonal
matrix X is like A (capital sigma versus capital lambda). X contains the singular
values oy, o2, which are different from the eigenvalues A, A> in A.
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The difference comes from U and V. When they both equal S, we have S~!AS5 = A.
The matrix is diagonalized. But the eigenvectors in § are not generally orthonormal.
The new requirement is that U/ and V must be orthogonal matrices.

— o7 —
Orthonormal basis viy = Ui v vy | =1 0 . (3)
— 0 1

Thus VTV = J which means VT = V-!. Similarly UTU = and UT = /!

6R The Singular Value Decomposition (SVD) has orthogonal matrices U and V:

AV=UX andthen A=UZIV'=vuzvTl. (4)
This is the new factorization of A: orthegonal times diagonal times orthogonal.

There is a neat way to remove U and see V by itself: Multiply AT rimes A.
ATA=wzvhHTwzvh)=vzTzvT. (5)

Uty disappears hecause it equa]s I. Then T is next to . Multiplying those diag-
onal matrices gives crl and u'-, That leaves an m‘dmar}r dlagenahzatmn of the crucial
symmetric matrix AT A, whose eigenvalues are n‘l and r:l'-,

0
ATA=V|:{:;: ,]VT. 6)

a

This is exactly like A = QAQT. But the symmetric matrix is not A itself. Now the
symmetric matrix is ATA! And the columns of V are the eigenvecrors of ATA.
This tells us how to find V. We are ready to complete the example.

Example 1  Find the singular value decomposition of A = [_}}

Solution Compute ATA and its eigenvectors. Then make them unit vectors:

AT A = I:i ;] has unit eigenvectors v = [:ﬁﬁ:l and vy = [_]lf}}f]'

The eigenvalues of ATA are 8 and 2. The v’s are perpendicular, because eigenvectors
of every symmetric matrix are perpendicular—and ATA is automatically symmetric.

What about u; and w27 They are quick to find, because Av; is going to be in
the direction of u; and Avsy is in the direction of u»:

Av| = [_j ﬂ [:iﬁ} = [Z“E] . The unit vector is u; = [é:l
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L

e

TIH

Figure 6.5 U and V are rotations and reflections. X is a stretching matrix.

Clearly Av; is the same as 2+/2u;. The first singular value is oy = 2+/2. Then cri? =§,
which is the eigenvalue of ATA. We have Av; = oju; exactly as required. Similarly

Av; = [_% ?] [_:iﬁ] = I:Jg} . The unit vector is wuz; = [?] ;

Now Awv> is v/2u2. The second singular value is 02 = v/2. And oF agrees with the
other eigenvalue 2 of ATA. We have completed the SVD:

peom s 300 AL V) o

This matrix, and every invertible 2 by 2 matrix, fransforms the unit circle to an ellipse.
You can see that in the figure, which was created by Cliff Long and Tom Hern.
One final point about that example. We found the u’s from the v’s. Could we
find the u’s directly? Yes, by multiplying AAT instead of ATA:
AAT = wzvTyvsvh =uzzU". (8)

This time it is VTV =/ that disappears. Multiplying ZXT gives r:r]E and crf as before.
The columns of U are the eigenvectors of AA:

w36 -0 2

This matrix happens to be diagonal. Its eigenvectors are (1,0) and (0, 1). This agrees
with u and u; found earlier. Why should we take the first eigenvector to be (1,0)
instead of (0, 1)? Because we have to follow the order of the eigenvalues. Notice that
AAT has the same eigenvalues (8 and 2) as AT A. The singular values are +/8 and /2.
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—

AH]='\‘ﬁul _ — — -
rowspace = 0__ @ — — T

nullspace
nullspace of AT

Figure 6.6 The SVD chooses orthonormal bases for 4 subspaces so that Av; = oju;.

Example 2  Find the SVD of the singular matrix A = [32]. The rank is r = 1. The
row space has only one basis vector v;. The column space has only one basis vector
;. We can see those vectors (1, 1) and (2, 1) in A, and make them into unit vectors:

R we Ak Col ace e [
OW space vl_ﬁ 1 olumn sp ul_ﬁ 1

Then Av; must equal oyuy. It does, with o) = +/10. This A is ojujv] with rank 1.

The SVD could stop after the row basis and column basis (it usually doesn't).
It is customary for U and V to be square. The matrices need a second column. The
vector vz must be orthogonal to v;, and > must be orthogonal to u;:

wr ] w0 ueg[l]

The vector v; is in the nullspace. It is perpendicular to v; in the row space. Multiply
by A to get Av; = 0. We could say that the second singular value is o2 = 0, but
singular values are like pivots—only the r nonzeros are counted.

All three matrices U, Z, V are 2 by 2 in the complete SVD:

e i G

65 The matrices U and V contain orthonormal bases for all four subspaces:

first r columns of V :  row space of A
last n—r columns of V: nullspace of A
first r columns of U : column space of A

last m—r columns of U : ﬁuﬂspace of AT,
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The first columns vy, ..., v, and uy,...,u, are eigenvectors of ATA and AAT.
Then Av; falls in the direction of u;, and we now explain why. The last v's and u’s (in
the nullspaces) are easier. As long as those are orthonormal, the SVD will be correct.

Proof of SVD: Start from ATAv;, = 0'!-21!;. which gives the v’s and ¢'s. To prove
that Av; = o;u;, the key steps are to multiply by »] and by A:

v ATAv; =olv]v; gives |Av|*> =0} sothat [Av||=o; (10)

AATAU; = ::r,-zﬂu.- gives u; = Av;/o; as a unit eigenvector of AAT, (1)

Equation (10) used the small trick of placing parentheses in (v] AT)(Av;). This is a
vector Av; times its transpose, giving || Av; I Equation (11) placed the parentheses in
(AAT)(Av;). This shows that Av; is an eigenvector of AAT. We divide by its length
o; to get the unit vector u; = Av;/o;. This is the equation Av; = o;u; that we want!
It says that A is diagonalized by these outstanding bases.

I will give you my opinion directly. The SVD is the climax of this linear al-
gebra course. I think of it as the final step in the Fundamental Theorem. First come
the dimensions of the four subspaces. Then their orthogonalitv. Then the orthonormal
bases which diagonalize A. Tt is all in the formula A = UZVT. More applications
are coming—they are certainly important—but you have made it to the top.

Eigshow (Part 2)

Section 6.1 described the MATLAB demo called eigshow. The first option is eig, when x
moves in a circle and Ax follows on an ellipse. The second option is svd, when two vectors
x and y stay perpendicular as they travel around a circle. Then Ax and Ay move too (not
usually perpendicular). There are four vectors on the screen.

The SVD is seen graphically when Ax is perpendicular to Ay. Their directions
at that moment give an orthonormal basis #, #2. Their lengths give the singular values
o1, 0. The vectors x and y at that same moment are the orthonormal basis v;, va.

The Java demo on web.mit.edu/18.06/www shows Av; = oqu; and Avy = oam3.
In matrix language that is AV = UX. This is the SVD.

y=1(0,1) Ay=1(2,1)

=
Ax = (2, -1) Ax =242 u;
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Searching the Web

| will end with an application of the 5VD to web search engines. When you type a
search word, you get a list of related web sites in order of importance. (Regrettably,
typing “SVD" produced 13 non-mathematical SVD’s before the real one. “Cofactors”
was even worse but “cofactor” had one good entry. “Four subspaces™ did much better.)
The HITS algorithm that we describe is one way to produce that ranked list. It begins
with about 200 sites found from an index of key words, and after that we look only
at links between pages. HITS is link-based not content-based.

Start with the 200 sites and all sites that link to them and all sites they link to.
That is our list, to be put in order. Importance can be measured in two ways:

1. The site is an authority: links come from many sites. Especially from hubs.
2. The site is a hub: it links to many sites in the list. Especially to authorities.

We want numbers Xy, ... o Xy 1o rank the authorities and yy, ... , ¥y to rank the hubs.
Start with a simple count: 1? and _v?' count the links into and out of site i.

Here is the point: A good authority has links from important sites (like hubs).
Links from universities count more heavily than links from friends. A good hub is
linked to important sites (like authorities). A link 1o amazon.com means more than
a link to wellesleycambridge.com. The rankings x® and y* from counting links are
updatn;d to x' and y' by taking account of good links (measuring their quality by x°
and y")

Authority values x/ =)} Hub values y/'=)"x] (12)
J links 1o j i links to j

In matrix language those are x! = ATy and y!' = Ax®. The matrix A contains 1's
and 0°s, with a;; = | when i links to j. In the language of graphs, A is an “adjacency
matrix” for the World Wide Web. It is pretty large.

The algorithm doesn’t stop there. The new x! and y! give better rankings, but
not the best. Take another step like (12) to x? and y. Notice how ATA and AAT
appear:

¥l= ATyl = AT AL and = ATel = AATY, (13)

In two steps we are multiplying x® by ATA and y* by AAT. In twenty steps we
are multiplying by (ATA)'" and (AAT)"". When we take these powers, the largest
eigenvalue alz begins to dominate. And the vectors x and y gradually line up with the
leading eigenvectors v, and u; of ATA and AAT, We are computing the top terms in
the SVD iteratively, by the power method that is further discussed in Section 9.3. It
is wonderful that linear algebra helps to understand the Web.

Google actually creates rankings by a random walk that follows web links. The
more often this random walk goes to a site, the higher the ranking. The frequency of
visits gives the leading eigenvector (A = 1) of the normalized adjacency matrix for the
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Web. That matrix has 2.7 billion rows and columns, from 2.7 billion web sites. This
is the largest eigenvalue problem ever solved.

Some details are on the Web, but many important techniques are secrets of Google:
www.mathworks. com/company/newsletter/clevescorner/oct02_cleve.shtml
Probably Geogle starts with last month’s eigenvector as a first approximation, and runs
the random walk very fast. To get a high ranking, you want a lot of links from im-
portant sites. The HITS algorithm is described in the 1999 Scientific American (June
16). But I don't think the SVD is mentioned there. . .

® REVIEW OF THE KEY IDEAS =

1. The SVD factors A into UE VT, with r singular values 07 = .. .> o, = 0.

2.  The numbers a,z, .. ..02 are the nonzero eigenvalues of AAT and ATA.

3.  The orthonormal columns of I/ and V are eigenvectors of AAT and ATA.

4. Those columns are orthonormal bases for the four fundamental subspaces of A.
5. Those bases diagonalize the matrix: Av; = o;u; for i <r. This is AV =UZ.

" WORKED EXAMPLES =

6.7 A Identify by name these decompositions A =cjry+---4+¢cyrp of ann by n
matrix into n rank one matrices (column ¢ times row r):

1.  Orthogonal columns ¢y, ... ,c, and orthogonal rows ry,...,ry
2.  Orthogonal columns ¢y, ..., ¢, and riangular rows ry,... ,rp
3. Triangular columns cy, ..., ¢, and triangular rows ry, ... ,Ip

Triangular means that ¢; and r; have zeros before component i. The matrix C with
columns ¢; is lower triangular, the matrix R with rows r; is upper triangular. Where
do the rank and the pivots and singular values come into this picture?

Solution  These three splittings A = CR are basic to linear algebra, pure or applied:
1. Singular Value Decomposition A = UEVT (erthogonal U, orthogonal TVT)

2.  Gram-Schmidt Orthogonalization A = QR (orthogonal Q, triangular R)

3.  Gaussian Elimination A = LU (rriangular L, triangular U)

When A (possibly rectangular) has rank r, we need only r rank one matrices (not n).
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With orthonormal rows in V', the o's in £ come in: A =oeyr1+-+-+04Caln.
With diagonal 1's in L and U, the pivots d; come in: A = LDU =djeyry+ -+ +
dycyry,. With the diagonal of R placed in H, QR becomes QHR = hjeyry +---+
hineyry. These numbers h; have no standard name and I propose “heights”. Each h;
tells the height of column i above the base from the first ¢ — 1 columns. The volume
of the full n-dimensional box comes from A = ULV = LDU = QHR:

| det A | = | product of a’s | = | product of d’s | = | product of h’s |.

Problem Set 6.7
Problems 1-3 compute the SVD of a square singular matrix A.

1 Compute ATA and its eigenvalues o, 0 and unit eigenvectors vy, v2:

x=[1 4]

2 {a) Compute AAT and its eigenvalues UE.IJ and unit eigenvectors u |, us.
(b) Verify from Problem | that Av; = oyuy. Find all entries in the SVD:

“ :]=[‘“ ""][al nM"' "1]T'

3 Write down orthonormal bases for the four fundamental subspaces of this A.
Problems 4-7 ask for the SVD of matrices of rank 2.

4 (a) Find the eigenvalues and unit eigenvectors of A'A and AAT for the Fi-

bonacci matrix
1 1
=1 0]
(b)  Construct the singular value decomposition of A.

5 Show that the vectors in Problem 4 satisfy Av; = oyu; and Avy = orus.

b Use the SVD part of the MATLAB demo eigshow to find the same vectors v
and w2 graphically.

7  Compute ATA and AAT and their eigenvalues and unit eigenvectors for

1 1 0
A= [ 01 1 ]
Multiply the three matrices UEZVT to recover A.

Problems 8-15 bring out the underlying ideas of the SVD,

8 Suppose uy, ... .u, and vy, ..., v, are orthonormal bases for R". Construct the
matrix A that transforms each v; into u; to give Avy =uy, ... . Avy = U,
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Construct the matrix with rank one that has Av = 12u for v = %{l. 1,1,1) and
u = $(2,2, 1).Its only singular value is oy =

Suppose A has orthogonal columns wy, w2, ..., w, of lengths oy, 02,...,04.
What are U/, X, and V in the SVD?

Explain how the SVD expresses the matrix A as the sum of r rank one matrices:

A= 0|H;HT + -+ ﬂrll_.-IFI,

Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u; and w;. If
its eigenvalues are 4; =3 and J; = —2, what are the matrices U, £, VT in its
SVD?

If A = QR with an orthonormal matrix (, then the SVD of A is almost the same
as the SVD of R. Which of the three matrices in the SVD is changed because

of Q7

Suppose A is invertible (with oy > o2 > ). Change A by as small a matrix as
possible to produce a singular matrix Ap. Hint: U and V do not change:

a=[n @ ][ o] uT

(a) If A changes to 4A, what is the change in the SVD?
(b) What is the SVD for AT and for A=1?

Why doesn’t the SVD for A + [ just use £ + I7

(MATLAB) Run a random walk starting from web site x(1) = 1 and record the
visits to each site. From the site x(k— 1) = 1.2, 3, or 4 the code chooses xi{k)
with probabilities given by column x(k—1) of A. At the end p gives the fraction
of time at each site from a histogram (and Ap = p—please check this steady
state eigenvector):

A=[0 .1 2.7, 050 .15 8 .15 250 6; .1 3 6 0] =

Markov martrix

n=1000; x = zeros(l,n); x(ly=1;
for k=2:n x(k) = min{find(rand<cumsum(A(:, x(k —1))))): end
p = histix, 1:4)/n

How are the properties of a matrix reflected in its eigenvalues and eigenvectors?

This question is fundamental throughout Chapter 6. A table that organizes the key facis
may be helpful. For each class of matrices, here are the special properties of the eigen-
values A; and eigenvectors x;.
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Symmetric:
AT =4 real A's orthogonal .t_:r.t_,- =0
Orthogonal:
pr=g- all [A] =1 orthogonal X x; =0
Skew-symmetric:
AT = -4 imaginary A's orthogonal ¥, x; =0
Complex Hermitian:
A=A real A’s orthogonal X7 x; =0
Positive Definite:
xTAx =0 all & >0 orthogonal
Markov:
mij >0, E?:l mij = 1 Amax = 1 steady state x > 0
Similar:
B=M"'AM A(B) = A(A) x(B) = M~ 'x(A)
Projection:
P=P:=pP" A=1; 0 column space; nullspace
Reflection:
I = 2uu’ =) (o) [ | u:ut
Rank One:
uv’ h=vTu: 0,...0 u; vt
Inverse:
A~ 1/A(A) eigenvectors of A
Shift:
A+cl AMA)+¢ eigenvectors of A
Stable Powers:
A" =0 all |A| <1
Stable Exponential:
e’ 5 0 all Re . <0
Cyclic Permutation:
Pllin)=d2pyml)  Ap=etiHR IS T TR ()
Tridiagonal:
B PR, WSS —(' i N )
—1,2,—1 on diagonals XAy = cnsﬂ+l Xp == smn+1'l e E L
Diagonalizable:
SAS™! diagonal of A columns of § are independent
Symmetric:
QAQT diagonal of A (real) columns of Q are orthonormal
Jordan:
J=M"TAM diagonal of J  each block gives x = (0, .., 1,..,0)
Every Matrix:

A=UzvT rank(A) = rank(X) eigenvectors of ATA, AATin V.U



LINEAR TRANSFORMATIONS

THE IDEA OF A LINEAR TRANSFORMATION = 7.1

When a matrix A multiplies a vector v, it “transforms™ v into another vector Av
In goes v, out comes Av. This transformation follows the same idea as a function.
In goes a number x, out comes f(x). For one vector v or one number x, we multiply
by the matrix or we evaluate the function. The deeper goal is to see all v's at once.
We are transforming the whole space when we multiply every v by A.

Start again with a matrix A. It transforms v to Av. It transforms w to Aw. Then
we know what happens to u = v 4+ w. There is no doubt about Au, it has 1o equal
Av + Aw. Matrix multiplication T(v) = Av gives a linear transformation:

DEFINITION A transformation T assigns an output T'(v) to each input vector v.
The transformation is linear it it meets these requirements for all v and w:

(a) Tiv4+uw) =T+ Ti{w) (by Ticv)=cTiv) for all ¢
If the input is v = 0, the output must be T'(v) = 0. We combine (a) and (b) into one:

Linearity: T(cv+dw) mustequal c¢T(v)+dT(w).

Again [ test matrix multiplication: A(cv + dw) = cAv +dAw is rrue.

A linear transformation is highly restricted. Suppose T adds ug to every vector.
Then T(v) = v +up and T(w) = w + uyp. This isn’t good, or at least it isn't linear.
Applying T to v + w produces v + w + up. That is not the same as T'(v) + T(w):

U4 w4 uy is different from Tw)y+T{w) =10+ up + w + up.
The exception is when ug = 0. The transformation reduces to T(v) = v. This is the

identity transformation (nothing moves, as in multiplication by /). That is certainly
linear. In this case the input space V is the same as the output space W.

363
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The linear-plus-shift transformation 7(v) = Av 4+ up is called “affine.” Straight
lines stay straight although T is not linear. Computer graphics works with affine trans-
formations. The shift to computer graphics is in Section 8.6.

Example 1 Choose a fixed vector @ = (1, 3, 4), and let T'(v) be the dot product a-v:
The input is v = (vy. v2. 1a). The output is T(v) =a+v = vy 4+ 312 4+ 4.

This is linear. The inputs v come from three-dimensional space, so V = R®. The
outputs are just numbers, so the output space is W = R!, We are multiplying by the
row matrix A=[1 3 4]. Then T(v) = Av.

You will get good at recognizing which transformations are linear. If the output
involves squares or products or lengths, :rf or vyvz or ||v]l, then T is not linear.
Example 2 The length T(v) = |jv|| is not linear. Requirement (a) for linearity would

be |jv + w| = |lv|| + ||w]l. Requirement (b) would be |cv|| = c|/v||. Both are false!
Net (a): The sides of a tnangle satisfy an inequality ||v + w| < |jv| + ||w]|.
Nor (b): The length || — v| is not —||lv||. For negative ¢, we fail.

Example 3  (Imponant) T is the transformation that rotates every vector by 30°. The
domain is the xy plane (where the input vector v is). The range is also the xy plane
{where the rotated vector T'(v) is). We described T without mentioning a matrix: just
rotate the plane by 30°.

Is rotation linear? Yes ir is. We can rotaic two vectors and add the resulis, The

sum of rotations T(v) + T{w) is the same as the rotation T (v + w) of the sum. The
whole plane is tumning together. in this linear transformation.
Note Transformations have a language of their own. Where there is no matrix. we
can’t talk about a column space. But the idea can be rescued and used. The col-
umn space consisted of all outputs Av. The nullspace consisted of all inputs for which
Av = 0. Translate those into “range™ and “kernel™:

Range of T
Kernel of T
The range is in the output space W. The kernel is in the input space V. When T is mul-
tiplication by a matrix, T(v) = Av, you can translate to column space and nullspace.

For an m by n matrix, the nullspace is a subspace of V = R". The column space
15 a subspace of . The range might or might not be the whole output space W.

set of all outputs T'(v): corresponds to column space

1l

set of all inputs for which T'(v) = 0: corresponds to nullspace.

Examples of Transformations (mostly linear)

Example 4  Project every 3-dimensional vector down onto the xy plane. The range is
that plane, which contains every T'(v). The kernel is the z axis (which projects down
to zero). This projection is linear.

Example 5 Project every 3-dimensional vector onto the horizontal plane z = |. The
vector v = (x.v.z) is transformed to T(v) = (x, v, 1). This transformation is not
linear. Why not? It doesn’t even transform v = 0 into T(v) = 0.
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Multiply every 3-dimensional vector by a 3 by 3 matrix A. This is definitely a
linear transformation!

Tv+w)= A(v+w) which does equal Av+ Aw=T(v)+ T(w).

Example 6 Suppose A is an invertible matrix. The kernel of T is the zero vector; the
range W equals the domain V. Another linear transformation is multiplication by A~ Y
This is the inverse transformation T~', which brings every vector T(v) back to v:

T~ T(v)) =v matches the matrix multiplication A"[Au] =p,

We are reaching an unavoidable question. Are all linear transformations pro-
duced by matrices? Each m by n matrix does produce a linear transformation from
V =R" to W = R"™. Our question is the converse. When a linear T is described as
a “rotation” or “projection™ or “. . .", is there always a matrix hiding behind 77

The answer is ves. This is an approach to linear algebra that doesn't start with
matrices. The next section shows that we still end up with matrices.

Linear Transformations of the Plane

It is more interesting to see a transformation than to define it. When a 2 by 2 matrix
A multiplies all vectors in R%, we can watch how it acts, Start with a “house™ that
has eleven endpoints. Those eleven vectors v are transformed into eleven vectors Av.
Straight lines between v's become straight lines between the transformed vectors Av.
(The transformation from house to house is linear!) Applying A to a standard house
produces a new house— possibly stretched or rotated or otherwise unlivable.

This part of the book is visual, not theoretical. We will show six houses and the
matrices that produce them. The columns of H are the eleven circled points of the first
house. (H is 2 by 12, so plot2d will connect the 11th circle to the first.) The 11 points
in the house matrix H are multiplied by A to produce the other houses. The houses
on the cover of the book were produced this way (before Christine Curtis turned them
into a quilt for Professor Curtis). H is in the Teaching Code house.

jjo[=6=6:=T B T 6 6:~3:~3 0 Db
= 8 4 B Bo=poagio=ga=gegeagil

®  REVIEW OF THE KEY IDEAS =

1. A transformation T takes each v in the input space to T'(v) in the output space.

2.  Linearity requires that T (cjv; + - -+ cuvn) =€) T(v) +---+¢p Tlv,).
3. The transformation T(v) = Av + vy is linear only if vy =0!
4. The quilt on the book cover shows T(house) = AH for nine matrices A.
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_ [] ch‘r“ — 5in 35“]

0 @ sm 35° cos 35°

{:l? 0.3
[:l3 0.7

M)
S

1.1
0.3

0.7 -:}1
gi A_[ 0.3 {J'}

Figure 7.1  Linear transformations of a house drawn by plot2d(A + H).

" WORKED EXAMPLES =

7.1 A The matrix [_H] gives a shearing transformation T(x,v) = (x,3x + y).
Draw the xy plane and show what happens to (1,0) and (2,0) on the x axis. What
happens to the points on the vertical lines x =0 and x = a? If the inputs fill the unit
square 0 =x <1, 0 < y < |, draw the outputs (the transformed square).

Solution The points (1.0) and (2,0) on the x axis transform by T to (1.3) and
{2, 6). The horizontal x axis transforms to the straight line with slope 3 (going through
{0,0) of course). The points on the y axis are nor moved because T(0, y) = (0, v).
The y axis is the line of eigenvectors of T with A = 1.
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The vertical line x = a is moved up by 3a, since 3a is added to the y component.
This is the “shearing”. Vertical lines slide higher and higher as you go from left to
right.

The unit square has one side on the y axis (unchanged). The opposite side from
(1,0) to (1, 1) moves upward, to go from (1, 3) to (1,4). The transformed square has
a lower side from (0,0) to (1, 3) and a parallel upper side from (0, 1) to (1, 4). It is
a parallelogram. Multiplication by any A transforms squares to parallelograms!

7.1 B A nonlinear transformation 7 is invertible if every b in the output space
comes from exactly one x in the input space: T(x) = b always has exactly one so-
lution. Which of these transformations (on real numbers x) is invertible and what is
T—'7 None are linear, not even T3. When you solve T(x) = b, you are inverting T

2 1 :
Tilx)=x Tix)= ¥’ Tix)=x+9 Tx)=€ Ts(x)= = for nonzero x's
Solution 7 is not invertible because x> = 1 has two solutions (and x> = —1 has no
solution). T3 is not invertible because e* = —1 has no solution. (If the output space

changes to positive b’s then the inverse of ¢* = b is x = In b.) Notice that Tsz =
identity. But 73(x) = x + 18 What are 75 (x) and 7;?

T>, T3, Ts are invertible, The solutions to x* = b and x + 9 = b and % = b are
unique:

x=T'(h)=b" x=T7'B)=b-9 x=T7'(b)= %

Problem Set 7.1

1 A linear transformation must leave the zero vector fixed: T(0) = 0. Prove this
from T(v + w) = T(v) + T(w) by choosing w = . Prove it also from
requirement (b) by choosing ¢ =

2 Requirement (b) gives T(cv) = ¢T'(v) and also T(dw) = dT(w). Then by addi-
tion, requirement (a) gives T( ) =( ). What is T(cv + dw + eu)?

3 Which of these transformations is not linear? The input is v = (v, va):

(a) T(v)= (1) by Tiv)=(v).v) (c) T(w)=1(0,vy)
(d) T(v)=1(0,1).
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4

- 10

1

If §and T are linear transformations, is S(7(v)) linear or quadratic?

(a) (Special case) If S(v)=v and T(v) = v, then S(T(v)) = v or v??
(b) (General case) S(w;+w:) = S(w;)+5(w2) and T(v;+v2) = T(v1)+T(v2)
combine into

STvi+wv2))=8__ )y=___ +

Suppose T(v) = v except that T(0, v2) = (0, (). Show that this transformation
satisfies T(cv) = cT(v) but not T{v + w) = T(v) + T(w).

Which of these transformations satisfy 7(v+w) = T(v)+ T (w) and which satisfy
Ticv) = cT(v)?

(a) Tiv)=uv/|v| (b)Y Tiv) =v+va+u;3 (c) Ti(v)=(vy,2va, 313)
(d) T(v) = largest component of v.

For these transformations of V = R? to W = R?, find T(T (v)). Is this transfor-
mation T2 linear?

(fa) Ti(v)=-v by Tvy=v+(1,1)

(¢)  Ti(v) =90° rotation = (—v2, 1y}

(d) T(v) = projection = (5= L uia L),

Find the range and kernel (like the column space and nullspace) of T':

(a) T(v.v2)=(v2.1q) (b) Tiv, va, v3) = (v, 12)
() T(v,v)=1(0,0) (d) T(vy,v2) = (v, vy).

The “cyclic” transformation T is defined by T(vy, v2, v3) = (v2, v3, v;). What is
T(T(v))? What is 73 (v)? What is T'™(p)? Apply T three times and 100 times
o v

A linear transformation from V to W has an inverse from W to V when the range
is all of W and the kemel contains only v = 0. Why are these transformations
not invertible?

(a) T(vi.v2) =(v2, v2) W = R?
(b) Tiv,v)=(v, v, 0412 W=R?
(¢) T(v,vm)=uwu W =R/

If T{v)=Av and A is m by n, then T is “multiplication by A."

(a) What are the input and output spaces V and W?
(b) Why is range of T = column space of A?
(c) Why is kermel of T = nullspace of A?
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12 Suppose a linear T transforms (1, 1) to (2,2) and (2,0) to (0,0). Find T (v)
when

(@ v=1(22) by v=(3,1) () v=(-1L1) (d) wv=(a,b).
Problems 13-20 may be harder. The input space V contains all 2 by 2 matrices M.

13 M is any 2 by 2 matrix and A = [1%]. The transformation T is defined by
T(M) = AM. What rules of matrix multiplication show that T is linear?

14 Suppose A = [}‘ E] Show that the range of T is the whole matrix space V and
the kernel is the zero matrix:
(1) If AM =0 prove that M must be the zero matrix.
(2) Find a solution to AM = B for any 2 by 2 matrix B.

15 Suppose A = [}2]. Show that the identity matrix / is not in the range of T,
Find a nonzero matrix M such that T(M) = AM is zero.

16 Suppose T transposes every matrix M. Try to find a matrix A which gives AM =
MT for every M. Show that no matrix A will do it. To professors: Is this a linear
transformation that doesn’t come from a matrix?

17 The transformation 7 that transposes every matrix is definitely linear. Which of
these extra properties are true?

(a) T? = identity transformation.
(b) The kernel of T is the zero matrix.
(¢) Every matrix is in the range of T.
(d) T(M)= —M is impossible.
18 Suppose T(M) = [} 8][m][$9]. Find a matrix with T(M) # 0. Describe all

matrices with T(M) = 0 (the kernel of T) and all output matrices T (M) (the
range of T).

19 If A # 0 and B s 0 then there is a matrix M such that AMB # 0. Show by
example that M = I might fail. For your example find an M that succeeds.

20 If A and B are invertible and 7(M) = AM B, find T~ (M) in the form ( )M( ).
Questions 21-27 are about house transformations A H. The output is T (house).
21 How can you tell from the picture of T (house) that A is

(a) a diagonal matrix?
(b) a rank-one matrix?
(¢c) a lower triangular matrix?
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22

23

24

25
26
27

28

29

30

3

Draw a picture of T (house) for these matrices:

o-[2 9] wa a=[2 7] ma 0[3 1]

What are the conditions on A = [: E] to ensure that T (house) will

(a) sit straight up?
{b) expand the house by 3 in all directions?
(c) rotate the house with no change in its shape?

What are the conditions on det A = ad — be to ensure that T (house) will

(a) be squashed onto a line?
(b) keep its endpoints in clockwise order (not reflected)?

(c) have the same area as the original house?

If one side of the house stays in place, how do you know that A = I7
Describe T (house) when T(v) = —v <+ (1,0). This T is “affine.”
Change the house matrix H 1o add a chimney.

This MATLAB program creates a vector of 50 angles called theta, and then draws
the unit circle and T (circle) = ellipse. You can change A.

A=[21:12]

theta = [0:2 « pi/50:2 = pil;

circle = [cos(theta); sin(theta)];

ellipse = A =circle;

axis([—4 4 —4 4]); axis('square’)

ploticircle(,:), circle(2,:), ellipse(1,:), ellipse(2,:))

Add two eyes and a smile to the circle in Problem 27. (If one eye is dark and the
other is light, you can tell when the face is reflected across the y axis.) Multiply
by matrices A to get new faces.

The standard house is drawn by plot2d(H). Circles from o and lines from —:

x=H(1:);y=H{(2.::
axis([=1010=10107), axis('square”)
plot(x, v."o', x. v,"-);

Test plot2d(A’ = H) and plot2d(A’ » A « H) with the matrices in Figure 7.1
Without a computer describe the houses A *+ H for these matrices A:
1 0 & 5 e . 11
[n .J o [.5 .5] and [—.5 .5] A [1 n]'

What matrices give the houses on the front cover? The second is A = [.
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THE MATRIX OF A LINEAR TRANSFORMATION = 7.2

The next pages assign a matrix to every linear transformation. For ordinary column
vectors, the input v is in ¥V = R" and the output 7'(v) is in W = R™. The matrix for
this transformation T will be m by n.

The standard basis vectors for R" and R™ lead to a standard matrix for T. Then
T(v) = Av in the normal way. But these spaces also have other bases, so the same
T is represented by other matrices. A main theme of linear algebra is to choose the
bases that give the best matrix.

When V and W are not R" and R™, they still have bases. Each choice of basis
leads to a matrix for 7. When the input basis is different from the output basis, the
matrix for T(v) = v will not be the identity /. It will be the “change of basis matrix.”

Key idea of this section

When we know T(vy), ..., T(v,) for the basis vectors vy, ..., Vs,
linearity produces T (v) for every other vector v.

Reason Every input v is a unique combination ¢ v) + ---+c,v, of the basis vectors.
Since T is a linear transformation (here is the moment for lineanty), the output T(v)
must be the same combination of the known outputs T(vy), ..., Tiv,):

Suppose v = cjvy + - - » + CuVp. )
Then linearity requires T(v) =cyT(vy) 4+« 4 T (V4.
The rule of linearity extends from cv +dw to all combinations cyjvy 4+« +¢,v,. Our
first example gives the outputs T(v) for the standard basis vectors (1.0) and (0, 1).

Example 1 Suppose T transforms vy = (1.0) to T(v;) = (2,3,4). Suppm;e_‘the
second basis vector vy = (0, 1) goes to T(vz) = (5,5,5). If T is linear from R* to
R? then its “standard matrix” is 3 by 2. Those outputs go into its columns:

5 2 5 | 7
A= ] T(vi+v2)=T(v))+T(vz) is 3 5 [J: Bl.
5 4 5 9

Example 2  The derivatives of the functions 1, x,x%, x* are 0, 1, 2x, 3x”, Those are
four facts about the transformation T that “takes the derivative.” The inputs and out-
puts are functions! Now add the crucial fact that T is linear:

i b2

dw
+d—

T e beys the linearity rul LAY A
lv) = ] obeys the linearty rule dx{w —;l“_ i

i
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It is exactly this linearity that you use to find all other derivatives. From the derivative
of each separate power 1, x, x2, x? (those are the basis vectors vy, v2, v3. vs) you find
the derivative of any polynomial like 4 + x + x* + x*:

d " ’
l_5{4 +x+xt+x7)=1+2x + 322 (because of linearity!)

This example applies T (the derivative d/dx) to the input 4v; + vz + v3 + vy. Here
the input space V contains all combinations of 1,x, x, x*. 1 call them vectors, you
might call them functions. Those four vectors are a basis for the space V of cubic

polynomials (degree < 3).

For the nullspace of A, we solved Av = 0. For the kernel of the derivative T, we solve
dv/dx = 0. The solution is v = constant. The nullspace of T is one-dimensional,
containing all constant functions like vy = | (the first basis function).

To find the range (or column space), look at all outputs from T(v) = dv/dx.
The inputs are cubic polynomials a + bx + cx” + dx?, so the outputs are quadratic
polynomials (degree < 2). For the output space W we have a choice. If W = cubics,
then the range of T (the quadratics) is a subspace. If W = quadratics, then the range
is all of W,

That second choice emphasizes the difference between the domain or input space
(V = cubics) and the image or output space (W = quadratics). V has dimension n = 4
and W has dimension m = 3. The matrix for T in equation (2) will be 3 by 4,

The range of T is a three-dimensional subspace. The matrix will have rank r = 3.
The kernel is one-dimensional. The sum 3+ | = 4 is the dimension of the input space.
This was r + (n — r) = n in the Fundamental Theorem of Linear Algebra. Always
" (dimension of range) + (dimension of kernel) = dimension of V.

Example 3  The integral is the inverse of the derivative. That is the Fundamental
Theorem of Calculus. We see it now in linear algebra. The transformation 7' that
“takes the integral from 0 to x" is linear! Apply T-' 10 1, x, x?, which are w,, wy, ws:

5 X X =
f ldx = x. f xdx = 322, f dx =11,
[i] i} e i %

By linearity, the integral of w = B + Cx + Dx? is T-'(w) = Bx + 1Cx? + {Dx%.
The integral of a quadratic is a cubic. The input space of 7~' is the quadratics, the
output space is the cubics. Integration takes W back to V. Its matrix will be 4 by 3.

Range of T~' The outputs Bx + $Cx* + {Dx” are cubics with no constant term.
Kernel of T=' The output is zero only if B = C = D = 0. The nullspace is Z, the

zero vector. Now 3 + 0 = 3 is the dimension of the input space W for T,

Matrices for the Derivative and Integral

We will show how the matrices A and A~' copy the derivative T and the integral 7.
This is an excellent example from calculus. Then comes the general rule—how to rep-
resent any linear transformation 7 by a matrix A.
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The derivative transforms the space V of cubics to the space W of quadratics.
The basis for V is 1, x, x2, x*. The basis for W is 1, x, x*>. The matrix that “takes the
derivative” is 3 by 4:

0 1 D9
A=1|0 0 2 0| = matrix form of derivative T. (2)
0O 0 0 3

Why is A the correct matrix? Because multiplying by A agrees with transforming by

T. The derivative of v = a + bx + ex2 +dx? is T(v) = b + 2cx + 3dx?. The same b
and 2c and 3d appear when we multiply by the matrix:

R

Look also at T—!. The integration matrix is 4 by 3. Watch how the following matrix
starts with w = B + Cx + Dx? and produces its integral Bx + %CIE + %Dx:'":

[ e B e B
oo~
oo B e T
WD
B0 o0

0 0 0]-, 0

s 13 0o B
Integration: 1 e k=R v (4)

0" a0 H 5 ?C

0 0 % 3D

I want to call that matrix A, and I will. But you realize that rectangular matrices
don’t have inverses. At least they don't have two-sided inverses. This rectangular A
has a one-sided inverse. The integral is a one-sided inverse of the derivative!

HE
AA™'=(0 1 0O but A 'A=

00 1 0 01 0

0 0 0 1

If you integrate a function and then differentiate, you get back to the start. So AA™! = [.
But if you differentiate before integrating, the constant term is lost. The integral of
the derivative of 1 is zero:

T"IT(IJ = integral of zero function =0.

This matches A~! A, whose first column is all zero. The derivative T has a kernel (the
constant functions). Its matrix A has a nullspace. Main point again: Av copies T (v).
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Construction of the Matrix

Now we construct a matrix for any linear transformation. Suppose T transforms the
space V (n-dimensional) to the space W (m-dimensional). We choose a basis vy, ..., v,
for V and a basis w, ..., w, for W. The matrix A will be m by n. To find its first
column, apply T to the first basis vector v:

T'(vy) is a combination ajyw)+---+aywy of the output basis for W.

These numbers ayy, . . ., dy go into the first column of A. Transforming v; to T(v;)
matches multiplying (1,0,...,0) by A. It vields that first column of the matrix.
When T is the derivative and the first basis vector is 1, its derivative is T(v;) = 0. So
for the derivative, the first column of A was all zero.

For the integral, the first basis function is again 1 and its integral is x. This is
| times the second basis function. So the first column of A~! was (0, 1,0,0).

7A Each linear transformation T from V to W is represented by a matrix A (after
the bases are chosen for V and W). The jth column of A is found by applying T
to the jth basis vector v;:

T'(v;) = combination of basis vectors of W =a);w) + -+ + G Wp. (5)

These numbers ayj, ..., dmj go into column j of A. The matrix is constructed to get
the basis vectors right. Then linearity gets all other vectors right. Every v is a combi-
nation ¢1¥; +---+c,¥,. and T(v) is a combination of the w’s. When A multiplies the
coefficient vector ¢ = (¢1.. . ., €n) in the v combination, Ac produces the coefficients
in the T(v) combination. This is because matrix multiplication (combining columns)
is linear like T.

A tells what T does. Every linear transformation can be converted to a matrix.
This matrix depends on the bases.

Example 4  If the bases change, T is the same but the matrix A is different.

Suppose we reorder the basis to x, x?, x*, 1 for the cubics in V. Keep the original
basis 1,.x,x" for the quadratics in W. Now apply T to the first basis vector v;. The
derivative of x is 1. This is the first basis vector of W. So the first column of A looks
different:

1 0 0 0 matrix for the denvative T
Apw= |0 2 0 0] = when the bases change to
0030 x,x2,x3, 1 and 1, x, x2.

When we reorder the basis of V, we reorder the columns of A. The input basis vector
v; is responsible for column j. The output basis vector w; is responsible for row i.
Soon the changes in the bases will be more than permutations.
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—sin# U2 v
T{vz}=[ ] K.

s 1% cos ¢ N T(vy) =T(v2)
Y T{.vl}= J B \' I L
\ & S 12
X @ R |V
\ - L

A8 =1 L]

Figure 7.2 Rotation by # and projection onto the 45° line.

Products AB Match Transformations TS

The examples of derivative and integral made three points. First, linear transformations
T are everywhere—in calculus and differential equations and linear algebra. Second,
spaces other than R" are important—we had functions, cubics, and quadratics. Third,
T still boils down to a matrix A. Now we make sure that we can find this matrix.
The next examples have V = W. We choose the same basis for both spaces.
Then we can compare the matrices A2 and AB with the transformations 72 and T'S.

Example 5 T rotates every plane vector by the same angle 8. Here V=W = R”.
Find the rotation matrix A. The answer depends on the basis!

Solution The standard basis is vy = (1,0) and v3 = (0,1). To find A, apply T to
those basis vectors. In Figure 7.2a, they are rotated by 8. The first vector (1, 0) swings
around to (cos#,sinf). This equals cosf times (1,0) plus sin@ times (0, 1). There-
fore those numbers cosf and sinf go into the first column of A:

[r:c-s 2 ] showscolumnl A=

cosf —sinf
sin #

Sol o &] shows both columns.

For the second column, transform the second vector (0, 1). The figure shows it rotated
to (—sinf, cosf). Those numbers go into the second column. Multiplying A times
(0, 1) produces that column, so A agrees with T.

Example 6 (Projection) Suppose T projects every plane vector onto the 45° line.
Find its matrix for two different choices of the basis. We will find two matrices.

Solution Start with a specially chosen basis, not drawn in Figure 7.2. The basis vector v
is along the 45° line. It projects to itself. From T (v;) = vy, the first column of A contains 1
and 0. The second basis vector v2 is along the perpendicular line (135°). This basis vector
projects to zero. So the second column of A contains 0 and 0:

Projection A = [1 ﬂ] when V and W have the 45° and 135° basis.

0 0

With the basis in the opposite order (135° then 45°), the matrix is
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Now take the standard basis (1,0) and (0, 1). Figure 7.2b shows how (1,0)
projects to (5, ). That gives the first column of A. The other basis vector (0, 1)

also projects to (3, 3). So the standard matrix for this projection is A:

h-ujecﬁuna=[

b= b=
F— pd—

] for the same T and the standard basis.

Both A's are projection matrices. If you square A it doesn’t change. Projecting
twice is the same as projecting once: T2 = T so A® = A. Notice what is hidden in
that statement: The matrix for T* is A%,

We have come to something important —the real reason for the way matrices are mul-
tiplied. Ar last we discover why! Two transformations § and T are represented by two
matrices B and A. When we apply T to the output from §, we get the “composition™
TS. When we apply A after B, we get the matrix product AB. Matrix multiplication
gives the correct matrix AB to represent TS.

The transformation § is from a space U to V. Its matrix B uses a basis uy, ..., up
for U and a basis vy, ..., v, for V. The matrix is n by p. The transformation T is from V
to W as before. Its matrix A must use the same basis vy, . .., v, for V—this is the output
space for § and the input space for T. Then AB matches T'°S:

7B Multiplication The linear transformation 7S starts with any vector u in U, goes
to S(u) in V and then to T(S(u)) in W, The matrix AB starts with any x in R”,
goes to Bx in R" and then to ABx in R™. The matrix AB correctly represents T S:

TS: U=V W AB: (m by n)(n by p) = (m by p).

The input is u = xyuy + --- + xpup,. The output T(S(w)) matches the output ABx.
Product of transformations matches product of matrices. The most important cases are
when the spaces U, ¥V, W are the same and their bases are the same. Withm =n = p
we have square matrices.

Example 7 S rotates the plane by # and T also rotates by #. Then TS rotates by
24, This transformation 77 corresponds to the rotation matrix A” through 26:

cos2f —sin ZH]

2 - =
r=S§ A=28 A _mtalmnhylﬂ_[sinm c0s 20

By matching (transformation)® with (matrix)®, we pick up the formulas for cos26
and sin 26. Multiply A times A:

cos —sin# | [cosf —sin® | cos’@ —sin’@# —2sind cos#

sin  cosf || sin@ cosf| | 2sinfcosd®  cos’@ —sin’h |’
Comparing with the display above, cos26 = cos®# — sin®# and sin 20 = 2sin# cos 6.
Trigonometry comes from linear algebra.
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Example 8 S rotates by # and T rotates by —#. Then TS = [ and AB = /.

In this case T(S(u)) is u. We rotate forward and back. For the matrices to match,
ABx must be x. The two matrices are inverses. Check this by putting cos(—#) = cos#
and sin(—8@) = —sin# into A:

ap | cost sinf][cosé —sin6) _ [cos’d +sin8 0
~ |—sin® cos# || sind cos@ | 0 cos’ 6 +sin’@ |

By the famous identity for cos’ @ <+ sin® 6, this is /.
Earlier T took the derivative and § took the integral. Then T'§ is the identity but
not §T. Therefore AB is the identity matrix but not BA:

o 10 o7ft 8 8 4E-
AB=]0 0 2 0 | =1 bu BA=

g oo all® 30 0010

0 0 0001

The Identity Transformation and Change of Basis

We need the matrix for the special and boring transformation 7'(v) = v. This identity
transformation does nothing to v. The matrix also does nothing, provided the output
basis is the same as the input basis. The output T'(v;) is v;. When the bases are the
same, this is wy. So the first column of A is (1,0,..., 0).

When each output T'(v;) = v; is the same as wj, the matrix is just I.

This seems reasonable: The identity transformation is represented by the identity
matrix. But suppose the bases are different. Then 7'(v)) = v, is a combination of the
w’s. That combination myyw; +- - +my, w, tells us the first column of the matrix M.
We will use M (instead of A) for a matrix that represents the identity transformation.

When the outputs T(v;) = vj are combinations
Y i_ymijw;, the “change of basis matrix” is M.

The basis is changing but the vectors themselves are not changing: T(v) = v. When
the input has one basis and the output has another basis, the matrix is not /.

Example 9  The input basis is v; = (3.7) and v2 = (2,5). The output basis is
wy = (1,0) and wy = (0, 1). Then the matrix M is easy to compute:

The matrix for T(v)=wv i5s M= [3 i]

Reason The first input is vy = (3.7). The output is also (3.7) but we express it as
3w; + Tw;. Then the first column of M contains 3 and 7.

This seems too simple to be important. It becomes trickier when the change of
basis goes the other way. We get the inverse of the previous matrix M:



378 Chapter 7 Linear Transiormations

Example 10 The input basis is v,
T{v) = v. But the output basis is w,

-1
. y 3 2 3 =2
The matrix for T(v)=v is [? 5] = [_7 3].

{1.0) and v
(3,7) and w

(0, 1}). The outputs are just
(2.5).

@
=
-

Reason The first input is vy = (1,0). The output is also v; but we express it as
5wy = Twy. Check that 5(3,7) = 7(2, 5) does produce (1,0). We are combining the
columns of the previous M to get the columns of /. The matrix to do that is M~ ':

~3

[w) w:][_; ;]:[m va] s MM~ =1.

A mathematician would say that MM ~' corresponds to the product of two identity
transformations. We start and end with the same basis (1, 0) and (0, 1). Matrix multi-
plication must give /. So the two change of basis matrices are inverses.

Warning One mistake about M is very easy to make. Example 9 changes from the
basis of v's to the standard columns of /. But matrix multiplication goes the other way.
When vou multiply M times the columns of 7. vou get the v’s. It seems backward but
it 15 really OK.

One thing is sure. Multiplying A times (1,0, ..., () gives column 1 of the ma-
trix. The novelty of this section is that (1.0, ..., 0) stands for the first vector v, wrir-
ten in the basis of v's. Then column | of the matrix is that same vector vy. written
in the standard basis. This is when we keep T = I and change the basis for V.

In the rest of the book we keep the standard basis and T is multiplication by A.

® REVIEW OF THE KEY IDEAS =

l. If we know T(vy),....,T(v,) for a basis, linearity determines all other T (v).
Linear transformation T Matrix A (m by n)

2 Input basisvy,. . .. v, represents T
Output basis w), . . ., wy in these bases

3. The denivative and integral matrices are one-sided inverses: d(constant)/dx = 0:

(Derivative) (Integral) = I = Fundamental Theorem of Calculus !

4.  The change of basis matrix M represents T(v) = v. Its columns are the coefficients
of the output basis expressed in the input basis: w; = m ;v + -+ m,;v,.
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= WORKED EXAMPLES =

7.2 A Using the standard basis, find the 4 by 4 matrix P that represents a cvelic
permutation from x = (xy, x2. X3, x4) to T(x) = (x4, x7, x2, x3). Find the matrix for
T2. What is the triple shift 77(x) and why is T* = T~'? Find two real independent
eigenvectors of P. What are all the eigenvalues of P?

Solution  The first vector (1,0,.0,0) in the standard basis transforms to (0, 1,0,0)
which is the second basis vector. So the first column of P is (0, 1.0,0). The other
three columns come from transforming the other three standard basis vectors:

0 0 0 1 Xy x4

1 0 0 0 x| | ™ .
P= 0100 Then P 2 = | copies T

0010 X4 x3

Since we used the standard basis, T is ordinary multiplication by P. The matrix for
T2 is a “double cyclic shift” P and it produces (x3, x4, X, X2).

The triple shift T3 will transform x = (x}, x2, x3. x4) to T3 (x) = (x2, x3, x4, x1).
If we apply T once more we are back to the original x, so 7% = identity transforma-
tion. For matrices this is P* = I. This means that T°T = identity and 7% = T~',

Two real eigenvectors of P are (1, 1, 1, 1) with eigenvalue 4 = 1 and (1, —1, 1, —1)
with eigenvalue 4 = —1. The shift leaves (1, 1, 1, 1) unchanged and it reverses signs in
(1, =1, 1, —=1). The other two eigenvalues are A3 = { and 4 = —i. The determinant of P
is A1A2A3hs = —1 as in Problem 5.2 which used cofactors of the first row.

Notice that the eigenvalues 1, —1,i, —i add to zero (the trace of P). They are
the four roots of 1, since det(P — /) = A* — 1. They are equally spaced around the
unit ::in:ie in the complex plane. I think P must be a 90° rotation times a reflection
in R,

7.2 B The space of 2 by 2 matrices has these four “vectors” as a basis:

weld 3] mel8 4] me [ 8] e 8 ]

T is the linear transformation that rransposes every 2 by 2 matrix. What is the matrix
A that represents T in this basis (output basis = input basis)? What is the inverse
matrix A~'? What is the transformation 7' that inverts the transpose operation?

Also, T» multiplies each matrix by M = [28]. What 4 by 4 matrix A, repre-
sents 157

Solution  Transposing those four “basis matrices” permutes them to uy, #3, w2, uy!

Tu) =u y 600
Tluz) = uy . - 0010
T(uz) = u> gives the four columns of A = =
T(ug) =ug 000 1
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The inverse matrix A~! is the same as A. The inverse transformation T~' is the same
as T. If we transpose and transpose again, the final output equals the original input.
To find the matrix A>, multiply the basis matrices u;, u>, w3, us by M:

[£81058] = [£8] = aus + cus i 0w
ablol) —[0a]) — 554 :
[“i][n"] [“] TR gives the columns of A = 0 a 0 b
(281098 = [§8] = bur + dus c 040
ab][00]_[0b] — 0 ¢ 0 d
[2][03]=1[08]=buz+dus

This A is the “Kronecker product” or “tensor product™ of M with 7, written M &) I.

Problem Set 7.2

Questions 1-4 extend the first derivative example to higher derivatives.

1 The transformation S takes the second derivative. Keep 1, x, x*, x* as the basis
vy, v2, vy, vy and also as w, wo, wy, wy. Write Svy, Svs, Svs, Svg in terms of
the w's. Find the 4 by 4 matrix B for §.

2 What functions have v” = 0?7 They are in the kernel of the second derivative S.
What vectors are in the nullspace of its matrix B in Problem 17

3 B is not the square of the 4 by 3 first derivative matrix

01 00
A=|0 0 2 0
0O 0 0 3
Add a zero row to A, so that output space = input space. Then compare A® with
B. Conclusion: For B = A® we also want output basis = _ basis. Then
m=n.

4 (a) The product T'S produces the third derivative. Add zero rows to make 4
by 4 matrices, then compute AB.

(b) The matrix B* corresponds to 5% = fourth derivative. Why is this entirely
zero?

Questions 5-10 are about a particular T and its matrix A.

5  With bases vy, vz, v3 and w, w3, w3, suppose 7' (v)) = wy and T(v2) = T(v3) =
w; +w3. T is a linear transformation. Find the matrix A.

6 (a) What is the output from 7 in Question 5 when the input is v{ + vz + v3?
(b) Multiply A times the vector (1, 1, 1),
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Since T(v2) = T(vi), the solutions to T(v) =0 are v = . What vectors
are in the nullspace of A? Find all solutions to T'(v) = ws.

Find a vector that is not in the column space of A. Find a combination of w’s
that is not in the range of T.

You don't have enough information to determine T2. Why not? Why is its matrix
not necessarily A%?

Find the rank of A. This is not the dimension of the output space W. It is the
dimension of the ___ of 7.

Questions 11-14 are about invertible linear transformations.

mn

12

13

14

Suppose T(v)) = w;+ w2+ w3 and T(vy) = w2+ w3 and T'(v3) = w;. Find the
matrix for T using these basis vectors. What input vector v gives T(v) = w;?

Invert the matrix A in Problem 11. Also invert the transformation T —what are
T-'w;) and T~ (w>) and T~ '(w3)? Find all v’s that solve T(v) = 0.

Which of these are true and why is the other one ridiculous?
(@ T'T=1 ) T TeM=vu (©© T (Tw)) =uw.
Suppose the spaces ¥V and W have the same basis vy, va.

(a) Describe a ransformation 7 (not /) that is its own inverse.
(b) Describe a transformation T (not [) that equals 72,
(¢c) Why can’t the same T be used for both (a) and (b)?

Questions 15-20 are about changing the basis.

15

16

17

18

(a) What matrix transforms (1, 0) into (2, 5) and transforms (0, 1) to (1, 3)7
(b) What matrix transforms (2, 5) to (1,0) and (1, 3) to (0, 1)7
(c) Why does no matrix transform (2, 6) to (1,0) and (1, 3) to (0, 1)?

(a) What matrix M transforms (1,0) and (0, 1) to (r, ¢) and (s, u)?

(b) What matrix N transforms (a,c) and (b, d) to (1,0) and (0, 1)?

(¢)  What condition on a, b, ¢, d will make part (b) impossible?

(a) How do M and N in Problem 16 yield the matrix that transforms (a, ¢) to
(r.t) and (b, d) to (s, u)?

(b) What matrix transforms (2, 5) to (1, 1) and (1, 3) to (0, 2)?

If you keep the same basis vectors but put them in a different order, the change

of basis matrix M is a _ matrix. If you keep the basis vectors in order but
change their lengths, M is a matrix.
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19 The matrix that rotates the axis vectors (1,0) and (0, 1) through an angle # is
(). What are the coordinates (a, b) of the original (1, 0) using the new (rotated)
axes? This can be tricky. Draw a figure or solve this equation for a and b:

cosfl —sinf | cos —sin#
Qz[sinﬂ cnsﬂ] [ﬂ:[=a[sinﬂ]+b[ msﬂ]’

20 The matrix that transforms (1,0) and (0, 1) to (1,4) and (1,5) is M = .
The combination a(l,4) + b(1, 5) that equals (1,0) has (a,.b)=( . ). How
are those new coordinates of (1, 0) related to M or M~!?

Questions 21-24 are about the space of quadratic polynomials A 4+ Bx + C x2.

21 The parabola w; = 3(x*+x) equals one at x = 1 and zero at x =0 and x = —1.
Find the parabolas w3, ws. and y(x):

(a) woequalsoneatx=0andzeroat x =1 and x = -1.
{(b) ws equals one at x = —1 and zero at x =0 and x = 1.
(c) yx)equals 4 at x=1and Sat x=0and 6 at x = —1. Use w, w1, wi.

22 One basis for second-degree polynomials is vy = | and v2 = x and v3 = xL
Another basis is w;, w7, w3 from Problem 21. Find two change of basis matrices,

from the w's to the v’s and from the v's to the w’s.

23  What are the three equations for A, B, C if the parabola ¥ = A + Bx + Cx*
equals 4 at x = a and 5 at x = b and 6 at x = ¢? Find the determinant of
the 3 by 3 matrix. For which numbers a, b, ¢ will it be impossible to find this
parabola ¥?

24 Under what condition on the numbers m,ma, ..., mg do these three parabolas

give a basis for the space of all parabolas?

vi{x) =my +max + Jr:'r_:l.t2 and va(x) = my + msx +mhx: and

a
vi(x) = mq + mgx + mox~,

25 The Gram-Schmidt process changes a basis @, @2, @3 to an orthonormal basis
qi.4>.q5. These are columns in A = QR. Show that R is the change of basis
matrix from the a’s to the g's (@2 is what combination of ¢’s when A = QR7).

26 Elimination changes the rows of A to the rows of U with A = LU. Row 2 of
A is what combination of the rows of U? Writing AT = UTLT to work with
columns, the change of basis matrix 1s M = L". (We have bases provided the
matrices are .}

27 Suppose vy, vz, va are eigenvectors for T. This means T(v;) = Av; for i =
1,2,3. What is the matrix for T when the input and output bases are the v's?
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Every invertible linear transformation can have / as its matrix. Choose any input
basis vy,..., v, and for output basis choose w; to be T(v;). Why must T be
invertible?

Questions 29-32 review some basic linear transformations.

29

30

31

32

33

Using vy = wy and v> = w> find the standard matrix for these T's:
(a) Tiv)=0and T(vz) =3y, (by T(vy)=vwv; and T(v; +v2) =19,

Suppose T is reflection across the x axis and § is reflection across the v axis.
The domain V is the xy plane. If v = (x, v) what is S(T(v))? Find a simpler
description of the product ST.

Suppose T is reflection across the 45° line, and § is reflection across the v axis.
If v=1(2,1) then T(v) = (1,2). Find S{T{v)) and T(S{v)). This shows that
generally ST £ TS§.

Show that the product 5T of two reflections is a rotation, Multiply these reflec-
tion matrices to find the rotation angle:

cos 24 sin 26 cos 2o sin 2o
sin2f —cos 20 sin2g —cos2a |’

True or false: If we know T(v) for n different nonzero vectors in R", then we
know T'(w) for every vector in R".



384  Chapter 7 Linear Transformations
CHANGE OF BASIS = 7.3

This section returns to one of the fundamental ideas of linear algebra—a basis for R".
We don’t intend 1o change that idea, but we do intend to change the basis. It often happens
(and we will give examples) that one basis is especially suitable for a specific problem. By
changing to that basis, the vectors and the matrices reveal the information we want. The
whole idea of a rransform (this book explains the Fourier transform and wavelet transform)
is exactly a change of basis.

Remember what it means for the vectors wy,. . ., w, to be a basis for R":

1.  The w's are linearly independent.
2, The n = n matrix W with these columns is invertible.
3.  Every vector v in R" can be written in exactly one way as a combination of the w’s:

v=01W) oWy 4+ Oty (1

Here is the key point: Those coefficients ¢y, . . ., ¢, completely describe the vector v,
after we have decided on the basis. Originally, a column vector v just has the compo-
nents vy, . . .. v,. In the new basis of w's, the same vector is described by the different
set of numbers ¢y, . . .. It takes n numbers to describe each vector and it also re-
quires a choice of basis. The n numbers are the coordinates of v in that basis:

| 1

p= | ¢ and also v=| : (2)
Un J standard basis €n _l basis of w's
A basis is a set of axes for R". The coordinates cy,. . ., ¢, tell how far to go along

each axis. The axes are at right angles when the w’s are orthogonal.

Small point: What is the “standard basis™? Those basis vectors are simply the
columns of the n by » identity matrix /. These columns ey, . . ., e, are the “default
basis.” When I write down the vector v = (2,4,5) in R, I am intending and you
are expecting the standard basis (the usual xyz axes, where the coordinates are 2.4, 5):

| 0 0 2
v=2¢+4e1+5e3=2|0|+4|1|+5]0]|=|4
0 0 1 5

The new question is: Whar are the coordinates ¢y, 3, ¢ in the new basis w), w2, w37 As
usual we put the basis vectors into the columns of a matrix. This is the basis marrix W,
Then the fundamental equation v = cyw; + . . . + ¢, w, has the matrix form v = We.
From this we immediately know ¢ = W~ v,

7C Thecoordinatese = (cy, ..., ¢y) of vinthebasiswy, ..., w, aregivenby ¢ = W 'v .
The change of basis matrix W~ is the inverse of the basis matrix W .
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The standard basis has W = [. The coordinates in that default basis ¢4, . . ., e, are
the usual components vy, . . ., v,. Our first new example is the wavelet basis for R

Example 1 (Wavelet basis) Wavelets are little waves. They have different lengths
and they are localized at different places. The first basis vector is not actually a wavelet,
it is the very useful flat vector of all ones. The others are “Haar wavelets™

1 1 1 0
l 1 —1 ]

w = | wr= [ w=| , wy = ] (3)
1 -1 0 -1

Those vectors are orthogonal, which is good. You see how ws is localized in the first
half and wy is localized in the second half. Their coefficients ¢3 and ¢4 tell us about
details in the first half and last half of v. The ultimate in localization is the standard
basis,

Why do want to change the basis? 1 think of vy, v2, va, vy as the intensities of a
signal. It could be an audio signal, like music on a CD. It could be a medical signal,
like an electrocardiogram. Of course n = 4 is very short, and n = 10,000 is more
realistic. We may need to compress that long signal, by keeping only the largest 5%
of the coefficients. This is 20 : 1 compression and (to give only one of its applications)
it makes modern video conferencing possible.

If we keep only 5% of the standard basis coefficients, we lose 95% of the signal.
In image processing, most of the image disappears. In audio, 95% of the tape goes
blank. But if we choose a better basis of w’s, 5% of the basis vectors can come very

close to the original signal. In image processing and audio coding, you can't see or
hear the difference. We don’t need the other 95%!

One good basis vector is a flat (1, 1,1, 1). That part alone can represent the con-
stant background of our image. A short wave like (0,0, I, —1) or in higher dimensions
(0,0,0,0,0,0, 1, —1) represents a detail at the end of the signal.

The three steps of transform and compression and inverse transform are

input v = —  coefficients ¢ - compressed €  —  compressed U
|lossless| |lossy] |reconstruct|

In linear algebra, where everything is perfect, we omit the compression step. The
output o is exactly the same as the input v. The transform gives ¢ = W~ 'v and the
reconstruction brings back v = We. In true signal processing, where nothing is perfect
but everything is fast, the transform (lossless) and the compression (which only loses
unnecessary information) are absolutely the keys to success. Then v = WT.
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I will show those steps for a typical vector like v = (6,4,5,1). Iis wavelet
coefficients are 4, 1, 1. 2. This means that v can be reconstructed from ¢ = (4, 1. 1. 2)
using wj, w;, w3, wy. In matrix form the reconstruction is v = We:

6 I I 1 0 1 1 1 01[4
4 1 1 -] (4] 1 1 =1 0 1
st =% 2 =1 |F] @ 2] 5Tl =2 o alla @)
| | - 0 -1 1L -1 0 —1|]2

Those coefficients ¢ = (4,1,1,2) are W~ 'v. Inverting this basis matrix W is easy
because the w's in its columns are orthogonal. But they are not unit vectors. So the
inverse is the transpose divided by the lengths squared, W~ = (WTw)~'wT:

1
3

o 1 =1 =1

Bl
[ P
|
=
=

0 1 =1

ot

From the 1's in the first row of ¢ = W', notice that ¢, is the average of vy, 12, v3, vy:

6+4+5+1
r1=T=4.

Example 2 (Same wavelet basis by recursion) I can’t resist showing you a faster
way to find the ¢'s. The special point of the wavelet basis is that you can pick off the details
in ¢3 and ¢4, before the coarse details in ¢z and the overall average in ¢). A picture will
explain this “multiscale™ method, which is in Chapter | of my textbook with Nguyen on
Wavelets and Filter Banks:

Split v = (6,4,5. 1) into averages and waves at small scale and then large scale:

6 |4 |5 |1
=
averages differences/?2
_ o ca = 1
3 3% 3 1 plus  1—— c4 = 2
average difference/2
¢ = 4
4 4 4 4 .77 S P— o= |1
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Example 3 (Fourier basis) The first thing an electrical engineer does with a signal is
to take its Fourier transform. This is a discrete signal (a vector v) and we are speaking
about its Discrete Fourier Transform. The DFT involves complex numbers. But if we
choose n = 4, the matrices are small and the only complex numbers are i and i°.
Notice that i® = —i because i = —1. A true electrical engineer would write j
instead of i. The four basis vectors are in the columns of the Fourier matrix F:

1
1'3
“’5
iﬂ

The first column is the useful flat basis vector (1,1, 1,1). It represents the average
signal or the direct current (the DC term). It is a wave at zero frequency. The third
column is (1, —1, 1, =1), which alternates at the highest frequency. The Fourier trans-
form decomposes the signal into waves at equally spaced frequencies.

The Fourier matrix F is absolutely the most important complex matrix in math-
ematics and science and engineering. The last section of this book explains the Fast
Fourier Transform: it is a factorization of F into matrices with many zeros. The FFT
has revolutionized entire industries, by speeding up the Fourier transform. The beautiful
thing is that F~! looks like F, with i changed to —i:

1 1 1
(=) (=? (=) |_1
(—i)?2 (=i)* (=8| 4
(—=i)* (=0® (=i)°

The MATLAB command ¢ = fft(v) produces the Fourier coefficients ¢y, . . .. ¢, of the
vector v. It multiplies v by F~! (fast).

F-l = F.

1
4

. f—

The Dual Basis

The columns of W contain the basis vectors wy,. . ., w,. To find the coefficients
€1,. . ..cp of a vector in this basis, we use the matrix W~'. This subsection just
introduces a notation and a new word for the rows of W', The vectors in those rows
(call them u'lr* i HI] are the dual basis.

The properties of the dual basis reflect W™'W = I and also WW~! = I. The
product W~!W takes rows of W~ times columns of W, in other words dot products
of the u's with the w's. The two bases are “biorthogonal” because we get 1's and 0’s:

—lw — . — B gy o
W W— . wy -+ Wy _I S0 '"Emj_{

1 ifi=j
0 ifis]

For an orthonormal basis, the u's are the same as the w's. We have been calling
them ¢’s. The basis of ¢’s is biorthogonal to itself! The rows in W~ are the same as
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the columns in W. In other words W~' = WT. That is the specially important case
of an orthogonal marrix,

Other bases are not orthonormal. The axes don’t have to be perpendicular. The
basis matrix W can be invertible without having orthogonal columns.

When the inverse matrices are in the opposite order WW ™! = [, we learn some-
thing new. The columns are w;, the rows are u:.r, and each product is a rank one
matrix. Multiply columns times rows:

i
By

WWoh=|p ...w, : =wu| 4+ wuuy =1,

T

u,

WW~! is the order that we constantly use to change the basis. The coefficients are
inec=W-lv. So W-! is the first (with the “.T in its rows). Then we reconstruct v

from We. Use the u’s and w’s to state the basic facts that e = W= 'v and v = We =
ww e

4]
The coefficients are o = u;rv and the vector is v = Z w,fnrrul. (5)
1

The analysis step takes dot products of v with the dual basis to find the ¢'s, The
synthesis step adds up the pieces ¢;w; to reconstruct the vector v.

® REVIEW OF THE KEY IDEAS =

1.  The new basis vectors w; are the columns of an invertible matrix W.

2. The coefficients of v in this new basis are ¢ = W~ 'v (the analysis siep).

3.  The vector v is reconstructed as We = cywy + - - - + cpw, (the synthesis step).
4. Compression would simplify ¢ t0 ¢ and we reconstruct v =Cjwy + - - - + ¢, Wp,.

5. The rows of W~' are the dual basis vectors u; and ¢; = u v. Then u] w; = §;.

® WORKED EXAMPLES =

7.3 A March ap + arx + axx® with by + by(x + 1) + ba2(x + 1)%, to find the 3 by 3
matrix M| that connects these coefficients by @ = M b. M, will be familiar to Pascal!

The matrix to reverse that change must be M, ', and b = M, 'a. This shifts the
center of the series back, so ag+aj(x — 1) +a2(x — 1)* equals by + by x +byx*. Match
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those quadratics to find M_, the inverse of Pascal. Also find M, from ap + ajx +
aax* = by + by (x +1) 4+ ba(x + 1)%. Verify that MM, = M, ;.

Solution  Match ap + ayx + axx with bg + by(x + 1) + ba(x + 1)* to find M;:

Constant term2 ay= by+b+ b ao 1 1 1 by
Coefficient of x2 a; = by + 2bs a | = 1 2 by
Coefficient of x?2 a3 = by as 1 by

By writing (x + 1) = 1 +2x + x* we see 1,2, 1 in this change of basis matrix.

The matrix M) is Pascal’s upper triangular Py, Its inverse M kT ! comes by match-
ing ap+aj(x—1)+ar(x— 1) with by + byx +brx2. The constant terms are the same
if ag —a; + a3 = by. This gives alternating signs in M;' = M_,.

1 =1 1 1 i i
Inverse of M) = M_| = 1 -2 Shift by t M, = I 2t
1 1

MM, = M;; and M{M_; = Mp = [. Pascal fans might wonder if his symmetric

matrix Ps also appears in a change of basis. It does, when the new basis has negative
powers (x 4+ 1)~* (more about this on the course website web.mit.edu/18.06/www).

Problem Set 7.3

1 Express the vectors e = (1,0,0,0) and v = (1, =1, 1, —1) in the wavelet basis,
as in equation (4). The coefficients ¢y, €2, €3, c5 solve We=¢ and We = 0.

2  Follow Example 2 to represent v = (7,5, 3, 1) in the wavelet basis. Start with

7 5 1 splits into 6 6
3 ——— averages plus 2 2 +

differences:

-1 -1

The last step writes 6, 6, 2, 2 as an overall average plus a difference, using 1, 1, 1, 1
and 1.1, -1, —1.

3 What are the eight vectors in the wavelet basis for R®? They include the long
wavelet (1,1,1,1, =1, -1, -1, —1) and the short wavelet (1,—1,0,0,0,0,0,0).
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The wavelet basis matrix W factors into simpler matrices W) and W;:

11 1 0 10 1 011 100
1 I =1 O] _ |1 @& -1 0Qf|1 =1 00
I =1t 0 1|01 0 1]|0O 01 0
1 =1 0 -l 01 0-1}]10 0 0 1
Then W-! = W{'Wl_ ! allows e to be computed in two steps. The first splitting in

Example 2 shows W, 'v. Then the second splitting applies W, '. Find those inverse
matrices W, ™' and W, ! directly from W, and W,. Apply them to v = (6,4, 5, 1),

The 4 by 4 Hadamard matrix is like the wavelet matrix but entirely 41 and —1:

1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

Find H ! and write v = (7, 5. 3, 1) as a combination of the columns of H.

Suppose we have two bases vy, . . ., v, and wy,. . ., w, for R". If a vector has
coefficients b; in one basis and ¢; in the other basis, what is the change of basis
matrix in b = Me? Start from

he+- +bho,=Vb=cyw + -+ cyw, = We.

Your answer represents T'(v) = v with input basis of v’s and output basis of w’s.
Because of different bases, the matrix is not [,

The dual basis vectors w?, . . ., w} are the columns of W* = (W~ ")T. Show that
the original basis wy.. . ., w, is “the dual of the dual.” In other words, show
that the w's are the rows of (W*)~', Hint: Transpose the equation WW ™' = I.
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DIAGONALIZATION AND THE PSEUDOINVERSE » 7.4

This short section combines the ideas from Section 7.2 (matrix of a linear transforma-
tion) and Section 7.3 (change of basis). The combination produces a needed result: rhe
change of matrix due to change of basis. The matrix depends on the input basis and
output basis. We want to produce a better matrix than A, by choosing a better basis
than the standard basis.

By reversing the input and output bases, we will find the pseudoinverse A*. It
sends R™ back to R”, column space back to row space.

The truth is that all our great factorizations of A can be regarded as a change of
basis. But this is a short section, so we concentrate on the two outstanding examples.
In both cases the good matrix is diagonal. It is either A or IL:

1. S 'AS = A when the input and output bases are eigenvectors of A.
2.  U~'AV = X when the input and output bases are eigenvectors of ATA and AAT|

You see immediately the difference between A and . In A the bases are the same.
The matrix A must be square. And some square matrices cannot be diagonalized by
any S. because they don’t have n independent eigenvectors.

In I the input and output bases are different. The matrix A can be rectangular.
The bases are orthonormal because ATA and AAT are symmetric. Then U~ = UT
and V=! = V', Every matrix A is allowed, and can be diagonalized. This is the
Singular Value Decomposition (SVD) of Section 6.7.

I will just note that the Gram-Schmidt factorization A = QR chooses only one new
basis. That is the orthogonal output basis given by ¢. The input uses the standard basis
given by /. We don’t reach a diagonal I, but we do reach a triangular R. The output basis
matrix appears on the left and the input basis appears on the right, in A = QR/.

We start with input basis equal to output basis. That will produce § and 5.

Similar Matrices: A and S~ 'AS and W-'AW

We begin with a square matrix and one basis. The input space V is R" and the output
space W is also R". The standard basis vectors are the columns of /. The matrix is
n by n, and we call it A. The linear transformation T is “multiplication by A™.

Most of this book has been about one fundamental problem —to make the matrix
simple. We made it triangular in Chapter 2 (by elimination) and Chapter 4 (by Gram-
Schmidt). We made it diagonal in Chapter 6 (by eigenvectors). Now that change from
A o A comes from a change of basis.

Here are the main facts in advance. When you change the basis for V, the matrix
changes from A to AM. Because V is the input space, the matrix M goes on the right
(to come first). When you change the basis for W, the new matrix is M~'A. We are
working with the output space so M~! is on the left (to come last). If you change
both bases in the same way, the new matrix is M~'AM. The good basis vectors are
the eigenvectors of A, in the columns of M = 5. The matrix becomes S~ 'AS = A.
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7D When the basis contains the eigenvectors xy, . . ., X, the matrix for T becomes A.

Reason To find column 1 of the matrix, input the first basis vector x|. The transformation
multiplies by A. The outputis Ax| = A1x. This is A, times the first basis vector plus zero
times the other basis vectors. Therefore the first column of the matrix is (41, 0,...,0). In
the eigenvector basis, the matrix is diagonal.

Example 1  Find the diagonal matrix that projects onto the 135° line y = —x. The
standard basis (1,0) and (0, 1) is projected to (.5, —.5) and (—.5, .5)

Standard matrix A= [_: _g]
Solution  The eigenvectors for this projection are x; = (1, —1) and x; = (1, 1). The
first eigenvector lies on the 135° line and the second is perpendicular.
Their projections are x; and 0. The eigenvalues are A; = 1 and A; = 0. In the
eigenvector basis, Px; = x; and Pxs =0 go into the columns of A:

Diagonalized matrix A = [é g].

What if you choose another basis like v) = w; = (2,0) and v2 = w2 = (1, 1)?
Since w) is not an eigenvector, the matrix B in this basis will not be diagonal. The
first way to compute B follows the rule of Section 7.2: Find column j of the matrix
by writing the output Av; as a combination of w’s.

Apply the projection T to (2,0). The result is (1, —1) which is w; —w2. So the
first column of B contains | and —1. The second vector w2 = (1, 1) projects to zero,
so the second column of B contains 0 and 0:

L U] in the basis w, ws. (1)

The matrix is B = {_] 0

The second way to find the same B is more insightful. Use W—! and W to change
between the standard basis and the basis of w’s. Those change of basis matrices from
Section 7.3 are representing the identity transformation. The product of transformations
is just JT 7, and the product of matrices is B = W='AW. B is similar to A.

7E For any basis wy, . . ., w, find the matrix B in three steps. Change the input basis to
the standard basis with W. The matrix in the standard basis is A. Then change the output
basis back to the w’s with W~!. The product B = W~!AW represents I T I

Bys to w's = Ws?l.jnda:ﬂ o w's Astandard  Wuw's to standard (2)
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Example 2 (continuing with the projection) Apply this W-1AW rule to find B,
when the basis (2,0) and (1, 1) is in the columns of W:

vraw=[s S s - e

The W' AW rule has produced the same B as in equation (1). A change of basis
produces a similarity transformation in the matrix. The matrices A and B are similar.
They have the same eigenvalues (1 and 0). And A is similar too.

The Singular Value Decomposition (SVD)

Now the input basis v;,. . ., v, can be different from the output basis uy,. . ., up.
In fact the input space R" can be different from the output space R”. Again the best
matrix is diagonal (now m by n). To achieve this diagonal matrix Z, each input vector
v; must transform into a multiple of the output vector u;. That multiple is the singular
value o on the main diagonal of X:

ojuj for j<r

SVD Avy = with orthonormal bases. (3)

0 for j > r

The singular values are in the order 0y = 03 = --- = a,. The rank r enters because
(by definition) singular values are not zero. The second part of the equation says that
v; is in the nullspace for j =r + 1,. . .,n. This gives the correct number n — r of
basis vectors for the nullspace.

Let me connect the matrices A and £ and V and U with the linear transforma-
tions they represent. The matrices A and X represent the same fransformation. A =
UZVT uses the standard bases for R” and R"™. The diagonal T uses the input basis
of v's and the output basis of u's. The orthogonal matrices V and U give the basis
changes; they represent the identity transformations (in R" and R™). The product of
transformations is /T/, and it is represented in the v and u bases by U ~1AV which
is I:

7F The matrix ¥ in the new bases comes from A in the standard bases by U~'AV:

Zys to w's = Us:alnda:d to u's Astandard  Vi's to standard. (4)
The SVD chooses orthonormal bases (U~! = UT and V! = VT) that diagonalize A.

The two orthonormal bases in the SVD are the eigenvector bases for ATA
(the v’s) and AAT (the u’s). Since those are symmetric matrices, their unit eigenvec-
tors are orthonormal. Their eigenvalues are the numbers crf. Equations (10) and (11)
in Section 6.7 proved that those bases diagonalize the standard matrix A to produce Z.
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Polar Decomposition

Every complex number has the polar form re. A nonnegative number r multiplies a
number on the unit circle. (Remember that |¢'?| = |cos# + i sinfl | = 1.) Thinking of
these numbers as | by | matrices, r = 0 corresponds to a positive semidefinite matrix
(call it H) and ¢ corresponds to an erthogenal matrix Q. The polar decomposition
extends this re'® factorization to matrices.

7G Every real square matrix can be factored into A = QH, where Q is orthogonal and
H is symmetric positive semidefinite. If A is invertible then H is positive definite.

For the proof we just insert VTV = [ into the middle of the SVD:
A=UEV' = WUVTIVEVT) = (Q)(H). (5)

The first factor UVT is Q. The product of orthogonal matrices is orthogonal. The
second factor VEVT is H. It is positive semidefinite because its eigenvalues are in X,
If A is invertible then £ and H are also invertible. H is the symmetric positive definite
square root of ATA. Equation (5) says that H2 = VE2vT = AT 4,

There is also a polar decomposition A = K @ in the reverse order. ( is the same
but now K = UEU'. This is the symmetric positive definite square root of AAT,

Example 3  Find the polar decomposition A = QH from its SVD in Section 6.7:
[ 227 _[o 1[+2 =1/V2 WYVZ] _ yT
"‘[—l *]'[1 DM zv’i}[ ya e = YE

Solution  The orthogonal part is Q = UVT. The positive definite part is H = VEVT.
This is also H = Q7' A which is QT A:

o[t 1V VA1 14

a3 1]-[2 )

In mechanics, the polar decomposition separates the rotation (in Q) from the stretching
(in H). The eigenvalues of H are the singular values of A. They give the stretching
factors. The eigenvectors of H are the eigenvectors of ATA. They give the stretching
directions (the principal axes). Then Q rotates the axes.

The polar decomposition just splits the key equation Av; = o;u; into two steps.
The “H™ part multiplies v; by ;. The “Q" part swings v; around into u;.
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The Pseudoinverse

By choosing good bases, A multiplies v; in the row space to give o;u; in the column
space. A~ must do the opposite! If Av = owu then A~'u = v/o. The singular values
of A~! are 1/, just as the eigenvalues of A~! are 1/A. The bases are reversed. The
u's are in the row space of A~', the v's are in the column space.

Until this moment we would have added “if A~' exists.” Now we don't.
A matrix that multiplies ; to produce v; /o; does exist. It is the pseudoinverse A™:
crl“] +

Pseudoinverse _
Af"nﬂ"’tfr _ | . o- TR
: . :

n by n n by m m by m

The pseudoinverse A™ is an n by m matrix. If A~' exists (we said it again), then
A7 is the same as A~'. In that case m = n = r and we are inverting UEZVT to get
VE-'UT, The new symbol A* is needed when r < m or r < n. Then A has no
two-sided inverse, but it has a pseudoinverse A* with that same rank r:

A+m=alui fori<r and A w; =0 fori>r.
i
The vectors uy, . . ., u, in the column space of A go back to the row space. The other
vectors #,41, . . .. My are in the left nullspace, and A sends them to zero. When we
know what happens to each basis vector u;, we know AT,

Notice the pseudoinverse £* of the diagonal matrix £. Each o is replaced by
o~!. The product £*X is as near to the identity as we can get. We get r 1's. We
can't do anything about the zero rows and columns! This example has oy = 2 and

oy =3:

1/2 0 0 2 00 1 0 0
t¥Z=| 0 1/3 0|0 3 Oo|=|0 1 O
0 0O 0)(0 0 O 000

7H  The pseudoinverse A* is the n by m matrix with these two properties:

AA™ = projection matrix onto the column space of A
A™ A = projection matrix onto the row space of A

Example 4  Find the pseudoinverse of A = ﬁ ? . This matrix is not invertible.

The rank is 1. The only singular value is +/10. That is inverted 1o 1/4/10 in +:

e Slt 0P J3E 4-4T 1
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nullspace
of AT

nullspace

Figure 7.4 A is invertible from row space to column space. A™ inverts it.

A" also has rank 1. Its column space is the row space of A. When A takes (1,1)
in the row space to (4, 2) in the column space, A" does the reverse. Every rank one
matrix is a column times a row. With unit vectors u and v, that is A = ouv’. Then
the best inverse of a rank one matrix is A* = v’ /.

The product AA* is ua”, the projection onto the line through u. The product
A* A is vo', the projection onto the line through v. For all matrices, AA* and A* A
are the projections onto the column space and row space.

The shortest least squares solution to Ax = b is x* = A"b . Any other vec-
tor that solves ATAX = ATb is longer than x* (Problem 18),

® REVIEW OF THE KEY IDEAS =

1.  Diagonalization §~'AS = A is the same as a change to the eigenvector basis,

2. The SVD chooses an input basis of v's and an output basis of u’s. Those or-
thonormal bases diagonalize A. This is Av; = o;u;, and A = UE vT,

3. Polar decomposition factors A into QH, rotation times stretching,

4.  The pseudoinverse A™ = VE'UT transforms the column space of A back to its
row space. AT A is the identity on the row space (and zero on the nullspace).
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" WORKED EXAMPLES =

74 A Start with an m by n matrix A. If its rank is n (full column rank) then it
has a left inverse C = (ATA)"'AT. This matrix C gives CA = . Explain why the
pseudoinverse is AT = C in this case. If A has rank m (full row rank) then it has a
right inverse B with B = AT(AAT)"! and AB = I. Explain why A*™ = B in this
case.

Find B and C if possible and find A* for all three matrices:

e[ 2] dmia 27 =3 2]

Solution If A has rank n (independent columns) then ATA is invertible—this is a
key point of Section 4.2. Certainly C = (ATA)"'AT multiplies A to give CA = .
In the opposite order, AC = A(ATA)~"AT is the projection matrix (Section 4.2 again)
onto the column space. So C meets the requirements TH to be A™.

If A has rank m (full row rank) then AAT is invertible. Certainly A multiplies
B = AT(AAT)™! to give AB = [. In the opposite order, BA = AT(AAT)"'A is the
projection matrix onto the row space. So B is the pseudoinverse A™.

The example A; has full column rank (for C) and A, has full row rank (for B):

- I £ N I
AT =@laAT=—=[2 2] 47 =Aj(AA)" =ﬁ[ > ]
Notice A'{A. = [1] and A;A7 = [1]. But A3 has no left or right inverse. Its pseu-
doinverse is A;’ =a:_’u|u}- = H ”,"4
Problem Set 7.4

Problems 1-6 compute and use the SVD of a particular matrix (not invertible),

1 Compute ATA and its eigenvalues and unit eigenvectors v; and vy:

. &
=3 4]
What is the only singular value 01?7 The rank of A is r = 1.

2 (a) Compute AAT and its eigenvalues and unit eigenvectors u) and u;.
(b) Verify from Problem 1| that Av; = oju. Put numbers into the SVD:

3 -[e w0 o[ o]
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3 From the u’s and v's write down orthonormal bases for the four fundamental
subspaces of this matnix A.

4  Describe all matrices that have those same four subspaces.

5 From U/, V, and £ find the orthogonal matrix Q = UVT and the symmetric
matrix H = VEIVT. Verify the polar decomposition A = QH. This H is only
semidefinite because "

6  Compute the pseudoinverse AT = VE+UT. The diagonal matrix T+ contains
1/a;. Rename the four subspaces (for A) in Figure 7.4 as four subspaces for
A*. Compute A*A and AA™.

Problems 7-11 are about the SVD of an invertible matrix.

7  Compute ATA and its eigenvalues and unit eigenvectors v; and v;. What are the
singular values oy and o> for this matrix A?

3 3
A [_1 1].
8 AAT has the same eigenvalues ﬂ']?' and n’f as ATA. Find unit eigenvectors u,
and w>. Put numbers into the SVD:

L ]

9 In Problem 8, multiply columns times rows to show that A = crlu]u']r +crzu2u%".
Prove from A = UZ VT that every matrix of rank r is the sum of r matrices of
rank one.

10 From U, V, and I find the orthogonal matrix Q@ = UVT and the symmetric
matrix K = UZUT. Verify the polar decomposition in the reverse order A =

KQ.
11 The pseudoinverse of this A is the same as _ because
Problems 12-13 compute and use the SVD of a | by 3 rectangular matrix.

12 Compute ATA and AAT and their eigenvalues and unit eigenvectors when the
matrix is A=[3 4 0]. What are the singular values of A?

13  Put numbers into the singular value decomposition of A:
A=[3 4 ﬂ:[:[ul][m 0 U][u[ U2 T-'_]]T.
Put numbers into the pseudoinverse of A. Compute AAY and AT A:

1/
AT = =|v v v 0 [u1]T.
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14 What is the only 2 by 3 matrix that has no pivots and no singular values? What
is ¥ for that matrix? A™ is the zero matrix, but what shape?

15 If det A =0 how do you know that det A* = 0?

16 When are the factors in UE VT the same as in QA Q'? The eigenvalues 3; must
be positive, to equal the o;. Then A must be and positive

Problems 17-20 bring out the main properties of A* and x+ = A*b.

17  Suppose all matrices have rank one. The vector b is (b, by).

221 ;. _[2 4 r_[8 41 ,v, _[5 S
"‘*[1 1] A —[.z .1] = —[.4 .1] A"—[.s .5]

(a) The equation ATAX = ATh has many solutions because ATA is
(b) Verifythatxt = A*b = (.2b) +.1b2, .2b) +.1b;) does solve ATAx™ = ATh,

(c) AA™ projects onto the column space of A. Therefore projects onto
the nullspace of AT. Then AT(AA* — I)b = 0. This gives ATAx* = ATh
and X can be x*.

18  The vector x© is the shortest possible solution to ATA¥ = ATh. Reason: The
difference ¥ — x* is in the nullspace of ATA. This is also the nullspace of A.
Explain how it follows that

-~ 2 - - |
112 = It )2 + % - xH2
Any other solution ¥ has greater length than x ™.

19 Every b in R"™ is p + e. This is the column space part plus the left nullspace
part. Every x in R" is x, + x,, = (row space part) + (nullspace part). Then

AATp = AATe= AVAS; = ATAx, =

20 Find A" and A*A and AA™ for the 2 by | matrix whose SVD is

3 6 —B|[S5
e=[a]=[5 el lo]
21 A general 2 by 2 matrix A is determined by four numbers. If triangular, it is

determined by three. If diagonal, by two. If a rotation, by one. An eigenvector,
by one. Check that the total count is four for each factorization of A:

LU LDU QR UZIVYT SAs™.

22 Following Problem 21, check that LDLY and QAQT are determined by three
numbers. This is correct because the matrix A is
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23 From A=UZV" and AT = VETUT explain these splittings into rank 1:

r r T r r
- viu; :
A =Zmu;u} At = % ATA = Zn,-n:' AAY = E uin!
[ : I !

24 This problem looks for all matrices A with a given column space in R™ and a
given row space in R". Suppose u.... U4, and ¥y, ... ¥, are bases for those
two spaces. Make thcm columns of U and V. Use A UEVT to show that A
has the form UMVT for an r by r invertible matrix M.

25 A pair of singular vectors v and w will satisfy Av = ow and ATu = ov. This
. . .
means that the double vector x = [n] is an eigenvector of what symmetric ma-

trix? With what eigenvalue?
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MATRICES IN ENGINEERING = 8.1

This section will show how engineering problems produce symmetric matrices K (of-
ten positive definite matrices). The “linear algebra reason™ for symmetry and positive
definiteness is their form K = ATA and X = ATCA. The “physical reason” is that
the expression inTK u represents energy—and energy is never negative.

Our first examples come from mechanical and civil and aeronautical engineer-
ing. K is the stiffness matrix, and K~ f is the structure’s response to forces f from
outside. The next section turns to electrical engineering —the matrices come from net-
works and circuits. The exercises involve chemical engineering and 1 could go on!
Economics and management and engineering design come later in this chapter (there
the key is optimization).

Here we present equilibrium equations Ku = f. With motion, Md u/dt* +
Ku = f becomes dynamic. Then we use eigenvalues, or finite differences between
time steps.

Before explaining the physical examples, may I write down the matrices? The
tridiagonal K appears many times in this textbook. Now we will see its applications.
These matrices are all symmetric, and the first four are positive definite:

[“ 23 = i [ ¢ +c2 -2

Kg = Agﬁm = -] 2 =1 AECﬂAu = - 2+ -3
1 -1 2 | L5 -3 €3+ Cy
[ 2 =1 ] I c1+e2 —c37

Ki=ATA =] -1 2 -1l ATCIA = -2 ca+tcy -6
" o T 5 u -3
[ 1 =1 i [ 2 -1 =1

Ksingutar = | —1 2 -l Keircutar = =1 .

i -1 1 | | =% =l 2

401
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fixed end . up = 0 ﬂxl?d end Mo = 0
spring o tension ¥ Spring ¢ tension v
Mass m movement mass mj movement )

3 2 spring 2 tension v»

i 2 mass mj movement uz

£3 V3 spring 3 tension v3

k) i3 mass mjy movement w3

4 V4 free end v4 =0
fixed end g=10

Figure 8.1  Lines of springs and masses with different end conditions: no movement
(fixed-fixed) and no force al the bottom (fixed-free).

The matrices Ko, K1, Ksinguiar- and Kojpoyrqr have C = I for simplicity. This
means that all the “spring constants” are ¢; = 1. We included AJCoAo and ATC A
to show how the spring constants enter the matrix (without changing its positive defi-
niteness). Our first goal is to show where these stiffness matrices come from.

A Line of Springs

Figure 8.1 shows three masses m, m2, m3 connected by a line of springs. In one case
there are four springs, with top and bottom fixed. The fixed-free case has only three
springs; the lowest mass hangs freely. The fixed-fixed problem will lead to Ky and
A3 CoAg. The fixed-free problem will lead to Ky and A{C A,. A free-free problem,
with no support at either end, produces the matrix Kgipou/ar-

We want equations for the mass movements 4 and the tensions (or compressions) y:

= (uy.uz,u3z) = movements of the masses (down or up)
¥ = (vi.y2, vi,y4) or (y;,y2, v3) = tensions in the springs

When a mass moves downward, its displacement is positive (u; > (1). For the springs,
tension is positive and compression is negative (y; < 0). In tension, the spring is
stretched so it pulls the masses inward. Each spring is controlled by its own Hooke's
Law v = ce: (stretching force) = (spring constant) uimes (stretching distance).

Ouwr job is to link these one-spring equations into a vector equation Ku = f for
the whole system. The force vector f comes from gravity. The gravitational constant
g multiplies each mass to produce f = (m g, mag,. mig).

The real problem is to find the stiffness matrix (fixed-fixed and fixed-free). The best
way to create K is in three steps, not one. Instead of connecting the movements u; directly
to the forces f;, it is much better to connect each vector to the next in this list:

u = Movemenis of n masses = (Mg, . g

Elongations of m springs

(®1. ... . Em)

I

€
¥ Internalforces in m springs = (¥1,..., ¥m)
J = Externalforceson n masses = (f1,..., fu)
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The framework that connects u to € to y to [ looks like this:

[u] e= Au A is m by n

Al 1+AT y=Cs C is m by m
[e] A f=ATy AT is n by m

We will write down the matrices A and C and A" for the two examples, first with
fixed ends and then with the lower end free. Forgive the simplicity of these matrices,
it is their form that is so important. Especially the appearance of A and AT

The elongation e is the stretching distance—how far the springs are extended.
Originally there is no streiching—the system is lying on a table. When it becomes
vertical and upright, gravity acts. The masses move down by distances u, u2, u3. Each
spring is stretched or compressed by e; = w; — u;i—1, the difference in displacements:

First spring: €] = U\ (the top is fixed so up =10)
Second spring: €2 = > — u

Third spring: €3 = u3 — u2

Fourth spring: ey =  — a3 (the bottom is fixed so uy =0)

If both ends move the same distance, that spring is not stretched: u; = u; ) and ¢; = (.
The matrix in those four equations is a 4 by 3 difference matrix A, and e = Au:

Stretching i B
distances e = Au is e; = 0 —1 " wr |. (1)
(elongations) E_:‘ 0 0 —1 3

The next equation y = Ce connects spring elongation e with spring tension y.
This is Hooke's Law v; = cje; for each separate spring. It is the “constitutive law™
that depends on the material in the spring. A soft spring has small ¢, so a moderate
force v can produce a large stretching e. Hooke’s linear law is nearly exact for real
springs, before they are overstretched and the material becomes plastic.

Since each spring has its own law, the matrix in y = Ce is a diagonal matrix C:

¥y = e ¥i 4] £
Hooke’s  y, = e | » | 2 e | _e
Law ¥y3 = Cie3 = i | 3 P Rt
Yy = tagy ¥4 C4 €4

(2)

Combining e = Au with y = Ce, the spring forces are y = C Au.

Finally comes the balance equation, the most fundamental law of applied mathe-
matics. The internal forces from the springs balance the external forces on the masses.
Each mass is pulled or pushed by the spring force y; above it. From below it feels
the spring force y;4; plus f; from gravity. Thus y; = yj41 + f; or fj = ¥ — v+
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— _ A ¥i

Force fi = »n=»n fi I =1 0 0 -
balance IE = Y2=- ¥ and fl == 0 i ==} 0 .\r'
fa = y3—-y4 f3 0 0 1 -l 1:

(3)

That matrix is AT, The equation for balance of forces is f = ATy. Nature transposes
the rows and columns of the ¢ — ¥ matrix to produce the f — y matrix. This is the
beauty of the framework, that AT appears along with A. The three equations combine
into Ku = f, where the stiffness matrix is K = ATCA:

e = Au
y = Ce combine into A'CAu=f or Ku=f.
S = Ay

In the language of elasticity, ¢ = Au is the kinematic equation (for displacement). The
force balance f = ATy is the static equation (for equilibrium). The constitutive law
is y = Ce (from the material). Then ATCA is n by n = (n by m)(m by m)(m by n).
Finite element programs spend major effort on assembling K = ATCA from thou-
sands of smaller pieces. We do it for four springs by multiplying AT times CA:

(] 0 (]
FIXED ] 1 0 0 —er 0 1+ 2 2 0
0o 1 =1 0 = -3 ©O¥03 =3
FIXED 0 -3
o o0 1 -1 0 -3 ity
0 0 —cy

If all springs are identical, with ¢; = c2 = ¢3 = ¢4 = 1, then C = /. The stiffness
matrix reduces to AT A. It becomes the special matrix

2 -l 0
Ko=AlAp=| -1 2 -1 |. (4)
0 -1 2

Note the difference between ATA from engineering and LLT from linear algebra. The
matrix A from four springs is 4 by 3. The triangular matrix L from elimination is
square. The stiffness matrix K is assembled from AT A, and then broken up into LLT.
One step is applied mathematics, the other is computational mathematics. Each K is
built from rectangular matrices and factored into square matrices.

May 1 list some properties of K = ATCA? You know almost all of them:

K is tridiagonal, because mass 3 is not connected to mass 1.

K is symmetric, because C is symmetric and AT comes with A.

K is positive definite, because ¢; > 0 and A has independent columns.
K~ is a full matrix in equation (5) with all positive entries.

P
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That last property leads to an important fact about u = K~ f: If all forces act down-
wards ( f; > 0) then all movemenis are downwards (u; > 0). Notice that “positiveness”
is different from “positive definiteness”. Here K ! is positive (K is not). Both K and
K~ are positive definite.

Example 1 Suppose all ¢; = ¢ and mj = m. Find the movements u and tensions y.

All springs are the same and all masses are the same. But all movements and

elongations and tensions will not be the same. K~' includes % because ATCA in-
cludes c:

3
] gié ﬁi - me| 3 (5)
4l 1 2 3 || me “ |3

The displacement w3, for the mass in the middle, is greater than w; and u3. The units
are correct: the force mg divided by force per unit length ¢ gives a length u. Then

3
| 0 0 % I
-1 | 0 |mg| = mg %
e=Au= — 11 2 |= —
0 -1 | £ 3 & _i
0 0 -1 3 3
—3

Those elongations add to zero because the ends of the line are fixed. (The sum u; +
(2 — uy) + (u3 — wa) + (—u3) is certainly zero.) For each spring force y; we just
mul!'ti[:ll;',r e; by ¢. So yi, ¥, . W ml%mg, -:I_;mg. -%mg, -—%mg. The upper two
springs are stretched, the lower two springs are compressed.

Notice how u, e, y are computed in that order. We assembled K = ATCA from
rectangular matrices. To find u = K~' f, we work with the whole matrix and not its
three pieces! The rectangular matrices A and AT do not have (two-sided) inverses.

Warning: Normally you cannot write K~'=A"'C~'(AT)"!.

The three matrices are mixed together by ATCA, and they cannot easily be untangled.
In general, ATy = f has many solutions. And four equations Au = e would usually
have no solution with three unknowns. But ATCA gives the correct solution to all
three equations in the framework. Only when m = n and the matrices are square can
we go from y=(AT) ' floe=C"'y to u=A""e. We will see that now.
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Fixed End and Free End

Remove the fourth spring. All matrices become 3 by 3. The pattern does not change!
The matrix A loses its fourth row and (of course) AT loses its fourth column. The new
stiffness matrix K, becomes a product of square matrices:

1 -1 0 ci 1 00
AlciAp=] 0 1 -1 e -1 10
0 0 | C3 0 -1 1

The missing column of AT and row of A multiplied the missing c4. So the quickest
way to find the new ATCA is to set ¢4 = 0 in the old one:

FIXED c1+c2 —C3 0
YREE Ki=A[CA = -2 o+ —a |. (6)
0 —c3 €3

If ey =e2=c3=1and C =1, this is the —1, 2, —1 tridiagonal matrix, except the
last entry is 1 instead of 2. The spring at the bottom is free.

Example 2 All ¢; = ¢ and all m; = m in the fixed-free hanging line of springs.

Then
2 =1 0 ] 111
Ki=c| -1 2 -1 | and K;'==[1 2 2 [.
0 -1 1 Lt 23

The forces mg from gravity are the same. But the movements change from the previous
example because the stiffness matrix has changed:

TERE mg 2
u=K"'f=-12 2| m [=22] 5
L1 2 3 mg “1le

Those movements are greater in this fixed-free case. The number 3 appears in u; be-
cause all three masses are pulling the first spring down. The next mass moves by that
3 plus an additional 2 from the masses below it. The third mass drops even more
(3+2+ 1 =26). The elongations ¢ = Aw in the springs display those numbers 3, 2, 1:

1 0 0 3 3
e=| -1 10|25 |=28|2].
0 -1 1]°L6 | I
Multiplying by ¢, the forces y in the three springs are 3mg and 2mg and mg. And the
special point of square matrices is that y can be found directly from f! The balance
equation ATy = f determines y immediately, because m = n and AT is square. We
are allowed to write (ATCA)™' = A~'Cc~1(AT)~:

1 mg 3mg
1 mg |=| 2mg

1
y=AD7!fis | 0 1
00 1 mg lmg
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Mmass m, movement u MaAss m| movement i)
spring 2 tension vz spring ¢2 spring ¢
mass mz movement 2 mass m: movement w2
spring 3 tension y3 spring c3

Mass msj movement 3 mass m3y movement iy

Figure 8.2 Free-free ends: A line of springs and a “circle” of springs: Singular
K's. The masses can move without stretching the springs so Au = 0 has nonzero
solutions.

Two Free Ends: K is Singular

The first line of springs in Figure 8.2 is free at both ends. This means trouble (the
whole line can move). The matrix A is 2 by 3, short and wide. Here is e = Au:

|
er | | w2—umy | _| -1 1 0 y
D e R | B
W3

Now there is a nonzero solution t0 Au = 0. The masses can move with no stretching
of the springs. The whole line can shift by u = (1, 1. 1) and this leaves e = (0,0). A
has dependent columns and the vector (1, 1, 1) is in its nullspace:

I
= 10
““':{ 0 -1 1} : :[

Au = 0 certainly leads to ATCAu = 0. So ATCA is only positive semidefinite, without
¢ and cs. The pivots will be ¢> and ¢3 and ne third pivor:

-1 0 2 -1 0
a -1 =

5 [ N c ][ 0 —: ? ] | g TR )
0 I : D - 3

g ] = no stretching . (8)

Two eigenvalues will be positive butx = (1, 1, 1) is an eigenvector for & = 0. We can solve
ATCAu = f only for special vectors f. The forces have toadd to fi + fo + f3 =0, or
the whole line of springs (with both ends free) will take off like a rocket.
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Circle of Springs

A third spring will complete the circle from mass 3 back to mass 1. This doesn’t make
K invertible —the new matrix is still singular. That stiffness matrix K ;.. 1qr 1 nOt
tridiagonal, but it is symmetric (always) and semidefinite:

1 -1 oJ[1 0 -l 2 -1 -1
AltrcutarPeireutar=| 0 1 =1]|-1 1 0|=]-1 2 -1]. (10)
-1 0 1|l 0o -1 1 -1 -1 2

The only pivots are 2 and 3. The eigenvalues are 3 and 3 and 0. The determinant is
zero. The nullspace still contains x = (1, 1, 1), when all masses move together (nothing
is holding them) and the springs are not stretched. This movement vector (1, 1. 1) is in
the nullspace of A, ylar A0 K jreular- €ven after the diagonal matrix C of spring
constants is included:

1 + 2 v -]
(AT C A ispagran = -2 0240 -C3 : (11)
- -3 &3+ 0

Continuous Instead of Discrete

Matrix equations are discrete. Differential equations are continuous. We will see the
differential equation that corresponds to the tridiagonal —1,2, —1 matrix ATA. And it
is a pleasure to see the boundary conditions that go with Ky and K.

The matrices A and AT correspond to the derivatives d /dx and —d /dx! Remem-
ber that ¢ = Au took differences u; — ;1. and f = ATy took differences y; — vis1.
Now the springs are infinitesimally short, and those differences become derivatives:

MM ke TN I g B

Ax dx Ax dx

The factor Ax didn’t appear earlier—we imagined the distance between masses was

1. To approximate a continuous solid bar, we take many more masses (smaller and

closer). Let me jump to the three steps A, C, AT in the continuous model, when there
is stretching and Hooke's Law and force balance at every point x:

du : dy
elx) = Au = — vix) = clx)elx) A1y =—— = f(x)
dx dx

Combining those equations into ATCAu(x) = f(x). we have a differential equation
not a matrix equation. The line of springs becomes an elastic bar:

| i(  _d
Solid Elastic Bar  ATCAu(x) = f(x) i - ; (._-1.1 .T”) = f(i)
(X dx

(12)
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AT A corresponds to a second derivative. A is a “difference matrix™ and ATA is a “sec-
ond difference matrix”. The matrix has —1,2. —1 and the equation has —d*u/dx*:
. d*u
—jp1 + 2u; — w1 is a second difference - Pl 15 a second derivative,
o2

Now we see why this symmetric matrix is a favorite. When we meet a first derivative
dufdx, we have three choices (forward, backward, and centered differences):

du ulx + Ax) — uix) or uix) — ulx — Ax) o uix 4+ Ax) —ulx — Ax)
— r
dx Ax Ax 2Ax

When we meet d”u/dx?, the natural choice is u(x + Ax) — 2u(x) +u(x — Ax), divided
by ( Ax)2, Why reverse these signs to —1,2, —17 Because the positive definite matrix
has +2 on the diagonal. First derivatives are anfisymmetric; the transpose has a minus
sign. So second differences are negative definite, and we change to —d”u/dx?.

We have moved from vectors to functions. Scientific computing moves the other
way. It starts with a differential equation like (12). Sometimes there is a formula for
the solution u(x), more often not. In reality we create the discrete matrix K by ap-
proximating the continuous problem. Watch how the boundary conditions on u come
in! By missing up we treat it (correctly) as zero:

1 0 0
FIXED 1 [ -1 1 o0 OOl du . up=0
FIXED AH—E 0 <1 | u "--E with =0 (13)
0 0 -l e

Fixing the top end gives the boundary condition up = 0. What about the free end, when
the bar hangs in the air? Row 4 of A is gone and so is uy. The boundary condition
must come from A'. It is the missing y4 that we are treating (correctly) as zero:

I -1 07w
FIXED . | Wl Ay ug=0

The boundary condition v4 = 0 at the free end becomes dufdx = 0, since y = Au
corresponds to du/dx. The force balance ATy = f at that end (in the air) is 0 = 0.
The last row of Kyu = f has entries =1, 1 to reflect this condition du/dx = 0.

May | summarize this section? | hope this example will help you turn calculus
into linear algebra, replacing differential equations by difference equations. If your step
Ax is small enough, you will have a totally satisfactory solution.

0

d du du
The equation is — P (r(x,‘la-;) = f(x) with u(0) =0 and [n[l,‘lm E{I}]
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Divide the bar into N pieces of length Ax. Replace du/dx by Au and —dy/dx by
ATy, Now A and AT include 1/Ax. The end conditions are ug = 0 and [uy =
0 or vy = 0]. The three steps —d/dx and c(x) and d/dx correspond to AT and C
and A:

f=A"y and y=Ce and e = Au give ATCAu = f.

This is a fundamental example in computational science and engineering. Our book
concentrates on Step 3 in that process (linear algebra). Now we have taken Step 2.

1. Model the problem by a differential equation

2.  Discretize the differential equation to a difference equation

3.  Understand and solve the difference equation (and boundary conditions!)
4. Interpret the solution; visualize it; redesign if needed.

Numerical simulation has become a third branch of science, together with experiment
and deduction. Designing the Boeing 777 was much less expensive on a computer than
in a wind tunnel. Our discussion still has to move from ordinary to partial differential
equations, and from linear to nonlinear. The text Introduction o Applied Mathematics
(Wellesley-Cambridge Press) develops this whole subject further—see the course page
math.mit.edu/18085. The principles remain the same, and 1 hope this book helps you
to see the framework behind the computations.

Problem Set 8.1

1 Show that det A} CoAp = cicac3+eresca+cicaca+eacies. Find also det ATC) A,
in the fixed-free example.

4 Invert AIC:m in the fixed-free example by multiplying A[’C[l{AT}".

3 In the free-free case when ATCA in equation (9) is singular, add the three equa-
tions ATCAu = f to show that we need f; + f> + f3 = 0. Find a solution
o ATCAu = f when the forces f = (—1.0, 1) balance themselves. Find all
solutions!

4 Both end conditions for the free-free differential equation are du/dx = (:

d du - du
~ (C{”:H) = f(x) with = =0 at both ends.
Integrate both sides to show that the force f(x) must balance itself, [ f(x)dx =
0, or there is no solution. The complete solution is one particular solution u(x)

plus any constant. The constant corresponds to & = (1, 1, 1) in the nullspace of
ATCA,
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In the fixed-free problem, the matrix A is square and invertible. We can solve
ATy = f separately from Au = e. Do the same for the differential equation:

d i
Solve -d—-‘ = f(x) with y(1)=0. Graph y(x) if f(x)=1.
X

The 3 by 3 matrix K; = ATCjA; in equation (6) splits into three “element ma-
trices” ¢ Ey +c2 Ex +ciEx. Write down those pieces, one for each ¢. Show how
they come from column times row multiplication of ATCA,. This is how finite
element stiffness matrices are actually assembled.

For five springs and four masses with both ends fixed, what are the matrices A
and C and K7 With C =1 solve Ku = ones(4).

Compare the solution # = (uy, w2, u3, ug) in Problem 7 to the solution of the
continuous problem —u” = 1 with u(0) = 0 and u(1) = 0. The parabola u(x)
should correspond at x = 1; % % ; to u—is there a (Ax)? factor to account for?

Solve the fixed-free problem —u” = mg with «(0) =0 and u'(1) = 0. Compare
2 3

ui(x) at x = % 5. § with the vector u = (3mg, Smg, 6mg) in Example 2.
(MATLAB) Find the displacements u(1), ..., u(100) of 100 masses connected by
springs all with ¢ = 1. Each force is f(i) = .01. Print graphs of u with fixed-
fixed and fixed-free ends. Note that diag(ones(n. 1), d) is a matrix with n ones
along diagonal d. This print command will graph a vector u:

plot(u, "+7); xlabel(’mass number’); ylabel(*'movement’); print

(MATLAB) Chemical engineering has a first derivative du /dx from fluid velocity
as well as d?u/dx® from diffusion. Replace du/dx by a forward difference and
then by a backward difference, with Ax = ?’{- Graph your numerical solutions of

d*u du ;
—t ]{:lE =1 with u(0) = u(l) =0.
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GRAPHS AND NETWORKS = 8.2

This chapter is about six selected applications of linear algebra. We had many applica-
tions to choose from. Any time you have a connected system, with each part depending
on other parts, you have a matrix. Linear algebra deals with interacting systems, pro-
vided the laws that govern them are linear. Over the years I have seen one model so
often, and found it so basic and useful, that I always put it first. The model consists
of nodes connected by edges. This is called a graph.

Graphs of the usual kind display functions f(x). Graphs of this node-edge kind
lead to matrices. This section is about the incidence matrix of a graph—which tells
how the n nodes are connected by the m edges. Normally m > n, there are more edges
than nodes.

For any m by n matrix there are two fundamental subspaces in R" and two in
R™. They are the row spaces and nullspaces of A and AT. Their dimensions are related
by the most important theorem in linear algebra. The second part of that theorem is
the orthogonality of the subspaces. Our goal is to show how examples from graphs
illuminate the Fundamental Theorem of Linear Algebra.

We review the four subspaces (for any matrix). Then we construct a directed
graph and its incidence matrix. The dimensions will be easy to discover. But we want
the subspaces themselves—this is where orthogonality helps. It is essential to connect
the subspaces to the graph they come from. By specializing to incidence matrices, the
laws of linear algebra become Kirchhoff’s laws. Please don’t be put off by the words
“current” and “potential” and “Kirchhoff.” These rectangular matrices are the best.

Every entry of an incidence matrix is 0 or 1 or —1. This continues to hold during
elimination. All pivots and multipliers are 1. Therefore both factors in A = LU
also contain 0, 1, —1. So do the nullspace matrices! All four subspaces have basis
vectors with these exceptionally simple components. The matrices are not concocted
for a textbook, they come from a model that is absolutely essential in pure and applied
mathematics.

Review of the Four Subspaces

Start with an m by n matrix. Its columns are vectors in R™. Their linear combinations
produce the column space C(A), a subspace of R™. Those combinations are exactly
the matrix-vector products Ax.

The rows of A are vectors in R" (or they would be, if they were column vectors).
Their linear combinations produce the row space. To avoid any inconvenience with rows,
we transpose the matrix. The row space becomes C(AT), the column space of AT,

The central questions of linear algebra come from these two ways of looking at
the same numbers, by columns and by rows.

The nullspace N(A) contains every x that satisfies Ax = 0—this is a subspace
of R". The “left” nullspace contains all solutions to ATy = 0. Now y has m compo-
nents, and N(AT) is a subspace of R™. Written as yTA = 0T, we are combining rows



8.2 Graphs and Networks 413

Figure 8.3 The four subspaces with their dimensions and orthogonality.

of A to produce the zero row. The four subspaces are illustrated by Figure 8.3, which
shows R" on one side and R™ on the other. The link between them is A.

The information in that figure is crucial. First come the dimensions, which obey
the two central laws of linear algebra:

dimC(A) =dimC(AT) and  dimC(A)+dimN(A) =n.

When the row space has dimension r, the nullspace has dimension n — r. Elimination
leaves these two spaces unchanged, and the echelon form U gives the dimension count.
There are r rows and columns with pivots. There are n—r free columns without pivots,
and those lead to vectors in the nullspace.

The following incidence matrix A comes from a graph. Its echelon form is U:

7 T O R

1 0 1 0 0 -1 1 0

6 -1 1 0 0 0 -1 1
A=|_41 o0 o 1| &0 U=|4 o 0 o
0 -1 0 1 0 0 0 0

[0 0 -1 1 0 0 0 o]

The nullspace of A and U is the line through x = (1,1, 1, 1). The column spaces of

A and U have dimension r = 3. The pivot rows are a basis for the row space.
Figure 8.3 shows more —the subspaces are orthogonal. Every vector in the nullspace

is perpendicular to every vector in the row space. This comes directly from the m equations
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Ax = 0. For A and U above, x = (1, 1, 1, 1) is perpendicular to all rows and thus to the
whole row space.

This review of the subspaces applies to any matrix A—only the example was
special. Now we concentrate on that example. It is the incidence matrix for a particular
graph, and we look to the graph for the meaning of every subspace.

Directed Graphs and Incidence Matrices

Figure 8.4 displays a graph with m = 6 edges and n = 4 nodes, so the matrix A is 6
by 4. It tells which nodes are connected by which edges. The entries —1 and +1 also
tell the direction of each arrow (this is a directed graph). The first row of A gives a
record of the first edge:

The first edge goes from
nide 1 1o node 2.

The Ffirst row has -] in
column | and +1 in columa 2.

- O N

Figure 8.4a Complete graph with m = 6 edges and n = 4 nodes.

Row numbers are edge numbers, column numbers are node numbers.

You can write down A immediately by looking at the graph.

The second graph has the same four nodes but only three edges. Its incidence
matrix is 3 by 4:

®
node
ONeORONCY
) —1100] 1
B=|0-1 1 0 2 edge
o 0 0-1 1 3

Figure 8.4b  Tree with 3 edges and 4 nodes and no loops.
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The first graph is complete—every pair of nodes is connected by an edge. The sec-
ond graph is a free—the graph has mo closed loops. Those graphs are the two ex-
tremes, with the maximum number of edges m = %nl'n — 1) and the minimum number
m = n—1. We are assuming that the graph is connected, and it makes no fundamental
difference which way the arrows go. On each edge, flow with the arrow is “positive.”
Flow in the opposite direction counts as negative. The flow might be a current or a
signal or a force—or even oil or gas or water.

The rows of B match the nonzero rows of U/ —the echelon form found earlier.
Elimination reduces every graph to a tree. The loops produce zero rows in U. Look
at the loop from edges 1, 2, 3 in the first graph, which leads to a zero row:

-1 1 0 O -1 1 0 0 -1 1 0 0
-1 0 1 0| — 0 -1 I 0] — O 1 I 0
0 -1 1 0 0 =l I 0 o o0 0 0

Those steps are typical. When two edges share a node, elimination produces the “short-
cut edge” without that node. If the graph already has this shortcut edge, elimination
gives a row of zeros. When the dust clears we have a tree.

An idea suggests itself: Rows are dependent when edges form a loop. Indepen-
dent rows come from trees. This is the key to the row space.

For the column space we look at Ax, which is a vector of differences:

[-1 1 0 0 x5 — )

-1 ] 1 ] X1 A3 — X

0 -1 | ] ) X1 — X3

Ax = | = 3
===y 0 0 U= ty =X ()

0 -l ] l X4 X4 — X2

L 0 O =l I | X4 = X3

The unknowns xj, x2, x3. x4 represent petentials at the nodes. Then Ax gives the
potential differences across the edges. It is these differences that cause flows. We
now examine the meaning of each subspace.

1 The nullspace contains the solutions to Ax = 0. All six potential differences are

zero. This means: All four potentials are equal. Every x in the nullspace is a constant

vector (e, ¢, ¢, ¢). The nullspace of A is a line in R —its dimension is n — r = 1.
The second incidence matrix B has the same nullspace. It contains (1,1, 1, 1):

1 1 0 o0 : 0
Be=| 0 -1 1 of| [=]0
0o 0 -1 1] 0

We can raise or lower all potentials by the same amount ¢, without changing the
differences. There is an “arbitrary constant” in the potentials. Compare this with the
same statement for functions. We can raise or lower f(x) by the same amount C,
without changing its derivative. There is an arbitrary constant C in the integral.
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Calculus adds “+C" to indefinite integrals. Graph theory adds (¢, ¢, ¢, ¢) to the
vector x of potentials. Linear algebra adds any vector x, in the nullspace to one par-
ticular solution of Ax = b.

The “+C™ disappears in calculus when the integral starts at a known point x = a.
Similarly the nullspace disappears when we set x4 = 0. The unknown x4 is removed
and so are the fourth columns of A and B. Electrical engineers would say that node
4 has been “grounded.”

2 The row space contains all combinations of the six rows. Its dimension is certainly
not six. The equation r + (n —r) = n must be 3+ 1 = 4. The rank is r = 3, as we
also saw from elimination. After 3 edges, we start forming loops! The new rows are
not independent.

How can we tell if v = (vy, v2, v3, v4) is in the row space? The slow way is to
combine rows. The quick way is by orthogonality:

v is in the row space if and only if it is perpendicular to (1, 1, 1, 1) in the nullspace.

The vector v = (0, 1, 2, 3) fails this test—its components add to 6. The vector (—6, 1. 2, 3)
passes the test. It lies in the row space because its components add to zero. It equals
6(row 1) + 5(row 3) + 3(row 6).

Each row of A adds to zero. This must be true for every vector in the row space.

3 The column space contains all combinations of the four columns. We expect three
independent columns, since there were three independent rows. The first three columns
are independent (so are any three). But the four columns add to the zero vector, which
says again that (1, 1,1, 1) is in the nullspace. How can we tell if a particular vector
b is in the column space?

First answer Try to solve Ax = b. As before, orthogonality gives a better answer. We
are now coming to Kirchhoff’s two famous laws of circuit theory—the voltage law and
current law. Those are natural expressions of “laws” of linear algebra. It is especially
pleasant to see the key role of the left nullspace.

Second answer Ax is the vector of differences in equation (1). If we add differences
around a closed loop in the graph, the cancellation leaves zero. Around the big triangle
formed by edges 1,3, —2 (the arrow goes backward on edge 2) the differences are

(x2 —x1) 4+ (x3 —x2) — (x3 —x1) =0.

This is the voltage law: The components of Ax add to zero around every loop. When
b is in the column space, it must obey the same law:

Kirchhoff’s Voltage Law: by + b3 — by = 0.

By testing each loop, we decide whether b is in the column space. Ax = b can be
solved exactly when the components of b satisfy all the same dependencies as the rows
of A. Then elimination leads to 0 =0, and Ax = b is consistent.
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4 The left nullspace contains the solutions to ATy = 0. Its dimension is m—r = 6—3:

P
1 -1 0 -1 0 0 2
1 0 -1 0 -1 0]|m»m
0 1 1 0 0 -1 ¥4
0 0 0 1 1 1 ¥s

Y6

(2)

I
cooo

The true number of equations is r = 3 and not n = 4. Reason: The four equations
add to 0 = 0. The fourth equation follows automatically from the first three.

What do the equations mean? The first equation says that —y; — y2 — ya = 0.
The net flow into node 1 is zero. The fourth equation says that ys + ys + ys = 0.
Flow into the node minus flow out is zero. The equations ATy = 0 are famous and
fundamental:

Kirchhoff’s Current Law: Flow in equals flow out at each node.

This law deserves first place among the equations of applied mathematics. It expresses
“conservation” and “continuity” and “balance.” Nothing is lost, nothing is gained. When
currents or forces are in equilibrium, the equation to solve is ATy = 0. Notice the
beautiful fact that the matrix in this balance equation is the transpose of the incidence
matrix A.

What are the actual solutions to ATy = 0?7 The currents must balance them-
selves. The easiest way is to flow around a loop. If a unit of current goes around
the big triangle (forward on edge 1, forward on 3, backward on 2), the vector is y =
(1,—1,1,0,0,0). This satisfies ATy = 0. Every loop current yields a solution y, be-
cause flow in equals flow out at every node. A smaller loop goes forward on edge 1,
forward on 5, back on 4. Then y =(1,0,0, -1, 1,0) is also in the left nullspace.

We expect three independent y's, since 6 — 3 = 3. The three small loops in the
graph are independent. The big triangle seems to give a fourth y, but it is the sum of
flows around the small loops. The small loops give a basis for the left nullspace.

1 0 0 1
0 0 o -1
0 1 ol | 1
el e I ol B L
I <t 0 0

Lo | [ 1] [a] o]
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Summary The incidence matrix A comes from a connected graph with n nodes and
m edges. The row space and column space have dimensions n — 1. The nullspaces
have dimension 1 and m —n + 1:

1  The constant vectors (c,c,...,c) make up the nullspace of A.
There are r =n — 1 independent rows, using edges from any tree.
Voltage law: The components of Ax add to zero around every loop.

B W N

Current law: ATy = 0 is solved by loop currents. N(AT) has dimension m —r.
There are m —r = m — n + 1 independent loops in the graph.

For every graph in a plane, linear algebra yields Euler’s formula:
(number of nodes)—(number of edges)+(number of small loops)=1.

This ism —m 4+ (m —n+1) = 1. The graph in our example has 4 — 6 +3 = 1.
A single triangle has (3 nodes)—(3 edges)+(1 loop). On a 10-node tree with 9 edges
and no loops, Euler’s count is 10 — 9 4- 0. All planar graphs lead to the answer 1.

Networks and ATCA

In a real network, the current y along an edge is the product of two numbers. One
number is the difference between the potentials x at the ends of the edge. This differ-
ence is Ax and it drives the flow. The other number is the “conductance” c—which
measures how easily flow gets through.

In physics and engineering, ¢ is decided by the material. For electrical currents,
c is high for metal and low for plastics. For a superconductor, c is nearly infinite. If
we consider elastic stretching, ¢ might be low for metal and higher for plastics. In
economics, ¢ measures the capacity of an edge or its cost.

To summarize, the graph is known from its “connectivity matrix” A. This tells
the connections between nodes and edges. A nefwork goes further, and assigns a con-
ductance c to each edge. These numbers ¢y, ..., ¢y go into the “conductance matrix”
C —which is diagonal.

For a network of resistors, the conductance is ¢ = 1/(resistance). In addition to Kirch-
hoff’s laws for the whole system of currents, we have Ohm’s law for each particular
current. Ohm’s law connects the current y, on edge 1 to the potential difference x;—x;
between the nodes:

Ohm’s Law: Current along edge = conductance times potential difference.

Ohm's law for all m currents is y = —CAx. The vector Ax gives the potential differ-
ences, and C multiplies by the conductances. Combining Ohm’s law with Kirchhoff’s
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X 2 't_:u

Figure 8.5 The currents in a network with a source § into node |.

current law ATy = 0, we get ATCAx = 0. This is almost the central equation for
network flows. The only thing wrong is the zero on the right side! The network needs
power from outside —a voltage source or a current source —to make something happen.

Note about signs In circuit theory we change from Ax to —Ax. The flow is from
higher potential to lower potential. There is (positive) current from node 1 to node 2
when x| — x2 is positive—whereas Ax was constructed to yield xz — x;. The minus
sign in physics and electrical engineering is a plus sign in mechanical engineering and
economics, Ax versus —Ax is a general headache but unavoidable.

Note about applied mathematics Every new application has its own form of Ohm's
law. For elastic structures y = CAx is Hooke's law. The stress y is (elasticity C) times
(stretching Ax). For heat conduction, Ax is a temperature gradient. For oil flows it is
a pressure gradient. There is a similar law for least square regression in statistics. My
textbook [ntroduction to Applied Mathemarics (Wellesley-Cambridge Press) is practi-
cally built on ATCA. This is the key to equilibrium in matrix equations and also in
differential equations.

Applied mathematics is more organized than it looks. [ have learned to warch
for ATCA.

We now give an example with a current source. Kirchhoff's law changes from
AT y =010 Ay = f, to balance the source f from outside. Flow into each node
still equals flow out. Figure 8.5 shows the network with its conductances cy, ..., Chs
and it shows the current source going into node 1. The source comes out at node 4
to keep the balance (in = out). The problem is: Find the currents yy. ..., ys on the

six edges.

Example 1  All conductances are ¢ = 1, so that C = /. A current y4 travels directly
from node | to node 4. Other current goes the long way from node | to node 2 to
node 4 (this is y; = ys). Current also goes from node | to node 3 to node 4 (this is
¥2 = ¥g). We can find the six currents by using special rules for symmetry, or we can
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do it right by using ATCA. Since C = I, this matrix is AT A:

[=1 1 © o
-1 =1 0 -1 ] 0 | (] | 0 I =1 =1 =1
1 -1 0.~ @0 0 -1 1 0] [y
0 1 1 0 6=1|]=t 0o 0 I N T
0o 0 0 11 B =1 0 ~ = =1 3
0 0 -1 1

That last matrix is not invertible! We cannot solve for all potentials because (1, 1,1, 1)
is in the nullspace. One node has to be grounded. Setting x4 = 0 removes the fourth
row and column, and this leaves a 3 by 3 invertible matrix. Now we solve ATCAx = f
for the unknown potentials xj, x3, x3, with source § into node |:

3 -1 -1 X ) x| S/2
-1 3 -1 n|l=10 gives x|=|5/4
-] =1 3 X3 0 x3 5/4
Ohm’s law y = —CAx yields the six currents. Remember C = I and x4 = (O
[y ] -1 1 0 07 [ §/47]
¥ -1 0 1 0]]|§/2 5/4
vi | _ 0 -} 1 o||sm4|_| O
vl |-1 O 0 1||S/4] " |Ss2
Vs 0o -1 0o 1]|] o 5/4
| ¥ | L. & 0 —~1 1] | 5/4

Half the current goes directly on edge 4. That is v4 = §/2. No current crosses from
node 2 to node 3. Symmetry indicated yv; = 0 and now the solution proves it,

The same matrix AT A appears in least squares, Nature distributes the currents to min-
imize the heat loss. Statistics chooses X to minimize the least squares error.

Problem Set 8.2

Problems 1-7 and 8-14 are about the incidence matrices for these graphs.

1 1 2
edge | edge 2 '
2
- 3 -4

edge 3
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Write down the 3 by 3 incidence matrix A for the triangle graph. The first row
has —1 in column 1 and +1 in column 2. What vectors (xj, x2, x3) are in its
nullspace? How do you know that (1,0,0) is not in its row space?

Write down AT for the triangle graph. Find a vector y in its nullspace. The
components of y are currents on the edges—how much current is going around
the triangle?

Eliminate x; and x; from the third equation to find the echelon matrix U. What
tree corresponds to the two nonzero rows of U?

—x; +x2 = b
—X| +x3=b
—x3 4+ x3 = b3

Choose a vector (by. bz. b3) for which Ax = b can be solved, and another vector
b that allows no solution. How are those b’s related 1o y = (1, -1, 1)7

Choose a vector (fi, f2, fa) for which ATy = f can be solved, and a vector f
that allows no solution. How are those f’s related to x = (1, 1, 1)? The equation
ATy = f is Kirchhoff's _ law.

Multiply matrices to find ATA. Choose a vector f for which ATAx = [ can be
solved, and solve for x. Put those potentials x and the currents y = —Ax and
current sources f onto the triangle graph. Conductances are | because ¢ = /.

With conductances ¢; = 1 and ¢2 = ¢3 = 2, multiply matrices to find ATCA.
For f = (1,0, =1) find a solution to ATCAx = f. Write the potentials x and
currents y = —CAx on the triangle graph, when the current source f goes into
node 1 and out from node 3.

Write down the 5 by 4 incidence matrix A for the square graph with two loops.
Find one solution to Ax = 0 and two solutions to ATy =0,

Find two requirements on the b's for the five differences x» —xj, xa—x;, xr3 —x2.
X4 — X2.Xx4 — x3 to equal by, bs, by, by, bs. You have found Kirchhoff's
law around the two in the graph.

Reduce A to its echelon form U, The three nonzero rows give the incidence

matrix for what graph? You found one tree in the square graph—find the other
seven trees.

Multiply matrices to find ATA and guess how its entries come from the graph:

(a) The diagonal of ATA tells how many into each node.
(b) The off-diagonals —1 or 0 tell which pairs of nodes are _
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Why is each statement true about ATA? Answer for ATA not A.

{a) Its nullspace contains (1,1, 1,1). Its rank is n — 1.

(b) It is positive semidefinite but not positive definite.

{c) Tts four eigenvalues are real and their signs are

With conductances ¢; = ¢2 = 2 and ¢3 = ¢4 = ¢5 = 3, multiply the matrices

ATCA. Find a solution to ATCAx = S =1(1,0,0,=1). Write these potentials
x and currents y = —CAx on the nodes and edges of the square graph.

The matrix ATCA is not invertible. What vectors x are in its nullspace? Why
does ATCAx = f have a solution if and only if fi + f>+ f3 + fa =07

A connected graph with 7 nodes and 7 edges has how many loops?

For the graph with 4 nodes, 6 edges, and 3 loops, add a new node. If you connect
it to one old node, Euler’'s formula becomes ( )—( )4( )= 1. If vou connect
it to two old nodes, Euler's formula becomes ( ) —( )4+ ( )= 1.

Suppose A is a 12 by 9 incidence matrix from a connected (but unknown) graph.
{a) How many columns of A are independent?

(b) What condition on f makes it possible to solve ATy = f2

(¢) The diagonal entries of AT A give the number of edges into each node. What
is the sum of those diagonal entries?

Why does a complete graph with n = 6 nodes have m = 15 edges? A tree
connecting 6 nodes has edges.
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MARKOV MATRICES AND ECONOMIC MODELS = 8.3

Early in this book we proposed an experiment. Start with any vector ug = (x, 1 — x).
Multiply it again and again by the “transition matrix™ A:

8 3
g [.1 .?] *
The experiment produces #) = Aug and then u> = Au;. After k steps we have Ak,
Unless MATLAB went haywire, the vectors ug, &1, 43, u3,. . . approached a “sready
state.” That limit state is #~ = (.6, .4). This final outcome does not depend on the
starting vector: For every ug we always converge to (.6, .4). The question is why.

At that time we had no good way to answer this question. We knew nothing about
eigenvalues. It is true that the steady state equation Am.. = u. could be verified:

8 3|6|_|6

2 1141 L&
You would now say that u.. is an eigenvector with eigenvalue 1. That makes it steady.
Multiplying by A does not change it. But this equation Au.. = u~ does not explain

why all vectors ugp lead to u~.. Other examples might have a steady state, but it is not
necessarily attractive:

1 0 1 1
B=[{] 2] has the steady state B[[}:|=|:ﬂ:|'

In this case, the starting vector ug = (0, 1) will give u; = (0, 2) and u; = (0, 4). The
second components are being doubled by the “2” in B. In the language of eigenval-
ues, B has A =1 but it also has A = 2—and an eigenvalue larger than one produces
instability. The component of u along that unstable eigenvector is multiplied by A, and
|A] = 1 means blowup.

This section is about two special properties of A that guarantee a steady state
Uo. These properties define a Markov matrix, and A above is one particular example:

1. Every entry of A is nonnegative.
2. Every column of A adds ito 1.

B did not have Property 2. When A is a Markov matrix, two facts are immediate:
Multiplying a nonnegative up by A produces a nonnegative u; = Auyp.

If the components of up add to 1, so do the components of u; = Aup.
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Reason: The components of ug add to | when [1 --- 1]ug = 1. This is true for
each column of A by Property 2. Then by matrix multiplication it is true for Aug:

[1 -« 1]JAwg=[1 -+ 1]wo=1.

The same facts apply to u; = Au; and w3 = Auz.  Every vector uy = Afuy is
nonnegative with components adding to |. These are “probability vectors.” The limit
. is also a probability vector—but we have to prove that there is a limit! The ex-
istence of a steady state will follow from 1 and 2 but not so quickly. We must show
that 4 = | is an eigenvalue of A, and we must estimate the other eigenvalues.

Example 1 The fraction of rental cars in Denver starts at ;Jn = .02. The fraction

outside Denver is .98, Every month those fractions (which add to 1) are multiplied by
the Markov matrix A:

B0 .05 ) - - 021 |.065
A= [.ED _95] leads to w) = Awg = A [.93] = [_935].

That is a single step of a Markov chain. In one month, the fraction of cars in Denver
is up to 065. The chain of vectors is wo, &y, W2, ..., and each step multiplies by A:

Hy = Aug. Hy = a’llun. prnduce:i Hp = A;‘uu.

All these vectors are nonnegative because A is nonnegative. Furthermore .065+ 935 =
1.000. Each vector sy will have its components adding to 1. The vector w2 = Auy
is (09875, .90125). The first component has grown from .02 to .065 to nearly .099.
Cars are moving toward Denver. What happens in the long run?

This section involves powers of matrices. The understanding of A was our first
and best application of diagonalization. Where A* can be complicated, the diagonal
matrix A* is simple. The eigenvector matrix § connects them: A* equals SA*S~'. The
new application to Markov matrices follows up on this idea—to use the eigenvalues (in
A) and the eigenvectors (in §). We will show that k.. is an eigenvector corresponding
to A = 1.

Since every column of A adds to |, nothing is lost or gained. We are moving
rental cars or populations, and no cars or people suddenly appear (or disappear). The
fractions add to | and the matrix A keeps them that way. The question is how they
are distributed after k time periods—which leads us to A*.

Solution to Example 1 After k steps the fractions in and out of Denver are the compo-
nents of A*up. To study the powers of A we diagonalize it. The eigenvalues are A = |
and A = .75. The first eigenvector, with components adding to 1, is x| = (.2, .8):

B0 — 2 05
20 Sk

[i-[2) w o[-n

m—m:‘ =2 - 152+ T5=( - DG -.79
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Those eigenvectors are x| and x3. They are the columns of §. The starting vector ug
is a combination of x; and x5, in this case with coefficients 1 and .18:

w=[ ] =[]+ [ 1]

Now multiply by A to find &;. The eigenvectors are multiplied by 4, = 1 and 4> =

.15:
2 —1
=1 [E] + E.?S}{.iﬂ}[ l]'

Each time we multiply by A, another .75 multiplies the last vector. The eigenvector
x is unchanged:

u; = Atup = [ﬁ] + {75 (.18) [‘:] ;

This equation reveals what happens. The eigenvector x| with ). = | is the steady state
U~. The other eigenvector x; gradually disappears because |A| < 1. The more steps
we take, the closer we come to u~, = (.2, .8). In the limit, % of the cars are in Denver

and 1%— are outside. This is the pattern for Markov chains:

8A If A is a positive Markov matrix (entries a;; > 0, each column adds to 1), then
4 =1 is larger than any other eigenvalue. The eigenvector x is the steady state:

g =xy+ea(ha)fxa+ -+ euhy)x,  always approaches u., = xy.

Assume that the components of uy add to 1. Then this is true of uy, uz,. . .
The key point is that we approach a multiple of x| from every starting vector ug. If
all cars start outside Denver, or all start inside, the limit is still v = x| = (.2, .8).

The first point is to sec that A = 1 is an cigenvalue of A. Reason: Every column
of A—T addsto | — 1 =0. The rows of A — I add up to the zero row. Those rows
are linearly dependent, so A — [ is singular. Its determinant is zero and 4 = 1 is an
eigenvalue. Since the trace of A was 1.75, the other eigenvalue had to be A; = .75.

The second point is that no eigenvalue can have |A| = 1. With such an eigenvalue,
the powers A* would grow. But A* is also a Markov matrix with nonnegative entries
adding to 1 —and that leaves no room to get large.

A lot of attention is paid to the possibility that another eigenvalue has |A| = 1.
Suppose the entries of A or any power A* are all positive—zero is not allowed. In
this “regular” case A = | is strictly bigger than any other eigenvalue. When A and its
powers have zero entries, another eigenvalue could be as large as A = 1.
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Example 2 A =[%]}] has no steady state because A = —1.

This matrix sends all cars from inside Denver to outside. and vice versa. The
powers AY alternate between A and /. The second eigenvector x2 = (—1, 1) is multi-
plied by A2 = —1 at every step—and does not become smaller. With a regular Markov
matrix, the powers A approach the rank one matrix that has the steady state x| in
every column.

Example 3 (“Everybody moves”) Start with three groups. At each time step, half
of group 1 goes to group 2 and the other half goes to group 3. The other groups also
split in half and move. If the starting populations are p,, py, pa. then after one step
the new populations are

0 % 3o P+ sm
uy=Aup=|3 0 Ll|p|=|ip+ips
;3 oofLm inm+ip

A 15 a Markov matrix. Nobody i1s born or lost. It is true that A contains zeros, which
gave trouble in Example 2. But after two steps in this new example, the zeros disappear

from AZ:
21
P
P3

3
What is the steady state? The eigenvalues of A are &) = | (because A is Markov) and
hr = ky = —3. The eigenvector x| = ({. %, 3) for & = 1 will be the steady state.
When three equal populations split in half and move, the final populations are again
equal. When the populations start from w = (8, 16, 32), the Markov chain approaches
its steady state:

5
u = A"wy =

— tudl|— Ej—

x| fo e -
b= da|= faj=—

8 24 16 20
up = 16 n = 20 u:=| 18 uy = | 19
32 12 22 17

The step to a4 will split some people in half. This cannot be helped. The total popula-
tion is 8+ 16432 = 56 (and later the total is still 204 19+ 17 = 56). The steady state
populations u., are 56 times {a_‘;. 3; :';_1. You can see the three populations approaching,
but never reaching, their final limits 56/3.

Linear Algebra in Economics: The Consumption Matrix

A long essay about linear algebra in economics would be out of place here. A short
note about one matrix seems reasonable. The consumption matrix tells how much of
each input goes into a unit of output. We have n industries like chemicals, food, and
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oil. To produce a unit of chemicals may require .2 units of chemicals, .3 units of food,
and .4 units of oil. Those numbers go into row | of the consumption matrix A:

chemical output 2 .3 4] | chemical input
food output =14 4 .1 food input
oil output S =1 .3 oil input

Row 2 shows the inputs to produce food—a heavy use of chemicals and food. not so
much oil. Row 3 of A shows the inputs consumed to refine a unit of oil. The real
consumption matrix for the United States in 1958 contained 83 industries. The models
in the 1990°s are much larger and more precise. We chose a consumption matrix that
has a convenient eigenvector.

Now comes the question: Can this economy meet demands y;, y2, y3 for chem-
icals, food, and 0il? To do that, the inputs py, pa. p3 will have to be higher—because
part of p is consumed in producing y. The input is p and the consumption is Ap,
which leaves p — Ap. This net production is what meets the demand y:

Problem Find a vector p such that p—Ap=yor(/—-A)p=yorp=(I—-A)" 'y

Apparently the linear algebra question is whether / — A is invertible. But there is
more to the problem. The demand vector y is nonnegative, and so is A. The production
levels in p = (I — A)~'y must also be nonnegative. The real question is:

When is (I — A)~! a nonnegative matrix?

This is the test on (/ — A)~' for a productive economy, which can meet any positive
demand. If A is small compared to /. then Ap is small compared to p. There is
plenty of output. If A is too large, then production consumes more than it yields. In
this case the external demand y cannot be met.

“Small” or “large” is decided by the largest eigenvalue 4 of A (which is positive):

If .y =1 then (I — A)~! has negative entries
If iy =1 then (/- A)"! fails to exist
If &y <1 then (I — A)~! is nonnegative as desired.

The main point is that last one. The reasoning makes use of a nice formula for (I —
A)~1, which we give now. The most important infinite series in mathematics is the
geometric series 1 + x + x2 + ..., This series adds up to 1/(1 — x) provided x is
between —1 and 1. (When x = |1 the series is 1 + 14+ 14 --- = o0. When |x] = |
the terms x” don’t go to zero and the series cannot converge.) The nice formula for
(I — A)~! is the geometric series of matrices:

U=A"'=1+A+A2+A3+....

If you multiply this series by A, you get the same series S except for /. Therefore
§—AS = I, which is (/ — A)S = I. The series adds to § = (/ — A)~! if it converges.
And it converges if |Amax| < 1.
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In our case A > 0. All terms of the series are nonnegative. Its sumis (I — A)~' > 0.

234 412527
Example 4 A= [i A4 .1] has Ay =.9 and (] — A)" 1 = g% [333614].
5.1.3 342336

This economy is productive. A is small compared to /, because A,y is .9. To meet the
demand y, start from p = (I — A)~'y. Then Ap is consumed in production, leaving
p— Ap. This is (] — A)p = y, and the demand is met.

Example 5 A=[J3]hasri=2and (I -A) = —i [14].

This consumption matrix A is too large. Demands can’t be met, because production
consumes more than it yields. The series 7 + A + A% + . . . does not converge to
(I — A)~!. The series is growing while (I — A)~! is actually negative.

Problem Set 8.3

Questions 1-14 are about Markov matrices and their eigenvalues and powers.
1 Find the eigenvalues of this Markov matrix (their sum is the trace):
90 .15
A= [.m .35] '
What is the steady state eigenvector for the eigenvalue 4) = 17

2  Diagonalize the Markov matrix in Problem 1 to A = SAS™' by finding its other

ol W)

What is the limit of A* = SA*S=! when A¥ =[! 2] approaches [}9]?

3 What are the eigenvalues and the steady state eigenvectors for these Markov ma-
trices?

1 2 2 1
“"=[n 3] ""=[.3 u] s

Bl B p2—
] = ]| o]

4 For every 4 by 4 Markov matrix, what eigenvector of AT corresponds to the (known)
eigenvalue A = 17
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Every year 2% of young people become old and 3% of old people become dead.
(No births.) Find the steady state for

young 98 00 0] | young
old =1.02 97 0 old
dead |, 00 .03 | dead |,

The sum of the components of x equals the sum of the components of Ax. If
Ax = Jx with A # 1, prove that the components of this non-steady eigenvector
x add to zero.

Find the eigenvalues and eigenvectors of A. Factor A into SAS™:
K S
- [.1 .?]'
This was a MATLAB example in Chapter 1. There A'® was computed by squaring
four times. What are the factors in A'® = SA'0§-17
Explain why the powers A* in Problem 7 approach this matrix A
6 6
o
s [.4 .4]*
Challenge problem: Which Markov matrices produce that steady state (.6, .4)7

This permutation matrix is also a Markov matrix:

- oo o
oo D -
=R ==L =
=R = =]

The steady state eigenvector for A = 1 is (1, 1.1, 1). This is not approached
when ug = (0,0,0,1). What are w; and m7 and w3 and wg? What are the four
eigenvalues of P, which solve A% = 1?

Prove that the square of a Markov matrix is also a Markov matrix.

If A=[28]is a Markov matrix, its eigenvalues are | and . The steady
state eigenvector is x| = :

Complete the last row to make A a Markov matrix and find the steady state eigen-
vector:

When A is a symmetric Markov matrix, why is x; =(1,..., 1) its steady state?
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A Markov differential equation is not du/dr = Au but du/dt = (A — I)u. Find
the eigenvalues of

-2 3
E=A-f=|: b _.3],

When e*!* multiplies the eigenvector x; and ¢**' multiplies x, what is the steady
state as 1 — oo?

The matrix B = A—1 for a Markov differential equation has each column adding

o . The steady state x; is the same as for A, but now A} = and
Al —
& —]

Questions 15-18 are about linear algebra in economics.

15

16

17

18

19

20

Each row of the consumption matrix in Example 4 adds to .9. Why does that
make A = .9 an eigenvalue, and what is the eigenvector?

Multiply / + A+ A*+ A% +.- by I — A to show that the series adds to .
For A = ['ll é] find A2 and A® and use the pattern to add up the series.

For which of these matrices does / + A + A% + .- yield a nonnegative matrix
(1 = A)~'? Then the economy can meet any demand:

0 1 0o 4 2
"‘=[n o] ""=[.2 0] "‘=[.5 0]'
If the demands in Problem 17 are y = (2,6), what are the vectors p = (/] —
A)~ly?

(Markov again) This matrix has zero determinant. What are its eigenvalues?

A 2 3
A= |2 4 3].
4 4 4

Find the limits of A*ug starting from up = (1,0,0) and then uo = (100, 0, 0).
If A is a Markov matrix, does / + A+ A% +--- add up to (/ — A)~1?
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LINEAR PROGRAMMING = 8.4

Linear programming is linear algebra plus two new ingredients: inequalities and mini-
mization. The starting point is still a matrix equation Ax = b. But the only acceptable
solutions are nonnegarive. We require x > 0 (meaning that no component of x can be
negative). The matrix has » > m, more unknowns than equations. If there are any
nonnegative solutions to Ax = b, there are probably a lot. Linear programming picks
the solution x* = 0 that minimizes the cost:

The cost is c1xy + « -+ + cpxy. The winning vector x* is
the nonnegative solution of Ax = b that has smallest cost.

Thus a linear programming problem starts with a matrix A and two vectors b and e:
1) A has n>m: forexample A=[1 1 2]
ii) b has m components: for example b =[4]
iii) The cost ¢ has n components: for example ¢ =[5 3 8].
Then the problem is to minimize ¢ - x subject to the requirements Ax = b and x = 0:
Minimize 5x1 + 3x2 + 8x3 subject to x; + x2 4+ 2x3 =4 and xy, x2,x3 = 0.

We jumped right into the problem, without explaining where it comes from. Linear
programming is actually the most important application of mathematics to management.
Development of the fastest algorithm and fastest code is highly competitive. You will
see that finding x* is harder than solving Ax = b, because of the extra requirements:
cost minimization and nonnegativity. We will explain the background, and the famous
simplex method, after solving the example.

Look first at the “constraints™ Ax = b and x > 0. The equation x| +x3+2x3 =4
gives a plane in three dimensions. The nonnegativity x; = 0, x2 = 0, x5 = 0 chops the
plane down to a triangle. The solution x* must lie in the triangle PQR in Figure 8.6.
Outside that triangle, some components of x are negative. On the edges of that triangle,
one component is zero. At the corners of that triangle, two components are zero. The
solution x* will be one of those corners! We will now show why.

The triangle contains all vectors x that satisfy Ax = b and x = 0. (Those x's
are called feasible points, and the triangle is the feasible set.) These points are the
candidates in the minimization of ¢ - x, which is the final step:

Find x* in the triangle to minimize the cost 5x1 + 3x2 + 8x3.

The vectors that have zero cost lie on the plane 5x143x24-8x3 = 0. That plane does not
meet the triangle. We cannot achieve zero cost, while meeting the requirements on x.
So increase the cost C until the plane 5x; + 3x; + 8x3 = C does meet the triangle.
This is a family of parallel planes, one for each C. As C increases, the planes move
toward the triangle.
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R=(0,0,2)
(2 hours by computer)/ |

Ax=b is the plane x; + x5, +2x;=4
~ S Triangle has x,20, x, 20, x, 20

@ =10, 4, 0} (4 hours by student)

P =(4,0_0) (4 hours by Ph.D.)

Figure 8.6 The triangle containing nonnegative solutions: Ax = b and x = 0. The
lowest cost solution x* is one of the comers P, Q. or R.

The first plane to touch the triangle has minimum cost C. The point where it
touches is the selution x*. This touching point must be one of the corners P or @
or R. A moving plane could not reach the inside of the triangle before it touches a
corner! So check the cost 5xy + 3x: 4+ 8x3 at each comer:

P =(4,0,0)costs 20 Q= (0.4.0)costs 12 - R = (0, 0,2) costs 16

The winner is Q. Then x* = (0. 4,0) solves the linear programming problem.

If the cost vector ¢ is changed, the parallel planes are tilted. For small changes,
@ 1s still the winner. For the cost € - x = 5x; + 4x2 + Tx3, the optimum x* moves to
R = (0,0, 2). The minimum cost is now 7-2 = 14.

Note 1 Some linear programs maximize profit instead of minimizing cost. The math-
ematics is almost the same. The parallel planes start with a large value of C, instead
of a small value. They move toward the origin (instead of away), as C gets smaller.
The first touching point is stfl a corner.

MNote 2 The requirements Ax = b and x = 0 could be impossible to satisfy. The
equation xy + x> 4+ x3 = —1 cannot be solved with x = (). The feasible set is empty.

Note 3 It could also happen that the feasible set is unbounded. If 1 change the require-
ment to x; 4+ x2 — 2x3 = 4, the large positive vector (100, 100, 98) is now a candidate.
So is the larger vector (1000, 1000, 998). The plane Ax = b is no longer chopped off

to a triangle. The two corners P and @ are still candidates for x*, but the third corner
has moved to infinity,

MNote 4 With an unbounded feasible set, the minimum cost could be —ac (minus infin-
itv). Suppose the cost is —x; —x2+x3. Then the vector (100, 100, 98) costs C = —102.
The vector (1000, 1000, 998) costs C = —1002. We are being paid to include x; and
xa. Instead of paying a cost for those components. In realistic applications this will
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not happen. But it is theoretically possible that changes in A, b, and ¢ can produce
unexpected triangles and costs.

Background to Linear Programming

This first problem is made up to fit the previous example. The unknowns x, x2, x3
represent hours of work by a Ph.D. and a student and a machine. The costs per hour
are $5, $3, and $8. (I apologize for such low pay.) The number of hours cannot be
negative: x| = 0, x2 = 0, x3 = 0. The Ph.D. and the student get through one homework
problem per hour—rhe machine solves two problems in one hour. In principle they can
share out the homework, which has four problems to be solved: x| + x2 + 2x3 = 4.

The problem is to finish the four problems at minimum cost.

If all three are working, the job takes one hour: x; = x2 = x3 = 1. The cost is
543+ 8 = 16, But certainly the Ph.D. should be put out of work by the student
(who is just as fast and costs less—this problem is getting realistic). When the student
works two hours and the machine works one, the cost is 6 + 8 and all four problems
get solved. We are on the edge QR of the triangle because the Ph.D. is unemployed:
x; = 0. But the best point is at a corner—all work by student (at () or all work by
machine (at R). In this example the student solves four problems in four hours for
$12—the minimum cost.

With only one equation in Ax = b, the corner (0,4,0) has only one nonzero
component. When Ax = b has m equations, corners have m nonzeros. As in Chapter
3, n — m free variables are set to zero. We solve Ax = b for the m basic variables
(pivot variables). But unlike Chapter 3, we don’t know which m variables to choose
as basic. Our choice must minimize the cost.

The number of possible corners is the number of ways to choose m components
out of n. This number “n choose m™ is heavily involved in gambling and probability.
With 7 = 20 unknowns and m = 8 equations (still small numbers), the “feasible set”
can have 20!/8!12! corners. That number is (20)(19)---(13) = 5,079,110,400.

Checking three corners for the minimum cost was fine. Checking five billion
corners is not the way to go. The simplex method described below is much faster.

The Dual Problem In linear programming, problems come in pairs. There is a mini-
mum problem and a maximum problem —the original and its “dual.” The original prob-
lem was specified by a matrix A and two vectors b and ¢. The dual problem has the
same input, but A is transposed and b and ¢ are switched. Here is the dual to our
example:

A cheater offers to solve homework problems by looking up the an-
swers. The charge is vy dollars per problem, or 4y altogether. (Note how
b = 4 has gone into the cost.) The cheater must be as cheap as the Ph.D. or
student or machine: v < 5 and v < 3 and 2y < 8. (Note how ¢ = (5, 3, B)
has gone into inequality constraints). The cheater maximizes the income 4y.
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Dual Problem  Maximize b - y subject to A'y < ¢,

The maximum occurs when y = 3. The income is 4y = 12. The maximum in
the dual problem ($12) equals the minimum in the original ($12). This is always true:

Duality Theorem |If either problem has a best vector (x* or y*) then s0
does the other. The minimum cost ¢ - x° equals the maximum income
b-y*

Please note that | personally often look up the answers. It's not cheating.

This book started with a row picture and a column picture. The first “duality theorem”
was about rank: The number of independent rows equals the number of independent
columns. That theorem, like this one, was easy for small matrices. A proof that mini-
mum cost = maximum income is in our text Linear Algebra and Its Applications. Here
we establish the easy half of the theorem: The cheater’s income cannot exceed the
honest cost:

If Ax=b,x>0,AYy <¢c then b'y=(Ax)Ty=xT(ATy) < xT¢.

The full duality theorem says that when b' y reaches its maximum and x "¢ reaches its
minimum, they are equal: b y* =¢ - x*.

The Simplex Method

Elimination is the workhorse for linear equations. The simplex method is the workhorse
for linear inequalities. We cannot give the simplex method as much space as elimination—
but the idea can be briefly described. The simplex method goes from one corner to a
neighboring corner of lower cost. Eventually (and quite soon in practice) it reaches
the corner of minimum cost. This is the solution x*.

A corner is a vector x = () that satisfies the m equations Ax = b with at most
m positive components. The other n — m components are zero. (Those are the free
variables. Back substitution gives the basic variables. All variables must be nonnegative
or x is a false corner.) For a neighboring corner, one zero component becomes positive
and one positive component becomes zero.

The simplex method must decide which component “enters” by becoming pos-
itive, and which component “leaves” by becoming zero. That exchange is chosen so
as to lower the total cost. This is one step of the simplex method.

Here is the overall plan. Look at each zero component at the current corner. If
it changes from O to 1, the other nonzeros have to adjust to keep Ax = b. Find the
new x by back substitution and compute the change in the total cost ¢-x. This change
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is the “reduced cost” r of the new component. The entering variable is the one that
gives the most negative r. This is the greatest cost reduction for a single unit of a new
variable.

Example 1  Suppose the current corner is (4, 0, 0), with the Ph.D. doing all the work
(the cost is $20). If the student works one hour, the cost of x = (3, 1,0) is down to
%$18. The reduced cost is r = —=2. If the machine works one hour, then x = (2,0, 1)
also costs $18. The reduced cost is also r = —2. In this case the simplex method can
choose either the student or the machine as the entering variable.

Even in this small example, the first step may not go immediately to the best
x*. The method chooses the entering variable before it knows how much of that vari-
able to include. We computed r when the entering variable changes from 0 to 1, but
one unit may be too much or too little. The method now chooses the leaving vari-
able (the Ph.D.).

The more of the entering variable we include, the lower the cost. This has to
stop when one of the positive components (which are adjusting to keep Ax = b) hits
zero. The leaving variable is the first positive x; to reach zero. When that happens,
a neighboring corner has been found. More of the entering variable would make the
leaving variable negative, which is not allowed. We have gone along an edge of the
allowed feasible set, from the old corner to the new corner. Then start again (from the
new corner) to find the next variables to enter and leave.

When all reduced costs are positive, the current corner is the optimal x*. No
zero component can become positive without increasing ¢+ x. No new variable should
enter. The problem is solved.

Note Generally x* is reached in an steps, where « is not large. But examples have
been invented which use an exponential number of simplex steps. Eventually a different
approach was developed, which is guaranteed to reach x* in fewer (but more difficult)
steps. The new methods travel through the interior of the feasible set, to find x* in
polynomial time. Khachian proved this was possible, and Karmarkar made it efficient.
There is strong competition between Dantzig's simplex method (traveling around the
edges) and Karmarkar's method through the interior.

Example 2 Minimize the cost ¢-x = 3x| 4+ x2+9x3 +x4. The constraints are x > 0
and two equations Ax = b:

N+2x3+x3=4 m =2 equations
Xx2+x3—x3=2 n =4 unknowns.

A starting corner is x = (4, 2,0, 0) which costs ¢+-x = 14. It has m = 2 nonzeros and
n—m =2 zeros (x3 and x4). The question is whether x3 or x4 should enter (become
nonzero). Try each of them:

If x3=1and x4 =0, thenx=1(2,1,1,0) costs 16.
Ifx3g=1and x3=0, thenx=(3,3,0,1) costs 13.
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Compare those costs with 14. The reduced cost of x3 is r = 2, positive and useless.
The reduced cost of x4 is r = —1, negative and helpful. The entering variable is xj.

How much of x4 can enter? One unit of x4 made x; drop from 4 to 3. Four units
will make x; drop from 4 to zero (while x> increases all the way to 6). The leaving
variable is xi. The new corner is x = (0, 6,0, 4), which costs only ¢-x = 10. This is
the optimal x*, but to know that we have to try another simplex step from (0, 6,0, 4).
Suppose x; or x3 tries to enter:

Ifxy=1and x3=0, then x=(1,5,0,3) costs 11.
If x3=1and xy =0, then x =(0,3,1,2) costs 14.

Those costs are higher than 10. Both r’s are positive—it does not pay to move. The
current corner (0, 6,0, 4) is the solution x*.

These calculations can be streamlined. It turns out that each simplex step solves
three linear systems with the same matrix B. (This is the m by m matrix that keeps
the m basic columns of A.) When a new column enters and an old column leaves,
there is a quick way to update B~'. That is how most computer codes organize the
steps of the simplex method.

One final note. We described how to go from one corner to a better neighbor.
We did not describe how to find the first comer—which is easy in this example but
not always. One way is to create new variables x5 and xg, which begin at 4 and 2
(with all the original x’s at zero). Then start the simplex method with x5 + xg as the
cost. Switch to the original problem after x5 and xg reach zero—a starting corner for
the original problem has been found.

Problem Set 8.4

1 Draw the region in the xy plane where x+2y =6 and x > 0 and y = 0. Which
point in this “feasible set” minimizes the cost ¢ = x + 3y? Which point gives
maximum cost?

2 Draw the region in the xy plane where x +2y <6, 2x4+v <6, x=0, y=0.
It has four corners. Which cormer minimizes the cost ¢ = 2x — y?

3 What are the corners of the set x| +2x3 — x3 = 4 with xj, x3, x3 all > 07 Show
that x; + 2x3 can be very negative in this set.

4  Start at x = (0,0, 2) where the machine solves all four problems for $16. Move
tox = (0,1, ) to find the reduced cost r (the savings per hour) for work by
the student. Find r for the Ph.D. by moving to x = (1.0, ). Notice that r does
not give the number of hours or the total savings.

5 Start from (4, 0,0) with ¢ changed to [5 3 7]. Show that r is better for the
machine but the total cost is lower for the student. The simplex method takes
two steps, first to machine and then to student.

6 Choose a different ¢ so the Ph.D. gets the job. Rewrite the dual problem (max-
imum income to the cheater).
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FOURIER SERIES: LINEAR ALGEBRA FOR FUNCTIONS = 8.5

This section goes from finite dimensions to infinire dimensions. I want to explain linear
algebra in infinite-dimensional space, and to show that it still works. First step: look
back. This book began with vectors and dot products and linear combinations, We
begin by converting those basic ideas to the infinite case—then the rest will follow.

What does it mean for a vector to have infinitely many components? There are
two different answers, both good:

1. The vector becomes v = (v, v2, U3, . . .). It could be (1, % ;1-1 ;¥

2 The vector becomes a function f(x). It could be sinx.

We will go both ways. Then the idea of Fourier series will connect them.
After vectors come dot products. The natural dot product of two infinite vectors
(vy,v2,...) and (wy, wa,. . .) is an infinite series:

Ve = VW + vy 4 (1)

This brings a new question, which never occurred to us for vectors in R". Does this
infinite sum add up to a finite number? Does the series converge? Here is the first and
biggest difference between finite and infinite.

When v=w=(1,1,1,...), the sum certainly does not converge. In that case
v.w=1+4+1+1+4--- is infinite. Since v equals w, we are really computing v-v =
v]? = length squared. The vector (1, 1, 1,. . .) has infinite length. We don’t wanr that
vector. Since we are making the rules, we don’t have to include it. The only vectors
to be allowed are those with finite length:

DEFINITION The vector (vy, vz,. . .) is in our infinite-dimensional “Hilbert space”
if and only if its length is finite:

lv)> = v-v=v}+v3+ v+ must add to a finite number.

Example 1  The vector v = (1, %; 41 . .) 15 included in Hilbert space, because its

length is 2/+/3. We have a geometric series that adds to 4/3. The length of v is the
square root:

|
u-u=l+%_+|+,+-~-—-l =%

| =

Question If v and w have finite length, how large can their dot product be?

Answer The sum v-w = viw;+vows+--- also adds to a finite number. The Schwarz
inequality is still true:

lv-w| < |v] jw]. (2)

The ratio of v+ w to ||v| ||w| is still the cosine of & (the angle between v and w).
Even in infinite-dimensional space, |cos#| is not greater than 1.
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Now change over to functions. Those are the “vectors.” The space of functions
fix), g(x), h(x),. . . defined for 0 < x < 27 must be somehow bigger than R". What
is the dot product of f(x) and g(x)?

Key point in the continuous case: Sums are replaced by integrals. Instead of a
sum of v; times wj, the dot product is an integral of f(x) times g(x). Change the “dot”
to parentheses with a comma, and change the words “dot product™ to inner product:

DEFINITION The inner product of f(x) and g(x), and the length squared, are

n 2
o= sosds  ama  P= [T (@) a ®

The interval [0, 27 ] where the functions are defined could change to a different interval
like [0, 1]. We chose 27 because our first examples are sinx and cos x.

Example 2  The length of f{x)=sinx comes from its inner product with itself:

2w
{f,f}=f (sin x)?dx = . The length of sinx is /7.
0

That is a standard integral in calculus—not part of linear algebra. By writing sin’ x as
% - % cos 2x, we see it go above and below its average value % Multiply that average
by the interval length 27 to get the answer 7.

More important: The functions sin x and cos x are orthogonal. Their inner prod-
uct is zero:

i g n 27
f sinxcosxdx = ] %ginlxdx = [—fT cos ZJ:]{J = 0. (4)
0 0

This zero is no accident. It is highly important to science. The orthogonality goes
beyond the two functions sinx and cosx, to an infinite list of sines and cosines. The
list contains cosOx (which is 1), sinx, cosx, sin2x, cos 2x, sin 3x, cos 3x, . . .

Every function in that list is orthogonal to every other function in the list.

The next step is to look at linear combinations of those sines and cosines.

Fourier Series
The Fourier series of a function v(x) is its expansion into sines and cosines:

y(x) =ap+ajcosx +bysinx +axcos2x +bysin2x +--- . (5)

We have an orthogonal basis! The vectors in “function space™ are combinations of the
sines and cosines. On the interval from x = 27 to x = 4, all our functions repeat
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what they did from 0 to 2x. They are “periodic.” The distance between repetitions
(the period) is 2.

Remember: The list is infinite. The Fourier series is an infinite series, Just as
we avoided the vector v = (1,1.1,. . .) because its length is infinite, so we avoid a
function like i-i-cus.x +c0s 2x +cos 3x +---. (Neote: This is  times the famous delta
function. It is an infinite “spike” above a single point. At x =0 its height 41414+
is infinite. At all points inside 0 < x = 2m the series adds in some average way 1o
zero.) The delta function has infinite length, and regretfully it is excluded from our
space of functions.

Compute the length of a typical sum f(x):

i g
(f. 1) =f (ao +aj cosx + by sinx +azcos2x 4 -+ ) dx
0

2x
=f {a& +a|:|:usz:r + b:: sin” x -I-ﬂ% cos® 2x + -+ )dx
0
= 2rwaj +nlaj +b7 +a3 +---). (6)

The step from line 1 to line 2 used orthogonality. All products like cos.xcos2x and
sin x cos 3x integrate to give zero. Line 2 contains what is left—the integrals of each
sine and cosine squared. Line 3 evaluates those integrals. Unfortunately the integral of
12 is 27, when all other integrals give . If we divide by their lengths, our functions
become orthonormal:

1 «cosx sinx cos2x
These are unit vectors. We could combine them with coefficients Ag, Ay, By, Az, . . .

to yield a function F(x). Then the 27 and the 7's drop out of the formula for length.
Equation 6 becomes function length = vector length:

. . is an orthonormal basis for our function space.

|FI*=(F.F)=Aj+ AT+ Bf + A3 +---. (7)

Here is the important point, for f{x) as well as F(x). The function has finite length ex-
actly when the vector of coefficients has finite length. The integral of (F {x}}z matches
the sum of coefficients squared. Through Fourier series, we have a perfect match be-

tween function space and infinite-dimensional Hilbert space. On one side is the func-
tion, on the other side are its Fourier coefficients.

8B The function space contains f(x) exactly when the Hilbert space contains the
vector v = (ag, aj, by, . . .) of Fourier coefficients. Both f(x) and v have finite
length.

Example 3  Suppose f(x) is a “square wave,” equal to —| for negative x and +1I
for positive x. That looks like a step function, not a wave. But remember that f(x)
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must repeat after each interval of length 2w. We should have said
fixy==1for —m<x<O0+4+1for O<x <m.

The wave goes back to =1 for # < x < 2. It is an odd function like the sines,
and all its cosine coefficients are zero. We will find 1ts Fourier series, containing only
sines:

4rsinx sin3x  sinSx
[ +0 ] (8)

This square wave has length /2, because at every point {f{x}}?‘ is (—1)? or (+1)%:

2x 2 2
IR = [ (@ ar= [ 1ar=2n
0 0
At x = 0 the sines are zero and the Fourier series 8 gives zero. This is half way up
the jump from —1 to +1. The Fourier series is also interesting when x = %. At this
point the square wave equals 1, and the sines in equation 8 alternate between +1 and
-1:

+ 1 | l
S )
Multiply through by 7 to find a magical formula 4(1 — % + % = % +:++) for that famous
number,

The Fourier Coefficients

How do we find the a's and b’s which multiply the cosines and sines? For a given
function f(x), we are asking for its Fourier coefficients:

fx)=ap+ajcosx + bysinx +arcosx +--- .

Here is the way to find ay. Multiply both sides by cos x. Then integrate from 0 to 2n.
The key is orthogonality! All integrals on the right side are zero, except the integral
of a) cos” x:
2w n R
f[x}cmxdx:f @) cos- xdx = mway. (10)
0 0

Divide by 7 and you have a;. To find any other az, multiply the Fourier series by
cos kx. Integrate from 0 to 27. Use orthogonality, so only the integral of ax cos® kx
is left. That integral is mag, and divide by m:

2% | o
ay = f flx)ecoskxdx and similarly by = ;[ flx)sinkxdx. (11)
( ’ 0

|
7 Jo
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The exception is ag. This time we multiply by cosOx = 1. The integral of 1 is 2m:

n

ag = v f(x)+ 1dx = average value of f(x). (12)
T Jo

1 used those formulas to find the coefficients in 8 for the square wave. The integral of
fi(x)coskx was zero. The integral of f(x)sinkx was 4/k for odd k.

The point to emphasize is how this infinite-dimensional case is so much like the n-
dimensional case. Suppose the nonzero vectors vy, ..., v, are orthogonal. We want to
write the vector b as a combination of those v's:

b=ciomy+ 224+ vy (13)

Multiply both sides by uf. Use orthogonality, so I-‘r?ﬂz = 0. Only the ¢; term is left:

T

v b
vib=cvjv; +0+---+0. There['urer;:;—'u—. (14)
1 ¥i

The denominator trTn. is the length squared, like 7 in equation (11). The numerator
v| b is the inner product like [ f(x)coskx dx. Coefficients are easy to find when the
basis vectors are orthogonal. We are just doing one-dimensional projections, to find
the components along each basis vector.

The formulas are even better when the vectors are orthonormal. Then we have
unit vectors. The denominators v] v are all 1. In this orthonormal case,

cp=vlb and e =vib ad ¢, =0v'b (15)
You know this in another form. The equation for the ¢'s is

1
Cloy 4+ +cpty =8 or i e B : | =b

{'n
This is an orthogonal matrix Q! Its inverse is Q7. That gives the ¢’s in (15):
Qe=b vyields ¢=Q"bh. Row by row this is ¢; = ur&.

Fourier series is like having a matrix with infinitely many orthogonal columns. Those
columns are the basis functions 1, cosx, sinx,. . .. After dividing by their lengths we
have an “infinite orthogonal matrix.” Its inverse is its transpose. The formulas for the
Fourier coefficients are like (15) when we have unit vectors and like (14) when we
don’t. Orthogonality is what reduces an infinite series to one single term.
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10

Problem Set 8.5

Integrate the trig identity 2 cos jx cos kx = cos(j+k)x +cos(j —k)x to show that
cos jx is orthogonal to coskx, provided j &£ k. What is the result when j = k?

Show that the three functions 1, x, and x? — { are orthogonal, when the integra-

tion is from x = —1 to x = 1. Write f(x) = 2x% as a combination of those
orthogonal functions.

Find a vector (wy, w;, ws, . . .) that is orthogonal to v = (1, % ﬁ.. . .). Compute
its length ||w]|.

The first three Legendre polynomials are 1, x, and x° — 1'; Choose the number ¢
so that the fourth polynomial x* —cx is orthogonal to the first three. The integrals
still go from —1 to 1.

For the square wave f(x) in Example 3, show that
n n 2x
f fix)cosxdx =10 fix)sinxdx =4 f(x)sin2xdx = 0.
0 1] n

Which Fourier coefficients come from those integrals?

The square wave has || f||* = 2x. This equals what remarkable sum by equa-
tion 67

Graph the square wave. Then graph by hand the sum of two sine terms in its
series, or graph by machine the sum of two, three, and four terms.

Find the lengths of these vectors in Hilbert space:
N o W

fa) U-—(?I-?Em,)

b)) v=(l.a.a%...)

(c) filx)=1+sinx.

Compute the Fourier coefficients a; and by for f(x) defined from 0 to 2:

(a) f(x)=1forO0<x<m, fix)=0form<x<2m

(b)y filx)=oux.

When f(x) has period 27, why is its integral from —m to 7 the same as from
0 to 2x? If f(x) is an odd function, f(—x) = —f(x), show that [} f(x)dx

Is zero.
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From trig identities find the only two terms in the Fourier series for f(x):

2

(a) f{x)=rcos"x

(b) f(x)=cos(x+ F)
The functions 1, cos x, sin x, cos 2x, sin 2x, . . . are a basis for Hilbert space. Write

the derivatives of those first five functions as combinations of the same five func-
tions. What is the 5 by 5§ “differentiation matrix” for these functions?

Write the complete solution to dv/dx = cosx as a particular solution plus any
solution to dy/dx = 0.
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COMPUTER GRAPHICS = 8.6

Computer graphics deals with three-dimensional images. The images are moved around.
Their scale is changed. They are projected into two dimensions. All the main opera-
tions are done by matrices—but the shape of these matrices is surprising.

The transformartions of three-dimensional space are done with 4 by 4 matrices.
You would expect 3 by 3. The reason for the change is that one of the four key opera-
tions cannot be done with a 3 by 3 matrix multiplication. Here are the four operations:

Translation(shift the origin to another point Py = (xg. vo. 20))
Rescaling(by ¢ in all directions or by different factors ¢|, ¢3, c3)
Rotation(around an axis through the origin or an axis through Fy)
Projection(onto a plane through the origin or a plane through 7).
Translation is the easiest—just add (xp. ¥o. 2p) to every point. But this is not linear!
No 3 by 3 matrix can move the origin. So we change the coordinates of the origin to

(0,0,0,1). This is why the matrices are 4 by 4. The “homogeneous coordinates™ of
the point (x, v, z) are (x, y,z,1) and we now show how they work.

1. Translation Shift the whole three-dimensional space along the vector vg. The origin
moves to (xp, Yo, Zo). This vector vy is added to every point v in R’ Using homoge-
neous coordinates, the 4 by 4 matrix 7 shifts the whole space by vp:

o B e BT
_—

Translation matrix T =

= o~oO
- 00

X0

&

Important: Computer graphics works with row vectors. We have row times matrix in-
stead of matrix times column. You can quickly check that [0 0 0 1]T = [xp » zo 1].
To move the points (0,0,0) and (x, v, z) by vp, change to homogeneous coordi-
nates (0,0,0, 1) and (x, v,z,1). Then multiply by T. A row vector times T gives a
row vector: Every v moves fo v+vp: [x v z 1]T = [x+xp v+ 2+ 20 1]
The output tells where any v will move. (It goes to v + wp.) Translation is now
achieved by a matrix, which was impossible in R?.

2. Scaling To make a picture fit a page, we change its width and height. A Xerox
copier will rescale a figure by 90%. In linear algebra, we multiply by .9 times the
identity matrix. That matrix is normally 2 by 2 for a plane and 3 by 3 for a solid. In
computer graphics, with homogeneous coordinates, the matrix is one size larger:

c 0 0 0O

2 0 ¢ 00

Rescale the plane: S = 9 Rescale a solid: S = 00 ¢ O
00 0 1
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Important: § is not cl. We keep the | in the lower comer. Then [x, y, 1] times § is
the correct answer in homogeneous coordinates. The origin stays in position because
[001]§ =[001].

If we change that 1 to ¢, the result is strange. The point (cx,cy,cz, c) is the
same as (x,v,z,1). The special property of homogeneous coordinates is that mulrni-
plying by ¢l does not move the point. The origin in R® has homogeneous coordinates
(0,0,0,1) and (0,0,0, ¢) for every nonzero ¢. This is the idea behind the word “ho-
mogeneous.”

Scaling can be different in different directions. To fit a full-page picture onto a
half-page. scale the v direction by ;_ To create a margin, scale the x direction by %.
The graphics matrix is diagonal but not 2 by 2. It is 3 by 3 to rescale a plane and 4
by 4 to rescale a space:

3 ]

4 3
Scaling matrices S = ! and 5= e

1 £

That last matrix § rescales the x, v, z directions by positive numbers ¢y, 2, c3. The
point at the origin doesn’t move, because [0001]S=[0001].

Summary The scaling matrix § is the same size as the translation matrix 7. They
can be multiplied. To translate and then rescale, multiply vT §. To rescale and then
translate, multiply vST. (Are those differemt? VYes.) The extra column in all these
matrices leaves the extra | at the end of every vector.

The point (x, v, z) in R? has homogeneous coordinates (x, v, z, 1) in P?. This
“projective space” is not the same as R*. It is still three-dimensional. To achieve such
a thing, (cx, cy, ¢z, ¢) is the same point as (x, v, z, 1). Those points of P are really
lines through the origin in R*.

Computer graphics uses affine transformations, finear plus shift. An affine trans-
formation T is executed on P? by a 4 by 4 matrix with a special fourth column:

app aiz aiy 0 T(1,0,0) 0
A= |92 42 ax 0]_1|70,10 0
a3; day diy 0 T(0,0.1) 0O
@y o4 asy | rio,o00 1

The usual 3 by 3 matrix tells us three outputs, this tells four. The usual outputs come
from the inputs (1,0,0) and (0, 1,0) and (0,0,1). When the transformation is lin-
ear, three outputs reveal everything. When the transformation is affine, the matrix also
contains the output from (0, 0, 0). Then we know the shift.

3. Rofation A rotation in R? or R’ is achieved by an orthogonal matrix Q. The
determinant is 4+1. (With determinant —1 we get an extra reflection through a mirror.)
Include the extra column when you use homogeneous coordinates!

costd —sind 0
] becomes R = | sinf cosfl 0O
] 0 |

cos? —sinf

Plane rotation 0= [ dad  casd
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This matrix rotates the plane around the origin. How would we rotate around a
different point (4,5)7 The answer brings out the beauty of homogeneous coordinates.
Translate (4.5) to (0.0), then rotate by 4, then translate (0, (1) back to (4.5):

1 0 0 cosf? —sind 0O 1 0 0

T RT =[x y 1] 0 1 Of|sin# cosé 0|0 1 O

-4 -5 1 0 0 1 4 5 1
I won't multiply. The point is to apply the matrices one at a time: v translates to v7_,
then rotates to v7T_ R, and translates back to v7T_ RT,;. Because each point [.t y | ] is
a row vector. T acts first. The center of rotation (4, 5)—otherwise known as (4,5, 1)—
moves first to (0, 0, 1), Rotation doesn't change it. Then 75 moves it back to (4, 5, 1).
All as it should be. The point (4, 6, 1) moves to (0, 1, 1), then turns by # and moves

back.

In three dimensions, every rotation ) turns around an axis. The axis doesn’t
move—it is a line of eigenvectors with A = |. Suppose the axis is in the : direction.
The | in @ is to leave the : axis alone, the extra | in R is to leave the origin alone:

cosH —sind 0 ) g

Q= |sinf cost# O and R=
0 0 1 p
o o 0 1

Now suppose the rotation is around the unit vector @ = (a), az. a3). With this axis a,
the rotation matrix @ which fits into R has three parts:

ﬂf didx dpas 0 a3 —a
Q = (cos@)] + (1 —cosf) | ayjaz a% azay | —sinf | —as 0 af. (1)
a3 dray al‘; as =) ]

The axis doesn’t move because a0 = a. When a = (0,0, 1) is in the z direction, this
() becomes the previous @ —for rotation around the z axis.

The linear transformation @ always goes in the upper left block of R. Below it
we see zeros. because rotation leaves the origin in place. When those are not zeros,
the transformation is affine and the origin moves.

4. Projection In a linear algebra course, most planes go through the origin. In real
lite, most don’t. A plane through the origin is a vector space. The other planes are
affine spaces, sometimes called “flats.” An affine space 15 what comes from translating
a vector space.

We want to project three-dimensional vectors onto planes. Start with a plane
through the origin, whose unit normal vector is . (We will keep m as a column vec-
tor.) The vectors in the plane satisfy n"v = 0. The usual projection onto the plane
is the matrix I — nn". To project a vector, multiply by this matrix. The vector n is
projected to zero. and the in-plane vectors v are projected onto themselves:

I

(—mn"m=n—-—nn"m=0 and (/—nn")v=v—ninTv)=v.
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In homogeneous coordinates the projection matrix becomes 4 by 4 (but the origin doesn’t
move):

— il
Projection onto the plane nTv=0 P = I —nn

-0 0o o

0 00

Now project onto a plane nT(v — vg) = 0 that does not go through the origin. One
point on the plane is vp. This is an affine space (or a flat). It is like the solutions
to Av = b when the right side is not zero. One particular solution vy is added to the
nullspace—to produce a flat.

The projection onto the flat has three steps. Translate vy to the origin by T_.
Project along the n direction, and translate back along the row vector vp:

— = I Ol[f=nn™ 0][1 O
Projection onto a flat T'PT"‘_[-..;;G 1][ 0 ]][Un 1].

I can’t help noticing that 7_ and T, are inverse matrices: translate and translate back.
They are like the elementary matrices of Chapter 2.

The exercises will include reflection matrices, also known as mirror matrices. These
are the fifth type needed in computer graphics. A reflection moves each point twice as
far as a projection—the reflection goes through the plane and out the other side. So
change the projection I —nn' to I — 2nn" for a mirror matrix.

The matrix P gave a “parallel” projection. All points move parallel to n, until
they reach the plane. The other choice in computer graphics is a “perspective” pro-
jection. This is more popular because it includes foreshortening. With perspective, an
object looks larger as it moves closer. Instead of staying parallel to » (and parallel
to each other), the lines of projection come roward the eve—the center of projection.
This is how we perceive depth in a two-dimensional photograph.

The basic problem of computer graphics starts with a scene and a viewing position.
Ideally, the image on the screen is what the viewer would see. The simplest image
assigns just one bit to every small picture element—called a pixel. It is light or dark.
This gives a black and white picture with no shading. You would not approve. In
practice, we assign shading levels between 0 and 2® for three colors like red, green,
and blue. That means 8 x 3 = 24 bits for each pixel. Multiply by the number of pixels,
and a lot of memory is needed!

Physically, a raster frame buffer directs the electron beam. It scans like a televi-
sion set. The quality is controlled by the number of pixels and the number of bits per
pixel. In this area, one standard text is Computer Graphics: Principles and Practices
by Foley, Van Dam, Feiner, and Hughes (Addison-Wesley, 1990). My best references
were notes by Ronald Goldman (Rice University) and by Tony DeRose (University of
Washington, now associated with Pixar).
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= REVIEW OF THE KEY IDEAS =

1.  Computer graphics needs shift operations T(v) = v + vp as well as linear oper-
ations T (v) = Av.

2. A shift in R" can be executed by a matrix of order n + 1. using homogeneous
coordinates.

3.  The extra component 1 in [x y z 1] is preserved when all matrices have the num-
bers 0,0,0, 1 as last column.

Problem Set 8.6

1 A typical point in R® is xi + yj + zk. The coordinate vectors i, j, and k are
(1,0,0), (0, 1,0), (0,0, 1). The coordinates of the point are (x, y, z).

This point in computer graphics is xi + yj + zk + origin. Its homogeneous
coordinates are ( , , , ). Other coordinates for the same pointare ( , ., , ).

2 A linear transformation T is determined when we know T (i), T(j).T(k). For
an affine transformation we also need T'( ). The input point (x,y,z,1) is
transformed to xT (i) + vT(j) + zT (k) + :

3 Multiply the 4 by 4 matrix T for translation along (1, 4, 3) and the matrix T} for
translation along (0, 2, 5). The product T'T; is translation along :

4  Write down the 4 by 4 matrix S that scales by a constant ¢. Multiply ST and
also TS, where T is translation by (1.4, 3). To blow up the picture around the
center point (1,4, 3), would you use vST or vT S?

5 What scaling matrix S (in homogeneous coordinates, so 3 by 3) would make this
page square?

b What 4 by 4 matrix would move a corner of a cube to the origin and then mul-
tiply all lengths by 2?7 The corner of the cube is originally at (1, 1, 2).

7 When the three matrices in equation 1 multiply the unit vector a, show that they
give (cos#H)a and (1 —cosf)a and 0. Addition gives aQ = a and the rotation
axis i1s not moved.

8 If b is perpendicular to a, multiply by the three matrices in 1 to get (cos@)b
and 0 and a vector perpendicular to b. So Qb makes an angle 8 with b. This is
rotation.

9 What is the 3 by 3 projection matrix / —nn' onto the plane %.1:4- %}'+ iz =07
In homogeneous coordinates add 0, 0,0, 1 as an extra row and column in P.
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With the same 4 by 4 matrix P, multiply 7_PTy to find the projection matrix
onto the plane %x—!—%}'—#— _%: = |. The translation 7_ moves a point on that plane
(choose one) to (0,0, 0, 1). The inverse matrix T, moves it back.

Project (3, 3, 3) onto those planes. Use P in Problem 9 and T_ PT. in Problem
10.

If you project a square onto a plane, what shape do you get?

If you project a cube onto a plane, what is the outline of the projection? Make
the projection plane perpendicular to a diagonal of the cube.

The 3 by 3 mirror matrix that reflects through the plane nTv =0 is M = [ —
2nnT. Find the reflection of the point (3, 3, 3) in the plane _%.1: =+ %1 - o éz =0.

Find the reflection of (3, 3, 3) in the plane %.1: - %}' - %: = 1. Take three steps
T_MT, using 4 by 4 matrices: translate by 7_ so the plane goes through the
origin, reflect the translated point (3, 3, 3, 1)7_ in that plane, then translate back
b}" T..

The vector between the origin (0,0, 0, 1) and the point (x, v, z, 1) is the differ-
ence v = . In homogeneous coordinates, vectors end in . So we
add a to a point, not a point to a point.

If you multiply only the /ast coordinate of each point to get (x, v, z, ¢), you rescale
the whole space by the number . This is because the point (x, v, z, ¢) 1s the
sameas( . , .1).



NUMERICAL LINEAR ALGEBRA

GAUSSIAN ELIMINATION IN PRACTICE = 9.1

MNumerical linear algebra is a struggle for gquick solutions and also accurate solutions.
We need efficiency but we have to avoid instability. In Gaussian elimination, the main
freedom (always available) is to exchange equations. This section explains when to
exchange rows for the sake of speed, and when to do it for the sake of accuracy.

The key to accuracy is to avoid unnecessarily large numbers. Often that requires
us to avoid small numbers! A small pivot generally means large multipliers (since we
divide by the pivot). Also, a small pivot now means a large pivot later. The product
of the pivots is a fixed number (except for its sign). That number is the determinant.

A good plan is to choose the largest candidate in each new column as the pivot.
This is called “partial pivoting.” The competitors are in the pivot position and below.
We will see why this strategy is built into computer programs.

Other row exchanges are done to save elimination steps. In practice, most large
matrices have only a small percentage of nonzero entries. The user probably knows
their location. Elimination is generally fastest when the equations are ordered to put
those nonzeros close to the diagonal. Then the matrix is as “banded” as possible.

New questions arise for machines with many processors in parallel. Now the
problem is communication—to send processors the data they need, when they need it.
This is a major research area. The brief comments in this section will try to introduce
you to thinking in parallel.

Section 9.2 is about instability that can't be avoided. It is built into the problem,
and this sensitivity is measured by the “condition number.” Then Section 9.3 describes
how to solve Ax = b by iterations. Instead of direct elimination, the computer solves
an easier equation many times. Each answer x; goes back into the same equation to
find the next guess xi.). For good iterations, the x; converge quickly to x = A~ 'b.

450
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Roundoff Error and Partial Pivoling

Up to now, any pivot (nonzero of course) was accepted. In practice a small pivot is
dangerous. A catastrophe can occur when numbers of different sizes are added. Com-
puters keep a fixed number of significant digits (say three decimals, for a very weak
machine). The sum 10,000 + | is rounded off to 10,000. The “1” is completely lost.
Watch how that changes the solution to this problem:

M0l +v=1

-u+v=0

starts with coefficient matrix A= [—ljlm{ :] ;

If we accept .0001 as the pivot, elimination adds 10,000 times row | to row 2. Round-
off leaves

10,0000 = 10,000 instead of 10,001v = 10,000,

The computed answer v = | is near the true v = .9999. But then back substitution
leads to

0001 u+1=1 instead of 0001 1 +.9999 = 1.

The first equation gives u = 0. The correct answer (look at the second equation) is
u = 1.000. By losing the “1" in the matrix, we have lost the solution. The change
Srom 10,001 to 10,000 has changed the answer from u =1 to u =0 (100% error!).

If we exchange rows, even this weak computer finds an answer that is correct to
three places:

—u+v=>0 —u+v=>0 =1
00w +wv=1 r=1 v=1.

The original pivots were .0001 and 10.000—badly scaled. After a row exchange the
exact pivots are —| and 1.000] —well scaled. The computed pivots —1 and 1 come
close to the exact values. Small pivots bring numerical instability, and the remedy is
partial piveting. The kth pivot is decided when we reach and search column k:

Choose the largest number in row k or below. Exchange its row with row k.

The strategy of complete pivoting looks also in later columns for the largest pivot. It
exchanges columns as well as rows. This expense is seldom justified, and all major
codes use partial pivoting. Multiplying a row or column by a scaling constant can also
be worthwhile. If the first equation above is u + 10,0000 = 10,000 and we don't
rescale, then 1 is the pivot but we are in trouble again.

For positive definite matrices, row exchanges are not required. It is safe to accept
the pivots as they appear. Small pivots can occur, but the matrix is not improved by
row exchanges. When its condition number is high, the problem is in the matrix and
not in the order of elimination steps. In this case the output is unavoidably sensitive
to the input.
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The reader now understands how a computer actually solves Ax = b—by elimination
with partial pivoting. Compared with the theoretical description—find A~' and mul-
tiply A~'b—the details took time. But in computer time, elimination is much faster.
I believe this algorithm is also the best approach to the algebra of row spaces and
nullspaces.

Operation Counts: Full Matrices and Band Matrices

Here is a practical question about cost. How many separate operations are needed to
solve Ax = b by elimination? This decides how large a problem we can afford.

Look first at A, which changes gradually into /. When a multiple of row 1
is subtracted from row 2, we do n operations. The first is a division by the pivot,
to find the multiplier £. For the other n — | entries along the row, the operation is a
“multiply-subtract.” For convenience, we count this as a single operation. If you regard
multiplying by £ and subtracting from the existing entry as two separate operations,
multiply all our counts by 2.

The matrix A is n by n. The operation count applies to all n — | rows below the
first. Thus it requires n times n — | operations, or n° — n, to produce zeros below the
first pivot. Check: All n® entries are changed, except the n entries in the first row.

When elimination is down to k equations, the rows are shorter. We need only
| operations (instead of n? —n) to clear out the column below the pivot. This is
true for 1 < k < n. The last step requires no operations (1% — 1 = 0), since the pivot
is set and forward elimination is complete. The total count to reach U is the sum of
k* — k over all values of k from | to n:

(P bR m (s Ay D LDV D S+ 1) _ P

6 2 . L
Those are known formulas for the sum of the first n numbers and the sum of the first
n squares. Substituting n = 1 into n® — n gives zero. Substituting n = 100 gives
a million minus a hundred—then divide by 3. (That translates into one second on a
workstation,) We will ignore the last term n in comparison with the larger term n?, to
reach our main conclusion:

The operation count for forward elimination (A to U) is in®.

That means $n° multiplications and §n” subtractions. Doubling n increases this cost
by eight (because n is cubed). 100 equations are OK, 1000 are expensive, 10000 are
impossible. We need a faster computer or a lot of zeros or a new idea.

On the right side of the equations, the steps go much faster. We operate on single
numbers, not whole rows. Each right side needs exactly n® operations. Remember
that we solve two triangular systems, Le¢ = b forward and Ux = ¢ backward. In back
substitution, the last unknown needs only division by the last pivot. The equation above
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Lu

Figure 9.1 A = L U for a band matrix. Good zeros in A stay zero in L and U.

it needs two operations—substituting x, and dividing by irs pivot. The kth step needs
k operations, and the total for back substitution is

_m‘n+l} N
a 2

]

l424...4n ,_1.n— operations.

The forward part is similar. The n® total exactly equals the count for multiplving A~'b!
This leaves Gaussian elimination with two big advantages over A~ !b:

1 Elimination requires {7’ operations compared to n’ for A/,

2 If A is banded so are L and [/. But A" is full of nonzeros,

Band Matrices

These counts are improved when A has “good zeros.” A good zero is an entry that
remains zero in L and U/. The most important good zeros are at the beginning of a
row. No elimination steps are required (the multipliers are zero). So we also find those
same good zeros in L. That is especially clear for this rridiagonal matrix A:

1 -1 | 1 -1
-1 2 -1 —1 1 1 =1
-1 2 -1 -1 1 1 -1
-1 2 -1 1 I

Rows 3 and 4 of A begin with zeros. No multiplier is needed, so L has the same
zeros. Also rows | and 2 end with zeros. When a multiple of row 1 is subtracted
from row 2, no calculation is required beyond the second column. The rows are short.
They stay short! Figure 9.1 shows how a band matrix A has band factors L and U.
These zeros lead to a complete change in the operation count, for “half-bandwidth” w:

A band matrix has ajj=0 when |i=j|>w.

Thus w = | for a diagonal matrix and w = 2 for a tridiagonal matrix. The length of
the pivot row is at most w. There are no more than w — 1 nonzeros below any pivoL
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Each stage of elimination is complete after w(w —1) operations, and the band structure
survives. There are n columns to clear out. Therefore:

Forward elimination on a band matrix needs less than w*n operations.

For a band matrix, the count is proportional to n instead of n”. It is also proportional
to w?. A full matrix has w = n and we are back to n?. For a closer count, remember
that the bandwidth drops below w in the lower right corner (not enough space). The
exact count to find L and [/ is

wiw = 1)(3n = 2w+ 1)
3
nn—=Dn+1) _n'—n
3 -3

for a band matrix

when w=n.

On the right side, to find x from b, the cost is about 2wn (compared to the usual n?).
Main point: For a band matrix the operation counts are proportional to n. This is
extremely fast. A tridiagonal matrix of order 10,000 is very cheap, provided we don’t
compute A~'. That inverse matrix has no zeros at all:

1 =1 O 0O 4 3 2 1
=1 2 =1 o G e k3 B 2 T
A=l g -1 2 | W8 AT=UTLT =15 5 5 3

0 0 —1 2 [ L E A

We are actually worse off knowing A~' than knowing L and U. Multiplication by
A~" needs the full n* steps. Solving Le = b and Ux = ¢ needs only 2wn. Here
that means 4n. A band structure is very common in practice, when the matrix reflects
connections between near neighbors. We see aj3 = 0 and a4 = 0 because 1 is not a
neighbor of 3 and 4.

We close with two more operation counts:

1 A ! costs n’ steps. 2 QR costs 3n° steps.
1 Start with AA~" = 1. The jth column of A~' solves Ax; = jth column of /.
Normally each of those n right sides needs n” operations, making n° in all. The left

side costs 1n® as usual. (This is a one-time cost! L and U are not repeated for each

new right side.) This count gives %n"‘ , but we can get down to n’.

The special saving for the jth column of [ comes from its first j — 1 zeros. No
work is required on the right side until elimination reaches row j. The forward cost
is +(n— j)* instead of 3n°. Summing over j, the total for forward elimination on the
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n right sides is n’. Then the final count of multiplications for A~' (with an equal
number of subtractions) is n° if we actually want the inverse matrix:

n n3 n’ e .
s (L and U) + r3 {forward) +n(?) {back substitutions) =n". (1)

2 The Gram-Schmidt process works with columns instead of rows—that is not so im-
portant to the count. The key difference from elimination is that the multiplier is de-
cided bv a dot product. So it takes n operations to find the multiplier, where elim-
ination just divides by the pivot. Then there are n “multiply-subtract” operations to
remove from column 2 its projection along column 1. (See Section 4.4 and Problem
4.4.28 for the sequence of projections.) The cost for Gram-Schmidt is 2n where for
elimination it is n. This factor 2 is the price of orthogonality. We are changing a dot
product to zero instead of changing an entry to zero.

Caution To judge a numerical algorithm, it is not enough to count the operations. Be-
yond “flop counting” is a study of stability and the flow of data. Van Loan emphasizes
the three levels of linear algebra: linear combinations ca + v (level 1), matrix-vector
Au + v (level 2), and matrix-matrix AB + C (level 3). For parallel computing, level 3
is best. AB uses 2n° flops (additions and multiplications) and only 2n® data—a good
ratio of work to communication overhead. Solving U/ X = B for matrices is better than
Ux = b for vectors. Gauss-Jordan partly wins after all!

Plane Rotations

There are two ways to reach the important factorization A = QR. One way works to
find @, the other way works to find K. Gram-Schmidt chose the first way, and the
columns of A were orthogonalized to go into Q. (Then R was an afterthought. It
was upper triangular because of the order of Gram-Schmidt steps.) Now we look at a
method that starts with A and aims directly at R.

Elimination gives A = L U, orthogonalization gives A = QR. What is the dif-
ference, when R and U are both upper triangular? For elimination L is a product of
E’s—with 1’s on the diagonal and the multiplier £;; below. QR uses orthogonal ma-
trices. The E’s are not allowed. We don’t want a triangular L, we want an orthogonal
Q.

There are two simple orthogonal matrices to take the place of the E’s. The re-
flection matrices | — 2uu" are named after Householder. The plane rotation matrices
are named after Givens. The matrix that rotates the xy plane by #, and leaves the :
direction alone, is Q7;:

cos! —sinf 0
Givens Rotation Q21 = | sin#d cost# 0
0 0 1
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Use (7 the way you used Ez;, to produce a zero in the (2, 1) position. That de-
termines the angle #. Here is an example given by Bill Hager in Applied Numerical
Linear Algebra (Prentice-Hall, 1988):

6 8 0 90 -—153 114 150 —155 —110
01A=| -8 6 0 2 =79 =ng|= i 75 =225
0 0 1 200 —40 395 200 —40 395

The zero came from —.8(90) + .6(120). No need to find #, what we needed was

90 —-120
sl = e and sl = —————, (2}
V907 + 1202 V907 + 1202

Now we attack the (3, 1) entry. The rotation will be in rows and columns 3 and 1.
The numbers cosé and sin# are determined from 150 and 200, instead of 90 and 120.
They happen to be .6 and —.8 again:

H 0 B8 1Ay - - 250 =125 250
0310214 = 0 1 0O 0 <« &= 0 75 =225 .
-8 0 .6 00 . - 0 100 325

One more step to R. The (3,2) entry has to go. The numbers cos# and sinf now
come from 75 and 100. The rotation is now in rows and columns 2 and 3:

1 0 07[2s0 —125 - 250 —125 250
032031021A= |0 6 .8 0 75 - | = 0 125 125
0 -8 b6 0 100 . D 0 375

We have reached the upper triangular R. What is Q7 Move the plane rotations Q;;
to the other side to find A = QR—just as you moved the elimination matrices E;; to
the other side to find A =L U:

03203102A=R means A= (05 03 03)R = QR. (3)

The inverse of each Q;; is Q'r.];. (rotation through —6). The inverse of E;; was not an

orthogonal matrix! Ea' added back to row i the multiple ¢;; (times row j) that Ej;
had subtracted. I hope you see how the big computations of linear algebra—L U and
Q R—are similar but not the same.

There is a third big computation—eigenvalues and eigenvectors. If we can make A
triangular, we can see its eigenvalues on the diagonal. But we can’t use U and we
can’t use R. To preserve the eigenvalues, the allowed step is not Q2;A but Q:|AQE_1|.

That extra factor lel for a similar matrix wipes out the zero that Q) created!

There are two ways to go. Neither one gives the eigenvalues in a fixed number
of steps. (That is impossible. The calculation of cos# and sin# involved only a square
root. The nth degree equation det(A — AJ) = 0 cannot be solved by a succession of
square roots.) But still the rotations Q;; are useful:
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Method 1 Produce a zero in the (3, 1) entry of Q) A, instead of (2, 1). That zero is
not destroyed when Q;l' multiplies on the right. We are leaving a diagonal of nonzeros
under the main diagonal, so we can't read off the eigenvalues. But this “Hessenberg
matrix” with the extra diagonal of nonzeros still has a lot of good zeros.

Method 2 Choose a different Q1. which does produce a zero in the (2, 1) position
of Qg;AQl'll. This is just a 2 by 2 eigenvalue problem, for the matrix in the upper
left corner of A. The column (cos8, —sinf) is an eigenvector of that matrix. This is
the first step in “Jacobi's method.”

The problem of destroying zeros will not go away. The second step chooses Qs
so that Q31Q2|AQ£11 Q;ll has a zero in the (3, 1) position. But it loses the zero in the
(2, 1) position. Jacobi solves 2 by 2 eigenvalue problems to find his Q;;, but earlier
nonzeros keep coming back. In general those nonzeros are smaller each time, and after
several loops through the matrix the lower triangular part is substantially reduced. Then
the eigenvalues gradually appear on the diagonal.

What you should remember is this. The (’s are orthogonal matrices—their
columns with (cosé,sinf) and (—sin#, cos@) are orthogonal unit vectors. Compu-
tations with the Q’s are very stable. The angle # can be chosen to make a particular
entry zero. This is a step toward the final goal of a triangular matrix. That was the
goal at the beginning of the book, and it still is.

Problem Set 9.1

1 Find the two pivots with and without partial pivoting for

001 0
a= [1 mm::-]'

With partial pivoting, why are no entries of L larger than 1?7 Find a 3 by 3 matrix
A with all |a;;| <1 and |£;;] <1 but third pivot = 4.

2  Compute the exact inverse of the Hilbert matrix A by elimination. Then compute
A~! again by rounding all numbers to three figures:

A = hilb(3) =

tadl— pd—  —
fal— = bH—
L) [y 1y ey -

3 For the same A compute b= Ax forx=(1,1,1) and x = (0, 6, —3.6). A small
change Ab produces a large change Ax.

<+ Find the eigenvalues (by computer) of the 8 by 8 Hilbert matrix a;; = 1/(i +
J —1). In the equation Ax = b with ||b]| = 1, how large can ||x|| be? If & has
roundoff error less than 10~!¢, how large an error can this cause in x?
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5

10

1

12

13

14

15

For back substitution with a band matrix (width w), show that the number of
multiplications to solve Ux = ¢ is approximately wn.

If you know L and U/ and Q and R, is it faster to solve LUx = b or QRx = b?

Show that the number of multiplications to invert an upper triangular n by n
matrix is about tn*. Use back substitution on the columns of /, upward from 1's.

Choosing the largest available pivot in each column (partial pivoting), factor each
Ainto PA=LU:

1 0
A_I:z 2] and A=

Put 1's on the three central diagonals of a 4 by 4 tridiagonal matrix. Find the
cofactors of the six zero entries. Those entries are nonzero in A~

(Suggested by C. Van Loan.) Find the L UV factorization of A = [‘[ :] On your
computer solve by elimination when & = 1074, 107, 1077, 1072, 10~ 15;

e 1 xn|l_|1l+e

o1 fx2 ]| 2 I
The true x is (1, 1). Make a table to show the error for each £. Exchange the
two equations and solve again—the errors should almost disappear.

Choose sinfl and cos @ to triangularize A, and find R:
cos# —sinf |[1 —1 * %
eun =[50 ema)[5 ][5 =%

Choose sinf and cosf to make Q2 AQ3, triangular (same A). What are the
eigenvalues?

When A is multiplied by @;;, which of the n® entries of A are changed? When
Q;;A is multiplied on the right by Qr]l- which entries are changed now?

How many multiplications and how many additions are used to compute Q;;A?
(A careful organization of the whole sequence of rotations gives %nJ multiplica-

tions and $n® additions—the same as for QR by reflectors and twice as many
as for LU.)

{Turning a robot hand) The robot produces any 3 by 3 rotation A from plane
rotations around the x, v, z axes. Then Q1:Q31021A = R, where A is orthogo-
nal so R is /! The three robot tumns are in A = 05,'@5,' 03, The three angles
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are “Euler angles™ and det Q = 1 to avoid reflection. Start by choosing cos# and
sinf so that

cosf# —sinfd 0O ' B 1 2 2
031A = | siné cosd 0 3 2 —1 2| iszerointhe (2, 1) position.
0 0 1]~ 2 2 -]

NORMS AND CONDITION NUMBERS = 9.2

How do we measure the size of a matrix? For a vector, the length is ||x||. For a matnx,
the norm is |A|l. This word “norm™ is sometimes used for vectors, instead of length.
It is always used for matrices, and there are many ways to measure ||A|. We look at
the requirements on all “matrix norms”, and then choose one.

Frobenius squared all the entries of A and added; his norm |A|| is the square
root. This treats the matrix like a long vector. It is better to treat the matrix as a
matrix.

Start with a vector norm: |x + y| is not greater than ||x| 4 ||y|l. This is the
triangle inequality: x + y is the third side of the triangle. Also for vectors, the length
of 2x or —2x is doubled to 2||x||. The same rules apply to matrix norms:

A+ Bl < [|A]l + |8l and lcAll = lel 1Al (1)
The second requirements for a norm are new for matrices—because matrices mul-

tiply. The size of Ax and the size of AB must stay under control. For all matrices
and all vectors, we want

lAx] =< Al lix]] and IAB| < AN BI. (2)

This leads to a natural way to define ||A]|. Except for the zero matrix, the norm is a
positive number. The following choice satisfies all requirements:

DEFINITION The norm of a matrix A is the largest ratio ||Ax||/llx|:

| Ax||
Al =

= ; (3)
x#0 ||x||

lAx||/llx]| is never larger than |A| (its maximum). This says that [|Ax| < ||A]l lx]l.

Example 1 If A is the identity matrix /, the ratios are always |x||/||lx|l. Therefore
7]l = 1. If A is an orthogonal matrix Q, then again lengths are preserved: || Qx| =
llx| for every x. The ratios again give || Q| = I.
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Example 2 The norm of a diagonal matrix is its largest entry (using absolute values):

2 0 .
The norm of A= [{} 3] is [A]=3.
R 3 9 NP 2 2 A A
The ratio is ||Ax| = ‘/E*xl + 3%x3 divided by |lx|| = \/x; + x5. That is a maximum
when x; =0 and x; = 1. This vector x = (0, 1) is an eigenvector with Ax = (0, 3).

The eigenvalue is 3. This is the largest eigenvalue of A and it equals the norm.

For a positive definite symmetric matrix the norm is |A| = dpax.

Choose x to be the eigenvector with maximum eigenvalue: Ax = Ay,.x. Then ||Ax||/|x]|
equals Ay, The point is that no other vector x can make the ratio larger. The matrix
is A = QAQ", and the orthogonal matrices Q and QT leave lengths unchanged. So
the ratio to maximize is really |[Ax|/|lx|. The norm Aya. is the largest eigenvalue in
the diagonal matrix A.

Symmetric matrices Suppose A is symmetric but not positive definite —some eigen-
values of A are negative or zero. Then the norm ||A|| is the largest of |Ay|, |A2], ....
|An|. We take absolute values of the A's, because the norm is only concerned with
length. For an eigenvector we have [[Ax| = ||Ax||, which is |A| times [|x]. Divid-
ing by |lx|| leaves |A|. The x that gives the maximum ratio is the eigenvector for the
maximum |&|.

Unsymmetric matrices If A is not symmetric, its eigenvalues may not measure its
true size. The norm can be large when the eigenvalues are small. Thus the norm is
generally larger than |A|lmax. A very unsymmetric example has &) = 4> = 0 but its
norm is not zero:

0 2 | Ax ||
— All = = 2.
A [[I (}] has norm Al m i
The vector x = (0, 1) gives Ax = (2,0). The ratio of lengths is 2/1. This is the
maximum ratio ||A||, even though x is not an eigenvector.

It is the symmetric matrix AT A, not the unsymmetric A, that has x = (0, 1) as
its eigenvector. The norm is really decided by the largest eigenvalue of ATA, as we
now prove.

9A The norm of A (symmetric or not) is the square root of hma (A" A):

- IAx |2 xTATAx o
|A]" = maxX ——— = max ——e = Amax(A A) L i4)
X£0 [|x||- X£0 x'x
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Proof Choose x to be the eigenvector of AT A corresponding to its largest eigenvalue
Amax. The ratio in equation (1) is then xTATAx = xT(Apax)x divided by xTx. For
this particular x, the ratio equals Apgy.

No other x can give a larger ratio. The symmetric matrix ATA has orthonor-
mal eigenvectors ¢, §.. . ., §, Every x is a combination of those vectors. Try this
combination in the ratio and remember that ¢[g; = 0:

xTAT Ax " g +--- -!-l:,,q,,JT{cli..tq; 4+ oo Cuhng,) _ C%Ju + H-—I-:?El,.

T = . (5)
xTx (cigy + - +cngy)T(c1q) + - +cngy) i+l

That last ratio cannot be larger than Ap,,. The maximum ratio is when all ¢’s are zero,
except the one that multiplies Amax.

Note 1 The ratio in (5) is known as the Rayleigh quotient for the matrix ATA. The
maximum is the largest eigenvalue Ama(ATA). The minimum is Amin(ATA). If you
substitute any vector x into the Rayleigh quotient xTAT Ax/xTx, you are guaranteed
to get a number between Amin and Amax.

MNote 2 The norm ||A|| equals the largest singular value o,y of A. The singular values
a1, . . ., o, are the square roots of the positive eigenvalues of ATA. So certainly oy =
(Amax)'/2. This is the norm of A.

MNote 3 Check that the unsymmetric example in equation (3) has Amax(ATA) = 4

A=[g {2}] Ieadsmdrﬁ‘:[g 3] with Anex = 4. So the norm is [JA]l = V4.

The Condition Number of A

Section 9.1 showed that roundoff error can be serious. Some systems are sensitive, oth-
ers are not so sensitive. The sensitivity to error is measured by the cendition number.
This is the first chapter in the book which intentionally introduces errors. We want to
estimate how much they change x.

The original equation is Ax = b. Suppose the right side is changed to b + Ab
because of roundoff or measurement error. The solution is then changed to x+Ax. Our
goal is to estimate the change Ax in the solution from the change Ab in the equation.
Subtraction gives the error equation A(Ax) = Ab:

Subtract Ax = b from A(x + Ax)=b+ Ab to find A{Ax)= Ab. (6)

The error is Ax = A~ Ab. It is large when A™! is large (then A is nearly singular).
The error Ax is especially large when Ab points in the worst direction—which is am-
plified most by A~'. The worst error has [|Ax| = [|[A~"|| ||Ab||. That is the largest
possible output error Ax.
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This error bound ||A~'|| has one serious drawback. If we multiply A by 1000,
then A~! is divided by 1000. The matrix looks a thousand times better. But a simple
rescaling cannot change the reality of the problem. It is true that Ax will be divided
by 1000, but so will the exact solution x = A~'b. The relative error | Ax|| /x| will
stay the same. It is this relative change in x that should be compared to the relative
change in b.

Comparing relative errors will now lead to the “condition number” ¢ = ||A] |A~!]].
Multiplying A by 1000 does not change this number, because A~ is divided by 1000
and the product ¢ stays the same.

9B The solution error is less than ¢ = ||A|| [|[A~"|| times the problem error:

IAx] _ lAB]
— t. !
i 1

(7)

If the problem error is AA (error in the matrix instead of in b), this changes to

| Ax]l |AAl

< | B
lx+Aax] — " [A] %

Proof The original equation is b = Ax. The error equation (6) is Ax = A~'Ab.
Apply the key property (2) of matrix norms:

1Bl < Al x| and |Ax| < |A7Y) | AB].

Multiply the left sides to get ||b]| ||Ax||, and also multiply the right sides. Divide both
sides by [|b] [lx|l. The left side is now the relative error ||Ax|/|lx|l. The right side is
now the upper bound in equation (7).

The same condition number ¢ = [JA[| A~ appears when the error is in the
matrix. We have AA instead of Ab:

Subtract Ax = b from (A + AA)x + Ax)=b to find A{Ax) = —(AA)x + Ax).

Multiply the last equation by A~' and take norms to reach equation (8):

| Ax| IAA]

ol SR | el
x + Ax] = AL A=

lAx] < |AT I IAA] llx + Ax] or Al -

Conclusion Errors enter in two ways. They begin with an error AA or Ab—a wrong
matrix or a wrong b. This problem error is amplified (a lot or a little) into the solution error
Ax. That error is bounded, relative to x itself, by the condition number ¢.

The error Ab depends on computer roundoff and on the original measurements of b.
The error AA also depends on the elimination steps. Small pivots tend to produce large
errors in L and U. Then L + AL times U + AU equals A + AA. When AA or the
condition number is very large, the error Ax can be unacceptable.
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Example 3 When A is symmetric, ¢ = ||A|| |A~!|| comes from the eigenvalues:

6 0 a_Js 0 |
A_[ﬂ 2] has norm 6. A _[ﬂ %] has norm 5.
This A is symmetric positive definite. Its norm is Aqe = 6. The norm of Al is
1 /Amin = % Multiplying those norms gives the condition number:

_ Amax B 6

= =_—=3
l:"-min 2

C

Example 4  Keep the same A, with eigenvalues 6 and 2. To make x small, choose
b along the first eigenvector (1,0). To make Ax large, choose Ab along the second
eigenvector (0, 1). Then x = £b and Ax = b. The ratio [|Ax||/|lx|| is exactly ¢ =3
times the ratio ||Ab|/||b].

This shows that the worst error allowed by the condition number can actually
happen. Here is a useful rule of thumb, experimentally verified for Gaussian elimina-
tion: The computer can lose logc decimal places to roundoff error.

Problem Set 9.2

1 Find the norms Amax and condition numbers Amax/Amin Of these positive definite

I N

2 Find the norms and condition numbers from the square roots of Amax(ATA) and

Anin(ATA): [_S 2] [.; {;] [..: :]

3 Explain these two inegualities from the definitions of ||A|| and || B|:
lABx|| < |All | Bx]| < Al I8 llx].

From the ratio that gives ||AB||, deduce that ||[AB|| < ||A||l ||B|. This is the key
o using matrix norms.

4 Use [AB| < ||A|l || B| to prove that the condition number of any matrix A is at
least 1.

5 Why is [ the only symmetric positive definite matrix that has Apa = Amin = 17
Then the only matrices with [|[A]| = 1 and ||A~'|| = 1 must have ATA = /. They
are matrices.
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6  Orhogonal matrices have norm ||| = 1. If A = QR show that ||A|| < ||R||
and also |R| < ||A|l. Then ||Al = [IR|l. Find an example of A = L U with
AN < HLINUY.

7 (a) Which famous inequality gives [|[(A + B)x|| < l|Ax| + ||Bx| for every x7
{(b) Why does the definition (4) of matrix norms lead to ||[A4 B < ||A|| 4| B||?

8 Show that if A is any eigenvalue of A, then || < ||All. Start from Ax = Ax.

9 The “spectral radius” p(A) = [Amax| is the largest absolute value of the eigen-
values. Show with 2 by 2 examples that p(A+ B) < p(A)+ p(B) and p(AB) <
plA)p(B) can both be false. The spectral radius is not acceptable as a norm.

10 (a) Explain why A and A~' have the same condition number.
(b) Explain why A and AT have the same norm.

11 Estimate the condition number of the ill-conditioned mairix A = H I.ﬂ%lil ]

12  Why is the determinant of A no good as a norm? Why is it no good as a con-
dition number?

13 (Suggested by C. Moler and C. Van Loan.) Compute & — Ay and b — Az when
b= 217 4 = T80 .563 _ | 341 . 999
= | .254 =lo13 659 ?T|-087] *T[-10
Is y closer than z to solving Ax = b? Answer in two ways: Compare the residual

b— Ay to b— Az. Then compare y and z to the true x = (1, —1). Both answers
can be right. Sometimes we want a small residual, sometimes a small Ax.

14 (a) Compute the determinant of A in Problem 13. Compute A~
(b) If possible compute ||A|| and [|A~"|| and show that ¢ > 10,

Problems 15-19 are about vector norms other than the usual |x| = J/x - x.

15  The “I' norm” and the *I™ norm™ of x = (x;.. . ..x,) are

lxlly = |xyl +---+|x] and |Ixfloc = max |x].
l<i<n

Compute the norms ||x|| and ||x|; and x|~ of these two vectors in RY:

=01 11L%D x=(.1,.7,.3; 4,.5).

16 Prove that ||x |l < |lx]| < ||x|l1. Show from the Schwarz inequality that the ratios

llxll/llx lls and [lx[|; /[lx || are never larger than ./n. Which vector (xy. .. .. x,) gives
ratios equal to /n?
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17 All vector norms must satisfy the rriangle inequality. Prove that

lx 4+ ¥yl < Ixllcc + llylle and x4+ ¥l < lxll + Iyl

18  Vector norms must also satisfy |lcx|| = |c| [lx||. The norm must be positive except
when x = 0. Which of these are norms for (x;.x2)7

lxlla = lx1] + 2|x2| llxllp = min |x;|

lxlic = I*ll + llxll«  lxllp = [[Ax]| (answer depends on A).
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ITERATIVE METHODS FOR LINEAR ALGEBRA = 9.3

Up to now, our approach to Ax = b has been “direct.” We accepted A as it came. We
attacked it with Gaussian elimination. This section is about iterative methods, which
replace A by a simpler matrix §. The difference 7 = S — A is moved over to the right
side of the equation. The problem becomes easier to solve, with § instead of A. But
there is a price——the simpler system has to be solved over and over.

An iterative method is easy to invent. Just split A into S —7. Then Ax =b is
the same as

Sx =Tx+b. (1)
The novelty is to solve (1) iteratively. Each guess x; leads to the next x;.:
Sxpp1 =Txp+b. (2)

Start with any xg. Then solve Sx; = Txg+b. Continue to the second iteration Sx; =
Tx; + b. A hundred iterations are very common—maybe more. Stop when (and if!)
the new vector x; is sufficiently close to x; —or when the residual Ax; — b is near
zero. We can choose the stopping test. Our hope is to get near the true solution, more
quickly than by elimination. When the sequence x; converges, its limit x = x~ does
solve equation (1). The proof is to let k — oo in equation (2).

The two goals of the splitting A = §5—T are speed per step and fast convergence
aof the x;. The speed of each step depends on § and the speed of convergence depends
on §7'T:

1 Equation (2) should be easy to solve for x;. The “preconditioner” S could be
diagonal or triangular. When its L U factorization is known, each iteration step
is fast.

2  The difference x —x; (this is the error ;) should go quickly to zero. Subtracting
equation (2) from (1) cancels b, and it leaves the error equation:

Sey.y = Te; which means e;.1 = 5~ ' Te;. (3)

At every step the error is multiplied by $7!'7. If §7'T is small, its powers go quickly
to zero. But what is “small™?

The extreme splitting is § = A and 7 = 0. Then the first step of the iteration is
the original Ax = b. Convergence is perfect and §~'T is zero. But the cost of that
step is what we wanted to avoid. The choice of § is a battle between speed per step
(a simple §) and fast convergence (S close to A). Here are some popular choices:

J § = diagonal part of A (the iteration is called Jacobi's method)

GS S = lower triangular part of A (Gauss-Seidel method)
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SOR 5 = combination of Jacobi and Gauss-Seidel (successive overrelaxation)
ILU S = approximate L times approximate U (incomplete L U method).

Ouwr first question is pure linear algebra: When do the x;’s converge to x? The
answer uncovers the number [A|ma that controls convergence. In examples of J and
GS and SOR, we will compute this “spectral radius™ |A|max. It is the largest eigenvalue
of the iteration matrix §~'T.

The Spectral Radius Controls Convergence

Equation (3) is ey4; = S~'Te;. Every iteration step multiplies the error by the same
matrix B = §~'T. The error after k steps is ex = B*ey. The error approaches zero
if the powers of B = S™'T approach zero. It is beautiful to see how the eigenvalues
of B—the largest eigenvalue in particular—control the matrix powers B*.

9C Convergence The powers B* approach zero if and only if every eigenvalue of
B sausfies |A| < 1. The rate of convergence is controlled by the spectral radius
A maxe

The test for convergence is |A|max < 1. Real eigenvalues must lie between —1 and 1.
Complex eigenvalues L = a-+ib must lie inside the unit circle in the complex plane. In
that case the absolute value |A| is the square root of a1+b1~Chapier 10 will discuss
complex numbers. In every case the spectral radius is the largest distance from the
origin 0 to the eigenvalues A,,. . ., 4,. Those are eigenvalues of the iteration matrix
B=5"T

To see why |Almax < 1 is necessary, suppose the starting error ep happens to be
an eigenvector of B. After one step the error is Bep = Lep. After k steps the error is
B*ey = 2¥ey. If we start with an eigenvector, we continue with that eigenvector—and
it grows or decays with the powers A*. This factor A* goes to zero when |4 < 1.
Since this condition is required of every eigenvalue, we need |i|pax < 1.

To see why |Almax < 1 is sufficient for the error to approach zero, suppose ep is
a combination of eigenvectors:

ep=c1x;+ - +epxy leads to e = (A x4+ enlhn)x,. (4)

This is the point of eigenvectors! They grow independently. each one controlled by
its eigenvalue. When we multiply by B, the eigenvector x; is multiplied by A;. If all
|4i] = | then equation (4) ensures that ¢; goes to zero.

Example 1 B =[:0-3] has Amax = 1.1 B’ =[-§ "] has Apax = .6 B is LI
times B. Then B is (1.1)> times B. The powers of B blow up. Contrast with the
powers of B'. The matrix (B')* has (.6)* and (.5)* on its diagonal. The off-diagonal
entries also involve (.6)%, which sets the speed of convergence.
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Note There is a technical difficulty when B does not have n independent eigenvectors.
(To produce this effect in B', change .5 to .6.) The starting error ¢g may not be a
combination of eigenvectors—there are too few for a basis. Then diagonalization is
impossible and equation (4) is not correct. We turn to the Jordan form:

B=5SI5" and B=sr'5"N. (5)
Section 6.6 shows how J and J* are made of “blocks” with one repeated eigenvalue:

.Jl.k kk‘:—l}

0

k
Al
2 o
The powers of a 2 by 2 block are ]: :J _'|:[I 2k

If || < | then these powers approach zero. The extra factor k from a double eigenvalue
is overwhelmed by the decreasing factor A*~'. This applies to all Jordan blocks. A
larger block has k*2*=2 in J*, which also approaches zero when |i| < 1.

If all || < | then J* — 0. This proves 9C: Convergence requires |A|max < 1.

Jacobi versus Seidel

We now solve a specific 2 by 2 problem. The theory of iteration says that the key
number is the spectral radius of B = S7'T. Watch for that number |A|max. It is also
written p{B)—the Greek letter “rho” stands for the spectral radius:

2u— v= 4 ) y | |2
I has the solution [u] = [I}] ; (6)

The first splitting is Jacobi’s method. Keep the diagonal terms on the left side (this is
§). Move the off-diagonal part of A to the right side (this is T). Then iterate:

2ugyy = +4

ZU,';.H =N — 2.

Start the iteration from ug = vg = 0. The first step goes to u) = 2, v; = —1. Keep
going:

(o] [4] 18] [oal 5] [oane] oo (5]

This shows convergence. At steps 1, 3. 5 the second component is —1, —1/4, —1/16.
The error is multiplied by § every two steps. So is the error in the first component.

The values 0, 3/2, 15/8 have errors 2, 5. ﬁ' Those also drop by 4 in each two steps.
The error equation is Sepy) = Tey:

[2 ﬂ]e _[u l]ﬂ —_— _[u
u_ 2 k=1 I {:‘ +1 %_

P

] €. (7)

= pa|=—
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Bl =

That last matrix is $~'T. Its eigenvalues are 1 and —%. So its spectral radius is

-

1 142 1
_r |0 3 _1 0 3 _|s O

Two steps multiply the error by % exactly, in this special example. The important mes-
sage is this: Jacobi's method works well when the main diagonal of A is large com-
pared to the off-diagonal part. The diagonal part is S, the rest is —7. We want the
diagonal to dominate and S'7 to be small.

The eigenvalue A = % i5 unusually small. Ten iterations reduce the error by
210 = 1024. Twenty iterations reduce e by (1024)%>. More typical and more expensive
i5 |A|lmax = .99 or 999,

The Gauss-Seidel method keeps the whole lower triangular part of A on the left
side as §:

piTT =vp+4 oF Uy = %W: +2 )
—lkl + 201 = =2 Vgt] = ,,-I—Hj;_;.[ - 1.
Notice the change. The new upy; from the first equation is used immediately in the
second equation. With Jacobi, we saved the old u; until the whole step was complete.
With Gauss-Seidel, the new values enter right away and the old wy is destroyed. This
cuts the storage in half! It also speeds up the iteration (usually). And it costs no more
than the Jacobi method.

Starting from (0, 0), the exact answer (2,0) is reached in one step. That is an
accident I did not expect. Test the iteration from another start ug =0 and vg = —1:

0 3/2 15/8 63/32 h 2
1| |-17a| [-1716] |-1/64| BPPTOACRES g f-
The errors in the first component are 2, 1/2, 1/8, 1/32. The errors in the second compo-
nent are —1, —1/4, —1/16, —1/32. We divide by 4 in one step not two steps. Gauss-
Seidel is twice as fast as Jacobi.

This is true for every positive definite tridiagonal matrix; |A|max for Gauss-Seidel
is the square of |A|max for Jacobi. This holds in many other applications—but not
for every matrix. Anything is possible when A is strongly nonsymmetric—Jacobi is
sometimes better, and both methods might fail. Our example is small:

T20 o1 |0 3
s_[_] 1] and :r_[ﬂ u} andST_f:ﬂ%.

The Gauss-Seidel eigenvalues are 0 and i Compare with ]5 and —% for Jacobi.

With a small push we can explain the successive overrelaxation method (SOR). The
new idea is to introduce a parameter @ (omega) into the iteration. Then choose this
number @ to make the spectral radius of S~'T as small as possible.
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Rewrite Ax = b as wAx = wb. The matrix § in SOR has the diagonal of the
original A, but below the diagonal we use wA. The matrix T on the right side is
S —wA:

2Uj 4 = (2 — 2w)uy + @ + 4

9
—wltpy) + 2054 = (2 = 2w — 2w, ®

This looks more complicated to us, but the computer goes as fast as ever. Each new
i+ from the first equation is used immediately to find vgy; in the second equation.
This is like Gauss-Seidel, with an adjustable number w. The key matrix is always
s

o l —w ™

> T_[%cu“—w} l-rj+;lm3]‘ a9

The determinant is (1 —w)®. At the best w, both eigenvalues turn out to equal 7—4+/3,

which is close to (§)°. Therefore SOR is twice as fast as Gauss-Seidel in this example.
In other examples SOR can converge ten or a hundred times as fast.

I will put on record the most valuable test matrix of order n. It is our favorite

—1. 2, —1 tridiagonal matrix. The diagonal is 2/. Below and above are —1's. Our

example had n = 2, which leads to cos% = é as the Jacobi eigenvalue. (We found

that 11 above.) Notice especially that this eigenvalue is squared for Gauss-Seidel:

9D The splittings of the —1, 2, —1 matrix of order n yield these eigenvalues of B:
Jacobi (S =0, 2, 0 matrix): ST has |Almax = cos f + |
F
b -
Gauss-Seidel (5§ = —1. 2, 0 matrix): ST has [Almax = ( cos ;TT[)

SOR (with the best @) §7'T has [Alma = ( cos - ‘]:/(' +sin — )
5 - it \ n-1: n - ]

Let me be clear: For the —1, 2, —1 matrix you should not use any of these
iterations! Elimination is very fast (exact L U/). Iterations are intended for large sparse
matrices—when a high percentage of the zero entries are “not good.” The not good
zeros are inside the band, which is wide. They become nonzero in the exact L and U,
which is why elimination becomes expensive.

We mention one more splitting. It is associated with the words “incomplete L U.”
The idea is to set the small nonzeros in L and UV back ro zero. This leaves triangular
matrices Ly and Uy which are again sparse. That allows fast computations.

The splitting has § = Lolp on the left side. Each step is quick:

LoUpxgyy = (A = LoUp)xy + b.

On the right side we do sparse matrix-vector multiplications. Don’t multiply Ly times Uy —
those are matrices. Multiply x; by Up and then multiply that vector by Ly. On the left side
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we do forward and back substitutions. If Lgl/ly is close to A, then |A|max 15 small. A
few iterations will give a close answer.

The difficulty with all four of these splittings is that a single large eigenvalue
in §~'T would spoil everything. There is a safer iteration—the conjugate gradient
method —which avoids this difficulty. Combined with a good preconditioner § (from
the splitting A = S—T), this produces one of the most popular and powerful algorithms
in numerical linear algebra.'

Iterative Methods for Eigenvalues

We move from Ax = b to Ax = Ax. Iterations are an option for linear equations.
They are a necessity for eigenvalue problems. The eigenvalues of an n by n matrix
are the roots of an nth degree polynomial. The determinant of A — A/ starts with
(=A)". This book must not leave the impression that eigenvalues should be computed
from this polynomial. The determinant of A — A/ is a very poor approach—except
when n is small.

For n > 4 there is no formula to solve det(A — AJ) = 0. Worse than that, the
A's can be very unstable and sensitive. It is much better to work with A itself, grad-
ually making it diagonal or triangular. (Then the eigenvalues appear on the diagonal.)
Good computer codes are available in the LAPACK library —individual routines are free
on www.netlib.org. This library combines the earlier LINPACK and EISPACK, with
improvements. It is a collection of Fortran 77 programs for linear algebra on high-
performance computers. (The email message send index from lapack brings informa-
tion.) For your computer and mine, the same efficiency is achieved by high quality
matrix packages like MATLAB.,

We will briefly discuss the power method and the QR method for computing
eigenvalues. It makes no sense to give full details of the codes.

1 Power methods and inverse power methods. Start with any vector mg. Multi-
ply by A to find u;. Multiply by A again to find u>. If up is a combination of the
eigenvectors, then A multiplies each eigenvector x; by A;. After k steps we have (3;)*:

up = Afug = c;O)*x ) + - + enldn)xn. (1)

As the power method continues, the largest eigenvalue begins to dominate. The vec-
tors m; point toward that dominant eigenvector. We saw this for Markov matrices in
Chapter 8:

9 3 : g i
A.-_[_l .?] has Apax =1  with eigenvector [25]

Start with up and multiply at every step by A:

A I 3

!Conjugate gradients are described in the author's book Infroduction to Applied Mathematics and in
greater detail by Golub-Van Loan and by Trefethen-Bau.
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The speed of convergence depends on the rario of the second largest eigenvalue A
to the largest A,. We don’t want A, to be small, we want A3/ to be small. Here
Aa/i1 = .6/1 and the speed is reasonable. For large matrices it often happens that
[’a/A1| is very close to 1. Then the power method is too slow.

Is there a way to find the smallest eigenvalue—which is often the most important
in applications? Yes, by the inverse power method: Multiply ug by A~' instead of A.
Since we never want to compute A~!, we actually solve Au; = ug. By saving the
L U factors, the next step Auy = u is fast. Eventually

cpx CnXn
+ =0 : :
(A1)F (hn)®

up = A_kl-t[} — {]2]

Now the smallest eigenvalue Amiy 1s in control. When it is very small, the factor l,f}.ﬁl-m

is large. For high speed, we make Ani, even smaller by shifting the matrix to A—A1%1.
If A* is close t0 Amin then A—A*[ has the very small eigenvalue Amin—A*. Each shifred
inverse power step divides the eigenvector by this number, and that eigenvector quickly
dominates.

2 The QR Method This is a major achievement in numerical linear algebra. Fifty
years ago, eigenvalue computations were slow and inaccurate,. We didn’t even realize
that solving det(A—AJ) = 0 was a terrible method. Jacobi had suggested earlier that A
should gradually be made triangular—then the eigenvalues appear automatically on the
diagonal. He used 2 by 2 rotations to produce off-diagonal zeros. (Unfortunately the
previous zeros can become nonzero again. But Jacobi’s method made a partial come-
back with parallel computers.) At present the OR method is the leader in eigenvalue
computations and we describe it briefly.

The basic step is to factor A, whose eigenvalues we want, into QR. Remember
from Gram-Schmidt (Section 4.4) that Q has orthonormal columns and R is triangular.
For eigenvalues the key idea is: Reverse Q and R. The new matrix is RQ. Since
A; = RQ is similar to A = OR, the eigenvalues are not changed:

QRx =ix gives RQ(Q 'x) =10 'x). {13)

This process continues. Factor the new matrix A into @ R;. Then reverse the factors
to Ry Q). This is the next matrix A>, and again no change in the eigenvalues. Amaz-
ingly, those eigenvalues begin to show up on the diagonal. Often the last entry of Ay
holds an accurate eigenvalue. In that case we remove the last row and column and
continue with a smaller matrix to find the next eigenvalue.

Two extra ideas make this method a success. One is to shift the matrix by a
multiple of /, before factoring into @R. Then RQ is shifted back:

Factor Ay — ¢/ into QpRr. The next matrix is Ary1 = Re O + il

Ap+1 has the same eigenvalues as Ay, and the same as the original Ap = A. A good
shift chooses ¢ near an (unknown) eigenvalue. That eigenvalue appears more accurately
on the diagonal of Aj.;—which tells us a better ¢ for the next step to Ajsa.



9.3  lterative Methods for Linear Algﬁhra 473

The other idea is to obtain off-diagonal zeros before the O R method starts. Change
A to the similar matrix L~' AL (no change in the eigenvalues):

1 1 2 31Tl 1 5 3
LlAL = | 1 4 5 ] =|1 9 5
=1 1Li11 & 7 11 0 4 2

L~ subtracted row 2 from row 3 to produce the zero in column 1. Then L added
column 3 to column 2 and left the zero alone. If 1 try for another zero (too ambitious),
I will fail. Subtracting row 1 from row 2 produces a zero. But now L adds column 2
to column | and destroys it.

We must leave those nonzeros | and 4 along one subdiagonal. This is a “Hes-
senberg matrix”, which is reachable in a fixed number of steps. The zeros in the lower
left corner will stay zero through the QR method. The operation count for each OR
factorization drops from O(n?) to O(n?).

Golub and Van Loan give this example of one shifted QR step on a Hessenberg
matrix A. The shift is ¢/ = 71:

] 2 3 -54 1.69 0.835
A=14 5 6 leads to A = 31 653 —6.656
0 001 7 0 00002 7.012

Factoring A — 7/ into @R produced A; = RQ + 71. Notice the very small number
00002. The diagonal entry 7.012 is almost an exact eigenvalue of A, and therefore
of A. Another QR step with shift by 7.012/ would give terrific accuracy.

Problem Set 9.3

Problems 1-12 are about iterative methods for Ax = b.

1 Change Ax =bto x = (I —A)x+b. What are § and T for this splitting? What
matrix §~'T controls the convergence of xgy1 = (I — A)xx + b7

2 If A is an eigenvalue of A, then s an eigenvalue of B = I — A. The real
ecigenvalues of B have absolute value less than | if the real eigenvalues of A lie
between  and

3 Show why the iteration x4 = (/ —A)xg+b does not converge for A = [ _1 -1].

4  Why is the norm of B* never larger than | B||*? Then ||B|| < | guarantees that
the powers B* approach zero (convergence). No surprise since |A|ga is below
Bl

5 If A is singular then all splittings A = § — T must fail. From Ax = 0 show that
5~'Tx = x. So this matrix B=S5"'T has A = 1 and fails.
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6

10

11

12

13

14

15

Change the 2’s to 3's and find the eigenvalues of §™'T for Jacobi’s method:

; 30 0 1
Sxpe1=Txp+b is [U' 3]-"k+l=|:| G]Ig-}-b.

Find the eigenvalues of §~'T' for the Gauss-Seidel method applied to Problem 6:

3 0 0 1
[-l 3]Ik+]=[ﬂ ﬂ]:¢+b.

Does |Almax for Gauss-Seidel equal |.1.|§m for Jacobi?

For any 2 by 2 matrix 28] show that [A|ma equals [be/ad| for Gauss-Seidel
and |be/ad|'/? for Jacobi. We need ad # 0 for the matrix § to be invertible.

The best w produces two equal eigenvalues for S$~!T in the SOR method. Those
eigenvalues are w — | because the determinant is (w— 1)2. Set the trace in equa-
tion (10) equal to (@ — 1) + (@ — 1) and find this optimal w.

Write a computer code (MATLAB or other) for the Gauss-Seidel method. You can
define S and T from A, or set up the iteration loop directly from the entries a;;.
Test it on the —1, 2, —1 matrices A of order 10, 20, 50 with b= (1,0, . . .,0).

The Gauss-Seidel iteration at component § is

. 1 -
— o E - z: . pold
N =T ;(bi _;‘—1 Y _1 .'ﬂux’FJ )

If every x*" = x™ how does this show that the solution x is correct? How
does the formula change for Jacobi’s method? For SOR insert @ outside the
parentheses.

The SOR splitting matrix § is the same as for Gauss-Seidel except that the di-
agonal is divided by «w. Write a program for SOR on an n by n matrix. Apply
it withw=1, 1.4, 1.8, 2.2 when A is the —1, 2, —1 matrix of order n = 10.

Divide equation (11) by J-."I‘ and explain why [45/X;| controls the convergence of
the power method. Construct a matrix A for which this method does not con-
verge.

The Markov matrix A =[] 3] has 2 = 1 and .6, and the power method uy =
Afug converges to [J2]. Find the eigenvectors of A~'. What does the inverse
power method u_; = A *uy converge to (after you multiply by 647

Show that the n by n matrix with diagonals —1, 2, —1 has the eigenvector x| =
(sin 25, sin NIT"[ . .sin 25, Find the eigenvalue A by multiplying Ax;.
Note: For the other eigenvectors and eigenvalues of this matrix, change 7 o

Jjm in x; and 4.
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For A = [_‘11' '2] apply the power method u;+| = Au; three times starting with
1

Uy = [n]~ What eigenvector is the power method converging to?
In Problem 11 apply the imverse power method u;. | = A~ 'uy three times with
the same up. What eigenvector are the u;'s approaching?

In the OR method for eigenvalues, show that the 2, 1 entry drops from sin# in
A=0R to —sin? @ in RQ. (Compute R and R(Q.) This “cubic convergence”
makes the method a success:

cosf  sind cosf —sm# [|1 7
A=Lin§ 0 ]=QR=[5int? CDSE][[} J

If A is an orthogonal matrix, its QR factorization has Q = __and R =

. Therefore RQ = . These are among the rare examples when the
QR method fails.

The shifted QR method factors A — ¢f into QR. Show that the next matrix
Al = RQ + ¢l equals Q~'AQ. Therefore A; has the eigenvalues as A
(but is closer to triangular).

When A = AT, the “Lanczos method™ finds a’s and b's and orthonormal g’s so
that Aq; = bj_1q;_y +a;q; + bjq;., (with gq = 0). Multiply by g}" to find a
formula for a;. The equation says that AQ = QT where T is a _ matrix.

The equation in Problem 21 develops from this loop with by = | and rg = any ¢;:
dit1 =rjfbj; j=j+1; a= q}‘AqJ; ri= qu — bj_|qj_| —a;q;; bi = ||r;l.
Write a computer program. Test on the —1, 2, —1 matrix A. @7 Q should be /.
Suppose A is rridiagenal and symmetric in the QR method. From A} = Q~'AQ
show that A; is symmetric. Then change Then change to A} = RAR™! and
show that A; is also tridiagonal. (If the lower part of A; is proved tridiagonal

then by symmetry the upper part is too.) Symmetric tridiagonal matrices are at
the heart of the O R method.

Questions 24-26 are about quick ways to estimate the location of the eigenvalues.

24

If the sum of |a;;| along every row is less than 1, prove that |A| < 1. (If |x;|
is larger than the other components of x, why is |Zajjx;| less than |x;|? That
means |Axi| < |xi| so |A| < 1.)

(Gershgorin circles) Every eigenvalue of A is in a circle centered at a diagonal
entry a;; with radius r; = E};;‘-,‘Id‘,‘ji . This follows from (A—a;;)x; = L@ X;.

If |x;| is larger than the other components of x, this sum is at most r;|x;|. Di-
viding by |x;| leaves |A — a;;| < 1.
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25 What bound on |A|max does Problem 24 give for these matrices? What are the
three Gershgorin circles that contain all the eigenvalues?

i, SR . 2 -1 0
A=13 2 4 A=|-1 2 -1
2 4 0 -1 2

26 These matrices are diagonally dominant because each a;; > r; = absolute sum
along the rest of row i. From the Gershgorin circles containing all A’s, show that
diagonally dominant matrices are invertible.

1
1 ].
5]

1 3 4
A=]|3 1 5§ A=
4 5 1
The key point for large matrices is that matrix-vector multiplication is much faster
than matrix-matrix multiplication. A crucial construction starts with a vector b and
computes Ab, A%b, ... (but never A%!). The first N vectors span the Nth Krylov sub-
space. They are the columns of the Krylov matrix K y:

-
[ 5 IR FT N N ]

Kv=[b Ab A% ... AN-1p].

Here in “pseudocode”™ are two of the most important algorithms in numerical linear
algebra:

Arnoldi Iteration Conjugate Gradient Iteration for Positive Definite A
q=b/11b| x0=0,ro=b,py=ro
forn=1to N—-1 forn=11to N
v=Agq, an = (r}_,ra-1)/(pY_,Ap,_)step length x,_; to x,
for j=1ton Xn =Xn_1+0nPpu_) approximate solution
hjn =?_Tl-' Fn =Fp—1 — AP, new residual b — Ax,
v=v—hjugj| Bn=(rira))/(r}_ra-1) improvement this step
has1.0 = vl Pi=Tn+ BuPsi next search direction
Quit = U/ oy | % Notice: only | matrix-vector multiplication Aq and Ap

27  In Amoldi show that g, is orthogonal to g,. The Amoldi method is Gram-Schmidt
orthogonalization applied to the Krylov matrix: Ky = QnRy. The eigenvalues
of QI,AQN are often very close to those of A even for N <« n. The Lanczos
iteration is Amoldi for symmetric matrices (all coded in ARPACK).

28 In Conjugate Gradients show that ry is orthogonal to ry (orthogonal residuals) and
Pl Apy = 0 (search directions are A-orthogonal). The iteration solves Ax = b by

minimizing the error e’ Ae in the Krylov subspace. It is a fantastic algorithm.
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COMPLEX VECTORS AND
MATRICES

COMPLEX NUMBERS = 10.1

A complete theory of linear algebra must include complex numbers. Even when the
matrix is real, the eigenvalues and eigenvectors are often complex. Example: A 2 by
2 rotation matrix has no real eigenvectors. Every vector turms by # —the direction is
changed. But there are complex eigenvectors (1,¢) and (1, —i). The eigenvalues are
also complex numbers ¢/® and ¢, If we insist on staying with real numbers, the
theory of eigenvalues will be left in midair.

The second reason for allowing complex numbers goes beyond A and x to the
matrix A. The matrix itself may be complex. We will devote a whole section to the
most important example —the Fourier marrix. Engineering and science and music and
economics all use Fourier series. In reality the series is finite, not infinite. Computing
the coefficients in cje™® + c2e'™ + - 4 ¢,e™* is a linear algebra problem.

This section gives the main facts about complex numbers. It is a review for some
students and a reference for everyone. The underlying fact is that i* = —1. Everything
comes from that. We will get as far as the amazing formula ™' = 1.

Adding and Multiplying Complex Numbers

Start with the imaginary number i. Everybody knows that x% = —1 has no real solu-
tion. When you square a real number, the answer is never negative. So the world has
agreed on a solution called i. (Except that electrical engineers call it j.) Imaginary
numbers follow the normal rules of addition and multiplication, with one difference.
Whenever i* appears it is replaced by —1.

477
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10A A complex number (say 3 + 2i) is the sum of a real number (3) and a pure
imaginary number (2i). Addition keeps the real and imaginary pans separate. Mul-
tiplication uses i~ = —1:

Add: 34+20V+ (3421 =6+44

Multiply: (3 +2i01 —i)=3+4+2i —3i —2i*=5—1.

If I add 342 to | —i, the answer is 444, The real numbers 3+ 1 stay separate from
the imaginary numbers 2i —i. We are adding the vectors (3.2) and (1, —1).
The number (1 — i)? is | — i times | — i. The rules give the surprising answer —2i:

(1=l =) =1~i=i+4it==2,

In the complex plane, 1 — i is at an angle of —45°. When we square it to get —2i,
the angle doubles to —90°. If we square again, the answer is (=2i)? = —4. The —90°
angle has become —180°, which is the direction of a negative real number.

A real number is just a complex number : = a + bi, with zero imaginary part:
b =0. A pure imaginary number has a = (:

The real part is a = Re (a+ bi). The imaginary part is b =1Im (a + bi).

The Complex Plane

Complex numbers correspond to points in a plane. Real numbers go along the x axis.
Pure imaginary numbers are on the y axis. The complex number 3+ 2i is at the point
with coordinates (3, 2). The number zero, which is 0 + 0i, is at the origin.

Adding and subtracting complex numbers is like adding and subtracting vectors in
the plane. The real component stays separate from the imaginary component. The vectors
go head-to-tail as usual. The complex plane C' is like the ordinary two-dimensional plane
R?, except that we multiply complex numbers and we didn’t multiply vectors.

Now comes an important idea. The complex conjugate of 3+ 2i is 3—2i. The
complex conjugate of z =1—1{ is 2= 1+1i. In general the conjugate of z = a+bi is
Z = a—hi. (Notice the “bar™ on the number to indicate the conjugate.) The imaginary
parts of z and “z bar” have opposite signs. In the complex plane, I is the image of
on the other side of the real axis.

Two useful facts. When we multiply conjugates 7, and 73, we get the conjugate
of zyz2. When we add Z, and Z;. we get the conjugate of z; + z;:

L1+2=03-2i)+ (1 +i)=4—i = conjugate of z| + z3.
TixZa=(3-2i)x(14+i)=5+i = conjugate of z; x z2.

Adding and multiplying is exactly what linear algebra needs. By taking conjugates of
Ax = Ax, when A is real, we have another eigenvalue A and its eigenvector X:

If Ax =)x and A is real then AX = ix. (1
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Imaginary
axis
2i1 I=34+2i
Complex
Ilﬂ i+ .l‘=]:|=v,,."32+2:
f 1 +—= Real axis
1 2 3

Figure 10.1 : =a + bi corresponds to the point (a, b) and the vector [§].

Something special happens when z = 3 4 2i combines with its own complex conjugate
Z =3 — 2i. The result from adding z + Z or multiplying zZ is always real:
34+2)+(3-2i)=6 (real)
(3+2i) x (3=2i) =9+6i —6i —4i> =13 (real).

The sum of z = a+bi and its conjugate Z = a—bi is the real number 2a. The product
of z times Z is the real number a” + b*:

2F = (a + bi)(a — bi) = a® + b, (2)

The next step with complex numbers is division. The best idea is to multiply the de-
nominator by its conjugate to produce a” + b* which is real:
1 1 a-ib a-—ib 1 1 3-2i 3-2i

atib atibd—ib @+ 3+2% 3+243-=F 13

In case a® + b* = |, this says that (a +ib)~" is @ — ib. On the unit circle, 1/z is Z.
Later we will say: 1/¢" is e~ (the conjugate). A better way to multiply and divide
is to use the polar form with distance r and angle 6.

The Polar Form

The square root of a*4b? is |z]. This is the absolute value (or modulus) of the number
z=ua+ib. The same square root is also written r, because it is the distance from 0
to the complex number. The number » in the polar form gives the size of z:

The absolute value of z=a+ib is |zl =+a®*+b% This is also called r.
The absolute value of z =342 is |z]=+v32+22 Thisis r=+13.

The other part of the polar form is the angle #. The angle for z =5 is # = 0 (because
this z is real and positive). The angle for z = 3i is 7/2 radians. The angle for z = —9
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= T -|. I=3-2
Figure 10.2 Conjugates give the mirror image of the previous figure: z + Z is real.

is m radians. The angle doubles when the number is squared. This is one reason why
the polar form is good for multiplying complex numbers (not so good for addition).
When the distance is r and the angle is @, trigonometry gives the other two sides
of the triangle. The real part (along the bottom) is @ = rcosf. The imaginary part
(up or down) is b = rsinf. Put those together, and the rectangular form becomes the

polar form:
The number . z=a+ib isalse z=rcosf+irsing.

Note: cos@ + isin® has absolute value r = 1 because cos® 6 + sin’@ = 1. Thus
cos @ +isind lies on the circle of radius 1 —the wnit circle.

Example 1 Find r and # for z = 1 +i and also for the conjugate =1 —i.
Solution The absolute value is the same for z and Z. Here it is r = /1 + | = +/2:

lz?P=1+12=2 andalso [FP=1+(-1)*=2.

The distance from the center is +/2. What about the angle? The number | + i is at
the point (1, 1) in the complex plane. The angle to that point is 7 /4 radians or 45°.
The cosine is 1/+/2 and the sine is Ifﬁ, Combining r and 6 brings back z =1 +i:

) 1 : 1 :
rmﬁﬂ+:r5mﬂ-sﬁ(ﬁ) +|\ﬁ(ﬁ) =1+i.

The angle to the conjugate | —i can be positive or negative. We can go to 7w /4
radians which is 315°. Or we can go backwards through a negative angle, 10 —m /4
radians or —45°, If z is at angle 0, its conjugate Z is at 2x — 0 and also at —6.

We can freely add 27 or 47 or —27 to any angle! Those go full circles so
the final point is the same. This explains why there are infinitely many choices of #.
Often we select the angle between zero and 27 radians. But —€ is very useful for the
conjugate z.
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Powers and Products: Polar Form

Computing (1 + f}z and (1+i)® is quickest in polar form. That form has r = V2 and
8 = /4 (or 45°). If we square the absolute value to get r> = 2, and double the angle
to get 268 = x/2 (or 90°), we have (1 +i)2. For the eighth power we need r% and 88:

r$=2.2.2.2=16 and 39:3-%:2::.

This means: (1 + i)® has absolute value 16 and angle 2x. The eighth power of 14i
is the real number 16.
Powers are easy in polar form. So is multiplication of complex numbers.

10B The polar form of z" has absolute value »". The angle is n times 6:

The nth power of z=r(cosf +isinf) is z" =r"(cosnf +isinnd). (3)

In that case z multiplies itself. In all cases, multiply r's and add angles:
r(cosf +isin@) times r'(cosf’ +isin@') = rr'(cos(d + 8") + isin(@ +6"). (4)

One way to understand this is by trigonometry. Concentrate on angles. Why do we
get the double angle 26 for z2?

(cos@ +isinf) x (cosf +isinf) = cos” 6 + i* sin® @ + 2i sin 8 cos .

The real part cos® @ —sin® 8 is cos 26. The imaginary part 2sin# cos# is sin26. Those
are the “double angle” formulas. They show that 6 in z becomes 26 in in z2.

When the angles # and @’ are different, use the “addition formulas™ instead:
(cosf +isin#)(cosf +isinB’) = [cosfcosA —sinHsinf’] + i[sinf cos@' + cosHsind’]

In those brackets, trigonometry sees the cosine and sine of # +8". This confirms equa-
tion (4), that angles add when you multiply complex numbers.

There is a second way to understand the rule for z". It uses the only amazing
formula in this section. Remember that cosf +i sinf has absolute value 1. The cosine
is made up of even powers, starting with 1 — %82. The sine is made up of odd powers,
starting with 6 — 36°. The beautiful fact is that ¢/ combines both of those series into
cos @ +isiné:

e*=1+x+ lx2+-l-x3++-* becomes e'® =1+i9+1f2491+lf3$3+m
2 6 2 6
Write —1 for i>. The real part 1 — 36> + .. is exactly cosf. The imaginary part
o — 51-53 + .-+ is sinf. The whole right side is cos® + i sinf:

Euler’s Formula e = cosf +isinf. (5)
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E,--1-:r i'6 E,I:I i/

- Yoy i
E,]-::x’ﬁ = gt — |

i El!hn'.-'ﬁ

Figure 10.3  (a) Multiplying ¢'" times """ (b) The 6th power of 7/ js ¢2 = |,

The special choice # = 27 gives cos 2 + i sin2r which is 1. Somehow the infinite
series e = | + 2mi + -_';-{2.1'{:'}: + -+ adds up to 1.

Now multiply ¢'¥ times ¢'* 3 Angles add for the same reason that exponents add:

is e because (e)(e) x (e)e)e) = (e)e)e)e)e)

il i ia B+

e times ¢

(6)

: ] 2ie (L :
4 times & 15 € " umes ¢ 15 €

Every complex number a+ib = rcos/ +ir sinf now goes into its best possible form.
That form is re'”.

The powers (re'”)" are equal to +"¢™”. They stay on the unit circle when r = 1
and r" = 1. Then we find n different numbers whose nth powers equal |:

S“ w= Ezl."“r- m .ﬁm #1;'1'21 itt’-'wl ‘Hmjt

Those are the “ath roots of 1.7 They solve the equation z" = 1. They are equally
spaced around the unit circle in Figure 10.3b, where the full 27 1s divided by n. Mul-
tiply their angles by n to take nth powers. That gives w" = ¢ which is 1. Also
(w’)" = ¢*™ = 1. Each of those numbers, to the nth power, comes around the unit
circle to 1.

These roots of | are the key numbers for signal processing. A real digital com-
puter uses only 0 and 1. The complex Fourier transform uses w and its powers. The
last section of the book shows how to decompose a vector (a signal) into n frequencies
by the Fast Fourier Transform.
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Problem Set 10.1

Questions 1-8 are about operations on complex numbers.
1 Add and multiply each pair of complex numbers:

{a) 24i.2-—i (b) —=14i, -14i (¢} cos# +isinf, cosf —isinf
2  Locate these points on the complex plane. Simplify them if necessary:

(@ 24+i (B Q2+ © w5 (A 2+

3 Find the absolute value r = |z| of these four numbers. If # is the angle for 6—8i,
what are the angles for the other three numbers?

(@ 6-8i (b (6-8i)P () FHy (@) (6+8i)?

4 If |zl =2 and |w| = 3 then |z x w| =
and [z —w| <

and [z 4+ w| < _ and |z/w| =

5  Find a + ib for the numbers at angles 30°,60°,90°, 120° on the unit circle. If
w is the number at 30°, check that w? is at 60°. What power of w equals 17

[ If z =rcosf +irsiné then 1/z has absolute value and angle . Its

polar formis . Multiply z x 1/z to get 1.

7  The 1 by 1 complex multiplication M = (a + bi)(c +di) is a 2 by 2 real multi-

00E-()

The right side contains the real and imaginary parts of M. Test M = (1 4 3i)(1 —3i).

8 A= A;+iA; is a complex n by n matrix and b = b +ib; is a complex vector.
The solution to Ax = b is x| +ix:. Write Ax = b as a real system of size 2n:

| J=2]=[)

Questions 9-16 are about the conjugate 2 = a — ib = re~™® of the number z =
a+ib=re’.

9 Write down the complex conjugate of each number by changing { 0 —i:

(@ 2—i (b) (2—iMl—=i) (c) &7/ (which is i)

d) eT=—1 () {H (whichisalsoi) (H %=
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10

1

12

13

14

15

16

The sum z +Z is always . The difference z —Z is always . Assume
z # 0. The product z x 7 is always . The ratio z/Z always has absolute
value .

For a real 3 by 3 matrix, the numbers a2, ay, ap from the determinant are real:

det(A =A== + @A +aiA+ag =0.

Each root A is an eigenvalue. Taking conjugates gives X 4aiitaT+ag =0,
s0 4 is also an eigenvalue. For the matrix with a;; =i — j, find det(A — AJ) and
the three eigenvalues.

Note The conjugate of Ax = Ax is AX = AX. This proves two things: A is an
eigenvalue and X is its eigenvector. Problem 11 only proves that A is an eigen-
value.

The eigenvalues of a real 2 by 2 matrix come from the quadratic formula:

a— A b
I d -

‘:lz—{a+d}l+[ad-br}=ﬂ

gives the two eigenvalues (notice the £ symbol):

v a+dx./(a+d)?—4ad —bo).
2
(a) If a=>b=d =1, the eigenvalues are complex when ¢ is
(b) What are the eigenvalues when ad = be?
(c) The two eigenvalues (plus sign and minus sign) are not always conjugates
of each other. Why not?

In Problem 12 the eigenvalues are not real when (trace)® = (a + d)* is smaller
than . Show that the A's are real when be = 0.

Find the eigenvalues and eigenvectors of this permutation matrix:
0

2 —00
o Rl e

0
0
1

o0 —a

Extend Py above to Py (five 1's below the diagonal and one in the corner). Find
det(Pg — A1) and the six eigenvalues in the complex plane.

A real skew-symmetric matrix (AT = —A) has pure imaginary eigenvalues. First
proof: If Ax = ix then block multiplication gives

1 alla]=eli]

This block matrix is symmetric. Its eigenvalues must be !'Soiis
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Questions 17-24 are about the form re'® of the complex number r cos @ + ir sin 8.

17

18

19

20

21

22
23

24

Write these numbers in Euler’s form re'®. Then square each number:
@ 1++3i (b)) cos20+isin20 (¢ -7 (d) 5-5i.

Find the absolute value and the angle for z = sin# +i cos# (careful). Locate this
z in the complex plane. Multiply z by cosf + i sinf to get

Draw all eight solutions of z* = 1 in the complex plane. What are the rectangular
forms a + ib of these eight numbers?

Locate the cube roots of 1 in the complex plane. Locate the cube roots of —1.
Together these are the sixth roots of

By comparing ¢’ = cos36 + i sin36 with (¢'*)? = (cosf + isin#)°, find the
“triple angle” formulas for cos 39 and sin 38 in terms of cos# and sin#.

Suppose the conjugate T is equal to the reciprocal 1/z. What are all possible z's?

(a) Why do ¢ and i* both have absolute value 17
(b) In the complex plane put stars near the points ¢’ and j*,
(¢) The number i¢ could be (¢'"/2)¢ or (e¥7/2). Are those equal?

Draw the paths of these numbers from r =0 to 1+ = 27 in the complex plane:

(a) et (b) gl=HM — =1 it © (-1 = gt
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HERMITIAN AND UNITARY MATRICES = 10.2

The main message of this section can be presented in the first sentence: When you
transpose a complex vector 7 or a matrix A, take the complex conjugate too. Don’t
stop at z' or AT, Reverse the signs of all imaginary parts, Starting from a column
vector with components z; = a; + ib;, the good row vector is the conjugate transpose
with components a; — ib;:

"frz[f] En]=[.ﬂ["-'f.b1 ﬂn—fb”], {”

Here is one reason to go to Z. The length squared of a real vector is x; S +x The
length squared of a cumplex v&ctm‘ is not z —|— -|—.:,21 With that wrnng deﬁmunn the
length of (1,i) would be 12 +i>=0. A nunzf:m vector would have zero length—not
good. Other vectors would have complex lengths. Instead of (a+bi)® we want a®+b2,
the absolute value squared. This is (a + bi) times (a — bi).

For each component we want z; times Z;, which is |z;|* = a® + b*. That comes
when the components of z multiply the components of Z:

<]
[21 - Z]| i | =l +- +lza® Thisis z'z=|z|% 2)

Now the squared length of (1,) is 12 +i|?> = 2. The length is +/2 and not zero. The
squared length of (144, 1—1) is 4. The only vectors with zero length are zero vectors.

DEFINITION The length ||z| is the square root of ||z||> =Z"z = |z1> 4+ -+ + |2a)?

Before going further we replace two symbols by one symbol. Instead of a bar
for the conjugate and T for the transpose, we just use a superscript H. Thus Z' = z'.
This is “z Hermitian,” the conjugate transpose of z. The new word is pronounced
“Hermeeshan.” The new symbol applies also to matrices: The conjugate transpose of
a matrix A is AH,

Notation The vector z" is ZT. The matrix AH is ET. the conjugate transpose of A:

|1 i H |1 0f_ . e
If A_[ﬂ l—H'} then A _[""’. l—r']_ A Hermitian.

Complex Inner Products

T

For real vectors, the length squared is x'x —the inner product of x with itself. For
H

complex vectors, the length squared is z"z. It will be very desirable if this is the
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inner product of z with itself. To make that happen, the complex inner product should
use the conjugate transpose (not just the transpose). There will be no effect when the
vectors are real, but there is a definite effect when they are complex:

DEFINITION The inner product of real or complex vectors # and v is u'lv:

Uy

wo <[l oo ]| i | = @+ i, (3)

U

H H

With complex vectors, u''v is different from v"u. The order of the vectors is now
important. In fact vu =Tuy+ -+ Ty, is the complex conjugate of u"y. We have
to put up with a few inconveniences for the greater good.

Example 1 Theinnerpmduclufn=[:]withu:[;]isll -ii[”:[]_ﬂmli.

Example 2 The inner product of u = ] 'DH with v = '? is utlo =2 - 2i.

Example 1 is surprising. Those vectors (1,7) and (i, 1) don’t look perpendicular. But
they are. A zero inner product still means that the (complex) vectors are orthogonal.
Similarly the vector (1,) is orthogonal to the vector (1, —i). Their inner product is
| — 1 =0. We are correctly getting zero for the inner product—where we would be

incorrectly getting zero for the length of (1,7) if we forgot to take the conjugate.

Note We have chosen to conjugate the first vector 4. Some authors choose the second
vector v. Their complex inner product would be u'9. It is a free choice. as long as we
stick to one or the other, We wanted to use the single symbol M in the next formula
100:

The inner product of Au with v equals the inner product of u with A" v:
(Au)"v = u"(A"v). (4)

The conjugate of Aun is Au. Transposing it gives @'A' as usual. This is a"AY. Ev-
erything that should work, does work. The rule for 1 comes from the rule for T. That
applies to products of matrices:

10C The conjugate transpose of AB is (AR = BH AN,

We are constantly using the fact that (a—ib)(c—id) is the conjugate of (a+ib)(c+id).

Among real matrices, the symmetric matrices form the most important special
class: A = A", They have real eigenvalues and a full set of orthogonal eigenvectors.
The diagonalizing matrix § is an orthogonal matrix ¢). Every symmetric matrix can
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be written as A = QAQ ! and also as A = QAQT (because Q' = Q7). All this
follows from a;; = aj;, when A is real.

Among complex matrices, the special class consists of the Hermitian matrices:
A = AY. The condition on the entries is now a;; = @;. In this case we say that “A
is Hermitian.” Every real symmetric matrix is Hermitian, because taking its conjugate
has no effect. The next matrix is also Hermitian:

A= [ 2 3- 3|':| The main diagonal is real since a;; = aj;.
T 343 5 Across it are conjugates 3 4 3i and 3 — 3§,

This example will illustrate the three crucial properties of all Hermitian matrices.
10D If A =AM and z is any vector, the number =% Az is real.

Quick proof: zHAz is certainly 1 by 1. Take its conjugate transpose:
(MagM = MHaR "M which is 2 Az again.

Reversing the order has produced the same 1 by | matrix (this used A = AH!) For |
by 1 matrices, the conjugate transpose is simply the conjugate. So the number zH Az
equals its conjugate and must be real. Here is z% Az in our example:

= 2 3—3l||¢z 3 o = e
[z ::][3_'_3‘. 5 l}[_4;]=32|=|+5'.—t:::+i3—31}:|:z+L’3+3¢]I:|-:z-

The terms 2|z;|® and 5|z2|* from the diagonal are both real. The off-diagonal terms
are conjugates of each other—so their sum is real. (The imaginary parts cancel when
we add.) The whole expression zH Az is real.

10E Every eigenvalue of a Hermitian matrix is real.

Proof Suppose Az = Az. Multiply both sides by z1 10 get Z9 Az = izHz. On the
left side, z" Az is real by 10D. On the right side, z"'z is the length squared, real and
positive. So the ratio A = zHAz/zMz is a real number. QEE.D.

The example above has real eigenvalues 4 = 8 and & = — 1. Take the determinant of
A—adltget(d—8)d+ 1)

‘2-3 3—-3i

e o 012
1e3 S_a|=A-TAH10-13+30)

= A2 —TA+ 10— 18 = (A — B){A + 1).

10F The eigenvectors of a Hermitian matrix are orthogonal (provided they corre-
spond to different eigenvalues). If Az = Az and Ay = fiy then y"z =0.
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Proof Multiply Az = Az on the left by y". Multiply yH A" = gy on the right by z:
yHAz = AiyHz and yHaAPz = gyMz (5)

The left sides are equal because A = AH. Therefore the right sides are equal. Since f
is different from , the other factor y"z must be zero. The eigenvectors are orthogonal,
as in the example with A =8 and g = —1:

[ -6 3=3i1[=]_[o0 T
(‘""8”1_[3+3i -3 ][:J‘[u} g z_[1+:‘]

[ 3 3=3[n]_][o0 1—j
e il | L A |

Take the inner product of those eigenvectors y and z:
H . 1 .
yzr= [ 1+i -1 ] =0 (orthogonal eigenvectors).

1+i

These eigenvectors have squared length 17 + 1% + 1 = 3. After division by +/3 they
are unit vectors. They were orthogonal, now they are orthonormal. They go into the
columns of the eigenvecror marrix S, which diagonalizes A.

When A is real and symmetric, it has real orthogonal eigenvectors. Then § is
(@ —an orthogonal matrix. Now A is complex and Hermitian. Its eigenvectors are com-
plex and orthonormal. The eigenvector matrix S is like (Q, but complex. We now
assign a new name and a new letter to a complex orthogonal matrix.

Unitary Matrices

A unitary matrix is a (complex) square matrix with orthonormal columns. It is de-
noted by U —the complex equivalent of Q. The eigenvectors above, divided by +/3 to
become unit vectors, are a perfect example:

U= L L L is a uni matrix
AL+ -1 t '

This U is also a Hermitian matrix. [ didn’t expect that! The example is almost too
perfect. Its second column could be multiplied by —1, or even by i, and the matrix of
eigenvectors would still be unitary:

1 1 =~l=r| A :
U__[l+f ) ] is also a unitary matrix.

V3

The matrix test for real orthonormal columns was Q7 Q = I. When Q7 multiplies Q.
the zero inner products appear off the diagonal. In the complex case, 0 becomes U
and the symbol T becomes H. The columns show themselves as orthonormal when U™
mﬁIﬁplies U. The inner products of the columns are again 1 and 0, and they fill up
Yrl:=1:
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(2l 3

1 1 1

1 Fo—de| | o3 axif3

-
Figure 10.4 The cube roots of 1 go into the Fourier matrix F = Fj.

10G The matrix U has orthonormal columns when UMD = I,
If {/ is square, it is & unitary matrix. Then UY = U~

1 | 1—i] | | 1 =i 1 0
Uiy = -
v‘ﬁ[l ! I ]v"ﬁl:l d | ] |:ﬂ l]. {m
Suppose U (with orthogonal column) multiplies any z. The vector length stays

the same, because zHUMUz = Mz, If z is an eigenvector, we learn something more:
The eigenvalues of unitary (and orthogonal) matrices all have absolute value |1| = 1.

10H If U is unitary then |Uz| = ||z)). Therefore Uz =4z leads to |4 = |.

Our 2 by 2 example is both Hermitian (U = U'™) and unitary (/' = UY), That
means real eigenvalues (4 = A), and it means absolute value one (A~! = ). A real
number with absolute value | has only two possibilities: The eigenvalues are | or —1.

One thing more about the example: The diagonal of I/ adds to zero. The trace
is zero. 50 one eigenvalue is A = |, the other is A = —1. The determinant must be 1
times —1, the product of the A’s.

Example 3 The 3 by 3 Fourier matrix is in Figure 10.4. 1s it Hermitian? Is it unitary?
The Fourier matrix is certainly symmetric. It equals its transpose. But it doesn’t equal
its conjugate transpose—ir is not Hermitian. 1If you change i to —i. you get a different
matrix.

Is F unitary? Yes. The squared length of every column is %{I + 14+ 1). The
columns are unit vectors. The first column is orthogonal to the second column because
| + ¢>™/3 4 ¢¥1/3 = 0, This is the sum of the three numbers marked in Figure 10.4.

Notice the symmetry of the figure. If you rotate it by 120°, the three points are
in the same position. Therefore their sum § also stays in the same position! The only
possible sum is § = 0, because this is the only point that is in the same position after
120° rotation.
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Is column 2 of F orthogonal to column 37 Their dot product looks like
(1453 £ 570 = L1+ 14 1).

This is not zero. That is because we forgot to take complex conjugates! The complex
inner product uses M not T:

(column 2)¥(column 3) = j];(] 1 e BSR4 2%E[3y

i i{] o Elrrr‘,-'S + E—:Hi'frj'} = (.
So we do have orthogonality. Conclusion: F is a unitary matrix.
The next section will study the n by n Fourier matrices. Among all complex uni-
tary matrices, these are the most important. When we multiply a vector by F, we are
computing its discrete Fourier transform. When we multiply by F~', we are comput-

ing the inverse transform. The special property of unitary matrices is that F~' = FH.
The inverse transform only differs by changing ¢ to —i:

| 1 1 1
F_I = FH sl E,-".JHH rmh‘fr';’]
V3| pdnifs  -2mifd

Everyone who works with F recognizes its value. The last section of the book will
bring together Fourier analysis and linear algebra.

This section ends with a table to translate between real and complex—for vectors
and for matrices:

Real versus Complex
R": vectors with n real components <« C": vectors with n complex components
length: [|x||> =x7 + - +x7 < length: ||z|> = [z1|> + -~ + |zu]*
(AT)ij = Aji = (AM); =45
(AB)T = BTAT « (AB)H = BHAH
dot product: xTy = x)y; +++++ Xa¥p <> inner product: ullv = vy + -+ + 0,
(Ax)Ty =xT(ATy) & (Auw)v =uMl(aAly)
orthogonality: xTy =0 <= orthogonality: uflv =0
Hermitian matrices: A = AM
A=UAU""=UAU" (real A)

symmetric matrices: A = AT
A=QAQ ' = QAQ (real A)

3

==
skew-symmetric matrices: KT = —K < skew-Hermitian matrices K" = — K
orthogonal matrices: Q7 = @~' < unitary matrices: UH = U~!
orthonormal columns: QTQ =1 < orthonormal columns: UHU = |

(Qx)"(Qy) =x"y and | Qx| = x| < (Ux)"(Uy)=x"y and |Uz| = |Iz]|

The columns and also the eigenvectors of @ and U are orthonormal. Every |i| = 1.



492  Chapter 10 Complex Vectors and Matrices

10

Problem Set 10.2

Find the lengths of w = (1 +i,1 —i, 1+2i) and v = (i, i,i). Also find «"v and

v,

Compute A"A and AAY. Those are both matrices:

Solve Az =0 to find a vector in the nullspace of A in Problem 2. Show that z is
orthogonal to the columns of AM™. Show that z is nor orthogonal to the columns
of AT.

Problem 3 indicates that the four fundamental subspaces are C(A) and N(A) and
and . Their dimensions are still r and n —r and r and m —r. They
are still orthogonal subspaces. The symbol ! takes the place of 1.

(a) Prove that AHA is always a Hermitian matrix.

(b) If Az =0 then AHAz = 0. If AHAz = 0, multiply by z/ to prove that
Az = 0. The nullspaces of A and AYA are . Therefore AHA is

an invertible Hermitian matrix when the nullspace of A contains only z =

True or false (give a reason if true or a counterexample if false):

(a) If A is a real matrix then A + i/ is invertible.

{b) If A is a Hermitian matrix then A 4 i [ is invertible.

(c) If U is a unitary matrix then A + i/ is invertible.

When you multiply a Hermitian matrix by a real number ¢, is cA still Hermitian?

If ¢ =i show that iA is skew-Hermitian. The 3 by 3 Hermitian matrices are a
subspace provided the “scalars™ are real numbers.

Which classes of matrices does P belong to: orthogonal, invertible, Hermitian,
unitary, factorizable into L U, factorizable into QR?

0

1 0
P=|0 0 1
1 0

0

Compute P, P*, and P'" in Problem 8. What are the eigenvalues of P?

Find the unit eigenvectors of P in Problem 8, and put them into the columns of
a unitary matrix F. What property of P makes these eigenvectors orthogonal?
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Write down the 3 by 3 circulant matrix C = 2/ + 5P + 4P?. It has the same
eigenvectors as P in Problem 8. Find its eigenvalues.

If U and V are unitary matrices, show that U~ is unitary and also UV is unitary.
Start from UMU = I and VHV =T

How do you know that the determinant of every Hermitian matrix is real?

The matrix A" A is not only Hermitian but also positive definite, when the columns
of A are independent. Proof: zH A Az is positive if z is nonzero because

Diagonalize this Hermitian matrix to reach A = UAUH:
0 1 —1i
w<[,2 7]
Diagonalize this skew-Hermitian matrix to reach K = UAUH, All A’s are

0 e o |
e=[,%, ]
Diagonalize this orthogonal matrix to reach 0 = U AUH, Now all A’s are

0= [c-::-sﬂ —sinﬂ} _

sin# coséd

Diagonalize this unitary matrix V to reach V = UAUH. Again all A’s are ___

Vo= L 1 _ 1—i _
L1+ =1
I oy v, is an orthogonal basis for C", the matrix with those columns is a

_ matrix. Show that any vector z equals {v]['z}v] + -4 {vﬂz}un.

The functions e™™* and e'* are orthogonal on the interval 0 < x < 27 because
s e 2
their inner product is f;” =f);

The vectors v = (1,i,1),w = (i, 1,0) and z = __ are an orthogonal basis
for

If A= R+iS§ is a Hermitian matrix, are its real and imaginary parts symmetric?
The (complex) dimension of C" is . Find a non-real basis for C".

Describe all 1 by | Hermitian matrices and unitary matrices. Do the same for 2
by 2.
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25 How are the eigenvalues of AM related to the eigenvalues of the square complex
matrix A7

26 If uMu = 1 show that / — 2uu™ is Hermitian and also unitary. The rank-one
matrix uu" is the projection onto what line in C"?

27 If A+iB is a unitary matrix (A and B are real) show that Q = [§ ~%] is an
orthogonal matrix.

28 If A+iB is a Hermitian matrix (A and B are real) show that [§ ~R ] is sym-
metric.

29  Prove that the inverse of a Hermitian matrix is a Hermitian matrix.

30 Diagonalize this matrix by constructing its eigenvalue matrix A and its eigenvec-
tor matrix S:
1 2 l—i] _ ,H
A [1 +i 3 ] A

31 A matrix with orthonormal eigenvectors has the form A = UAU™" = UAUM.
Prove that AAY = AMA. These are exactly the normal matrices.
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THE FAST FOURIER TRANSFORM = 10.3

Many applications of linear algebra take time to develop. It is not easy to explain them
in an hour. The teacher and the author must choose between completing the theory and
adding new applications. Generally the theory wins, because this course is the best
chance to make it clear—and the importance of any one application seems limited.
This section is almost an exception, because the importance of Fourier transforms is
almost unlimited.

More than that, the algebra is basic. We want to multiply quickly by F and F~',
the Fourier matrix and its inverse. This is achieved by the Fast Fourier Transform—
the most valuable numerical algorithm in our lifetime.

The FFT has revolutionized signal processing. Whole industries are speeded up by
this one idea. Electrical engineers are the first to know the difference—they take your
Fourier transform as they meet you (if you are a function). Fourier’s idea is to represent
f as a sum of harmonics cie™™®. The function is seen in frequency space through the
coefficients c;. instead of physical space through its values f(x). The passage backward
and forward between ¢'s and f's is by the Fourier transform. Fast passage is by the FFT.

An ordinary product Fe uses n? multiplications (the matrix has n” nonzero entries).
The Fast Fourier Transform needs only n times % log, n. We will see how.

Roots of Unity and the Fourier Matrix

Quadratic equations have two roots (or one repeated root). Equations of degree n have
n roots (counting repetitions). This is the Fundamental Theorem of Algebra, and to
make it true we must allow complex roots. This section is about the very special equa-
tion " = 1. The solutions z are the “nth roots of unity.” They are n evenly spaced
points around the unit circle in the complex plane.

Figure 10.5 shows the eight solutions to z* = 1. Their spacing is 3'5[36[}“} =
45°, The first root is at 45° or @ = 2x/8 radians. [t is the complex number w =
¢! = ¢'27/8, We call this number wg to emphasize that it is an 8th root. You could
write it in terms of cus—zf— and sin 1&‘1 but don’t do it. The seven other 8th roots are
w?, w?, ..., w®, going around the circle. Powers of w are best in polar form, because
we work only with the angle.

The fourth roots of 1 are also in the figure. They are i, —1, —i, 1. The angle is
now 2m/4 or 90°. The first root wy = e**'/* is nothing but i. Even the square roots
of | are seen, with w; = ¢/*™/?2 = —1, Do not despise those square roots 1 and —1.
The idea behind the FFT is to go from an 8 by 8 Fourier matrix (containing powers
of wg) to the 4 by 4 matrix below (with powers of wy = i). The same idea goes from
4 to 2. By exploiting the connections of Fy down to Fs and up to Fis (and beyond),
the FFT makes multiplication by Fips very quick.

We describe the Fourier matrix, first for n = 4. Its rows contain powers of |
and w and w? and w®. These are the fourth roots of 1, and their powers come in a
special order:
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v 4
we=|
Wi w=e3”"3=uusl;; -Hisinzﬂl
F 2n
= - B = .
L 1 s Real axis
pr 2
o wl=w =cmz‘f =i sm‘t‘;‘ll
wh=—f

Figure 10.5 The eight solutions 1o z* = 1 are 1, w, w?, ..., w" with w = (14i)/V2.

(A R R 1 1 1 1

- 1w w! ow 1 i ¢ i3
Y1 ow owt w71 S
1 w® wb u 1 3 % P®

The matrix is symmetric (F = F'). It is nor Hermitian. Its main diagonal is not real.
But éF 15 a wnitary matrix, which means that {{;FHHE‘F}z I:

The columns of F give FF =41, The inverse of F is § F™ which is § F.

The inverse changes from w = i to W = —i. That takes us from F to F. When the
Fast Fourier Transform gives a quick way to multiply by Fj, it does the same for the
inverse.

The unitary matrix is U/ = F//n. We prefer to avoid that /n and just put %
outside F~'. The main point is to multiply the matrix F times the coefficients in the

Fourier series cp + ¢1€'" + c2¢%% + ¢3e77:
| 1 | oo a+ci+eto
| T w! ur3 Cl g + o + 2 w2 + fgur',‘
o=y 2 o4 .6 =|_ .2 4 e (N
1w w ur (o] o+ oW 4+ caw” 4 cyw
1w w® w? (a1 g + Cy w? + c‘:wﬁ' -+ 3 w?

The input is four complex coefficients ¢y, ¢, ¢2, 3. The output is four function values
Y. ¥1. ¥2. ¥a. The first output yo = cp + 1 + ¢2 +c3 is the value of the Fourier series
at x = 0. The second output is the value of that series Ec‘ky'h at x = 2x [4:

T L RS L DI R v AP )

The third and fourth outputs y» and w3 are the values of qu”‘“ at x = 4 /4 and
x = 6m/4. These are finite Fourier series! They contain n = 4 terms and they are
evaluated at n = 4 points. Those points x =0, 27 /4, 47 /4, 671 /4 are equally spaced.
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The next point would be x = 87 /4 which is 2. Then the series is back to y.
because ™! is the same as ¢” = |. Everything cycles around with period 4. In this
world 2 + 2 is 0 because (w?)(w?) = w” = 1. In matrix shorthand, F times ¢ gives
a column vector y. The four y's come from evaluating the series at the four x’s with
spacing 2w /4:

3 -
' ' 2
¥ = Fe produces y; = Zﬂ-fmz"”"' = the value of the series at x = TJ
k=0

We will follow the convention that j and & go from 0 to n — | (instead of 1 to n).
The “zeroth row™ and “zeroth column™ of F contain all ones.
The n by n Fourier matrix contains powers of w = e>7'/":

1 1 I . I o »
1w w? .o c Vi
2 -
Fue=|1 w ur wir=1) e =] » |. (2)
1 w'! w2 | 1P a1 Y1

F, is symmetric but not Hermitian. Its columns are orthogonal, and F, F, = nl. Then
F; ! is Fu/n. The inverse contains powers of W, = e~ >"'/". Look at the pattern in F:

'mm#mj.cmmthuﬁ'. Row zero and column zero contain w° = 1.

The zeroth output is yg = cp +¢; + - -+ + ¢4—1. This is the series ¥ cpe'™ at x = 0.
When we multiply ¢ by F,., we sum the series at n points. When we mulriply y by
F', we find the coefficients ¢ from the function values y. The matrix F passes from
“frequency space” to “physical space.” F~! returns from the function values y to the
Fourier coefficients c.

One Step of the Fast Fourier Transform

We want to multiply F times ¢ as quickly as possible. Normally a matrix times a
vector takes n? separate multiplications—the matrix has n° entries. You might think it
is impossible to do better. (If the matrix has zero entries then multiplications can be
skipped. But the Fourier matrix has no zeros!) By using the special pattern w/* for
its entries, F can be factored in a way that produces many zeros. This is the FFT.
The key idea is to connect F, with the half-size Fourier matrix Fy2. Assume
that n is a power of 2 (say n = 2'% = 1024). We will connect Fipa4 to Fsja—or rather
to two copies of Fsj2. When n = 4, the key is in the relation between the matrices

I 1 11

ol Fa (e

.F4 = and =
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On the left is Fy. with no zeros. On the right is a matrix that is half zero, The work
is cut in half. But wait, those matrices are not the same. The block matrix with two
copies of the half-size F is one piece of the picture but not the only piece. Here is
the factorization of Fy with many zeros:

Fy= ; (3)
| —i 1 2 ]

The matrix on the right is a permutation. It puts the even ¢'s (cp and c3) ahead of
the odd ¢'s (c; and ¢3). The middle matrix performs separate half-size transforms on
the evens and odds. The matrix at the left combines the two half-size outputs—in a
way that produces the correct full-size output y = Fye. You could multiply those three
matrices to see that their product is Fj.

The same idea applies when n = 1024 and m = -_'Fn = 512. The number w is
e21/1024 14 i at the angle # = 277/1024 on the unit circle. The Fourier matrix Figos
is full of powers of w. The first stage of the FFT is the great factorization discovered
by Cooley and Tukey (and foreshadowed in 1805 by Gauss):

Fina = Isiz  Dsiz || Fsiz even-odd @
022 = 512 —Dspa Fs12 | | permutation |-

Isi2 is the identity matrix. Ds;z is the diagonal matrix with entries (1, w,..., w3y,
The two copies of F5;2 are what we expected. Don't forget that they use the 512th root
of unity (which is nothing but w?!!) The permutation matrix separates the incoming
vector ¢ into its even and odd parts ¢’ = (cp. €2, ..., cj022) and €” = (e, €3, ..., Cl1023).

Here are the algebra formulas which say the same thing as the factorization of Fyg4:

101 (FFT) Set m = ‘Jin. The first m and last m components of y = F,c are com-
binations of the half-size transforms y' = F,,¢’ and y" = F,¢". Equation (4) shows
Iy'+ Dy" and Iy — Dy":

[ F [
vi=v.4+uwyy, Jj=0,....m—1
Vigm = ¥; — Wa Vi,
Thus the three steps are: split ¢ into ¢ and ¢, transform them by £, into y' and
y", and reconstruct y from equation (5).

You might like the flow graph in Figure 10.6 better than these formulas. The
graph for n = 4 shows ¢ and ¢” going through the half-size F3. Those steps are
called “burterflies,” from their shape. Then the outputs from the F>'s are combined
using the / and D matrices to produce y = Fyc:
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This reduction from F,, to two F,’s almost cuts the work in half—you see the zeros
in the matrix factorization. That reduction is good but not great. The full idea of the
FFT is much more powerful. It saves much more than half the time.

The Full FFT by Recursion

If you have read this far, you have probably guessed what comes next. We reduced F,
to Fns2. Keep going to F,;s. The matrices F5)2 lead to Fase (in four copies). Then
256 leads to 128. Thar is recursion. It is a basic principle of many fast algorithms,
and here is the second stage with four copies of F = Fass and D = Dasg:

I D F. pick 0,4.,8,.--

Fj;g _ I =D F pick 2,6,10,:--
Fsiz | — I D ' pick 1,59,

I -D F || pick 3,7,11,--

We will count the individual multiplications. to see how much is saved. Before
the FFT was invented, the count was the usual n° = (1024)*. This is about a million
multiplications. 1 am not saying that they take a long time. The cost becomes large
when we have many, many transforms to do—which is typical. Then the saving by the
FFT is also large:

The final count for size n = 2! is reduced Srom n* to ém’.

The number 1024 is 2!° so /| = 10. The original count of (1024)% is reduced to
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That
is why the FFT has revolutionized signal processing.

Here is the reasoning behind %m’ . There are [ levels, going from n = 2/ down
to n = 1. Each level has %n multiplications from the diagonal D's, to reassemble
the half-size outputs from the lower level. This yields the final count %nf. which i1s

inlog,n.

00 00
¢

10 01

01 10
o

11 q ¥3 11

-1 iy

Figure 10.6  Flow graph for the Fast Fourier Transform with n = 4.
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One last note about this remarkable algorithm. There is an amazing rule for the
order that the c’'s enter the FFT, after all the even-odd permutations. Write the num-
bers 0 to n — | in binary (base 2). Reverse the order of their digits. The complete
picture shows the bit-reversed order at the start, the [ = log, n steps of the recursion,
and the final output ¥, ..., ¥n—1 which is F, times ¢. The book ends with that very
fundamental idea, a matrix multiplying a vector.

Thank you for studying linear algebra. 1 hope you enjoyed it, and | very much hope
you will use it. It was a pleasure to write about this neat subject.

Problem Set 10.3

1 Multiply the three matrices in equation (3) and compare with F. In which six
entries do you need to know that i* = —17

2 Invert the three factors in equation (3) to find a fast factorization of F~'.
3 F 15 symmetric. So transpose equation (3) to find a new Fast Fourier Transform!

4 All entries in the factorization of Fg involve powers of w = sixth root of 1:

[ | R

Write down these three factors with 1, w, w? in D and powers of w® in F3. Mul-
tiply!

5 If v =1(1,0,0,0) and w = (1,1,1,1), show that Fv = w and Fw = 4v.
Therefore F-'lw=vand F-lo=_

6  What is F? and what is F* for the 4 by 4 Fourier matrix?

7 Put the vector ¢ = (1,0, 1, 0) through the three steps of the FFT 1o find y = Fe.
Do the same for ¢ = (0, 1,0, 1).

8 Compute y = Fge by the three FFT steps for e = (1,0,1,0, 1,0, 1,0). Repeat
the computation for ¢ = (0,1,0,1,0,1,0, 1).

9  If w=e"""/™ then w? and \/w are among the and roots of 1.

10 (a) Draw all the sixth roots of 1 on the unit circle. Prove they add to zero.

(b) What are the three cube roots of 17 Do they also add to zero?
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The columns of the Fourier matrix F are the eigenvectors of the cyclic permuta-
tion P. Multiply PF to find the eigenvalues A; to Ay

o1 0 01 1 1 1 1 1 1 17[x
g ¢ 1ol & # &) |1 4 ¥ . 2
00 0 1 1 2 % S it A3
1 00 0|1 ¢ % ¢ 1 i % @7 A4

This is PF = FA or P = FAF~'. The eigenvector matrix (usually S) is F.

The equation det(P — AJ) = 0 is A* = 1. This shows again that the eigenvalue
matrix A is . Which permutation P has eigenvalues = cube roots of 17

(a) Two eigenvectors of C are (1,1, 1, 1) and (1,4, i*). What are the eigen-
values?

o € €2
&3 g € 2

€2 €3 0 C
] €1 €3 0o

T
T

and C 2=,

i3 i

—
—

(b) P = FAF~ immediately gives P2 = FA?F~! and P’ = FA’F~'. Then
C = col +c1 P+ca P2 4¢3 P3 = Flepl+ci A4 caA>+esAHF~' = FEF\.
That matrix E in parentheses is diagonal. It contains the of C.

Find the eigenvalues of the “periodic™ —1,2, —1 matrix from E = 2] — A —
A°, with the eigenvalues of P in A. The —1’s in the corners make this matrix
periodic:

2 -1 0 -1
-1 2 -1 0

C= 0 —1 7 1 hﬂsm:z,t‘l:—l'qzﬂ.cjz_lr
-1 0 -1 2

To multiply C times a vector x, we can multiply F(E(F 'x)) instead. The direct
way uses n° separate multiplications. Knowing E and F, the second way uses
only nlog, n + n multiplications. How many of those come from E, how many
from F, and how many from F~'?

How could you quickly compute these four components of Fe starting from
o + €2, c0 — 2, ¢1 + 3.y — 37 You are finding the Fast Fourier Transform!

aot+ecrt+ata
co+icy +i%er +i'cy
n -I-leﬂ - i f‘h:‘: + EBCJ
oo +icy +i% +i%c

Fe =
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SOLUTIONS TO SELECTED
EXERCISES

Problem Set 1.1, page 7

Ww+w=(7.5 and v —3w=(—1,=5) and cv + dw = (2c + d, ¢ + 24d).

The components of every cv+dw add 1o zero. Choose ¢ =4 and d = 10 to get (4, 2, —6).
The fourth comer can be (4, 4) or (4.0} or (=2, 2).

Five more corners (0,0, 1), (1, 1,0y, (1,0, 1), (0, I 1. (1.1, 1). ﬂwaenterpoint isig é 5
The centers of the six faces are i-'. 3. 0, {1 1) and {{} 1} (1, 1# and 11,{] é
(5. 1. 3.

A four-dimensional cube has 2* = 16 comers and 2-4 = § three-dimensional sides and 24

two-dimensional faces and 32 one-dimensional edges. See Worked Example 2.4 A.

sum = zero vector: sum = —4:00 vector: 1:00 is 60° from horizontal = (cos %,siu%}:
(3. ’:1
All combinations with ¢+d = | are on the line through v and w. The point V = —v+ 2w

is on that line beyond w.

The vectors cv+cw fill out the line passing through (0,0) and & = Lv+ Yw. It continues
beyond v 4+ w and (0,0). With ¢ = 0, half this line is removed and the “ray™ starts at
{0, 0).

ia) 3u+~_;n+ ~';|n is the center of the miangle between u, v and w; %ui—%m is the center
of the edge berween u and w ib) To fill in the triangle keep ¢ =0.d =0, e>=0, and
c+d+e=1.

The vector i:u+ v+ w) is outside the pyramid because ¢ +d + ¢ = é + % +.", = .

(a) Choose 4 = v = w = any nonzero vectlor {b) Choose a and v in different directions,
and w 1o be a combination like & + v,

An example is (g, b) = (3, 6) and (¢, d) = (1. 2). The ratios a/c and b/d are equal. Then
ad = he. Then (divide by fd) the ratios a/b and c/d are equal!

502
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Problem Set 1.2, page 17

Unit vectors v/||vl| = {_%, ‘i} = (.6,.8) and w/||w| = l;- _%j = (.8, .6). The cosine of & is

o T = 3. The vectors w,u, —w make 0°,90°, 180° angles with w.

(a) we{—v)=—1 (b) (v4+w)-(v—w) =v.v+w-v—v-w—w-w=I1+{ J—( }=1=0
so § =907 f¢) (v—=2w)-(v+2w=p-v—4w.-w= -3

7 All vectors w = (¢, 2c); all vectors (x, v.z) with x + v+ 2z =0 lic on a plane; all vectors

11
12
15
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n

perpendicular to (1,1, 1) and (1,2, 3) lic on a line.

If vyunfryw; = =1 then vrury = =vywy or vyw) + vaws = 0.

v.w < () means angle > 90°; this is half of the plane.

(1, 1) perpendicular to {1,5)—c(1, 1) if 6=2c=0o0rc =3; priw—cv)=0if c = v-w/v-v.

Y+ y) = 5; cos8 = 2J/16/V/104/10 = 8.

cosa = 1/v2, cos B =0, cosy = —1//2, cos? a + cos ,6+::ns2y = {LII:+ ::%+v§]f||u1|:

2v.w = 2|u||||w| leads to ||u+u.r||3 =p-v4+2v-w+w-w =< ||tl'|I:+2||HI|||IJ|} + lIwII:
(el + lw])>.

cosff = wj/||w| and sinf = w3 /|lw|. Then cos(f — a) = cos ficosa + sin fsina
vy /lellliwl + vawa/llelw| = v - w/{vl||w].

(a) ufw%+2mur|uzwg+u§w§ = ufwf+ ufw§+tr%wf+u%w§

1% uf m% + trzztr.r‘l? — 2uywyvaws which is (vyws — vauy )2 =0

is true because the difference

Example 6 gives lug||Uy| < 3u? + U]) and |uz||Uz] = $(u3 + U3). The whole line
becomes .96 < (.6)(.8) + (.8)(.6) < 5(.67 +.8%) + 3(.8% +.67) = 1.

Try v=1(1,2.-3) and w = (=3, 1,2) with cosf = -1'-;.'1- and # = 120°, Write v-w =
xz+yz+xy as %[:+,v +2)2 - :';Lt3+,v2+:2]|. If x4+v+2=0 this is —1;{_1‘1+}'3+:3L
so v w/|v|wl] = —4.

Three vectors in the plane could make angles = 90% with each other: (1,0),i—1.4),(—1. —4).
Four vectors could not do this (360° total angle). How many can do this in R? or R"?

Problem Set 2.1, page 30

The columns are § = (1,0,0) and j = (0,1.0) and k = (0,0,1) and b = (2,3, 4) =
2 + 3] + 4k.

The planes are the same: 2y =4 is x =2, 3y =9 s y =3 and 42 =16 is z = 4. The
solution is the same intersection point. The columns are changed; but same combination
X=ux
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5

15

17

19

23

24
26

29

3

32

34

ifz=2then x+y=0and x — y =z give the point (1,—1,2), If z=0then x4+ y=6
and x — y =4 give the point (5, 1,0). Halfway between 15 (3,0, 1),
Equation | + equation 2 — equation 3 is now 0 = —4. Line misses plane; no solution.
Four planes in 4-dimensional space normally meet at a point. The solutionto Ax = (3.3,3,2) is
x={0,0,1,2)if A has columns (1,0, 0,00, (1, 1,0,0), (1, 1, 1.0, (1, 1, 1, 1). The equations
mex+y+z+I=dy+z+r=3z4+t=3t=12
2x+3v+r+5t=8is Ar=>b with the 1 by 4 matrix A =[2 3 1 5]. The solutions
x fill a 3D “plane” in 4 dimensions.
- 0 1 o - v 10N -1 0 R
R = [—l I]]' 180% rotation from R —[ 0 —l]_ I
1. 0 0
E=[_h: [::|.E= -1 1 0}.
D o1
X
The dot product [1 4 5]| v | = (1 by 3)(3 by 1) is zero for points (x, y,z) on a plane
in three dimensions. The columns of A are one-dimensional vectors.
A=[1 2 : 3 4)andx=[5 2] and b=[1 T]. r=b— A=x prints as zero.
ones(4,4)xones4, H=[4 4 4 4] B=w=[10 10 10 10].
The row picture shows four lines, The column picture is in four-dimensional space. No
solution unless the right side is a combination of the rwo columns,
w7, vy, wy are all close to (.6, .4). Their components still add w 1.
8 31[6 61 . . - 3
[‘2 .T:| [4] = [_4_ = steady state §. Mo change when multiplied by [11 _.?].
B 3 4 [ S+u S—u+v S—v
M=|1 § 9|=|5—-u-uv 5 S54u+v |: M3(l,1.1) = (15, 15, 15);
6 7 2 J4+v S+u=—-v 5—u
Myl 1.1, 1) = (34, 34, 34, 34) because the numbers | to 16 add to 136 which is 4(34).
Problem Set 2.2, page 41
Subtract —‘]1" times equation | {(or add -l. times equation 1). The new second equation is
Jy=3 Then y = 1 and x = 5. If the right side changes sign, so does the solution:
(x, ¥y} = (=5, -1k
Subtract | = £ times equation 1. The new second pivot multiplying v is d — (cb/a) or

(ad — bc)fa. Then v = lag — cf )/ (ad — be).
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Singular system if b = 4, because 4x + 8y is 2 times 2x +4y. Then g = 216 = 32 makes
the system solvable. The lines become the same: infinitely many solutions like (8,0) and
(0, 4).

If k=3 elimination must fail: no solution. If k = —3, elimination gives 0 =0 in equa-
tion 2: infinitely many solutions. If £ =0 a row exchange is needed: one solution,

Subtract 2 times row | from row 2 0 reach (d — 10)y — z = 2. Equation (3) i8 y—z = 3,
If d =10 exchange rows 2 and 3. If = 11 the system is singular; third pivot is missing.

The second pivot position will contain —2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equation is —y —z = 0. A solution is (1,1, —1).

If row | = row 2, then row 2 is zero after the first step; exchange the zero row with row
3 and there is no third pivot. If column 1 = column 2 there is no second pivol

Row 2 becomes 3y —4z =5, then row 3 becomes (g +4)z =1 —5. If ¢ = —4 the system
is singular — no third pivot. Then if 1 = 5 the third equation 15 0 = 0. Choosing z =
the equation 3y —4z =35 gives y = 3 and equation | gives x = =9,

Singular if row 3 is a combination of rows | and 2. From the end view, the three planes
form a triangle. This happens if rows 142 = row 3 on the left side but not the right side:
for example x + y+2=0,x —2y—z= 1, 2x — y = 1. No parallel planes but still no
solution.

e
L — —

1 1 I I
A=|a a+l a+ 1 for any a,b,c leads to U = | O

b b+c b+c+3 0
a =2 (equal columns), ¢ =4 (equal rows), @ =0 (zero column).
A(2,:) = A(2,:) = 3= A(l,:) Subtracts 3 times row | from row 2.

The average pivots for rand(3) wirhour row exchanges were % 5, 10 in one experiment—
but pivots 2 and 3 can be arbitrarily large, Their averages are actually infinite! With row
exchanges in MATLAB’s lu code. the averages .75 and .50 and .365 are much more sta-
ble (and should be predictable, also for randn with normal instead of uniform probability
distribution).

Problem Set 2.3, page 53
0

0=
1

0] fro0] [1 0 0 T 100
of,.fjo1ro0}],]0 1 0 M=EpEyEy|=|-4 1 0
1| 201 [0-2 1 ] Lwo-2 1

Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a3z from
7 o 2 will change the pivot from 5 to no pivor.

_ = o

1
0
0

=2 =0
= = ]
o - 0

1 00 100 1 0 07
En=|-510|, Ep=|010], P=|001
01 071 010
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—_— 0

1 0
7 To reverse E3y, add 7 times row 1 to row 3. The matrix is R_:,]=|:[} 1 }
70
1 00
9 M=| 0 0 1|. After the exchange, we need E3; (not E3;) to act on the new row 3.
=110
Lo1] |1 1
10 E3=|0 1 0):10 0|:EnnElx=
001] [101
o 8 7 1 2 3
12 |6 5 4|,|]0 1 =2
321 0 2 -3

01
| D} . Test on the identity matrix!
01

14 Ejj has £ = —3, E3p has £33 = —3. Ey3 has £43 = —3. Otherwise the E’s match /.
1 00 1 00 1 00 1 00

18 EF=|a 1 0|, FE=| a 10|, E*=|2a 10|, FP=|0 1 0].
b e 1 b+ac ¢ 1 2b 0 1 0 3¢ 1

22 (a) Y a3jx; (b) ap; —ay (c) a3} — 2ay (d) (EAx)) = (Ax) = ) ayjxj.

25 The last equation becomes 0 = 3. Change the original 6 to 3. Then row 1 + row 2 =
row 3.

27 (a) No solution if d =0 and ¢ # 0 (b) Infinitely many solutions if 4 =0 and ¢ =0.
No effect from a and b.

28 A=Al=A(BC)=(AB)C=IC=C.

29 Given positive integers with ad — bc = 1. Certainly ¢ < a and b < d would be impos-
sible. Also ¢ > a and b > d would be impossible with integers. This leaves row 1 <
row 2 OR row 2 < row 1l. An example is M = B ;:| Multiply by [{]] _i] to

get [é ﬂ then multiply twice by |:_1 to get [1 : . This shows that M =

i

1 0 0 0 1 0 0 0
-1 1 00 . _|=1 1 0 0] = “inverse of Pascal”
0. E=| g -y 1 pfDeuuallyM=] 5 5 1 0| reduces Pascalto 7
06 0 =t 1 =i 3 9% 3

Problem Set 2.4, page 65

2 (a) A (column 3 of B) (b) (Row 1 of A) B (c) (Row 3 of A)(column 4 of B)
(d) (Row 1 of C)D(column 1 of E).
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W _[1 bn a2 22
w=ly Wman=[7 3]

(a) True  (b) False  (c) True  (d) False.
AF = [': f:: and E(AF) equals (EA)F because matrix multiplication is associative.
0o 0 1
(a) B=4I (M) B=0 ()B=|01 0 (d) Every row of B is 1,0,0.

10 0
(a) mn (every entry) ib) mnp (c) n® (this is n® dot products).

{a) Use only column 2 of B (b) Use only row 2 of A (ch—{d) Use row 2 of first A,
Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix,

(a) apy (b) £3) = a3y fay (c) asz — (ﬂgifluu (d) az - {gﬁluu.

R e Fe] | I B |
oe=[3 o]l o]=[o 1]=-e2
e P e I S

{a) (Row 3 of A)(column 1 of B) and (Row 3 of A)-(column 2 of B) arc both zero.

X 0 x x x| o0 x
by | x [ﬂ X x ] = 0 » x and X [l.ll' 0 x ] = o 0 x|
0 0 0 0 x| 0 0 x

upper triangular!

e e (Rl o

0 1
5 3

[

In Problem 30, ¢ = [_i] D=[ ] D—chja = [: 3[-] in lower comer of EA.

A times X =[xy x2 xi]| will be the identity matrix [ =[Ax; Ax2 Axsl

3 3 1 0 0
The solution for b = ]:5] is x = 3x) +5.1'2+E.r3=|: S]: A= [—1 1 ﬂ:l will

8 16 0 -1 1
produce those x; =(1,1.1),x2 =(0,1,1),x3 = (0,0, 1) as columns of its “inverse”.

01001 20110 03113
10100 02011 10311 Al A%

A=lo1010].A2={10201].A%=]|13031 Nno Zeros so
00101 1 1020 11303 diameter 3
10010 01102 31130
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39 If A is “northwest™ and B is “southeast”, AB is upper triangular and B A is lower triangular.

Row i of A ends with i — 1 zeros. Column j of B starts with n — j zeros. If i > j
then (row i of A) - (column j of B) = 0. So AR is upper triangular. Similarly BA is
lower triangular. Problem 2.7.40 asks about inverses and transposes and permutations of a
northwest A and a southeast B.

Problem Set 2.5, page 78

I |
- _ 0 | -1 _ ¥ 0 -1 _ T —4
A _[} n]‘ B _[_l i]' C _[_5 A

{a) In Ax = (1,0,0), equation | + equation 2 — equation 3 is 0 = | (b) The right
sides must satisfy by + by = by (c) Row 3 becomes a row of zeros—no third pivot.

B (a) The vector x = (1,1, —1) solves Ax =0 (b} Elimination keeps columns 1 +2 =

column 3. When columns | and 2 end in zeros so does column 3: no third pivot.

12 C=AB gives C"' =814 s0 A~ = BC!.

=
14 B~ = A~ [I “] = A~ [_l ?] subtract column 2 of A~! from column 1.

11

16 |:: i [ ﬂ] [ E o o b]=(ﬂd—br]f.Theinverseufnneman'ixis

the other divided by ad — be.

18 A2B =1 can be writien as A(AB)} = [. Therefore A~ is AB.

21 6 of the 16 are invertible, including all four with three 1's,
1 3 1 0 1 3 1 0 1 0o 7 -3]_ i
2139 0 |]"[n | -2 |]_’[u 1 -2 1}—[" A7)
1 3 1 0 1 0 -8 3]_ 3
3 8 0 |]"[ﬂ 13 —|]—[f ATk
[1 a b 1 0 0 I a 0 1 0 —b 1 0 0 1 —a ac—b
240 1 ¢ 01 0|=|0 1 00 1 —|[=[0 100 I ~c
00 1 0 0 1 00100 1 00 1 0 o0 1
10 0 2 -1 0
27 A=V =|-2 1 -3/ (notice the patten); A" = [-1 2 =I
0o 0 1 0 -1 1
0 i 0 =b
31 Elimination produces the pivots a and a—b and a—b. A~ = -a a 0.
ala — b) 0 =—a a

34 x=(1,1,...,1) has Px=0Qx so (P-(Q)x=0
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I o A~ 0 -D 1
* [—r: .f] o [—u—lca—' frl] ““d[ I n]'
37 A can be invertible but B is always singular, Each row of B will add o zero, from 0 +

1+2—3, so the vector x = (1, 1. 1, 1} will give Bx = 0. | thought A would be inveniible
as long as you put the 3’s on its main diagonal, but that's wrong:

Ax is invertible

3
0
|
1 -1

% I I P
-k =
lad D = D
= = b el

I
0
i
2

[ T
D R R
]
=
o
-
=
=
]

40 The three Pascal matrices have § = LU = LLT and then inv($) = inv(ZT)inv(L). Note
that the triangular L is abs(pascal(n, 1)) in MATLAB.

42 If AC = I for square matrices then C = A~" (it is proved in 2I that CA = I will also be
true). The same will be true for C*, But a square matrix has only one inverse so C = C*,

43 MM~ = (L =UV)(ly+Ully—VU)"'V)
= Ig=UV+U(ly—= VU 'V —-UVU(y - VU)" 'V
= ly=UV+U({lyw—VU)Ip—-VU 'V =1, (formulasl,2,4are similar)
Problem Set 2.6, page 91
2 {33 =1 and £33 =2 (and £33 = 1): reverse the steps to recover x + 3y + 6z = 11 from
Ux =¢

] times (x+y+z=5)4+2times (y+2:=2)+ ] times (z =2) gives x +3y+ 62 =11,

ol JE - L -
3 all11, i

U=EQEx'U=LU.

L=
bl =
Lol = =

10 ¢ = 2 leads to zero in the second pivot position: exchange rows and the matrix will be
OK. ¢ =1 leads to zero in the third pivot position. In this case the matrix is singular.

e I I | S | T

1 1 4 0 | 1 1 4 0
4 1 0 -4 4 |=|4 1 —4 o 1 -1
0 -1 | o o0 4 D -1 1 4110 0 1
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14

15

18

20

22

25

27

32

36

a r r r 1 a r r r a =0
a b s 5 . b—r s—r s-r b#r
a be x|l T4 c—% t—x% s c#Es
la b ¢ d 1 1 1 1 d—t d#1

B L H R E e S

T T R I
Checkthnl.-‘.zLU—[g IT] tlmes.r;sb—[”},

(a) Multiply LDU = LyDyUy by inverses 1o get Li‘lLD = DU U~ The left side is
lower triangular, the right side is upper triangular = both sides are diagonal.

(b} Since L, U, Lj. U; have diagonals of 1's we get D = Dy. Then Li_iL is [ and U|U‘I isl.

A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot (so 1
operation 10 find the multiplier and 1 to find the new pivot!). T = bidiagonal L times U/

1 200 1
. Reverse steps by L =

D = =

0
0
1
1

=N X
I
= oo

X x x 1 00 * & &
xxx|=|«10]]|0 {#"s are all known after the first pivot is used).
*

The 2 by 2 upper submatrix B has the first two pivots 2, 7. Reason: Elimination on A
starts in the upper lefi corner with elimination on B.

| B T O | I 1 11 1 1] Pascal's triangle in L and L.
12 3 4 5§ 11 1 23 4| MATLAB's lu code will wreck
13 61015|=]121 1 3 6. the pattern. chol does no row
1 4 10 20 35 1331 | 4| exchanges for symmelric

1 5153 70 | 4 6 41 | | matrices with positive pivots.

inv(A) # b should take 3 times as long as A\b (n” for A~ vs n? /3 multiplications for LU ).

This L comes from the —1,2, =1 tridiagonal A = LDLY. (Row i of L)+ (Column j of

E=ly o (%)(r{—l) +{|}(-'.‘5) =0fori>jsoLL' =1 Then L' leads 10

AT = (HTDTIL™ The —1.2, ~1 matrix has inverse Aj' = j(n =i+ D)/(n+ 1)
for i = j (reverse for i < j).
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Problem Set 2.7, page 104

2 (AB)T is not ATBT excepr when AB = BA. In that case transpose to find: BTAT =
ATBT,

0 0
A with themselves. If ATA =0, zero dot products = zero columns = A = zero matrix.

4 A= [{I l:| has A2 = 0. But the diagonal entries of AT A are dot products of columns of

T T
b HTz[;T ET]: MT = M needs AT=A,BT=C1DT=D.

8 The 1 in row 1 has n choices; then the 1 in row 2 has n — 1 choices ... (0! choices
overall).

10 (3,1,2,4) and (2,3, 1,4) keep only 4 in position; 6 more even P's keep 1 or 2 or 3 in
position; (2, 1,4, 3) and (3,4, 1,2) exchange 2 pairs. Then (1,2,3,4) and (4,3, 2, 1) make
12 even P's.

14 There are n! permutation matrices of order n. Eventually two powers of P must be the
same: If P*" = P¥ then P" — % = I. Cenainly r —5 < n!

01 0
P=["3 h] iaih}riwtﬂlpz=[? é]mdﬁ=[? g (1}] and PO = 1.

18 (a) 54+4+34+24 1 =15 independent entries if A = AT (b} L has 10 and D has 5:
total 15 in LDLT (c) Zero diagonal if AT = —A, leaving 4+ 3+ 2+ 1 = 10 choices.

'|3L1n':u|1 1#_1-:11{1 B T
o 3 3)=[ 9o - M ]-[,, o e 2n)lo 1]=20e"
f2-1 01 [
-l 2=i]|=
| 0 -1 2

"0 1 B 101 | 1 | A
22|10 A={0 1 |: 01lA=1]11 1 1

i 1 (23 1] -1/ L 1o 201 |

B 1770 1 2 & 2 1 I
24 PA = LU is 1 0 8| =10 1 3 8. If we wailt o
1 211 0 1/3 1 -2/3

1 1 211
exchange and use aj; as pivot then A = £ P1U) = [3 | ][I :H:U | 2].
1 1 002

29 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: show that an exchange always
reverses that count! Then 3 or 5 exchanges will leave that count odd.

1
1
i
0 -

L]
—_— .r'——'—‘l
o] s
|
—
I

—
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32

33
34

37

4

n

15

20

23

Z3

1 50 700
X I 40 2 6820 I truck
Inputs | 40 1000 [':|=Ax: AT_'p=[ ] 3 =[ ]
[2 50 x3 50 10000 50 3000 188000 | 1 plane
Ax -y is the cost of inputs while x - ATy is the value of outputs,

P3 = I so three rotations for 360°; P rotates around (1,1, 1) by 120°,

These are groups: Lower triangular with diagonal 1's, diagonal invertible D, permutations
P, orthogonal matrices with Q7 = @0~

Certainly BT is northwest. B2 is a full matrix! B! is southeast: H, -1 = [¥ 3]
The rows of B are in reverse order from a lower triangular L, so B = PL. Then B~ =
L='P=! has the columns in reverse order from L™'. So B! is southeast. Northwest
times southeast is upper triangular! B = PL and C = PU give BC = (PLP)U/ = upper
times upper,

The i, j entry of PAP isthen —i + 1,n — j + | entry of A. The main diagonal reverses order.

Problem Set 3.1, page 118

r+y#Ey+xand r+(y+zd#Flxr+y)+zand (o) +e3dx #ojx +cax.

(a) £x may not be in our set: not closed under scalar multiplication. Also no 0 and no —x
(b) c(x + y) is the usual (xy)*, while cx + cy is the usual (x)(y“). Those are equal. With
¢ =23, x =2 y=1 they equal 8. This is 3(2 + 1)!! The zero vector is the number 1.

(a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the
subspace must contain A — B =/ (c) All matrices whose main diagonal is all zero.

{a) The vectors with integer components allow addition. but not multiplication by i

(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any ¢
is allowed but not all vector additions.

(a) All matrices [g ';] (b) All matrices [g E] (c) All diagonal matrices.

{a) Two planes through (0,0, 0) probably intersect in a line through (0, 0, 0) (b} The
plane and line probably intersect in the point (0, 0,0} {c) Suppose x is in §N T and
y is in SNT. Both vectors are in both subspaces, s0 x + y and ¢x are in both subspaces.

{a) Solution only if by = 2b; and by = —b {(b) Solution only if by = <b).

The extra column b enlarges the column space unless b is already in the column space of
AT B 1 0 1] {larger column space) 1 0 1] (b already in column space)
' |0 D 1| (no solution to Ax=58) [0 | 1| (Ax = b has a solution)

The solution to Az =b+b* s z=x+y If b and b* arc in the column space so is
b+ b
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Problem Set 3.2, page 130

2 (a) Free variables xs, x4, x5 and solutions (=2, 1,0.0,0), (0,0,-=2,1,0), (0.0,-3,0,1)
(b) Free variable x3: solution (1, -1, 1).

12000 1 0 -1
4 R=|00123|, R=|0 1 1], R has the same nullspace as U and A.
00000 0 0 0

6 (a) Special solutions (3,1,0) and (5,0, 1) (b) (3,1,0). Total count of pivot and free

15 n.

T O i W ol U Y
BR_[G . U:| with I =[1]; R_L[D 5 l]wuhf_[u 1].

1 L1 1
1 ) A=|111
2 S T

14 If column |1 = column 5 then x5 is a free variable. Its special solution is (—1,0,0,0, 1).

|
10 {a) Impossible above diagonal (b} A = invertible = [1
1

— ]

(d A=21,LU=2I,R=1.

16 The nullspace contains only ¥ = 0 when A has 5 pivots. Also the column space is R?,
because we can solve Ax = b and every b is in the column space.

20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With 4
pivots in the other columns, the special solution is s = (1,0, 1,0, 1). The nullspace contains
all multiples of 5 (a line in R7).

24 This construction is impossible: 2 pivot columns, 2 free variables, only 3 columns.

01
26 A= [ﬂ [}]'

01 : O 0
30 A= 00 shows that (a)(b)(c) are all false. Notice rref(A’) = 0ol

100
010

1 0 10 11 g 1 00 . .
33 (a) [ﬂ l][[} u:|. [EI ﬂ]. |:ﬂ D]’ [D D} {b) All 8 matrices are R's!

Problem Set 3.3, page 141

32 Any zero rows come after these rows: R=[1 -2 -=-3], R=|: } R=1.

1 (a) and (c) are correct; (d) is false because R might happen to have 1's in nonpivot columns.

000 ¥ Ha
upper R moves all the way to the bottom.

120 - 0
3Ry =[001 Rg = [Ra Ra] Rc—r[‘ ]—»mewinme
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5
7

13

14

16
18

20

2

23

24

I think this is true.

Special solutions are columns of N =[-2 -1 1 0 =3 -5 0 1] and
(100 0 =2 1].

P has rank r (the same as A) because elimination produces the same pivol columns.

The rank of RT is also r, and the example matrix A has rank 2:
:. pT — 1 2 2 §T = 1 2 §= 1 3
- 1367 137 127

[nnTllszJ = ir{nTw}:T has rank one unless vl w =0,

-
Il
R =

If we know that rank (BT A7) < rank(AT), then since rank stays the same for transposes,
we have rank(AB) < rank(A).

Centainly A and B have at most rank 2. Then their product AB has at most rank 2. Since
BA is 3 by 3, it cannot be [ even if AB = 1.

(a) A and B will both have the same nullspace and row space as R (same R for both
matrices). (b) A equals an inverrible matrix times B, when they share the same R. A
key fact!

10 110 L LD 000
A = (pivot columns){nonzero rows of R)y= | 1 4 [{] 0 I:|: 1 1 0]+|004].
1 B 110 008

The m by n matrix Z has r ones at the start of its main diagonal. Otherwise Z is all
ZETOS,

Problem Set 3.4, page 152

213 b 213 b 1 1/2 3/2 5
630 | =000 b -3 Then[R d]=|00 0 0
426 b 00 0 by—2b oo 0 0

Ax = b has a solution when b2 — 3b) =0 and b3 — 2b) = 0, the column space is the line
through (2.6, 4) which is the intersection of the planes by —3by =0 and by — 286) = 0; the
nullspace contains all combinations of 51 = (—1/2. 1,0) and 53 = (=3/2.0, 1); particular
solution xp =d = (5,0,0) and complete solution xp + ¢15) + 252

1 1
I(‘ﬂmpfﬂr = EE.U, E.ﬂ'.l + x20=3,1,0,0) 4+ x4(0,0, =2, 1).

(a) Solvable if by = 2by and 3b; —3b3+by =0. Then x = 5by — 2b3

= | b3 —25 ] ino free variables)

5hy — 2b4 -1
(b} Solvable if by =2b) and 3b) —3b3 4+ by =0. Then x = | by —2b) | +x3| =1 |.
0 1
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B (a) Everv b is in the column space: independent rows. (b) Need by = by, Row 3 —
Jrow 2=0.

12 (a) x;—x3 and 0 solve Ax =0  (b) 2x;—2x; solves Ax =0; 2x| —x; solves Ax = b.

13 (a) The particular solution xp is always multiplied by | (b) Any solution can be the

particular solution (c) [: :] [:] = [g] Then [::| is shorter (length +/2) than [S:|

(d) The “homogeneous” solution in the nullspace is x, =0 when A is invertible.

14 If column 5 has no pivot, x5 is a free variable. The zero vector is nor the only solution
o Ax =0. If Ax = b has a solution, it has infinitely many solutions.

16 The largest rank is 3. Then there is a pivot in every row. The solution always exists, The
column space is R3. An example is A =[] F] for any 3 by 2 matrix F.

18 Rank = 3; rank = 3 unless g = 2 (then rank = 2).

25 (a) r=m, always r <n by r=m, r=n cyr<=m,r=n d) r=m=n.
=2 -1
231231}_‘_12{]0_:_ 1.1135_,|20—1r_ 0
0040 [}UID'"_H'DDAIE Ggo1 2177 1'
The pivot columns contain [ so —1 and 2 go into xp.
-4
1023 2 102 32 102 0-=4 3
30 |1 320 5|=|030=-33|=]10100 3}|:xp= ['1
204 9 10 000 36 o001 2 5
-2
and x, = x3 {;
0

Problem Set 3.5, page 167

2 vy, vy, vy are independent. All six vectors are on the plane (1, 1,1, 1)+ 0 =0 s0 no four
of these six vectors can be independent.

3 If a=0 then column 1 = ®; if d = 0 then b{column 1) —afcolumn 2) =0; if f =0
then all columns end in zero (all are perpendicular to (0.0, 1), all in the xy plane, must
be dependent).

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3. 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) for A,

8 If cp(watwi)+ea(wy+wsi)+ey(wy+wr) = 0 then (cr+e3)w)+(c)+c3)wrtlc 4wy =
0. Since the w's are independent this requires c2 +¢c3=0,¢) +c3 =0,¢) + 2 =0. The
only solution 15 ¢ = ¢ = ¢3 = 0. Only this combination of vy, v2, vy gives zero.

11 (a) Line in R3 (b) Plane in R®  (c) Plane in R®  (d) All of R%.
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12 b is in the column space when there is a solution to Ax = b; ¢ is in the row space when
there is a solution to ATy = ¢. False. The zero vector is always in the row space,

14 The dimension of § is (a) zerowhenx =10 ib) one when x = (1,1, 1, 1) (c) three

when x = (1, 1, —1, —1) because all rearrangements of this x are perpendicular to (1.1, 1, 1)
(d) four when the x's are not equal and don't add 1o zero. No x gives dim§ = 2,

16 The n independent vectors span a space of dimension n. They are a basis for that space.
If they are the columns of A then m is nor less than n (m = n),

19 (a) The 6 vectors might not span R* (b} The 6 vectors are not independent
(c) Any four might be a basis,

21 One basis is (2, 1,0), (=3, 0, 1). The vector (2, 1,0) is a basis for the intersection with the
xy plane. The normal vector (1, —2.3) is a basis for the line perpendicular to the plane.

23 (a) True (b) False becausc the basis vectors may not be in 8,

26 Rank 2 if c =0 and d = 2; rank 2 except when ¢ =d or ¢ = —d.

9| 100 o 1 0] [o o 17 1-1um‘|ﬂ—|
-100] |[0-1 of [0 0-1]" |-1 1 © -1 0 1]

i P P R U o

34 v(0) =0 requires A+ B+ C =0. One basis is cosx —cos 2y and cosx — cos3x.

36 vi(x), yalx), valx) can be x, 2x, 3x (dim 1) or x,2¢,x% (dim2) or x,x*, +* (dim3).
40 The subspace of mairices that have A5 = S§A has dimension three.

42 If the 5 by 5 matrix [A F] is invertible, b is not a combination of the columns of A, If
[A b] is singular, and the 4 columns of A are independent. b is a combination of those
columns.

Problem Set 3.6, page 180

1 (a) Row and column space dimensions = 5, nullspace dimension = 4, left nullspace di-
mension =2 sum = 16 =m +n (b) Column space is RY; left nullspace contains
only 0.

10
; -9 -3
4 (a) [l 0 (b) Impossible: r 4+ (n — r) must be 3 ey [1 1] (d) [ 3 I]
01
(e) Row space = column space requires m = n. Then m — r = n — r: nullspaces have the
same dimension and actually the same vectors (Ax = 0 means x L row space, ATx =0
means x L column space),
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6 A: Row space (0.3,3,3) and (0, 1.0, 1); column space (3,0, 1) and (3,0,0);

nullspace (1,0.0,0) and (0, —1,0, 1); left nullspace (0, 1,0). B: Row space (1), column
space (1,4, 5), nullspace: empiy basis, left nullspace (—4, 1,0} and (=5, 0, 1).

9 (a) Same row space and nullspace. Therefore rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

11 (a) No solution means that r < m. Always r <n. Can't compare m and n

(b) If m — r = 0, the left nullspace contains a nonzero vector.

11 |01 221
12 |0 2 [l 5 ﬂ]= 240 r+n—ri=n=3but 2+2is 4.
10 1 01

16 If Av=0and v is a row of A then v-v =0.

18 Row 3—2 row 2+ row | = zero row so the vectors c(1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace.

20 (a) All combinations of (=1, 2,0,0) and {—i.ﬂ. -3, 1) (b) One (c) (1,2.3), (D, 1, 4).

21 (a) w and w (b) v and z {c) rank < 2 if & and w are dependent or v and z are
dependent  (d) The rank of wv! + wz' is 2.

24 ATy =d puts d in the row space of A; unique solution if the lefr nullspace (nullspace of
AT) contains only y = 0.

26 The rows of AR = € are combinations of the rows of B, So rank © < rank B. Also
rank O < rank A, (The columns of C are combinations of the columns of A).

29 a;y = l.app =0,a13 = l,ap = 0,a3p = Lay = 0,431 = l,a33 = 0,a3; = 1 (not
unique).

Problem Set 4.1, page 191

1 Both nullspace vectors are orthogonal to the row space vector in R®. Column space is
perpendicular to the nullspace of AT in R2,

[ 1 2-3 2 I 1
3(a)| 2-3 1| (b) Impossible, [ —3 | not orthogonal to [ 1 | (c) | 1 | in C(A) and
-3 52 5 I !

0
take A= [1=1] (&) (1, 1.1) will be in the nullspace and row space: no such matrix.

i
[ﬂ in N(AT) is impossible: not perpendicular (d) This asks for A% =0;

b Multiply the equations by vy =1, v» =1, v31 = —1. They add to 0 = 1 so no solution:
y=1(1.1,=1) is in the left nullspace. Can't have 0 = (yT A)x = y'b = I.
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x = x, + x5, where x, is in the row space and x, is in the nullspace. Then Ax, =0
and Ax = Ax, + Ax,; = Ax,. All vectors Ax are combinations of the columns of A.

Ax is always in the column space of A. If ATAx =0 then Ax is also in the nullspace
of AT, Perpendicular to itself, so Ax =0,

(a) For a symmetric matrix the column space and row space are the same (b) x is
in the nullspace and z is in the column space = row space: so these “eigenvectors” have
T

xrr=I

x splits into x +xp=(1,-1) 4 (1. 1) =(2,0).

VTW = zero matrix makes each basis vector for V orthogonal to each basis vector for
W. Then every v in V is orthogonal to every w in W (they are combinations of the basis
VECLOIS).

Ax = BX means that [A B][ _;] = 0. Three homogeneous eguations in four unknowns

always have a nonzero solution. Here x = (3,1) and ¥ = (1.0) and Ax = Bx = (5.6.5)
is in both column spaces. Two planes in R? must intersect in a line at least!

ATJ.r={}==~ {AI}T_}' =:rTATj =0. Then y L Ax and N[AT_‘J L CiA).

151

AR —
S§- is the nullspace of A = |:2 2 2

]. Therefore §< is a subspace even if § is not.
For example (—5,0,1,1) and (0, 1, —1,0) span S+ = nullspace of
A=T] 2 2 3 1.3 3 2]

x in V= is perpendicular to any vector in V. Since V contains all the vectors in §, x is
also perpendicular to any vector in §. So every x in V< is also in §+.

(a) (1,—1,0) is in both planes. Normal vectors are perpendicular, but planes still intersect!
(b) Need rhree orthogonal vectors to span the whole orthogonal complement.

(c) Lines can meet without being orthogonal.

When AB =0, the column space of B is contained in the nullspace of A. Therefore the
dimension of C(B) < dimension of N(A). This means rank(B) <4 — rank(A).

null(N") produces a basis for the row space of A (perpendicular to N(A)).

Problem Set 4.2, page 202

(a) a'b/aTa =5/3; p=(5/3.5/3,.5/3); e=(-2/3,1/3,1/3)
(b) a'b/ata=—1; p=1(1,3,1); e=1(0,0,0).
1LRR 1[5 ([r31 1
P=z(111 andP|b=3 5|and PP =P Py=— |3 9 3 |andPob=|3|.
111 5 ol 1

P = (é- —g.—g) and py = ig-é--%‘l and p3 = {3-—% EJ- Then py + p2 + p3 =
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Since A is invertible, P = A(ATA)"'AT = AA1(AT)" AT = I project onto all of RZ.

(@) p= A(ATA)"'ATh = (2,3,0) and e = (0,0,4) (b) p = (4,4.6) and e =
(0,0, 0).

15 The column space of 2A is the same as the column space of A. X for 2A is half of X

16
18

20

21

24

28

29

for A.
{;{l.2.—l}+%{l.ﬂ. 1) =12, 1, 1). Therefore & is in the plane. Projection shows Pb = b.

(a) T — P is the projection matrix onto (1, —1) in the perpendicular direction to (1, 1)
(b} I — P is the projection matrix onto the plane x + vy < z =0 perpendicular to (1, 1. 1).

1 1/6 —1/6 —=1/3 56 1/6 1/3
e=|-1]|, Q=eeTjele=|-1/6 1/6 1/3|, P=1-Q=]|1/6 5/6 =1/3].
-2 -1/3 1/3 2/3 1/3 =1/3  1/3

(AATA)1AT) = AATA) 1 (ATA)ATA) AT = AATA)~1AT. Therefore P2 = P.
Pb is always in the column space (where P projects). Therefore its projection P(Pb) is Pb.

The nullspace of AT is orthogonal to the column space C(A). So if ATh =0, the projec-
tion of b onto C(A) should be p=0. Check Pb= A(ATA)'ATh = AATA) 0 =0.

P2 = P = PT give PTP = P, Then the (2.2) entry of P equals the (2,2) entry of PTP
which is the length squared of column 2,

Set A = BT. Then A has independent columns. By 4G, ATA = BB is invertible.

T
30 (a) The column space is the line mmugh¢=|:i} o po— ' _ E[g u} e

5

ala 12 25
can't use (ATA)~! because A has dependent columns. {b) The row space is the line
through v = (1,2,2) and Pg = vo' /v"v. Always PcA = A and APy = A and then
PcAPp=A!

Problem Set 4.3, page 215

10 0
L |[E 2 _| 8 - T, _ 4 R Ts | 36
A= : 3 and b = 8 give A A—[H Iﬁ]md‘iﬁ_[llz]‘
1 4 20
1 =]
Tas  «Tr e = |1 A 5 3
A'Ax = A"b gives ¥ = 4 and p =AY = 13 ande=b—p= s
17 3
E = |le]? = 44.
E=(C-02+(C—-824+(C—-82+(C—-200% AT=[1 11 1],ATA =[4] and
ATh =[36] and (ATA)"'AThH = 9 = best height C. Errors e = (=9, —1, —1, 11).

7 A=[0 1 3 417, ATA=[26] and ATh=[112]. Best D = 112/26 = 56/13.
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X =56/13. p=(56/13)(0,1,.3,4). C =9, D = 56/13 don’t match (C.D) = (1.4);
the columns of A were not perpendicular so we can't project separately to find C = 1 and
D=4

Closest parabola: 10 0 c 0

Projecting b 11 1 [D}: 8

onto a 3-dimensional | 1 3 9 E 8

column space 1 4 16 20

C

4 8§ 26 36
ATaz=| 826 92||D|=|112].
26 92 338 | | E 400

{a) The best line is x = 1 + 4¢, which goes through the center point ﬁ‘.‘E} =(2.9)
(b) From the first equation: C-m+D-Y /L, t; =Y 7+, b;. Divide by m to get C+Di = b.

:-I
(ATAY"1AT(h— Ax) =% —x. FErrors b— Ax = (£1, +1, +1) add to 0, so the ¥ — x add
to 0.

F—0)& —x)T = (ATA)1AT (B — Ax)(b — Ax)TAATA)"!. Average (b — Ax)(b —
Ax)T = 27 gives the covariance matrix (A A_I'lﬂT 2A(ATA)~! which simplifies to
a2(ATAYL,

1

9.2
10210 10%° = 10

p = AX = (5,13, 17) gives the heights of the closest line, The error is b— p = (2, —6, 4).

(bt + -+ byg).

e is in N(AT); pisin C(A);, X isin C(AT); Ni{A) = {0} = zero vector.

The squa:e of the distance between points on two lines |s E =y —x}2+[31—-x}2+( l+.':r}2
Set THE;’ih =—(y—x)—(B3y—x)+(x+1)=0 and an,r’Eh =(y—x)+3By—x)=

The solution is x = =5/7, vy = =2/7; E = 2/7. and the minimal distance is /Z/7.

Direct approach to 3 points on a line: Equal slopes (b2 —=b1}/(t2 —11) = (b3 = b2}/ (13 —12).
Linear algebra approach: If y is orthogonal to the columns (1,1, 1) and (t].f2,13) and b
is in the column space then _',rTb = 0. This y = (tz — 13,13 — tj,1] — t3) is in the left
nullspace. Then yTh =0 is the same equal slopes condition written as (by — by )(t3 —12) =
(b3 — ba)(r2 — 11).

Problem Set 4.4, page 228

(a) ATA = 161 (b) ATA is diagonal with entries 1, 4, 9.

If 0 and Q> are orthogonal matrices then (Q102)7 010> = 0107010, =010, =1
which means that Q) Q> is orthogonal also.

If g; and g, are orthonormal vectors in R then (ql big) + {q{b}ql is closest to b.

{a) Two orthonormal vectors are ﬁ;(l. 3.4.5,7) and 155('?. -3, —4.5,=1) (b) The clos-
est vector in the plane is the projection 007(1,0,0,0,0) = (0.5, —0.18, —0.24, 0.4, 0).
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The multiple to subtract is a"b/a"a. Then B=b—%ba=4,00-2.0, =0 -2,

[: ;]=[-‘n n]["g“ :TE; =[H£ _:j‘ﬁ]["fg §£}=Qﬁ.

@ gy =130.2.-2), g2=132.1,2). g3=1@2.-2.-1) (b) The nullspace of AT
contains g3 () ¥=(ATA) AT (1,2, T) = (1.2).

The projection p = [ﬂ!Tbg’ﬂleld = 14a/49 = 2a/7 is closest 0 b; g = a/lall = a/7 is
(4,5.2,2)/7. B=b—-—p=(-1,4,-4,—-4)/7 has |B|| =1 s0 g;=B.

A=a=(.-100;B=b—p=(.4.-1.0:C=c—py—-pp=(§ 43 -
Motice the pattern in those orthogonal vectors A, B, C.

(a) True (b) True. Ox = 114 + x2¢3. |[;}‘.'||.'|i2 z.rf +x§ because gy - g = 0.
The orthonormal vectors are g = (1,1,1,1)/2 and g2 = (=5, —1,1.5)/+/52. Then b =
(—4, —3.3.0) projects to p = (—7.—3, —1.3)/2. Check that b — p = (-1, -3,7. -3)/2

is orthogonal to both gy and g5.
A=(112), B=(1,-1.00, C=(-1.-1.1). Not yet orthonormal.

Trsy,. - Ble I oo
(g,C%gy = ETEH because g2 = T&T and the extra ¢ in C* is orthogonal to g5.

There are mna multiplications in (11) and %mzn multiplications in each part of (12).
The columns of the wavelet matrix W are orthonormal, Then W= = WT. See Section 7.3
for more about wavelets,

0 1 0 0

o= [[; “':i reflects across x axis, (J» = |:ﬂ 0 -

1| across plane v+ 2z =0.
0 —1 0

Orthogonal and lower triangular = £1 on the main diagonal, 0 elsewhere.

Problem Set 5.1, page 240

det(24) = 8 and det(—A) = (—=1)* det A = § and det(A%) = § and det(A~!) =2,

|Js| = 1, |Jgl = =1, |J7| = —1. The determinants are |, 1, —1, —1 repeating, so
lhotl = 1.

0T0=1=107=1=|0 ==1;0" stays orthogonal so can't blow up. Same for Q-
If the entries in every row add to zero, then (1, 1,..., 1} is in the nullspace: singular A

has det = 0. (The columns add to the zero column so they are linearly dependent) If
every row adds to one, then rows of A — 17 add to zero (not necessarily det A = 1).

CD=-DC=|CD|=(-1)"|DC| and not —|DC|. If n is even we can have |[CD| # 0.

det(A) = 24 and det{A) = 5.



522 Solutions 1o Selected Exercizes

15
17

21

23

27

30

32

34

10

12

13

15

det =0 and det =1 —22 + 1% = (1 —2)2,

Any 3 by 3 skew-symmetric K has det( KT) = det(—K) = (—1)*det(K). This is —det(K).
But also dell’,R'T:l = det(K), so we must have det(K) = 0.

Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)

18 7 2 ~t_1| 3-1 T
4 ”]. det(A2) = 100, A _m[_1 4]. der(A=") = .

det(A) = 10, A? = [
det(A —al) =32 —TA4+10=0 when A =2 or A =5.

det A =abc, det B = —abed, detC =alb —adic - b).

affoa affoc] _ | arme aime | ) d -b]_ 4o

dffdb ﬂffﬂd t_:.l_:l'_:cl'.l? Hﬂjﬁ ad —bc |—¢ @ ’

Typical determinants of rand(n) are 10%, 103,107, 102'® for n = 50, 100, 200, 400. Using

randn(n) with normal bell-shaped probabilities these are 10°!, 1078, 1088 Inf means > 21024,
MATLAB computes 1.999999999999999 x 2'923 = | 8 x 103 but one more 9 gives Inf!

Reduce B to [row 3: row 2; row |]. Then det B = —6.

Problem Set 5.2, page 253

det A = =2, independent; det B = 0, dependent; det C = (—2)(0), dependent.

{a) The last three rows must be dependent (b} In each of the 120 terms: Choices from
the last 3 rows must use 3 columns: at least one choice will be zero.

a)1423a32a44 gives —1, ajgariazzag) gives +1 so det A =0;
detB=2-4-4.2—-1-4-4.] =48,

(a) If ayy =a22 =az3 =0 then 4 terms are sure zeros (b) 15 terms are certainly zero.

Some erm a@)ga24 - - dpe 15 NOL zero! Move rows 1, 2, . . ., ninto rows a, B, . . ., @
Then these nonzero a’s will be on the main diagonal.

To get +1 for the even permutations the matrix needs an even number of —1's. For the
odd P's the matrix needs an odd number of —1's. So six 1's and det = 6 are impossible:
max(det) = 4,

0 42 -35

C= 9.3 . C=]| 0-21 14/|. det B = 1(0) + 2(42) + 3(—35) = —21.
-1 2
L =% =3
[3 21 400
C=|242|and ACT=|0 4 0[. Therefore A~! = }cT.
123 004

(@) Cy =0, Ch=-=1. C3=0, Cyg=1 (b) Cp = —Cy_2 by cofactors of row |
then cofactors of column 1. Therefore Cyp = —Cg = Cp = —Cy = —1.
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17 The 1, | cofactoris E,,_y. The 1, 2 cofactor has a single 1 in its first column, with cofactor £, _».
Signs give E, = Ey—y — E5—3. Then 1,0, —1, 1,0, 1 repeats by sixes: Eypp = —1.

18 The 1,1 cofactor is Fy—;. The 1,2 cofactor has a | in column 1, with cofactor F,_».
Multiply by (—1)'*2 and also (1) from the 1,2 entry to find Fy = Fy_y + F,_2 (s0
Fibonacci).

20 Since x. x2, x* are all in the same row, they are never multiplied in det Vy. The determi-
nant is zero at x =a or b or ¢, so det V has factors (x —a)(x — b)(x —¢). Multiply by the
cofactor V3. Any Vandermonde matrix Vj; = (i)~ has det V = product of all (¢; — ex)
for | = k.

21 Ga=-1,G3=2, G4 =3, and G, = (—1)""!(n = 1) = (product of the n eigenvalues!)
23 The problem asks us to show that Fa,;0 = 3F3, — Fa,—7. Keep using the Fibonacci rule:

Fanyz = Fanal + Fay = Fan + Fap—1 + Faq = Fay + (Fay — Fan—3) + Fay = 3Fy — Fap-2.

26 (a) All L's have det = 1; det Uy =det Ay = 2,6, -6 for k=1,2,3 (b) Pivots 2, % -:';.

v I 0 A B ; -1 s

27 Problem 25 gives det [ﬁCA'I !] =1 andd:[[c D] = |A| times |[D—=CA™" B| which
is |AD — ACA™'B|. If AC =CA this is IAD — CAA™'B| = det(AD — CB).

29 (a) det A =a Cyy+---+a1yCry. The derivative with respect to ay is the cofactor Cyy.

31 There are five nonzero products, all 1's with a plus or minus sign. Here are the {row, col-
umn) numbers and the signs: + (1, 102, 2)(3, 3)(4, 4) + (1, 202, )3, 494, 3) — (1. 2)(2. 1)
(3,3)(4.4) = (1, 102, 2)(3, 4)(4,3) — (1, 12,303, 2)(4,4). Total 1 +1—-1-1-1=-L

34 With @y = 1, the —1,2, —1 matrix has det = 1 and inverse (A~');; =n + 1 — max(i, j).

35 With ay; =2, the —1,2, —1 matrix has det =n+1 and (n+ 1)(A™1);; = iln— j+1) for
i = j and symmetrically (n + 1A~ ") = jin—i+1) for i = j.

Problem Set 5.3, page 269

2 (a) y = —c/(ad — bc) (b) v=(fg—id)/D.
3 (a) xy =3/0 and x» = —2/0: no solution (b} xy =0/0 and xy = 0/0: undetermined.
4 (a) x; = det([b az az])/detA, if detA # 0 {b) The determinant is linear in its

first column 50 xpla; a2 aiz| + x20@; a2 a3z| + x3laz a2 az|. The last two determinants
are Zero,

1-3 0 321
6 (a) [0 é 0 (b) 3 2 1 2 |. The inverse of a symmetric matrix is symmetric.
0-3 1 123
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6-3 0 300
C= 3 1 =1 )| and ACT=|0 3 0. Therefore det A = 3. Cofactor of 100 is 0.
-6 2 1 003

If we know the cofactors and det A = 1 then €7 = A—! and det A~ = 1. Now A is the
inverse of A, so A is the cofactor matrix for C.

We find det A = :dﬂf}i—Ll with n = 4. Then det A~! is 1/det A, Construct A~ using
the cofactors. Invert to find A.

The cofactors of A are integers. Division by det A = 1 gives integer entries in A~/

For n =5 the matrix C contains 25 cofactors and each 4 by 4 cofactor contains 24 terms
and each term needs 3 multiplications: total 1800 multiplications vs. 125 for Gauss-Jordan.

11 i jk
Volume = Hi‘=2ﬂ,Areauffa:es=lengthufcmsspmduct‘;{1|=—2:‘—2j+8.l::
131
632,
211 : 211
(a) Aren-l‘34||=5 (b} 5 + new mangleama{;‘ n5ll:5+?:]1,
“|051 =101

The maximum volume is LjLyL3Lg reached when the four edges are orthogonal in R%,
With entries 1 and —1 all lengths are 14+ 1+ 141 =2 The maximum determinant is
2% = 16, achieved by Hadamard above. For a 3 by 3 matrix, detA = (+/3)° can't be
achieved.
T T
R B T detA’A (Nalliediel)
A'A= b a bec|l=| 0 b'd 0 | has .
[ ][ ] [ c] fall bl ]

el 0 0 e dor.2
The n-dimensional cube has 2" corners, n2"~! edges and 2n (n — 1)-dimensional faces.
Coefficients from (2 + x)" in Worked Example 2.4A. The cube from 2/ has volume 2",
The pyramid has volume é The 4-dimensional pyramid has volume ﬁ
Base area 10, height 2, volume 20

§=1(21,-1). The area is ||PQ x P§|| = |{—2. =2, =1}|| = 3. The other four corners
could be (0, 0,0, (0,0,2), (1,2,2), (1,1,0). The volume of the tilted box is |det| = 1.

Problem Set 6.1, page 283

A and A? and A all have the same eigenvectors. The eigenvalues are 1 and 0.5 for A,
| and 0.25 for A2, 1 and O for A™. Therefore A2 is halfway between A and A™

Exchanging the rows of A changes the eigenvalues to 1 and —0.5 (it is still a Markov
matrix with eigenvalue 1, and the trace is now 0.240.3—s0 the other eigenvalue is —0.5).

Singular matrices stay singular during elimination, so A = 0 does not change.

A has A = 4 and A2 = —1 (check trace and determinant) with x; = (1,2) and x; =
(2, —1). A" has the same eigenvectors as A, with eigenvalues 1/i; = 1/4 and 1/ = —1.
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Aand B have Ay =1and A2 =1. AB and BA have A = %(E:I:-u"’g]. Eigenvalues of AB
are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are
equal.

(a) Multiply Ax to see ix which reveals A (b) Solve (A—Af)x =0 to find x.

AhasAij=1land A2 =4 withx;=(1,2)and x2=(1,-1). A has A;=1and 42 =0
(same eigenvectors). A% has 4} =1 and A> = (.4)!%0 which is near zero. So A% is
very near A®,

M= (A—-231)A— 4;I) = zero matrix so the columns of A — 4 [ are in the nullspace
of A—Azl. This “Cayley-Hamilton Theorem™ M = 0 in Problem 6.2.35 has a short proof:
by Problem 9, M has eigenvalues (A — A2)(A; — A1) = 0 and (A2 — A2)(A2 — A1) = 0.
Same x|, x3.

(a) Pu= [uuT}u =u{uTu] =usoi=] (b) Pv= {uuT]u=u[uTu] =0s0i=0
(c) x;=(-1,1,0,0), x=(-3,0,1,0), x3=(-5,0,0,1) are eigenvectors with . =0.

A= %{—1 + i+/3); the three eigenvalues are 1,1, —1.
Set A =0 to find det A = (A))(X3) -+ (An).

If A has Ay =3 and A3 = 4 then det(A — A1) = (h — 3)(h —4) = 22 — Th + 12. Always

Al = %{a+d+ m} and Ay = %la +d— /). Their sum is a+d.
(a) rank =2 (b) det(BTB)=0  (d) eigenvalues of (B+N~! are 1, 3, 3.

a=0, b=9, ¢=0 multiply 1,4, 42 in det(A — A1) =91 — 1> A = companion marrix.
A =1 (for Markov), 0 (for singular), r-é (so sum of eigenvalues = trace = ﬁ‘.ﬁ,

[? g], g 51 [j i] Always A2 = zero matrix if 4 =0,0

(Cayley-Hamilton 6.2.35).

A=1.257

B has A =—-1, -1, =1, 3 so detB = -3, The 5 by 5 matrix A has A =0,0,0,0, 5
and B=A-1 has A=-1, -1, -1, =1, 4

(a) u is a basis for the nullspace, v and w give a basis for the column space

(b) x = (0, % %] is a particular solution. Add any cu from the nullspace

{c) If Ax =u had a solution, # would be in the column space, giving dimension 3.

Withi; = 23 andis = e 27113 the determinantis AjA; = l and the traceis A |+ 42 = —1:
; ; 2m 2w 2 im
xR g mlf3 = cos — +r’sin?+cosT —isin = = ~LAsoA} =3 =1

A =[711] has this trace —1 and determinant 1. Then A3 =/ and every (M~'AM)* = I.

Choosing A} = A2 =1 leads to I or else to a matrix like A=[J}]] that has A% # 1.



526 Solutions to Selected Exercises

35

10

11

13

16

17

19

21

23

25

det(P — &I) = 0 gives the equation »® = 1. This reflects the fact that P> = I. The
solutions of A* = 1 are A = 1 (real) and A = =/3 ) = ¢=271/3 (complex conjugates).
The real eigenvector x; = (1,1,1) is not changed by the permutation P. The complex
eigenvectors are xa = (1, e_z""ﬂ.e_‘*mﬁ} and x3 = (1, eh'."r?" E“”j‘ﬂl =X3.

B R | 0 et R ERY S [

If A= SAS™! then the eigenvalue matrix for A+ 27 is A +2/ and the eigenvector matrix
is still §. A+2/ =S(A+2D)5 ' =85As7 1 +52NS~! =A+21.

—

(a) False: don't know A's (b) True () True (d) False: need eigenvectors of
S\

The columns of § are nonzero multiples of (2, 1) and (0, 1) in either order. Same for AL

A1=[::' i] A3=E f] A4=B g] Fon = 6765.

3 19
1 0

2 1 2 1
1 1 0 T 3 T3
1 =2(||0 (-9 ;-4 § 1
—— A= [E ] = 1 Al M| |AL O 1 =42
A=3AS _[1 ﬂ]_;h,—;hz[l IMD Mall=1 |

1 Ay A 1lak o o ol =»
ka=1 _ 1 A2 1 2 =
S e il | ] | o] | O Yy

Direct computation gives Lg,....Ljp as 2.1,3.4.7, 11, 18,29, 47. 76, 123. My calculator
gives A]0 = (1.618...)10 = 122.991......

(a) A= [ } has A; =1, J..1=-é with x; =(1.1), x2=(1,-2)

(a) False: don’t know A (b) True: missing an eigenvector (c) True.
8 3 o4 10 5 .
A= [_3 2} (or other), A= [_4 1]- A= [_5 I}} only eigenvectors are (c, —c).

SAks-1 approaches zero if and only if every |A| < 1; B* — 0.

_[290 _[33]. go[3]_(ey0[3] gof 3]_ 50 3 06| _
ﬁ—.[ﬂ_a]. 5_,[1 1], B [1}_1.9; [1_' B S = S| BRG] =
sum of those two.
SO B i O O S

—lo-1]joz] Jo-1]T [0 2t [

trace AB = (agq+bs)+(cr+dt) = (ga+rc)+(sb+1d) = trace BA. Proof for diagonalizable
case: the trace of SAS™! is the trace of (AS™!)S = A which is the sum of the A’s.
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The A's form a subspace since cA and A} 4+ A; have the same 5. When § = [ the A's
give the subspace of diagonal matrices. Dimension 4.

Two problems: The nullspace and column space can overlap, so x could be in both. There
may not be r independent eigenvectors in the column space.

R=SJAS ! = [f ﬂ as B2 ' A /B woild Bave k= ~f5 and A =T 50: jis tince

is not real. Note [_{]] _?:| can have +/—1=1i and —i, and real square root [_? [ﬂ

AT = A gives xTABx = (Ax)T(Bx) < ||Ax||||Bx| by the Schwarz inequality. BT = —B
gives —xT BAx = (Bx)TAx < ||Ax| || Bx[|. Add these to get Heisenberg when AB — BA = .

If A=SAS"! then the product (A—Ay7l)---(A—Ayl) equals S(A—24y1)--- (A=xa1)§L,
The factor A — Al is zero in row j. The product is zere in all rows = zero matrix.

{a)} The eigenvectors for 4 = 0 always span the nullspace (b) The eigenvectors for 4 =
0 span the column space if there are r independent eigenvectors: then algebraic multiplicity
= geometric multiplicity for each nonzero A.

The eigenvalues 2, —1.0 and their eigenvectors are in A and 5. Then AF = sAks-1 s

k
2 1 072 : (4 1 sk [4 22 [ 111
1 =1 1 (-1 gz—z—z =FZH+T =1 1 1
}om] =1 ok ¢ 33 211 =1 £ 1

Check k = 1! The (2.2) entry of A* is 2%/6 + (—=1)*/3 = 18/6 = 3. The 4-step paths
that begin and end atnode 2Zare 2w ltwltwo ltw2, 2tolto2toltw 2, and 2101
to 3 to 1 to 2. Harder to find the eleven 4-step paths that start and end at node 1.

AB = BA always has the solution B = A. (In case A =0 every B is a solution.)

B has A=1i and —i, so B* has A* =1 and 1; C has A = (1++/3i)/2 = exp(xxi/3) so
3 =—1and —1. Then C* =—1 and €' = —C.

Problem Set 6.3, page 315

uy =¥ [[]}] uz =é [_::| If u(0) = (5,—2), then u(r) = 3e¥ [ﬂ +2¢ [_:]
[g _f] ety [f] = [ﬂ rabbits 7 (r) = 20¢% + 10%"

w(t) = 10> +20e%. The ratio of rabbits to wolves approaches 20/10; ¢ dominates.

div+w)/dt =dv/dt +dw/dt = (w—v)+(v—w) =0, so the total v+ w is constant. A =

-1 1 ; . 1 1 u(1) = 20 + 10e~>
[ 1 _1:| has A; =0 and A3 = =2 with x =[1]andxg=[_1]: w{li:!ﬂ—lﬂe‘l .
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01 . .
8 A= [_ ] has trace 6, det 9, A =3 and 3 with only one independent eigenvector (1, 3).

9 6
o P s 3 m 0 _‘Fr F_ —bh —k _1."‘"
9 my" +by +hky=01is [ﬂ I][J’] -{ | ﬂ][}r :
10 When A is skew-symmetric, u(r}] = Je™u(0)| = |u(0)). So £ is an orthogonal
matrix.
ol P, L T e u|! 3|0, 14
13 up=A""b=4 and u(t) =ce”' +4, up = 2 and uit) =cje 0 +e2e | + 5 |

14 Substituting u = ¢“'v gives ce'v = Ae"v—e"bor (A-cliv=borv=(A—cl) b=
particular solution. If ¢ is an eigenvalue then A — ¢/ is not invertible.

18 The solution at time ¢ + T is also e+ g(0). Thus ¢ times eAT equals £AU+T),
19 [1 |]=[1 |][| u][l l]; fmz[] 1][.# U][l 1]=[e* e'-l]‘
00 0—-1{|00}Jj0 <=1 0—=1{|0 11|10 =1 0 1
200f A2 = Athen eN = T+ A4 JAP + AP 4+ = T+ (¢ — DA = [; E']+
e—1e-1
0 0o r

11 1 17[3 o]0 ar_[e 3(e¥ —¢)
22 A=[H 3]=[2 ﬂ][l] l”:l _F::l.theue ’=[n 2 e ]

24 (a) The inverse of e! is e~ (b) If Ax = ix then eMx = eMx and €M £0.

— A

At

25 x(r) = e and y(r) = —e¥ is a growing solution. The correct matrix for the exchanged

unknown u = (v, x) is [ & =4

L “] and it does have the same eigenvalues as the original

malrix.

Problem Set 6.4, page 326

3 & =0,2, —1 with unit eigenvectors £(0, 1, —1)/+v/2and £(2, 1, 1)/v/6 and £(1, -1, —1)/+/3.

21 2
50=5]| 2-2-1|.
—-§ =2 2

ﬂLf.l\3={]:he;|aljj.3=ﬂsonili.=ﬂasinﬁ.=[g H If A is symmetric then
Ad=0A 0T =0 gives A =0 and the only symmeiric possibility is A = Q00T = zero
matrix,

10 If x is not real then A = xT Ax/xTx is not necessarily real. Can’t assume real eigenvectors!
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| | 1 1
31 _,| 272 5 2| [9 12 64 — 48 36 .48
[1 3]_2[_% JHL ,5,]' [12 16} “[ 48 .35}"’35[,43 .54}

Skew-symmetric and orthogonal; L =i, i, —i, —i to have trace zero.

(a) If Az=Aiy and ATy =iz then B[y: —z]=[—Az AT_H] =—Aly: —2]. So =i
is also an eigenvalue of B. (b) ATAz = AT{J-.y} =32z, The eigenvalues of ATA are =0
c)rA=-1-1112x) =(1,0,-1,0), xo=1(0,1,0,-1), x3=(1,0,1,0), x4 =
(0,1,0, 1).

10 1 101

B has eigenvectors in S= |0 1 0 — | 0 1 0 |: independent but not perpendicu-
00 1+d 002

lar.

(a) False. A = [[I) ?] {b) True (c) True. A~l = Qﬁ_’ QT is also symmetric (d) False.

A and AT have the same A’s but the order of the x's can change. A = I:_? []J has 41 =i
and Ay = —i with x; = (1,i) for A but x; = (1, —i) for AT,

A is invertible, orthogonal, permutation, diagonalizable, Markov: B is projection, diagonal-
izable, Markov. QR, SAS™!, oA QT possible for A; SAS™! and QAQT possible for B.

Symmetry gives QAQ' when b = 1; repeated A and no S when b = —1; singular if b = 0.

Orthogonal and symmetric requires |A| = 1 and XA real, so every A, = x1. Then A =1 or

cosf —sin@ |1 O cosf sin® | | cos2f  sin28
sinf cosf | |0 —1||—sinf cos@ | | sin28 —cos28

A=0AQT = [ ]: reflection.

The roots of lz+bl+r = 0 differ by \."'IJ" —dc. For det(A+1B—Ail) we have b = —3-81
and ¢ = 2416t —12. The minimum of b>—4c is 1/17 at t = 2/17. Then iz —4; = 1/4/17.

Problem Set 6.5, page 339

Positive definit 10 b 1 _[10 0 18] -
fﬂr—3~:b-::§l I:b l][ 9_52}_[ 1:][‘39 bz][ﬂ ]:|—LDL,
Positive defini 2 1 5 i

forc= 8 Iel |:2 1:||:IJ ]-[1 ][ r—E”: ]:|-—LDL

fley) =2 +dy+97% =+ 202 +5y% flr ) =22 +6xy + 9% = (x +3p)%.

xTATAx = (Ax)T(Ax) =0 only if Ax = 0. Since A has independent columns this only
happens when x = 0.

3 6 1L O3 01 2 s : —
A |:ﬁ_ Iﬁ] = [2 ]:| [ﬂ 4] [U 1]. Pivots outside squares, and L inside.
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1

=

tad|

2-1 0 3
A=|—-1 2 —1| has pivots 2, 5.
0-1 2

4 2 -1 -1 1 0
iA=|[-1 2 -1/ issingular; A|1|=|0]|.
-1 -1 2 1 0

A is positive definite for ¢ > 1: determinants ¢, ¢>—1,¢> +2—3¢ > 0. B is never positive
definite (determinants 4 — 4 and —4d + 12 are never both positive).

The eigenvalues of A~! are positive because they are 1/A(A). And the entries of Al pass
the determinant tests. And xTA='x = (A~1x)TA(A"1x) > 0 for all x #0.

If aj; were smaller than all the eigenvalues, A —aj;/ would have positive eigenvalues (so
positive definite). But A—a;;/[ has a zero in the (j, j) position; impossible by Problem 16.

A is positive definite when 5 = 8; B is positive definite when t = 5 (check determinants).

= 5[0 A5 8 eeofi o]

The ellipse x2 4 xy + ¥> = 1 has axes with half-lengths a = 1//%] = +2Z and b= (Z/3.
9 3 20

"‘=[3 5]‘ C‘[4 3]

Ay = [ﬁzxx' 2;] is positive definite if x # 0; fi = (x> +? = 0 on the curve

12 4y=0; A= [51" {'}] = [? {']] i3 smidetinie and (0, 1) 54 saadle poii

If ¢ > 9 the graph of z is a bowl, if ¢ <9 the graph has a saddle point. When ¢ =9 the
graph of z = (2x +3y)2 is a trough staying at zero on the line 2x 4+ 3y = 0.

Orthogonal matrices, exponentials e, matrices with det = 1 are groups. Examples of
subgroups are orthogonal matrices with det = 1, exponentials eA" for integer n.

Problem Set 6.6, page 349

C = (MN)YA(MN) so if B is similar to A and C is similar to B, then A is similar
e C.

Eight families of similar matrices: 6 matrices have A =0, 1: 3 matrices have A =1, | and
3 have » = 0, 0 (two families each!); one has A = 1, —1; one has A = 2, 0; two have
A= 4(1+4/5).

(a) (M~'AM)(M~1x) = M~ 1(Ax) = M~'0 = 0 (b) The nullspaces of A and of
M~YAM have the same dimension. Different vectors and different bases.

[g :}] and [g é] have the same line of eigenvectors and the same eigenvalues 0, 0.

ﬂ:[’:2 % .r-‘*:[r3 3':2]. J*=[C: kc:k_l}; =1 - =[c_] _‘-_T]

0 2 0 & 0 £
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(1) Choose M; = reverse diagonal matrix to get M‘._'.I;M; = M"T in each block (2) My
has those blocks M; on its block diagonal to get My ' JMy = JT. (3) AT = (M~ HTJTyMT
is (MM IMoMT = (MMgMT)~ ' A(MMoMT), and AT is similar 1o A.

(a) True: One has A = 0, the other doesn’t {(b) False. Diagonalize a nonsymmetric
matrix and A is symmetric (c) False: [_? {; and [[.: -[ﬂ are similar (d) True:

All eigenvalues of A + [ are increased by 1, so different from the eigenvalues of A.
AB = B Y (BA)B so AB is similar to BA. Alsoe ABx = )x leads to BA(Bx) = i(Bx).

Diagonals 6 by 6 and 4 by 4; AB has all the same eigenvalues as BA plus 6 — 4 zeros.

Problem Set 6.7, page 360

(a) AAT =[;I ;] has o7 = 85, u) =[

(b) Avy = [; ;] [Hﬁ = [ZJJE] = JE[;:::‘E] =ou].

2 1
11

ATA=AAT = [ ] has eigenvalues g:|r|2 =

Since A = AT the eigenvectors of ATA are the same as for A. Since Ay = '—'f@ is

negative, o) = x| but o3 = —Aiy. The ecigenvectors are the same as in Section 6.2 for A,
except for the effect of this minus sign:

A/l +22 /1423
B =v = I and w3 = —v2 = = .

171442 o 1+ a2
A proof that eigshow finds the SVD for 2 by 2 matrices. Starting at the orthogonal pair
Vi=1(1.0),¥2=1(0,1) the demo finds AV and AV> at angle #. After a 90° turn by the
mouse 0 Va, =V the demo finds AVs and —AV| at angle m —#. Somewhere between,

the constantly orthogonal vy, v2 must have produced Av) and Avy at angle # = /2. Those
are the orthogonal directions for uy and ua.

A=UVT since all o; = 1.
The smallest change in A is to set its smallest singular value o3 to zero.

The singular values of A+ are not gj+1. They come from eigenvalues of (A+DT(A+1).

Problem Set 7.1, page 367

(a) S(Tw))=vw (b) S(T(v))+ T(v2)) = S(T(v)) + S(T(v2)).
Choose v = (1,1) and w = (=1,0), Then T(v)+ T(w) =v+w but T{v+ w) = (0,0).

(@) T(T(w)) =v (b) T(T(w))=v+(2,2) (c) T(T(w))=-w (d) T(T(v))=T(v).
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10 (a) T(,00=0 (b} (0.0, 1) is not in the range ic) T{O, 1) = 0.

12 T(v) = (4,4); (2,255 (2,2); if v =(a,5) = b(1, N+ %5L(2,0) then T(v) = b(2,2)+(0,0).

16 No matrix A gives A [? g] = [g {!I:| To professors: The matrix space has dimension 4.

Linear transformations come from 4 by 4 matrices. Those in Problems 13-15 were special.
17 (a) True (b} True (c) True (d) False.
20 (T 'MN=MsoT ' iMy=A""MB"".

21 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes onto
a line (c) Vertical lines stay vertical,

24 () ad —bc =10 (b) ad —bec = 0 (c) lad — be| = 1. If vectors 0 twWo COMmers
transform to themselves then by linearity T = [. (Fails if one comer is (0, 0).)

27 This emphasizes that circles are transformed to ellipses (figure in Section 6.7).

Problem Set 7.2, page 380

3 A®= B when T? = § and output basis = input basis.
b Ti{v) +va+rv3)=2w +ws+ 2wy A times (1,1,1) gives (2, 1,2),

7 v = clvy — py) gives T(v) = 0: nullspace is (0, ¢, —c); solutions are (1,0,0) + any
(0. o, —).

9 We don’t know T{w) unless the w's are the same as the v's. In that case the matrix is A%,

13 (c) is wrong because w| is not generally in the input space.

15 @ [3 ” (b) [_; "_:_] = inverse of (@)  (c) A[::I must be 24 [:]

wan=[1 S)33] =[5 73)

19 (a4, b) = (cos #, —sin#). Minus sign from ¢~ = Q.

21 walx) =1 — x%; wilx) = éuf —x); ¥=4w; 4+ Sws + 6w;.

24 The matrix M with these nine entries must be invertible.

28 If T is notinvertible, T(wy), ... , T(vy) will not be a basis. We couldn’t choose w; = Tw;).

31 S(T(w)) =(=1,2) but S{w)y=(-2,1) and T{(S(v)} = (1, =2}
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Problem Set 7.3, page 389

The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4, 4 plus the difference 2, 2
=2, =2. Therefore cy =4 and ca=2and c3 =1 and ¢y = 1.

The wavelet basis is (1,1,1, 1,1, 1,1, 1) and the long wavelet and two medium wavelets
{Ii‘]l
-1, —=1,0,0,0,0) and (0,0,0,0,1. 1, =1, —=1) and 4 short wavelets with a single pair 1, —1.

If Vb= We then b= V~!We. The change of basis matrix is V='W,

The transpose of ww=1 =1 is (Ww="TWT = 1. So the matrix WT (which has the w’s
in its rows) is the inverse to the matrix that has the w*'s in its columns.

Problem Set 7.4, page 397

ATA = égz"] has 4 = 50 and 0, u;:%[é]. Fzzé[__?]; o) = V/30.

1 [7-1]1 1 [10 20 . : . —
A=Q0H=— [ } —_ [ ] H is semidefinite because A is singular.
V50 L1 7150
1/+/50 0 2 4 1 .3
+ T + —
vy [ Our o g [1 2] avan[2 4] ane=[2 3]
-
[:rln| d;:;] '.;. -cl'|il|IF + o2l :T In general this is 3]H1ﬂ-{+'”+ﬂ;ﬂ;l}:—.
2
A* is A~ because A is invertible.

2 12
A=[1]1(50 01¥T and At =V | O0|[11=]|.16]|; A4t =[1];
0 0
36 48 0
AtA=|.48 64 0
kXt

If det A = 0 then rank{A) <= n; thus rank(A1) < n and det A+ =0,

in the row space of A is perpendicular to ¥ —x™ in the nullspace of AT A = nullspace
of A. The right triangle has ¢ = a® 4 b2

AAYp=p, AAte=0, AYAx, =x,. AtAx,=0.

L is determined by £2y. Each eigenvector in § is determined by one number. The counts
are 143 for LU, 14241 for LDU, 143 for QR, 1+2+1 for UEVT, 24240
for SAS™L.

Keep only the r by r invertible corner I, of I (the rest is all zero). Then A = UEVT
has the required form A = UM Z,M] VT with an invertible M = M;E, M] in the middle.
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Solutions to Selected Exercises
Problem Set 8.1, page 410

The rows of the free-free matrix in eguation (9) add to [0 O 0] so the right side needs
fi+f2+f3=0. For f =(—1,0,1) elimination gives cou)—cauz = —1, caup—cauz = —1,
and 0 =0. Then uparticular = {~c‘2-] —1:‘3_] r;F.GJ. Add any multiple of Unyllspace =
(1,1, 1).

f d (r[x]d )dx-— [{'{D]d—{ﬂj—wcil}—-{lj] =0 so we need ff{x]d:—
dx dx d

Multiply A}-C] Ay as columns of Af times ¢’s times rows of Ay. The first “element matrix™
ciEy=[1 0 G]Trill (0 0] has ¢ in the top left comer.

The solution to —u” = 1 with w(0) = u(l) =0 is u(x) = -;[x—.rz} At x = !—. % ; %

this u(x) equals w = 2,3, 3,2 (discrete solution in Problem 7) times (Ax)* = 1/25.

Forward vs. backward differences for du/dx have a big effect on the discrete u, because
that term has the large coefficient 10 (and with 100 or 1000 we would have a real boundary
layer = near discontinuity at x = 1). The computed values are u = 0, .01, .03, .04, .05, .06,
07,.11,0 versus u = 0,.12, .24, .36, .46, .54, .55, .43.0.

The MATLAB code is E = diag(ones(6,1),1;; K = 64 = 2% eye(7) — E — E');
D =80=(E— eye(T)); (K + D)\ones(7,1), (K — D')\ones(7, 1).

Problem Set 8.2, page 420

-1 1 0 c 1
A= |:—1 0 1 nullspace contains [c}; [D] is not orthogonal to that nullspace.
0-1 1 c 0

AT_}r =0 for y=(1,—1,1); current = | along edge 1, edge 3, back on edge 2 (full loop).

Kirchhoff's Current Law ATy = f is solvable for f = (1,—1,0) and not solvable for

f=1(1.0,0); f must be orthogonal to (1,1, 1) in the nullspace.
Zi==] =] 3 1] ¢
ATAx=|-1 2-1|x=|-3|=fproducesx=|-1|+]|¢c|: potentials 1, =1, 0
-1 -1 2 0 0 ¢
and currents —Ax =2, 1, —1: f sends 3 units into node 1 and out from node 2.
1 Ji==] = 1 [ 5/4 c
AT| 2 |A=|-1 3-=2|; f=| O|yieldsx=| 1 [+]|c|; potentials J
2 -2 -2 4 -1 [ 7/8] e
1, E and currents —CAx = ;1; % %

Elimination on Ax = b always leads to ;yTb = 0 which is —b; 4+ b3 — b3 =0 and b3 —
by + b5 =0 (y's from Problem 8 in the left nullspace). This is Kirchhoff's Voltage Law

around the loops.
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2 -1 -1 0] diagonal entry = number
19 ATa=|"1 3-1-1 of edges into the node
“|-1-=1 3 -1| off-diagonal entry = —1
0 =1 =1 2] if nodes are connected.
4 -2-2 0 1
-2 8 -3-3 0] . . 5 1 |
13 ATCAx = 23 g-3|*= o | BV potentials x = (3, 5. 5. () (grounded
0-3-3 6 =1

x4 =0 and solved 3 equations); y =—CAx =(3.3.0. 3. ).

17 (a) 8 independent columns  (b) f must be orthogonal to the nullspace so fj +--- +
fo=0 (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

Problem Set 8.3, page 428

6 -1 1 1],
ZA_[A 1][ ,75][—.4 .ﬁ]‘
" 6=1T[1 0] 1 1]_[6 6
A" approaches [.4 -1][0 0]|-4 6]7 |4 4]
. 3 oy Ay oy 1 I =L 1 1
3a=land 8, x=(1,0); A=1and -8, x=(3.8s A=1L f.and }, x=(§. 1. D

5 The steady state is (0,0, 1) = all dead.

6 If Ax = ix, add components on both sides to find 5 = As. If & # | the sum must be
=0,

L4+ .4a 66— .6a

k . k (.- —
B8 (.5)" — 0 gives A® — A™ any A-[.d-.d.a 4+ 6a

]wim—-}gugi.

10 M2 is siill nonnegative; [1 --- 1M =[] --- 1] so multiply by M to find
[1 - IJM3=[1 ... 1]=> columns of M? add to 1.

1 h=1 and a +d — 1 from the trace; steady state is a multiple of x| = (b, 1 —a).

13 B has A =0 and —.5 with x; = (.3, .2) and x7 = (=1,1); e approaches zero and
the solution approaches cje”x| = ¢ x;.

15 The eigenvector is x =(1,1,1) and Ax = (.9,.9,.9).

wpe [ s[5 o[ ]

19 A =1 (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

20 No, A has an eigenvalue A =1 and (] - A)~! does not exist.
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Problem Set 8.4, page 436

Feasible set = line segment from (6, 0) to (0, 3); minimum cost at (6, 0), maximum at (0, 3).
Feasible set is 4-sided with corners (0, 0), (6, 0), (2, 2), (0, 6). Minimize 2x — v at (6, 0).
Only two comers (4,0, 0) and (0, 2, 0); choose x; very negative, x> =0, and x3 = x) — 4.
From (0,0, 2) move 1o x = (0, 1, 1.5) with the constraint xy +x3 + 2x3 = 4. The new cost
is 3(1) + 8B(1.5) = 515 so r = —1 is the reduced cost. The simplex method also checks
x = (1,0, 1.5) with cost 5(1) + 8(1.5) = $17 so r = 1 (more expensive).

Cost = 20 at start (4, 0,0}); keeping xy +x72 4+ 263 =4 move to (3, 1,0) with cost 18 and
r=—2; or move to (2,0, 1) with cost 17 and r = —3. Choose x3 as entering variable

and move to (0,0, 2) with cost 14, Another step to reach (0, 4, 0) with minimum cost 12.

¢=[3 5 7] has minimum cost 12 by the Ph.D. since x = (4,0,0) is minimizing, The
dual problem maximizes 4y subject to vy <3, vy = 5, y = 7. Maximum = |2

Problem Set 8.5, page 442

ilpe In
Jo costj + kixdx = [-‘Hgtﬁiﬂ]n = 0 and similarly [ cos(j — k)xdx = 0 (in the
denominator notice j— &k #0). If j =k then f&" cos® jxdx =,

f_llll}f.r]' —cx)dx =0 and f_'li.rz— }HIB —cx)dx =0 for all ¢ (integral of an odd

function). Choose ¢ so that .Lll x(x? - ex)dy = [%xs - Ex:’]'_l = i -r% = 0. Then
3

= .

The integrals lead to @) =0, b =4/, by =0,

From equation (3) the a; are zero and by = 4/7k. The square wave has l|_.|"||1 = 2m. Then
equation (6) s 2w =n{lﬁfx2}{-]-'g -+ 315 + &+ +++) so this infinite series equals Ti/8.

5
i =t+3+3 44+ =250 vl =vZ WWIl=1+a*+a*+---=1/(1-a%) 50
o) = 1/v1 —a¥; [F7(1 4 2sinx +sin x)dx =27 +0 4 7 so || fll = 37.
(a) fix) = .JE +i (square wave) so a's are -i 0,0,... and b’ are 2/x, 0, —2/37,
0,2/5x,... (b) ap= /" xdx/2x =nx, other ag =0, by =—2/k.

costx = {q - écnﬁlx; cos{x + 3_'{-} = COSX Lm} — SIN X Sin -} = _-;'CD'S.T - -‘; sinx,

dy/dx =cosx has y = ¥p+ yq =sinx + C.
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Problem Set 8.6, page 448

1 (x, ¥, z) has homogeneous coordinates (x, v, z, 1) and also (cx. cv, cz, ¢) for any nonzero c.

4 C c
s5=| °© , sT=| € Lrge=| f use vTS.
[ « &
i | )43 c 4¢ 3¢ 1
[1/8.5
5 5= 1/11 for a 1 by | square,
|
5 —4 =2
9n=} 3 Hhasn|=1and P=I—maT=§|-4 5-2|
-2 -2 8
5-4-2 0D
i i|-¢ 5=2 o
10 Choose (0.0, 3) on the plane and multiply 7_PTy = g 2.2 8 ol
6 6 3 9

11 (3,3.3) projects to $(—1.—1,4) and (3,3,3, 1) projects to (%, 1. 3. 1),
13 The projection of a cube is a hexagon.

) oflois
14 33300 -2mN)=(}.}. |8 1 —4|=(-4 -4 -
-4 -4 7

15 3.3,3,) > 3,3,0,) = (-§,-3,-§. b= (-3.-}. L. 1.
17 Rescaled by 1/c because (x, v, z,¢) is the same point as (x/c, y/c, z/c, 1),

Problem Set 9.1, page 457

1 Without exchange, pivots .001 and 1000; with exchange. pivots | and —1. When the pivot

1 11
is larger than the entries below it. £;; = entry/pivot has |£;;| = 1. A= [ 0 1 —1].
-1 1 1
4 The largest |x|| = [A~'b)| is 1/imin; the largest error is 10716 /500

5 Each row of I/ has at most w entries. Then w multiplications to substitute components of
x (already known from below) and divide by the pivot. Total for n rows is less than wn.

6 L, U, and R need inz multiplications to solve a linear system. @ needs n® to multiply
the right side by E_' = ET, 50 @R takes 1.5 times longer than LI/ to reach x.

7 On column j of I, back substitution needs % 2 multiplications (only the j by j upper left
block is involved). Then §(12 +22 + ... +n%) &= 3(§n®),



538 Solutions to Selected Exercises

10

1

14

13

14

16

With 16-digit floating point arithmetic the errors X — Yeomputeall for & = 10-3, 1078,
10-%, 10712, 10-15 are of order 1079, 10-'1, 1077, 1074, 1073

cosfl = 1/+4/10, sin# = —3/4/10, R:?Iﬁ[.:: ::][; “;]::}1_”[12 l:]

QA uses 4n multiplications (2 for each entry in rows i and j). By factoring out cosé,
the entries 1 and +tan# need only 2n multiplications, which leads to $n® for QR.

Problem Set 9.2, page 463

lAl =2, e=2/5=4 |Al=3. c=3/1=3 |Al =2+V2, c=(2+v2)/2-V2) =
5.83.

For the first inequality replace x by Bx in [|Ax| < [|A]llx]l; the second inequality is just
iBx|| < | Blillxll. Then |AB| = max(|ABx||/lixl) < |ANNB].

The triangle inequality gives ||Ax + Bx| < ||Ax| + ||Bx|. Divide by ||lx|| and take the
maximum over all nonzero vectors to find |A+ B = Al + || Bl

If Ax = ix then ||[Ax|/[lx|| = |%| for that particular vector x. When we maximize the
ratio over all vectors we get ||Al| = |A].

The residual b — Ay = (10~7,0) is much smaller than b — Az = (0013, .0016). But z is
much closer to the solution than y.

659,000 =563,000

N =
koot SRR _[nula.um 780,000

]. Then |A| > 1, A~ > 10%, ¢ > 108
_rlz +--++x2 is not smaller than max(x?) and not larger than x7 + -+« +x7 + 2|x;||x2| +
- = x|}, Certainly x{ + -+ x% < n mu{.tfl so fixfl < njlixlloo. Choose y; =

signx; = +1 to get x - y = ||x]|y. By Schwarz this is at most [lx||[|ly]l = Jnllx)l. Choose
x=(11,....1) for /.

Problem Set 9.3, page 473

If Ax = Ax then (/ — A)x = (1 — A)x. Real eigenvalues of B =17 — A have |1 — 4| = 1
provided A is between 0 and 2.

Jacobi has §7'T = § [? (']] with |Almax = 3

n
Gauss-Seidel has §~'T = [n '{] with |Almax = § = (|Almax for Jacobi)?.
5

Set the trace 2 — 2w + yo® equal 10 (@ — 1)+ (w—1) 1o find e = 42— ¥3) = 1.07.
The eigenvalues & — 1 are about .07,
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The jth component of Axy is 2sin % —sin uﬁ_‘-fﬂ —5in L‘;L_HE. The last two terms, using
sinfa + b) = sina cos b + cosa sinb, combine into —2sin % cos ﬁ The ecigenvalue is
Jl.l =2~2cos %T'

At 2 1] ., e 1121 L[] Lo AL
=31 2|8 M= M1=3]|1] RTG|4] BTF |13 1|
1 cos@sing cusﬂ'rl+sinzﬂj —sin* @
= oTA = - RO =
R‘Q"“'[ﬂ —sinzﬂ']“d “"RQ‘[ —sin® @ —cnﬂﬂminzﬂ]
If A—cl = QR then Ay = RQ+¢cl = Q"1 (QR+¢c)@ = Q~'AQ. No change in

eigenvalues.

Multiply Ag; = bj_1q;_; +a;q; +bjq;4 by ¢} to find ] Ag; = a; (because the g's
are orthonormal). The matrix form (multiplying by columns) is AQ = QT where T is
rriciagonal. Its entries are the a's and &s.

If A is symmetric then A) = 0 'AQ = QTAQ is also symmetric. A = RQ = RQR)R™!
= RAR™! has R and R™! upper triangular, so A cannot have nonzeros on a lower di-
agonal than A. If A is tridiagonal and symmetric then (by using symmetry for the upper
part of A}) the matrix A; = RAR™! is also tridiagonal.

From the last line of code, g; is in the direction of v = Ag; —hy 14, = Agq, —w-lrﬂq”qp
The dot product with g is zero. This is Gram-Schmidt with Ag, as the second input
vecior,

ri=b—ajAb=b- l.'bTMbTAbe is orthogonal to rg = b: the residuals r = b— Ax are
orthogonal at each step. To show that p; is orthogonal 10 Apy = Ab, simplify p; to cP:
Py = ||Ab|%b — (BT Ab)Ab and ¢ = b b/(bT AB)®. Certainly (AB)TP| =0 because AT =
A, (That simplification put @ into py = b —ayAb+ (b" b — 206" Ab + o} Ab|%)b/b"b.
For a good discussion see Numerical Linear Algebra by Trefethen and Bau.)

Problem Set 10.1, page 483
In polar form these are +/5¢/?, 5629, -:},';e_m. V5.

lzxwl =6 |z4+w <35, Iz}u'l“—-zf lz—w| =5
k]

a+ib=F+3i, J+Bi i, -4+ Li; w?=1,
2+ QDA+ =143 e =iy e =—1; I =—i; (-)PB=(-}=i.
£+ 7 is real; z — T is pure imaginary; zZ is positive; z/T has absolute value 1.

(a) When a = b = d = | the square root becomes /4c; A is complex if ¢ < 0 h) L=
0 and A =a +d when ad = be (c) the A's can be real and different

Complex A's when (a +d)? < 4{ad — bc); write (a +d)2 — 4(ad — be) as (a — d)? + 4be
which is positive when be = 0,
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18

19

20

det(P—1I) =A*—=1=0has A =1, —1, i, —i with eigenvectors (1,1,1,1) and (1, -1, 1, —1)
and (1,i{, —1,—i) and (1, —i, —1,{) = columns of Fourier matrix.

The block matrix has real eigenvalues; so i is real and A is pure imaginary.
r =1, angle ¥ —6; multiply by e to get ™2 =1

cos 38 = Re(cos 8 + i sin 9}3 = cos’ 8 — 3cosfsin?@: sin38 = Im(cos @ +isinﬂ}3 =
3cos? @ siné — sin” 6.

(a) €' is at angle ¢ = 1 on the unit circle; [i*| =1 =1 {c) There are infinitely many
candidates i® = EHJT,."Z-!-ZJTH Je

=27

(a) Unit circle (b) Spiral in to ¢ (c) Circle continuing around to angle 8 = 272,

Problem Set 10.2, page 492

z = multiple of (14,1414, —2); Az =10 gives HAH — oH o 2 (not T!) is orthogonal
to all columns of A" (using complex inner product zH times column).

The four fundamental subspaces are C(A), N(A), C(AH), N(AH),

(a) (AHMH = AHAHH — gH4 a0ain  (b) If AHAz = 0 then (zHAH)(Az) = 0. This
is || Azll =0 so Az =10. The nullspaces of A and AH A are the same. AHA is invertible
when N({A) = {0].

(a) False: A=[ 0.1

£ I]'] (b) True: —i is not an eigenvalue if A = AH (c) False.

(1,1, 1), (1,213 47i/3) (1, ¥71/3 ¢27i/3) are orthogonal (complex inner product!) be-
cause P is an orthogonal matrix—and therefore unitary.

5
C = 2
4
3

2 > sed:ﬂ'” + 493.#”3.

=2+4+5P+4P has A = 2+5+4 = 11, 2+ 5e¥/3 4 447mi/3,

L R S ]
[ RS IT T =
| MR |

The determinant is the product of the eigenvalues (all real).

A P | A FY R

U_I[l"l‘:i ]‘i:,i][ _l] ['_“'I’f: luf3}wimL3=6+2J§has|J.|=l.

v=vH gives real A, trace zero gives A =1, —1.

The v's are columns of a unitary matrix U. Then z = U UHz = (multiply by columns)
= u1[v'|"z} + -+ + vp(vilz),

Don't multiply e~ i% times &'¥; conjugate the first, then f&” edX gy = [er‘x [2i ]5“’ =1,



Solutions to Selected Exercises 541

22 R+iS=(R+iS" = RT —isT; R is symmetric but § is skew-symmetric.

L

24 (1] and [=1]; any [ ]; [ 4 ““"]

w &7 .
b—ir i ; ]: ,"lﬁﬁ] with |w|2 + |'£|2 = 1.

27 Unitary means UNU =1 or (AT —iBT)(A+iB) = (ATA+BTB) +i(ATB - BTA) = 1.
Then ATA+ B"B =1 and ATB — BYA = 0 which makes the block matrix orthogonal.

=i 1=i[r 0] 242 =27 _ =
0 "‘_[ -1 2 ][l} 4}3[1“ 2]_5“ '
Problem Set 10.3, page 500
8 ¢—(1,1.1,1,0,0,0,0) = (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) which is Fge. The
second vector becomes (0,0,0,0,1,1,1,1) — (0,0,0,0,4,0,0,0) — (4,0,0,0, —4,0,0,0).

9 If wb =1 then w? is a 32nd root of 1 and /w is a 128th root of 1.

WBey=wp+ey+ea+cyand ex =cp+eyi +.rgi2 +r.-3t'3; E contains the four eigenvalues
of C.

14 Eigenvalues ) =2 —1—=1=0, e =2—i—-i* =2, e3=2~(=1)—(=1) = 4,
eg=2—i% —i% =2 Check trace 0 +2+4+2=8,

15 Diagonal E needs n multiplications, Fourier matrix F and F~' need yn log; n multiplica-
tions each by the FFT. Total much less than the ordinary n?,

16 (cg + £2) + () +¢3); then (cp — 2) + i(ey — e3); then (og + ¢2) — (e + ¢3); then (cp —
¢3) — ile) — e3). These steps are the FFT!



A FINAL EXAM

This was the final exam on December 17, 2002 in MIT"s linear algebra course 18.06

1

The 4 by 6 matrix A has all 2's below the diagonal and elsewhere all 17s:

(a)
(b)

1 1 1
11
e TR
111

S I A O
Pd Pl == =
o B

By elimination factor A into L (4 by 4) times U (4 by 6).

Find the rank of A and a basis for its nullspace (the special solutions would
be good).

Suppose you know that the 3 by 4 matrix A has the vector s = (2,3, 1,0) as
a basis for its nullspace.

(a)

(b}

What is the rank of A and the complete solution to Ax =07
What is the exact row reduced echelon form R of A?

The following matrix is a projection matrix:

(a)
(h)
(c)

(a)

] 1 2 -4
P=— 2 4 —8
2| 4 8 16

What subspace does P project onto?
What is the disrance from that subspace to b= (1,1, 1)?
What are the three eigenvalues of P? Is P diagonalizable?

Suppose the product of A and B is the zero matrix: AB = 0. Then the (1)
space of A contains the (2) space of B. Also the (3) space of B contains
the (4) space of A. Those blank words are

(1) 2

(3 _ (4)

542
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(b) Suppose that matrix A is 5 by 7 with rank r, and B is 7 by 9 of rank s.
What are the dimensions of spaces (1) and (2)? From the fact that space
(1) contains space (2), what do you learn about r + 57

Suppose the 4 by 2 matrix @ has orthonormal columns.

(a) Find the least squares solution ¥ to Qx = b.
(b) Explain why Q@7 is not positive definite.
(e} What are the (nonzero) singular values of Q, and why?

1 5
Let S be the subspace of R? spanned by | 2 | and 4
2 -2

(a) Find an orthonormal basis ¢, g5 for § by Gram-Schmidt.

(b) Write down the 3 by 3 matrix P which projects vectors perpendicularly
onto §.

(¢c) Show how the properties of P (what are they?) lead to the conclusion that
Pb is orthogonal to b — Pb.

(a) If vy, v3, v3 form a basis for R? then the matrix with those three columns
is

(b) If v, v, v3, vy span R?, give all possible ranks for the matrix with those
four columns.

(¢) 1If ¢,.q¢2.9; torm an orthonormal basis for R, and T is the transforma-
tion that projects every vector v onto the plane of ¢, and g.. what is the
matrix for T in this basis? Explain.

Suppose the n by n matrix A, has 3's along its main diagonal and 2's along
the diagonal below and the (1.n) position:

2

0

Ag = 0

L=J=Jg .~ B~
[ =T SN RS =

0
0
3
2
th

3
Find by cofactors of row 1 or otherwi e determinant of Ay and then the

determinant of A, for n > 4.

&

There are six 3 by 3 permutation matrices P.

(a) What numbers can be the determinant of P? What numbers can be pivors?

(b) What numbers can be the rrace of P? What four numbers can be eigen-
values of P?



MATRIX
FACTORIZATIONS

¢y [ lower triangular L upper triangular U/ e
AalUn (l's on the diagcna]) (pivﬂts on the diagonal SN 20

Requirements: No row exchanges as Gaussian elimination reduces A to U.
A = LDU = lower triangular L pivot matrix upper triangular £/

- ~ \ I's on the diagonal / \ D is diagonal / \ 1°s on the diagonal
Requirements: No row exchanges. The pivots in D are divided out to leave 1'sin U,
If A is symmetric then U is LT and A = LDLT. Section 2.6 and 2.7
PA = LU (permutation matrix P to avoid zeros in the pivot positions).
Requirements: A is invertible. Then P, L, U are invertible. P does the row
exchanges in advance. Alternative: A = Ly P U,. Section 2.7
EA = R (m by m invertible E) (any A) = mref(A).

Reqguirements: None! The reduced row echelon form R has r pivot rows and pivot
columns. The only nonzero in a pivot column is the unit pivot. The last m — r rows
of E are a basis for the left nullspace of A, and the first r columns of £~ are a basis
for the column space of A. Sections 3.2-3.3.

A = CCT = (lower triangular matrix C) (transpose is upper triangular)
Requirements: A is symmetric and positive definite (all n pivots in D are positive).
This Cholesky factorization has C = L+/D. Secrion 6.5

A = QR = (orthonormal columns in Q) (upper triangular R)

Requirements: A has independent columns. Those are orthogonalized in @ by the
Gram-Schmidt process. If A is square then @' = Q7. Section 4.4

A = SAS ! = (eigenvectors in S)eigenvalues in A)(left eigenvectors in §~'),

Requirements: A must have n linearly independent eigenvectors. Section 6.2

A = QAQT =(orthogonal matrix Q)(real eigenvalue matrix A} Q7 is ¢~ ").
Requirements: A is symmetric. This is the Spectral Theorem. Section 6.4

544
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Matrix Factorizations 345

A= MJM_I = (generalized eigenvectors in M)(Jordan blocks in J )Y M~ h.

Requirements: A is any square matrix. Jordan form J has a block for each indepen-
dent eigenvector of A. Each block has one eigenvalue. Section 6.6

A=USVT = orthogonal m % n singular value matrix} [orthogonal
= “\Uismxm al, ..., or on its diagonal Visnxn/

Requirements: None. This singular value decomposition (SVD) has the eigenvectors
of AATin U and of ATA in Vioi = VA(ATA) = VA (AAT). Sections 6.7 and 7.4

A+ = VEHUT = orthogonal \ { n x m pseudoinverse of £ | (orthogonal
nxn 72 ¢ P 1 /@, on diagonal mxm )

Requirements: None. The pseudoinverse has A* A = projection onto row space of
A and AA™ = projection onto column space. The shortest least-squares solution to
Ax =bis & = A*b. This solves ATAZ = ATb. Section 7.4

A = QH = (orthogonal matrix Q) symmetric positive definite matrix H).

Requirements: A is invertible. This polar decomposition has H*> = ATA. The
factor H is semidefinite if A is singular. The reverse polar decomposition A = K Q
has K2 = AAT. Both have Q = UV from the SVD. Section 7.4

A = UAU~! = (unitary U )(eigenvalue matrix A)U~" which is U" = T").
Requirements: A is normal: AMA = AAM. Its orthonormal (and possibly complex)
eigenvectors are the columns of /. Complex A’s unless A = AH. Section 10.2

A = UTU"! = (unitary U)(triangular 7 with 1's on diagonal)(U ~' = UY).

Requirements: Schur rriangularization of any square A. There is a matrix U with
orthonormal columns that makes U/ ~' AU triangular. Section 10.2

| D] |Fan even-odd
Fa = [I —D] [ Fm] [Pennutatinn] = one step of the FFT.

Requirements: F, = Fourier matrix with entries w/* where w" = 1. Then FyFy =
nl. Dhas |, w,w?, ... on its diagonal. For n = 2! the Fast Fourier Transform has
snl multiplications from / stages of D's. Section 10.3
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2.7

CONCEPTUAL QUESTIONS
FOR REVIEW

Chapter 1

Which vectors are linear combinations of v = (3. 1) and w = (4, 3)?

Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
Which is larger? Whose inequality?

What is the cosine of the angle between v and w in Question 1.27 What is the cosine
of the angle between the x-axis and v?

Chapter 2

Multiplying a matrix A times the column vector x = (2, — 1) gives what combination
of the columns of AT How many rows and columns in A7

If Ax = b then the vector b is a linear combination of what vectors from the matrix
A? In vector space language, b liesinthe  space of A,

If A is the 2 by 2 matrix [ ! | what are its pivots?

It A is the matrix [']I } ] how does elimination proceed? What permutation matrix P
is involved?

If A is the matrix [ 1] find b and ¢ so that Ax = b has no solution and Ax = ¢ has
a solution,

What 3 by 3 matrix L adds 5 times row 2 to row 3 and then adds 2 times row 1 to row
2, when it multiplies a matrix with three rows?

What 3 by 3 matrix E subtracts 2 times row 1 from row 2 and then subtracts 5 times
row 2 from row 37 How is E related to L in Question 2.67

If Ais 4 by 3 and B is 3 by 7, how many row times column products go into AB?
How many column rimes row products go into A B? How many separate small mul-
tiplications are involved (the same for both)?
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Suppose A = [ § § | is a matrix with 2 by 2 blocks. What is the inverse matrix?

How can you find the inverse of A by working with [A [7]7 If you solve the n
equations Ax = columns of / then the solutions x are columns of

How does elimination decide whether a square matrix A is invertible?

Suppose elimination takes A to U (upper triangular) by row operations with the
multipliers in L (lower triangular). Why does the last row of A agree with the last
row of L times U7

What is the factorization (from elimination with possible row exchanges) of any
square invertible matrix?

What is the transpose of the inverse of AB?

How do you know that the inverse of a permutation matrix is a permutation matrix?
How is it related to the transpose?

Chapter 3

What is the column space of an invertible n by n matrix? What is the nullspace of
that matrix?

If every column of A is a multiple of the first column, what is the column space of A?
What are the two requirements for a set of vectors in R" to be a subspace?

If the row reduced form R of a matrix A begins with a row of ones, how do you know
that the other rows of R are zero and what is the nullspace?

Suppose the nullspace of A contains only the zero vector. What can you say about
solutions to Ax = b7

From the row reduced form R, how would you decide the rank of A?

Suppose column 4 of A is the sum of columns 1, 2, and 3. Find a vector in the
nullspace.

Describe in words the complete solution to a linear system Ax = b.

If Ax = b has exactly one solution for every b, what can you say about A?
Give an example of vectors that span R? but are not a basis for R2,

What is the dimension of the space of 4 by 4 symmetric matrices?

Describe the meaning of basis and dimension of a vector space.
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4.9

4.10
4.11
412

4,13
4.14

Why is every row of A perpendicular to every vector in the nullspace?

How do you know that a column # times a row v" (both nonzero) has rank 1?7

What are the dimensions of the four fundamental subspaces, if A is 6 by 3 withrank 27
What is the row reduced form R of a 3 by 4 matrix of all 2°s?

Describe a pivor column of A.

True? The vectors in the left nullspace of A have the form ATy.

Why do the columns of every invertible matrix yield a basis?

Chapter 4

What does the word complement mean about orthogonal subspaces?

If V is a subspace of the 7-dimensional space R’, the dimensions of V and its
orthogonal complement add to 2

The projection of b onto the line through a is the vector :
The projection matrix onto the line through a is P =

The key equation to project b onto the column space of A is the normal equation

The matrix AT A is invertible when the columns of A are :
The least squares solution to Ax = b minimizes what error function?

What is the connection between the least squares solution of Ax = b and the idea of
projection onto the column space?

If you graph the best straight line to a set of 10 data points, what shape is the matrix
A and where does the projection p appear in the graph?

If the columns of Q are orthonormal, why is QTQ = [?
What is the projection matrix P onto the columns of Q7?

If Gram-Schmidt starts with the vectors @ = (2,0) and b = (1, 1), which two
orthonormal vectors does it produce? If we keep a = (2, 0) does Gram-Schmidt
always produce the same two orthonormal vectors?

True? Every permutation matrix is an orthogonal matrix.

The inverse of the orthogonal matrix Q is



5.1
b7
5.3
54

55

5.6

5.7

5.8
3.9
5.10

5.11
5.12
5.13

6.1

6.2
6.3
6.4
6.5
6.6

6.7

549
Chapter 5

What is the determinant of the matrix — /7
Explain how the determinant is a linear function of the first row.

How do you know that det A~' = 1/ det A?

If the pivots of A (with no row exchanges) are 2, 6, 6, what submatrices of A have
known determinants?

Suppose the first row of A is 0, 0, 0, 3. What does the “big formula™ for the determi-
nant of A reduce to in this case?

Is the ordering (2. 5, 3. 4, 1) even or odd? What permutation matrix has what deter-
minant, from your answer?

What is the cofactor Cy3 in the 3 by 3 elimination matrix E that subtracts 4 times row
| from row 2? What entry of £~ is revealed?

Explain the meaning of the cofactor formula for det A using column 1.
How does Cramer's Rule give the first component in the solution 1o Jx = b7

If | combine the entries in row 2 with the cofactors from row |, why is a3, Cyy +
a22C2 + a23Cy3 automatically zero?

What is the connection between determinants and volumes?
Find the cross product of u = (0,0, 1) and v = (0, 1, 0) and its direction.

If A isn by n, why is det(A — A7) a polynomial in A of degree n?

Chapter 6

What equation gives the eigenvalues of A without involving the eigenvectors? How
would you then find the eigenvectors?

If A 1s singular what does this say about its eigenvalues?

If A times A equals 4A, what numbers can be eigenvalues of A?

Find a real matrix that has no real eigenvalues or eigenvectors.

How can you find the sum and product of the eigenvalues directly from A?
What are the eigenvalues of the rank one matrix [1 2 1]7[1 1 1]?

Explain the diagonalization formula A = SAS™'. Why is it true and when is it true?
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6.8

6.9

6.10
6.11
6.12
6.13

6.14

What is the difference between the algebraic and geometric multiplicities of an eigen-
value of A? Which might be larger?

Explain why the trace of AB equals the trace of BA.

How do the eigenvectors of A help to solve du/dr = Au?
How do the eigenvectors of A help to solve uyy) = Auy?
Define the matrix exponential e and its inverse and its square.

If A is symmetric, what is special about its eigenvectors? Do any other matrices have
eigenvectors with this property?

What is the diagonalization formula when A is symmetric?

6.15 "What does it mean to say that A is positive definite?

6.16
6.17
6.18

6.19
6.20
6.21

7.1
7.2

13

7.4

1.5

7.6

7.7

Whenis B= ATAa positive definite matrix (A is real)?
If A is positive definite describe the surface xTAx = 1 in R”,

What does it mean for A and B to be similar? What is sure to be the same for A and
B7?

The 3 by 3 matrix with ones for i > j has what Jordan form?
The SVD expresses A as a product of what three types of matrices?
How is the SVD for A linked to ATA?

Chapter 7

Define a linear transformation from R* to R? and give one example.

If the upper middle house on the cover of the book is the original. find something
nonlinear in the transformations of the other eight houses.

If a linear transformation takes every vector in the input basis into the next basis vector
(and the last into zero), what is its matrix?

Suppose we change from the standard basis (the columns of ') to the basis given by
the columns of A (invertible matrix), What is the change of basis matrix M?

Suppose our new basis is formed from the eigenvectors of a matrix A. What matrix
represents A in this new basis?

If A and B are the matrices representing linear transformations § and T on R". what
matrix represents the transformation from v to 5(T(v))?

Describe five important factorizations of a matrix A and explain when each of them
succeeds (what conditions on A7).
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Adjacency matrix of a graph. Square matrix with @;; = | when there is an edge from
node i to node j; otherwise a;; =0. A = AT for an undirected graph.

Affine transformation T (v) = Av + vy = linear transformation plus shift.
Associative Law (AB)C = A(BC). Parentheses can be removed to leave ABC.

Augmented matrix [ A b]. Ax = b is solvable when b is in the column space of A; then
[ A &] has the same rank as A. Elimination on [ A b | keeps equations correct.

Back substitution. Upper triangular systems are solved in reverse order x, to x|.

Basis for V. Independent vectors vy. ... , vy whose linear combinations give every v in
V. A vector space has many bases!

Big formula for n by n determinants. Det(A) is a sum of n! terms, one term for each
permutation P of the columns. That term is the product ayy - - - @pq down the diagonal
of the reordered matrix, times det(P) = 1.

Block matrix. A matrix can be partitioned into matrix blocks, by cuts between rows and/or
between columns. Block multiplication of A B is allowed if the block shapes permit
(the columns of A and rows of B must be in matching blocks).

Cayley-Hamilton Theorem. p(3) = det(A — A1) has p(A) = zero matrix.

Change of basis matrix M. The old basis vectors v; are combinations 3 m;;w; of the
new basis vectors. The coordinates of ¢jvy + -+« + cyv, = dyw| + --- + d,w, are
related by d = Me. (Forn =2set vy = mpyw; + maywz, vz = mpaw; + mnw:.)

Characteristic equation det(A — 1/) = 0. The n roots are the eigenvalues of A.
Cholesky factorization A = CCT = (LVD)(L+/D)" for positive definite A.

Circulant matrix C. Constant diagonals wrap around as in cyclic shift S. Every circulant
iscol + 185+ -+ cu—1 5", Cx = convolution ¢ * x. Eigenvectors in F.

Cofactor C;;. Remove row i and column j; multiply the determinant by (—1)'%/,

Column picture of Ax = b. The vector b becomes a combination of the columns of A.
The system is solvable only when b is in the column space C(A).

Column space C(A) = space of all combinations of the columns of A.
Commuting matrices AB = BA. If diagonalizable, they share n eigenvectors.

Companion matrix. Put ¢y, ... .c, inrow n and put n — 1 1's along diagonal 1. Then
det(A — A1) = ey + 24 +r_'3_l: e winy,

Complete solution x = x, + x, to Ax = b. (Particular x,) + (x, in nullspace).

551
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Complex conjugate 7 = a — ib for any complex number z = a + ib. Then zZ = |z|%.

Condition number cond(A) = x(A) = |[AIIA7"| = Omax/Omin. In Ax = b, the
relative change ||dx || /||x | is less than cond(A) times the relative change ||5b]|/||B]|.
Condition numbers measure the sensitivity of the output to change in the input.

Conjugate Gradient Method. A sequence of steps (end of Chapter 9) to solve positive
definite Ax = b by minimizing 5x" Ax — x7b over growing Krylov subspaces.

Covariance matrix £. When random variables x; have mean = average value = 0, their
covariances I;; are the averages of x;x;. With means ¥;, the matrix £ = mean of
(x—-F)x-5)"is positive (semi)definite; it is diagonal if the x; are independent,

Cramer’s Rule for Ax = b. B, has b replacing column j of A, and x; = |B;|/|Al.

Cross product u x v in R?. Vector perpendicular to u and v, length |[u|||v]|] sin #| = par-
allelogram area, computed as the “determinant™ of [{ j k: w) w2 w3: vy 1n nal

Cyclic shift 5. Permu_tatiun with 527 = 1,532 = |, ..., finally 51, = 1. lts eigenvalues
are nth roots e*™*/" of 1; eigenvectors are columns of the Fourier matrix F.

Determinant |A| = det(A). Defined by det / = 1, sign reversal for row exchange, and
linearity in each row. Then |A| = 0 when A is singular. Also |[AB| = |A||B| and
|A="| = 1/]A| and |AT| = |A|. The big formula for det(A) has a sum of n! terms,
the cofactor formula uses determinants of size n — 1, volume of box = | det(A)|.

Diagonal matrix D. d;; = 0if i # j. Block-diagonal: zero outside square blocks Dj;.

Diagonalizable matrix A. Must have n independent eigenvectors (in the columns of §:
automatic with n different eigenvalues). Then 5~ 'AS = A = eigenvalue matrix.

Diagonalization A = §~'AS. A = eigenvalue matrix and § = eigenvector matrix, A
must have n independent eigenvectors to make § invertible. All A* = SA*S—1,

Dimension of vector space dim(V) = number of vectors in any basis for V.
Distributive Law A(B + C) = AB + AC. Add then multiply. or multiply then add.

Dot product xTy = x1y; + -+ + x,v. Complex dot product is xy. Perpendicular
vectors have zero dot product. (AB);; = (row i of A)-(column j of B).

Echelon matrix [/. The first nonzero entry (the pivot) in each row comes after the pivot
in the previous row. All zero rows come last.

Eigenvalue /. and eigenvector x. Ax = ix with x # 0sodet(A — A1) =0.
Eigshow. Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java).

Elimination. A sequence of row operations that reduces A to an upper triangular U or to
the reduced form R = rref{A). Then A = LU with multipliers £;; in L,or PA = LU
with row exchanges in P, or EA = R with an invertible E.

Elimination matrix = Elementary matrix £;;. The identity matrix with an extra —{;;
inthe i, j entry (i # j). Then E;; A subtracts £;; times row j of A from row i.
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Ellipse (or ellipsoid) x"Ax = 1. A must be positive definite; the axes of the ellipse are
eigenvectors of A, with lengths 1/+/A. (For |lx|| = 1 the vectors y = Ax lie on the
ellipse [|A~"y||*> = yT(AAT)"'y = 1 displayed by eigshow; axis lengths o;.)

Exponential ¢*' = I + At +(Ar)? /2! +- - - has derivative Ae™'; e u(0) solves u’ = Au.

Factorization A = L /. If elimination takes A to U without row exchanges, then the
lower triangular L with multipliers £;; (and £;; = 1) brings U back to A.

Fast Fourier Transform (FFT). A factorization of the Fourier matrix F, into £ = log, n
matrices §; times a permutation. Each §; needs only n/2 multiplications, so F,x and
F,~'¢ can be computed with n€/2 multiplications. Revolutionary.

Fibonacci numbers0, 1, 1,2,3,5, ... satisfy F, = Fy_y+Fy_2 = (\ —A8)/(hy — 12).
Growth rate A = (1++/5)/2 is the largest eigenvalue of the Fibonacci matrix [ ] & ].

Four fundamental subspaces of A = C(A), N(A), C(AT), N(AT),

Fourier matrix F. Entries F;z = ¢*/*/" give orthogonal columns ' F = nl. Then
y = Fe is the (inverse) Discrete Fourier Transform y; = 3 ¢y e ik/m,

Free columns of A. Columns without pivots; combinations of earlier columns,

Free variable x;. Column i has no pivot in elimination. We can give the n — r free variables
any values, then Ax = b determines the r pivot variables (if solvable!).
Full column rank r = n. Independent columns, N(A4) = [0}, no free variables.

Full row rank r = m. Independent rows, at least one solution to Ax = b, column space
is all of R™. Full rank means full column rank or full row rank.

Fundamental Theorem. The nullspace N(A) and row space C(AT) are orthogonal
complements (perpendicular subspaces of R" with dimensions » and n — r) from
Ax = 0. Applied to A”, the column space C(A) is the orthogonal complement of
N(AT).

Gauss-Jordan method. Invert A by row operationson [A [ Jtoreach [/ A™']

Gram-Schmidt orthogonalization A = QR. Independent columns in A, orthonormal
columns in Q. Each column g; of @ is a combination of the first j columns of A
(and conversely, so R is upper triangular). Convention: diag(R) > 0.

Graph G. Set of r nodes connected pairwise by m edges. A complete graph has all
ni{n — 1)/2 edges between nodes. A tree has only n — 1 edges and no closed loops.
A directed graph has a direction arrow specified on each edge.

Hankel matrix H. Constant along each antidiagonal; h;; depends on i + j.
Hermitian matrix AY = A" = A. Complex analog of a symmetric matrix: ag = aij.
Hessenberg matrix H. Triangular matrix with one extra nonzero adjacent diagonal.

Hilbert matrix hilb(n). Entries Hi; = 1/(i+j— 1) = j:]! x'=1xJ=1dx. Positive definite
but extremely small Ay and large condition number.

Hypercube matrix P;. Row n + 1 counts corners, edges, faces, . . . of a cube in R".
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Identity matrix / (or /,). Diagonal entries = |, off-diagonal entries = ().

Incidence matrix of a directed graph. The m by n edge-node incidence matrix has a
row for each edge (node i 1o node j). with entries —1 and 1 in columns i and j.

Indefinite matrix. A symmetric matrix with eigenvalues of both signs (+ and —).

Independent vectors v, ... , v;. Nocombination ¢yvy +- - -+ ¢, v = zero vector unless
all c; = 0. If the v's are the columns of A, the only solution to Ax =0isx = 0.

Inverse matrix A~'. Square matrix with A~'A = [ and AA~' = [. No inverse if
det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB
and AT are B-'A~" and (A~")7. Cofactor formula (A~ )ij = Cji/ det A.

Iterative method. A sequence of steps intended to approach the desired solution.

Jordan form J = M "AM. If A has 5 independent eigenvectors, its “generalized”
eigenvector matrix M gives J = diag(Jy, ... . J;). The block J; is Ag Iy + Ny where
Ni has 1's on diagonal 1. Each block has one eigenvalue A; and one eigenvector
(1,0,....0).

Kirchhoff's Laws. Current law: net current (in minus out) is zero at each node. Volrage
law: Potential differences (voltage drops) add to zero around any closed loop.

Kronecker product (tensor product) A G0 8. Blocks a;; B, eigenvalues A,(A)a, (B).

Krylov subspace K;(A.b). The subspace spanned by b, Ab, ..., A/~'h. Numerical
methods approximate A~'b by x; with residual b — Ax; in this subspace. A good
basis for K; requires only multiplication by A at each step.

Least squares solution ¥. The vector X that minimizes the error |le]|” solves ATAX =
ATh. Then e = b — AX is orthogonal to all columns of A.

Left inverse A™. If A has full column rank n, then A* = (ATA)"'AT has ATA = I,
Left nullspace N(AT). Nullspace of AT = “left nullspace” of A because y" A = 07,
Length | x||. Square root of x'x (Pythagoras in n dimensions).

Linear combination cv + dw or }_ ¢;v;. Vector addition and scalar multiplication.

Linear transformation 7. Each vector v in the input space transforms to 7'(v) in the
output space. and linearity requires T(cv + dw) = ¢ T(v) + d T(w). Examples:
Matrix multiplication Av, differentiation in function space.

Linearly dependent v). ... . v,. A combination other than all ¢; = 0 gives }_c;v; = 0.

Lucas numbers L, =2,1,.3.4,... satisfy L, = L, + Ly—2 = A] + 13, with eigen-
values &1, A2 = (1 £ +/5)/2 of the Fibonacci matrix [ } }]. Compare Ly = 2 with
Fibonacci.

Markov matrix M. Allm;; = 0 and each column sum is 1. Largest eigenvalue A = 1. If
m;; = 0, the columns of M* approach the steady state eigenvector Ms = s > 0.
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Matrix multiplication AB. The i. j entry of AB is (row i of A)-(column j of B) =
Y airbij. By columns: Column j of AB = A times column j of B. By rows: row i
of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these
equivalent definitions come from the rule that A B times x equals A times Bx.

Minimal polynomial of A. The lowest degree polynomial with m(A) = zero matrix. The
roots of m are eigenvalues, and m(2) divides det(A — AT).

Multiplication Ax = xj(column 1) + - - - + x,(column n) = combination of columns.

Multiplicities AM and GM. The algebraic multiplicity AM of an eigenvalue A is the
number of times A appears as a root of det(A — A7) = 0. The geometric multiplicity
G M is the number of independent eigenvectors (= dimension of the eigenspace for
A

Multiplier £;;. The pivot row j is multiplied by £;; and subtracted from row i to eliminate
the i. j entry: £;; = (entry to eliminate)/( jth pivot).

Network. A directed graph that has constants ¢y, ... ., ¢, associated with the edges.

Nilpotent matrix N. Some power of N is the zero matrix, N* = 0. The only eigenvalue
is 4 = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Norm || A| of a matrix. The “¢2 norm" is the maximum ratio |Ax[|/||x| = omax. Then
lAx]| < | Allllx|| and [AB]| < |A[[B] and [|A + B]| = [[A]l + [|B]. Frobenius
norm [|All: =3 % a; ¢' and £ norms are largest column and row sums of |a;;|.

Normal equation ATAT = ATh. Gives the least squares solution to Ax = b if A has full
rank n. The equation says that (columns of A)-(b — AX) = 0.

Normal matrix N. NNT = NTN, leads to orthonormal (complex) eigenvectors.

Nullspace N{A) = Solutions to Ax = 0. Dimension n — r = (# columns) — rank.

Nullspace matrix V. The columns of N are the n — r special solutions to As = 0.

Orthogonal matrix Q. Square matrix with orthonormal columns, so Q7 Q = I implies
QT = @~'. Preserves length and angles, || Qx| = ||x|| and (Qx)T(Qy) = xTy. All
|&] = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Orthogonal subspaces. Every v in V is orthogonal to every w in W.

Orthonormal vectorsg,.... . q,. II)-:=—tp:n:m:lm:tsaﬂaa.gr,.TqrJ =0ifi # jandq}‘q,- = |. The
matrix Q with these orthonormal columns has QT Q = 1. If m = n then Q7 = Q!
and g, ... .q, is an orthonormal basis for R": every v = ZI:FT{}J- g .

Outer product uv" = column times row = rank one matrix.

Partial pivoting. In elimination, the jth pivot is chosen as the largest available entry (in
absolute value) in column j. Then all multipliers have |£;;| < 1. Roundoff error is
controlled (depending on the condition number of A).

Particular solution x,. Any solution to Ax = b; often x, has free variables = 0.

+j-=2

Pascal matrix Ps = pascal(n). The symmetric matrix with binomial entries (‘7]
Ps = Py Py all contain Pascal’s triangle with det = | (see index for more properties).
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Permutation matrix P. There are n! orders of 1, ..., n; the n! P’s have the rows of /
in those orders. P A puts the rows of A in the same order. P is a product of row
exchanges F;;: P iseven orodd (det P = 1 or — 1) based on the number of exchanges.

Pivot columns of A. Columns that contain pivots after row reduction; not combinations
of earlier columns. The pivot columns are a basis for the column space.

Pivot d. The diagonal entry (first nonzero) when a row is used in elimination.

Plane (or hyperplane) in R". Solutions to a'x = 0 give the plane (dimension n — 1)
perpendicular toa # 0.

Polar decomposition A = QH. Orthogonal (, positive (semi)definite H.

Positive definite matrix A. Symmetric matrix with positive eigenvalues and positive
pivots. Definition: xTAx > 0 unless x = 0.

Projection p = a(a'b/a' a) onto the line through a. P = aa" /a"a has rank 1.

Projection matrix P onto subspace S. Projection p = Pb is the closest point to b in
S, error e = b — Pb is perpendicular to §. P> = P = PT, eigenvalues are 1 or 0,
eigenvectors are in S or S, If columns of A = basis for S then P = A(ATA)" AT,

Pseudoinverse A" (Moore-Penrose inverse). The n by m matrix that “inverts” A from
column space back to row space, with N(AY) = N(AT). A*A and AAT are the
projection matrices onto the row space and column space. Rank(A™) = rank(A).

Random matrix rand(n) or randn{n). MATLAB creates a matrix with random entries,
uniformly distributed on [0 1 | for rand and standard normal distribution for randn.

Rank one matrix A = uv" # 0. Column and row spaces = lines cu and cv.

Rank r(A) = number of pivots = dimension of column space = dimension of row space.

Rayleigh quotient g(x) = x" Ax/x"x for symmetric A: Lyip < g(x) < kmax. Those
extremes are reached at the eigenvectors x for Agin(A) and Amax(A).

Reduced row echelon form R = rref(A). Pivots = 1: zeros above and below pivots; r
nonzero rows of R give a basis for the row space of A.

Reflection matrix Q = { — 2uu". The unit vector u is reflected to Qu = —u. All vectors
x in the plane mirror uTx = 0 are unchanged because Qx = x. The “Householder
matrix” has 07 = 01 = Q.

Right inverse A™. If A has full row rank m, then A* = AT(AAT)"! has AA*T = [,,.

cosf —sinf
sin # cos i
by —6. Orthogonal matrix, eigenvalues ¢'” and ™', eigenvectors (1, £i).

Rotation matrix R = [ } rotates the plane by @ and R~! = R rotates back

Row picture of Ax = b. Each equation gives a plane in R"; planes intersect at x.
Row space C( ATy = all combinations of rows of A. Column vectors by convention.

Saddle point of f(x;....,x,). A point where the first derivatives of f are zero and the
second derivative matrix (3¢ f/dx;dx; = Hessian matrix) is indefinite.

Schur complement § = D — CA~' B. Appears in block eliminationon [ 2 B .
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Schwarz inequality [v-w| < ||lv|| ||w|.Then [vTAw|* < (vTAv)(wTAw) if A = CTC.

Semidefinite matrix A. (Positive) semidefinite means symmetric with xT Ax = 0 for all
vectors x. Then all eigenvalues A > 0; no negative pivots.

Similar matrices A and B. Every B = M ' AM has the same eigenvalues as A.

Simplex method for linear programming. The minimum cost vector x* is found by
moving from corner to lower cost corner along the edges of the feasible set (where
the constraints Ax = b and x > 0 are satisfied). Minimum cost at a corner!

Singular matrix A. A square matrix that has no inverse: det(A) = 0.

Singular Value Decomposition (SVD) A = UZVT = (orthogonal U/) times (diago-
nal £) times (orthogonal VT). First r columns of U and V are orthonormal bases
of C(A) and C(AT) with Av; = o;u; and singular value o; = 0. Last columns of U
and V are orthonormal bases of the nullspaces of AT and A.

Skew-symmetric matrix K. The transpose is — K, since K; j = —Kj;. Eigenvalues are
pure imaginary, eigenvectors are orthogonal, ek is an orthogonal matrix.

Solvable system Ax = b. The right side b is in the column space of A.
Spanning set vy, ..., v, for V. Every vector in V is a combination of v{,... . Up.
Special solutions to As = 0. One free variable is 5; = 1, other free variables = 0.

Spectral theorem A = QA Q7. Real symmetric A has real A; and orthonormal ¢; with
Ag; = Aiq;. In mechanics the gq; give the principal axes.

Spectrum of A = the set of eigenvalues {4, ... , 4,}. Spectral radius = |Amax|.
Standard basis for R”. Columns of n by n identity matrix (written i, j, k in R%).

Stiffness matrix K. If x gives the movements of the nodes in a discrete structure, Kx
gives the internal forces. Often K = ATC A where C contains spring constants from
Hooke's Law and Ax = stretching (strains) from the movements x.

Subspace S of V. Any vector space inside V. including V and Z = {zero vector}.

Sum V + W of subspaces. Space ofall (vin V) + (w in W), Direct sum: dim(V+W) =
dim V + dim W when V and W share only the zero vector.

Symmetric factorizations A = LDLT and A = QA Q7. The number of positive pivots
in D and positive eigenvalues in A is the same.

Symmetric matrix A. The transpose is AT = A, and aij = ajj. A~ is also symmetric.
All matrices of the form RTR and LDLT and QA QT are symmetric. Symmetric
matrices have real eigenvalues in A and orthonormal eigenvectors in Q.

Toeplitz matrix T. Constant-diagonal matrix, so t;; depends only on j — i. Toeplitz
matrices represent linear time-invariant filters in signal processing.

Trace of A = sum of diagonal entries = sum of eigenvalues of A. TrAB = Tr BA.
Transpose matrix AT. Entries AT, = Aj. AT is n by m, ATA is square, symmetric,
positive semidefinite. The transposes of A8 and A~! are BTAT and (AT)~ L.
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Triangle inequality |u + v|| < ||u] + ||v||. For matrix norms ||A + B| < ||Al| + || B]|-
Tridiagonal matrix 7: ;; = 0if |i — j| > 1. T~! has rank 1 above and below diagonal.

Unitary matrix UH = U' = U-!. Orthonormal columns (complex analog of Q).

Vandermonde matrix V. V¢ = b gives the polynomial p(x) = ¢p + -+ + oyl
with p(x;) = b; at n points. Vi = (x;) ' and detV = product of (x; — x;) for

ke ook
Vector v in R". Sequence of n real numbers v = (vy.... ., v,) = pointin R".
Vector addition. v + w = (v; + wy, ... . vy + w,) = diagonal of parallelogram.

Vector space V. Set of vectors such that all combinations cv + dw remain in V. Eight
required rules are given in Section 3.1 for cv + dw.

Volume of box. The rows (or columns) of A generate a box with volume | det(A)|.

Wavelets w;;(r) or vectors wj;. Stretch and shift the time axis to create wj; (1) =
woo(2/t — k). Vectors from wog = (1.1, =1, —1) would be (1, —1,0,0) and
(0,0,1, —1).



Adjacency matrix. 64, 302

Affine, 370, 445

Algebraic multiplicity. 295

All combinations, 5

Angle, 15

Applied mathematics, 403, 410, 419

Area of parallelogram, 284

Area of triangle, 262, 271

Amoldi, 476

Arrow, 3, 4

Associative law, 49, 56, 58

Augmented matrix, 50, 51, 55, 77, 121,
144, 172

Axes, 337

B

Back substitution, 35, 40, 86
Balance equation, 403

Band matrix, 453

Basis, 161, 163, 169, 188
Big formula, 245, 248
Binomial coefficients, 62, 78
Biorthogonal, 387

Block elimination, 69, 83
Block matrix, 60, 105, 257
Block multiplication, 60, 258
Boundary conditions. 409
Box. 264, 265

Breakdown, 36

C

Calculus, 202, 207, 244, 258, 265

Cayley-Hamilton Theorem, 302

Change of basis. 344, 381, 384, 391

Change of basis matrix, 371, 377, 384,
405, 406

Characteristic equation, 278
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Chess matrix, 183

chol, 90, 95

Cholesky factorization, 334, 341
Circulant matrix, 493

Clock, 20

Closest line, 206, 208, 210
Coefficient matrix, 23, 26
Cofactor, 249, 260

Cofactor formula, 250, 268, 270
Cofactor matrix, 255, 261

Column picture, 22, 24, 25, 31, 37
Column space, 115, 120, 127, 142, 174
Column times row, 52, 58, 143
Column vector, 4

Column-row multiplication, 69
Combination of columns, 22, 26, 46
Commute, 49, 58, 67, 82, 292, 297
Companion matrix, Glossary
Complete solution, 126, 129, 145, 148
Completing the square, 334
Complex conjugate, 320, 327, 478
Complex eigenvalues, 322
Complex number, 477, 478
Components, 1

Composition, 376

Compression, 383

Computer graphics, 444
Computing time, 87

Condition number, 450, 461
Conjugate gradients, 471, 476
Conjugate transpose, 486
Consumption matrix. 426

Comer submatrix, 246

Corner, 433, 434

Cosine, 14, 15. 16, 17, 30, 437
Cost. 431, 433

Covariance matrix, 217
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Cramer’s Rule, 259, 270
Cross product, 266, 267
Cube, 8, 63, 290

Cyclic matrix, 258, 362
Cyclic permutation, 379, 501

D

Delta function, 439

Dependent, 158, 159, 168

Derivative matrix, 373, 443
Determinant of transpose, 256
Determinant, 233, 298, 327

Diagonal matrix, 72, 86, 392
Diagonalizable, 290, 295, 300, 319, 328
Diagonalization, 288, 392
Diagonally dominant, 475

Diameter, 64, 70

Difference equation, 294

Differential equation, 304

Diffusion, 411

Dimension, 63, 128, 163, 164, 174, 196
Directed graph, 64, 412

Discrete cosines, 325

Discrete Fourier Transform, 325, 387
Discrete sines. 325

Distance, 201

Distributive law, 58

Domain, 372

Dot product, 10, 47, 56

Dual basis, 387, 390

Dual problem, 433, 434

E

Echelon matrix, 127
Economics, 426

eig, 279

Eigenvalue, 274, 296, 362
Eigenvalue matrix, 288
Eigenvalues of AT, 286
Eigenvalues of A2, 275
Eigenvalues of AB, 284, 291, 351
Eigenvector, 274, 279, 362, 392
Eigenvector matrix, 288
eigshow, 281, 357

Einstein, 47

Elastic bar, 408

Elementary matrix, 48
Elementary operations, 130
elim, 134

Elimination, 35, 61, 124
Elimination matrix, 47, 48, 53, 91, 134
Ellipse, 281, 335, 341, 355, 370
Elongations, 403

Empty set, 165

Energy, 98, 401

Engineering, 98, 401

Entry, 27, 46, 56

Error vector, 198

Error. 204, 207

Euler angles, 459

Euler's formula, 418, 422, 481
Even permutation, 105, 254
Exponential, 323, 328, 331
eye, 33, 80

F

Factorial, 101

Factorization. 83

Fast Fourier Transform, 387, 495, 497,
501

Feasible set, 431

Fibonacci, 65, 252, 256, 292, 297, 299

Finite elements, 404, 411

Fitting a line, 228

Fixed-fixed, 402

Force balance, 404

Formula for A~!, 261

Formula for determinant, 237, 248, 250

FORTRAN. 16, 28

Forward elimination, 39, 86

Four fundamental subspaces, 173, 179,
356

Fourier matrix, 490, 495

Fourier series, 222 438

Fredholm'’s alternative, 191

Free, 37, 123

Free columns, 123, 136

Free variables, 1235, 127, 137

Frobenius norm, Glossary

Full column rank, 146, 150



Full row rank, 148, 154
Function space, 165, 171, 438

Fundamental Theorem, 173, 177, 184, 187,

357,378

G

Galileo, 211

Gaussian elimination, 38

Gauss-Jordan, 73, 74, 81, 95, 155

Gauss-Seidel, 466, 469, 470

General solution, 152, 305, 310

Geometric mean, 15, 18

Geometric multiplicity, 295

Geometric series, 427, 430

Gershgorin, 475

Givens, 455

Golden mean, 294

Google, 359

Gram-Schmidt, 211, 223, 224, 225, 229,
359,455

Graph, 302, 412

Group, 109, 342

H

Hadamard matrix, 227, 271, 390
Half-plane, 7

Hankel matrix, Glossary

Heat equation, 313

Heisenberg uncertainty principle, 292, 302
Hermitian matrix, 362, 488, 494
Hessenberg matrix, 252, 473
Hilbert matrix, 82, 244, 338, 457
Hilbert space, 437
Homogeneous, 4435, 448
Hooke's Law, 98, 403
Horizontal line, 215

House, 365, 366, 370
Householder, 231, 455
Hypercube, 63, 290

Hyperplane, 29

|

Identity matrix, 27, 48
Image compression, 352
Imaginary number, 280
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Incidence matrix, 412

Income, 11

Incomplete L U, 470

Indefinite matrix, Glossary
Independent, 124, 168, 175
Independent columns, 146, 159
Independent eigenvectors. 288, 290
Inner product, 10, 438

Input space, 365, 369, 372

inv, 110

Inverse matrix, 71, 279

Inverse of product, 72

Inverse transformation, 365, 367
Invertible matrix, 71, 76, 162
Iteration, 450

Iterations, 466

J

Jacobi, 457, 466, 468, 470
Jacobian matrix, 265, 272

Java, 357

Jordan form, 344, 346, 351
JPEG, 325, 352

K

Kalman filter, 202

Karmarkar, 435

Kernel, 364, 368

Kirchhoff, 412, 416

Kirchhoff's Current Law, 98, 417
Kronecker product, 380

Krylov subspace, 476

L

Lanczos, 475, 476

LAPACK, 471

Largest determinant, 254, 290
Law of cosines, 19

Lax, 303, 329

Least squares, 206, 209, 222, 396, 399
Left nullspace, 175, 177, 181, 186
Left-inverse, 71, 76, 397

Length, 11, 438, 486

Line of springs, 402

Linear combination, 1, 2, 4, 23
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Linear independence, 157

Linear programming, 431

Linear transformation, 363, 374
Linearity, 67, 235, 363, 371
Linearly independent, 157, 158, 161
Loop, 414

lu, 90, 95

Lucas number, 296, 300

M

Magic matrix, 34
Maple, 28

Markov matrix, 33, 274, 276, 284, 286,

362,423,428
Mass matrix, 326
Marhemanca, 28
MATLAB, 16, 28
Matrix, 26, 56
Adjacency, 64, 302

Augmented, 50, 51, 55, 77, 121. 144,

172
Band, 453
Block, 60, 105, 257

Change of basis, 371, 377, 384, 405,

406
Chess, 183
Circulant, 493
Coefficient, 23, 26
Cofactor, 255, 261
Companion, Glossary
Consumption, 426
Corner sub-, 246
Covariance, 217
Cyclic, 258, 362
Derivative, 373, 443
Diagonal, 72, 86, 392
Echelon, 127
Eigenvalue, 288
Eigenvector, 288
Elementary, 48
Elimination. 47, 48, 53, 91, 134
Fourier. 490, 495
Hadamard, 227, 271, 390
Hankel. Glossary
Hermitian, 362, 488, 494

Hessenberg, 252, 473

Hilbert, 82, 244, 338, 457

Identity, 27, 48

Incidence, 412

Indefinite, Glossary

Inverse, 71, 279

Invertible, 71, 76, 162

Jacobian, 265, 272

Magic. 34

Markov, 33, 274, 276, 284, 286, 362,
423,428

Mass, 326

Negative definite, 313

Nilpotent, Glossary

Normal. 325. 329

Northwest, 70, 109

Nullspace, 126, 137, 138, 146

Orthogonal. 220, 228, 241. 280. 311.
338

Pascal, 56. 62, 78, 89, 259, 314, 338,
347, 389

Permutation, 49, 100, 105, 106, 172,
220, 254, 288

Pixel, 352

Positive definite, 301, 331, 333, 335,
340, 394

Positive, 404, 423, 427

Projection. 194, 196, 198, 204, 276,
285, 362, 376, 395

Random, Glossary

Rank one, 135, 142, 178, 197, 361,
380

Reduced row echelon, 124, 128, 134

Reflection, 220, 231, 277, 362

Reverse identity, 241, 345

Rotation, 220, 280, 376, 455

Row exchange, 37, 50, 100

Scaling, 444

Second derivative, 332, 333, 342

Second difference, 312, 409

Semidefinite, 332, 394, 407

Shift, 172

Similar, 282, 343, 346, 349, 362, 392

Singular, 38, 237



Skew-symmetric, 242, 280, 311, 316,
362, 484

Southeast, 70, 109

Stable, 308, 309, 312

Stiffness, 307, 401, 404

Sub-, 142

Symmetric, 99, 318

Translation, 444

Tridiagonal, 75, 94, 246, 255

Unitary, 489

Upper triangular, 35, 41, 236

Zero, 56, 192

—1, 2, —1, tridiagonal, 246, 251, 276,

312, 362, 409, 474

Matrix exponential, 306, 309, 317, 362
Matrix inversion lemma, 83
Matrix logarithm, 314
Matrix multiplication, 28, 48, 56, 57. 376
Matrix notation, 27
Matrix powers, 59, 294, 300
Matrix space, 113, 114, 165, 171, 379
Maximum determinant, 254, 290
Mean, 217
Mechanics, 306
Median, 214
Minimum, 332
Minimal polynomial, Glossary
Modified Gram-Schmidt. 226
Multiplication, 376
Multiplication by columns, 26
Multiplication by rows, 26
Multiplicity, 295
Multiplier, 10, 36, 39, 40, 73

N

Negative definite matrix, 313
Network, 98, 419

Newton's law, 306

Nilpotent matrix, Glossary
No solution, 29, 36
Nonsingular, 38

Norm, 11, 16, 459, 464
Normal equation, 198, 234
Normal matrix, 325, 329
Northwest matrix. 70, 109
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null, 193

nullbasis. 126

Nullspace, 122, 174, 269

Nullspace matrix. 126, 137, 138, 146

O

Ohm’s Law, 98, 418

ones, 33, 80, 338

One-sided inverse, 373

OpenCourseWare (ocw.mit.edu), 90

Operation count, 87, 452, 454, 499

Orthogonal, 13, 184, 438

Orthogonal complement, 187, 190, 208

Orthogonal matrix, 220, 228, 241, 280,
311,338

Orthogonal subspaces. 184, 185

Orthonormal, 219

Orthonormal basis, 356, 359, 462

Output space. 365

P

Parabola, 211, 214, 216

Paradox, 329

Parallel, 132

Parallelogram, 3, 8, 263

Parentheses, 59. 71. 357

Partial pivoting, 102, 450

Particular solution. 145. 147, 150

pascal, 348

Pascal matrix, 56, 62. 78. 89, 259, 314.
338, 347, 389

Permutation, 247

Permutation matrix, 49, 100, 105, 106,
172, 220, 254, 288

Perpendicular, 13, 184, 299

Perpendiculareigenvectors, 192, 280, 318,
321,328

pivcol, 129, 134, 136, 163

Pivot, 36, 39, 76, 246

Pivot columns, 123, 136, 162, 174

Pivot rows, 173

Pivot variables, 125, 127

Pixel, 447

Pixel matrix, 352

Polar coordinates, 290
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Polar decomposition, 394

Positive definite matrix, 301, 331, 333,
335, 340, 394

Positive eigenvalues, 323, 331

Positive matrix, 404, 423, 427

Positive pivots, 331

Potentials, 415

Power method, 358, 471, 475

Preconditioner, 424, 466

Principal axis theorem, 319, 337

Probability vector, 4

Product of eigenvalues, 279, 285, 320

Product of inverses, 73

Product of pivots, 75, 233, 237, 245

Projection, 194, 198, 222, 375, 446

Projection matrix, 194, 196, 198, 204, 276,

285, 362, 376, 395
Projection onto a line, 195, 202
Properties of determinant, 234
Pseudoinverse, 187, 395, 398
Pulse, 202
Pyramid, 290
Pythagoras law, 13

Q
Quadratic formula, 283, 484

R

rand, 45, 95, 244

Random matrix, Glossary

Random walk, 358, 361

Range, 364, 368

Rank, 134, 135, 148, 177, 359

Rank of product, 143, 182

Rank one matrix, 135, 142,178, 197, 361,
380

Rank two, 140, 182

Rayleigh quotient, 461

Real eigenvalues, 318, 320, 340

Real versus Complex, 491

Recursive, 217

Reduced echelon form, 74

Reduced row echelon matrix, 124, 128.
134

Reflection matrix, 220, 231, 277. 362

Regression, 228, 236

Relative error, 462

Repeated eigenvalue, 283, 290, 295, 326
Residual, 210

Reverse identity matrix, 241, 345
Reverse order. 97

Right hand rule, 265, 267

Right triangle, 19

Right-inverse, 71, 76, 397

Roots of 1, 482, 495

Rotation matrix, 220, 280, 376, 455
Roundoff, 451

Row at a time, 21

Row exchange matrix, 37, 50, 100
Row picture, 21, 24, 31, 37

Row space, 160, 174

rref, 75, 129, 134, 143

S

Saddle point, 332, 342

Scalar multiplication, 2

Scaling matrix, 444

scarymatlab, 330

Schur complement, 70, 257

Schwarz inequality, 15, 17, 20, 321, 437

Search engine, 358

Second derivative matrix, 332, 333, 342

Second difference matrix, 312, 409

Semicolon in MATLAB, 16

Semidefinite matrix, 332, 394, 407

Shearing, 366

Shift matrix, 172

Sigma notation, 47

Sign reversal, 235, 238

Signs of eigenvalues, 323

Similar matrix, 282, 343, 346, 349, 362,
392

Similarity transformation, 393

Simplex method, 431, 434

Singular matrix, 38, 237

Singular Value Decomposition, 352, 354,
357, 359, 393

Singular value, 345, 355, 461

Singular vectors, 352



Skew-symmetric matrix, 242, 280, 311,
316, 362, 484

Slope, 18

slu and slv, 88

Solvable, 115, 117, 149

Southeast matrix, 70, 109

Span, 160, 161, 170

Special solution, 122, 126, 129, 136, 137

Spectral radius, 464, 467

Spectral theorem, 319

splu and splv, 103

Spreadsheet, 11

Spring constant, 402

Square root, 394

Stable matrix, 308, 309, 312

Standard basis, 161, 384, 392

Standard deviation, 217

Statistics, 213, 217

Steady state, 423, 425

Stiffness matrix, 307, 401, 404

Straight line, 218

Straight line fit, 209, 236

Structure, 98

Submatrix, 142

Subspace, 113, 114, 117, 122, 137

Successive overrelaxation = SOR, 467,
469

Sum of eigenvalues, 279, 285

Sum of squares, 332

SVD, 352, 354, 357, 393, 398

Symbolic toolbox, 28

Symmetric factorization, 100

Symmetric matrix, 99, 318

T

Tensor product, 380

tic; toc, 88, 95

Tic-tac-toe, 183

Trace, 279, 285, 301, 309, 327
Transform, 222, 363, 384, 385
Translation matrix. 444
Transparent proof, 109

Transpose. 96, 379

Tree, 415, 422

Triangle inequality, 17, 19, 459, 465
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Tridiagonal matrix, 75, 94, 246, 255
Trigonometry, 481

Triple product, 267, 273

Two triangular systems, 86

U

Unit circle, 300

Unit vector, 12, 219

Unitary matrix, 489

Update, 202

Upper left determinants, 335

Upper triangular matrix, 35, 41, 236
Upward elimination, 128

V

Vandermonde, 242, 256
Varniance, 217

Vector, |

Vector addition, 2, 3
Vector space. 112, 118
Volume, 235, 264, 290, 360

W

Wall, 185, 192

Wave equation, 331
Wavelets, 231, 389

Web, 377
web.mit.edu/18.06/, 389
Woodbury-Morrison, 83
Work, 99

World Trade Center, 99

F 4

Zero-dimensional, 112, 113
Zero matrix, 56, 192

—1, 2, —1 matrix, 246, 251,276,312, 362,
409, 474

(Ax)Ty, 97, 108

i.j. k, 161,285

uv', 135, 139, 142

uxw 284

u; = Afug, 294

V<, 187,192
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xTAx. 331

det(A — AN, 277

A(ATA)'AT, 198

Ax = ix, 274,277

AH = 7AT 486

AT A, 192, 200, 205, 230, 339, 354, 404
ATAXY = ATh, 198, 206. 208. 399
ATAand AAT, 325, 329, 354

AT =vETUT, 305

A=LU,B83, 84,359

A=LPU; 102, 122

A= LDL", 100, 104, 324, 334, 338
A=LDU, 85,93

A=0AQ", 319, 338

A = OR, 225, 230. 359. 455
A=SAS"! 289, 301

A=UZIVT, 352, 354, 359, 393
BTAT = (AB)T, 103, 109
B=M"'AM, 343

C", 111

C(A), 115

du/dt = Au, 305

e’ 309,311,317

i choose j, 62
n>m,l127, 164
PY=pP-1 103

PA = LU, 101, 102, 107
oTo =1,219

Q R method, 472, 475

R". 111

S7TAS = A, 289



MATLAB TEACHING CODES

cofactor Compute the n by n matrix of cofactors.

cramer Solve the system Ax = b by Cramer’s Rule.

deter Matrix determinant computed from the pivots in PA = LU,
eigen2  Eigenvalues, eigenvectors, and det(A — A7) for 2 by 2 matrices.
eigshow Graphical demonstration of eigenvalues and singular values.
eigval  Eigenvalues and their multiplicity as roots of det(A — A/) = 0.
eigvec  Compute as many linearly independent eigenvectors as possible.
elim Reduction of A to row echelon form R by an invertible E.
findpiv  Find a pivot for Gaussian elimination (used by plu).

fourbase Construct bases for all four fundamental subspaces.

grams  Gram-Schmidt orthogonalization of the columns of A.

house 2 by 12 matrix giving the corner coordinates of a house.
inverse  Matrix inverse (if it exists) by Gauss-Jordan elimination.
leftnull Compute a basis for the left nullspace.

linefit  Plot the least squares fit to m given points by a line.

Isq Least squares solution to Ax = b from ATAZ = ATh.

normal Eigenvalues and orthonormal eigenvectors when ATA = A AT,
nulbasis Matrix of special solutions to Ax = 0 (basis for nullspace).
orthcomp Find a basis for the orthogonal complement of a subspace.
partic Particular solution of Ax = b, with all free variables zero.
plot2d  Two-dimensional plot for the house figures (cover and Section 7.1).
plu Rectangular PA = LU factorization with row exchanges.
poly2str Express a polynomial as a string.

project Project a vector b onto the column space of A.

projmat Construct the projection matrix onto the column space of A.
randpermConstruct a random permutation.

rowbasis Compute a basis for the row space from the pivot rows of R.
samespan Test whether two matrices have the same column space.
signperm Determinant of the permutation matrix with rows ordered by p.

slu LU factorization of a square matrix using no row exchanges.

slv Apply slu to solve the system Ax = b allowing no row exchanges.
splu Square PA = LU factorization with row exchanges.

splv The solution to a square, invertible system Ax = b.

symmeig Compute the eigenvalues and eigenvectors of a symmetric matrix.
tridiag  Construct a tridiagonal matrix with constant diagonals a, b, c.

These Teaching Codes are directly available from the Linear Algebra Home Page:
http://web.mit.edu/18.06/www
They were written in MATLAB, and translated into Maple and Mathematica.
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LINEAR ALGEBRA IN A NUTSHELL

((Aisn by n))

Nonsingular

A is invertible

The columns are independent
The rows are independent

The determinant is not zero

Az =0 has one solution =0

Az =1b has one solution z=A"1b
A has n (nonzero) pivots

A has full rank r=n

The reduced row echelon form is R=1

The column space is all of R™

The row space is all of R™

All eigenvalues are nonzero

AT A is symmetric positive definite
A has n (positive) singular values

Singular

A is not invertible

The columns are dependent

The rows are dependent

The determinant is zero

Az =0 has infinitely many solutions
Az =1>b has no solution or infinitely many
A has r < n pivots

A hasrank r <n

R has at least one zero row

The column space has dimension r < n
The row space has dimension r < n
Zero is an eigenvalue of A

AT A is only semidefinite

A has r < n singular values

Fach line of the singular column can be made quantitative using r.
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