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PREFACIO

Este livro baseia-se nos cursos de Calculo ministrados aos alunos da Escola
Politécnica da USP, do Instituto de Matematica e Estatistica da USP e do Instituto de
Ensino de Engenharia Paulista — IEEP.

Os assuntos abordados neste volume sdo os de limite, derivada e integral de
funcoes de uma variavel real.

O curso é desenvolvido de forma que os conceitos e teoremas apresentados
venham, sempre que possivel, acompanhados de uma motivacao ou interpretacao
geomeétrica ou fisica. As demonstracoes de alguns teoremas ou foram deixadas para o
final da secao ou colocadas em apéndice, o que significa que o leitor podera, numa
primeira leitura, omiti-las, se assim o desejar.

Muitos problemas que ocorrem muito cedo na Fisica requerem, para suas
resolucoes, o conhecimento de equacdes diferenciais; por esse motivo, é importante
que o aluno entre em contato com elas o mais rapido possivel. Neste volume, no Cap.
14, estudamos as equacOes diferenciais ordinarias de 1.° ordem, de variaveis
separaveis, e as lineares de 1.* ordem. Deixamos para o inicio do Vol. 2 o estudo das
equacoes diferenciais lineares de 2.* ordem com coeficientes constantes. Outros tipos
de equacoes diferenciais serdo estudados ao longo dos Vols. 2, 3 e 4.

Para atender ao curso de Fisica, talvez haja necessidade de o professor ter que
antecipar o estudo das integrais; se este for o caso, sugerimos deixar o capitulo sobre o
estudo das variacdes das funcoes (Cap. 9) para ser estudado apés o Cap. 14.

Quanto aos exemplos e exercicios, pensamos té-los colocado em niimero suficiente
para a compreensdao da matéria. Procuramos dispor os exercicios em ordem crescente
de dificuldade. Existem exercicios que apresentam certas sutilezas e que requerem,
para suas resolu¢oes, um maior dominio do assunto; deste modo, ndo se aborreca caso
ndo consiga resolver alguns deles: tudo que vocé terd que fazer, nestas horas, é seguir
em frente e retornar a eles quando se sentir mais senhor de si. Coloco-me a disposicao
para quaisquer esclarecimentos ou troca de ideias, tanto pessoalmente quanto por
carta, aos cuidados da Editora. Ficaria, ainda, muito feliz em receber sugestoes ou
criticas visando a um aprimoramento do texto.

Observamos que o 2.° Teorema Fundamental do Calculo bem como as integrais
impréprias serdo vistos no Vol. 2.

Na 4.% edicao, foram incluidos dois capitulos: um, atual Cap. 13 e que antes fazia
parte do Vol. 2, sobre aplicacOes das integrais ao calculo de volumes de sélidos de
revolucdo, de areas de superficies de revolucao, de comprimentos de curvas, de areas e
comprimentos de curvas em coordenadas polares e de centros de massa; e outro, novo
(Cap. 17), sobre Arquimedes, Pascal, Fermat e o calculo de areas. Trés novas secoes,
sobre integracao de funcoes trigonométricas, foram acrescentadas ao Cap. 12. A Secdo
12.9 (exercicios do capitulo) da edicdo anterior foi eliminada e os exercicios
distribuidos pelas secoes do capitulo. A Secdao 1.8 (Principio de Inducdo Finita) da



edicdo anterior foi, também, eliminada e parte dela deslocada para a Secao 17.2.

Nesta 5.* edicdo foram feitas uma revisdo meticulosa do texto e correcoes de
algumas falhas graficas relacionadas ao texto e as figuras.

Nado poderiamos deixar de agradecer, pela cuidadosa leitura do manuscrito, as
colegas Elvia Mureb Sallum e Zara Issa Abud. E ainda com satisfacio que agradeco ao
colega Nelson Achcar pelas sugestdes e comentarios que muito contribuiram para o
aprimoramento das apostilas precursoras deste livro. Finalmente, agradecemos a
Editora LTC pelo excelente trabalho grafico e pela forma cordial com que sempre nos
tratou.

Hamilton Luiz Guidorizzi



Material Suplementar

Este livro conta com o seguinte material suplementar:
m Manual de Solucgdes (restrito a docentes)

O acesso ao material suplementar € gratuito, bastando que o leitor se cadastre em:
http://gen-io.grupogen.com.br.
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GEN | Informacio Online

GEN-IO (GEN | Informagio Online) é o repositério de materiais
suplementares e de servigos relacionados com livros publicados pelo
GEN | Grupo Editorial Nacional, maior conglomerado brasileiro de editoras do
ramo clentifico-técnico-profissional, composto por Guanabara Koogan, Santos,
Roca, AC Farmacéutica, Forense, Método, LTC, E.BUL e Forense Universitaria.
Os materiais suplementares ficam disponiveis para acesso durante a vigéncia

das edigdes atuais dos livros a que eles correspondem.
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1

NUMEROS REAIS

O objetivo deste capitulo € a apresentacdao das principais propriedades dos numeros
reais. Nao nos preocuparemos aqui com a definicdo de nuimero real, que é deixada
para o Apéndice 6. No que segue, admitiremos a familiaridade do leitor com as
propriedades dos numeros naturais, inteiros e racionais. Mesmo admitindo tal
familiaridade, gostariamos de falar rapidamente sobre os niimeros racionais. E o que
faremos a seguir.

1.1. Os NUMEROS RACIONAIS

fe
Os ntmeros racionais sao os numeros da forma E sendo a e b inteiros e b # 0; o

conjunto dos numeros racionais € indicado por Q, assim:

Q = nga,h E Zm#m}

no qual Z indica o conjunto dos numeros inteiros:

zZ=A1...,7-3,72,-1,0,1,2,3, ...}.

Indicamos, ainda, por N o conjunto dos nimeros naturais:

N={0,1,2,3,...}.

Observamos que N é subconjunto de Z, que, por sua vez, é subconjunto de Q; isto
¢, todo namero natural é também numero inteiro, e todo inteiro é também numero
racional.

a ¢
Sejam b e 7 dois racionais quaisquer. A soma e o produto destes racionais sao
(

obtidos da seguinte forma:

' c ad + be
¥ 4 (

b d bd
a. c_a
b d bd

A operacdo que a cada par de nimeros racionais associa a sua soma denomina-se
adigdo, e a que associa o produto denomina-se multiplicagdo.
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a a
O namero racional E se diz positivosea b € N;sea-b € N e a # 0, entdo E se

diz estritamente positivo.

Sejam r e s dois racionais; dizemos que r € estritamente menor que s (ou que s €
estritamente maior que r) e escrevemos r < s (respectivamente s > r) se existe um
racional t estritamente positivo tal que s =r + t. A notacgdo r < s (leia: r menor ou igual
a s ou simplesmente r menor que s) é usada para indicar a afirmacdo “r <sour=s". A
notacdo r > s (leia: r maior ou igual a s ou simplesmente r maior que s) é equivalente
a s <r. Observe que r positivo equivale ar > 0. Se r < 0, dizemos que r é negativo.

A quédrupla (Q, +, -, <) satisfaz as seguintes propriedades (X, y, z sdo racionais
quaisquer):

Associativa

(Al) (x+y)+z=x+(y+2) (M1) (xy) z = x (y2)
Comutativa

(A2) xty=y+x (M2) xy = yx

EXxisténcia de elemento neutro
(A3) x+0=x M3)x-1=x 1#20)
Existéncia de oposto

Para todo racional x existe um unico racional y tal que x + y = 0. Tal y

(A4) denomina-se oposto de x e indica-se por —x. Assim, x + (—x) = 0.
Existéncia de inverso
Para todo racional x # 0 existe um unico racional y tal que x - y = 1. Tal y
(M4) denominase inverso de x e indica-se por x ' ou —. Assim, x - x ' =1.
X
Distributiva da multiplicagdo em relagdo a adigdo
(D) x(y +z) = xy + xz.
Reflexiva
(01) x < x.
Antissimétrica
(02) X<y e y<x=>x=y

(leia-se:sex<yey<x,entdlox=youx <yey<ximplicax =y).

Transitiva
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(03) x<y e y<z=x<z
Quaisquer que sejam os racionais x e y

(04) xX<youy<x.
Compatibilidade da ordem com a adigdo

(0A) x<y=x+tz<y+z

(Somando-se a ambos os membros de uma desigualdade um mesmo nimero, o
sentido da desigualdade se mantém.)

Compatibilidade da ordem com a multiplicagdo
(OM) x<y e 0<z=xz<yz

(Multiplicando-se ambos os membros de uma desigualdade por um mesmo
nuimero positivo, o sentido da desigualdade se mantém.)

Observacado. Seja ¢ um conjunto qualquer com pelo menos dois elementos e
suponhamos que em [ estejam definidas duas operac¢oes indicadas por + e *; se a terna
(I, +, -) satisfizer as propriedades (A1) a (A4), (M1) a (M4) e (D), diremos que ([, +,
‘) é um corpo. Se, além disso, em [ estiver definida uma relacao (<) de modo que a
quadrupla (f€, +, -, <) satisfaca todas as 15 propriedades anteriormente listadas, entao
diremos que ([, +, -, <) é um corpo ordenado. Segue que (Q, +, -, <) é um corpo
ordenado; entretanto, (Z, +, -, <) ndo é corpo ordenado, pois (M4) ndo se verifica.

Os ndmeros racionais podem ser representados geometricamente por pontos de
uma reta. Para isto, escolhem-se dois pontos distintos da reta, um representando o 0 e
o outro o 1. Tomando-se o segmento de extremidades O e 1 como unidade de medida,
marcam-se os representantes dos demais nimeros racionais.

-3 =2 -1 0 : 1 2 3 3 5 6
Se o ponto P for o representante do nimero racional r, diremos que r é a abscissa

de P. Na figura acima, % ¢ a abscissa de A; 5 é a abscissa de B.

Todo numero racional r é abscissa de um ponto da reta; entretanto, nem todo ponto
da reta tem abscissa racional. Antes de construir um ponto da reta que ndo tem
abscissa racional, vejamos os seguintes exemplos.

EXEMPLO 1. Seja a um niimero inteiro. Prove: (i) se a for impar, entdo a* também
serd impar; (ii) se a* for par, entdo a também serd par.
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Solugdo

(i) Como a é impar, a é da forma a = 2k + 1, k inteiro. Entdo:

a’=(2k + 1)> = 4k> + 4k + 1 = 2(2k* + 2k) + 1;

como 2k* + 2k é inteiro, resulta a® impar.
(ii) Por hipétese, a* é par; se a fosse impar, por (i), teriamos a® também impar, que
contraria a hipétese. Assim,

a’par=apar. ™
EXEMPLO 2. A equacio x> = 2 ndo admite solucdo em Q.
Solugdo
De fato, iuponhamos, por absurdo, que exista uma fracao irredutivel

a (a\” ~
— talque | — | = 2;entdo:
'-.b.-'

)
as 2 2 2
~=2=a*“ =2b- = a*- par = a par;

sendo a par, sera da forma a = 2p, p inteiro;

a2 = 2b?|

PR B N W
a=2p§:>4‘r 2h=i=y2n b=,

a
Assim, b* é par e, portanto, b também o é; sendo a e b pares, a fracdo E ¢ redutivel,

contradicdo. =

Vejamos, agora, como construir um ponto da reta que nao tenha abscissa racional.

(P € a interseccio do eixo x
com a circunferéncia de
centro () e raio d.)

S

0 1 P x

Pelo teorema de Pitagoras, d*> = 1% + 1° = 2 (veja figura acima); assim a abscissa de
P deveria ser d que ndo é numero racional (Exemplo 2).

Admitiremos que todo ponto da reta tem uma abscissa x; se x nao for racional,
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diremos que x é irracional. O conjunto formado por todos os numeros racionais e
irracionais é o conjunto dos ntimeros reais que sera indicado por R.

1.2. OSs NUMEROS REAIS

Como dissemos na secdo anterior, 0 conjunto dos numeros reais sera indicado por
R. R contém Q, isto €, todo numero racional € um nimero real. Os niumeros reais que
nado sdo racionais denominam-se irracionais.

Em R estdo definidas duas operagoes, adicao (+) e multiplicacdo () e uma relagao
(2). A adicdo associa a cada par (x, y) de nimeros reais um unico nuamero real indicado
por x + y; a multiplicacdo, um tinico real indicado por x - y. As operacoes de adigao e
multiplicacdo definidas em R, quando restritas a @, coincidem com as operacoes de
adicao e de multiplicacdo de Q; o mesmo acontece com a relagao (<).

Admitiremos que a quadrupla (R, +, -, <) é um corpo ordenado, isto é, satisfaz
todas as 15 propriedades listadas na secao anterior: (A1) a (A4), (M1) a (M4), (D),
(O1) a (04), (OA) e (OM). Reveja tais propriedades.

Os exemplos que damos a seguir mostram como obter outras propriedades a partir
das ja mencionadas.

EXEMPLO 1. Quaisquer que sejam 0s reais x, y, z, w

v ;
"r=x+ =V + w
W .

A
=

&

LA

(Somando-se membro a membro desigualdades de mesmo sentido, obtém-se outra de
mesmo sentido.)

Solugdo

Pela (OA)
X=EYy=2 X+ I=YT+ I
IZEW=yt+r=yt+w

Pela transitiva (O3)

x+z<y+7z)

y+tz<y+w|

= Xt+I=Yy+ W

Portanto,

]

\j ;
'}:;»_r—i-:f-i-_\*—i-w, il

i

I

W

|

Como observamos anteriormente, a adicdo associa a cada par de niimeros reais um
unico namero real; assim, se x =y ez = w, entao x + z =y + w; em particular, se x =y,
entdo x + z =y + z para todo z, o que significa que, somando a ambos os membros de
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uma igualdade um mesmo numero, a igualdade se mantém.
EXEMPLO 2. (Lei do cancelamento.) Quaisquer que sejam os reais x, y, z
Xtz=yt+tz=x=y
Solugdo
Somando-se —z a ambos os membros da igualdade x + z =y + z, vem:

x+2)+(2)=(+2)+ (-2).

Pela associativa (A1),

x+lz+(29)]l=y+Iz+(-2)]

Dai,
x+0=y+0
ou seja,
X=y.
Assim,

Xtz=y+tz=>x=y. n

EXEMPLO 3. Quaisquer que sejam 0s reais x, y, z, w

—XI = YW,

£y
ff‘n ﬂ‘n

|1~ ‘
W

o

. 0=
E
(Multiplicando-se membro a membro desigualdades de mesmo sentido e de niimeros
positivos, obtém-se desigualdade de mesmo sentido.)
Solucgdo
(OM) (O03)

xZ < yz | _
= = x7=yw. |
yZ < yw -

.ﬂ"'. ﬁ"'.
m m

O0=x
0=¢

.l.ll.'n _f:n"l,

Vamos, agora, fazer uma lista de outras propriedades dos reais que podem ser
obtidas das 15 anteriormente listadas e que nos serdo tteis no decorrer do curso.
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Quaisquer que sejam os reais x, y, z, w, tem-se:

a) x<yex+tz<y+tz.
b) z>0e2z1>0.

c) z>0e -z<0.

d) sez>0,x<ye xz<yz.

e) sez<0,x<ye xz>yz.

(Multiplicando-se ambos os membros de uma desigualdade por um mesmo nuimero
negativo, o sentido da desigualdade muda.)

D D=x<y]

0<z<w| = <.

l<x<yes < % < %
h) (Tricotomia.) Uma e Isomer;te uma das condi¢Oes abaixo se verifica:
x<youx=youx>}y.
i) (Anulamento do produto.)
xy=0=x=00uy=0.
(Um produto é nulo se e somente se um dos fatores for nulo.)
EXEMPLO 4. Suponha x >0 ey > 0. Prove:
1) x<y=x*><y.
) x<y=x><y
D) x<yex*<yA
Solugdo

1) 0=x<y]

_ 1 N, .
0=x<y) = Xx- << y-.(Veja item f do Exemplo 3.)

7)) Faca voce.

c) Por (a), x <y = x* < y*. Suponhamos, agora x> < y*; se tivéssemos x > y, por (b)
terfamos x* > y?, contradi¢do. Assim, x* < y* = x < y. Fica provado, deste modo, que
quaisquer que sejam osreaisx>0ey >0

x<y<=x2<_y2, |

EXEMPLO 5. Resolva a inequacao
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Sx+3<2x+7.

Solugdo
Sx+3<2x+T o <2x+4

& 3xr< 4

= X < —,
’)’

Assim, {I ERIx< i} é o conjunto das solucdes da inequacdo dada. m

EXEMPLO 6. Estude o sinal da expressao x — 3.

Solugdo
x-3>0ex>3;x-3=0ex=3;x-3<0ex<3.

Assim, x —3 >0 parax >3; x —3<0parax<3ex—3=0parax = 3. Esta

discussao sera representada da seguinte forma:

-0 +
x—3 L . u
3
. G A i,
EXEMPLO 7. Estude o sinal de >
s At
Solugdo
- = 0 + + + + +
x+3 t .
—3
= = = = ) e P
x =2 I
2
x+3
Parax < —3,x+3<0ex—2<0,logo, 2;‘:}0.
TN
. x+3
Para — 3 Lo+ 3 2 lex—2 < 0, dai, 2{{].
X
) ) Y Sy o5
Parax>2,x+3>0ex— 2 > 0,logo, 2:}0.
=
x+3 x+3 .
= 0; para x = 2, a expressdo S nio esta definida.
e

Parax = —3,
x—2
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x+3 o {Ij B IEI b
x—2 -3 2
(A = ndo existe.)
Conclusdo
g
il >0 pamax<—3oux>2;
X2
g B
= <0 para -3 <x<2
s ¥
A i
= = () parax = —3.
X
X+
EXEMPLO 8. Resolva a inequagao 2% 41 << (.
Xk
Solugdo
+
Inicialmente, estudaremos o sinal de 2 41
i
- 0 + + o+
2x 41 i
osls
2
G — 0 +
x—4 i
4
dkd, ¢ 9 & @
x—4 ]. |
- — 4
2
Assim, x ER | _E ot A 4} é o conjunto das solucdes da inequacdo
dada. ®w
. . BE—..
EXEMPLO 9. Resolva a inequacao = 3.

X2
Solucgdo
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3x — !
250 210072, 4
x4 2 oy s x+2

3x—1—-5x-—10
= =
x+2

0.

=

—2x — 11 )
x+2

Multiplicando por —1 ambos os membros da ultima desigualdade, resulta

2x + 11
— E
x+2
0 + +
2x 411 i
o
2
=) 0 +
x+2 I
=2
+ A+
2x:++ ) {,:I ,EI
X 4-2
_iid .,
2
Assi ,M =0 . = x < —2. Logo, {IEH I—H*i_rf:::—ZL é
x+ 2 2 _ 2 J
o conjunto das solu¢des da inequacao dada.
CUIDADO!
=1

= 5ndo é equivalentea3x - 1>5 (x + 2)!!
x+2

A equivaléncia sera verdadeira para x > -2, pois, x > -2 = x + 2 > (;

multiplicando, entdo, ambos os membros da desigualdade por x + 2, o sentido se
mantera; assim, para x > —2,

3x —
: ];?5 & 3x—1=5(x+2).
x+2

Por outro lado, para x < -2,
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Ix—1

5 125 & 3x—1= 5(x+2). (Por qué?)
X<k : )

Exercicios 1.2

1. Resolva as inequacoes.

a)3x+3<x+6
byx-3>3x+1
c)2x—1>5x+3
d)x+3<6x-2
e)1-3x>0
f) 2x+1>3x

2. Estude o sinal das expressoes.

a)3x-1
b)3-x
c)2-3x
d)5x+1
e) ¥ — 1
5 P,
N 2x+ 1)(x-2)
9) PLn
v i
hy2-—«x
L Bt
) (2x—1)(3 - 2x)
J) x(x=3)
D x(x-1)(2x+3)
m)(x — 1)(1 + x)(2 — 3x)
n) x(x* + 3)
0) (2x - (x> + 1)
p) ax + b, em que a e b sdo reais dados, com a > 0.

q) ax + b, em que a < 0 e b sdo dois reais dados.

3. Resolva as inequacoes.
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2x — 1 | B

a) <0 b =0
x+1 3 —x
x— 2

c) =0 DH2x—1Dix+3IH<O0
3x + 1
3Ix — 2

€) : = () Hx2Zx—1)=0
ik

2x — 1
ix—2)x+2)>0 i) 5 =35

|

=i

i <3 g
2x—3 2%

Dx(2x—NDix+1)=0 mi(2x—1)x—3)=0

xr—3

3 <0

N2x—NE+1)<0 o)
X

4. Divida x> - @® por x — a e conclua que x*> — @® = (x — a) (x* + ax + d@?).
5. Verifique as identidades.

a) x> —a*=(x—a)(x + a)

b)x* —a*=(x— a)(x** + ax + a*)

c) x*—a*=(x - a)(x® + ax* + a’°x + a@°)

d) x° —a°=(x - a)(x* + ax’ + a’x* + a’>x + a*)

e) X' —ad"=(x-a)x" '+ax" +a X" 3+ ... +ad" x+a" Hemquen#0
€ um natural.

6. Simplifique.
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a) B
x—1 x2—4
1
4x2 -9 =]
c) p d) X
2x + 3 x — ]
1 | |
y 1 — =
&) X= f X< 9
v — 1 ’ x—23
1 _ 1 l B l
o) X 5 hy X P
® e 5 r — F
| _ 1
i 02 p i - ;:-4
s S X
S B ko
n (x + h)»= —x- m X+ h X
h h
(x+ )3 — 23 (x + )2 —(x—h)?
1n) i7)
h h

7. Resolva as inequacoes.

a)x*-—4>0

b)x*-1<0

C)x2>4

d)x*>1

e) x> —9
'i+l

f .r; -4 _—
X +4

PDRx-1D)*-4<0

h) 3x*> > 48

i) x*<r% em que r > 0 é um real dado.

=0

J) x*>r? em que r > 0 é um real dado.

8. Considere o polindmio do 2.° grau ax* + bx + ¢, em que a # 0, b e ¢ sdo reais
dados.
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a) Verifique que

9
b\~ A
ax2 +bx+c=a |:(m + —J] eHE— } em que A = b% — dac.

\ 24 da-

b) Conclua de (a) que, se A > 0, as raizes de ax* + bx + ¢ sdo dadas pela

férmula
—bh * ;i
= ey
2a
€) . — atl s e ]
) Sejam y, = —b++A ex, = —b-~NA (A = 0) as raizes de ax* + bx + c.
2a 2a
Verifique que
b c
X1txy=——¢exx =—
a a

9. Considere o polindmio do 2.° grau ax* + bx + ¢ e sejam x, e X, COMO No item
(c) do Exercicio. Verifique que

ax* + bx + ¢ = a(x — x;)(x — x).
10. Utilizando o Exercicio 9, fatore o polinomio do 2.° grau dado.

a) x*> — 3x + 2
b)x*-x-2
C) x*-2x+1
d) x> -6x+9
e) 2x*> - 3x

N 2x*-3x+1
g) x*-25

h) 3x* + x - 2
i) 4x* -9

J) 2x* - 5x

11. Resolva as inequacoes.

a)x*-3x+2<0
b)x*-5x+6>0
€) x*-3x>0
d)x*-9<0

e)x*-x-2>0
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N 3x%+x-2>0
g x>-4x+4>0
h)3x* - x<0

) 4x* -4x+1<0
J) 4> -4x+1<0

12. Considere o polindmio do 2.° grau ax? + bx + ¢ e suponha A < 0. Utilizando o
item (a) do Exercicio 8, prove:

a)sea>0,entdoax’* +bx+c>0 para todo x.
b) se a <0, entdo ax* + bx + ¢ < 0 para todo x.

13. Resolva as inequacoes.

a)x*+3>0
b)x*+x+1>0

) x*+x+1<0
d)x*+5<0

e) (x—3)x*+5)>0

N 2x+1)(x*+x+1)<0
g x(x*+1)=0

h) (1-x)(x*+2x+2)<0

N 2x — 3
f) = =0
X~ +‘_I
) s
x4+ x+1
14. Prove:
5x+ 3
= =5 & S5yx+3=5x4+1D
= + 1
15. A afirmacao:
« x2 + x+1 .
para todo x real, x # 2, % >3 o X2 +x+1>3x—2)
X —

é falsa ou verdadeira? Justifique.

16. Suponha que P(x) = ax" + a,x" ~' + ... + a, _, x + a, seja um polindmio de
grau n, com coeficientes inteiros, isto é, a, # 0, a,, a,, ..., a, sdo nameros
inteiros. Seja a um ndmero inteiro. Prove que se «a for raiz de P(x), entdo a
sera um divisor do termo independente a,.

17. Utilizando o Exercicio 16, determine, caso existam, as raizes inteiras da
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equacao.
a)x>+2x>+x-4=0
by x*-x*+x+14=0
) x*-3x3+x*+3x=2
d)2x-x2-1=0

e) x> +x*+x-14=0
N x>+3x*-4x-12=0

18. Seja P(x) um polindmio de grau n. Prove:
a é raiz de P(x) © P(x) é divisivel por x — a.

(Sugestdo: dividindo-se P(x) por x — a, obtém-se um quociente Q(x) e um resto R,
R constante, tal que P(x) = (x — @) Q(x) + R.)

19. Fatore o polinomio dado.
a) x>+ 2x* - x—2
by x*-3x3+x*+3x-2
C) x>+ 2x* — 3x
d) x> + 3x* = 4x — 12
e) x> +6x>+11x+ 6
N x*-1

20. Resolva as inequacgoes.

ax*-1>0
b)x*+6x>+11x+6<0
)x>+3x°-4x-12>0
d) x> +2x*-3x<0

21. A afirmacao:

“quaisquer que sejam os reais x e y, x <y & x> < y*”

é falsa ou verdadeira? Justifique.
22. Prove que quaisquer que sejam os reais x e y, x <y x> < y°.

23. Neste exercicio vocé devera admitir como conhecidas apenas as propriedades
(A1) a (A4), (M1) a (M4), (D), (01) a (0O4), (OA) e (OM). Supondo x, y reais
quaisquer, prove:

a)x-0=0.

34



b) (Regra dos sinais)
(=x)y = —xy; x (=y) = =xy; (=x) (=) = xy.
) x* > 0.
d)1>0.
e)x>0e=x"1>0.
f) (Anulamento do produto)
xy=0ex=0o0uy=0.
Pdx=y’eox=youx=-y
h)Sex>0ey>0,xX*=y’=ox=y.

1.3. MODULO DE UM NUMERO REAL
Seja x um numero real; definimos o médulo (ou valor absoluto) de x por:

Irl—f x se x=0
: =% EE el

De acordo com a definicdo acima, para todo x, | x | > 0, isto é, o m6dulo de um
numero real é sempre positivo.

EXEMPLO 1.

1) |5]=5.
) |-3|=-(-3)=3. =

EXEMPLO 2. Mostre que, para todo x real,

| x |* = x°.
Solucgdo
Sex>0,|x|=xedai|x*=x
Sex<0,|x|=-xedai|x*=(-x)*=x

Assim, para todo x real, | x |* = x°.
Lembrando que ./ indica a raiz quadrada positiva de a (a > 0), segue do exemplo
anterior que, para todo x real,

Vx? =1lxl m

EXEMPLO 3. Suponha a > 0. Resolva a equacao

| x| =a.
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Solugdo

Como |x|>0ea>0,

|x|=ae|x|?=d.
Mas | x |> = x?, assim
|x|=aex*=a*e(x-a)(x+a)=0=x=aoux=-a.
Portanto,
|x|=a=x=aoux=-a. =

EXEMPLO 4. Resolva a equagdo | 2x + 1 | = 3.

Solugdo

2x+11=3 & ou & 4 ou

Assim,
|2x+1|=3ex=1oux=-2. =

Sejam x e y dois niimeros reais quaisquer. Definimos a distancia de x a y por | x — y
|. Sendo P e Q os pontos do eixo Ox de abscissas x e y, e u o segmento de extremidades
Oel,|x—y|éamedida, com unidade u, do segmento PQ.

u
P — F o

0 1 X y
De|x|=|x— 0], segue que | x | é a distancia de x a 0.

Seja r > 0; o proximo exemplo nos diz que a distancia de x a 0 é menor que r se, e
somente se, x estiver compreendido entre —r e r.

EXEMPLO 5. Suponha r > 0. Mostre que
|x|<re-r<x<r.
Solugdo
|x|<re|xP<rrex’<r’

mas,
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X*<rrex-rkx+r<0e-r<x<r.
Portanto,
|x|<re-r<x<r. =
EXEMPLO 6. Resolva a inequacao | x | < 3.
Solugdo
Pelo Exercicio 5,
|x|<3e-3<x<3. =
EXEMPLO 7. Elimine o médulo em
|x=p|<r(r>0).
Solugdo
|x—p|<re-r<x-p<rep-r<x<p+r.
Assim,
|x—p|<rep-r<x<p+r.

(A distancia de x a p é estritamente menor que r se, e somente se, X estiver
estritamente compreendido entrep —rep+r.) =

EXEMPLO 8. Mostre que quaisquer que sejam o0s reais x e y
[xy[=1]x]]yl.
(O médulo de um produto é igual ao produto dos médulos dos fatores.)
Solugdo
|xy [P = (y) =2y =[x P |y F=(x]]y D~
Como |xy|>0e|x|]|y]|=0resulta
[xy[=1]x]]yl.
Antes de passarmos ao proximo exemplo, observamos que, para todo x real,
x<|x|e-x<|x|. (Verifique.) m
EXEMPLO 9. (Desigualdade triangular.) Quaisquer que sejam 0s reais x e y

| x+y[<[x]+]|y]
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(O moédulo de uma soma é menor ou igual a soma dos médulos das parcelas.)
Solugdo

Sex+y=0,|x+y|=x+y<|x[+]y].
Sex+y<O0,[x+y|=-(x+y)=-x-y<[x|+]y|

Assim, quaisquer que sejam 0s reais x e y.
[ x+y[<[x|+[y] =
EXEMPLO 10. Elimine o méduloem | x -1 |+ |x+ 2.

Solugdo

e 0 + +
x4 i
=
Parax<-2,x—1<0ex+2<0,assim
[x-1|+|x+2|=-(x-1)-(x+2)=-2x—-1.
Para-2<x<1,x—-1<0ex+22>0, assim
|x-1]|+|x+2|=-(x-1)+(x+2)=3.
Parax>1,x-1>0ex+ 2 >0, assim
Ix-1|+|x+2|=x-1)+(x+2)=2x+1.
Conclusdo

—2x—1 sex <-2
lx—1l+Ix+2l =4 3 se 2=x<1

2x+1 sex=1

Exercicios 1.3

1. Elimine o médulo.

a)|=5[+[-2]
b)|-5+8|
c)|-al,a>0
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d)|al,a<0
e)|-al|
f) 12a|-13a]

2. Resolva as equacoes.

a)|x|=2
b)|x+1|=3
0)|2x-1]=1
d|x-2|=-1
e)|2x+3|=0
x]|=2x+1

3. Resolva as inequagoes.

a)|x|<1
b)|2x—-1|<3
) |3x—-1]|<-2
D)3y <L

3
e)|2x*-1]<1
) |x—-3|<4
9)x[>3
h)|x+3|>1
i)|2x-3|>3
J|2x—1|<x
Dx+1|<|2x—-1|
m|x—1|—-|x+2|>x

n|lx-3|<x+1
o)|x-2|+|x-1|>1

4. Suponha r > 0. Prove:
|x|>rex<-roux>r
5. Elimine o médulo.

a)[x+1|+][x]|
by|x-2|—-|x+1]

o) |2x—-1|+|x—-2]
d)[x|[+|x—-1[+][x—2]

6. Prove:
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| x+y|=|x|+]|y|=xy=0.
7. Prove:

a)|x-y|=|x|-|y|
bylx-yl|=lyl|-Ix|
) lx[=-yll<[x-yl

1.4. INTERVALOS

O objetivo desta secdo € destacar certos tipos de subconjuntos de R, os intervalos,
que serdo bastante uteis durante todo o curso.

Sejam a e b dois reais, com a < b. Um intervalo em R é um subconjunto de R que
tem uma das seguintes formas:

[a,b]={x €ER |a<x<b}
la,b[={x € R |a<x<b}
la,b]={x € R |a<x<b}
[a,b[={x ER|a<x<b}
J-oo,al ={x €ER | x<a} (—o0 = menos infinito)

Observacao. —o ndo é numero, —oo é apenas um simbolo.

J-o,al={x €ER |x< a}
[a, +o[ ={x ER | x> a}
la, +o[ = {x € R | x> a}
]—o0, +oo[ = R.

Os intervalos la, b[, ]-%, a[, la, +oo[ e ]—oo, +oo[ sdo denominados intervalos
abertos; [a, b] denomina-se intervalo fechado de extremidades a e b.

EXEMPLO. Expresse o conjunto {x € R | 2x — 3 <x + 1} em notagdo de intervalo.
Solugdo
2x—-3<x+t1ex<4
Assim,

{(xER|2x—-3<x+1}=]-0,4. =

Exercicios 1.4

1. Expresse cada um dos conjuntos abaixo em notacdo de intervalo.

a){xER|4x—-3<6x+2}
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by{xeR||x|<1}
O){xeER||2x-3|<1}
d){.x'EIEIS_r+I{:%}

2. Determine r > 0 de modo que 14 —r, 4 + r[ C ]2, 5[. (Lembre-se:A C B < A
é subconjunto de B.)

3. Sejam a < b dois reais e p € ]a, b[. Determine r > 0 de modo que |Jp —r, p +
r[ C la, bl.

4. Expresse o conjunto das solucdes das inequagdes dadas em notacdo de
intervalo.

a)x*-3x+2<0
2x — 1
o) R
x+ 3
x> +x+1>0
d)x*-9<0

1.5. PROPRIEDADE DOS INTERVALOS ENCAIXANTES E PROPRIEDADE DE
ARQUIMEDES

A seguir destacaremos duas propriedades fundamentais dos nimeros reais e cujas
demonstracoes serdo apresentadas no Apéndice 1.

Propriedade dos Intervalos Encaixantes. Seja [a,, b,], [a,, b;], [a,, b,], ..., [a,,
b,], ... uma sequéncia de intervalos satisfazendo as condicGes:

(i) [agy, byl D [ay, by] D [ay, by] D ... D [a,, b,] D ... (ou seja, cada intervalo da
sequéncia contém o seguinte);
(ii) para todo r > 0, existe um natural n tal que

b,—a,<r

(ou seja, a medida que n cresce o comprimento do intervalo [a,, b,] vai
tendendo a zero).

Nestas condi¢0es, existe um tinico real a que pertence a todos os intervalos da
sequéncia, isto é, existe um unico real a tal que, para todo natural n, a, < a < b,,.

Propriedade de Arquimedes. Se x > 0 e y sdo dois reais quaisquer, entdo existe
pelo menos um numero natural n tal que
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nx >y.

EXEMPLO

. Lo
1) Para todo x > 0, existe pelo menos um natural n tal que — << x.
n

») Para todo real x existe pelo menos um natural n tal que n > x.

Solugdo

. . -
) Como x > 0, por Arquimedes, existe um natural n tal que nx > 1 e, portanto, — << x.
n
(Observe: nx>1=n#0.)

7)) Como 1 > 0, por Arquimedes, existe um natural ntal quen>x. =

1.6. EXISTENCIA DE RAIZES

Inicialmente, observamos que se [a,, byl, [a;, b,], [a,, bs], ..., [a,, b,], ... for uma

sequéncia de intervalos satisfazendo as condicGes da propriedade dos intervalos
. ~ ~ . . 7 7

encaixantes e se para todo n, a, > 0 e b, > 0, entdo a sequéncia de intervalos [ay, b .

[a%. E:r]f], [a%’, bg], [a;*:‘ f:r,?], ..., também satisfara aquelas condicGes (verifique).
Antes de apresentar o proximo exemplo, lembramos que por um digito entendemos
um natural pertencente ao conjunto {0, 1, 2, 3, ..., 9}.

EXEMPLO 1. Mostre que a equacdo x> = 2 admite uma tinica raiz positiva a.
Solugdo
Seja A, o maior natural tal que
Al =2(4p=1)
dai
Ay +1)*>2(A,+1=2,22>2).
Facamos, agora, a, = Ay e by = A, + 1. Seja A, o maior digito tal que

f / ‘-.: o) ¥
ADJF;’*_EII <2(4, =4 (14} <2< (15D

Facamos:

A

+

10
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Assim,
(:E =2< f:r]:".
(Observe: a, =1,4e b, = 1,5).

Seja A, o maior digito tal que

2

£ ] d
Ao+ A+ 22 ) <04, = 1; 141 <2< (142))).
,L 10 107 )
Facamos:
Ay Ar A Ay +1
ar=Apg+ — + =S eby,=Ap + + —= i
SR TR T T 102

(Observe: a,=1,41e b, =1,42.)
Assim,

a3 <2< b3

Prosseguindo com este raciocinio, obteremos uma sequéncia de intervalos [ay, by],
la,, byl, ..., [a, b,] satisfazendo as condicoes da propriedade dos intervalos

. 1
encaixantes (observe que b, — a, = —— e quando n cresce b, — a, tende a zero).
| 10!!

Assim, existe um tnico real « tal que, para todo n,
a,<a<b,

e, portanto,

b a2 L b
ay =0 = b -

Mas o é o unico real tendo esta propriedade, pois, [a%, f:ﬁ], [afi bf], .oy [@2, Bal,
... também satisfaz as condi¢oes daquela propriedade. Como, para todo n,

B s g
7 et 2l

segue-se que o’ = 2. Fica provado, assim, que existe um real a > 0 tal que o® = 2.
Vejamos, agora, a unicidade. Suponhamos que § > 0 também satisfaca a equagao;
temos

| i I (]
Il

E :g}:>{I2=ﬁ::>&=B. 2]
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Teorema. Sejam a > 0 um real e n > 2 um natural. Entdo existe um tnico real o
>0 tal que " = a.

Demonstragdo. E deixada para o leitor [sugestdo: siga o raciocinio utilizado no
exemplo anterior]. =

Notagdo. Sejam a > 0 um real e n > 1 um natural. O tnico real positivo a tal que a" = a
€ indicado por %/ 4 . Dizemos que « € a raiz n-ésima (ou de ordem n) positiva de a.

Sejam a > 0 e b > 0 dois reais, m > 1 e n > 1 dois naturais e p um inteiro.
Admitiremos a familiaridade do leitor com as seguintes propriedades das raizes:

(1) %a %b = Hab
@ War = mamw
@ WWa = ™

s

DHa<b < %a <Ub.

EXEMPLO 2. Seja a um real qualquer. Mostre que se n for impar, n natural, entao
existe um unico real a" = a.

Solugdo

Se a > 0, pelo teorema anterior, existe um tnico o > 0 tal que " = a. Por outro
lado, para todo 8 < 0, 8" < 0 (pois estamos supondo n impar). Segue que o a acima é o
unico real tal que o" = a.

Se a < 0, existe um tnico real 8 tal que " = —a e dai (—f8)" = a (lembre-se de que
(=B)" = —B"). Assim, —3 é o tnico real tal que (—-f)" = a.

Notagdo. Se n for impar e a um real qualquer, o tnico «a tal que " = a é indicado por
n/

Ya. ®

EXEMPLO 3. Calcule.

a) 3-8 b) 416

Solucgdo

a) 3-8 = -2[(-2°=-81  b) 416 =2
(Lembre-se: 416 indica a raiz positiva de ordem 4 de 16.) =

EXEMPLO 4. Verifique que
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a—b=3a - ¥p) a2 + Yab + Ib?).
Solugdo

a—b= (a)y — @/b)

= X} — .\r"' (x= %'E ey = -1_]
g
=x—y(@x +x+ .\'E‘r
= (Ya — by a2 + Vab + Ip2).
Assim:
— g 1 — 77 .
a—b= {3,:& — -{:b}{ 'x-'az + f{:ab + %.'bz ). =

Observacdo. Veja uma forma interessante de fixar a identidade acima:
a®>—-b*>=(a-b)(a*+ab +b?

agora, extraia a raiz cubica de todos os termos desta identidade.

J& vimos que a equagdo x* = 2 ndo admite solugdo em Q; como /2 ¢é raiz de tal
equacdo, resulta que /2 ndo é racional, isto é, ,/2 é um niimero irracional.

Observe que x* = 2 ter solucdo em R é uma consequéncia da propriedade dos
intervalos encaixantes; como esta equacao nao admite solucao em Q, isto significa que
o corpo ordenado dos racionais nao satisfaz tal propriedade. Esta é a grande falha dos
racionais. A grande diferenca entre o corpo ordenado dos reais e o dos racionais é que
o primeiro satisfaz a propriedade dos intervalos encaixantes e o segundo, nao.

Os dois proximos exemplos mostram-nos que entre dois reais quaisquer sempre
existem pelo menos um racional e pelo menos um irracional.

EXEMPLO 5. Sejam x e y dois reais quaisquer, com x < y. Entdo, existe pelo menos
um irracional ¢ tal que x <t <y.

Solugdo

x é racional ou irracional; suponhamos inicialmente x irracional. Temos
x<yey-x>0.

Por Arquimedes, existe um natural n tal que

1 ’ 1
% yegn dil xAdE —esiop
n n

1 1 1
Como — >0, x<x+ —;tomando-se f = x + — tem-sex <t <y
n n n
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com t irracional (a soma de um racional com um irracional é irracional). Suponhamos,
agora, x racional. Por Arquimedes existe um natural n tal que ‘2 <y — y-
n '
tomando-se = y + -~ tem-se x <t <y, com t irracional. =
n

EXEMPLO 6. Sejam x, y dois reais quaisquer com x < y. Entdo existe pelo menos um
racional rcom x <r<y.

Solugdo
1.°Caso: 0 <x <y

Por Arquimedes existe um natural k, com k > y; ainda, por Arquimedes, existe um
natural n tal que

af'i'] =7
a - by f
' 1' | — -r : >
0 a., x ¥y k=an
: k 2k 3k Jk o :
Sejam @) = —, ay = —, a3 =—, ..., @; =-—, ..., a, = ki seja j o maior
n n n n r
indice tal que g; < x; assim g; , ; > x e como g =gl =g =

n
resulta x < g; , ; <y tomando-se t = g; , ;, tem-se x < ¢ <y, com t racional.

2.°Caso: x<0<y
Basta tomar t = 0.
3.°Caso: x<y <0
x<y<0<=>0<—_y<—x.
Pelo 1.° caso, existe um racional s tal que
—y <s<-X.

Portanto
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xX<-s<y.
com —s racional.
4.°Caso: x=00uy=0

Facavocé. m

Exercicios 1.6

1. Prove que a soma de um racional com um irracional é um irracional.

2. O produto de um racional diferente de zero com um irracional é racional ou
irracional? Justifique.

3. Prove que é irracional.

a) 6 b) s V3

4. 2-45 + ’:fg + /5 éracional ou irracional? Justifique.

5. Verifique as identidades em que x >0 ey > 0.

ax—y= h:'? = MT} ( \.T + «\;}

Byx—y= &x - 11". ) '[{'v 3+ -}‘2 Yk '}nz + J{ _‘a"]' )

6. Determine uma aproximacao por falta, com duas casas decimais exatas, de
~10.

7. Prove: se paratodor>0,rreal,|a—b|<r,entdo a=b.

8. Sejam x, y dois reais quaisquer com x > 0 e y > 0. Mostre que
T a cih
b —

9. Sejam x, y dois reais quaisquer, com 0 < x <y. Prove

Y — X >4y —/x.

10. Seja € > 0 um real dado. Prove que quaisquer que sejam os reais positivos x e
y, tem-se:

-2 [ [ -
Ix=yl<e“=l¥x—=yyl=<e
11. Sejam x, y dois reais quaisquer, com 0 < x <y. Prove
.| SRR T - |
3 ¥ X = ! ¥ \

X.

W
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12. A afirmacgao:

L

“para todoreal x > 0, x > ./’

é falsa ou verdadeira? Justifique.

1.7. POTENCIA COM EXPOENTE RACIONAL

m . .
Sejam a > 0 um real e ¥ = —. 7 = 0, um racional. Definimos
n

m

- ml
a =arf =va™.

Tendo em vista a propriedade (2) das raizes, segue que tal definicdo ndo depende

m
da particular fracio —. n = 0, que tomamos como representante do racional r.
n

EXEMPLO

| b

32

a) 23 =32 b) 5 5-2 5

Sejam a > 0 e b > 0 dois reais quaisquer e r, s dois racionais quaisquer. Das
propriedades das poténcias com expoentes inteiros e das raizes seguem as seguintes
propriedades das poténcias com expoentes racionais e cujas demonstragoes sao
deixadas como exercicios:

Da-a=a"-.
(2) (ar)s — ars‘

(3) a”
a’

(4) (ab) = d'}'.

=’ =

(5) Sea>1ler<s,entdoa <d'.

(6) Se0<a<1ler<s, entioa > d’.
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2

FUNCOES

2.1. FUNCOES DE UMA VARIAVEL REAL A VALORES REAIS

Entendemos por uma funcdo f uma terna
(A,B,a+ b)

em que A e B sdo dois conjuntos e a - b, uma regra que nos permite associar a cada
elemento a de A um tnico b de B. O conjunto A é o dominio de f e indica-se por D,
assim A = Dy O conjunto B € o contradominio de f. O unico b de B associado ao
elemento a de A é indicado por f(a) (leia: f de a); diremos que f (a) é o valor que f
assume em a ou que f (a) é o valor que f associa a a.

Uma funcdo f de dominio A e contradominio B é usualmente indicada por f: A~ B
(leia: f de A em B).

Uma fung¢do de uma varidvel real a valores reais é uma funcao f: A~ B, em que A
e B sdo subconjuntos de R. Até mencao em contrario, s6 trataremos com funcoes de
uma variavel real a valores reais.

Seja f: A » B uma funcao. O conjunto

Gr={(x () | x €A}

denomina-se grdfico de f; assim, o grafico de f é um subconjunto do conjunto de todos
os pares ordenados (x, y) de numeros reais. Munindo-se o plano de um sistema
ortogonal de coordenadas cartesianas, o grafico de f pode entdo ser pensado como o
lugar geométrico descrito pelo ponto (x, f (x)) quando x percorre o dominio de f.

Yi f

fix) -

A
/ X

{x, fix})

e |

Observacao. Por simplificagdo, deixaremos muitas vezes de explicitar o dominio e o
contradominio de uma funcdo; quando tal ocorrer, ficard implicito que o
contradominio é R e o dominio o “maior” subconjunto de R para o qual faz sentido a
regra em questao.
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E usual representar uma funcdo f de uma variavel real a valores reais e com
dominio A, simplesmente por

y=f(x),x €EA.

Neste caso, diremos que x é a varidvel independente, e y, a varidvel dependente. E
usual, ainda, dizer que y é funcao de x.

EXEMPLO 1. Sejay = f (x), f (x) = x*. Tem-se:
a) D;=R.
b) O valor que f assume em x é f (x) = x°. Esta funcdo associa a cada real x o
ntimero real f (x) = x°.
) f(-1)=(-1)*=-1;f(©0)=0°=0; f(1) = 1> = 1.
d) Grdfico de f

Gi={(x,y)|y=x x €R}.

Suponhamos x > 0; observe que, a medida que x cresce, y também cresce, pois y =
x>, sendo o crescimento de y mais acentuado que o de x (veja: 2° = 8; 3% = 27 etc.);
quando x se aproxima de zero, y se aproxima de zero mais rapidamente que x ((1/2)* =

1/8; (1/3)> = 1/27 etc.). Esta andlise dd-nos uma ideia da parte do grafico
correspondente a x > 0. Para x < 0, é s6 observar que f (—x) = —f (x).

o

X Flx) J
0 0
1 i L
2 8 ! i
1 1 = 1 -
2 H F 1 X
_ 1 i1
7| 7F 1
1 1
- 2 8 [ ]

EXEMPLO 2. Seja f a fungao dada por f(x)= \ x. Tem-se:
1) Di={x€R|[x>0}.

) f(4)= /4 = 2 (o valor que f assume em 4 é 2).

) f@2) =2 =111,

D f(x+3)=.x+3, x=-3.

?) Grdfico de f

A funcio f é dada pela regra x = y, v = +/x. Quando x cresce, y também cresce,
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sendo o crescimento de y mais lento que o de x (/4 = 2, /16 =4, /64 = 8 etc.);
quando x se aproxima de zero, y também se aproxima de zero, s6 que mais lentamente

:IL =i' :IL — e
que x ( Va = 2416 = 7 etc)
iy
X W X F | v
ol o :
1| 1 i !
= =5 [
4 | 2 L E :
1|1 - I i
4| 2 ;1 3 .

EXEMPLO 3. Considere a fungdo g dada por y = l Tem-se:
X

1) Dy={x € R |x#0}.

) Esta funcdo associaacadax#0oreal g (x) = l

) g(x+h) = , x#—h.

x+ h

1) Grdfico de g

o R : . |
Vamos olhar primeiro para x > 0; a medida que x vai aumentando, y = — vai se
=

aproximando de zero (x = [0+— y = —:x =100 y = ﬁ etc.); a medida que x

=

. : 1 : :
vai se aproximando de zero, y=— vai se tornando cada vez maior
X

(Xx=—1r>y=2x= L —y =10, x = L3 — v = 100 etc.). Vocé ja deve ter
2 ' 10 ' 100 '

uma ideia do que acontece para x < 0.

o

g e b

L}

[
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EXEMPLO 4. Dada a funcéo f (x) = —x* + 2x, simplifique:

AC I (1] gy JEHB — )
X2 h
Solugdo
ﬁ}ﬂﬁ—fm_jﬁﬁ+2ﬂ—]_—ﬁrﬂﬂ
x—1 x=—1 x—1
assim
F@=FO _ . x#l
x—1

Observe: f(1)=-12+2=1.

7)) Primeiro vamos calcular f (x + h). Temos
f(x+h)=—(x+h)>+2(x+h)=-x*-2xh— h>+ 2x + 2h.

Entado
F(x+h)— f(x) _ —x%—2xh—h% + 2x+ 2h — (—x2 + 2x)
h h
e S hik
h
=—-2%x—h+2
ou seja,

e e
Jx ﬂ FX®) oy —n+2n40. _

EXEMPLO 5. (Fungdo constante.) Uma funcao y = f (x), x € A, dada por f (x) =k, k
constante, denomina-se fungdo constante.

1) f(x) =2 é uma funcdo constante; tem-se:
(i) D;=R
(ii) Grdfico de f
Gr={(x f() [ x € R} = {(x,2) [x ER}.

O grafico de f é uma reta paralela ao eixo x passando pelo ponto (0, 2).
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X ¥y Vi
—2 .
—1 2 , i
0 2
1 2 14
2 2 e

7)) g:[-1, +oo[ » R dada por g (x) = —1 é uma funcdo constante e seu grafico é

Y

N

sy 7
B
. 5 lsex=0
EXEMPLO 6. Seja f(x)=1_, .~ —
Tem-se:
1) Df: R
») Grdfico de f
Y A
f
1
-
x

-1

Observe que (0, 1) pertence ao grafico de f, mas (0, —1) ndo. =

EXEMPLO 7. (Fungdo linear.) Uma funcao f : R ~ R dada por f (x) = ax, a
constante, denomina-se funcdo linear; seu grafico é a reta que passa pelos pontos (0,
0)e (1, a):
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Se a = 0, o grafico de f coincide com o eixo x. ™

EXEMPLO 8. Esboce os graficos.

1) f(x)=2x.

) g (x)=—2x.
D) h(x)=2|x|.
Solugdo

1) O grafico de f é a reta que passa pelos pontos (0, 0) e (1, 2).

A
¥ y=2x
2r- i
¥ = (%) :
1
] 1 :,'
1 2
») O grafico de g é a reta que passa pelos pontos (0, 0) e (1, —2).
v
X | y=g(x) 1
T -
0 f X
_ll. N
y=—12x

°) Primeiro eliminemos o médulo

| 2xsex=10
Z) = {—'2,'{ se x <0
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-2x ]

EXEMPLO 9. (Fungdo afim.) Uma funcdo f: R » R dada pory =ax + b,ae b
constantes, denomina-se fungdo afim. Seu grafico é a reta que passa pelo ponto (0,b) e
é paralelaaretay=ax. =

EXEMPLO 10. Esboce o graficode f(x) =|x— 1|+ 2.
Solugdo
Primeiro eliminemos o modulo

s r=ld2 BEX =1 _ Al Rex =l
-”“_{—(x—lwz sex{]””f("ﬂ_{—ﬁs se x < 1.

Agora, vamos desenhar, pontilhadas, as retas y = x + 1 e y = —x + 3 e, em seguida,
marcar, com traco firme, a parte que interessa de cada uma:

¥ v
V -x + 3 ‘ Ly |
b
\‘\ sy=x+1
vl 3 p
* ”
7
2-» 2
AN
-‘Pl ] \\ 1
.r", : = 7 -
s 1 X

parax = 1,f(x) = x + 1
para x| fix)=—zxd 3

Sempre que uma fungdo for dada por vdrias sentengas, vocé poderd proceder desta
forma.

Outro modo de se obter o grafico de f é o seguinte: primeiro desenhe pontilhado o
graficode y = | x |; o grafico de y = | x — 1 | obtém-se do anterior transladando-o para a
direita de uma unidade; o grafico de f obtém-se deste tltimo transladando-o para cima
de duas unidades.
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\ f
Y
Y=Axly s s os¥=Ix-1l
N r e
[N ’ s
5 ™ | e
S
Rt
| b II. £ -
-1 1 L}
|
EXEMPLO 11. (Fungdo polinomial.) Uma fungao f: R + R dada por
f)=ax"+ax" '+..+a,_,x+a,
em que a, # 0, a;, a,, ..., a, sdo nimeros reais fixos, denomina-se fungdo polinomial

de graun (n € N).

1) f(x)=x*— 4 éuma fungio polinomial de grau 2 e seu grafico é a parabola

x | fix)

k i’

i’

210 —2\ -1 L 2
-2 0 N L/ X,

1| -3 g e

-1 | -3 |

O grafico de uma funcdo polinomial de grau 2 é uma pardbola com eixo de
simetria paralelo ao eixo y.

’) g (x) = (x— 1)° é uma funcdo polinomial do grau 3; seu grafico é obtido do gréafico
de y = x*, transladando-o uma unidade para a direita.

v A

Fod o o
E

7
/)

c)f(x) = x* — 1 é uma funcdo polinomial do grau 4; seu grafico tem o seguinte
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aspecto:

EXEMPLO 12. (Fungdo racional.) Uma fun¢do racional f é uma funcdo dada por

(X
f(x) = I ) em que p e g sdo duas funcdes polinomiais; o dominio de f é o conjunto
g(x

{x€ER|q((x)#0}.

+
) flx)= i ¢ uma funcdo racional definida para todo x # 0. Como
X
flx) =1+ —. segue que o grafico de f é obtido do grafico de vy = l
x =
transladando-o uma unidade para cima (veja Exemplo 3).
vk
x | fix) 2F-

7) = x< +1

é uma funcao racional com dominio {x € R | x # 0}. Observe que

BN . : | .

g(x) = x + —. A medida que | x | vai crescendo, — vai se aproximando de zero e 0
X ; o

grafico de g vai, entdo, “encostando” na reta y = x (por cima se x > 0; por baixo se x

< 0). A medida que x se aproxima de zero, o grafico de g vai encostando na curva

y=—.
X
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c) hix)= " é uma funcdo racional com dominio {x € R | x # — 2}. O gréfico de
X
A e 1 .
h é obtido do grafico de y = —, transladando-o duas unidades para a esquerda.
X
I Ay
I
I
X hoix) |
S O b
0 L T } X -‘--—H—= -
2 1 J___l_ 1 X
-1 1 :
-3 =
: I
|
|

EXEMPLO 13. Determine A e B para que a terna (A, B, x - y) seja funcdo, sendo a
regra x — y dada implicitamente pela equacdo xy* = x — 1.

Solugdo

=]

I'f X

2
W =x—leyv==%

Para se ter funcdo, é preciso que a regra x - y associe a cada x € A um unico y €
B. Basta, entdo, tomar

==
X

A= xCERIZ__=0={xERIx<Ooux= 1}

B={y€R|y=0}.

Temos assim a funcgao f: A + B dada por

58



foo= 221

.

Observacdo. A escolha de A e B acima ndo é a unica possivel. Quais as outras
possibilidades? m

EXEMPLO 14. O conjunto H = {(x, y) € R? | 2x + 3y = 1} é grafico de funcdo? Em
caso afirmativo, descreva tal funcgao.

Solugdo

3

X
X+ 3y=1<= y= . segue que H é o grafico da funcao dada por

1 —2x
}!‘ — ;
3
Notagdo. O simbolo R? é usado para representar o conjunto de todos o0s pares

ordenados de niimeros reais, R? = {x,y)|x,y € R}.

Observacao. Sejam H um conjunto de pares ordenados e A= {x € R | dy € R com (x,
y) € H}. Entdo H é grafico de funcdo se, e somente se, para cada x em A, existe um
unico y, com (x, y) € H.

ya ya
H ‘ |

/ o

=
=
R |

E grifico de funcgio Nio € grafico de fungio.

Antes de passarmos ao proximo exemplo, lembramos que a distdncia d entre os
pontos (X, ¥,) € (x4, y;) € definida por

d = (x1 — ,ru}z +(y1 — }:u)ﬁ

Veja
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N e

§ ) e iz
s 5 T.f_—':‘"_*j_ - j}‘ £ pelo teorema de Pitdagoras
& = (O — }r{})z + (xy— x{}‘jz.

I

J

I

1 -
=

0 xy

Pois bem, a circunferéncia de centro (a, b) e raio r (r > 0) é, por definicdo, o lugar
geométrico dos pontos do plano cujas distancias a (a, b) sdo iguais a r. Assim, a
equacdo da circunferéncia de raio r e centro (a, b) é

(x—a)+(y-by’=r.

EXEMPLO 15. Esboce o grafico da funcido f dada pela regra x ~ y, em que x> + y* =
1,y>0.

Solugdo

" , y
2+ y=ley=0=y=41- x2 . A fungio fé dada por

| ol -
y=all=x . =l=x=1.

Como x* +y* =1 e (x — 0)> + (y — 0)> = 1%, segue-se que x* + y* = 1 é a equacdo da
circunferéncia de centro na origem e raio 1; o grafico de f é a parte desta
circunferéncia correspondente a y > 0.

v A
f
-1 1 -
v ! X
\ /
\“h##f
B

EXEMPLO 16. O conjunto H = {(x,y) € R? | x* + y* — 2y = 0} é grafico de funcio?
Por qué?

Solucgdo

X¥+y -2y=0ex*+y’-2y+1=1ex*+(y - 1)> =1 que é a equagdo da
circunferéncia de centro (0, 1) e raio 1. Temos

Fray-1)r=1loy=1x1-1x2
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Assim, para cada x € ]-1, 1[ existe mais de um y, com (x, y) € H; H ndo é grafico
de fungao.

Exercicios 2.1

1. Calcule.

a) f(—=1)e f|lq| sendo f (x) = -

b) g(0),g(2)e g[f\."E_: sendo g (x) =

x< —1
c) Jhdah ) _F jla=2) sendo f (x) = eab#0
ab
d) flatb)— fla—b) sendof(x)=3x+ leab#0
ab
2. Simplifique mi%;{‘”} (x # p) sendo dados:

a)f(x)=x’ep=1
b)f(x)=x"ep=-1
¢) f (x) = x* e p qualquer
d)f(x)=2x+1ep=2
e)f(x)=2x+1ep=-1
) fx)=5ep=2
Dfx)=x>ep=2
hfx)=x*ep=-2
i) f(x)=x>e p qualquer
J) f{:r}=lep= 1

%
D ‘f{.\r}=l¥:‘.p=2
m)f(x)=x.2—3xep:—2
n)fl[.\r]'=i2 ep=73

x
O)f'[.\r]'=]—2 ep= =3

%
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p)fl[.\r}=l ep#+ 0
X

1
D fix)=—Fep#0
X
flx+h)— f(x)

Simplifique )
h

(h # 0) sendo f (x) igual a

a)2x+1

b) 3x — 8

c) 2x+4
d) x?

e) x* + 3x

N —x*+5
g) x> - 2x

h) x> -2x+3
) -2x*+3
D 2x*+x+1
D x°
m)x3 + 2x

n) x>+ x*>—x

Dé o dominio e esboce o grafico.

a) f(x) = 3x
b) g (x) = —x
Ah(x)=—-x+1

dDfx)=2x+1
e)g(x)=-2x+3
lgx)=3
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1 5
) flix)y=-2 hy hix)=—x+ —
). 3 3
. —p sullon . _Jxsex=2
B f(x)= E,x D gx)= {3 e
) SeqEianes
D f(x)= ‘ll_:::'] ;z ::{:—I] m h(x)=Ilx—11
8 3 .
=]
n) fix)y=I1x+2I 2) h(x)= :
Xk
x2 —2x+1 x|
j2)] gl[.r]l=—l q) g(x)=—
* X
B | 12x + 11
(x)= xX)=
r g v 5) f(x) -

5. Considere a funcaof(x)=|x—-1]|+|x—2]|.

a) [—2x+3 se x =<1
Mostre que f(x) =+ 1 se 1<x<2
1 X3 x=2

b) Esboce o grafico de f

6. Esboce o grafico.

af()=|x|+|x-2]
byg()=Ix|-1
Ay=llx|-1]
d)f)=|x+1]-|x|

7. Olhando para o grafico de f, estude o sinal de f ().

afx)=x-3
byf(x)=-2x+1
oO)f(x)=3x+1

d)f(x)=-3x-2
e)f(x)=x+3
N fxX)=-8x+1

g9)f(x)=ax+Db(a>0)
h)f(x)=ax+ b (a<0)

8. Estude a variacao do sinal de f (x).
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a) fX)=(x—1)(x+2)
e) fix)=xll-=x)

x—1
y flx)=
).l x+1
)y filx)=
& f®=3773
. x(2x—1)
I fx)=—
! xr+1

D f=x— 3+ 1D)x—2)

Determine o dominio.

a) f(x)=
x—1

y D
[ Xl =
£ .tg + 1

€) h(x)=.x+2

:I _]
Bl = e
q'.ll +]
) y= 3;-",1'2 — X
12x —1
h f(x)= | .
l—3x

Dayp=gr=1B=x

) y=+x—.5—2x

10. Esboce o grafico.

a) f(x)=x
byy=x*+1
Qy=x>-1
d)y=(x-1)
e)y=(x+1)
Ny=(x-17+1
PDy=(x+1)7°-2
h)_y:—x2
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by f(x) =2x+3)(x+ 1)
) fX=(Cx+2)(x—3)
I
(x)=
nr 1—2x
2x+1
x—2
3x—1
:r.'2 +1
2x—3

(1—x)(1—2x)

h)y f(x)=

D fx)=

m) f(x)=

%
b) y=——
X
b iy i
x+1

i)
Fa

X

) y=

N eglx)=

x< +x

h) y= 4
1'1: x+3

) y=4x(2-3x)

} 6'I X
m) v =6
g Yorut 2

N

0) y=———
e

q) v= ﬁ\,"IS —2x2

$) y=q1—+x

) ¥y =X —fx



D) y=-(x-2)

Dy=¥-1]

D y:x4

m)y = (x + 1)’

n)y:—x3

0)y=(x-2)

p)y=x|x|

Dy=x|x|

r) [x2 se x =< |

=
’ 12—{1—2}35:‘.1:}]

S) . 2 —lsex=0
’ X sex =10

11. Considere a fungdo f dada por f (x) = x* + 4x + 5.

a) Mostre que f(x) = (x + 2)* + 1
b) Esboce o grafico de f

¢) Qual o menor valor de f (x)? Em que x este menor valor é atingido?

12. Seja f(x) =ax* + bx + ¢, a # 0.

.\
a [ i /
) Verifique que f(x)y=a | x + ij — i emqueA= b? - 4ac.
; \ 2a da
b) Mostre que se a > 0, entdo o menor valor de f (x) acontece para x = —i.

2a
Qual o menor valor de f (x)?

~ . B A, . .
c) Mostre que se a < 0, entdo f | e | = —4— é o maior valor assumido por f.
L) S

d) Interprete (b) e (c) graficamente.

13. Com relagao a funcao f dada, determine as raizes (caso existam), o maior ou o
menor valor e esboce o grafico.

a)f(x)=x>—3x+2
b)f(x)=x*-4

C) f(x)=x*—4x+4
d)f(x)=x>+2x+2
e) f(x)=2x>+3

N f(x)=2x*-3x
9) f(x)=—x*+2x
Nfx)=-x+4
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D fx)=-4x*+4x-1
Dfx)=-x*-4x-5

14. Olhando para o grafico, estude a variacao do sinal de f ().

a)fx)=x>-1
b)f(x)=x*-5x+6
O)f)=x*+x+1
d) f(x) = —x*+ 3x
e)f(x)=—-x>—-2x-1
N fx)=x*+6x+9
PDfx)=-x>+9
hyf(x)=x*+2x-6
) f(x)=2x*-6x+1
Dfx=-x*+2x-3

15. Dé o dominio e esboce o grafico.

2 2
a) flx)== by y=
X b
2
c)y= d)y y=1+—
x+1 ’ 'y
1 1
el y=—2+4— N y=—
X X
1 1
} = I; 3 =
&) x+2 Y 3 x—2
. 1 ; 1
;} }:« = = Jr} S
X- X
[) I ) 2
: B m) y=
(x — 1)2 {;;—I}2
1 1
n)yy= 5 ) =l
(x+1)" x“
1 1
p) yv=—x+— q) v=lxl+—
X X
r J=r=1 5 =)t 2
N v= ﬂ%;r u) y= ,\ﬁ
V) y= \x2 x) y= 3 x2
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16.

1
T 5+ Conclua que a medida
lxl + -\;I e o

que | x | cresce a diferenca ﬂ\;'] + x2 — |yl se aproxima de zero.

i La ]
a) Verifique que wldxs —Ixl=

b) Esboce o grafico de y = ﬁw."| i 52
17. D& o dominio e esboce o grafico de f(x) = \\:."_Yf ey

(Sugestdo: Verifique que a medida que | x | vai crescendo, o grafico de f vai
“encostando”, por baixo, no graficodey =|x|.)

18. Dé o dominio e esboce o grafico.

a)y= \\."2 + &2 by y= -f.x‘z el €) y= -ﬁ‘." X

d)y= ‘2 + 4 €) y= -nh.".g — x? B = -K:'II —(x +2)2
19. Seja f dada por x ~ y, y > 0, em que x> + y* = 4.

a) Determine f (x)
b) Esboce o grafico de f

20. Esboce o grafico da funcdo y = f (x) dada implicitamente pela equacao.

a)x*+y*=1,y<0
b)x-y*=0,y>0
Q) (x—1)*+y’=4,y>0
d)x*+y*+2y=0,y>-1

e) x> +y*+2x+4y=0,y<-2
f v+l
y

=x.x¥ 1

21. Considere a fungdo f(x) = max {x = |[
X
a) : : (1)
Calcule f(2),f(=1)e f| =]
b) Dé o dominio e esboce o grafico

22. Considere a funcao f (x) = max{n € Z | n < x}. (Fungdo maior inteiro.)
a) LY ERY o )
Calcule ,f|E£|~ fQ, f|££| e f |I_~—§£|

b) Esboce o grafico

23. Calcule a distancia entre os pontos dados.
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a)(1,2)e(2,3)
b) (0, 1) e (1, 3)
¢) (-1,2)e (0, 1)
d) (0, 2) e (0, 3)
e) (-2,3)e(1,4)
H (A, De(2,2)

24. Seja d a distancia de (0, 0) a (x, y); expresse d em funcdo de x, sabendo que

(x, y) é um ponto do grafico de y = —.
X
25. Um movel desloca-se (em movimento retilineo) de (0, 0) a (x, 10) com uma
velocidade constante de 1 (m/s); em seguida, de (x, 10) a (30, 10) (em
movimento retilineo) com velocidade constante de 2 (m/s). Expresse o tempo
total T (x), gasto no percurso, em funcao de x. (Suponha que a unidade
adotada no sistema de referéncia seja o metro.)

26. (x, y) € um ponto do plano cuja soma das distancias a (—1, 0) e (1, 0) é igual a
4,

a) Verifique que ¥ ¢ ¥
4 3
b) Supondo y > 0, expresse y em funcdao de x e esboce o grafico da funcao

obtida

27. Sejam F, e F, dois pontos fixos e distintos do plano. O lugar geométrico dos
pontos (X, y) cuja soma das distancias a F; e F, é sempre igual a 2k (2k >
distancia de F, a F,) denominase elipse de focos F, e F, e semieixo maior k.

a ., .. 2 2 ; ~ .
Verifique que — + = =1 € a equagéo da elipse de focos (-c, 0) e (c, 0) e
a” b=
semieixo maior a, em que b* = a* - ¢?
b) Verifique que ; i ; — | € a equacdo da elipse de focos (0, —c) e (0, ¢) e
a< b=
semieixo maior b, em que a* = b* - ¢?

c) Desenhe os lugares geométricos descritos nos itens (a) e (b)
28. Determine o dominio e esboce o grafico.

a)y=+4—=3x2  b) f(x)=—1—4x?

o) y= -\;"4 = .rj d) g(x)= ‘~,'::2 o S_rj

29. Vocé aprendeu em geometria analitica que y — y, = m (x — X,) é a equacdo da
reta que passa pelo ponto (x,, y,) e que tem coeficiente angular m. Determine
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30

31.

32.

33.

34.

35.

36.

37

38

39

a equacdo da reta que passa pelo ponto dado e tem coeficiente angular m
dado.

a)(1,2)em=1
b) (0,3)em=2
c)(-1,-2)em=-3
d)» _ .
){/_. ]}6!?.— E
e)(5,2)em=0
h (=3.0)e m=

B2 | Lo

. A reta r intercepta os eixos coordenados nos pontos A e B. Determine a

distancia entre A e B, sabendo-se que r passa pelos pontos (1, 2) e (3, 1).

A reta r passa pelo ponto (1, 2) e intercepta os eixos coordenados nos pontos
A e B. Expresse a distancia d, entre A e B, em funcdo do coeficiente angular
m. (Suponha m <0.)

Na fabricacdo de uma caixa, de forma cilindrica, e volume 1 (m?), utilizam-
se, nas laterais e no fundo, um material que custa $1.000 o metro quadrado e
na tampa um outro que custa $2.000 o metro quadrado. Expresse o custo C do
material utilizado, em funcao do raio r da base.

Expresse a area A de um tridngulo equilatero em funcao do lado 1.

Um retangulo estd inscrito numa circunferéncia de raio r dado. Expresse a
area A do retangulo em fun¢do de um dos lados do retangulo.

Um cilindro circular reto estd inscrito numa esfera de raio r dado. Expresse o
volume V do cilindro em funcao da altura h do cilindro.

Um movel é lancado verticalmente e sabe-se que no instante t sua altura é

dada por h (t) = 4t — £, 0 < t < 4. (Suponha o tempo medido em segundos e a
altura em quilometros.)

a) Esboce o grafico de h

b) Qual a altura maxima atingida pelo mo6vel? Em que instante esta altura
maxima € atingida?

. Entre os retangulos de perimetro 2p dado, qual o de area maxima?

. Divida um segmento de 10 cm de comprimento em duas partes, de modo que

a soma dos quadrados dos comprimentos seja minima.

. Um arame de 10 cm de comprimento deve ser cortado em dois pedagos, um

dos quais sera torcido de modo a formar um quadrado e o outro, a formar uma
circunferéncia. De que modo devera ser cortado para que a soma das areas
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das regioes limitadas pelas figuras obtidas seja minima?

40. Um arame de 36 cm de comprimento deve ser cortado em dois pedacos, um
dos quais sera torcido de modo a formar um quadrado e o outro, a formar um
triangulo equilatero. De que modo devera ser cortado para que a soma das
areas das regides limitadas pelas figuras obtidas seja minima?

41. Coloque na forma (x — a)* + (y — b)* = r’.
a)x*+y*=2x=0
byx*+y*-x-y=0
C) 2x*+2y* +x=1
d) x> +y*+3x—y=2

42. Determine a para que as retas dadas sejam paralelas.
ajy=axey=3x-1

byy=(@+1)x+1ley=x
) y= i 2 |

ey=2ax + 1

d)y=—xv_ey=3ax+4
e)2x+ty=ley=ax+2
f) x+tay=0ey=3x+2

43. Determine a equacao da reta que passa pelo ponto dado e que seja paralela a
reta dada.

a)y=2x+3e(l,3)
b)2x+3y=1e(0, 1)
cox—-y=2e(-1,2)
d)x+2y=3e(0,0)

44. Justifique geometricamente: y = mx + n (m # 0) e y = myx + n; sdo
perpendiculares se e somente se mm; = —1.

45. Determine a equacdo da reta que passa pelo ponto dado e que seja
perpendicular a reta dada.

a)y=xe(1,2)
byy=3x+2e(0,0)
coy=-3x+1le(-1,1)
d)2x+3y=1e(1,1)
e) 3x—-2y=0e(0,0)
f) 5x+y=2e(0,1)
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2.2. FUNCOES TRIGONOMETRICAS: SENO E COSENO

Com os elementos de que dispomos até agora, ficaria muito trabalhoso definir e,
em seguida, demonstrar as principais propriedades das fun¢des seno e cosseno.
Observamos, entretanto, que apenas cinco propriedades sdo suficientes para descrever
completamente tais fungdes. O teorema que enunciamos a seguir e cuja demonstragao
sera feita ap6s estudarmos as séries de poténcias resolvera completamente o problema
referente a tais fungoes.

Teorema. Existe um unico par de fungoes definidas em R, indicadas por sen e
cos, satisfazendo as propriedades:

(1) sen0=0
(2)cos0=1
(3) Quaisquer que sejam os reaisa e b
sen (a —b)=senacos b —sen b cos a
(4) Quaisquer que sejam os reaisa e b

cos (a—b)=cosacosb +senasenb
(5) Existe r > 0 tal que

f
D<senx<x<ligxjlgx= |
\ COs X

sen x |

para0 <x <r.

Vejamos, agora, outras propriedades que decorrem das cinco mencionadas no
teorema acima.
Fazendo em (4) a = b = t, obtemos

cos 0 =costcost+sentsent

ou seja, para todo t real,

) 8
(6) cos"t+sen t=1

Deste modo, para todo t, o ponto (cos t, sen t) pertence a circunferéncia x* + y* = 1.
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Para efeito de interpretacdo geométrica, vocé podera olhar para o t da mesma forma
como aprendeu no colégio: t é a medida em radianos do arco 4p Lembramos que a
medida de um arco é 1 rd (rd = radiano) se o comprimento do arco for igual ao raio da
circunferéncia (1 rd = 57°16").

A proxima propriedade sera demonstrada no Apéndice 2.

(7) Existe um menor numero positivo a tal que cos a = 0. Para este a, sen a = 1.

O nuimero a acima pode ser usado para definirmos o niimero 7.

Definicdo. Definimos o niimero m por 7 = 2a, em que a é o nimero a que se refere
a propriedade (7).

. T, . .. T p T
Assim — ¢ 0 menor nimero positivo tal que cos > = (. Temos, também, sen 9 =1.

Seja f uma funcado definida em R. Dizemos que f é uma fungdo par se, para todo x,

f(=x) =fX).
Dizemos, por outro lado, que f é uma fungdo impar se, para todo x,
f(=x) =~ ().

EXEMPLO 1. Mostre que

1) sen é uma fungdo impar.

7)) cos é uma fungao par.

Solucgdo

1) Fazendo em (3) a=0e b =t, resulta sen (—t) = sen 0 cos t — sen t cos 0 ou seja
sen (—t) = —sen t.

7)) Fazendo em (4) a = 0 e b = t resulta cos (—t) = cos t.
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seni— )

EXEMPLO 2. Mostre que quaisquer que sejam os reais a e b

cos (a+b)=cosacosb—senasenb

sen (a + b) =sena cos b + sen b cos a.
Solugdo
cos (a + b) = cos [a — (—b)] = cos a cos (—b) + sen a sen (—b) = cos a cos b — sen a sen

b. sen (a + b) = sen [a — (—b)] = sen a cos (—b) — sen (—b) cos a = sen a cos b + sen b
cosa. ®

EXEMPLO 3. Mostre que, para todo x,
cos 2x = cos® x — sen” x e sen 2x = 2 sen x Cos X.
Solugdo

oS 2x = €os (X + X) = COS X COS X — Sen X sen X = cos” x — sen” x.
sen 2x =sen (x +X) =senxCoSx +senxCcosx=2senxcosx. M

EXEMPLO 4. Mostre que, para todo x,

cos 2x

Solucgdo
—cnc?y — con? v = cnc2 v — (1 — ~ac2
COS 2x = cos” x — sen” x = cos” x — (1 — cos” x)

logo
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- 1 1
COs 2x = 2«:053:{— lou cos2 x=—+ —
2 2
Verifique vocé
Lp |
SeN“Xx = — — — COs 2X.
2
EXEMPLO 5. Calcule.
T T
a) cos —. b) sen —.
4 ) 4
c) COs . d) sen .
Solugdo
Provaremos mais adiante que cos x > 0 e sen x > 0 em ]0, %[.

a) cos?x = L + L cos 2x: fazendo x = =
2 2 4

T | 1 T
CO8“ — = — + — C0S —
4 2 2 2
, T | T
dai, cos? = = — e como COs o = (), resulta
w J 2
cos — =
4 2
) 2 o
) sen BT (verifique).

. T
") Fazendo x = ?‘ em cos 2x = 1 — 2 sen’x, obtemos

cosm=—1.
1) 3T
Fazendo x = B em sen 2x = 2 sen x cos x, resulta

senm=0.

Interprete geometricamente os resultados deste exemplo. ™
Deixamos a seu cargo verificar que, para todo x,

que

sen (x + 2m) = sen x

cos (x + 2m) = cos x
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As fungoes sen e cos sdo periddicas com periodo 2.
Os graficos das fungoes sen e cos tém os seguintes aspectos:

N -

-1

EXEMPLO 6. Esboce o grafico da fungao dada por y = sen l
X

Solugdo

- 2
Primeiro vamos estudar o comportamento de y para x = —.
T

W

X E::»El{::
T

™) |I—t
il
S

. 2 1 A . | .
Assim, para x = —, sen — == (). A medida que x aumenta, — vai se aproximando

T X
1 2, . |
de zero, o0 mesmo acontecendo com sen —, Para x == —— é sO observar que sen — é
X T X
impar.
Ly
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2 1 T
x=—", vy=sen —=sen —=1.
T 2

Observe que para 2
i 1 2
Vejamos, agora, o comportamento de sen — para () << x << —,
X T
1 2 . % %
sen —=1 & —= Zﬁ;qr—i-i & x = —  (kinteiro)
X % 2 A4k +

2 2 2 2
x i e i |
s S#  9m 13w
¥ 1 1 11
1
sen —=0& —=km & x=—
X s km
1 1 1 1
x _ — — = = 0
n 27 3m 4w
y 0 0
| | 3 2
sen —=—1 < —=2kﬂ'+—ﬂ- &S x=
X X 2 Ak + 377
2 ) 2 2
x — — =}

3n Tr lir 5%
y | -1 -1 -1 -1

Exercicios 2.2
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1. Esboce o grafico.

a) f(x)=sen2x b) y =2cosx
c) y=cos ; d) f(x)=Ilsenxl|
€) y = sen mx f f(x)=xsenx

_ 1 1
g) g(x)=—senx f1) v=xsen—

X ; X
: 2 1 :
iy ¥ =x°sen— J) gx)=x+senx
X

2. Sejam a e b reais quaisquer. Verifique que

a) senacosh = %[sen (a+ b))+ sen(a — b))

e

1
o

=

by cosacosh= —[cosia+ b)+ cos(a— b

clsenasenb = %[ms (a— b)— cos(a+ b

=

2.3. As FUNCOES TANGENTE, COTANGENTE, SECANTE E COSSECANTE

nx

A funcao tg dada por tg x = o
uncao ada por

ca0ts 8 CcOs X
conjunto de todos os x tais que cos x # 0. O grafico da tangente tem o seguinte

aspecto:

denomina-se fun¢do tangente; seu dominio é o

e

]

El
ol
=Y

Geometricamente, interpretamos tg x como a medida algébrica do segmento AT, no
qual T é a intersecao da reta OP com o eixo das tangentes e AP o arco de medida x
rad.
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(I
tg x
0 ' | .

=f---
n

. eixo das
med AP = x rad tangentes
Os triangulos OMP e 0AT sao semelhantes. Assim: E = L ou AT = ﬁ
MP OM 1 oM
, sen X
g lgx=
COS X

As fungoes sec (secante), cotg (cotangente) e cosec (cossecante) sao dadas por

{u I

SeC X =

. colg x = € COseC X = .
COs5 X sen x sen X

O grafico da secante tem o seguinte aspecto:

V¥

Exercicios 2.3

1. Determine o dominio e esboce o grafico.

a) f (x) = cotg x
b) g (x) = cosec x

2. Verifique que sec’ x = 1 + tg* x para todo x tal que cos x # 0.

x5 :
3. Mostre que, para todo x, com cos — # 0. tem-se:

=

thi 1 —tg
" b) cos x =
]+tg2; ]—i—tg2

a) sen x =

78
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2.4. OPERACOES cOM FUNCOES
Sejam f e g duas fungdes tais que D; n D, seja diferente do vazio. Definimos:
a) A funcdo f + g dada por
f+g))=f)+gX

denomina-se soma de f e g. O dominio de f + g € D; n D,. Observe que f + g é
uma notacgao para indicar a fungdo dada pory = f (x) + g (x).

b) A funcdo f- g dada por
-9 )=fx-gX

denomina-se produto de f e g. O dominio de f- g € Dy n D,.

) A funcao £ dada por

denomina-se quociente de f e g. O dominio de Ef éx€D;n D,|g(x)#0}.
d) A funcao kf, k constante, dada por |
(k) (x) = kf (x)
€ o produto de f pela constante k; Dy = D;.
EXEMPLO 1. Sejam f(x)=,T—x e g (x)=/x — 2.

a)(f+ g) (x) = 7—x +/x —2. O dominio de f+ g é [2, 7] = D; n D,.
b)(f-g)(x)= /7—x-,/x—2.0 dominio de fg é [2, 7] = Dy n D,

) (i](m L

X2

Sendo f uma fungdo, definimos a imagem de f por Imf = { f (x) | x € Dy }.

Definicao (de fun¢do composta). Sejam f e g duas funcdes tais que Imf C Dg. A
funcdo dada por

y=9g(fx),x €Dy,
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denomina-se funcdo composta de g e f. E usual a notacdo g ° f para indicar a
composta de g e f.

Assim,
G°hHh®=9g({®),x€D,
Observe que g ° f tem o mesmo dominio que f.

EXEMPLO 2. Sejam f e g dadas por f (x) =2x + 1 e g (x) = x* + 3x. Determine g ° f e {
(o] g‘

Solugdo

@°N=g(fE)=I[fEF+3[fx)]=@x+1)°*+3(2x+1),x ER =D
e @=f@E)=f*+3x)=2x"+3x)+1,x€ED,=R. =m

EXEMPLO 3. Sejam f (x) = x* g(x) = /x. Determine g °fe °g.
Solugdo

Imf=R, e D, =R,, assim Imf C D,. (Notagdo: R, = {x € R | x> 0}.)
(geH @) =g(f() = /f(x) =Vx* =lxl,.xER = D;
Img =R, e D;=R, logo Img C D,.

(feg) () =f(g(x) = f(Nx)=(x)* =x, x€ Ry = D,. "

Definicao (de igualdade de fungées). Sejam as funcoes f: AP Reg:A — R.
Dizemos que f é igual a g, e escrevemos f = g, se os dominios de f e g forem
iguais, A=A’, e se, paratodo x € A, f (x) = g (X).

EXEMPLO 4. Sejamf: A~ R e g: A R duas fungdes. Prove quef+g=g +{.
Solucgdo

Df+g =A= Dg+f‘
Por outro lado, para todo x em A,

F+a)=f@)+gX¥) =g +fx)=(g+fX.

Assim,

frg=g+f.
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Observe que f (x) + g (x) = g (x) + f (x), pois f (x) e g (X) sdo numeros reais e, em R,
vale a propriedade comutativa. ®

EXEMPLO 5. As fungoes f e g dadas por flx)=+x Jx—1e gx)= h y2 — y sdo
iguais?

Solugdo

f#gpois Ds# D, (Dy=[1, +o0 [e D, = ]-0,0] U [1, +oo[). =

Exercicios 2.4

- . - 8
1. Dé os dominios e esboce os gréficosde f + g¢ ?
2 1
a) fx)y=xeg(x)=x" —1 b) fx) =xc g(x)=—
X
- 1
c) f(x)=1e g(x)=x—1 d) fx)=1e g(x)= T e

(x —2)°

lsexe O —lsex e Q

e) f(x)= {—I sexgz Q@ ° g(x) ={ lse x & O

2. Verifique que Imf C D, e determine a composta h (x) = g (f (x)).

a)gx)=3x+lef(x)=x+2
r 7
b) g(x)=+x ef(x)=2+x"

g (=21 i3
c) &4 x—2 i e e
DgE)=—x"+3Ix+1lef(x)=2x—3

.
e) §(x)= — eflx)=x+Lx#1
ﬁﬂ[v}—H] flx)=—=
glLx)= e f(x)=
.‘{-_] .-"|+I

2) g(x)=+x ef{,x'}=.r2—,x;_r=£00u x=1

sue  kekol 2x +1

LX)= -y =
i) £LX) cen kB fix) -

3. Determine o “maior” conjunto A tal que Imf C D,; em seguida, construa a
composta h (x) = g (f (x)).
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~

o efiA=-Rfx)=x+3

i) g (x)= 2

B)ygx)=x-1ef:A=R,f(x) = 2

2x-+1

x—3
| 3 4

d) gix}=? eftA—=R. flx)y=x —x~

) gx=yx—-Tef:A-=R, f(x)=

e) g(x)= \,-".rf —lef:tA=R.f(x) =2

Determine f de modo que g (f (x)) = x para todo x € D;, sendo g dada por

}g{ﬂ—l By S5 P 5 5

QR = ) g (x) =

4 g z+1

g =x",x=0 dgix) =2 —2rx=1

e) g()=2+ i! Ng@=x>—4x+3,x22
i
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3

LIMITE E CONTINUIDADE

3.1. INTRODUCAO

Neste capitulo, vamos introduzir dois dos conceitos delicados do calculo: os
conceitos de continuidade e de limite.

Intuitivamente, uma fun¢do continua em um ponto p de seu dominio é uma fungao
cujo grafico ndo apresenta “salto” em p.

v ) v A
£
f(x) / /
- I !
tp)p : gEplF--- !
fo ! | :
1 1 . 1 f
// X B X X _‘_,..-/ p X

O grafico de f ndo apresenta “salto” em p: f é continua em p. Observe que a medida
que x se aproxima de p, quer pela direita ou pela esquerda, os valores f (x) se
aproximam de f (p); e quanto mais proximo x estiver de p, mais proximo estara f (x) de
f (p). O mesmo nao acontece com a funcao g em p: em p o grafico de g apresenta
“salto”, g ndo é continua em p.

Na proxima secdo, tornaremos rigoroso o conceito de continuidade aqui
introduzido de forma intuitiva.

EXEMPLO 1. Consideremos as funcoes f e g dadas por

<
f(x)=xe g(x)= {1 sex =1

_25&.!{?}]

v yA

fphp- .r

.

Vemos, intuitivamente, que f é continua em todo p de seu dominio. Por sua vez, g
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ndo ¢é continua em p = 1, mas é continuaemtodop#1. =

Intuitivamente, dizer que o limite de f (x), quando x tende a p, é igual a L que,
simbolicamente, se escreve

lim f(x)=L

X—=p

significa que quando x tende a p, f (x) tende a L.

A | Yi

fix)b——a—- - Jtx}
fprp---- :
feolt : f(x)
H i - -
,,..-"", X p X X X
Quando x tende a p, f(x) Quando x tende a p, f(x) tende
tende af(p): lim f(x)= f(p) al: lim f(x)=L
X—=p X—=p
EXEMPLO 2. Utilizando a ideia intuitiva de limite, calcule l_“gll (x + 1).
Solugdo
Ya
fixi=x+1
x x+ 1 x x+ 1
2 3 0.5 145
1,5 2,5 0.9 1.9
151 2.1 0,99 1.99
1,01 2,01 0,999 | 1,999
1,001 [ 2,001 t 1
I } 1 2
1 2 %
lim (x4 1)=2.
x =1 |
x2 —1
EXEMPLO 3. Utilizando a ideia intuitiva de limite, calcule ]jm - )
3l 2=
Solucgdo
2 -1
Seja f(x) = s ~x #1; fndo esta definida em x = 1.

x—1
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Parax#1

flx)= =x-+1
=
lim — = lm (x+1)=2.
eyl =1 x—1

=Y

Intuitivamente, é razoavel esperar que se f estiver definida em p e for continua em
p, entdo, 1_]111!1 JO=5P). ¢ reciprocamente. Veremos que isto realmente acontece,

isto é, se f estiver definida em p

fcontinuaem p < lim f(x)=f(p).

X—=p

Veremos, ainda, que se I_Iflp Jx)=Lg e f ndo for continua em p, entdo L sera
aquele valor que f deveria ter em p para ser continua neste ponto.

YA

flx)

f ndo esta definida em p.
lim fx)= L

X—=p

L é o valor que f deveria ter em p para ser continua em p.
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lim f(x)=

X—p
L é o valor que f deveria ter em p, para ser continua em p.

L. f esta definida em p, mas L # f (p).

Com toda certeza

lim £ P+ H~f(p)
h—=0 h

é o limite mais importante que ocorre na matematica, e seu valor, quando existe, é
indicado por f(p) (leia: flinha de p) e é denominado derivada de f em p:
55 . fpth)— f(p)
(p)= lim ;

Este limite aparece de forma natural quando se procura definir reta tangente ao grafico
de f no ponto (p, f (p)). O quociente P h}: — i) . chamado as vezes de razdo

incremental, nada mais é do que o coeficiente angular da reta s que passa pelos pontos
M=(p,f(p))eN=(p+h,f(p+h))do graficodey = f(x)

¥4
fip+h 4

(p+hy—f(p)
f f 1)
fip)

=Y

Observe que a equacgao da reta s é

y~f)=m;(x-p)
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+ R
em que m, = PR )_ Quando h tende a zero, o ponto N vai se

h
aproximando cada vez mais de M, e a reta s vai tendendo para a posi¢cdo da reta T de

equacao

y=f®)=fP) (x-p).

Areta T é denominada reta tangente ao grafico de f, no ponto (p, f (p)).

NOTA HISTORICA. Por volta de 1630, Pierre de Fermat (1601-1665) estabeleceu dois
métodos: um para se determinar o coeficiente angular da reta tangente em um ponto
qualquer do grafico de uma fungdo polinomial e o outro para se determinar o0s
candidatos a pontos de maximo ou de minimo (locais) de uma tal funcdo. Pois bem, a
ideia que acabamos de utilizar para definir reta tangente é essencialmente a mesma
utilizada por Fermat. Por outro lado, para Fermat os candidatos a pontos de maximo
ou de minimo (locais) nada mais eram do que as raizes da equacao f'(x) = 0. (Veja
Historia da Matemadtica, p. 255, de Carl Benjamin Boyer, editoras Edgard Bliicher
Ltda. e Universidade de Sao Paulo.)

EXEMPLO 4. Seja f (x) = x°. Utilizando a ideia intuitiva de limite, calcule f(1).
Solugdo
O que queremos aqui é calcular f'(p), com p = 1.

f'(1)= lim f(1+h)-£(1)
) h—=10 h

Temos

FL+R)=F(1) _ (1+h)* =17
h B h

=2+h (h#0)

Segue que

(= lim 2+ h)=2 =

h—0
EXEMPLO 5. Seja f (x) = x°. Utilizando a ideia intuitiva de limite, calcule f(x).
Solucgdo

Fi(xy= lim JFlx+h)y— fix)
I h—=0 h

Temos

Flxth)—Flx) _ (x+ h)? — x2
h h

=2x+h (h#0)
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Segue que

f'(x)= lim (2x+ k)= 2x.

h—=0

Ou seja, a derivada, em x, de f(x) = x> é f(x) =2x. ™
Como veremos, um outro modo de expressar f'(p) é através do limite

f'(py=tim DS WD)

X—=p X—p

(Observe: fazendo x — p = h recaimos no limite anterior.)

EXEMPLO 6. Seja f (x) = x>. Utilizando a ideia intuitiva de limite, calcule f(2).

Solugdo

f'@)= lim LH-1@

x—2 Xl

Temos

Fla—~F0). gt~ 22
x—2 =2

=x2 4+ 2x+4 x+2.

(Lembre-se: a® — b* = (a - b) (a® + ab + b?).)
Assim

f'(2y= lim (x2 +2x+4)=12.

x—2

A derivada é um limite. Entdo, para podermos estudar suas propriedades,

precisamos antes estudar as propriedades do limite. E o que faremos a seguir.

Antes de passar a proxima secdo, queremos destacar as funcdes de uma variavel
real que vao interessar ao curso; tais fungdes sao aquelas que tém por dominio um
intervalo ou uma reunido de intervalos. Portanto, de agora em diante, sempre que nos
referirmos a uma funcdao de uma variavel real e nada mencionarmos sobre seu
dominio, ficard implicito que o mesmo ou é um intervalo ou uma reunido de

intervalos.

Exercicios 3.1

1. Esboce o grafico da funcdo dada e, utilizando a ideia intuitiva de funcao

continua, determine os pontos em que a funcdo devera ser continua.

a)f(x)=2
byf(x)=x+1

88



) f(x)=x°
d) = {‘(2 se x < 1

2se x =1
e) (1 )
f(x)= { 32 selxl=1
 2selxl<1
Nfx)=x*+2
2. Utilizando a ideia intuitiva de limite, calcule
a) lim (x+ 2) M lim 2x+1)
x—1 x—=1
¢) lim (3x+1) d) lim {.‘(2 +1)
x—=0 xr—=2
. rf + x
e) im +/x f) lim -
x—1 x—=2 x+3
g) lim 3’\,\( B lim (+\/x + x)
x—2 r—=0
a ]
3 Esboce o grafico de f(y)= u Utilizando a ideia intuitiva de limite,

2x — 1

2
calcule lim u
r=¥% 2x—1

4. Utilizando a ideia intuitiva de limite, calcule

. x2 —4 . x2 +x
a) lim b lim
x—32 x—12 x—0 X
I g |
lx —1 xc—4dx+4
¢) lim L d)y lim ——
xr—=1 x—1 x—>2 x—2
2 —1
e) lim - f) lim sen x
.1'_:’_[ .-11. + ] _]"_)D

3.2. DEFINICAO DE FUNCAO CONTINUA

Sejam f e g fungoes de graficos

¥ ¥

f@)p--- gt

\\,
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Observe que f e g se comportam de modo diferente em p; o grafico de f nao
apresenta “salto” em p, ao passo que o de g, sim. Queremos destacar uma propriedade
que nos permita distinguir tais comportamentos.

Veja as situacOes apresentadas a seguir.

v vi
fp)+ e Fip)+ e
fiprt fip)
f(p) - e f(p) —e
-~ ]
vh
fip) + e
N\
f(p;
f(p)—¢
‘_,/p—ﬁ1p+a 3
P

A funcao f satisfaz em p a propriedade

para todo € > 0 dado, existe § > 0 (6 dependendo de €), tal que f (x) permanece
entre f (p) — € e f (p) + € quando x percorre o intervalo ]Jp — 6, p + é[, com x no
dominio de f.

ou de forma equivalente

(1) | paratodo € > 0 dado, existe § > 0 (8 dependendo de €), tal que, para todo x
eD
f‘.

p—od<x<pt+o=fp)—e<f(x)<f(p) t+e

Entretanto, a funcao g nao satisfaz em p tal propriedade:
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A | £
el

P+ el-———1 i
gqp}..--........‘ 5
gipy—ep—— o
R

Lo i

_,_/p---a p pta x

para o € > 0 acima, ndo existe § > 0 que torne verdadeira a afirmacao
“VxE€Dpp-6<x<pté=g()-€<gx)<g(p +e.

Qualquer que seja o § > 0 que se tome, quando x percorre o intervalo Jp — 6, p + I,
g (x) ndo permanece entre g (p) —€e g (p) + €.

A propriedade @O distingue os comportamentos de f e de g em p. Adotaremos a
propriedade D como defini¢do de fungdo continua em p.

Defini¢do. Sejam f uma fungado e p um ponto de seu dominio. Definimos:

Para todo € = O dado, existe 6 = () (6 dependendo de € ). tal

fcontinua em p <4 que. paratodo.x € Dy,

p—8<x<p+8&=fip)—e< f(x)< f(p) +e

Observacgdo. Sabemos que

|x—p|<6=p—6<x<p+6

[fQ)-f@<e=fP)-e<f)<f()+e

A definicdo anterior pode, entdo, ser reescrita, em notagao de médulo, na seguinte
forma:

; [Para todo € = 0 dado, existe 8 = 0 tal que, para todo x em Df\
feontinuaem p :
Ix—pl<é=1fl{x)— f(p)| <&

Dizemos que f é continua em A C D; se f for continua em todo p € A. Dizemos,

simplesmente, que f é uma fung¢do continua se f for continua em todo p de seu
dominio.

EXEMPLO 1. Prove que f (x) = 2x + 1 é continua em p = 1.
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Solugdo

Precisamos provar que, para cada € > 0 dado, conseguiremos um § > 0 (&
dependendo apenas de ¢€), tal que

1-8§<x<1+8=f(1)-e<f(X)<f(l)+e

O € > 0 é dado, queremos achar § > 0. Devemos determinar é > 0 de modo que f (x)
permaneca entre f (1) —e€e f(1) + e para x entre 1 — § e 1 + §. Vamos entdo resolver a
inequagao

f-e<f)<f)+e
Temos
fH-e<fX)<f(l)+e=3-€e<2x+1<3+e
Somando —1 aos membros das desigualdades e dividindo por 2, resulta

f)—e<f@<f(l)+eo 1- % <x<1+ %

€

Entdo, dado € > 0 e tomando-se 6 = % (qualquer § > 0 com 6 < >

também serve!),

resulta
1-6<x<1+6=f(1)-e<fX)<f()+e

Logo, f é continua em p = 1.
O exemplo acima pode também ser resolvido em notacdo de médulo. Neste caso,
precisamos provar que dado € > 0, existe § > 0 tal que

[x-1[<é=[f)-f(D)|<e
Temos

Lfiy—Ff)lI<es 2+l —-3I<es|2Zi—-2]l<es lz—11<

b | m

Assim, dado € > 0 e tomando-se & =

b | m

[ x=1[<é=[f)-fD]|<e
Logo, fé continuaemp=1. =
EXEMPLO 2. A funcdo constante f (x) = k é continua em todo p real.
Solucgdo

|fxX)—f(@)]|=|k-k|=0 para todo x e todo p; assim, dado € > 0 e tomando-se
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um 6 > 0 qualquer

[x—pl<é=[f)-fP)=k-k|<e

Logo, f é continua em p, qualquer que seja p. Como f é continua em todo p de seu
dominio, resulta que f (x) = k é uma fungdo continua. ™

EXEMPLO 3. A funcdo afim f (x) = ax + b (a e b constantes) é continua.
Solugdo

Se a = 0, f é constante, logo continua.
Suponhamos, entdo, a # 0. Temos:

[f®)-f(@)|=lax+b-ap-b|=|al[x-p]|.

Assim, para todo € > 0 dado

lf) =Pl <e=lx—=pl< ﬁ
a

-
Tomando-se, entdo, 6 = Tal

[ x=pl<é=[fC)-f() <€

logo, f é continua em p. Como p foi tomado de modo arbitrario, resulta que f é
continua em todo p real, isto é, f é continua. ™

Os dois proximos exemplos poderdo facilitar as coisas em muitas ocasides. Antes,
porém, observamos que se p € ]a, b[, a e b reais, entdo existe § > 0, tal que Jp — 6, p +
o[ C la, b[; basta, por exemplo, tomarmos é = min {b — p, p — a}.

Veja
& &
a p—4& P b=p+6&
F=—— [ e
[ p+é
i E =a b

Em qualquer caso, § = min {b — p, p — a} resolve o problema.

EXEMPLO 4. Prove que, se para todo € > 0 dado existir um intervalo aberto I = ]a,
bl, com p € I, tal que para todo x € Dy
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x€I=f(p)-e<f(x)<f(p)+e
entdo f sera continua em p.
Solugdo

Pela hipotese, para todo € > 0 dado existe um intervalo aberto I = ]a, b[, com p € I,
tal que

Q) XEla bl =fp)—e<fx)<f(p) +e
Tomando-se § =min {b—p,p —a}, Jp —6,p + 6[ C la, b[. Assim,
XElp-6,p+d[=xE€ ]a, bl.
Segue de @D que
x€lp-6p+til=fp)-e<f)<f(p)+e
Logo, fé continuaemp. ™

EXEMPLO 5. Seja r > 0 um real dado. Suponha que, para todo € <r, € > 0, existe um
intervalo aberto I, com p € I, tal que para todo x € Dy

x€I=f(p)-e<fx)<f(p)+e
Prove que f é continua em p.
Solugdo

Precisamos provar (tendo em vista o exemplo anterior) que, para todo € > 0, existe
um intervalo aberto I, com p € I, tal que para todo x em Dy

x€I=f(p)-e<f)<f(p)*e

Pela hipotese, se € < r, existe tal intervalo.
Suponhamos, entdo, € >r. Seja0 < ¢ <r.
Pela hipotese, para o €, dado, existe I tal que

x€I=fP)-<fX)<f(p)+e.
Para este mesmo I teremos, também,
x€I=f(p)-e<f(x)<f(p) te

pois, f(p) —€<f(p) — € ef(p) + ¢ <f(p) + e (Interprete graficamente.)
Assim:
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para f ser continua em p, basta que, para cada € <r, € > 0 (em que r > 0 é fixado a
priori), exista um intervalo aberto I, com p € I, tal que, para todo x em Dy,

x€I=f(p)-e<f(x)<f(p)+e

EXEMPLO 6. Mostre que f (x) = x> é continua em 1.

Yi

Solugdo

Precisamos mostrar que dado € > 0, existe um intervalo aberto I, contendo 1, tal
que

x€I=f)-e<fx)<f()+e

Vamos resolver a inequacao f (1) —e<f(x) <f(1) + e
Temos

fH—e<f<f(H+ee=1—-¢€ <r<l+eo M—e<x<3l+e.
Tomando-se [ = ].{:"] — €, 1] +e[, 1€
x€I=f()-e<fx)<f(l)+e
Logo, f (x) = x> é continua em 1.
Observacao. Tomando-se & = min {‘m i e 1ﬁ}
1-6<x<1+é6=f(D)-e<fX)<f(Q)+e =

EXEMPLO 7. Prove que f (x) = x* é continua.
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Solugdo

Precisamos provar que f é continua em todo p real (D; = R).

Primeiro vamos provar que f é continua em 0. Convém, aqui, usar a definicio em
notacao de médulo. Vamos provar, entdo, que dado € > 0 existe § > 0 tal que

Ix-0]<é6=|x*-0*|<e
Para se ter | X | < €, basta que se tenha | x | < ./e., Tomando-se § = /e
Ix-0]|<é6=|x*-0*|<e

Logo, f (x) = x* é continua em 0.
Vamos provar, agora, a continuidade de f em todo p # 0. Temos

fO)-e<f()<f(p)+e=p’—e<x*<p’+e
Para € < p%, €> 0,
2 A, [ [ 9
Pr—e<x <p t+eesp—e <Ixl<.p° +e.
Se p > 0, tomamos | = l-y'lpz —€. ,1\,-"!;;3 + g[, assim
xEI=p’-e<x*<p’+e
Se p <0, tomamos | = ]—\\;'.jr_}ﬁ +s.—~\;’lpf — ¢ [, assim
xEI=p*-e<x*<p’+e

Logo, f (x) = x* é continua em todo p real. (Interprete graficamente.) ®

EXEMPLO 8. f(x) = {]2 o = }

é continua em p = 1? Justifique.
Solucgdo

Intuitivamente, vemos que f ndao é continua em p = 1, pois o grafico apresenta
“salto” neste ponto. Para provar que f ndo é continua em p = 1, precisamos achar um e
> () para o qual ndo exista § > 0 que torne verdadeira a afirmacao

“VX€Dp1-8<x<1+6=f(1)-e<fx)<f(1)+¢€".
Comof(x)=1parax<1ef(1) =2, tomando-se € = ]

>0,

(ou 0 < €< 1), para todo §

3 |
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1-6<x<1=fx)=1

Y

- 1
BOPEG i o oo
f{11'=I2——| +—
f(ll—;__|_|_|__

= |

Il

1 1 -

f 1 1+5 X

|

e 1 ndo estd entre f(l) — %ef{]) -+ % Logo, ndo existe § > 0 que torna

verdadeira a afirmacao

“Vx € Dp | —S{x-fil+3:>f1.’]“}—%{f(x){f(1)+ %

Portanto, a funcao dada ndo é continua em p = 1. Observe que f é continua em todo
p#zl. =

O proximo exemplo destaca uma propriedade importante (conservagdo do sinal)
das fungées continuas. Tal propriedade conta-nos que se f for continua em p e f (p) # 0,
entdo existird um § > 0 tal que f (x) conservard o sinal de f (p) parap—§<x<p + 6, x
€ Dy.

_ A=
X

feontinuaempefip) =0, feontinuaempef(p) <0,
existe 8 = 0 tal que existe § > 0 tal que
pdsxsptE=fixl=0 p—6<x<p+8=fx<0

EXEMPLO 9. Seja f continua em p e f (p) > 0. Prove que existe § > 0 tal que, Vx €
D
f

p—-6<x<p+dé6=f(x)>0.
Solucgdo

Como, por hipotese, f é continua em p, dado € > 0, existird § > 0 tal que Vx € D,
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Como para todo € > 0 existe § > 0 tal que D ocorre, tomando-se, em particular, € =

Ppb<x=<ptd=fipi-—e<fZI<fp te

f (p) (por hipétese f (p) > 0), existira um § > 0 tal que, Vx € Dj,

p=6<x<p+é6=f(P)-fP)<fX)<fP)+f(p)

e, portanto,

De modo analogo, prova-se que se f for continua em p e f (p) < 0, entao (neste caso

p—-6<x<p+d8=f(x)>0.

basta tomar € = —f (p)) existira 6 > 0 tal que

Exercicios 3.2

1.

p—-6<x<p+d=f(x)<0. =

Prove, pela defini¢cdo, que a funcao dada é continua no ponto dado.
a)f(x)=4x-3emp=2

b)f(x)=x+1emp=2

c)f(x)=-3xemp=1

d)f(x)=x’emp =2

e) f(x)=x*emp=-1

) fx)=~Jx emp=4

g)fx)=x emp=0

h) f(x)= {x em p=1

l .
Prove que f(x)= — é continua em todo p # 0.

X
Seja n > 0 um natural. Prove que f (x) = x" é continua.
Prove que f(x) = %y € continua.

: 2x sex =], . o
flxy=y o - ¢continuaem 1? Justifique.

Dé exemplo de uma funcdo definida em R e que seja continua em todos os

pontos, exceto em —1, 0, 1.

Dé exemplo de uma funcdo definida em R e que seja continua em todos os

pontos exceto nos inteiros.

1 sexe0
-1 sexe@

Seja f dada por fi(x) = {

real.
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9. Determine o conjunto dos pontos em que a fungdo dada é continua.
a) fix) = [xJem que [xI= mix {n € £ | n = x} (Fungdo maior inteiro.)

b) f(x) = x — [x]

: X
ﬂﬂn={;iilgg
x2—1 sex €@
d) fxy=1 *
e {—,1.'24‘] se x € Q

10. Dé exemplo de uma funcdo definida em R e que seja continua apenas em —1,
0,1.

11. Determine L para que a funcao dada seja continua no ponto dado. Justifique.

f,rz —4 _
% se x 2
a)f(x)=4 x-2 emp =2
L se x =2
[ 1'.2 e
b) f(x) = ¥ e emp =0
L sex =10

12. Dé o valor (caso exista) que a funcao dada deveria ter no ponto dado para ser
continua neste ponto. Justifique.

a) g(x)=- em p =2
x—2
.o
b) f(x)=- emp =0
X
| x|
c) f(x)=— emp=0
X
2 -9 23
se x 3
d) f(x)=9 x-3 emp =73
4 ge x =3
[x sex=<1
e)gx)=41 sex>1 emp=1
L X
H =222 emp=2

X —

13. Sabe-se que f é continua em 2 e que f (2) = 8. Mostre que existe § > 0 tal que
para todo x € Dy

2-6<x<2+6=f(x)>7.
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14. Sabe-se que f é continua em 1 e que f (1) = 2. Prove que existe r > 0 tal que

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

25

para todo x € Dy
l—r<x<14+r=

Seja f uma funcdo definida em R e suponha que existe M > 0 tal que | f (X) — f
(p) | =M | x — p | para todo x. Prove que f é continua em p.

Suponha que | f(x) — f (1) | < (x — 1)* para todo x. Prove que f é continua em
1.

Suponha que | f (x) | > x* para todo x. Prove que f é continua em 0.

x sexe,

Prove que a funcao A ¢é continua em 0.
q cao f(x) {—,r se x € 0

Sejam f e g definidas em R e suponha que existe M > 0 tal que | f (x) — f (p) |
<M | g (x) — g(p) | para todo x. Prove que se g for continua em p, entdo f
também sera continua em p.

Suponha f definida e continua em R e que f (x) = 0 para todo x racional. Prove
que f (x) = 0 para todo x real.

Sejam f e g continuas em R e tais que f (x) = g (x) para todo x racional. Prove
que f (x) = g (x) para todo x real.

Suponha que f e g sdo continuas em R e que exista a > 0, a # 1, tal que para
todo r racional, f(r) =a" e g (r) = d'. Prove que f (x) = g (x) em R.

Seja f(x)=x+ l Prove
x
) ) ¥ -I LY .
ayl fix) = filyl= | 1 —|——| lx —1lparax=0

Bylfix) —f(1)I=3lx—1lpara x = %

c) fé continuaemp =1

. Seja f (x) = x> + x. Prove que

a)|fxX)-f(2)|<20|x—-2|para0<x<3
b) f é continua em 2

L .
" Prove que f(x) = x +—- € continua em 1.

2 oy
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26. prove que f(x)=x+ L é continua em todo p > 0.
e

27. Sejam f (x) =x>e p # 0.

a) Verifique que | x> - p®|<7p*|x—p|para|x|<2|p|
b) Conclua de (a) que f é continua em p

3.3. DEFINICAO DE LIMITE

Sejam f uma funcdo e p um ponto do dominio de f ou extremidade de um dos
intervalos que compdem o dominio de f (veja o final da Secdo 3.1). Consideremos as
situacoes a seguir:

fp)
L+ e

L—¢

e

=y

i

d)

X f

Na situacdo (a), f ndo esta definida em p, mas existe L que satisfaz a propriedade:

para todo € > 0 dado, existe 6 = 0 tal que, para todo x & Df.

p—o86<x<p+dx#Fp=L—-e<f(x)<L+e

Na situacdo (b), f esta definida em p, mas ndo é continua em p, entretanto existe L
satisfazendo (D; observe que neste caso a restri¢do x # p é essencial. Na situacdo (c), f
é continua em p, assim L = f (p) satisfaz (. Finalmente, na situacdo (d), ndo existe L
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satisfazendo @ em p.
A propriedade D é equivalente a

para todo € > 0 dado, existe 6 > 0 tal que, para todo x € Dj,

0<|x-p|<6=|f()-L|<e

Observeque 0 <|x—p|<8dep-6<x<p+68,x#Zp.

Vamos provar a seguir que existe no maximo um numero L satisfazendo a
propriedade acima. De fato, suponhamos que L, e L, satisfacam, em p, a propriedade
acima; entdo, para todo € > 0 dado, existem §, > 0 e §, > 0 tais que

O<[x-p|<é=|f(x)-Li[<e

O<|x-p|<&=|fX)-L|<€
tomando-se 6 = min {6, 6,}
0<|x-p|<6=|f(X)-L|<ee|f(x)-L|<e

Das hipoteses sobre p e sobre o dominio de f, segue que existe x, € D; com 0 < | x,
- p | < 6; temos:

|Ly =Ly | =|Ly = f(x0) + f(xo) =Ly | <[ Ly = f(X0) | +]f(Xp) = Ly |.

Assim, para todo € > 0,

Logo, L, = L,.
De acordo com a definicdo que daremos a seguir, o tinico nimero L (caso exista)
satisfazendo D é o limite de f (x), para x tendendo a p : I_IE]P f(x)= L.

Definicdo. Sejam f uma fungdo e p um ponto do dominio de f ou extremidade de
um dos intervalos que compoem o dominio de f. Dizemos que f tem limite L, em p,
se, para todo € > 0 dado, existir um 6 > 0 tal que, para todo x € Dy,

O<|x-p|<é=|fx)-L|<e
lim f(x).

Tal nimero L, que quando existe € tnico, sera indicado por e

Assim
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7 e>0,36>0 tal que, para todo x € Dy

lim f(,ﬂ=L1:r{
O0<lx—pl<é=If(x)—Ll<e

X—=p

e e
X X
lim  flx)=L lim fi(x)=L(L# f(p)
xX—=p X—=p
; I
) ) TS ,
I
Fipyp——— :
I
fixy |- i
|
- = -
- 2 1 p +*
i el= Fin) fndo tem limite
x 1_11)1 p S\ PP, em p
Observacoes.

1. Suponhamos f definida em p. Comparando as definicoes de limite e continuidade,
resulta

fcontinuaemp < lim f(x)= f(p).
X—p

2. O limite de f em p ndao depende do valor (caso f esteja definida em p) que f assume
em p, mas sim dos valores que f assume nos pontos proximos de p. Quando estivermos
interessados no limite de f em p, basta olharmos para os valores que f assume num
“pequeno” intervalo aberto contendo p; o conceito de limite é um conceito local.

3. Sejam f e g duas fungdes. Se existirr > 0 tal que f (x) =g (x) parap —r<x<p +r,x

#p, e se _hm g(x) existir, entdao _“m f(x) também existira e
xX—p XxX—=p

lim f(x)= lim g(x). (Por qué?)

X—=p X—=p
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EXEMPLO 1. Calcule 1'“—]>“pk (k constante).

Solugdo

lim. FEXT;

P no qual f é a funcao constante f (x) = k. Como f

O que queremos aqui €

€ continua em todo p real

lim k= lim f(x)= f(p)=k

x—=p x—=p

isto é,

lim k=k

X—p

(O limite de uma constante é a propria constante.) ®

EXEMPLO 2. Calcule 1_“_"}“,, (3x —2).

Solugdo

f (x) = 3x — 2 é uma fungdo afim, logo, continua em todo p real, em particular em p
= 2; assim

lim (3x—2)= f(2)= 4.

x—2 -
2 —1
EXEMPLO 3. Calcule |im -
xr—=1 xX—
Solucgdo
XL_1=X+1 para x # 1; g (x) = x + 1 é continua em 1, logo
=]
lim (x+1)=g()=2.
xr—1
Como
x? =1
| = g(x) parax # 1
x—

segue da observacao 3, que

X2 =]

lim = lim (x+1)= 2.

x—=1 x—1 xr—=1
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x2 -1

(2 e o valor que f(x) = deveria ter em 1 para ser continua neste ponto.) ®

%=
¢
-1 sex # 1
EXEMPLO 4. Calcule lim f(x)em que f(x)=4 , _
x—1
-3 sex=1.
Solugdo
7 o,
Parax# 1; f(x)= 2 = x + ]: assim
x—1
¥2 =1

lim f(x)= lim = lim (x + )= 2+ f(l)
v — 1 r—=1 X — x—1

(Observe que f (1) = 3.) Pelo fato de JT}I]‘}C(X} # f(1) segue que f ndo é continua em

1. =

EXEMPLO 5. As fungdes dadas por f (x) = x" e g(x)="x (n > 1 natural) sdo
continuas. (Verifique.) Assim

lim x" = p", para todo p real,
xX—p

I i[n 'r.'r,'_x' — ”:. p s . |
v i I+ para todo p no dominio de — m
T p p p g(x)=3x

Provaremos, na Secdo 3.6, que se lim f(x)=Lie lim g(x)= L2, onezo
x> p xX=p

a) lim [f(x)+g(x)]=L+L,= lim f(x)+ lim g(x).

xX—=p X—=p x—=p
(O limite de uma soma é€ igual a soma dos limites das parcelas.)

by lim k f(x)=kL; =k lim f (x)(k constante).

X—p Xr—=p

c) lim fix)g(x)=L-Lp= lim f(x) lim g(x).

X —=p X—=p X—=p

(O limite de um produto é igual ao produto dos limites dos fatores.)

i i L=

, desde que L, # 0.
x—pglx) Lp
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Por enquanto, vamos admitir tais propriedades e usa-las.

EXEMPLO 6. Calcule lim (5x3 —8)

X — &
Solugdo
lim (5x° —8)= lim 5x° + lim (—8)
x—2 x—2 x—2
=5 lim x>+ lim — 8
x—2 x—2
=5.22-8=12
Assim,

lim (5x° — 8)=32.

x— 2
. '~.;'.I = '\E

EXEMPLO 7. Calcule |im

x—=3 x—3
Solugdo

Como 1_“_'?,% (x—=3)=0,, propriedade (d) nao se aplica.
\-".I = '\;;3 \-':X — 3
=__ : = — parax # 3
x—3  (JX-B)Nx+B) Vit 37t

e

. 1 1
lim — — = —
r—3 X + A 3 2 -\.‘I 3

segue-se que

. '\";X - ‘\.3 . | |
lim —— = lim — — = —
x—3 x—3 x—=34Jx +43 2+/3
Deixamos a seu cargo verificar, por inducdo finita, que se I_H_TPf]{X )= L,
lim fop(x)= Lp,..., im f(x)= Ly, . 50
X—=p X—=p
lim [ +HE@QF .. FHLEEN=L+ L+ ...+ L,
xX—p
e

im [ (X)) ] = Lily.. L,

X—=p

para todo natural n > 2.
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4_
EXEMPLO 8. Calcule [im —- 2+ "1
x—l ¥+ 3x2 41

Solugdo
: 4. _ : 3 2 -
Como lim [x" —2x+1]=0e lim [x +3x"+ 1] =5+#0, pela
rT—=p x—1
propriedade (d),

Cooxt=2x+1 0
lim — = =—=1(. &
=1 Xx? +3x<+1 5

3 + 1
EXEMPLO 9. Calcule lim —— :
x=—1 x*“+4x+3

Solugdo

- 2 . ~ . Lo
lim l (x® 4+ 4x + 3) = 0.]ogo a propriedade (d) ndo se aplica. Como —1 é raiz de
X ——
x>+ 1 e de x> + 4x + 3, estes polindmios sdo divisiveis por x + 1:

XC+1l=x+1)E-x+Dex’+4x+3=(x+1)(x+3).

Assim
¥ +1 ) ¥2—x+1 3
lim = lim = —
x=—1 x*+4x+3 x-1 x+3 2
; 2 3 o)
- : L=x+1 3 x o] i e |
|Obser1-'£: i S e Jr=1tal que—; 2 =1 3 para
xr>-1 x+3 P g x+3
3 2
3+ 2—x+1_13
—2 <x<<0,x+# —1;pelaobservacao 3, lim jx—l= lim x—“=—. B
x=a-1x+4dx+3 -1 x+:3 2
Ve -2
EXEMPLO 10. Calcule |jjp — =,
x—=2 x-
Solucgdo

x—2=@RxP -32 =&x -¥2) Ax? + Y2x + V).
Assim

3y — Y
o Ji T ] para x # 2.

x—2 Ax2 +Y2x + 34

Segue
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lim —— < = lim 7 : T B
x>2 x-2  x2Yx2 +Y2x+3a 334

O proximo exemplo mostra-nos que soma, produto e quociente de fungdes
continuas sao continuas.

EXEMPLO 11. Sejam f, g continuas em p e k uma constante. Entdo f + g, kfef- g

sdo continuas em p; E também sera continua em p, desde que g (p) # 0.
Solugdo

lim g(x)= g(p).

Xr—=p

Como f e g sdo continuas em p, _1_“_':1!1 f(x)= f(p)e Segue

das propriedades (a), (b) e (c) dos limites que
lim [f(x)+g(x)]= lim f(x)+ lim g(x)=f(p)+ g(p).

xX—p X—=p xX—p
lim kf(x)=Fk lim f(x)=kf(p)
xX—p xX—p

lim f(x)g(x)= lim f(x) lim g(x)=Ff(p)g(p:

r—=p xX—=p X—=p

logo, f+ g, kfef-gsao continuas em p.
Sendo g (p) # 0

lim S _ f(p)
x—p gx) gp)

f

logo ; é também continuaemp. =

Deixamos a seu cargo verificar que se fi, f, ..., f, (n = 2 natural) forem continuas
emp,entdaof; +f,+...+f,efi-fo-f5 ..., f, também o serdo.

EXEMPLO 12. Toda funcao polinomial é continua.
Solucgdo
Sendo fuma funcdo polinomial, existem n € N e numeros reais a,, a,,...,a, tais que
f)=ax"+ax" '+..+a,_x+a,;
assim f é soma de fun¢Oes continuas, logo f é continua. ™

EXEMPLO 13. f dada por f(x)= 3x6 — % x7 ++/2x+ /3 é continua, pois se
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trata de uma funcdo polinomial. (Lembre-se: dizer que f é uma funcdo continua
equivale a dizer que f é continua em todos os pontos de seu dominio.) ™

EXEMPLO 14. Toda fungdo racional é continua.

Solugdo

8

h
f é continua em todo p que ndo anula o denominador, isto é, f é continua. =

Sendo f uma fungdo racional, f ==, em que g e h sdo fung¢des polinomiais. Assim,

3x+6x+1,

2
X= —

EXEMPLO 15. f(x) = é continua em todo p # *+/3.

Solugdo

f € uma funcdo racional, assim f é continua em todo p de seu dominio, isto é, f é
continuaemtodo p # */3. =

EXEMPLO 16. Prove que
lim f(x)=0< lim If(x)I=0

X—=p X—=p
Solugdo

. BE G J‘?’f?}ﬂ,ﬂa}ﬂtalque‘ﬁxEDf
Jm J=0 S 0<ix—pl<s=If(x)—Ol<e

{ Ve>0,38>0 tal que Vx € Dy
O{Ir—pliﬁﬁllf{x‘jl—ﬂlfif

< lim |f(x)l=
X—p ]

EXEMPLO 17. Prove que
lim. f{x)=L & Ilm j{p +h)= L.

x—>p h—(
Solucgdo
Suponhamos _l_“_lzlp J(X) = L 355im dado € > 0 existe § > 0 tal que
O<|x-p|<é=|f(x)-L|<e
dai
O0<[h|<6=0<[(p+h)-p[<é=|f(p+h)-L|<e
ou seja,
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0<|h|[<é=|f(p+h)-L|[<e
Assim

lim f(p + h)= L.

h— 0

Verifique vocé a reciproca. ®

EXEMPLO 18. (Conservagdo do sinal.) Suponha que lim f(x) = L, pygye que

X—=p

existe § > 0 tal que, V x € Dy,
p-6<x<p+6x#p=f(x)>0.
Solugdo

lim f(x)=L

X—=p

Sendo * para todo € > 0 dado existe § > 0 tal que, V x € D,

p—-6<x<p+8x#zZp=L-e<f(x)<L+e
Para € = L, existe § > 0 tal que, V x € Dy
p-6<x<p+6xzZp=L-L<f(x)<L+L,
ou seja,

p-6<x<p+6x#p=f(x)>0.

Exercicios 3.3

1. Calcule e justifique.
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a) lim x2 by lim (3x + 1)

xr—3 x—1
c) Im (dx+1) d) lim 5
x—=—2 x— 10
e) lim 50 f) lim (—x2 —2x+3)
X — _q X — —J
g) lim A x i) lim -'i-"x
x—=4 x——3
.- L. X2—9
i) Iim +/3 J) lim
xr——8 x—31 x—3
x2 -9 x2 -9
[} lim m) lim
x—3 x+3 x—=—1 x—3
4x2 —1 [x —1
n lim —— o) lim b
E G ;s R S|
X — 5
9x2 —1 Jx =43
p) lim —— q) lim e ki
I—>—i 3Y+I xr—3 .-1|._-3
3
3f 3/ 4 _ 4f
X RS fap Al 2
r) lim . i, ¥ 5) lim u
x—3 x—3 x—2 x — 2
x2 +3x—1 Ix —1
) im —— i) lim h ;
x—0 x°“42 x> 1R 2% Jo=nf

Determine L para que a funcao dada seja continua no ponto dado. Justifique.

x3 -8
b N
a8) fix)=49 x—2 TS emp=2
L se x =2
f *\.':.‘{' — -\,-'I_Jﬂ _
By fix)=4%" s_3 RS p=73
L se x=3
A
; ! - se X ¥ 35
gy Flx) = Jr+5 =410 em p =3
L g8 X =23
2+ x ! r o
Fx)=4 594 o é continua em —1? E em 0? Por qué?
2 se x=—1

Calcule [im Flx ) — f @)
h—=0 h

sendo f dada por
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a) f(x) =x°
b) f(x) =2x* + x

o) f(x)=5
d) f(x) =—x>+2x
1
e) flx)=—
X
N f)=3x+1
Calcule.
; x4 1 . x4 x?
a) lim - b) lim A
=1 x° —1 =0 3x "+ x7 +x
. 4 3 _ f._j-
c) Im (x= + 30 d) lim {t?;
h—0 h=0 h
2 -1
e) lim — ) lim —— (p#0)
r—=3x"+9 x—=p X—p
. 't\ == 4\.':,!? . x' —5x +8x—4
g) lim (p#0) h) lim 5
x—=p X—Pp x—=2 p R &
. ,. /
xi=1 vax =T
i) lim ———— N e A
=1 x° +3x—4 37 4fx +T — 414
3 _ 3 4 4
[y lim i i m) lim : £
x—=p X—P xop XTPp
no_ .H . _nl
n) lim o P (n = 0 natural) o) lim u
X—=p x=p X—=p xX—p
1 1
‘S ooy x)— f(1 1
p) lim L 2 g) lim M onde f(x)=—
x—2 x—2 X—=p X—p X
x)— gy 1 x+h— flx
r) lim 8x) —2(p) onde g(x) =— ) lim flx+h) — f(x) onde f(x)= x—3x
x—=p X—P x= h—0 h

Prove que existe ¢ > 0 tal que
l—8<x<1+8=2-2 <P2+x< 2+%.
i )

Prove que existe ¢ > 0 tal que

1 x+3 1
1-6<x<1+822-—< T <2+
2 > A S 2
Sejam f e g definidas em R com g (x) # O para todo x. Suponha que
: (x
lim A 0. Prove que existe § > 0 tal que
x—=p g(x)
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O<[x-pl[<é=|f)[<[g()|

9. Suponha que rli—TP f(X) =L prove que existem r > 0, a e 8 tais que, para
todo x € Dy,

O<[x-pl[<r=a<f(x)<p.
Interprete graficamente.

10. Suponha que r“_':lp S =L prove que existem r > 0 e M > 0 tais que, para
todo x € Dy,

O<[x-pl<r=[f()|<M.

L1. Prove: T“_]PP f=L & rITF [f(x)— L]1=0.

X—=p
13. : f(x) . fix)
Prove: lim =0 = lim —=10.
x=3p X —Pp x—=p |.‘{'—IJ'J|

14. Suponha que existe r > 0 tal que f (x) > 0 para 0 < | x - p | <r e que
lim f(x) =L proye que L > 0.

X—=p

(Sugestdo: Suponha L < 0 e use a conservacao do sinal.)

15. Suponha f continua em R e f(x) > 0 para todo x racional. Prove que f (x) > 0
para todo x.

3.4. LIMITES LATERAIS

Sejam f uma fun¢do, p um nimero real e suponhamos que existe b tal que ]p, b[ C
Dy. Definimos:

lim fix)=L <

x—pt

vV e>0,48 > 0tal que
pEx=p+id=I|f(x)— Ll <ke

O namero L, quando existe, denomina-se limite lateral a direita de f, em p.
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T

|
|
i
L~ r X

Quando x tende a p, pela direita, f (x) tende a L: 3 1";1 S =L

Suponhamos, agora, que exista um real a tal que Ja, p[ C Dy Definimos

{‘?’f}ﬂ,ﬂa}ﬂtalque

lim f(x)=L < p-8<x<p= If(x)- LI<e

X—=p

O numero L, quando existe, denomina-se limite lateral a esquerda de f, em p.

-
X

lim f(x)=1L

Quando x tende a p, pela esquerda, f (x) tende a L: el

E uma consequéncia imediata das definicoes de limite e de limites laterais que se

_1_“_'}“;} g(x) =L, se, para algum r > 0, f (x) = g (x) em ]p, p + r[, entdo
lim f(x)= lim g(x)=L. - _ x
52 p* f e 5y 8 Se ocorrer f (x) = g (x) em ]p — r, p[, entdo
lim f(x)= lim g(x)=L.
X—=p x—=p

EXEMPLO L Calcule lim f(x)e lim f(x), sendo f(x)= { x? se x <1

xr=1t T =] 2x sex>=L
Solucgdo
lim f(x)= lim 2x =2e lim f(x)= lim x> =1.
r—=1r x—1 x=a1- x—1 i
: Ix| . | x|
EXEMPLO 2. Calcule lim —e lim —.
x=0T X r—=0 X
Solucgdo
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| x| {] se x>0

X 1 sex<O.
. | x . ) | x| :
lim —=1lim l=1e lim —= lim —1=-—1. ]
r—=0 X r—0 r—=0 X x—=0

Teorema. Sejam f uma fungao, p um nimero real e suponhamos que existam a
e b tais que ]a, p[ e ]p, bl estejam contidos em D;. Entdo,

_ f admite limites laterais a direita e 4 esquerda em p
lim f(x)=L & 1e lim f(x)= lim f(x)=L

X—=p x—pt x—=p

Demonstragdo. Deixamos para o leitor. =
Observacoes

L. Se _hm+ f(x)e _hm_ f(x) existirem e forem diferentes, entao _hm J(x) nao
£=p X—=p r—=p

existira.

I

Se existirem a e b tais que ]a, p[ e ]p, b[ estejam contidos em Dye se, em p, um dos

limites laterais ndo existir, entao l_l f‘p f(x) nao existira.

3. Se existirem reais r > 0 e b tais que ]p, b[ C Dy e Ip—r,pln D; = ¢, entdo

l_l i_r}np J(x) = . Ii:]}r J(x), desde que o limite lateral a direita exista. Se ocorrer ]b,
pl C Dse lp, p + r[ n Dy = ¢, entdo 1_“_':“!1 flx) = l_l_i}";_ J(X), desde que o limite
lateral a esquerda exista.
: [ x| .
EXEMPLO 3. lim —— existe? Por qué?
r—=0 X
Solucgdo
2 | x| ! . | x| .
lm —=1IlimlI=1¢e lim —= lim —1=-—1.
x—=00 X x—=0 =00 X x—=0

; | x| : 2
Como lim ——# lim ,segue que lim —— ndo existe. |
x =00 X x =0 x—=0 X

Exercicios 3.4

1. Calcule, caso exista. Se ndo existir, justifique.
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L =1l lx —11
a) lim ' b) lim :
=1t x—1 x> X1
L fixy— f(l} x4+ 1se x=1
i }_rlli“l* ‘f emque f(x)= I iy
- L= =TI
d) lim +x e) lim v
x—=0 x—=1 x—1
. fx)— f) _[x+1se x=1
f}x]ﬂll ‘f emque fx)= 2 © 1<
. x2 —2x 41 . lx — 11
g) lim ——— h) lim
x—32 K] x—3 x—1
W 10 [x2 se x<1
| e - f(x)=
”.r ﬂlj - emque f(x) {.2“_ e S
, X BeX.=2
‘“rlii“w_— %i{h} emque g(x) = 1; "
-y — )
[) lim 8x)~8(%) sendo g a funcido do item (j)
x—2t x—12
2 o (x) — g(2 . ~ . :
m) lim 1okt (O} em que g é a funcdo do item (j)
x=2 Xr=2
2. A afirmacao
i A f(x)=lim A I =1 coninua em p” é falsa ou verdadeira?
X—=p x—=p
Justifique.
3. Dadaa funcéo X = verifique que 1'm_Jf(x)= lm
flx) = - B S

0= ]
Pergunta-se: f é continua em 1? Por qué?

Dé exemplo de uma fungdo definida em R, que nao seja continua em 2, mas
que rE:“‘* flx)= lim f(x).

2 Xx—2

Suponha que exista r > 0 tal que f (x) > 0 para p <x < p + r. Prove que
. I_':‘jpff (=0 gesde que o limite exista.

Sejam f uma funcdo definida num intervalo aberto I e p € I. Suponha que f (x)

. f(x)— f(p)
< f (p) para todo x € I. Prove que lim il 0 . 0 desde que o limite
x—=p X—p
exista.
; (x) — f(p) ; flx)— f(p)
(Sugestdo: estude os sinais de lim &) — 1(p) ede lim 1= = flp)
x—=p" xX—p x—=p xX—p
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3.5. LIMITE DE FUNCAO COMPOSTA

Sejam f e g duas fungdes tais que Imf C D,, em que Imf é a imagem de f, ou seja,
Imf={ f(x) | x € D;}. Nosso objetivo € estudar o limite

lim g(f(x))

X—=p
lim f(x)=ag .
Supondo que "7/ = € razoavel esperar que
u
Q) lim g (f(x))= lim g(u)

X—=p H—d

desde que ““ma 8(4) exista (observe: u = f (x); u ~ a para x = p). Veremos que D se
—
verifica se g for continua em a ou se g nao estiver definida em a. Veremos, ainda, que

se g estiver definida em a, mas ndo for continua em a '[Hlfla g(u) #g (@) @ ge

verificard desde que ocorra f (x) # a para x proximo de p. Os casos que interessarao ao
curso sdo aqueles em que g ou é continua em a ou nao esta definida em a. O quadro
que apresentamos a seguir mostra como iremos trabalhar com o limite de funcgao
composta no calculo de limites.

lim Fix)="?

X—=p

Suponhamos que existam func¢oes g (u) e u = f (x), no qual g ou é continua em a
ou nao estad definida em a, tais que

F(x)=g@emqueu=f(x),x € Dy, lim f(x)=a («— aparax—p)

xX—=p
e que M &(#) exista. Entdo

H—a

lim F(x)= lim g(u)

X—=p H—da

Vamos antecipar alguns exemplos e deixar para o final da secdo a demonstragao da
validade de .

EXEMPLO 1. Calcule lim |~ !

x =1 I'lli X — ] .

Solucgdo
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q i)

x2 =1 — X ==l
N = /i em que u = i X 2 L]
'I,: s | x—1
2
lim =2 e g(u)=+/u € continua em 2.
r—=1 X —
Assim,
v2 —1
lim |- = lim +u = +2.
x—=1 | x—1 u—2
B-x3)*-16

EXEMPLO 2. Calcule |im ;
x—=1 X- — ]

Solugdo
Fagamos u = 3 — x%; assim

3—x3)¥%-16 ut-16
( Z) =z ccomu=3—x3, x#1,
] 2—u

Parax+~ 1, u ~ 2. Entao:

o B=xHr—-16 . ut-16
lim = = lim —
x—1 = u—2 2—u
. (=2 (u+2)u + 4
= lim
u—s2 2—u
=— lim (u+ 2)(u? + 4)=-32.
H—=2
x4 —1

EXEMPLO 3. Calcule |jm
xr—=—1 6

Solucgdo

Fagamos y = 3/x + 2 assim x = u° - 2.

118



y
Hx+2 —1 -1 f
L = u=3¥x+2, xE-1L

x+1 u — 1
3 =
: Hx+2 —1 ) -1
im Y27 7" — jim
x——1 x+1 e R |
E u-—1
= lim -
u— 1 (H_ 1\}(!'.4"‘ + i+ 1}
el
3
Assim,
_ Ix+2 -1 1
lim — = — m
x—=—1 x +1 3
EXEMPLO 4. Se 1im f(x)=L o0 lim [f(x)]* = [7.
xX—=p X p
Solugdo
Como h (u) = u? é continua (veja Exemplo 7-3.2)
]

lim [f(x)]? = lim u?=I2
x—=p u— L

im g(x)= L p.yve
rT—

EXEMPLO 5. Suponha g (x) # 0, para todo x € D, L # 0 e _l
1 1

que lim

x—=p g(x) i
Solugdo
1 1 =
=—emqueu=g(x)xeD,
g(x) u :
Como h(u) = l é continua em todo u # 0 (veja Exercicio 2-3.2), segue-se que
u
: : 1 1
lim = lim —=—.
x=»p B(X) u->L U L

lim g(x)=Lp. 0, pela conservacao do sinal, existe r > 0 tal que

Observacao. Se _
X—p

g(x)#0para0<|x-p|<r,x €D,

Como o conceito de limite é um conceito local, segue-se que a hipotese g (x) # 0

que aparece no Exemplo 5 é dispensavel. Assim,
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: . 1
lim g(x)=LL#0 = lim —.
X=p x—=p g(x) L

Vamos, agora, demonstrar (D no caso em que g é continua em a.

lim f(x)=a

Teorema 1. Sejam f e g duas fungdes tais que Imf C D,. Se e

continua em a, entao,

lim g(f(x))= lim g(u).

X—=p H—d

Demonstragdo

Sendo g continua em a, “I i“ﬂ g (u) = g (a). precisamos provar que, para todo € >
0 dado, existe § > 0 tal que

O0<[x-p|<é=g(a-e<g(f))<g(a)+e

Como g é continua em a, dado € > 0, existe §, > 0 tal que

@ a—8 <u<a+d = gla) —e<glu)<gla) +e
Como _l_n_inp f()=a, para o §; > 0 acima existe ¢ > 0 tal que
©) B lx—pl 8= a—0= flal <.a-58;

De @ e ® segue-se que
O<|x-pl<éd=g(@-e<g(f(¥)<g(a+e =

Observacdo. O teorema acima conta-nos que, se g for continua em a e

lim f(x)=a, .yi50 I_Ii_l;ﬂp () =gla)=g( lim f(X). 5 que nos mostra

xX—=p ) xX—=p
que os simbolos _“m © & podem ser permutados em _l'm 8 (f(x):
L =3P X—=p

lim g(f(x)) = g( lim f(x)).

X—=p X—=p
O préximo exemplo nos diz que composta de funcdes continuas é continua.

EXEMPLO 6. Sejam f e g tais que Imf C D,. Se f for continua em p e g continua em f
(p), entdo a composta h (x) = g (f (x)) sera continua em p.

Solucgdo
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lim g (f(x)=g( lim f(x))=g({(p)):

xX—p xX-p

logo, h (x) =g (f (x)) é continuaem p. ™

Teorema 2. Sejam f e g duas fungGes tais que Imf C Dy, ,_, ,

H—da . 3
lim g (f(x)) existira e
—=p

—p | <r, entdo h

lim g (f(x))= lim g (u).

X—=p H—da

lim f(x) =a .

lim g (#) = L. Nestas condicBes, se existir um r > 0 tal que f(x) #apara0<|x

Demonstragdo

Como Hm g (#) = L.qado € > 0, existe &, > 0 tal que

X—a
@ O0<lu—al<é=lgu—-Li<e
Como 1_1111;} fx) = @ para 0 6, > 0 acima existe §, > 0 tal que
@ 0<lx—=pl< 8= 1f(x)—al< b

Tomando-se 6 = min {§,, r}, segue de @ e da hipétese
@ Gz —pl<d =0<1f{x) —al<.8
De @ e @ resulta
O0<|x-p|<é=|g(f()-L|<e
Assim,

lim g(f(x)) =L = lim g (u).

X—=p H—da

Observagao. Se g ndo estiver definida em a, segue-se da hipotese Imf C Dy, que f (x)
# a para todo x € D;. Assim, neste caso, a condi¢do “existe r > 0 tal que f(x) # a para

0 <|x - p| <r”édispensavel. Entretanto, se g estiver definida em a, mas nao for
continua em a, tal condicdo € indispensavel como mostra o proximo exemplo.

EXEMPLO 7. Sejam f e g definidas em R e dadas por f (x) = 1 e

_Ju+1seu#l
8(M)=13  seu=1

Temos
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lim f(x)=1e lim g(u) = 2.

Xx—=p H—1

Como g (f (x)) = 3 para todo x, segue que
lim g (f(x)) # lim] g (u).
H—

X—=p

Este fato ocorre em virtude de ndo estar satisfeita a condicdo “existe r > 0 tal que f
Z(Xx)lparaO<|x—p|<r’. =

Exercicios 3.5

1. Calcule
. It o o b2
a) him 3 5 lim — -
xr——1 I'.I: X+ ] xr—=1 P el ]
 3x4+7-2  33x+5-2
¢) lim ———— d) lim =
xr—=1 x—1 xr—=1 x- —1
2. . .. . fix)
Seja f definida R. Suponha que lim = 1. Calcule
x—=0 X
(3x) 2
a) lim f By lim )
xr—= 0 X xr—=0 X
x2 —1 7.
¢) lm L d) lim 1(x)
xr—=1 .‘{'_] x—=0 3.‘{'

3. Seja f definida em R e seja p um real dado. Suponha que

: xX)—
]"-" u — LCalcule
x—=p xX—p
» + h) — +3h) —

a) lim flp+h— fp) b) lim fip +3h)— f(p)

h—0 h h—=0 h

. flp+h—fip—h) . flip—h)— f(p)

¢) lim d) lim

h—0 i h—0 i

3.6. TEOREMA DO CONFRONTO

Teorema (do confronto). Sejam f, g, h trés funcdes e suponhamos que exista r
> 0 tal que

f)<g()<h(x)
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para 0 <|x — p| <r. Nestas condicoes, se

lim f(x)=L= lim hix)

xX—=p X—=p
entao

lim g (x)=L.

xX—=p

Demonstragdo. (Veja Secdo 3.9.)

EXEMPLO 1. Seja f uma fungao e suponha que para todo x

()X
1) Calcule, caso exista, 1M f(x).
x—0
)) fé continua em 0? Por qué?
Solugdo
D [fx)|<x*e-x<f(x)<x2

. 2 . 2
Como lim —x™ = 0= lim x"segue do teorema do confronto que
xr—=0 x—=0

lim f(x)=0.

=0

b) Segue de (a) que f sera continua em 0 se f (0) = 0. Pela hipétese, | f (x) | < x°
para todo x, logo, | f (0) | < 0 e, portanto, f (0) = 0. Assim,

lim f(x) =0 = f(0),

x—=0
ou seja, fé continuaem 0. =

O préximo exemplo nos diz que se f tiver limite 0 em p e se g for limitada, entdo o
produto f - g terd limite 0 em p.

EXEMPLO 2. Sejam f e g duas fungbes com mesmo dominio A tais que

1_“_';“!1 Fx) =0, | g (x) | < M para todo x em A, em que M > 0 é um numero real fixo.
Prove que

lim f(x)g(x)=0.

x—=p
Solucgdo
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[FC)g=TfX) g ) [<M|f(x)]

para todo x em A. Dai, para todo x em A

MIf()[<f()gx)<M[f(x)].
De llm f(x)=0 segue que lim MIf(x)l=0, lim —MIf(x)1=0. pg,

xX—p xX—=p x—=p
teorema do confronto

lim f(x)g (x)=0. =
x—=p
- g 1 se xe@Q
1 X -g( =
EXEMPLO 3. Calcule gL R Memqueg(x)=1_| | & Q

Solugdo

2
llmﬂ x~ = 0. como xlin{}g (¥) ndo existe (verifique) ndo podemos aplicar a
X -

propriedade relativa a limite de um produto de fungdes. Entretanto, como g € limitada,

(| g (x)| <1 para todo x) e lim ¥ =0, pelo exemplo anterior

x—=0

limitada

Iim\‘I g (x) =0,
xs0%
0 -

Exercicios 3.6

1. Seja f uma fungéo definida em R tal que para todo x # 1,
)

X +3xs fx) < ol _Calcule I““ f{‘}e]ustlflque

x—1

2. Seja fdeflmda em R e tal que, paratodo x, | f(x) —3|<2|x — 1. Calcule

X —
3. 4 . g(x)
Suponha que, para todo x, | g (x) | < x*. Calcule lim
x—0 X
4. o ; |
a) Verifique que lim sen — ndo existe.
x—=0 X
1
b) Calcule, caso exista, lim x sen —. (Justifique.)
x—=0 X
, (x)— (0 i
2 Calcule, caso exista, lim PAC I ()] em que f é dada por
x—=0 X0
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[ 1
52 Hai l e xsen— se x #0

a) fiz)= % b) f(x)= "
0 se x =0 0 sex=20

6. Sejam f e g duas fungdes definidas em R e tais que, para todo x, [g (x)]* + [f
(x)]* = 4. Calcule e justifique.

a) lim .rj’ g(x) by lim f(x) ’frz -0
r—=0 r—3

7. Seja f definida em R e suponha que existe M > 0 tal que, para todo x, | f (x) — f
@) | <M|x-p[.

a) Mostre que f é continua em p.

. f(x)— f(p)
b) Calcule, caso exista, lim —f':
x—=p X—p

8. Sejam a, b, c reais fixos e suponha que, para todo x, | a + bx + cx?| < | x |°.

Prove quea=b=c=0.
9. prove: m flx)=L = lim [f(x)l=1LI.

fx—=p x—=p
(Sugestdo: verifique que | | f(x) | = |L || <|f(x) — L | e aplique o teorema do

confronto.)

10. A afirmacao

Clim Tfo)l=1LT= Hm f(x)= L" 4 f3154 ou verdadeira? Por qué?

xX—=p x—=p
11. D& exemplo de uma funcio f tal que _I"" 1 f ()] existe, mas lim f(x) h5q
x—=p x—=p
exista.
: h) : (f
12. Prove: lim f(h =0 & lim J) =0.
h—=o0 h h—=o |hl
3.7. CONTINUIDADE DAS FUNCOES TRIGONOMETRICAS
Lembrando que sen (—x) = —sen x, segue da propriedade (5) da Secdo 2.2, que

existe r > 0 tal que, para todo x, com | x | <r,
Q) IlsenxI<Ilxl.

(Interprete geometricamente esta desigualdade.)
Vamos, agora, utilizar O para mostrar que

@ Isenx —senpl<|x—pl
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para | x — p | < 2r. Temos

Isenx — senp|= 12 sen x;p cos'r;pl=2lsen I;pllcosx—;pl.

x+
Delcos P

| =1, segue
©) Isenx—senplsiZIsen%l.
De @ segue que, para | x — p | < 2r.

x — ops—
@ | sen i< &

De ® e @ resulta
|senx—senp|<|x—p]

para|x—p|<2r.
Fica a seu cargo mostrar que

5 lcosx—cospl<lx—pl

para|x—p|<2r.

Teorema. As fungdes sen e cos sdao continuas.

Demonstragdo
Seja p um real qualquer. Por @,
|senx—senp|<|x—p]

lim (x— p)=0

S * segue, do teorema do confronto, que

para |x — p | < 2r. Como &

lim (sen x — sen p) =0,
Xr—p

ou seja,

lim sen x = sen p.
X—=p

Logo, sen x é continua em p. Como p foi tomado de modo arbitrario, resulta que sen x
é continua em todo p real, isto é, sen x € uma funcdo continua. Fica a seu cargo a
demonstracao da continuidade da funcdo cos. =

Deixamos a seu cargo provar, como exercicio, que as funcdes tg, sec, cotg e cosec
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sdo, também, continuas.

. sen .y
3.8. O LIMITE FUNDAMENTAL llIll —_—

x =l X

Pela propriedade (5) da Secgdo 2.2 (veja justificacdo geométrica ao final da secdo)
existe r > 0 tal que

0<senx<x<tgx

para 0 < x < r. Dividindo por sen x

<X < L

sen x cos X

e, portanto, para 0 <x <r,

sen x

cos x < <1.

Por outro lado,

: ; sen (—x)
=) =30 xS =08 (—x)=— ]
—X
sen(—x) _senx
Como cos(—x) =cosxe = s
—X X
) senx _
—r<x<0=cosx< 22l
X
Assim, para todo x, com 0 < |x | <,
sen x
oS8 X << <.
X
Como lim cosx=1= lm 1,544 teorema do confronto,
xr—=0 r—=0
. BEOLX
lim = 1.
xr—=0 Xx

s o

Observe que, para modulo de x suficientemente pequeno, = loux = sen x.

Interprete geometricamente.

EXEMPLO 1. Calcule lim M

x—=0 X

Solucgdo
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li = lim 3 = lim 3 2
x— 0 X x—=0 X w—0 u
[T
u
ou seja,
: sen Sx
lim =B
x—=0 X
. l1—cos x
EXEMPLO 2. Calcule lim ———
x—0 X

Solugdo

. l1—cos x . 1 — cos? x 1 . sen2x 1

lim ————= lim s . = lim s
r—0 X xr—0 b l+cosx x=30 Xx° 14+ cos x
pois,

1

. sen-x . 1 |
lim —=1le lm ——=—.
r—=0 X< r—01+cosx 2

Justificagdo geométrica da propriedade (5) da Secao 2.2:

sen X tg

drea AOAP = e drea AOAT = C‘TX (Veja figura na pagina seguinte.)

Por uma regra de trés simples calculamos a area a do setor circular OAP:

2mrad — area it

TX X
a=—=_,
2 2
vi A

P T

-
—1 Q M x

x rad — area o

X

Portanto, area do setor circular OAP = E
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. w , .
Assim, para 0 << x < =4 (x é a medida em rad do arco AP),

BEM X" . X 1o%
<<=

2 2 2

ou

sen x < x < tg X.

Exercicios 3.8

1. Calcule.
a) lim by lim
=0 X x—=0 s€n X
; sen 3x : sen x
c) lim d) lim
x =0 X r—=w X — 1T
. 2 . 3,".'2
e) lim f) lm
x—0 sen x x—0 tg x sen x
. . 1 —cosx
g) lim h) lim
x—0 sen 4x x—=0 X
L 1 —sen x o 1
iy lim = j) lim x sen —
SR L T x—0 A
2
: (x — p) _ . SE1 {,rz — _:-3'}
{) lm £ { p¥0 m) lim !
x—»p X°—p° x—=p xX—p
f, 1 1
. sen (x- + T} — sen T _ R g
n) him - - o) lim ——
=0 X r—0 X° —sen x
: x—1igx ] sen Ty
p) lim g) lim
.T—Z*(] Y+tg X I—:’J 1{-_]

2.a) Prove que existe r > 0 tal que

para0 <|x|<r.
b) Calcule lim —— " w -

x—0 2 i

3. Calcule.
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SEn X — sen p

a) lim — B i COS X —cos p
Xx—=p A ji’_.‘r s v — F

te x —tg p seC X —sec p

c) lim o Souk d) lim ;
xr—=p S x—=p X—p

3.9. PROPRIEDADES OPERATORIAS. DEMONSTRACAO DO TEOREMA DO CONFRONTO

Le lim gix)=1L,,

X—=p

Teorema. Se k for uma constante, Th_[:lp flx)= entao

a) lim [fx)+gx)]=L+L;y= lim f(x)+ lim g(x).

X—=p r—=p x=p
b) Iim kf(x)=kL =k lim f(x).
X—=p X—=p

¢) lim f(x)g(x)=LL; = lim f(x) lim g (x).

X—=p X—=p x—=p

: L
d) lim @ _ L desde que L; # 0.
x—=p gix) Ly

Demonstragdo

a |[fx+gx)—(L+L)|<|fx)-L|+|gx) —L;| Dahipétese, dado € > 0,
existe 6 > 0 tal que

= Lies
0= lx~ pl <0 = :25
Ig(,r‘}—LlI{E

dai
O<|x-p|<é=|[f)+g @] - (L+L)[<€
b) Se k=0, kf (x) = 0 para todo x € Dy, logo
lim kf(x)=0=k lim fix).

X—=p X—=p
Se k # 0, dado € > 0, existe § > 0 tal que

0<lx—pl<é= If(x)—Llf::”‘j_l

dai
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0<|x-p|<8=|k() -k |<e
c)f(x)g(x)= % [(F(x)+ g x)? — fx)—2 {x))z] (verifique).

lim [f(x) +g @ =[lim (f(x)+ g N> = (L + L;)* (veja Exemplo 4-3.5)

r=p X—=p

lim [f() —gN>=[ lim (f(x) — g () = (L — L)~

X—=p Xx—=p

Dai

lim f(x)g(x) = % (L+L)?—@—-L)=LL,.

X=p
4 1m 9 = fm f@yL=r.1=L .
XxX—=p g{‘(’} X—=p g{‘(} LJ Ll

Demonstragdo. (Veja Exemplo 5 da Se¢dao 3.5.) =

Demonstragdo (do Teorema do Confronto).

Como, por hipétese, 1_“_';[3} fx)=L= lim h(x). 4ado € > 0, existem &, > 0 e &, > 0

xX—=p

tais que

0<|x-p|<§=L-€e<f(x)<L+e

0<|x-p|<6=L-e<h(x)<L+e
Tomando-se § = min {6;, 6,, r} vem:

O0<|x-p|<d=L-€e<f(x)<g(x)<h(x)<L +¢

logo
0<|x—-p|<éd=L-€e<g(x)<L +e
ou seja,
lim g(x)=L. |
X—p
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4

EXTENSOES DO CONCEITO DE LIMITE

4.1. LIMITES NO INFINITO

Nosso objetivo, nesta se¢ao, é dar um significado para os simbolos

lim f(x)=L

X —=+w

(leia: limite de f (x), para x tendendo a mais infinito, é igual a L) e

lim f(x)=L

X ——w

Definigdo 1. Seja f uma fungdo e suponhamos que exista a tal que ]a, +oo[ C Dy.
Definimos

[V e> 0,36 >0, com & > a, tal que
lim f(x)=L <
Erad x>d=pL-e<fix)<L+e

Definigdo 2. Seja f uma fungdo e suponhamos que exista a tal que J-oo, a[ C Dy.
Definimos

Ve>0,36>0, com—é&<a,tal que
lim f(x)=L &3
kst I8 x<—8=L—e< flx)< L+e.
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; 1
EXEMPLO 1. Calcule lim — e justifique.

Xx—+w X
Solugdo
. P o : 1
Quanto maior o valor de x, mais proximo de zero estara —: lim — = 0.
X x—=+w X
Justificagdo

Dado € > 0 e tomando-se § = l
€

1
r>=0< — <&

X
e, portanto,
]
x>6=20—ee< —<0+e
=
: 1
Logo, lim —=0.
X —+owm X

¥k

0+€ _— - - =

ey | e v asmpe s o s

Deixamos para o leitor as demonstracoes dos seguintes teoremas:

lim f(x)=a

Teorema 1. Sejam f e g duas fungdes tais que Im f C D, e Wi

a) Se g for continua em a, entao

lim g(f(x))= lim g(u).

X — oo W—sa

b) Se g nio estiver definida em a e se 1M &(4) existir, entdo
W—a
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lim g(f(x))= lim g(u).

X — oo W—sa

Teorema 2. Seja k uma constante e suponhamos que LM [f(x)=1L 4

. X — +oe
lim g(x)= Li. gpis0
X—+w
a lim [f(x)+gx]=L+L,.
X —+w
by lim kf(x)=k lim f(x)= kL.
X —+o X — +oo
c) lim f(x)g(x)=LL,.
X —+o
d) lim AN i desde que L; # 0.

x—+o g(x) L

Observamos que os teoremas acima continuam validos se substituirmos “x — +00”
por “x — —00”,

: 1
EXEMPLO 2. Calcule lim —.~-1o qual n > 0 € um numero natural dado.

X—+ew X
Solugdo
] w1
lim —= lim |—| = lim u" =0.
x o XP x—deo b X ) u—s 0
[
x+x4+1

EXEMPLO 3. Calcule lim 3 :
x—4m 2x° +x+1

Solucgdo

Vamos colocar em evidéncia a mais alta poténcia de x que ocorre no numerador e
proceder da mesma forma no denominador. Deste modo, irdo aparecer no

. . . 1
denominador e numerador expressoes do tipo ——que tendem a zero para X — +0o, 0

X
que podera facilitar o calculo do limite.
z 1 1 1 1
x5+ x4 +1 xh'[l+?+ 3 et
x=p+oo 2x7 + x x—s4w 5|, X =+
324 —4+ p JE W B PRI
* [ Xt = } v x° -




Exercicios 4.1

1.

Calcule.
1
a) lim o
X — o X
1 3
c) lim [5+—+—F5]
X — —o X X<
. 2x +1
¢)  lim
r—4mw x+3
Vi x2 —2x+3
im —
: X —»—t0 3,1.'2 + x+1
i1 lim j;
xr—40 x° 4+ 3x 4+ 1
2
) lim 354 —
x—+o | x
[ =
A+ 1
i) lim M B

r— 4w 3Ix+2

. Ax + ir
p) lim ———
x4 x4+ 3

r) hm [x-— -\:'I.rz +1]

X —+w

Sejam f e g definidas em [q,

. fix)
lim
X — 4w g_{.ﬂ X — 4w
exista, lim  fi(x).
X —=+w

:
a) Calcule [im el
x o+ 2x3 —6x + 1

b) Mostre que existe r > 0 tal que

a) Calcule lim ————
x=s+om X"+ 2x—1

b) Mostre que existe r > 0 tal que
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by lim —

|
d lim [2——

) lim pi
x—+m 4x

23 +1
x——w x4+ 2x+3

) lim

RS

m) lim 3
x——oo | x4+ 3

%.".r?" +2x —1

o)  lim
x—+o= 1.',:'2 +x+1

-
o |

q) lim .
A=+ X

i) lim [-\,-"x +1 — «‘}-"x +3]

X —+w

+ oof e tais que

=0, lim g(x)=0eg(x)# 0paratodo x > a. Calcule, caso



x+3

x>r=0< T —
x? +2x —1

I
<—,
2
5. Sejam f e g definidas em [a, +oo[ e tais que f(x) > 0 e g (x) > 0 para todo x >
; f(x)
a. Suponha que lim -

x—>+w g(x)
que para todo x > r

= L, L=0. Prove que existe r > 0, r > a, tal

L 3L
T g‘[ﬂ-']‘ < f{‘(} < T LE'{.-".'}.

i

Conclua dai quese 1M  g(x) =0.enge lm flx) =0
X — oo X — oo

4.2. LIMITES INFINITOS

Definigdo 1. Suponhamos que exista a tal que ]a, +oo[ C Dy Definimos

[V €>0,38>0, comé > a, tal que
(a) lim f(x)=+» <
e x>8= f(x)> e

vV e=0,48>0,comé > a,tal que
(b) lim f(x)=—-2 <
o s | x>8= f(x)<—e

Definicdo 2. Sejam f uma funcdo, p um numero real e suponhamos que exista b
tal que Jp, b[ C Dy Definimos
Ve>0,38>0,com p+8<b, tal que
lim f(x)=+w <
x> pT p<x=p+d6= f(x)>e
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feo—-1
L
E-=—=++P
1
L]
L1 1 —
pl X p+48 X
Deixamos a seu cargo definir
lim f(x)=-—o, lim f(x)=+c, lim f(x)=—oe,
X — j)+ X——w X ——o0
lim f(x)=+w, lm f(x)=—o, lim f(x)=+%e lim [f(x)= —ce.
X—p x—p X—p X—p
: 1
EXEMPLO 1. Calcule lim — e justifique.
x=3 X
Solugdo >
TS TS B .
x [1 — — > 0
2 10 100 1000 T
1 il
— {1 2 10 100 1000 — + e X |
X e
0 x %
A 1
lim — =+
x>0t X
Justificagdo
Dado € > 0 e tomando-se § = 1
€

{]{x-fiﬁ::»libf.
X

Logo,

: 1
lim —=+x
x=aQt X
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EXEMPLO 2. Calcule 1M X o justifique.
X—=+w

Solugdo

Dado € > 0 e tomando-se 6 = €
x>d=>x>e€.

Logo,

lim x =+,
X —+w

Teorema
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lim £ (x) =+ lim [ (x)+ g (x)] = +o°

X —=tw X —=+wm
a) =5 3
lim g(x)=+w> [ lim f(x)g(x)=+w
| X — +w@ x — 4w
lim f(x)=L, L real, [ lim f(x)g(x)=+w seL>0
X — o0 X — +oo
b) =
lim g(x)=+» lim f(x)g(x)=— seL<0
X X — o X — oo

lim f(x)=-w

X — 4o
2 — lim f(x)g(x)=—o
lim g(x)=+o X+
X + oo

lim f(x)=L,Lreal,

X — +o0
d) = lim [f(x)+g(x)]=+x=
lim g(x)=+w e
X+

lim f (x)= L, L real,

X — +o
€) = lim [f(x)+g(x)]=—0o
lim g(x)=—= s
__.1'—>+'35'
lim f(x)=- [ lim [f (x)+ g(x)]=—
) X — oo X — oo
T s
lim g(x)=—= lim f(x)g(x)=+w
__.1'—>+'35' X — oo
lim f(x)=L, L real, [ lim f(x)g(x)=—0 seL>0
X — o0 X — oo
g) =
lim g(x)=-— lim f(x)g(x)=+w selL <O
X — oo X — oo

Demonstragdo. Para as demonstracoes de (a) e (b), veja os Exemplos 13 e 14. As
demonstracoes dos demais itens ficam a cargo do leitor. =

Observamos que o teorema anterior continua valido se substituirmos “x — +o0” por

»

“x - —00” ou por “x - p+” ou por “x - p—" ou por “x — p”.

Observacao. O teorema anterior sugere-nos como operar com 0s simbolos +oo e —oo:
+00 + (400) = 400, —00 + (—00) = —0o, [, - (+00) = +oose L >0, L - (+o0) =—00se [ <0, L -
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(-0)=-00seL>0,L (-0)=+0se L<0,L + (+0) =40 se L €ER, L + (—o0) = -0
se L € R, +00 - (+00) = +00, (—00) * (—00) = +00 e +00 * (—00) = —o00,

Indeterminagoes
(w0}
+o0 — (+), —o0 — (—0), 0 - o0, —, % 1%, 00, .

o0

EXEMPLO 3. Calcule lim  x7.

X—=+w
Solugdo
. b .
lim x<= lim x-x=+%,
x — 4w B |

: 2
EXEMPLO 4. Calcule lim (3x™ — 5x + 2).

X—= 4w
Solugdo
_ . : : 5 2
lim (3x*—5x+2)= lim x? [3 - — —j} =4® -3 = 40w,
x — oo x—+o X b
|
3
2 4 3., ——
EXEMPLO 5. Calcule Jim T X 1
x—=+w 2x° 4+ x+1
Solugdo
3 1 3 1
7 2
el ) I+ — —
. 343, — = [ ) 3} 3 3
lim 2 F3=1_ g 2 Pl oy g2 B i loya
x=402xc+x+1 ro4w 2 2+l+ I X—+= 2+l+L 2
) X r? x " o

O proximo exemplo conta-nos que, se f (x) tende a zero parax — p* e se f (x) > 0,

+

entdo tende a + coparax — p’.
() P P
lim f(x)=20 :

EXEMPLO 6. Suponha que e e que existe r > 0 tal que f (x) > 0 para
p <x <p +r. Prove que

: 1

lim =+,

x— pt f(x)

Solucgdo

Pela hipotese, dado € > 0, existe § > 0, com § < r, tal que
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p{x{p-i-ﬁ::’(){f(,ﬂ{l

€
dai
<x<p+é= =
¥ g f(x)
Logo
; 1
lim =+, -
x—=pt f(x)
1

EXEMPLO 7. Calcule lim :
=1t x—1

Solugdo
x—1=0parax>1le lim (x—1)=0,logo
r=1t
. 1
lim = +0o,
gtk x=1
Interprete graficamente. |
: 1
EXEMPLO 8. Calcule lim ;
Fods Bl
Solugdo
x—1<Oparax<le lim_(x—=1= II:'*logo
xr—=1
! 1
lim = —oo,

rals 2=
Interprete graficamente. ™

EXEMPLO 9. Sejam f e g duas fungoes tais que
lim f(x)=L L#0, lim g(x)=0

B e e que existe r > 0 tal que g (x) # 0 para p
< x < p + r. Prove que, nestas condicoes, ou
; X ; X ; X
lim S ) = +wou lim J (x) = —ou lim 7 ( \}néo existe.
x—pt £(x) xspt £(X) x—=pt &(x)

Solucgdo
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. Fix)
Basta provar que lim

ndo pode ser finito. Se tal limite fosse finito,
X — p+ g(x

teriamos

im f= lim L% o =0
X — ;J+ .r—>,r1+ £ (x)

que é uma contradicdo. =

2 + 3y
EXEMPLO 10. Calcule lim —— %

iaat X2 =4
Solugdo

im (% +3x)=10e lim @x*—4)=0.

x— 2T xr—2

Pelo exemplo anterior, o limite proposto ou é +oo, ou —c0 ou ndo existe. Vejamos o
que realmente acontece. Inicialmente, vamos separar o fator que é responsavel pelo
anulamento do denominador.

x=-43x 1 x2 + 3x
e -

x2 + 3x

: 1 . 5
Como lim = +xe lim ——— = —, resulta

x— 2t x— x2+ x+12 2

x2 + 3x 1 x2 + 3x ]

im —&——= lim ~ = 4o =+4w
P ats A= P ats X—72 Xitk 2 2
n
3 — 1

EXEMPLO 11. Calcule lim 5 "
1T x< — 2x+1

Solugdo
Como 1 é raiz do numerador e denominador vamos, primeiro, simplificar.

=1 e=DaXbetl)  ab bkl
¥2 —2x+1 (x —1)? x—1

Entao:

3 _

lim — =
FaalF Xo 2] A s |
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EXEMPLO 12. Calcule |im
I — —o 21" + 1

Solugdo
3 1
x3—3x2 41 x’ l__+_%} '_1+L% I
lim +— = lim z lt = lim x A ]I' — . =—go
x——w 2x°+1 ¥ — —0 :{2[24'—3} X—— 24— 2
x5 x> [

EXEMPLO 13. Suponha que | lim f(x)= +we lim g(x)=+%.p .

— +w xr—= 4w

a) lim (f(x)+ g(x)) = +o=,

X—+4w

b) lim f(x)g(x)= +ce,
X — oo

Solugdo

1) Segue da hipétese que dado € > 0 existem §; > 0 e §, > 0, tais que

x>6=f(x)> %

X>8h=g(x)> %
Tomando-se § = max{é;, 6,}

XS fN)+g> S +

13
e
2 2

Logo, | lim [f(x) + g(x)] = +oo.

e
7)) Segue da hipotese que, dado € > 0, existe 6 > 0 tal que
x>8=f(x)>Jeex>8=g(x)> Ve
dai
x>6=f(x)gx)>¢
ou seja,

lim f(x)gx) = +eo,

X —+w
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EXEMPLO 14. Suponha que _ limm JX)=L.[ real,e lim g(X) = +% pryye

—+ X —=+w

a) lim fi(x)g(x)= +wsel =0.

Xr—= 4w

b) lim f(x)g(x)=—wsel <0.

X — oo
Solugdo
1) Segue da hipotese que, dado € > 0, existem §, > 0 e §, > 0 tais que

x>=2fx)> éex} Ezzag(x):}%.

Tomando-se 6 = max{d;, 6,}

x>8=f(x)g(x)>e

)) lim  —f(x)=—L>0.pag item a), . lim —f(x)g () =+ pn36. dado

X — += 5 4o

€ > 0, existe § > 0 tal que
x>6=-f(x)g(x)>e
Logo,
x>8§=f(x)g(x)<-e

Exercicios 4.2

1. Calcule.
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a) Lim (*—3x+2)

X—+w
) lim {'E's.r3 + 2x4+ 1)
X ——®
_ 503 —6x+1
¢) lim . W
x—= 4 bx’ 4+ 2
_ 5x3 + 7x — 3
g) lim i
r—4m xT —2x4+3
: : ,1'4 —2x+3
i lim S I
x—o—e 3x7 +Tx —1
g x+1
H  lim

X — tw 3&'2 — 2

" ‘illl
Prove que Ill“ WX
Xr—+4w

Calcule.

o Ax+1
a) lim ———
x=>+we x+3

g lim: [2x— -\V-'I:s'2 + 3]

xr—+tw

¢y lim (x— x.".rz + 3)
xr—+tw

g)  hm l[-\,-'l.t + -\;"x - "u';*" —1)

X — +oo

Calcule.
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by lim (5 —4x+ xZ — .rﬁ}

X — 4o
d)  lim l[x3 —2x4+ 3
X —4m
. 5x3—6x+1
fH lim t,,—t
r—= 4w by +x+3
2x+3
fiy  lim
r— —m X+ 1
: : 5—x
7y him
x—o—w 34 2x
; 2+ x
m)  lim 5

x—=+we 34+ x

+%. no qual n > 0 é um natural.

) x+ f.\,-'r.t -+
by lim ———
e 21

d lim (x— 1“.';5).'3 + 23

X — +w

N lim (x— a\.-'lx )
X —+4w

)y lim (x— 12 + 3x3)
X—+w



: 3 : 4
a)  lim b) lim
i—33F 3—a a3 X3
. 4 ; 1
) lim dy lim —
1+ 2x—1 x=0 X
T ——
2
2xF] S
e) lim fi lim =
v = 0F X r—=0- X
3 3
£2)  lim 5 h)  lim ———
X TR r—=0" X —Xx
: 3x+1 ; ; 2x+3
iy lim 5 Jj)  lim 5
| TrdxSi—1 . |
X ——
B
. 2x k3 . x2 =3y
[) lim - m) lim ————
Y — |_+ = — ] X =% _:§,+ xXs — El‘( + ".}
. 2x +1 . 2x+1
n)  lim - o) lim ———
TN, e o x>0t x“ t+x
3x — 5 _ x2 —4
p)  lim g) hmp cee———
r—1t x< +3x—4 =2t xc —4dx+ 4
¢ 3x2 — 4 i sen x
r) lim —— ) lim  ———
Tt =xs ) e S o
5. Dé exemplo de funcodes f e g tais que
: o - Y = : f(x)
_ I|m+ fxy=L,L#0, | |l|1l+ g (x) ﬂ‘mas lim - 0 existe.
Xx—=p X—p T — :”+ g (x)
6. Dé exemplo de funcoes f e g tais que
lim f(x)= 4>, lm g(x)= +w> e lim  [f(x) — g (x)] #0.
Xr—+w X —=+w X —+w
7. a = ; lim f(x)=+%, lm g(x)= +w
Dé exemplo de funcoes f e g tais que e g s
: fx)
e lim # 1.

x—=+e g(x)

8. Sejaf(x)=ax®+bx’+cx+d,emquea>0,b,c, dsdo reais dados. Prove que
existem numeros reais X, e X, tais que f (x;) <0 e f(x,) > 0.

9. Sejam f e g duas funcOes definidas em Ja, +oo[ tais que
lim f ()
x>+ g (x)
que para todo x > r, f (x) > g (x).

= +weg(x) >0 para todo x > a. Prove que existe r > 0 tal

4.3. SEQUENCIAE LIMITE DE SEQUENCIA
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Uma sequéncia ou sucessdo de niimeros reais é uma funcdo n ~ a,, a valores reais,
cujo dominio é um subconjunto de N. As sequéncias que vao interessar ao curso sao
aquelas cujo dominio contém um subconjunto do tipo {n € N | n > q} no qual q é um
natural fixo; s6 consideraremos tais sequéncias.

A notacao a, (leia: a indice n) é usada para indicar o valor que a sequéncia assume

no natural n. Diremos que a, é o termo geral da sequéncia.
EXEMPLO 1. Seja a sequéncia de termo geral a, = 2". Temos

a,=2%a,=2%a,=2° ...

EXEMPLO 2. Seja a sequéncia de termo geral s, =1+ 2+ 3 + ... + n. Temos

s;=1,5,=1+2,55=1+2+ 3 etc.

Sejam m < n dois naturais. O simbolo
"
Y
a

.
k=m

(leia: somatéria de a,, para k variando de m até n) é usado para indicar a soma dos
termos A,y, Ay, 4 1, Ay 4 25 -+ Ay

R
2. p =g sy A S,

k=m
0
EXEMPLO 3.
5
(r‘rkg a, = ay + ay + ay + as.
3 5 2 2 7 ) )
) Y kF=1"+2"+3"+4°+5°
k=1
c‘;il=]+]+]+,,,+l. =
k=0 k+1 0+1 1+1 241 n+1

n

EXEMPLO 4. Seja a sequéncia de termo geral s, = 3 % Temos
k=1K
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> 1oy
5 = — = 1.
k=1Kk
]
§9 = X l=1-|-l.
k=1 Kk 2
3
53= 2, l=]-|-l-i-l E
k=1 k Z2 - 3
"
EXEMPLO 5. Considere a sequéncia de termo geral 5, = X tk.t#0 et # 1.
k=0
Verifique que
1_er+]
=
" l_f
Solugdo
® s,=1+t+2+ .+ Lt

Multiplicando ambos os membros por ¢, vem

2 3 1 +
@ ts,=t+r+t+.+f+0""0

Subtraindo membro a membro D e @), obtemos
s,(1-0)=1-¢""1
logo

l—f”+]
Sy = ——
" Ty

Observe que s, é a soma dos termos da progressdo geométrica 1, t, &, 3, ..., t". ®

Definicao. Consideremos uma sequéncia de termo geral a, e seja a um numero
real.

Definimos

Para todo € = 0, existe um natural ng tal que
(i) lim a,=a< j

=r T = — e 8= a+E

Para todo € = 0, existe um natural ng tal que
(i) lim a,=+tx e

i n>ng = a, =€
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[Para todo € > 0, existe um natural ng tal que

(iii) lim a,=-—®&
= hE n>ng= a, <-—¢.
lim a

n = Y diremos que a sequéncia de termo geral a, converge para a ou,

lim a,= +o,
. n—+wm

lim a, =
H— +®

n—+w
simplesmente, due a, converge para a e escrevemaos a' v~ a. Se

. . v & .
diremos que a, diverge para +o e escrevemos a, - +oo. Se “» diremos

que a, diverge para —,

Observamos que as defini¢cdes acima sdao exatamente as mesmas que demos quando

tratamos com limite de uma fun(;ao f (x), para x — +oo; deste modo, tudo aquilo que
dissemos sobre os limites da forma s l'"l L JFx” aplica-se aqui.

: 2n+ 3
EXEMPLO 6. Calcule lim ———.
n—ate n+1

Solugdo
3
] 2n+3 ] 2+;
lim — = lim —1=2.
n—o+wo n+1 n—>+0€=1+_
n i

EXEMPLO 7. Suponha que existe um natural n, tal que a, > b, para todo n > n;.

. B LR
Prove que se 1M b, = +% anzg lim @, = +co,
n— tw H— +=

Solugdo

Como 1M b, = +%.4ado € > 0 existe um natural n, tal que
n—+w

n>n,=b,>e
Tomando-se n, = max{n;, n,} resulta
n>n,=a,>b,>e€

logo

lim a, = +oc.
n—+w

EXEMPLO 8. Suponha a > 1. Mostre que

lim d" = +oo.

n— 4w
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Solugdo

a=1+h, h>0.Pela formula do binomio de Newton

A+ hy* =1 +[’;]h+[;]hf +.,.+[’:’]h”
Hn

dai

Q+h"=1+ [T] hparan = 1,

ou seja,

a,>1+nhparan>1.

Como h > 0, lim (1 + nh) = +oo; logo

n—+w

lim d'=+w (a>1). -
n—s +o0

EXEMPLO 9. Supondo 0 < b < 1, calcule lim b".

fo— oo
Solugdo
Inicialmente, observamos que se UM 8, = *%. anidg  lim — =0
n—+o n— 4w 8,
(verifique).
De 0 < b < 1, segue que % = ] entdo
: fil % ]
lim »" = lim =0
n—s +® n—4o (1\*
b
F; 1 -.I”
pois, lim | — | = +o (Exemplo 8). =
n—o+w \ b
) 2" + 1
EXEMPLO 10. Calcule lim :
n =y 4o AT A2

Solucgdo
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1
2”+] ! y ]+T
lim = i, b2| e 2
ns+o3"+2 po4m\3) i i
3”
|"'2 y F 2
pois  lim —| = 0 (Exemplo9), lim — =0e lim —=0. |
n—s 4wl 3 ) n— +ow 2" n——+o 37
n 1 k
EXEMPLO 11. Calcule lim 3 {_
n—+w =0\ 2
Solugdo
1 YRS
H ¢ K g 2 g - 1 ]_|_| .
5 [L] =1+i+[L] v +[L] _ __\2)  (veja Exemplo
l,l;_-:ﬂa'z,' 2 L2 L2 ]_l
2
5).
/1\Ji'+]
Como lim [_] = (). resulta
n— 4w\ 2 )
s n+1
R
lim ¥ L—J = lim = 2=
n—+ow =0 2 H— += | l l_l
2 2
A igualdade
" ]\,k
lim Y [—J =2
nH—+= =) 2
¢ usualmente escrita na forma
T N DS
2 - 20

Exercicios 4.3

1. Calcule.
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2n—3

a)  lim by lim l[:r2 + 3)
n—+w 1+ 1 n—s 4w
n+1 2 2
¢) lim d)  lim §—+
n— 4o A n— 4w 2n° +n—1

~

i

=

=
—
|
iy

g
=

+

)
L =

=

=

—
—
= |M
—,
| we
[

n— 4w n n— +w
: 1457 : no
2)  lim h)  lim Yy L—]
n—s+mo 24+ 3" ns+oEg=pt3
i) lim X f("nﬂqualﬂf:_f{]
n—=+w k=)
Supondo 0 < a < 1, mostre que
n
! 7
lim ¥ &f= ",
m—s o =1 l1—a
: : 1 1 1
Calcule lim |1+—+—+...+—|
n—s +w 2 3 i
S t~'l—-|-—I + —I——I gk k>0
(ugesao.zk S e Ekﬂ_lfzpara >0.)

Seja f (x) = x, x € [0, 1]. Considere a sequéncia de termo geral

fi1:% 1 2 G o | (n—1Y\1 1
R ) P O PR O e e P
fl i i fl H il n H

a) Calcule S;. Observe que, geometricamente, S; pode ser interpretado como a
soma das areas dos retangulos hachurados.

Y

14————- 7

W=
taa | 2

b) Calcule 5 E}"_Lw S (Pensando geometricamente, qual o valor esperado para
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o limite?)

"
Calcule lim ]ﬁ Y k2,

n—+m 07 k=1

~2 2
i )

1
+...+n"=—n(n+1)(2n+ 1). Veja

(Sugestdo: Verifique que e
6

Secdo 17.2.)

Seja f (x) = x%, x € [0, 1]. Considere as sequéncias

i (2 (n—1
s”=f|[0}l—+f[—}l+f —]'—+...+f|” Wl
\ f

1 n)n 1 on / n
e
f1Y1 (231 (n—1Y1 < |
S”=fL—J—+fL—J—+...+fL J—+~f{n—.
nn non i 1 n
Calcule
a)  lim 5” by  lim s,
n—+m n—+w

(Interprete geometricamente tais limites.) (Sugestdo: Utilize o Exercicio 5.)

Uma particula desloca-se sobre o eixo Ox com aceleracdao constante a, a > 0.
Suponha que no instante ¢t = 0 a velocidade seja zero. A velocidade no instante
t é, entdo, dada por v (t) = at.

T
Divida o intervalo de tempo [0, T] em n intervalos de amplitudes iguais a —:

n
0 T T 3T n-1T T
b n n H
) T ) , al . 2T , 2aT
No instante — a velocidade serda —, no instante _sera — etc. Supondo
n n n n T
n suficientemente grande, o espaco percorrido entre os instantes — ¢ — sera
n
. aT T X , T i
aproximadamente — - — (por qué?); entre os instantes — ¢ — 0 espaco
non n n
) , ) 2aT T
percorrido sera aproximadamente - —etc.
n n
a : all T 2aT T (n—1)al T
) Calcule lim |:—~—+ —_—t
n—s+=| 1 n 1 . n n

b) Interprete cinematicamente e geometricamente o limite acima.
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8. Suponha que a sequéncia de termo geral a,, n natural, seja crescente (isto é,

quaisquer que sejam 0s naturaisn e m, n <m = a, < q,,) e que exista M real

lim

iy :
existe e que
— F q

tal que a, < M para todo natural n. Prove que .
lim a, =sup {a,|n e N}. (Veja Secdo A1.4.)

n—+w
9. Considere a sequéncia de termo geral

1 1 1
{?n=l+2—_}+ g g o

- "

n-

22
3

a) Prove que a, € crescente.

b) Prove que para todo natural n > 1

I 1 I
| et Lo PR e e e
r }L n-

1 1
) Prove que lim [I +—+—+...+ —,,] existe e que é menor que 2.
n—+w a5 - n<
(Compare com o Exercicio 3.)
(Sugestdo para (b): Verifique que
1 1 1

3 R o

-y + = i
(2n )2 (an _|_”E {2”"'] _”3 L]

4.4. LIMITE DE FUNCAO E SEQUENCIAS

Seja f uma funcao tal que e

“mp J(x) = Lea, yma sequéncia que converge a p,

com a, € Dye a, # p para todo natural n. E natural esperar que

lim f(a,) = L.

n—+w

De fato, sendo Ili_r}np fx) =1L, dado € > 0, existe § > 0 tal que
@ 0<Ix—pl<é=lf(x)— Li<e.
Como a,, » p, para o § > 0 acima existe um natural n, tal que

n>ny=|a,-pl<é

e como a, # p, para todo n,

@ n>ny=0<lag,—pl<aé
De De®@

n>ny=|f(a,) - L|<€
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logo
lim f(a,) = L.

n—+o

Em particular, se f for continua em p e se a, convergir a p, com a, € D, para todo n,
entio 1M f(a,) =f(p).
n—+w
Do que vimos acima resulta que se existirem duas sequéncias a, e b,, com a, Z p e

b, # p para todo n, que convergem a p e se Lm fla,) # lim  f(b,). engo
. n—+w= H— 4o
lim fi(x)

s ndo existira. Frequentemente, usa-se este processo para mostrar a nao

existéncia de limite de uma funcdo num ponto.

Q
Q

Prove que para todo real p, l_“_}”’lp fx)

1 se

:
0 sex

M

EXEMPLO. Seja f(x) = {

nao existe.

Solugdo

Para todo natural n # 0, existem a, e b,, a, racional e b, irracional, tais que

1 1
pg, s pr—apa b oS g
H )

Segue, pelo teorema do confronto, que

lim a,=pe lim b,=p.
n— n— 4o

Como E}”}rmﬂ“n} =1, pois f(a,) = 1 paratodo n # 0, e lim  f(b,) =0, pojs f

’ n—+w
(b,) = 0 para todo n # 0, resulta que l_linp ) n3o existe.  m

Exercicios 4.4

xsexeQ
—xse x €0,

L. Seja f(x) = {
a) Calcule lm_f(x).
r—=0

lim
Xr—=p

b) Mostre que, para todo p # 0, S nao existe.

2. Seja a sequéncia de termo geral a,, com a, > 0 para todo natural n. Sabe-se

i E}'"':‘-x.- ﬂ” =4, a real: e que ””+] &

que para todo n. Calcule a.

H.Fi'

3. Sejam f uma fungdo, p um numero real e suponha que existam duas
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sequéncias a, e b, convergindo a p, com a, e b, pertencentes a D; para todo n,
tais que

lim f(a,)=Le lim f(&,)=L.

n— oo n—s o

- i N D ~
Podemos, entdo, afirmar que IITP f@) = L? por que?

4. P — = [ .
Sabe-se que a sequéncia a =2, ag =22, a3 =424242 , ..., é
convergente. Calcule 1M @,

n—+w
Sabe-se que asequéncia /3 /2 + /2, /2 + /2 ++/2, ..., € convergente.
Calcule seu limite.

6. lim sen LI i

Prove que S€l — n3o existe.

xr—=0 X

4.5 O NUMERO e

Nosso objetivo, nesta secao, € provar que a sequéncia de termo geral

ap = f] + l]”

h i

é convergente. Definiremos, entdo, o niimero e como o limite de tal sequéncia.

lim L]—i—lJ =¢

n—+w

Para provar a convergéncia de tal sequéncia, é suficiente provar que ela é crescente
e que existe M > 0 tal que a,, < M para todo n > 1 (veja Apéndice 1).

o 1y
Primeiro, vamos provar que ( 1+ —J <2 3 para todo n > 1. Temos
n

(2] 1) a0 () e ()
HJ 1) n 2) n2 3)p3 7 ny ph

np— . . )
=1+1+”f”,, U,L+”f” 1)1{1? 2j-i+m+i.i
n- 2/ n 3! n" !
dai
.r 1\ 1 ] 1
|1+ —| s1+1+—+—+...+— (porqué?).
\ nJ 2 3 n!
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|
Como 2" < (n + 1)! para todo n > 1 (verifique), resulta que =
( ) p ( que) q PEREEY

para

todon > 1, dai

(1Y 1 1 1 1
1+—J Sl+1+—+—+—5+..+
L n 2 22 0 2] on—1

e como
1 1 :
I e e e T e =2
2 #i 2"
resulta

4 o 1

L] +—J < 3 paratodo n = 1.
n

Vamos provar, agora, que tal sequéncia é crescente. Sejam n e m naturais > 1 tais

que n < m. Temos

— — — !
nin 1).]4_”(” 1)(n 2),L+ +i,i

F ] "
L1+—] =l+14+——> — 3
n n- 21 n- 3! n® nl
e
i m _ _ i i
LH'L] - m‘{m‘fJ 1) 1L+ m(m 1“};(:?? 2) ~l+,.,+ m! l
m = 2! m- 3! m™ m!
De n < m resulta
| s o et
n "
| i e
n "
g5 n—1 r T n—1
n m
e dai

nn—1) mim—1)

2 2
n- m-

nin—Dn—2) _ mim—1D(m—2)
e etc

1'?'1' J'??B

157



mm—1)(m—2) _m m—1 m—2

Observe: = —"

m 3 i m

Segue que

i |
)

se n < m. Assim, a sequéncia é crescente.

m

p i
= []+EJ
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5

TEOREMAS DO ANULAMENTO, DO VALOR
INTERMEDIARIO E DE WEIERSTRASS

Os teoremas do anulamento (ou de Bolzano), do valor intermediario e de
Weierstrass sao fundamentais para o desenvolvimento do curso. Neste capitulo,
apresentaremos seus enunciados e faremos algumas aplicacGes; as demonstracdes sao
deixadas para o Apéndice 2.

Teorema (do anulamento ou de Bolzano). Se f for continua no intervalo
fechado [a, b] e se f (a) e f (b) tiverem sinais contrarios, entdo existird pelo menos
um c em [a, b] tal que f(c) = 0.

—_—
[

.

EXEMPLO 1. Mostre que a equacdo x> — 4x + 8 = 0 admite pelo menos uma raiz real.
Solugdo

Consideremos a funcéo f (x) = x> — 4x + 8; temos f(0) = 8, f(—3) = -7 e f é continua
em [—3, 0] (os numeros 0 e —3 foram determinados por inspecdo), segue do teorema do
anulamento que existe pelo menos um ¢ em [—3, 0] tal que f(c) = 0, isto é, a equacdo x°
— 4x + 8 = 0 admite pelo menos uma raiz real entre —3 e 0. ®

Teorema (do valor intermedidrio). Se f for continua em [a, b] e se y for um real
compreendido entre f (a) e f (b), entdo existira pelo menos um c em [a, b] tal que f

() =y.
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=y

Observe que o teorema do anulamento é um caso particular do teorema do valor
intermediario.

Teorema (de Weierstrass). Se f for continua em [a, b], entdo existirao x; e x,
em [a, b] tais que f (x;) < f (x) < f (x,) para todo x em [a, b].

v
flx, ) p————-

\L
Fix,) pamM

O teorema de Weierstrass nos conta que, se f for continua em [a, b], entdo existirdo
X, e X, em [a, b] tais que f (x;) é o valor minimo de f em [a, b] e f (x,) o valor mdximo
de f em [a, b]. Ou de outra forma: se f for continua em [a, b], entdo f assumira em [a,
b] valor maximo e valor minimo. Chamamos sua atencao para o fato de a hipotese de f

. . - . 1
ser continua no intervalo fechado [a, b] ser indispensavel; por exemplo, f(x)=—. x
X

€ 10, 1], é continua em |0, 1] mas ndao assume, neste intervalo, valor maximo.

EXEMPLO 2. Prove que o conjunto

i
w

N
)

admite maximo e minimo.
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Solugdo

ks | . | .
Jlx)y= x2 + — é continua em > 2 |: segue, do teorema de Weierstrass, que
X

. 1 : ) .. 1
existem x; e X, em [E 2 | tais que f (x;) é o valor minimo de f em A 2lef(xy)o0
valor maximo de f neste intervalo. Assim

sx=2;

f(x9) = méx {_x:‘ gt |2
| X

f(x1) = min < 2+ =

Veremos, mais adiante, como determinar x; e x,. &

Exercicios

1. Sejaf(x) = x>+ x + 1. Justifique a afirmacdo: f tem pelo menos uma raiz no
intervalo [—1, 0].

2. Prove que a equacdo x> — 4x + 2 = 0 admite trés raizes reais distintas.

3. Seja a a menor raiz positiva da equacdo x> — 4x + 2 = 0. Determine intervalos

de amplitudes % % e é que contenham a.

Prove que a equacao x° — = () admite ao menos uma raiz real.

1 + x*

5. Prove que cada um dos conjuntos abaixo admite maximo e minimo.

{-:}A=<[ = ,,|—2£5_x-=:-£'2]> b) A= u|—]£x$]
|1+ x? | 1+ x2

2
Sejaf:[-1, 1] » R dada por f(x)= X“+x

R

4+ x“

a) Prove que f(1) é o valor maximo de f.
b) Prove que existe x; € ]—-1, 0 [tal que f (x;) é o valor minimo de f.

a) Prove que todo polindmio do grau 3 admite pelo menos uma raiz real.
b) Prove que todo polindmio de grau impar admite pelo menos uma raiz real.
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10.

11.

12.

13.

14.

Seja f : [a, b] - R uma fungdo continua e suponha que f ndo seja constante
em [a, b]. Prove que existem nimeros reais m e M, com m < M, tais que Imf =
[m, M].

(Observacao: Imagem de f = Imf = {f (x) | x € [a, b]}.)

Seja f: I — R continua, em que [ é um intervalo qualquer. Prove que a
imagem de f é um intervalo.

Suponha que f: [0, 1] — R seja continua, f (0) = 1 e que f (x) é racional para
todo x em [0, 1]. Prove que f (x) = 1, para todo x em [0, 1].

Seja f : [0, 1] — R continua e tal que, para todo x em [0, 1], 0 < f (x) < 1.
Prove que existe ¢ em [0, 1] tal que f (c) = c.

Seja f continua em [a, b] e tal que f (a) < f (b). Suponha que quaisquer que
sejam s e t em [a, b], s # t = f(s) # f(t). Prove que f é estritamente crescente
em [a, b].

(Observacao: f estritamente crescente em [a, b] © V s, t em [a, b], s <t =

f(s) < f(©).)

Suponha f continua no intervalo I e que f admita neste intervalo uma tnica
raiz a. Suponha, ainda, que existe x, em I, com x, > a, tal que f (x,) > 0. Prove

que, para todo x em I, com x > a, f (x) > 0.

Considere a funcao f dada por

flx)y= 2x3 — xv-':_r*? + 3x.

a) Verifique que f é continua em [0, +oof.

D) Mostre que 1 é a tnica raiz de f em ]0, +oo[, que f(2) > 0 e que f|

]a:;f).

I
L2

c¢) Conclua que f(x) >0 em ]1, +oo[ e que f x(x) <0 em]0, 1.

15.

Suponha f continua em I e sejam a e b pertencentes a I, com a < b, as Unicas
raizes de f em I. Sejam x,, x; e x, em [ com X, < a,a < x; <b e b < x,. Estude
o sinal de f em I, a partir dos sinais de f (x,), f (x;) e f (x,). Justifique.
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6

FUNCOES EXPONENCIAL E LOGARITMICA

6.1. POTENCIA COM EXPOENTE REAL

m

Na Secdao 1.7 definimos poténcia com expoente racional, e

estudamos suas principais propriedades. Nesta secdo, vamos definir poténcia com
expoente real.

Observamos, inicialmente, que, se f e g sdo duas funcdes definidas e continuas em
R tais que f(r) = g(r) para todo racional r, entdo f (x) = g(x) para todo real x, isto é, se
duas fungdes continuas em R coincidem nos racionais, entdo elas sdo iguais (veja
Exercicio 21, Secao 3.2).

Seja, agora, a > 0 e a # 1 um real qualquer. Se existirem funcoes f e g definidas e
continuas em R e tais que para todo racional r

f)=deg(r)=d

entdo f (x) = g(x) para todo x real. Isto significa que podera existir no maximo uma
funcdo definida e continua em R e que coincide com a" em todo racional r. O proximo
teorema, cuja demonstracao é deixada para o Apéndice 3, garante-nos a existéncia de
uma tal funcao.

Teorema. Seja a > 0 e a # 1 um real qualquer. Existe uma unica funcao f,
definida e continua em R, tal que f(r) = a” para todo racional r.

Damos, agora, a seguinte

Definicdo. Sejam a > 0, a # 1, e f como no teorema anterior. Definimos a poténcia
de base a e expoente real x por

@ = f (x).

A funcao f, definida em R, e dada por f (x) = a*,a > 0 e a # 1, denomina-se fun¢do
exponencial de base a.

Sejam a > 0, b > 0, x e y reais quaisquer; provaremos no Apéndice 2 as seguintes
propriedades:

(1) a*@ =a* .
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(2) (@ = av.

(3) (ab)* = a*b".
(4)Sea>1ex<y,entao a* < @.
(5)Se0<a<1lex<y,entdo a* > @.

A propriedade (4) conta-nos que a funcdo exponencial f (x) = a*, a > 1, é
estritamente crescente em R. A (5) conta-nos que f (x) = a*, 0 < a < 1, é estritamente
decrescente em R.

O grafico de f (x) = a@* tem o seguinte aspecto:

v L |

a =] O=a-=

__/] I\

EXEMPLO 1. Avalie 2«-"2 ,

Solugdo

Como f(x) = 2*é continuaem y = /2
a= 2 =2%=2V2

De |2 = 14142 segue2v2 = 214142 = 5 ¢¢5

Como 14142 < 42, resulta que 2"*** é uma aproximagdo por falta de
22, m

EXEMPLO 2. Esboce o grafico de
a) f(x) =2~

Fy 5 X

b)fx) = [%J

Solucgdo

164



ayl x | 2* v i
ol 1 4p=——— -

i ]

-1| 2 I

1| 2 :

2| 4 |

-2| 1 2 :

+ I i

1 ! l

I I

T . 2 1 -
-2 =1 1 2 X
Y| x | (1)
ol 1
1
1 3
— | B
1
2| 3
iy | i
-
X

A funcdo exponencial de base e (e = 2,718 281), f (x) = €*, desempenharda um
papel bastante importante em todo o nosso curso. Como e > 1, o grafico de f (x) = e*
tem o seguinte aspecto

v
fx)=¢€*
1
/ X
X
|
EXEMPLO 3. Suponha a > 1. Verifique que
a) lim a* =+, by lim a* = 0.
X —+w X — —mw

Solucgdo
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a) Ja vimos (Exemplo 8 da Secdo 4.3) que

lim a" =+,
n—t+w

Assim, dado € > 0 existe um natural n, tal que
nxn,=a">e.
Como a” é crescente (a > 1), resulta

X>ny=a">¢€

logo
lim a' =+,
X — t+w
: ! : - : 1
by lim ¢g'*'= lim a*= lim —=0.
X — —m — +m= u—+o gt
Exercicios 6.1
1. Calcule.
a) lim 3% by lim 5%
X — t+w X — —mw
c)  lim et d)y lm (0,13
X— —w r—tw
1— 24
) lim f lim —
X — +oo x—>4w 1 — o
g) lim hy: lim: [2F 2%
X — 4w X— t+w
i) lim B ok [
X — — X —» —om

2. Esboce o grafico.

a) f(x)=3"

b) g(x) = (0,12)*
) f(x)=e™

d) gx)=1+e™
e) f(x)=—e*

N gx)=1-e*
9 fx)=e+e*
h) g(x)=e™*senx
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D fey=e"
1)) g(x)=e_x2

6.2. LOGARITMO

Teorema. Sejam a > 0, a # 1, e B > 0 dois reais quaisquer. Entdo existe um
unico y real tal que

a’ =p.

Demonstragdo

. . 3 X = y 1 X =
Suponhamos, primeiro, a > 1. Como lim a* =+« e lim a* =0, segue
X =+ X——®

que existem reais u e v, com u < v, tais que
a‘<p<a.

Como f (x) = a@* é continua no intervalo fechado [u, v], segue do teorema do valor
intermediario que existe y em [u, v] tal que

fly) =B oua"=p.

A unicidade de y segue do fato de f ser estritamente crescente.
O caso 0 < a < 1 deixamos a seu cargo. &

Sejam a > 0, a # 1, e B > 0 dois reais quaisquer. O tinico nimero real y tal que

a=p

denomina-se logaritmo de B na base a e indica-se por y = log, 3. Assim

y=log,p=d=p

Observe: log, B somente esta definido para$ > 0,a>0ea # 1.

EXEMPLO 1. Calcule.

a) log, 4

b) log,

bd | =
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c)log: 1

Solugdo

a)x=log, 4 2*=4=x=2.Logo

log, 4 = 2.
1 M _
byx=log, —=2"= - & x= —1.Logo
= 2 2 |
logy, — = —1.
3

c)log:1=0,pois5°=1.m
Observagdo importante

a'=p=y=log,p

assim

a°tqa P =p

O logaritmo de [ na base a é o expoente que se deve atribuir a base a para reproduzir

B.

O logaritmo na base e € indicado por In, assim, In = log,. Temos entdao
y=Ilnxee =x.

Da observacao acima, segue que, para todo x > 0,

enx = x.

Sejama > 0,a# 1,b>0,b # 1, a > 0 e B > 0 reais quaisquer. Sdo validas as
seguintes propriedades:

(1) log, a g =log, a + log, B.

(2) log, o = B log, a.

(3) log, % = log, a — log, B.
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(4) (Mudanga de base)

log), o
log, a = i i
L log;, a

(5) Sea>1ea<p,entdo log, a <log,f.
(6) Se0 <a<1ea<}p, entdolog, a > log, S.

Vamos demonstrar (1), e as demais ficam a seu cargo.
Demonstragdo de (1).

X=log,a = a=ad"
Y=log,f=p=a"

Assim, a B = a*a’; pela propriedade (1) das poténcias com expoentes reais, a*a’ =

X+ Y. segue que

a
af=a*"YouX+Y=log,ap.
Portanto,

log, o + log, B =1log,a . m

Sejaa > 0, a # 1. A funcao f dada por f (x) = log, x, x > 0, denomina-se fungdo
logaritmica de base a.

A propriedade (5) conta-nos que se a > 1, a funcado logaritmica f (x) = log, x, x > 0,
é estritamente crescente. Da propriedade (6) segue que se 0 < a < 1, a funcdo
logaritmica f (x) = log, x, x > 0, é estritamente decrescente.

EXEMPLO 2. Esboce o grafico

a) f (x) = log, x.

b)f(x) = log x.

Solucgdo

a) Dominiode f={x € R | x> 0}.
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x log, x Y4
1 0
1
3 -1
2 1
1 —
3 2
4 2
b) D; =10, +oc].
x Ioglx Y4
2
1 0 2t
2 || = ;
1 14
3 ! :
4 -2 H
1 1 -
3 2 z g
1 -
e, o T R SRR i on,

EXEMPLO 3. Suponha a > 1. Calcule e justifique.

a) lim log x. by lim Jog x.
r— += ga )x—>{f}+ gﬂ
Solugdo

x|l a a* & .. = +=
a) log, x | i & B - too

Se o limite existir, devera ser igual a +oo:

lim log, x = +.
X—+w

Justificagdo (por € e §)

Dado € > 0, precisamos encontrar § > 0 tal que x > § = log, x > €.
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Tomando-se § = a¢

x>§=x>a"=log, x> €.

A}
Iogax

=Y

Portanto,

lim  log,
X—+w

x=++w(a>1).

b) Vamos mostrar que

lim log_ x=

| loggx = —0 (veja o grafico anterior).
x—=0

De fato,

lim log,x= lim

log, —= lm —log,u= —x
x=0F

Sa
H—t+w i H— tw

pois, lim log u = +cc,
U — +w

Deixamos a seu cargo a prova de que f (x) = log, x é continua.

Exercicios 6.2

1. Calcule.

a) log,, 100
b) log 16

)

i

c) logq -\-"rq

)

d) logg V3
e) log,, 1
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f) logs (=5)
g)log,1(@a>0ea#1)
h) log, 243

Determine o dominio.
a) f(x) =log, (x + 1)
b)g(x) =In(x* - 1)
c)g (x) =1In(=x)

d) f (x) = logs | x|
x+1

xr—1

€) f(x)=In

g () =log,3

Ache o dominio e esboce o grafico.
a) f (x) = logz x
b)g (x) =Inx

c) flx)=logy x
5

d)gx)=In(x-1)
e) f(x) =1In(=x)
Hg()=In|x]|
g9f(x)=[Inx|
h)yg () =|In|x]|
Calcule.

a) lim logyx
X — t+w

¢y lim Inx
x—=0F
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)

)

d)

lim
r—= 0t

lim
X— 4w

log| x

In

3

X

x+1



)

; . X —]
e) lm [In(2x+ 1)— In(x + 3)] fH lim In ——

X — +ow x—1 x—1

g) lim [xIn2—1In(3" + 1)]

X — o

6.3. O LIMITE X

lim |1+ l

X —+x X

M

'
Ja provamos que a sequéncia de termo geral a, = [ 1 + — | converge para o

\ ./
numero e (veja 4.5), isto é,

lim Ll + —J =e
n— o n
Vamos provar, agora, que
/ %"
lim L] + —J —
X —+w X

Sejam n > 0 um natural qualquer e x > 0 um real qualquer.

1 1 1 1 1 1
nEx<ntl=s—=2—> = IR e B e B
n x n+l n . n+1
dai
P ]wr+] ¢ 1\* 1 R
1'?51{!?4‘1:?[14-—] = ]+_J el ‘
\ nJ % n+1
ou seja,
Iy " - \ X i n+1
@ ns.:__w:n+1:~tl+i] ”H::-LHLJ s[4 —= ] Akl
iy i X n+1 n+2
li 1V n+1 i 1 Y a4
Como lmm[]+—] = lmm(l+ g = ¢, seguede e
W n! n L n+1 n+2 giedeD g
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: / x
EXEMPLO 1. Verifique que . 1M [1 + l} = e.

X — —w
X

Solugdo

Fazendo x = —(t + 1), t > 0, vem

4 X
L1+l] = [1——1
X 1+t

Para x — —oo,t — +oo, assim

4 1 X g l\ur .F+ ]
lim L1+—] = lim [l1+-| —=e.
X — —> X P — 4o Iy, i
EXEMPLO 2. Verifique que
il 1
a) lim (1+ hh =€ by Ilim 1+ hh =e.
h— ot h—=0"

Solugdo

a) Fazendo 1 = l (h—0"=x - +90) vem
2

L i 1 X
lim (1+mMh = lim Ll + —] = e,
h— 0t x — +ow

b) Faca voce.

Segue do Exemplo 2 que

[

lim (1 + h)F = g.
h—0

h _
EXEMPLO 3. Mostre que [im £o L —1.

h—=0

Solucgdo
Fazendou=¢e"-1ouh=1In(1+ u) vem
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el —1 "

h In(+u)

l

In (1 + u)u

(h = 0=u — 0); assim

Exercicios 6.3

1.

el —1 1

lim = lim i
h—10 h u—0 poni In e
In(1+ u)u
Calcule.
- X
q) lim [1 3 :]
X — 4= X
ra ] X
c)  lim [ 1+ —W
X — 4o\ 2x )
e,
el lim
x—=+4w | x4+ 1

1
g) lim {]—|—2_1{'}?

xr—=0

Sejaa > 0, a # 1. Mostre que

. a —1
lim = In a.
h—0 h
Calcule.
)
a) lim e
xr—0 x
) lim = et
xr—0 R

b

d)

b

d)

lim

X — +w

lim

X — +w

lim
r— 0

lim
r—= 0t

1 lim (1 + )"

xr—=0
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7

DERIVADAS

7.1. INTRODUCAO

Sejam fuma funcgdo e p um ponto de seu dominio. Limites do tipo

lim f(x)— F(p)
X—p xX—p

ocorrem de modo natural tanto na geometria como na fisica.

Consideremos, por exemplo, o problema de definir reta tangente ao grafico de f no
ponto (p, f (p)). Evidentemente, tal reta deve passar pelo ponto (p, f (p)); assim a reta
tangente fica determinada se dissermos qual deve ser seu coeficiente angular.
Consideremos, entdo, a reta sx que passa pelos pontos (p, f (p)) e (x, f (x)).

Coeficiente angular de s, = m;’%;[m

Quando x tende a p, o coeficiente angular de sx tende a ' (p), onde

Fpy= tim L2 =IP)

X—p X—p

Observe que f(p) (leia: f linha de p) é apenas uma nota¢do para indicar o valor do
limite acima. Assim, a medida que x vai se aproximando de p, a reta s, vai tendendo

para a posicao da reta T de equacao

© ¥—HPl = APy =g
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E natural, entdo, definir a reta tangente em (p, f (p)) como a reta de equacdo .

Suponhamos, agora, que s = f (t) seja a equacdo horaria do movimento de uma
particula vinculada a uma reta orientada na qual se escolheu uma origem. Isto significa
dizer que a funcao f fornece a cada instante a abscissa ocupada pela particula na reta. A
velocidade média da particula entre os instantes ¢, e t é definida pelo quociente

) — f(tg)
I—1p .

A velocidade (instantanea) da particula no instante ¢, é definida como o limite

V(fg) = lim AU f“ﬂ}.

Esses exemplos sdo suficientes para levar-nos a estudar de modo puramente

: X)= »
abstrato as propriedades do limite lim Fx =1 p) :
X—=p X—p

7.2. DERIVADA DE UMA FUNCAO

Definicdo. Sejam f uma funcao e p um ponto de seu dominio. O limite

lim S(x)— f(p)
X—p X—p

quando existe e é finito, denomina-se derivada de f em p e indica-se por f (p)
(leia: f linha de p). Assim

fip)= tim LD =SP)
X—p X—p

Se f admite derivada em p, entdo diremos que f é derivavel ou diferencidvel em p.

Dizemos que f € derivavel ou diferencidvel em A C Dy se f for derivavel em cada p
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€ A. Diremos, simplesmente, que f é uma funcdo derivavel ou diferenciavel se f for
derivavel em cada ponto de seu dominio.

Observacao. Segue das propriedades dos limites que

f(x)— f(p) _ lim fi(p+ h‘r—f(p}_

lim
xX—=p xX—p h—=0 h
Assim
)= o R = Fl]
Fipy=Tim L E TP simy= iy LO@THDZ D)

rT—=p xX—p h—0 h

Conforme vimos na introducao, a reta de equagao

y=f@=f®) x-p)

é, por definicdo, a reta tangente ao grafico de f no ponto (p, f (p)). Assim, a derivada
de f, em p, é o coeficiente angular da reta tangente ao grdfico de f no ponto de
abscissa p.

EXEMPLO 1. Seja f (x) = x°. Calcule.

a) f(1)

b) f(x)

) f(=3).

Solucgdo

e g AT g B s e,

x—1 < ol x=l x—1  x51
Assim
f(1)=2.

(A derivada de f (x) =x*>, em p = 1, é igual a 2.)

b)f'(x) = lim ST~ J) o gy EF ) i
% h—0 h h=0 h '

Como
(x + h)? — x2 _ 2xh+ h?
h h

=2x+h, h#0
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segue que
f'(x)= lim (2x + h) = 2x.

h—0

Portanto,

fe)=x"=f(x)=2x.

Observe que f(x) = 2x é uma férmula que nos fornece a derivada de f (x) = x°>, em
todo x real.

c) Segue de (b) que
f(-3)=2(-3)=-6. =

EXEMPLO 2. Seja f (x) = x*. Determine a equacéo da reta tangente ao grafico de fno
ponto

a) (1, f(1)).
b) (=1, f (=1)).

Solugdo

a) A equacao da reta tangente em (1, f (1)) é

) y—fM)=f'M@—1
[f)=12=1

Py

{f’(p) = 2p (Exemplo 1, item b) = f'(1) = 2

y=2x -1

=Y

substituindo em O vem
y—-1=2(x-1)ouy=2x—-1.

Assim y = 2x — 1 é a equacdo da reta tangente ao grafico de f (x) = x°, no ponto (1, f
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(1)

b) A equacao da reta tangente em (-1, f(—1)) é
y=fED =) (x=(-1)
ou
y=fCED=fD) x+1)
[ F-D=(1?=1
L"{p) =2p= f'(-1)=-2
substituindo estes valores na equagao vem
y—-1=-2(x+1ouy=-2x-1

que é a equacao da reta tangente pedida. =

EXEMPLO 3. Seja f (x) = k uma funcao constante. Mostre que f'(x) = 0 para todo x.
(A derivada de uma constante € zero.)

Solugdo

#(x)= lim Flx+hy— fx)
T h—0 h '

Como f (x) = k para todo x, resulta f (x + h) = k para todo x e todo h, assim

F(x)y= lim = lim 0=0. 8
h—0 h h—0

EXEMPLO 4. Seja f (x) = x. Prove que f(x) = 1, para todo x.

Solucgdo

(x+ 1) — f(x +h—.
f'(x)= lim SETR T J &) lim 2~ cim
h—=0 h h—=0 h

I

Assim:

f=x=fx)=1. =

EXEMPLO 5. Seja f(x) = +/x. Calcule f(2).
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Solugdo

fx)—f(2) _ lim Vx =2 _

(2)= lim

j() x—2 x—2 x—2 x—2
Assim:

f2)= lim —— Y%~ *‘,1'2 — = lim — ' : 1,. ,
x=2 (Wx —+42)(Wx +4/2) =2 x 42 242
isto é,
|
.1'{‘2 - :
=775

EXEMPLO 6. Seja

5 ]
¥“sen—sex#F0
X

fix)=
0 se x = 0.

Calcule, caso exista, f(0).

Solugdo

=70 5 _ X sen l x#0.
x—20 - X

Assim,

0 limitada

U A b RS /{seni‘;zo.

0 x—0 x =1 X

—

P

Logo, f'(0) existee f(0)=0. =

EXEMPLO 7. Mostre que f (x) = | x | ndo é derivavel em p = 0.

Solucgdo

Flx)— i) _ |x| _[ 1se x>0
x—20 X —1se x<<0

dai
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fO=FO _ o oy SO =fO) _

.1'—>ﬂ+ x:—:A x—=0 x—0

|

e ey {4}

logo, Iim{:r B ndo existe, ou seja, f ndo é derivavel em 0. Como f(0) nao
X — b e
existe, o grafico de f (x) = | x | ndo admite reta tangente em (0, f (0)).

Sejam f uma funcao e (p, f (p)) um ponto de seu grafico. Seja s, a reta que passa
pelos pontos (p, f (p)) e (x, f (x)). Se f(p) existir, entdo o grafico de f admitira reta
tangente T em (p, f (p)); neste caso, a medida que x se aproxima de p, quer pela direita,
quer pela esquerda (s6 pela direita, se f ndo estiver definida a esquerda de p; sé pela
esquerda, se f ndo estiver definida a direita de p), a reta s, tendera para a posicao da
reta T.

[ O A .

Por outro lado, se, a medida que x tender a p pela direita, s, se aproximar da
posicdo de uma reta T; e se a medida que x se aproximar de p pela esquerda, s, se
aproximar da posicdao de uma outra reta T,, T, # T,, entao o grafico de f ndo admitira
reta tangente em (p, f (p)), ou seja, f'(p) ndo existira.

fndo € derivavel em p.
O grafico de fapresenta “bico” em
(p. f(p)).

O préximo exemplo destaca uma propriedade importante da reta tangente. ™
EXEMPLO 8. Suponha f derivavel em p e seja p (x), x € Dye x # p, dada por

fG)=Ff@)*+ @) (x—p)+p ) (x—p).

Mostre que
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lim p(x)=0.

X —=p

Solugdo
- fixl = fip)— [ tp)ix = p‘r‘l o
X =Pp
Dai
lim p(x)= lim AC R A V), — e |
X—p X—p X—p
De lim S = 7P _ 1'(p). segue
X—=p X—p
lim p(x)=0.
X —p

Observacdo. Se definirmos p (p) = 0, a igualdade que aparece no Exemplo 8 sera
valida em x = p e a fungdo p (x) tornar-se-a continua em p.
Facamos no exemplo anterior E (x) = p (x) (x — p). Entdo, E (x) sera o erro que se

comete na aproximacao de f pela reta tangente em (p, f (p)).
f

ya

Quando x tende a p, evidentemente E (x) tende a zero. O Exemplo 8 nos diz mais:
nos diz que quando x tende a p o erro E (x) tende a zero mais rapidamente que x — p,
isto é,

; E (x)
lim =
x—=>pX—p

0. ]

Fica para o leitor verificar que, entre todas as retas que passam por (p, f (p)), a reta
tangente em (p, f (p)) é a tinica que aproxima f (x) de modo que o erro tenda a zero
mais rapidamente que x — p. (Sugestdo: Suponha que E (x) seja o erro que se comete
na aproximacao de f pela reta passando por (p, f (p)), com coeficiente angular m # f
(p), e calcule o limite acima.)
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Exercicios 7.2

1. Sejaf(x)=x>+1. Calcule
a) f(1)

b) f(0)
) ()

2. Sejaf(x) = 2x. Pensando geometricamente, qual o valor que vocé espera para

f (p)? Calcule f(p).
3. Sejaf(x)=3x+ 2. Calcule
a) ()

b) f(0)
) f(x)

4. Calcule f (p), pela definicao, sendo dados

.
ajfixy=x"+xep=1

b)fix) = \,T e p=4

l
c)fixy=5x—3 e p=-3 difixy=—ep=1
x
— - l
eifixy=Jxep=3 Nfx)= — ep=2
x-
3 2 2
gifix)y=2x —x" e p=1 Mfixy=3xep=2

5. Determine a equacdo da reta tangente em (p, f (p)) sendo dados

n
ayfix)y=x"ep=12
clfix) = Jx e p=9

6. Calcule f(x), pela definicao.

l
b)f(x}= —ep=12
X

dyfix)= e —xep=1

ajfix) = P By fix)y=3x — 1
1 l
o) f(x) = x d) f(x) = —
X

el flx) = 5x ffixy=10

x 1

1fix) = —— hfixy=

g f — fix) 2

Dé exemplo (por meio de um grafico) de uma funcao f, definida e derivavel
em R, tal que f (1) = 0.

Dé exemplo (por meio de um grafico) de uma funcao f, definida e derivavel
em R, tal que f(x) > 0 para todo x.
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g Dé exemplo (por meio de um grafico) de uma func@o f, definida e derivavel
" emR,tal quef (0) <f (D).

10. Dé exemplo (por meio de um grafico) de uma funcao f, definida e continua
em R, tal que f (1) ndo exista.

11. Dé exemplo (por meio de um grafico) de uma funcgao f, definida e derivavel
em R, tal que f(x) >0 parax<1lef(x) <0 parax> 1.

12. Dé exemplo (por meio de um grafico) de uma funcao f, definida e derivavel
em R, tal que f(x) >0 parax <0, f(x) <OparaO<x<2ef(x)>0parax>2.

13. Dé exemplo (por meio de um grafico) de uma funcao f, definida e derivavel
em R, talquef (0)=0ef (1)=0.

14. Mostre que a funcao

ndo é derivavel em p = 1. Esboce o grafico de g.

i )
xc+2 s x<1

15. Seia Bla)=
Ja gt 2x+1 ‘se xz=1

a) Mostre que g é derivavel em p = 1 e calcule g’ (1).
b) Esboce o grafico de g.

- ' -
Sejaf{‘{} J x..\ se x =10
2 +

2rex<l
a) Esboce o grafico de f.
b) fé derivavel em p = 0? Em caso afirmativo, calcule f' (0).

x+1se x< I
—x+3se x =1

17. Seja g(x) = {

a) Esboce o grafico de g.
b) g é derivavel em p = 1? Por qué?
18. Construa uma funcdo f: R - R que seja continua em R e que seja derivavel
em todos os pontos, exceto em —1, 0 e 1.

19. Construa uma fungao f: R — R que seja continua em R e derivavel em todos
0s pontos, exceto NOs nUmeros inteiros.

7.3. DERIVADASDE Y e M/x
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Teorema. Seja n # 0 um natural. Sdo validas as formulas de derivacao:

a)f(x)=x"=f(x)=nx"""
b)f)=x"=f(x)=-nx""', x#0.
| l
Of=xm= o)=L xn"
i

.em que x > 0 se n for par e x # 0 se n for

impar (n = 2).

Demonstragdo

; _|_ n b H
S = i S
h—0 h

Fazendo x + h=t (t - x quando h - 0) vem

. . ‘1’-” o H .
flx)= lim — = = lim [~ 14— 2x 4+ 3x2 4 . +x"- 1]
t—x —X t— x ™ g

n parcelas

Assim,
Pl =aa® L o Ayl of £
n pa;celas
ou seja
feo=x"""
i
B Tin LS a8 g, SO,
7 h=0 h h— 0 h (x+ h)ytxn”
: x+ A" - x" ; | 1
Por (a), lim ( ) =nx"~!. Como lim =t
h—0 h h—0 (x+ h)" x™ S s
resulta
' N S 1 _ —n—1
ffx)=—n"" "+ —— = —mx
h ).""H
Portanto,

f)=x"=f(x)=-nx""1,

1
c)f(x)y= xn = % x . Temos
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. Bx+h—%x . Wt —tx
f'(x) = lim -~ = T %
h—0 h t—x =X

Fazendoy =%t e v="4x (t—x = u— v)resulta

H—V 1 1

fr(*ﬂ' = uli_l;nll uht — pn - ““_[)n\, ut — " - pyn—1°
U=
Assim, para x # 0 e x no dominio de f,
: 1
Filx)=
n’ [xn—1
ou seja
, { ey
Ty
n
EXEMPLO 1. Seja f (x) = x*. Calcule.
a) f(x)
b ()
5
Solugdo
a)f(x) =x*=f(x) =4x* "1, ou seja,
f(x) = 4x°.
1. 1y
b) Como f'(x) = 4x>, segue Jf _J = L_J ou seja,
Rl 2
el LY A
] |'~'2f| a 2

EXEMPLO 2. Seja f (x) = X°.

a) Calcule f'(x).
b) Determine a equacdo da reta tangente ao grafico de f no ponto de abscissa 1.
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Solugdo

a) Como f (x) = x>, segue f(x) = 3x%
b) A equacdo da reta tangente no ponto de abscissa 1 é

y-f@Q =) x-1)
[ Fly=1%=1
U’m =3x2 = f' (D=3
Assim,y —1=3(x— 1) ouy = 3x — 2 é a equacao da reta tangente no ponto (1, f

(1)). =

EXEMPLO 3. Calcule f'(x) sendo

a) f(x)=x".
|
b f(x) = —
) (x) =
Solugdo

a)f(x)=x°=f(x)=-3x>"1=-3x*% assim, f(x) = -3x*.

byfix)= Lq — _1'_5; assim f'(x) = —5: % ou seja, ['(x) = —iﬁ. ©
x2 X

EXEMPLO 4. Seja f(x) = +/x. Calcule

a) f(x)
b) f(3).
Solucgdo

e, e gt el oo i
a)f(x)y=+x = x2 =f [.1]—5_1~ —?,1 2

1 -
Como ?,1' 2= TS = Wk segue que f(x) = "W
: I
L s, N e aq F1i3y) =

by De f'(x) o resulta f'(3) TR =

EXEMPLO 5. Determine a equacdo da reta tangente ao grafico de f(x) = 3x no
ponto de abscissa 8.
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Solugdo
A equacgdo da reta tangente no ponto de abscissa 8 é

y-f@®=f(8)(x-8)

Jﬂm=%3=z
2
L/ 1 1 1

2 — = f(8)=—
3 33/ x2 g 12

Assim, y — 2 = 5 (x —8)ouy= % x + % € a equacdo da reta tangente ao

grafico de f(x) = %/x noponto (8,2). m

Exercicios 7.3

1. Sejaf(x)=x". Calcule

a) f(x)
b) f(0)
c) f(2

2. Calcule g'(x) sendo g dada por

a gx)=x°
b) g = %100
c) gix) =%

d) gx=x°
e)gix)= L

3
X

1
x'
9 g=x
h) gx=x7
1
3. Determine a equacdo da reta tangente ao grafico de f(x) = — no ponto de

X
abscissa 2. Esboce os graficos de f e da reta tangente.

. ~ - 1
4 Determine a equacdo da reta tangente ao grafico de f(x) = —- no ponto de
xE
abscissa 1. Esboce os graficos de f e da reta tangente.
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5. Seja f(x) = 5/, Calcule.

a) f(x)
b) f(1)
c) f(=32)

6. Calcule g'(x), sendo g dada por

a)g (x)= 4x byg(x) = {x

g =8x g = Yx

7. Determine a equagdo da reta tangente ao gréfico de f(y) = 3/x no ponto de
abscissa 1. Esboce os graficos de f e da reta tangente.

. e : 1 .
Seja r a reta tangente ao grafico de f(x) = — no ponto de abscissa p.
X
Verifique que r intercepta o eixo x no ponto de abscissa 2p.

9. Determine a reta que é tangente ao grafico de f (x) = x* e pararela a reta y = 4x
+ 2.

7.4. DERIVADAS DE e* e In x

Teorema. Sao validas as férmulas de derivacao

a)fx)=e'=fx)=¢.

hgx)y=lhx=g'(x) = l e ¥ |
X

Demonstragdo
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, . eXth _px : el -1 . : . el —1
a) f'ix) = lim —— = lim e* - =¢¥ pois, lim =1
h—0 h h— 0 h h—»0 h

(Exemplo 3-6.3).

x+ — Y
b)g'(x) = lim In (x + k) ln,r= lim lln( h
h—=0 h h—=0h
{ h\
[0=2)
1, X J

1 l
= lim In(l1+ w)* = lim lInu[l + w)u =l
w—s 0 u—0 X X

l
pois, lim (1+ u)# = e (Exemplo 2-6.3).

w—0

(E.l'\l'.l' - P.‘J.'

(Inx)' = l x>0

"

Exercicios 7.4

1. Determine a equacdo da reta tangente ao grafico de f (x) = ¢* no ponto de
abscissa 0.

2. Determine a equacdo da reta tangente ao grafico de f (x) = In x no ponto de
abscissa 1. Esboce os gréficos de f e da reta tangente.

3. Sejaf(x)=a*, emquea>0ea#1éumreal dado. Mostre que f(x) = a*In a.

4. Calcule f(x).

a) f(x)=2"
b) f(x)=5"
) f(x)=m
d) f(x)=e"

5. Seja g (x) = log, x, em que a > 0 e a # 1 é constante. Mostre que

g'(x)= ;
xlna

6. Calcule g'(x)

a) g (x) =log;x
b) g (x) =logsx
c) g x) =logx
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d) gx) =Inx

7.5. DERIVADAS DAS FUNCOES TRIGONOMETRICAS

Teorema. Sao validas as férmulas de derivacao.

a) sen'x = cos X.

b) cos'x = —sen x.

C) tg'x = sec® x.

d) sec'x = sec x tg x.

e) cotg'x = —cosec? x.

f) cosec’x = —cosec x cotg x.

Demonstragdo
> h 2x + h
' . sen (x + h) —sen x ) SEn = cos ————
a)sen'x = lim = s
h—0 h h—0 h
sen i
. 2 2x+h
= lim COS = COS X.
h—so N
2
. h 2x+ h
cos (x + h) —cos x —2 sent — sen ———
bycos'y = lim : = T
=0 h fh—=0 h
h
ST ox+h
= lim — o sen = —sen x.
h—0 o 2
2

: : te(x+h) —tg x
c) tg’x= lim = )~ 8 :
h—0 h

Fazendot=x+ h (t = xquando h — 0)
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sen ! sen X

: : tef — 1o x ) cost Ccos X
te'x = lim EETRE lim
t—ax I—Xx t—=x L= X

sen f cos x —sen x cosf 1

t—ox F—x COs I Ccos X
, . sen f cOs X — sen X cos t sen (t — x)
Como lim = lim ——~=1e
t—ax I—=x t—x
. 1 1 2
lim = —— = sec” x, resulta
t—>x COS1COSX CcOs~ X
tg'x = sec” x.

(d), (e) e (f) ficam a seu cargo. ™

Exercicios 7.5

1. Sejaf(x) = sen x. Calcule.

a) f()

b) ' [%w

s

2. Determine a equacgdo da reta tangente ao grafico de f (x) = sen x no ponto de
abscissa 0.

3. Sejaf(x) = cos x. Calcule.

a) f(x)
by f(0)
or (2
i T i
d f |f1|
4. Calcule f(x) sendo
a) f(x)=tgx

b) f(x)=secx
5. Determine a equacdo da reta tangente ao grafico de f (x) = tg x no ponto de
abscissa 0.

6. Sejaf(x) = cotg x. Calcule.
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a) f(x)

or(3)
4

7. Seja g (x) = cosec x. Calcule.
a) g'x)
» o)
R W,

7.6. DERIVABILIDADE E CONTINUIDADE

A funcdo f (x) = | x | ndo é derivdvel em p = 0 (Exemplo 7-7.2); entretanto, esta
funcdo é continua em p = 0, o que nos mostra que uma fungdo pode ser continua em
um ponto sem ser derivavel neste ponto.

yi

Fixy=1xl f(x) = | x| é continua em 0,
mas ndo é derivdavel em ().

=Y

Deste modo, continuidade ndo implica derivabilidade.
Entretanto, derivabilidade implica continuidade, como mostra o seguinte teorema.

Teorema. Se f for derivavel em p, entdo f sera continua em p.

Demonstragdo

Pela hipotese, f é derivavel em p, logo lim J (x}: — /() existe e é igual a f'(p).

X—=p X—p
Precisamos provar que f é continua em p, isto é, que lim f(x) = f(p). Temos
X—=p
. (x)— f(p)
f(x)—j{p)=f J(p (x — pl.x ¥ p,
X:—:p
dali,
lim [f)—fl= lim L 7SP e —py=fp)-0=0
X—p xX—p xX—p X—p
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ou seja,

lim [f(x) —f(p] =0

X —=p

e, portanto,

lim f(x) =f(p). i

X —=p

Observacao. Segue do teorema que, se f ndo for continua em p, entdo f nao podera ser
derivavel em p.

x? sex=1
EXEMPLO 1. A funcédo f(x) = é derivavel em p = 1? Por quée?

2 se x>1

Solugdo

f ndo é continua em 1, pois lilTll+ f(x) = 2 ¢ diferente de “ml_ f(x)=1.Como f
X — X —

ndo é continua em 1, segue que f ndo é derivdvelem 1. =

x2 se x=1
EXEMPLO 2. Seja f(x) = «
1 se x>=1

a) fé continuaem 1?
b) fé diferenciavel em 1?
Solugdo

a) lim f(x)= lim f(x)=1=f(l).logo, fé continua em 1.

x—= 1 x—1

b) Como fé continua em 1, f podera ser derivavel ou ndo em 1. Temos

x2 —1
se x <1
Fey—apm _ | =0
x—1
0 se x > 1.

Assim,
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im TP 7IO _ge i IPTID oy 1) =2
x—= 1t ] X\}_ 1 1 x—= 1" Xl x—=1—
logo, lim % ndo existe, ou seja, f ndo é derivdvel em 1.
r—1 x—
Al

fé€ continua em 1, mas ndo € derivavel
neste ponto; o grafico de f apresenta um
“bico”™ no ponto (1, f(1)).

La |
J:r sex =1

EXEMPLO 3. Seja f(x) = 550 enst

a) f é derivavel em 1?
b) f é continua em 1?

Solugdo
il _] se x <1
. ca x —
a) fx)—fFQ) _
x—1
2 se x > 1.

lim SfX)—fQD) = lim f)-FQ) =2

x>t x—1 xr—=1" x—1
Logo, f é derivavel em 1 e f(1) = 2.

b) Como f é derivavel em 1, segue que f é continuaem 1. =

Exercicios 7.6

1. (x +1 se x <2
Seja f(x) =

1 se x = 2

a) fé continua em 2? Por qué?
b) fé derivavel em 2? Por qué?
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Seja f(x) =
—x2sex>0
a) féderivavel em 0? Justifique.
b) fé continua em 07? Justifique.

3. [—x g s B e
Seja f(x) = - :
[ x=38e x=3

a) fé derivavel em 3? Justifique.
b) fé continua em 3? Justifique.

7.7. REGRAS DE DERIVACAO

Teorema 1. Sejam f e g derivaveis em p e seja k uma constante. Entdo as
funcdes f + g, kf e f - g sdo derivaveis em p e tém-se

DD (F+9'P) =)+ g®).
(D2) (k) (p) = Kf (p)-
D3)(f-9@) =1 P®) 9@) +f®) g' ()

Demonstragdo

X))+ —If 4
(D (F+ 2)(p) = lim [f(x)+g(x)] —[f(p)+ g(p)]

X—p xX—p
o i [j‘(x}—j(phrg{x}—g{p}
x—=p X—=p xr—=p

(Em palavras: a derivada de uma soma é igual a soma das derivadas das parcelas.)

(D2) (kH'(p) = lim K@)~k _, - FlEy=Fim
Xx—=p r—=p —

= kf'(p).

xX—=p

(k) (p) = kf' (p).

(Em palavras: a derivada do produto de uma constante por uma fungdo é igual ao
produto da constante pela derivada da fungdo.)
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fFx)g(x)— f(p) g(p)

(D3) (f- g)'(p) = lim

X—p X —p
— lim 18~ f(p)g(x) + f(p) g(x) ~ F(p) 8(P)
X—=p xXx—p

L g {f{,ﬂ ~ P 4+ fpy- BR8P
Xx—=p X —pr X =

Observe que, pelo fato de g ser derivavel em p, g sera continua em p, e, assim,
lim g (x) = g(p).

X—p
(Em palavras: a derivada do produto de duas fungdes é igual a derivada da primeira
multiplicada pela segunda mais a primeira multiplicada pela derivada da
segunda.) =

Teorema 2. (Regra do quociente). Se f e g forem derivaveis em p e se g (p) # 0,

entdo — sera derivavel em p e
g

(D4) {i] (p)=
g

f'(p)etp)— f(pg(p)
[g(p)]?

(Em palavras: a derivada de um quociente é igual a derivada do numerador
multiplicado pelo denominador menos o numerador multiplicado pela derivada
do denominador, sobre o quadrado do denominador.)

Demonstragdo
f(x) _ f(p)
o o
Li} (p)= lim g(x) g(p) = Jim f(x) g(p)— f(p)g(x) 1 -
e . ¥ p x—p g(x) g(p)

Somando e subtraindo f(p) g (p) ao numerador resulta

Y 5 . _ 1
[ij ()= lim | LRI o ppy. ER 8@ | |
g X—p xX—p xX—p g(:ﬂg(_p)
e, portanto,
i _f(pegp)—fipgp
(p) . _
8 [g(p)]°
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(D) [f(x) + g (0] =f'(x) + g'(x).
(D2) [ &f (x) 1" = &f'(x).
D3)[f(x)g @) ] =f"(x)g(x)+ f(x)g'(x).

: (x (xyeixy— finelix
Lm}(j[ 1} I ACOF {0l 6N {C))
g(x) [g (x)]

Observacao. A notacao [f (x)]' é usada com frequéncia para indicar a derivada de f (x)
em Xx.

EXEMPLO 1. Seja f (x) = 4x> + x%. Calcule.

a) f ().
b) f (D).

Solugdo

2., (D1)

a)f'(x) = [4x° + ¥4 4y + ().

Pela (D2), (4x%) =4 - (x°) =4 - 3x* = 12x%.
Segue
f(x) = (4x%) + (x*) = 12x* + 2x,
ou seja,
f(x) = 12x> + 2x.
b) Como f(x) = 12x* + 2x, segue f(1) = 14. =
EXEMPLO 2. Calcule g'(x) em que g(x) = 5x* + 4.
Solucgdo
g'(x) = [6x* + 4] = (5x*) + (4)..

J4 vimos que a derivada de uma constante é zero, assim, (4)' = 0. Como (5x*)' =
20x° resulta

g(x)=20x’. m

EXEMPLO 3. Calcule f(x) em que: f(x) =
2
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Solugdo

Pela regra do quociente

r

£y = FT 3} _ @ty @D - pE bl
x°+1 o i i
Como
(2x+3) =2e(x*+1) =2

resulta

f'x) = 2(x% + l‘rj— {2xﬂ+ 3) 2x

(x< 4 1)<
ou
: —2x2 —6x+2
L

EXEMPLO 4. Seja f (x) = (3x* + 1) ¢*. Calcule f(x).
Solugdo
Pela regra do produto

PO =(Bx+ 1) e+ (3% + 1) (€)'

Como
(Bx*+ 1) =6xe (") =€
resulta
f(x)=6xe+ (3x*+1) &,
ou seja,

f)=Cx*+6x+1)e’. =

sen x
EXEMPLO 5. Seja /1 (x) = L Calcule h'(x).
X

Solucgdo

Pela regra do quociente
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= (sen x)' (x+1)—sen x(x+1) _ (cosx)(x+1)—senx

(x + 1)2 (x + 1)2
Assim,
+ SX — ¢
R (x) = £x ch:i:ﬂs,lrrJ sen x .
1)
EXEMPLO 6. Seja f (x) = x> + In x. Calcule f(x).
Solugdo
. 3 ; % : gy 1
FlO=x Finx) =) +{nx)=3x +—;
X
ou seja,
fix)= 3x° + l m

X

EXEMPLO 7. Sejam f, 5, ..., f,, n = 2, fungdes derivaveis em p. Prove, por indugao
finita, que f; + f, + ... + f, é derivavel em p e que

fLtht..+R®=fD+. +f@.

Solugdo

i) Para n = 2 é verdadeira (D1).
ii) Seja k > 2. De
fith+ . tfitfit1=lfi+fh+. +fl+fi;

segue que se a afirmacado for verdadeira para n = k também o serd paran=k+1. =

EXEMPLO 8. Calcule a derivada

a‘}f{x‘}=3x5+%x4+x+2. b)g(ﬂ:f-k L,J-I-,x
: X~
Solucgdo

¢ { "|'ll
a)f'(x) = [315 + %,ﬁ + x+ 2} = (3x0) + |%x4 |+ () +(2) = 15x* + %xf‘ +1.
- L R ) o

Assim,
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f1(x) = 154"

' 3 1 i ' , f ]
b)g'(x) = [r +—+ -m".tf} = (2 + | 4

X< X

ou seja,

4
+_

|+ (x)Y =2x- 24

]
x3 7. x-"',r i

2
'xX)=2x — —/+——.
i J-'g 24X
Exercicios 7.7
1. Calcule f'(x).
2 3, 2

ﬁ'}f{e\'} =3z 5 IE-"]'f'[J.'} =xr +x“+1
ey F(x):= 3 — 2% +4 d)f(x) =3x+ +/x
e f() =5+ 32 e =23x

1 4 5
gf@=3Ix+ — nfx)=—+—

X " x2

2 | P
DFf(x) =—x3 + —x2
f =~ A
| |
DFG) =2x+ — + —
X X~

PF@ =3x + Jx

m) f(x)= 6 + 3x

3 .
n)fx)= 5x* + bx® + ex? + k, em que b, ¢ e k silo constantes.

1 s
Sejag(x)= X + —. Determine a equacdo da reta tangente ao grafico de g no

ponto (1, g(1)).
Seja f(x) = 2+ l

X

a) Determine o ponto do grafico de f em que a reta tangente, neste ponto, seja
paralela ao eixo x.
b) Esboce o grafico de f.

4. Sejaf(x)=x>+3x*+1.

a) Estude o sinal de f'(x).
b) Calcule lim f(x) e lm jfix

X — oo X —» —o0
c) Utilizando as informacdes acima, faca um esboco do grafico de f.

5. Mesmo exercicio que o anterior, considerando a fungdo f (x) = x> + x*> — 5x.

6. Sejaf(x)=x>+3x.
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a) Determine a equacdo da reta tangente ao grafico de f no ponto de abscissa 0.
b) Estude o sinal de f(x).
c) Esboce o grafico de f.

7. Calcule F'(x) em que f (x) é igual a

X x< —1
{i‘} - I!I}_}
x= +1 xr+1
3x2 +3 Jx
1 —— d)
Sy —3 x+ 1
e X f 3
e)dx + ) A/ x + .
x— 1 x4+ 2
\ lh +x 5 x4+ '«tm
2 . 1) ———
' A X x2 +3
X
8. Seja £ (x) = —; .
2 il oil|

a) Determine os pontos do grafico de g em que as retas tangentes, nestes
pontos, sejam paralelas ao eixo x.

b) Estude o sinal de g'(x).

c) Calcule lm g(xje lm g(x)
X — oo X — —o0

d) Utilizando as informacGes acima, faca um esbog¢o do grafico de g.

9. Calcule f(x) em que f (x) é igual a
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a) sz + Scosx

C)xsenx

x +1
Z)

tg x
sec X
3x+ 2

g)

D A/x secx
[) x cotg x

2
n)x” + 3xtgx

xr+1

X sen X

P

r) {::'3 + +/x) cosec x

10. Seja f (x) = x* sen x + cos x. Calcule:

a) f()
b) f(0)
) f(3a)
d) f(x*)

11. Seja f(x) =sen x + cos x, 0 < x < 271

a) Estude o sinal de f(x).
b) Faca um esboco do grafico de f.

12. Calcule f(x).
a) f(x) = P
¢)f(x)=¢" cosx
e)f(x) = P lnx + 26"
gfx)=4+ 5x% In x
In x

D) = —

X
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-

b e ol |
d) .rg tg x
3

sen x + cos x

b

h)cos x + {.t2 + 1) senx

i 3ees:xt5cex
m) 4 sec x + cotg x
241

s¢C X

)

q)
COsSEC X

X + sen x

5)
X — Ccos X

b)f (x) =3x+5Inx

1+ et
dfx) = _
] s 'E?']'
x+ 1
Nfx) =
xInx
x
) = —
x=+1
..T
Nk =
NI xr+1



13. Sejam f, g e h funcdes derivaveis. Verifique que
[ () g(x) h ()] =Ff(x) g(x) h (x) + f(x) g'(x) h (x) + f (x) g(x) h'(x).
14. Calcule F'(x) sendo f (x) igual a

a) xe*cosxb)
b) x,(cosx)(1+1nx)

€) e*sen x cos x
d)(1+ yJx)e'tgx

7.8. FUNCAO DERIVADA E DERIVADAS DE ORDEM SUPERIOR

Sejam f uma fungdo e A o conjunto dos x para os quais f'(x) existe. A funcao f : A
— R dada por x ~ f(x), denomina-se fun¢do derivada ou, simplesmente, derivada de
f: diremos, ainda, que f' é a derivada de 1.® ordem de f. A derivada de 1. ordem de f é
também indicada por fV.

A derivada de f denomina-se derivada de 2. ordem de f e é indicada por f' ou por

@, assim, f' = (). De modo analogo, define-se as derivadas de ordens superiores a 2
de f.

EXEMPLO 1. Seja f (x) = 3x*> — 6x + 1. Determine f, f" e f"'.

Solugdo

f(x) =9x* - 6, para todo x; assim Dy = R.
f'(x) = 18x, para todo x; Dy = R.

f"(x) =18, paratodox; D, =R. m

N

x< se x=1
EXEMPLO 2. Seja f(x) = <
{ 1 sex>1

Esboce os graficos de fe f.

Solucgdo

Para x < 1, f (x) = X%, dai f(x) = 2x.
Parax>1,f(x) =1, daif(x) =0.

Em 1 devemos aplicar a definicdao (se vocé ja desenhou o grafico de f, deve estar
prevendo que f(1) ndo existe).
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2 _
=i se x <1 41 <1
f‘fﬂ_f“)= x—1 _ X se X
x—1 || -~
se x = 1 b ol
X —
dai
lim JFEy =k —0e lim b o el _ 9
x—=1F X x=1 |
Logo, fndo é derivavel em 1, isto é, f(1) ndo existe. Portanto
2x se x <1
= ; Dp =R—{1}.
0 se x>1
v v A
f :
'''' : :
I i r
| - '
1 X 1

Exercicios 7.8

1. Determine f,f'ef".

; 1
a) fix)y= :1_1'4 + 2x by fix)y= —
X
7 l
Ofx) =52 - — d) F(x) =3 — 6x + 1
x-
[.1.'3 + 3x se x =1
e)fix)y=xlxl HNrix)=
151‘—] se x =1

2. Esboce os graficos de f, f e f".
. ¥2 +3x se x=1
a)fix)=x" x| b) fix) =

S5x—1 se x=1

3. Determine a derivada de ordem n.
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a f(x)=e

b) f(x)=senx
c) f(x)=cosx
d) f(x)=Inx

7.9. NOTACOES PARA A DERIVADA

Frequentemente, usamos expressoes do tipo y = f (x), s = f(t), u = f(v) etc. para
indicar uma funcdo. Em y = f (x), y é a varidvel dependente e x a varidvel
independente; em s = f(t), s é a varidvel dependente e t a varidvel independente.

Se a funcdo vem dada por y = f (x), a notacdo, devida a Leibniz, j—l (leia: derivada

X
de y em relacdo a x) é usada para indicar a derivada de f em x: ? = f'(x). De
Y
acordo com a definicdo de derivada
dy im fix+ Ax) = fix)
dx Av— 0 Ax .

Observe que o simbolo Ax (leia: delta x) desempenha aqui o0 mesmo papel que o h

Flx=hYy— F1x)

em lim .Fazendo Ay = f (x + Ax) — f (x) resulta
h—=0 h
Y im A
dx Ar—0 Ax’
vi

Flx + Ax)

fx)

B

=y

dy
A notagcdao — é usada para indicar a derivada de y = f (x) em

dx|x = Xp
dy
X =Xg: — = f'(xg).
0" dxl|x = Xg T (%
Usaremos, ainda, a notacdo ;i para indicar a funcdo derivada de
X
Cdr ”
v=f(x): — =f".
S dx
: _ APV df o df
A derivada de y = f (x), em x, sera entao indicada por d_ x):f(x)= d_ (x).
X X
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Se a fungdo f for dada por s = f(t), as notacoes ? e ffi{r‘} serdo usadas para
I f
indicar f'(¢).

Pela definicdo de derivada

ds As
— = lim —.emque As =7+ A — F(D.
dt Ar—0 At A ! !

EXEMPLO 1. Seja y = 5x* + x. Calcule a derivada.

Solugdo

dy d 2

D LR+ D =63+ =158 + 2.

dx dx

Assim,

dv -
L A 15x% + 2x.
dx

] d - .
Observe que o simbolo = aplicado a 5x* + x* indica a derivada de 5x*> + x*, em
dx

relacdo a x. Da mesma forma, a notacdo (5x° + x°)' indica a derivada de 5x> + x°, em
relagao a x.

|
EXEMPLO 2. Calcule ﬁ sendo 5 = jﬁr‘ :
dt i< 41
Solugdo
ds _d [ 5t ‘ B ‘ 5t G2+ 1) =5t + 1y
t dr‘terr] 2+ (12 + 1)? |
ou seja,
ds _ 5-—5¢t2
d (12 +1)
y ~ ~ r
Aqui as notacoes d qj‘f e [ qm‘ indicam a derivada de jﬁr‘ . em
i S O Gl | Pl
relacdo a t.
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EXEMPLO 3. Seja y = u°. Calcule ﬂ pela definicao.

du
Solugdo
Facamos f(u) = u®. Assim,

) 1+ Au) — f + Au)? — u?
dy sbiane s e flu+Au) — f(u) _ i (u+ Au)* —u” _ -
du Auw— 0 Au Au— 0 Au

Assim,
av
y = uz — Y o 2u
du
n
EXEMPLO 4. Calcule.
g .92 d
ay—: [==:0%l. b) — [cos 1].
Pn [ | ) 2 [cos 1]
3 i d
c) — [~ — Sul. d) — [u tg u].
du [ ] du[ g ul
Solugdo

d
a) — [,1:2 - 5x] = (x* = 5x) = 2x — 5.
dx
d :
b) — [cost] = (cost)’ = —sen .
dt
d .
E)i—s [N2 — Sul] = {uz — S5u) =2u—5.
du
d F 2
d) — [utgu] = (utgu) = tgu + usec” u.
du

EXEMPLO 5. Seja x = t* sen t. Calcule.

a) ﬁ b) d—l

dt dt|t = m
Solucgdo
a) ﬁ = i (rz senf) = 2tsent + t2 cos t.

di dt
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Assim,

d:
Y t(2sent + tcost).
dt

b & = 7.
di|t =

E muito comum a notagdao y = y (x) para indicar uma fungdo; observe que nesta
notacao a letra y estd sendo usada para indicar a funcdo e ao mesmo tempo a variavel
dependente.

EXEMPLO 6. Sejam u = u (x) e v = v (x) fungdes derivaveis num mesmo conjunto A.
Segue das regras de derivacdao que para todo x em A, tem-se

v d du dv
ay=ut+tv=-—=—Jut+tvl=—+ —.
' dx dx dx dx
By=w=2 = Ly=2, 2
: dx dx dx dx
du dv
u dy d [u FTH o
y=—= "= __ [—} = dx _ dX opiodox € A, com v (x) # 0. |
v dx dx v v

EXEMPLO 7. Seja y = u” em que u = u (x) é uma funcio derivavel. Verifique que

dy . du
— =2u —.
dx dx
Solugdo
V= U u::»d—l:i[u 1r,4r]=ﬂ + ﬂ
dx dx dx dx
Assim,

dy du

— =2u —, ]

d; dx

EXEMPLO 8. Calcule ? em que y = (x* + 3x)%
X

Solucgdo

Facamos u = x* + 3x. Assim,
y =u? em que u = x* + 3x.
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Pelo exemplo anterior,

dv dut
—= =2 —
dx dx
Como L = e, [_'q: + 3x] = 2x + 3,segue que
dx dx
) (x2 +3x)(2x + 3).
dx . i 4o . 4
W du
dx

Observacdo. Vimos, no Exemplo 7, que sendo y = u? com u = u (x) derivavel, resulta

dy du
— = 2u —.
dx dx
5 dayv d 3 .
Por outro lado, y = 4~ = — = — [u"] = 2u. Assim,
' du du
O dy _ dy du

dx B du dx

dy .
em que d_ deve ser calculado em u = u (x). Provaremos mais adiante que esta regra
u
@, conhecida como regra da cadeia, é valida sempre que y =y (u) e u = u (x) forem

derivaveis.
A seguir, provaremos D num caso particular. =

EXEMPLO 9. (Regra da cadeia: um caso particular). Sejam y = f(u) e u = g(x)
funcdes derivaveis e tais que, para todo x no dominio de g, g(x) pertenca ao dominio
de f. Suponhamos, ainda, que

Au=gx+Ax)—gx)#0

para todo x e x + Ax no dominio de g, com Ax # 0. Nestas condicoes, a composta y =
f(g(x)) é derivavel e vale a regra da cadeia

dy _dv du
dx  du dx
dy
em que d_ deve ser calculada em u = g(x).
u
Solucgdo
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dy flg(x+ Ax))— f(g(x))

— = lim
dx  Ax—0 Ax
_ i JEGFA) — f(g(x) | g(x + Ax) — g(x)
Arv—0 g{x-l-ﬁx)—g(x} Ax '
Temos
lim g(x + Ax) —g(x) _ e Au _ ﬂ
Ax—0 Ax Ar —» 0 Ax ax

Fazendo Au = g(x + Ax) — g(x) resulta

Flglx+Ax)) — Flglx)) _ flu+ Auw)— f(u)

lim lim
Ax— 0 g(x+ Ax) — g(x) An—0 Au
. Av  dvy

em que ? deve ser calculada em u = g(x). Assim
u

dy _ lim Ay lim Au _ dy du
dx Au—0 Au Ax 50 Ax du dx’

Observacao. Deﬁ = f'(u) e ﬂ = g'(x) temos, também,
du dx '

dv
X =f'(u) g'(x), u = g(x),
dx

ou seja,
[ flge)] = F(9(x)) g'().
o . dy _d (dy)__, o .
Sejay = f (x). A notagio —5- = — | — | serd usada para indicar a derivada de
dx= ﬂ’:qJ dx
d<y

segunda ordem de f, em x, isto é, = f"(x). A derivada de 3." ordem sers,

)

=

3 2y
e d-y d [dy . .
também, indicada por —— = 5 J e assim por diante.

dx? E dx=
EXEMPLO 10. Seja y = 3x> — 6x + 2. Calcule

1
d-y
1
dx=

1
d*y
La ]
dx -

a)

b) x=0.
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Solugdo

mﬁ=i[3x3—m+21=9ﬁ—ﬁ

dx dx
iy d
) = % [9x? - 6] = 18x.
X dx
Assim,
2y
Y _ 18«
=
2
b) d l’ = (). que € o valor da derivada segundaemx=0. =
dx<lx=10

EXEMPLO 11. Sejay = £x em que x = x (t) é uma funcéo derivavel até a 2.* ordem.
Verifique que

P e L B

d dt

d*y s d 12
by LY —ex+6f & +4 L

dt- dt dr=
Solugdo

a) Observe que x é uma funcao derivavel de t. Pela regra do produto,

- d
D _ 2 Py-= [—{ﬁ)} x+P &
dt dt dt dt
ou seja,
L: x4+ 1 ﬁ
I dt
b) Temos:

2 , : _ 2
I Y R P RPN v AN Y L L
dr= dt d dt dt dt dr=

ou seja,
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Exercicios 7.9

1.

)

3oy : o dx e
5 = 6tx + 62 — + 1 = 5]
dr= dt di-
Calcule a derivada.
3 iz 3
a)y=>5x +6x—1 bys= 3/t +—
¢
¢
c)x=—— d)y=tcost
t+1 ’
+ 1
ey = ! flx= £e
In w
3
x +1
gs=étgt hy= :
sen x
: 3 3 2
Ny= ~u secu Nx= —+—
A
t 2, 3
Nx=¢cost myu = 5"+ E 1P
'\.‘
mV="rg3 o) E=—v*
2
1 2 : a b
p) E =— mv=, m constante q) U= 7~ §-ae b constantes
2 X x
,(_%
Seja y = ————. Calcule.
X+ Ax
dy dy
a) — by —
dx dr|x =1
Seja y = t°x, em que x = x (f) é uma funcdo derivavel. Calcule
1Ty Ix ;
!4 supondo i—‘ =2ex=3parat=1(isto é x (1) =3).
dtft =1 di[t=1

Considere a funcdo y = xt>, na qual x = x(t) é uma funcéo derivavel. Calcule

L] sabendo que %
di|t =2 dt|t=2

Considere a fungdo y =
x+it

av
Calcule 2
dx

X =

dt
sabendo que —
dx

=3equex(2)=1(istoé,x=1parat=2).

.na qual t =t (x) é uma funcdo derivavel.

=4 equet=2parax = 1. (Observe

x=":]

que t esta sendo olhado como funcao de x.)

Sejay =

~ "

X {

Verifique que x L + 2y = 0.
Ix '
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7 1 —2 . pe dy 3
" Sejay= — . k constante. Verifique que — — xy~ = 0.

-+ k dx

8. Calcule a derivada segunda.
a y=x>+2x-3
b) x=tsent

1
gy=x""+ —
; p

d y=tlnt
e) x=e'cost
X
py= -
x
9. Sejay = x* - 3x. Verifique que y 42 _ & _5
dx = dx
3, .
10. Seja v = L Verifique que +2 d—: O
X dx- dx
1. . " d*x
Seja x = cos t. Verifique que —— 4 y =0,
dt~
12 12+ dv
"Sejay = ¥ cos x. Verifiqueque £ 5 & 5
dx= dx i
iy |
13. Seja y = te'. Verifique que a; : x gj_-‘ +y=0.
ar - f

14. Suponha que y = y (r) seja derivavel até a 2.* ordem. Verifique que

d - dy dy 9 d“y
—l{r=+r—|=2r+ 1) — +(r+n o
dr dr dr dr*
15. Seja y = x%, em que x = x (¢) é uma funcao derivéavel até a 2.* ordem. Verifique
que
7 2 7
d<y X d-.
2 ::2[5iq P
dt= dt dt=

16. Suponha que x = x (t) seja derivavel até a 2.? ordem. Verifique que

d d 1 d2.
m—[rz—Y]=2ri+rf =
dt =

dt dt

2 4
d ( cir] ({fx T d=x
=[x Z =[] +x 5
dt dt dat | dr=
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7.10. REGRA DA CADEIA PARA DERIVACAO DE FUNCAO COMPOSTA

Sejam y = f (x) e x = g (t) duas fungdes derivaveis, com Img C Dy. Nosso objetivo,
a seguir, é provar que a composta h (t) = f(g(t)) é derivavel e que vale a regra da
cadeia

® h'ty=f'(g ) g’(t),t ED,

Antes de passarmos a demonstracdo de D, vejamos como fica a regra da cadeia na
notacdo de Leibniz. Temos

dy dx
A e I'r(_l') e — = I(I\j_
dx / dt 2

Sendo a composta dada por y = f(g(t)), segue de @O que

dy o ;
— =f(g () g ()
& f(g g

ou
dv
— = f"(x) g'(f), em que x = g (1).
7 I 8 q 2
Assim,
dy _ dy dx
d dx dt

em que ? deve ser calculado em x = g(t).
X

Suponhamos y = f (x) derivavel em p, x = g(t) derivavel em ¢,, com p = g(t,), e Img
C Dy. Seja h (t) = f(g(t)). Vamos provar que

h'(to) = f(9(ty) g'(to)-

Para isto, consideremos a funcao T dada por

T(x) = fp) + f(P) (x — p).
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fix)
Tix)

=

Observe que o grafico de T é a reta tangente ao grafico de f, em (p, f(p)). Temos

f) =T + EX)

ou
@ fX)y—fp)=fp)(x—p)+ Ex).xEDg

em que E (x) € o erro que se comete ao aproximar f (x) por T (x). Conforme vimos no
Exemplo 8 da Segdo 7.2, E (x) = p (x) (x = p), x € D, onde lim p(x)=0=p(0).

X—=p
Fazendo em @ x = g(t) e p = g(t,)e, em seguida, dividindo ambos os membros por t -
to, (t # t), obtemos

tY— f 1 o - '
flg)y— filgltg)) — 7 (2 (1)) g(t)— g(tpy) 4 E(g(rﬂ_
I—1p r—1ip I—1p

Temos

3 o r)— gt
lim f'(g (1) 8(t) ~ 8(fo)

t—1p — I

Por outro lado, de E (x) = p (x) (x — p) segue E (g(t)) = p(g(t)) (g(t) — g(t,)). Temos

lim p(g(H))= lim px)=0

I—>FD X—p
Dai
lim ZE&O _ i ey ELZ8W) _ . orsy=0
t—1 Sl 1 t— 1y I— 1o
Portanto
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h'(ty) = lim h@®)—h@) _ . F810)— f(8gt)
0 t— 1 I—1p t— 1y I==1p

= f'(g (ty) g (tg).

7.11. APLICACOES DA REGRA DA CADEIA

Pelo que vimos na sec¢do anterior, sendo y = f(u) e u = g(x) derivaveis, com Img C
Dy, entdo a derivada da composta y = f(g(x)) € dada por

d? ] P
2 =f'(g (x)) g'(x)
dx
ou
dv 2 :
— =f"(u) g'(x),em que u = g (x)
dx
ou
dy _ dy du
dx du dx

em que ? deve ser calculada em u = g(x).
u

EXEMPLO 1. Calcule a derivada.

a)y = e*.
b) y = sen t*.
Solugdo

a)y = €', em que u = 3x. Pela regra da cadeia

dy _ dy du
dx du dx’
Como d—l =d'e d_” = 3 resulta
du ax , 3
D _ 300D =37
dx dx

b) y = sen x, em que x = t*. Pela regra da cadeia

dy dy dx

dr dx dr’
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Como ﬁ = Ccos xe % = 2¢.resulta
t

dx
dy
— =cosx-2f
ou seja
1y :
D - 2t cos 1.
dt
] ) oody : )
Poderiamos, também, ter obtido ? aplicando diretamente a formula [f(g(t)]' = f
f
(9(®) g'(0). Veja:
dv ; e a2 3 2
d—'=[5enr2] = sen’ 1~ (17)" = 2fcost". @
t

EXEMPLO 2. Calcule f'(x), sendo

a) f (x) = (3x* + 1)°.
b) f (x) = cos 3x.

Solugdo

a) f (x) = u?, em que u = 3x*> + 1. Temos

3, du 3u2d—u

g 2 2
— = 3(3x° + 1)“ (6x),
]dx 7R (3x )” (6x)

iy = % [u

ou seja,
f(x) = 18x (3x* + 1)°.

b) f(x) = [cos 3x]' =cos" 3x - (3x)) =—3sen3x. ®

EXEMPLO 3. Calcule ﬂ sendo y = In (x> + 3).

dx
Solucgdo
y=lnu,u=x*+3.
ﬁ=i[lnw] ﬁ=12x‘
dx  du dx u
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ou seja,

dv _ 2x .
dx x> +3

EXEMPLO 4. Seja f: R — R uma funcdo derivavel e seja g(x) = f(cos x). Calcule

i

g’k

a N 1
?J supondo f |k5}| = 4.

Solugdo

Pela regra da cadeia
g'(x) = f(cos x) (cos x)'

ou seja,
g'(x) = —sen x f(cos x).
Entao
o) V3 .fl] :
$\3)= 2 7z )

EXEMPLO 5. Suponha g derivavel. Verifique que

a) [F_Er_l']]: - {,_EI:.T] g r{_‘.J.

g'(x)

g(x)

¢)[cos g(x)]" = —g'(x)sen g (x).
d) [sen g (x)]" = g'(x) cos g (x).

byllng(x)]" =

Solucgdo

a)y=e", u=g).

dy _dydu _d [e4] du
dx dudx du dx
Assim,
L e g'(x), u=gx),
dx
ou seja,

[ed (X)]' =9 ¥ g’(x).
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b)y=Inu, u=g(x)

b _ 4y, u]ﬂ=l () = 88
dx du u g{,ﬂ

(c) e (d) ficam a seu cargo. ™

EXEMPLO 6. Seja y = x> e**. Calcule a derivada.
Solugdo

Pela regra do produto,

ou seja,

EXEMPLO 7. Seja y = xe™**. Verifique que

2 d
BY n @ ey
dx? dx
Solugdo
o _ +x ™ = -2 ¥
dx
jh‘ [ Z]' = Pxe ' ==2e T=[e Bt 2
X
= —de "+ dxe”
Entao
d?y dy L5 . ooy oy sy
. . y=[—de “F+4xe ¥ +4[e < —2xe <] + 4dxe
(J." X

= —de P+ dxe ¥ + de ¥ — 8xe P+ dxe = 0.
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2y
EXEMPLO 8. Calcule d_l’ sendo y = cos 5x.

dx~
Solugdo
ﬂ = —5 sen 5x
dx
d—h: = —5 [sen 5x]" = —25 cos 5x.
Hx*
dy
EXEMPLO 9. Calcule —.
dx
x+1 t '
a v=|— by y= 3,-'.1:2 + 3,
' x2 +1 ) 3
Solugdo
4 x+1
aA)y=u.u= —
' x-+1
“‘.-1' i AW
dv 3 du [x-l—l X+l ‘
— =dum — =4| — 5 .
dx dx r—l—lJ o N
Como
( x+1 } ¥l 2x . =z =2x+]
L x2 +1 (x2 +1)2 (x2 +1)2
resulta

3 )
dy x+1 ) —x2—2x+1
5 s 3 7
dx ;o | (x= +1)*

1
e g
by y=u3,emque u=x" + 3.

1 | b2

2
u g 1 "3
dv

1 5
& 3 BER

Assim,

222




dy 2X
dr 332 +3)2

EXEMPLO 10. Seja g derivavel e n # 0 inteiro. Verifique que

a)[(g ()" =n (g @)~ g' .
1
L

F | o A S .
by [(g [IJJ””] = - (g (xnn g (x)(n=2).
¥
Solugdo
a)y=u", u=g(x).
v { {it - .
= LW E = g,
X du [x

ou seja,

dy e
D —n (g (x))" : 21X
dx

b) Fica aseu cargo. =

EXEMPLO 11. Seja f : R — R uma funcdo derivavel até a 2.* ordem e seja g dada
por g(x) = f (x*). Calcule g"” (2), supondo f(4) =2 e f' (4) = 3.

Solugdo

g =) (%) = 2x f ().

g'() =[2xf ()] = (20 f(x*) + 2x [f(XA)]'.

Como [f(x*)]' = f'(x*) (x°)' = f'(x*) 2x, resulta

g'(x) =2 f(x*) + 4 f'(x°).
Entao,

g"(2)=2f(4)+16'(4)

ou seja,

g'(2)=52. m
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EXEMPLO 12. A fungdo diferenciavel y = f (x) € tal que, para todo x € D,
xf(x) + sen f (x) = 4.

Mostre que

—f(x)

S = x + cos f(x)

para todo x € Dy, com x + cos f (x) # 0.

Solugdo

[xf (x) + senf (x)] = 4'.

[xf (x)]' + [senf (x)]' = 0.

f () +xf (x) + [cosf ()] - f(x) =0
dai
f () [x + cos f ()] = = (x),

ou seja,

fe)= ik +_c{3?;'( X)

em todo x € Dycom x + cos f(x) #0. ™

EXEMPLO 13. Seja y = x°, em que x = x(t) é uma funcdo derivavel até a 2.* ordem.
Verifique que

12 (dx Y 5 d?
: ,‘: = 6x | == 3x2 < f
de= \ dt J di-
Solucgdo
dy e 0%
A il [.I' ] e
dr dx dt
ou seja,
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_'! — 3_1' N
dt t
d<y (32 dx
dt- t dr‘ dt d
Como
il (3xdy=_— [’J; 2 ] S = ﬁ
d dx dr‘ dt
resulta
B oy AN o
dt - dt f
ou seja,
d?y dx )
= =6x| — | + 3x=
dr? : ( dt ] :

Exercicios 7.11

1. Determine a derivada.

a)y = sen ?41(
ofx)=e .
€)y=sent

) x= gSent

i)y = (sen x + cos .r}3

| x
N fix)y=3
/ ".r—i-l

i) x = ln I[f +3r+9)
p)y = sen (cos x)

r)f(x) = cos I[.wr2 + 3)

b) v = cos 5x

d) f(x) = cos 8x
NDeg®= In{2r+ 1)
J:}f{x]l—msv

% S o2 ol

—=
myy =g 2

o) fix)= et ¥
o=@ +37°

5) Y= ﬁ.ll,'l.‘f + &*
u) y = sec 3x

Supondo f'(2) = 5, calcule g

3. Sejaf:R - R derivavel e seja g dada por g(x) = f(e*). Supondo f(1) = 2,

Hy=tg3x

2. Sejaf:R - R derivavel e seja g(t) = f(t* + 1).
'(D.
calcule g'(0).

4. Derive.
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j' . -
a)y = xe™” b)y = €" cos 2x

)y = e “senx d)yy= e Zsen3t
2 "
afxy=e¢ " +n(2x+ 1) =
: D s P S S
cos Sx _ s P
gy= hfx) = ~+ &)
sen?h A -
Ny =t i e =¢e" In(l+ +x)
I) vy = (sen 3x + cos 2?}3 m) y= -x,"e'r +e ¥
ny=In(x+ -\h.",rz +13 o) y= -H."_rz + VX
ply=xn2x+ 1) q)y =[In {.rz + 1}_]3
r)y = In(sec x + tg x) sy = CDSRJ.'R
2t
Ccos X e
1 fEx) = u) ft)=———
/ sen? x / In(3t+ 1)
Calcule a derivada segunda.
a)y = sen 5¢ b) v = cos 41
) X = sen wif, w constante d)y= -:=_3'T
1.2 ﬂ' e”
eyy= ¢ - y=
' x +1
: o
g}}‘=lnb.' +]} h} y=
X+
By—g = g Dy=e Tcos2x
“ X } x+1
) =— m)y=—s——
} s+ x2 +x
_sen 3x —y
fn) y= o o)y = xe
4x+ 5
p)y = sen (cos x) q) flx)=
x2 —1
1 3
— x=
.F']' y=xe X 5} y= 2—
¥ +x+1
ng= -\v-'lfz +i3 u) y=1x 3;.'; +2

Sejag : R -~ R uma funcdo diferenciavel e seja f dada por f (x) = x g (x°).
Verifique que

f(x) = g(x*) + 2x* g'(x*).

Sejag : R -~ R uma funcdo diferencidvel e seja f dada por f (x) = x g (x°).
Calcule f(1) supondo g(1) =4 e g'(1) = 2.
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8. Sejag:R — R diferenciavel tal que g(1) =2 e g'(1) = 3. Calcule f(0), sendo
fdada por f(x) =e*g (3x + 1).

9. Sejaf: R — R derivavel até a 2.2 ordem e seja g dada por g(x) = f(e*).
Verifique que

g'(x) = 4e™ [f(e>) + e*F'(e™)].

-5

10. Seja y = e**. Verifique que dh: ]
dr= :
1. _ . . 2y ;
Seja y = xe**. Verifique que d ,: _ 4“’;‘ I A
dr= dx '
12. . o ~ d2y
Determine a de modo que y = e®™ verifique a equagdo — = — 4y = (.
dx= z
13. . o oo ~ d3y dy
Determine a de modo que y = ™ verifique a equagio —— — 3— + 2y = (.
dx= dx -

14. Seja y = ™, em que a é uma raiz da equacdo A> + aA + b=0,comae b
constantes. Verifique que
‘f: y Ji" "
Ll e pap—n,
dx“ dx

15. Seja g uma funcao derivavel. Verifique que

a) [tgg(x)]' =sec’ g(x) - g'(x)

b) [sec g(x)]' = sec g(x) tg g(x) - g'(x)

c) [cotg g(x)]' = —cosec® g(x) - g'(x)

d) [cosec g(x)]' = —cosec g(x) cotg g(x) - g'(x)

16. Derive.
a) y=tg3x
b) y=sec4x
C) y=cotg x*

d) y=sec(tgx)

e) y=secx’

f) y= etg XZ

g) y = cosec 2x

h) y=x3tg4x

i) y=In(sec 3x + tg 3x)

) y=e—xsecx?
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) y=(*+cotg x»)?
m) y=x*tg 2x

17. Seja y = cos wt, w constante. Verifique que

]
d2y

]

dr?

+ wly =0.

18. Sejay = e cos 2t. Verifique que

d2y 1y
Viopn ) sy
dt~ drt
xFd
19. Sejay = : - Verifique que
X
it RPN
dx“ dx
20. Seja y = f (x) derivavel até a 2.* ordem. Verifique que
d { 5 (Jr_"f A - d_"} 9 d:’}'
el Rl et 5 el P
dx \ dx J dx dy=

21. Seja y =,/ x2 4+ 1. Verifique que

(v | d
(2] +y Ly mt
dx dv=

22. Seja y = y (x) definida no intervalo aberto I e tal que, para todo x em I,

23.Seja y = f (x) uma funcdo derivavel num intervalo aberto I, com 1 € I.
Suponha f(1) = 1 e que, para todo x em I, f(x) = x + [f (x)]°.

a) Mostre que f'(x) existe para todo x em 1.

b) Calcule f'(1).
c) Determine a equacdo da reta tangente ao grafico de f no ponto de abscissa 1.
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24. Sejay = y (r) derivavel até a 2.* ordem. Verifique que

i r y2 ur—“ = 2\‘[i + 32 2 :
dr \ dr) S Adr - dr-
1
25. Seja y = — T, em que x = x (t) é uma funcdo definida e derivavel em R.
: o
Verifique que, para todo t real,
dy > dx
— et
dt - dt
26.

. 4 . ~ . .
Seja y = —, em que x = x (t) € uma funcdo derivavel num intervalo aberto I.
X

d.- .
Suponha que, para todo tem I, x (1) # 0 e i j3. B constante. Verifique que

| -y L F
d<y 8B~
dt - o

27. Seja f uma fungéo diferenciavel e suponha que, para todo x € D, 3x* + x sen f
6x + sen f(x)

x cos f(x)

(x) = 2. Mostre que f'(x) = —
(x)#0.

. para todo x € Dy, com x cos f

28. A fungdo diferenciavel y = f (x) € tal que, para todo x € Dy, o ponto (x, f (x)) €
solucdo da equacdo xy* + 2xy* + x = 4. Sabe-se que f(1) = 1. Calcule f(1).

29. Seja f: ]-r, r[ = R uma funcdo derivavel. Prove
a) Se ffor uma funcdo impar, entdo f sera par.

b) Se ffor funcao par, entdo f sera impar.

30. Sejag : R — R uma funcao diferenciavel tal que g(2) = 2 e g'(2) = 2. Calcule
H'(2), sendo H dada por H (x) = g(g(g(x))).

7.12. DERIVADA DE f (x)9®

Sejam f e g duas fungOes derivaveis num mesmo conjunto A, com f (x) > O para
todo x € A. Consideremos a funcao definida em A e dada por

y = X

Aplicando In aos dois membros obtemos

Iny=g(x)Inf(x)

e, assim,
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y=ed O,

ou seja,

f (x)9® = g9 WInf),

Entdo,
[fu'}»‘f“"’]r = e8I F(*) [o(x) In f(x)]

e, portanto,

r

[F(0)8@] = F ()8 [g(x) In f ()T

EXEMPLO 1. Calcule a derivada.

a)y = x"
b)y =3~

Solugdo
a) x = eX "X,
(X =" (xInx) =x*(In x + 1),
ou seja,
x)' =x(1+Inx).
b) 3x = e¥ "3,
(3x) =e*"3 (xIn 3)..
Como In 3 é constante, (x In 3)' =x " In 3 = In 3. Assim,

(3)=3*In3. =m

EXEMPLO 2. Sejaa > 0, a # 1, constante. Mostre que, para todo x,

(@) =a*lna.

Solucgdo
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x:exlna

a
(@) =™ (x1na).

Como (x In a)’ = x' In a = In q, resulta
a=a'lna. =

EXEMPLO 3. Seja a uma constante real qualquer. Mostre que, para todo x > 0,

(X7 =ax* 1L

Solugdo
X = ot InX
(X% = e "X (@ In x)'.
Sendo « constante (& In x)" = a (Inx)" = E.Assim,

X

(a4 _
x*) =x* — =g x21
X

EXEMPLO 4. Calcule a derivada.

a)f(x)= xV2
b) y = 8+ log, x.

Solugdo

a)f' (x) = 2 x¥2-1 x>0,
b) Pela formula de mudanca de base,

log, x = Llnr
gz" I_n2 i

Entao,

(8" +1log,x)) =8"In8 + ;
- xlned

Exercicios 7.12

1. Calcule a derivada.
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ajfix)=5"+ log; x By y=2" + 3%
clgix)= Akl logs, {.1': + 1) d y=2x+1)*
el fix) = K A 5 ozix) s (3 + cosx)*
g)y=x"senx k) y= g
Dy=(l+ i)', i constante ) y=10° - 10~
Ny=1i2+ sen ) i m)p y=In{l + 2"
nyy= (1 + l]r 0) y=x°

X x
p)y ="+ 7 g y=(1+x¢ "

2. Sejam f e g derivaveis em A, com f (x) > 0 em A. Verifique que, para todo x
em A,

[F@EP ] = e g’ (x) In f(x) + g(x) F()EX 1 Fr(x).

e

@ @

Observe: D é a derivada de f (x)?%, supondo f constante; @ é a derivada de f (x)9%,
supondo g constante.

3. Utilizando o resultado obtido no Exercicio 2, calcule a derivada.

Dy =(x+2)" b) ¥y =(1+ eX)*"
: 2
cly =4 + sen 3x)" dy v=i{x+ 37"
2 ¥
esy=03+mx)" Dy=@x+1)7

7.13. DERIVACAO DE FUNCAO DADA IMPLICITAMENTE

Consideremos uma equacado nas variaveis x e y. Dizemos que uma funcao y = f (x) é
dada implicitamente por tal equacao se, para todo x no dominio de f, o ponto (x, f (x))
for solucao da equacao.

EXEMPLO 1. Seja a equagdo x* + y* = 1. A fungdo y=,1-x2 é dada
implicitamente pela equacao, pois, para todo x em [—1, 1],

2+ (J1-x2) =1.
Observe que a fungéo y = _qll."] — x2 é, também, dada implicitamente por tal
equacao.
|
EXEMPLO 2. Determine uma funcio que seja dada implicitamente pela equacéo y* +

xy—1=0.
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Solugdo

2
A funcao
—x+x2 +4
y = ’ x =R
2
é dada implicitamente pela equacdo. E claro que
[ 9
=X =alxr
y = ’ XER
2

é outra funcdo dada implicitamente por tal equacdo. ®

EXEMPLO 3. Mostre que existe uma tnica funcao y = f (x), definida em R, e dada
implicitamente pela equacdo y* + y = x. Calcule f(0), f(10) e f(-2).

Solugdo

A funcdo g(y) = y* + y é estritamente crescente em R (verifique), continua, com
lim (v +vi=4+=e lim {H’ + )= —oo, Segue do teorema do valor
yoteo -

intermediario que para cada x real existe ao menos um niimero y tal que
@ 3 +7=x.

Como g é estritamente crescente, tal vy é o unico numero real satisfazendo D. A
funcao f, definida em R, e que a cada x associa f (x), em que f (x) é o unico real tal que

[f (O +f(0) = x,

é a unica fungao definida em R e dada implicitamente pela equacao.

Cdlculo de f(0)
[f(0)F° + f(0) = 0 = f(0) [(f(0))* + 11 = 0;
assim,
f(0) = 0.
Cdlculo de f (10)

[f(10))° + f(10) = 10;
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deste modo, f(10) é raiz da equacdo y*> + y = 10. Como y = 2 é a tnica raiz, resulta
f(10) = 2.

Cdlculo de f (-2)

f(=2) é a tinica raiz da equacdo y* + y = —2. Assim,
f(-2)=-1. =

EXEMPLO 4. Sejay = f(x), x € R, a funcdo dada implicitamente pela equacdo y> + y
= x. Suponha que f seja derivavel.
1

AlfDP+1
b) Determine a equacdo da reta tangente ao grafico de f no ponto (10, f(10)).

a) Mostre que f'(x) =

Solugdo

a) Como y = f(x) é dada implicitamente pela equacio y* + y = x, segue que, para todo
X!

[f (P + f(x) = x
dai
d s e _d
H[{j{x‘r) + f(x)]= FE (x)
Assim,
BIFPFO+fx)=1

e, portanto,

B 1
3O +1

i)

Poderiamos, também, ter chegado a este resultado trabalhando diretamente com a
equacdo y*> +y =x:
d 3

d
— v+ vl=—Ix
T [v? +¥] dx[ |
ou

dx dx
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i 1 dy
Como & [}-‘3] = —] }-*3 ] @ - 3}-‘2 —'l,vem

dx dy dx dx

w2 &y
dx  dx

e, portanto,
dv 1
dr  3yvi+1

b) A equacdo da reta tangente ao grafico de f em (10, f(10)) é:

y ~ f(10) = f(10) (x - 10)

f(10)=2 (veja exemplo anterior)

1 1
'(10) = =—,
/a0 3[FAOF +1 13

Substituindo na equacdo acima, obtemos

1-*—2=i(,r—10)0uv=ix+]—b. ]
' 13 ' 13 13

EXEMPLO 5. A funcdo y = f(x), y > 0, é dada implicitamente pela equacdo x* + y* =
4,
a) Determine f ().

b) Mostre que x + vy ? = (), para todo x no dominio de f.
dx

c) Calcule d—l
dx

Solucgdo

a) x* + }-*2 =4oy= (J4—x2,
Como y > 0, resulta Filn= 4 A S, (o
)

b) Para todo x no dominio de f

d 5. 2, d
x4y =141
dx[ | dx[]
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d dy dy

. ey m
Como — [v2]=—[v? 12 =2y &L vem
dx dy dx dx
av
2x+ 2y 2 o,
ax
ou seja,
dv
x4y 2 ~o.
dx
y dv
c)Dex + v d—l = () obtemos i A i. Assim,
Cdx dx ¥y
dy —X ] .'.4 r2
— = T s POIS, V= 44— X°. =
{i‘{: .1\’:4 _ xﬁ P . .l

w

. ~ . m ~ ,
Consideremos a equacdo sen y = x. No intervalo —?, ? . a funcdo sen y é
estritamente crescente e continua. Assim, para cada x € [—1, 1] existe um tnico

= [—% %} tal que sen y = x. Pois bem, a funcdo y =y (x) definida implicitamente
por essa equagdo e que a cada x € [-1, 1] associa v & [—— —} ¢ denominada

~ e . _ T
fungdo arco-seno e é indicada por y = arcsen x. Assim, para y & —?, 50

Seny = x © y = arcsen X.

Observe que o dominio da funcdo arcsen é o intervalo [-1, 1] e a imagem o

. T 7 o .
intervalo [— PR —} No proximo exemplo, vamos calcular a derivada de y = arcsen x

supondo que tal derivada exista. (Veremos mais adiante que y = arcsen x é de fato
derivavel em ]-1, 1[.)

EXEMPLO 6. Supondo que y = arcsen x seja derivavel em ]—-1, 1[, calcule ?
dx
Solucgdo

{

Temos



dai

(cos 1}£—]

dx
dy 1 T Il
e, portanto, — = il Rl De
dx  cos vy 2 2
s T f
cos> y+ sen’ y=leyE }—? 5 [ segue cos vy = /1 — sen? y. Lembrando que
sen y = x, resulta
dv 1
— = — -1<x<1
dx 1= x2
Assim,
: |
(arcsen x)'= ———, -1 <x <1
W1 = x*

. ~ . T
Consideremos, agora, a equacao tg y = x. No intervalo } ?[ a funcdo tg y é
estritamente crescente e continua. Além disto,
lim_tgy=+%e lim _tgy= — % Segue que para cada x € R existe um
¥ — Pl ¥ — —%

2

unico y & } —%, %[ tal que tg y = x. A fungdo y = y (x) definida implicitamente por

. . _ T

essa equacdo e que a cada x € associa y & } - Fh [ é denominada fung¢do arco-
o . = T T

tangente e ¢ indicada por y = arctg x. Assim, para y & } - 505 [

tgy=xey=arctgx. ™

No préximo exemplo, vamos calcular a derivada de y = arctg x supondo que tal
derivada exista. (Veremos mais adiante que y = arctg x é derivavel em R.)

EXEMPLO 7. Supondo y = arctg x derivavel em R, calcule ?
dx

Solucgdo
. T
y=arctgxetgy=x —?{}-‘{?
1Y

4

237



Temos

d
— |tg v| = — [x]
dx [ o ] ix
dai
; dv
(sec’ V) 2
dx
dy 5 )
e, portanto, = =— . Lembrando que sec’y =1 + tg~ y e tg y = x, resulta
gx sec™y
dy _ |
dx 1+ x?
Assim
(arctg x) " = ] u
oE 1+ x2

EXEMPLO 8. Calcule a derivada
1) y= X<

b) y = 3farcsen x

Solugdo

1) Vocé aprendeu na secao anterior como derivar tal funcdo. Vejamos, agora, outro
processo para deriva-la.

y=x‘eolny=xInx(x>0)

o que significa que y = x* é dada implicitamente por In y = x* In x. Temos

d d
H[ln y]= E[ﬁ In x]
dai
2 3x2 In x + x3 i
y X
ou seja,
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y =y [3x*In x + x*].

Portanto,

dy

3
= x*" [3x2 Inx+ x2].
dx

f 3 . ~ i .
) y= ’E arcsen x <>y~ =arcseny. Assim, a fungdo y = ﬁv arcsen x € dada

implicitamente por y* = arcsen x. Temos

dai

Exercicios 7.13

1.

d p d
— [y’ ]1=—/|arcsen x
dx Ly dx [ ]
,)’vz ﬁ'TI'l." _ 1
A i-x2
seja,
1
33/(arcsen x)2 - |1—x2
3=/(arcsen x \ X -

Suponha que y = f (x) seja uma funcao derivavel e dada implicitamente pela
equacao
xyP+y+x=1.

—1 —If{.wl2
2xf (x) + 1

Mostre que f'(x) = em todo x € Dycom 2x f(x) + 1 # 0.

Determine uma funcdo y = f (x) que seja dada implicitamente pela equagdo

xy?+y+x=1.

A funcdo y = f (x) é dada implicitamente pela equagao xy + 3 = 2x. Mostre que
dy

f N
x — =2 — y. Calcule e/
dx ’ dy |lx=2

Expresse L] em termos de x e de y, em que y = f (xX) é uma funcado

dx
diferenciavel dada implicitamente pela equacao
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10.

11.

a)XZ_y2:4
by’ +xy=x+4

C) xy? +2y=3
d) y> +y=x

e) x> +4y*=3
N xy+y>=x

g x*+y*+2y=0
h) x*y* + xy =2

i) xe¥ +xy=3
Dy+ln(x*+y>)=4
) 5y +cosy=xy
m)2y +seny = x

A funcio y = f (x), y > 0, é dada implicitamente por x* + 4y* = 2. Determine a
equacdo da reta tangente ao grafico de f, no ponto de abscissa 1.

;) 3

. ~ 1. 2 ye
Determine a equacdo da reta tangente a elipse — + T =1, no ponto (x,
a“ <

Yo)s Yo % 0.

Verifique que yyx +xy = 2 é a equacdo da reta tangente a curva xy = 1 no
ponto (X,, ¥y), Xo > 0. Conclua que (x,, y,) € o ponto médio do segmento AB,
em que A e B sdo as intersecoes da reta tangente, em (Xx,, y,), COm 0S €ixos
coordenados.

Suponha que y = f (x) seja uma funcao derivavel dada implicitamente pela
equagdo y* + 2xy” + x = 4. Suponha, ainda, que 1 € D.

a) Calcule f(1).
b) Determine a equacdo da reta tangente ao grafico de f no ponto de abscissa 1.

¥ ¥
A reta tangente a curva y3 + y3 =1, no ponto (X, Yo), Xo > 0 e y, > 0,
intercepta 0s eixos x e y nos pontos A e B, respectivamente. Mostre que a
distancia de A e B ndo depende de (X, y,).

A reta tangente & curva xy — x> = 1 no ponto (x,, y,), X, > 0, intercepta o eixo y
no ponto B. Mostre que a area do triangulo de vértices (0, 0), (x,, ¥,) € B ndo
depende de (x, ¥,)-

A funcdo y = f (x) é dada implicitamente pela equagdo 3y* + 2xy — x* = 3.
Sabe-se que, para todo x € Dj, f (x) > 0 e que f admite uma reta tangente T
paralela a reta 5y — x = 2. Determine T.
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7.14.

INTERPRETACAO DE g-}_ COMO UM QUOCIENTE. DIFERENCIAL

. oody . . . N .
Até aqui, d_ tem sido visto como uma simples notagdo para a derivada de y = f (x).
X

L dy . . L.
O que faremos a seguir é interpretar d_ como um quociente entre dois acréscimos.
X
Inicialmente, vamos olhar para dx como um acréscimo em x e, em seguida,

procuraremos uma interpretacdo para o acréscimo dy.
Sabemos que f'(x) é o coeficiente angular da reta tangente T, no ponto (x, f (x)), e
dv o . .
que d_ = f'(x). Se olharmos, entdo, para dy como o acréscimo na ordenada da reta
u

. dy ;
tangente T, correspondente ao acréscimo dx em x, teremos d_ = f(x).
»
dv
SRS =f'{_:l"} = (o oy
dx =

vA

Flx+ dx) ba——=====- T

B R e

=L |

ou

dy = f(x) dx

Observe que

Ay =f(x+dx) = f(x)

é 0 acréscimo que a funcdo sofre quando se passa de x a x + dx. O acréscimo dy pode
entdo ser olhado como um valor aproximado para Ay; evidentemente, o erro “Ay — dy”
que se comete na aproximacao de Ay por dy sera tanto menor quanto menor for dx.

Fixado x, podemos olhar para a fungdo linear que a cada dx € R, associa dy € R,
em que dy = f(x)dx. Tal funcdo denomina-se diferencial de f em x, ou, simplesmente,
diferencial de y = f (x).

EXEMPLO 1. Seja y = x°. Relacione Ay com dy.
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Solugdo

aY _ (%)’ = 2x.
dx

Assim, a diferencial de y = x* é dada por

dy = 2x dx.

Por outro lado
Ay = (x + dx)* - x°
Vi

ou seja,
Ay = 2x dx + (dx)?
e, portanto, Ay — dy = (dx)*. Observe que, quanto menor for dx, mais proximo estara dy

deAy. m

EXEMPLO 2. Seja A = nir°. Calcule a diferencial de A = A (r). Interprete.

Solucgdo
L A'(r) =27,
dr
A diferencial de A = nir? é dada por
dA = 2nr dr.
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Interpretagdo
A = nr? é a férmula que nos fornece a 4rea de um circulo em funcio do raio r; dA =

2ntr dr € entdo um valor aproximado para o acréscimo AA na area A correspondente ao
acréscimo dr emr.

¥+ dr

=¥

Observe que AA é a area da regido hachurada e que dA = 2nr dr é a area de um
retangulo de comprimento 2ntr (2nr é o comprimento da circunferéncia de raio r) e
altura dr. Vamos calcular o erro que se comete na aproximagao

Q) AA = 27r dr.
Temos
AA = n(r + dr)? — nr* = 2nr dr +  (dr)?
dai
AA - dA = 7t (dr).

Deste modo, o erro que se comete na aproximacdo (D é igual a  (dr)?, que é a rea
de um circulo de raiodr. =

EXEMPLO 3. Utilizando a diferencial, calcule um valor aproximado para o

acréscimo Ay que a funcdo y = x* sofre quando se passa de x = 1 a 1 + dx = 1,001.
Calcule o erro.

Solucgdo
A diferencial de y = x*, em x, é:

dy = 2x dx.
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Emx=1

Como dx = 0,001, resulta que

€ um valor aproximado para o acréscimo
Ay = (1,001)* - 12,

O erro que se comete na aproximacao Ay = dy é igual a 0,000001. Observe que 1
+ dy = 1,002 é um valor aproximado para (1,001)?, com erro igual a 107,

EXEMPLO 4. Utilizando a diferencial, calcule um valor aproximado para R R

Avalie o erro.

Solugdo

Consideremos a fungdo y = +/x . Primeiro vamos calcular dy para x = 1 e dx =

dy = 2dx.

dy = 0,002

0,01.
vi
Ay =TT | dy
L
et !
-
| 1 4+ dx
Temos:
dy dx.
2 A X
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Emx=1,

dy =

0,01

Portanto, dy = T = (0,005 para dx = 0,01. Assim, 1 + dy = 1,005 é um valor

aproximado (por excesso) de ./1,01. Como 1,004 é um valor aproximado por falta
((1,004)? < 1,01) segue que

JLO1 = 1,005

com erro, em modulo, inferior a 0,001. =

Exercicios 7.14

1.

Calcule a diferencial.

(1) y= x3
b) y = x* - 2x
) g™

) x +1
d)y=x

SejaA=1%1>0.

a) Calcule a diferencial.
b) Interprete geometricamente o erro que se comete na aproximacao de AA por

dA. (Olhe para A = I> como a férmula para o calculo da 4rea do quadrado de
lado 1.)

s 3

SejaV = —mr,r=0.

r_qul_-_

a) Calcule a diferencial.
b) Interprete geometricamente dV. (Lembre-se de que V é o volume da esfera
de raio r e que 4n1r? é a 4rea da superficie esférica de raio r.)

Seja y = x* + 3x.

a) Calcule a diferencial.

b) Calcule o erro que se comete na aproximacao de Ay por dy. Interprete
graficamente.

7.15. VELOCIDADE E ACELERACAO. TAXA DE VARIACAO

Suponhamos que uma particula se desloca sobre o eixo x com funcdo de posicao x
= f(t). Isto significa dizer que a funcao f fornece a cada instante a posi¢do ocupada pela
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particula na reta. A velocidade média da particula entre os instantes t e t + At é

f“—i_i"J_ﬂ”‘ em que Ax = f(t + At) — f(t) é o
At

deslocamento da particula entre os instantes t e t + At. A velocidade da particula no

instante t é definida como em que a derivada (caso exista) de f em ¢, isto é:

definida pelo quociente -

dx
v(t) = — = f'(1).
T I

Assim, pela definicao de derivada,

Ty
v ()= lim f(t+ An ;m_
Ar—0 At

A aceleragdo no instante t é definida como em que a derivada em t da fungdo v = v (t):

= dv  d*x
aff)= —= .

dt  dr?
Pela definicdo de derivada,

: v(t + Ar)—v(t
a(f) = lim ( ) ( \}.
Ar— 0 Ar
’ + — , N L. .

O quociente WA = é a aceleracdo média entre os instantes t e t + At.

At

EXEMPLO 1. Uma particula move-se sobre o eixo x de modo que no instante t a
posicdo x é dada por x = £, t > 0, em que x é dado em metros e t em segundos.

1) Determine as posicoes ocupadas pela particula nos instantes t =0, t=1et = 2.

7)) Qual a velocidade no instante t?

>) Qual a aceleracdo no instante t?

1) Esboce o grafico da funcao de posicao.

Solucgdo
a)| X
0 0
1 1 i 1 4
1 J [l Il [l -
% ?J =0 =1 | | t=2 3
)) dx

I = 2t. A velocidade no instante ¢ é v (t) = 2t (m/s).
f
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- 2 A
) dx = av — 2. A aceleragdo no instante t é

dt?  dt

a (t) = 2 (m/s?)
A aceleracado € constante e igual a 2.

d) x &

" ) Eothaty S e S il

- ¥

EXEMPLO 2. Uma particula move-se sobre o eixo x de modo que no instante t a
posicdo x é dada por x = cos 3t, t > 0. Suponha x dado em metros e t em segundos.

1) Determine as posicOes ocupadas pela particula nos instantes t = 0,
™ ™ T 2
[= — = —t= —et= —,
6 3 2 3

7)) Qual a velocidade no instante t?
>) Qual a aceleracdo no instante t?

1) Esboce o grafico da funcao de posicao.

Solugdo
a) t x
0 i
nf6 0 -1 0 1
mi3 -1 f -  ————— -
w2 0 /\ “i }\ ¥
2?7.;'3 1 j’;"?l r_"'r‘i' r_[_]
3 &

A particula executa um movimento de “vaivém” entre as posicoes —1 e 1.

) ? = —3sen 3touv (t) = -3 sen 3t (m/s).
I
- 24
) d j = —0 cos 3t ou a (t) = -9 cos 3t (m/s?).
dt~

Observe que a aceleracio é proporcional a posicdo, com coeficiente de
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2
proporcionalidade -9, isto é, jf = —Ox.

dt*

d) |

EXEMPLO 3. Um ponto move-se ao longo do gréafico de y = x* + 1 de tal modo que a
sua abscissa x varia a uma velocidade constante de 3 (cm/s). Qual é, quando x = 4
(cm), a velocidade da ordenada y?

Solugdo

Facamos, por um momento, x = g(t) e seja t, o instante em que x = 4, isto &, g(t,) =

. . : : : . dy
4. O que se quer entdo € a velocidade da abscissa y no instante t,, ou seja, E -
= Iy,
Como y = x* + 1, pela regra da cadeia,
dy _dy dx _, o dv
dt dx dt — dt’
Como ﬁ =3, d—‘L = 6x.Como x = 4 para t = t,, resulta
dt dt
dy
—. . =24 (cm/s).
dr [t=10
Deste modo, para x = 4, a velocidade da ordenada y sera 24 (cm/s).
Xty = ) - L
Seja a funcao y = f (x). A razao P80 = A5 é a taxa média de variagdo

Ax
de f entre x e x + Ax. A derivada de f, em x, é também denominada taxa de variagdo de

: dy . .
f, em x. Referir-nos-emos a — como a taxa de variagdo de y em relagdo a x.
dx

Seja Ay = f (x + Ax) — f (x); para Ax suficientemente pequeno
Ay = f(x) Ax.

Assim, para Ax suficientemente pequeno, a variagdo Ay em y é aproximadamente f
(x) vezes a variagdo Axemx. ®

EXEMPLO 4. O raio r de uma esfera esta variando, com o tempo, a uma taxa
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constante de 5 (m/s). Com que taxa estard variando o volume da esfera no instante em
que r =2 (m)?

Solugdo

i

Seja t, o instante em que r = 2. Queremos calcular . Sabemos que

dr [t="1o
Y= imﬂ_ Pela regra da cadeia
av _dv dr
dt  dr dr
7
Como ﬂ =4mle ﬂ = 5, resulta
dr dt
ﬂ = 2072,
dt
av 3 :
Para t = t,, r = 2; logo, — = 807 (m-/s). No instante em que r = 2, 0
dr |t =1

volume estara variando a uma taxa de 807 (m°/s). ™

EXEMPLO 5. Um ponto P move-se sobre a elipse 4x* + y* = 1. Sabe-se que as
coordenadas x (t) e y(t) de P sao funcOes definidas e derivaveis num intervalo I.
Verifique que

dy 4x dx

di v di

emtodot € I, com y (t) # 0.

Solugdo

2 14x2 4 y 1= 4 .

dt dt

Como
Lad=L @ L g X L= LD D
di dx dt dr dt (h-* dt dr’
resulta
8x & + 2y o 0
dt L odrt

e, portanto,
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dy _ _4x dx
di v di

emtodot € comy(t)#0. =

EXEMPLO 6. A funcdo x = f(t), t € I, é derivavel até a 2.? ordem no intervalo aberto I
e seu grafico tem o seguinte aspecto

« A

O que é mais razoavel esperar que ocorra: f'(t) <0 em I ou f'(t) > 0 em I?

Solugdo

Vamos pensar cinematicamente. A medida que o tempo aumenta, a particula, em
intervalos de tempos iguais, percorre espacos cada vez maiores, o que significa que a
velocidade esta aumentando, logo, é razoavel esperar que a aceleragdo seja positiva em
I, ou seja, f'(t) > 0 em 1.

Exercicios 7.15

1. Uma particula desloca-se sobre o eixo x com funcdo de posicao x = 3 + 2t —
2, t>0.

a) Qual a velocidade no instante t?
b) Qual a aceleracgao no instante t?
c¢) Estude a variacdo do sinal de v (t).
d) Esboce o grafico da fungao de posicao.
2. Uma particula desloca-se sobre o eixo x com funcdao de posicao
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|
xr=—t+ Lt=0.
3

i

a) Determine a velocidade no instante t.
b) Qual a aceleracao no instante t?
c¢) Esboce o grafico da fungao de posicao.

A posicdao de uma particula que se desloca ao longo do eixo x depende do
tempo de acordo com a equacdo x = —2 + 3%, t > 0.

a) Estude o sinal de v (t).
b) Estude o sinal de a (t).

: 3 2
€) Calcule lim (—r + 3t).
r— +w

d) Esboce o gréafico da funcdo x = -+ 3, t >0

Sejax = f(¢), ¢ > 0, tal que f(0) = 1, X = g ¢ L
dt dt?
acha que deve ser o grafico de f? Por qué?

= () para t > 0. Como vocé

A fungdo x = f(t), t € I, é derivavel até a 2.* ordem no intervalo aberto I e seu
grafico tem o seguinte aspecto

X 1

o

I

O que é mais razoavel esperar que ocorra: f'(t) < 0 ou f'(t) > 0 em I? Por qué?

Seja x = f(t), t > 0, tal que f(0) =1 e f(1) = 2. Suponha, ainda, que e = () para

d?a 125 &

=X a-x

t20; — <Opara0<t<le —
dt- dt=

ser o grafico de f Por qué?

= () para ¢ > 1. Como vocé acha que deve

Seja f(t) = £ + 3t
a) Estude o sinal de f'(¢).
b) Estude o sinal de f'(¢).

C) Calcule lim (F +3r)e lim (r + 3r).
f— 4+ f— —o

d) Utilizando as informacdes acima, esboce o grafico de f.
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8.

i
Seja f(f) = —
2 +4

a) Estude o sinal de f(¢).
b) Estude o sinal de f'(t).

t
c) Calcule lim ———e lim 5 :
t—s+w “+4 ts4w 2+ 4

d) Utilizando as informacdes acima, esboce o grafico de f.
A posicdo de uma particula que se desloca ao longo do eixo x varia com o

Vi} kt

tempo segundo a equagao x = T (1—e ").t=0, em que v, e k sdo

constantes estritamente positivas.

a) Qual a velocidade no instante t?

b) Com argumentos fisicos, justifique a afirmacdo: “a funcdo é estritamente
crescente”.

¢) Qual a aceleracao no instante t?

d) Com argumentos fisicos, justifique a afirmacado: “o grafico da funcdo tem a
concavidade voltada para baixo”.
Vi I
e) Calcule lim —- (1—¢ X),
=+
f) Esboce o gréfico da funcao.

10. A equacdao do movimento de uma particula que se desloca ao longo do eixo x

éx=e'sent, t>0.

a) Determine a velocidade e a aceleragao no instante t.

. =
b) Calcule lim e "sent.
f— 4w

c¢) Esboce o grafico da funcao.
d) Interprete tal movimento.

11. Um ponto P move-se sobre a pardbola y = 3x* — 2x. Suponha que as

12.

13.

coordenadas x (t) e y (t) de P sdo derivaveis e que L #+ (). Pergunta-se: em
dt

que ponto da parabola a velocidade da ordenada y de P é o triplo da
velocidade da abscissa x de P?

s 1
Um ponto P move-se ao longo do grafico de y = ——— de tal modo que a
x° +1
sua abscissa x varia a uma velocidade constante de 5 (m/s). Qual a velocidade

de y no instante em que x = 10 m?

Um ponto desloca-se sobre a hipérbole xy = 4 de tal modo que a velocidade

. dy ~ . .
de y é — = B, B constante. Mostre que a aceleracdo da abscissa x é
dt
{fj_'l.' rBz 3
= —x-.
dr? 8
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14. Um ponto move-se ao longo da elipse x* + 4y* = 1. A abscissa x est4 variando

. dx
a uma velocidade — = sen 41. Mostre que
dt

dy X sen 4t d2y sen? 4t + 16xy2 cos 4t
q) —=——+— by —5=— -
dt 4\' dr= 1 6_\-"‘5

15. Um ponto move-se sobre a semicircunferéncia x* + y*> = 5, y > 0. Suponha

d . : .
2 = 0. Determine o ponto da curva em que a velocidade de y seja o dobro da

dt
de x.

16. Uma escada de 8 m esta encostada em uma parede. Se a extremidade inferior
da escada for afastada do pé da parede a uma velocidade constante de 2 (m/s),
com que velocidade a extremidade superior estara descendo no instante em
que a inferior estiver a 3 m da parede?

17. Suponha que os comprimentos dos segmentos AB e OB sejam,
respectivamente, 5 cm e 3 cm. Suponha, ainda, que 0 esteja variando a uma

1 '
taxa constante de 5 rad/s. Determine a velocidade de A, quando ¢ = ry rad.

v

-
X

0 (x, 0)

18. Enche-se um reservatorio, cuja forma é a de um cone circular reto, de dgua a
uma taxa de 0,1 m3/s. O vértice esta a 15 m do topo e o raio do topo ¢é de 10
m. Com que velocidade o nivel h da agua esta subindo no instante em que h =
S5 m.

19. O ponto P = (x, y) esta fixo a roda de raio 1 m, que rola, sem escorregamento,
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sobre o eixo x. O angulo O estd variando a uma taxa constante de 1 rad/s.
Expresse as velocidades da abscissa e da ordenada de P em funcao de 6.

i

¥

-

A

20. Um ponto P move-se sobre a pardbola y* = x, x > 0 e y > 0. A abscissa x esta
variando com uma aceleracao que, em cada instante, € o dobro do quadrado
da velocidade da ordenada y. Mostre que a ordenada esta variando com
aceleracdo nula.

21. Dois pontos P e Q deslocam-se, respectivamente, nos eixos x e y de modo que
a soma das distancias de P a R e de R a Q mantém-se constante e igual a e
durante o movimento, em que R = (0, h) é um ponto fixo. (Veja a figura a
seguir.)

"

Relacione a velocidade ﬂ de Q com a velocidade ﬂ de P.
dt dt

7.16. PROBLEMAS ENVOLVENDO RETA TANGENTE E RETA NORMAL AO GRAFICO DE
UMA FUNCAO

Seja f uma funcao derivavel em p. Ja vimos que, por definicao, f(p) € o coeficiente
angular da reta tangente ao grafico de f no ponto de abscissa p e que

y—flp)=f@) x—p)

€ a equacao da reta tangente em (p, f(p)).
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A reta que passa por (p, f(p)), e que é perpendicular a reta tangente acima,
denomina-se reta normal ao grafico de f em (p, f(p)). Se f(p) # 0, a equacdo da reta
normal no ponto de abscissa p sera

1

y — { ——
y—f(p) )

(=g

Lembrete. Vocé aprendeu na geometria analitica que, se y = mx + ne y = m;x + n; sao
retas perpendiculares, entdo os seus coeficientes angulares satisfazem a relagao

]
mmy = —1 oumy = ——.
"

Assim, como f(p) é o coeficiente angular da reta tangente em (p, f(p)), a reta
1
——. desde que f'(p) # 0. Se f(p) =0,
Fp)

a equacao da reta normal em (p, f(p)) sera x = p.

normal, neste ponto, tera coeficiente angular —

> YA = i
fripy=0 f flpy=10 %
- X =
f @ - -
[ reta normal /-\ ¥
i | /
7 ' Y ol -
p x I p *

EXEMPLO 1. Seja f (x) = x> — x. Determine as equacdes das retas tangente e normal
no ponto de abscissa 0.

Solugdo
Reta tangente no ponto de abscissa 0:

y = f(0)=1(0) (x - 0)

Y

=Y




f(0y=0
Ffliix)=2x-=1 = f'{0)=-1.

Substituindo na equacdo acima vem
y-0=-1(x-0)ouy=-x

Assim, y = —x é a equacao da reta tangente ao grafico de f no ponto de abscissa 0. Reta
normal no ponto de abscissa 0:

| I
y — f(0) = ———— (x — 0).
£(0)

Como f(0) =0 e f(0) = —1, resulta
y=X
que é a equacao da reta normal no ponto de abscissa 0. ®

EXEMPLO 2. Seja f (x) = 2x + 1. Determine a equacdo da reta tangente ao grafico de
f no ponto de abscissa 3.

Solugdo
A equacado da reta tangente em (3, f(3)) é:
y=-f3)=fB)x-3)

f@3 =1
flxy=2= f'3 =2

Assim,y -7 =2 (x —3)ouy=2x + 1, é a equacdo da reta tangente em (3, f(3)).
Observe que a reta tangente ao grafico de f em (3, f(3)) coincide com o grafico de f!!

Observacado. A nossa definicdo de reta tangente ndo exige que a reta tangente “toque”
a curva num unico ponto. ®

EXEMPLO 3. r é uma reta que passa por (1, —1) e é tangente ao grafico de f (x) = x> —
x. Determine r.

Solucgdo
Supondo que r seja tangente ao grafico de f em (p, f(p)), a equagao de r sera
y—fp)=fP) (x—p)

| fipy=p>—p

<

f'(p)= 3p? —1
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e, portanto, y — p> + p = (3p*> — 1) (x — p). O problema, agora, consiste em achar p.
Como r passa por (1, —1) (observe: x=1=y=-1)

-1-p’+p=@Bp*-1)(1-p)
ou

2p® -3p*=0

3
e, assim,p=0oup = E Portanto, a equacao de r sera
3 " { 3
y—Ff=FfF"O(x—QOouy—fFf|=|=F' [—} x—=
y—f©0)=f y=fl3)=r" 5 1x 3]
ou seja,

23 27
y=—xouy= —x ——.
' ' 4 4

Pelo ponto (1, —1) passam duas retas que sao tangentes ao grafico de f.

/

iy |

it

i/

1)

EXEMPLO 4. Determine a equacdo da reta tangente ao grafico de f(x) = x> + 3x e
paralela a reta y = 2x + 3.

Solucgdo

Supondo que a reta procurada seja tangente ao grafico de f no ponto de abscissa p,
sua equacgao sera

Yy~ fp) =f ) (x - p).
Pela condicdo de paralelismo, devemos ter

f(p)=2o0u2p+3=2
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1 . . A
e, portanto, p = — 5 A equacado da reta pedida sera entao

AL e 13
~1(=3)=7"(-5) (++3)

ou

ou seja,

}-‘=2,r—l. |
4

Exercicios 7.16

1. Determine as equacdes das retas tangente e normal ao grafico da funcao dada,
no ponto dado.
a)fx)= x% = 3x,n0 ponto de abscissa 0

b) f(x) = Yx, no ponto de abscissa 8

| .
¢) g (x) = —5-, no ponto de abscissa 1
b

I :
d) g (x) =x + —, no ponto de abscissa 1
X

2. Seja f (x) = x%. Determine a equacdo da reta que é tangente ao gréafico de f e

paralela a reta y = 5.1‘ +:3
3. Sabe-se que r é uma reta tangente ao grafico de f (x) = x> + 3x e paralela a reta

y = 6x — 1. Determine r.

4. Determine a equacao da reta que é perpendicular a reta 2y + x = 3 e tangente
ao grafico de f (x) = x*> — 3x.

5. Sabe-se que r é uma reta perpendicular a reta 3x + y = 3 e tangente ao grafico
de f (x) = x>. Determine r.

6. A reta s passa pelo ponto (3, 0) e é normal ao gréfico de f (x) = x* no ponto (a,
b).

a) Determine (a, b).
b) Determine a equacdo de s.

N

Sabe-se que r é uma reta que passa pela origem e que é tangente ao grafico de
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10.

11.

12.

13.

14.

15.

f (x) = x> + 2x* — 3x. Determine r.

Determine todos os pontos (a, b) sobre a curva y = x* + 2x> — 2x* + 8x + 12
tais que a reta tangente em (a, b) seja paralela a reta 8x —y + m=0.

Determine todos os pontos (a, b) sobre o grafico da funcdo dada por y = 4x> +
x* — 4x — 1 tais que a reta tangente em (a, b) seja paralela ao eixo x.

Sabe-se que r é uma reta que passa pelo ponto (0, 2) e que é tangente ao
gréfico de f (x) = x°. Determine r.

. N N . 4
Determine a equacdo de uma reta, ndo vertical, que passa pelo ponto | 0, = e
que seja normal ao grafico de y = x°.

Determine todos os pontos (a, b) de R? tais que por (a, b) passem duas retas
tangentes ao grafico de f (x) = x°.

Sejam A e B os pontos em que o grafico de f (x) = x*> — ax, « real, intercepta o
eixo x. Determine a para que as retas tangentes ao grafico de f, em A e em B,
sejam perpendiculares.

Determine f3 para que y = Bx — 2 seja tangente ao grafico de f (x) = x> — 4x.

Sabe-se que r é uma reta tangente aos graficos de f (x) = —x* e de

I .
gx)= o + x°. Determine r.

e

7.17. EXERCICIOS DO CAPITULO

1.

Calcule, pela definicdo, a derivada da funcao dada, no ponto dado.

a) f(x) = — 1 ; emp = 2 blgx)= J2x+1lemp=20
c)y=senmremp = | dyf(x)=¢e" emp=10
1/ ]
X' sen— sex#10
X" Y

€) g (x) = emp=0 flg(x)=x“+x emp=1

0 sex=0
£)y = cos x*em p=10 h)y = ] ++x em p=1

i)y =x"emp = 1 (Sugestdo. Veja Exemplo 3-6.3.)

Calcule a derivada
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byy=1In(3x + 1 +0x2)
d)y = (2 + senx)*

E—— ,
ey =ln E — Nx= e sen3t
\ 1—sen x
2 q
_— x2 +
)
2 +1 N
(t? +1)? o
1+ tg = .-
Hy=In 2 m) g (x) =
1—tg u x
=2
ny= 9'1'-" 0)y = l [gz e
2
' 3
syy=ln| VLZEFAIEx ) 1-x? 24+ 33x) @ ¥x)2
I -\;'I] Tk T «\‘.'I] +. X X E 5
—23: - : cos +/x
Sl $)f(x)=In L
2% +27 ' 1+ sen+/x

Hy=e ¥ (cos 3x — sen 3x)

1 -
u)y = o cotg2 5x + In sen 5x

dv . N .
Expresse — em termos de x e de y, em que y = y (x) é uma funcao derivavel,

dx
dada implicitamente pela equacao dada.

a)y*+senxy=1
b) & + xy = x

C)_y"+x:y2
d)xcosy+ycosx=2

Seja y = f (x) definida e derivavel num intervalo contendo 1 e suponha que f
seja dada implicitamente pela equacdo y° + x’y = 130. Determine as equacdes
das retas tangente e normal ao grafico de f, no ponto de abscissa 1.

Determine uma reta que seja paralela a x + y = 1 e que seja tangente a curva x>
+Xxy +y* = 3.

Determine uma reta que seja tangente a elipse x*> + 2y*> = 9 e que intercepta o

eixo y no ponto de ordenada it
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10.

11.

12.

13.

14.

15.

.T + .1||l' —_ 2 , . i .,T = f -|'|;- -.3
— T T <étangente a curva _‘ +|_‘ =210
X0 Yo

X0 \ Yo /

Mostre que a reta

ponto (xo, Yo)-

Determine uma reta paralela a x + y = 1 e tangente a curva y° + xy + x> = 0 em
um ponto (x,, ¥p), com x, <0 e y, <0.

Os lados x e y de um retangulo estdo variando a taxas constantes de 0,2 m/s e
0,1 m/s, respectivamente. A que taxa estara variando a area do retangulo no
instanteemquex=1mey=2m?

A altura h e o raio r da base de um cone circular reto estao variando a taxas
constantes de 0,1 m/s e 0,3 m/s, respectivamente. A que taxa estara variando o
volume do cone no instante em que h =0,5m e r = 0,2 m?

O volume V e o raio r da base de um cone circular reto estao variando a taxas

. dh
constantes de 0,1 7 m%s e 0,2 m/s, respectivamente. Expresse T em termos
dt
de r e h, em que h € a altura do cone.

Num determinado instante, as arestas de um paralelepipedo medem a, b, ¢ (m)
e, neste instante, estdao variando com velocidades v, v, e v, (m/s),
respectivamente. Mostre que neste instante o volume do paralelepipedo estara
variando a uma taxa de v, bc + av,c + abv, (m?/s).

O raio r e a altura h de um cilindro circular reto estdo variando de modo a
manter constante o volume V. Num determinado instante h =3 cmer =1 cm
e, neste instante, a altura esta variando a uma taxa de 0,2 cm/s. A que taxa
estara variando o raio neste instante?

Uma piscina tem 10 m de largura, 20 m de comprimento, 1 m de
profundidade nas extremidades e 3 m no meio, de modo que o fundo seja
formado por dois planos inclinados. Despeja-se 4gua na piscina a uma taxa de
0,3 m3/min. Seja h a altura da agua em relacdo a parte mais profunda. Com
que velocidade h estara variando no instante em que h = 1 m?

-
Num determinado instante § = ? e esta variando, neste instante, a uma taxa

de 0,01 radiano por segundo (ileja figura). A que taxa estara variando o
angulo a neste instante?
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16.

17.

18.

19.

20.

21

22

23
24

2m

~ - . T _ dao
Com relacdo ao exercicio anterior, supondo E ~ & < T, expresse d_ em
, I
de
termos de 6 e —.
dt
Considere as funcdes dadas por y = ax* e y = —x*> + 1. Determine a para que 0s

graficos se interceptem ortogonalmente. (Os graficos se interceptam
ortogonalmente em (x,, y,) se as retas tangentes aos graficos, neste ponto,
forem perpendiculares.)

2

Determine « para que as circunferéncias x*> + y* = 1 e (x — a)’> + y’= 1 se

interceptem ortogonalmente.

Mostre que, para todo a, as curvas y = ax> e x> + 2y* = 1 se interceptam
ortogonalmente.

Suponha f: R — R derivéavel e considere a funcdo dada por y = x* f (x* + 1).

a) Verifique qUe? e 2_,(.;«-{_1.3 +1) + 2,1'3 . f"{.l'z L
X

b) Expresse d—\ em termos de f(2) e f(2)
dx|x =1

. Seja ¢ a funcdo dada por ¢ (x) = x* + 1. Calcule.

a) ¢'($()

b) (@ (@ ()Y

. Calcule ¢'(¢ (x)) sendo ¢ dada por
a) ¢ (x) = sen x
b)d (x) = %
)¢ (x)= lnx(x2 +1)
d) ¢ (x) = e
. Para cada ¢ do exercicio anterior, calcule (¢ (¢ (x)))'.

. Dé exemplos de funcdes ¢ que satisfazem a condicdo ¢’ (¢ (x)) = (¢ (¢ (x)))
', para todo x no dominio de ¢.
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25. Considere uma particula que se desloca sobre o eixo x com fungao de posicao
X = cos 3t.

a) Verifique que a aceleracdo é proporcional a posicao.
b) Calcule a aceleracdo no instante em que a particula se encontra na posicao

=
2
26. Considere uma particula que se desloca sobre o eixo x com funcdo de posigao
1

2+1

a) Verifique que a aceleracdo é proporcional ao cubo da posicao.

b) Qual a | aceleragdo no instante em que a particula se encontra na posicdo
X = ’\ ? ?

27.Sejaf: R — R derivavel até a 2.% ordem e seja h dada por h (t) = f(cos 3t).

a) Expresse h”(t) em termos de t, f'(cos 3t) e de f'(cos 3t).

b) Calcule h" L 8 Jmlmﬂmdo que [ [—] =4e j"[— | =
28. Suponha que y = y (t) seja uma funcdo derivavel tal que para todo t no seu
dominio £ — n;z_
dt '
a) 2 “y
Expresse — em termos de t e de y.
dt?
b) d?y
Calcule — = supondo que y (1) =1

29. Seja y = y (x) definida e derivavel num intervalo I e tal que, para todo x em I,

1
A X + seny.
dx
3y
a) Expresse d_:; em termos de x e de y.
X
b) d3y N T
Calcule — admitindo que v (0) = —
dx” |[x=0

30. Sejaf: R — R derivavel até a 2.* ordem e tal que, para todo x,
f"x)+4f(x)=0.

Mostre que, para todo x,

di [f'(x)sen 2x — 2cos 2xf(x) ] =0
»
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Sejam f : R — R derivavel até a 2.* ordem e h dada por h (x) = f(f (x)).
" Verifique que, para todo x, h"(x) = f"(f (X)) (f (x))* + f(f () ' (%)

32. Considere o polindmio
P (x) = Ag+ A; (X~ X) + Ay (X = X" + Ay (x — Xp)°
em que A, A, Ay, Az e X, sdo numeros reais fixos. Mostre que

P"(ID] - ) Pm [:H::}
| (X el

P(x)=P(xp) + P'(xg) (x — xp) + ¥ ¥ X .1'0}3.

33. Considere o polindémio P (x) = a, + a,x + a,x* + a;x> em que dy, d,, d, € d, S30
reais fixos. Seja x, um real dado.

a) Mostre que existem constantes A, A;, A, e A, tais que
P (x)=Ag+ Ay (X = Xo) + Ay (x = Xp)* + Ag (x = Xp)°.

(Sugestdo: Faca x = (x — x,) *+ Xg.)

b) Conclua que

.\’D\} i

@O P =Pxp+ P (xg)(x—xp +

" " L
P"(xp) (x— xg)% + P" (xp) (x
3!

2!

(Dizemos que @ é o desenvolvimento de Taylor do polinémio P (x) em
poténcias de x — x,.)

34. Determine o desenvolvimento de Taylor de P (x) = x> + 2x + 3, em poténcias
de (x — 1).
35. Generalize o resultado do Exercicio 33.

36. Determine o desenvolvimento de Taylor de P (x) = x* — 3x* + x + 1 em
poténcias de

ax—2
byx+1

37. Sejam P (x) e Q (x) polinomios tais que P (x,) = 0, Q (x,) = 0 e Q'(x,) # O.
Mostre que

lim P(x) _ P'(xp)

X=X Qix) Q'{.r.[].}'

(Sugestdo: Desenvolva P (x) e Q (x) em poténcias de x — x, e simplifique.)

38. Sejam P (x) e Q (x) polindmios tais que P (x,) = P’ (xy) =0, Q (xo) = Q '(xp) =
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39.

40.

41.

42.

43.

44,

45.

FPix) _ P"(xp)

0eQ" (xy) #0. Mostre que lim = — . Generalize.

Q ( O) a x =X Q(X\J' Q’(I{}\J'
Utilizando os Exercicios 37 e 38, calcule.

LO0 _ R S
. x4+ x-=2 S - X x+1

a) lim by lim

xr—1 :cg{’—:c x—1 X]D—QIE-I-SX
¢) lim x> +3x+4 d) lim xt — 200 +2x |

.1'—>—]Xm+3)(+2 .x‘—>l,‘\f3—ﬁx6+8,‘t5—314
Sejam f e g derivaveis em p e tais que f(p) = g(p) = 0. Supondo g'(p) # 0,

mostre que

lim fx _f (p]'_
x—=p g(x) g’{p}

Utilizando o Exercicio 40, calcule.
: In(x-+1 : e —m —
a) lim # b) lim
x—0 x“ +sen x PO L 1o i g T B
g,
3/ ) .-
d x x4+ 1 32 .
(.] lim y - (ﬂ lim X+ \ x= + sen 3x
£ SREmaER= x50 In(x?+x+1)
7
: e > =x—1 2 g g 3
e) lim e 5 ) lim Ben {ien T'r_ﬂ
x=0 e* 4+ x? —1 x—=1 72— "JIX — %xi

Seja f definida em R e derivavel em p. Suponha f'(p) > 0. Prove que existe r >
0 tal que

f)>f(p)emlp, p+rl

f)<f(p)em]p —r, pl.

(Sugestdo: Lembre-se da definicdo de derivada e utilize a conservacao do
sinal.)

Seja f definida e derivavel em R e sejam a e b raizes consecutivas de f.
Mostre que

f(a)-f(b)<0.

Suponha f derivavel no intervalo I. Prove que se f for estritamente crescente
em I, entdo f'(x) > 0 em I.

Suponha f derivavel em [a, b] e tal que f(a) - f(b) < 0. Prove que existe p em
la, b[ tal que f (x) < f(p) para todo x em [a, b] ou f (x) > f(p) para todo x em [a,
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46.

47.

48.

49.

b]. Interprete geometricamente.

Suponha f derivavel em [a, b] tal que f(a) - f(b) > 0 e f(a) = f(b). Prove que
existem Xy, X, € la, b[ tais que, para todo x em [a, b], f (x;) < f (X) < f (xy).
Interprete geometricamente.

Seja f: R — R uma funcdo tal que quaisquer que sejam x e t
[fC)-fOI<|x—t
Calcule f'(x).

Sejam f e g definidas em R, com g continua em 0, e tais que, para todo x, f (x)
= x g(x). Mostre que f é derivavel em O.

Suponha f definida em R, derivavel em 0 e f(0) = 0. Prove que existe g
definida em R, continua em 0, tal que f (x) = x g(x) para todo x.
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8

FUNCOES INVERSAS

8.1. FUNCAO INVERSA

Dizemos que uma funcao f é injetora se, quaisquer que sejam s e t no seu dominio,

s#t=f(s)#f (0.

Observamos que se f for estritamente crescente ou estritamente decrescente, entao f
sera injetora.

Suponhamos, agora, que f seja injetora e que B = Im f. Assim, para cada x € B
existe um unico y € Dytal que f(y) = x.

L |

Podemos, entdo, considerar a funcao g, definida em B, e dada por

g =y=f@=x

Tal funcdo g denomina-se fungdo inversa de f.
Observe que a funcdo inversa y = g (x) é dada implicitamente pela equacao f (y) =
X.

Se f for uma funcdo que admite funcao inversa, entdao diremos que f é uma fungdo
inversivel. Observe que se f for uma funcao inversivel, com inversa g, entdao g também
sera inversivel, e sua inversa sera f.

EXEMPLO 1. A funcdo f (x) = x% x > 0, é estritamente crescente em [0, +o [, logo, f
é inversivel. A sua inversa ¢ a funcao g, definida em [0, +o [= Im f, e dada por

g =y=fQ@=x

Para expressar y em funcdo de x procedemos assim:

) ;
f=xsy =xey=Jx (wWxeR,).
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Ainversade f(x) =x* x>0, é a fungdo g (x) = +/x, x = 0.

AY

X

Os graficos de f e de g sdo simétricos em relacdo aretay =x. ®

Observacdo. Suponhamos que f admita inversa g. Temos

(a,b) EGy=b=f(a)=a=g(b)=(b,a) €G,

ou seja,
(a, b) € G;= (b, a) € G,
Quando (a, b) descreve o grafico de f, (b, a) descreve o grafico de g. Como (a, b) e

(b, a) sdo simétricos em relacdo a reta y = x, resulta que os graficos de f e de g sao
simétricos em relagdo a reta y = x.

=y

y=x

EXEMPLO 2. A fungdo f (x) = e, x € R, é estritamente crescente, logo inversivel.
Sua inversa é a funcao g (x) = In x, x > 0, pois

Inx =y e € =x(xeyreais, com x > 0).
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Y

fo)=¢"
s =X
)
i
l e
“;*‘/lx} =Inx
” 1
. 1
-
i 1 A
s
i
’
s
|
~ ~ T,
EXEMPLO 3. (Fungdo arco-seno). A funcao f (x) = sen x, x & [_E ?} é

estritamente crescente, portanto inversivel, e sua imagem é o intervalo fechado [-1, 1].
A inversa de f é a fungdo g (x) = arc sen x (leia: arco-seno x), x € [—1, 1], dada por

arcsenx =y © seny = x

comx e [—1,1]levE [—g E}

2
Vi
¥ i) I
/Y= 2 PR
-« L
Lf=== *— /
I s :
Ll : A
Aoy 2 1 o I
2 I - =1 H -
| A, | 1 ¥
I 2 |
I |~
| |~ L arc sen x
7 -1 A
& o
,-/ | I 3
mTm 2
Graficode f(x) = senx, x £ = i
-7 u
~ ~ T W
EXEMPLO 4. (Fungdo arco-tangente). A funcdo f (x) = tg x, x = }—? ?[ é

estritamente crescente, portanto inversivel, e sua imagem é R. Sua inversa € a funcdo g
(x) = arc tg x, x € R, dada por
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arctgx=yetgy=x

emquex = Reve }—E. E{
2" 2

by

m y=x

=3

flx)=tgxx E] - =

¥ ]

Exercicios 8.1

1. Calcule.

a) arc sen 1

d)arctg 1

: [ 3 ]

Jlarcsen | ———
2

2. Verifique que

b | —

g) arc sen [—

) cos (arc sen x) = aﬁl."] — x2

3. Calcule.

1

by arc sen —

e)arctg (—1)

hyarcsen(—1)

[)arc tg

270

A 2

3

Ii_
A3
C)arc sen —

-

Parctg 3

i)arc tg (— 1.-'3}
3
mi) arc tg [—1—%]

b) sec (arc tgx) = /1 + x2



1 [ 3
a) cos [anc sen — b) cos L:u'c sen —
2 2

s

{ £
\.‘. _’
c) cos {arc sen {— 5 ]] d) sec (arctg 1)
T T T T
€) arc sen (sen x), em que e f)arc tg (tg x), em que = <X < =
i 217 i)
g) arc sen | sen 5 | (Cuidado!) h) arc sen (sen 37)
Y 4
: S
i) arc sen | sen
. = i T T
J) arc sen (sen x), em que x = 2k + x,kinteiroe x € {_E T}
i

4. Seja fuma funcdo inversivel com inversa g. Mostre que

a) f(g (x)) = x para todo x € D,
b) g (f (x)) = x para todo x € Dy

v

Prove que a fungdo f (x) = arc sen x, x € [—1, 1], é continua. (Veja Exercicio
12.)

6. Prove que a funcao f (x) = arc tg x, x € R, é continua. (Veja Exercicio 12.)

™

Seja f dada por f (x) = x°.

a) Mostre que f é inversivel e determine sua inversa g
b) Esboce os graficos de fe de g

8. Qual a funcéo inversa de f(x) = I—?
x
x+1
3. Qual a funcao inversa de f(x) = s ?
X
10 Y —e?

" Seja f(x) = ‘

a) Mostre que f é inversivel e determine sua inversa g
b) Esboce os graficos de fe de g

11. Seja f (x) = x + €*. Mostre que f é inversivel e esboce os graficos de f e de sua
inversa.

12. Seja f uma funcdo cujo dominio e imagem sao intervalos. Prove que se f for
estritamente crescente (ou estritamente decrescente), entdo f sera continua.
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13. Seja f (x) = x + €* e seja g sua inversa.

a) Prove que o dominio e a imagem de g sdo intervalos.
b) Prove que g € estritamente crescente.
c) Prove que g € continua. (Sugestdo: Utilize o Exercicio 12.)

14. Prove que, se f for definida, continua e injetora no intervalo I, entdo f sera
estritamente crescente ou estritamente decrescente.

8.2. DERIVADA DE FUNCAO INVERSA

Seja f uma fungao inversivel, com inversa g; assim,

f (g (x)) = x para todo x € D,,

Segue que para todo x € D,

[f(g (I =X

ou

[f(g ()] =1.

Se supusermos f e g diferencidveis, podemos aplicar a regra da cadeia ao 1.°
membro da equacdo acima:

f@x)g (x)=1

ou

1
8'®) = ——- pamatodox €D,

fi(g(x)

que é a férmula que nos permite calcular a derivada de g conhecendo-se a derivada de

f

Observacado. Observe atentamente as notagcoes

f(gX)elf(g ()] :

f (g (x)) é o valor que a derivada de f assume em g (x), enquanto [f (g (x))]' = f (g (X))

]
g ).
O préximo teorema conta-nos que, se f for inversivel e derivavel e se sua inversa g
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for continua, entdo g sera derivavel em todo p de seu dominio em que f' (g (p)) # 0.

Teorema. Seja f uma funcdo inversivel, com fun¢do inversa g. Se f for
derivavel em q = g (p), com f (q) # 0, e se g for continua em p, entdo g sera
derivavel em p.

Demonstragdo

gx)—gp) _  gx)—glp) _ 1 :
xX—p flgx) — fg(p)y f@&x)—fgp)’
g(x)—g(p)

F p.

Fazendo u = g (x), pela continuidade de g em p, u — g para x — p. Entao,

2 g(x)— g(p) : 1

lim = lim — =

xX—=p Xi— P H—q f) — flq)
=g

Como lim F@) — 5@
H—q i —dq

= f"(q) = f'(g (p)).resulta

; : g(x)—g(p) 1

(p) = lim = — :
o x=p X fg(p)
I
f'lg(p)

EXEMPLO 1. (Derivada do arco-seno). A funcdo arc sen é continua e é a inversa de

f(x)=senx, x & [—% % . Temos

Portanto, g é derivavel em p e g'(p) =

. 1 1
Q) arc sen'y = — =
f'(arc sen x)  cos (arc sen x)

T
isf'=cosem | —. — | De
pois f [ > 2}

2
[cos (arc sen x)]” + [sen (arc sen x)]z = ]

X

segue
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[ cos (arc sen x) 1> =1 — x>

[ waT
e, portanto, cOs (arc SEI']_I'} = *\.'Il = J.'ﬁ‘ uma vez que arc sen xE |:_?, ?:|

Substituindo em O resulta

arcsen’y = ———, —1<x<L
l—x"

¥

Outro processo para se obter a derivada de y = arc sen x. Esta funcdo, como sabemos,

iy
é dada implicitamente pela equagdo sen v = X, —? =VsS = Temos, entado,

d d
— [sen v]=—1[x].
d,x'[ ] dx[]

’ dv
Dai, [ cos v] n’_ = | e, portanto,
X

L JE CI

dx  cosy 2 2
ou seja

dy 1

Y c=1=C 2L 1,

2
dx &Y 1— x~

(Veja Exemplo 6 da Secdo 7.13.) =

Vejamos como fica a férmula de derivacdo de funcdo inversa na notacdo de
Leibniz. Seja y = g (x) a inversa da funcdo dada por x = f (y) (observe que sendo g a
inversa de f, temos: y = g (x) © x = f (y)). Entdo,

ﬁ=g’{ﬂ= e
de  ° " fl(g(x)) dx
dy
ou
) o o
dx ﬂ




]

dx ( dx ] _
em que e L— = j,-*‘jJ deve ser calculado em y = g (x).
'ﬁr!'

Como exemplo, calculemos a derivada de arc tg na notagao de Leibniz:

m o
y=arctgxex=tgy,comx = Re _E{ y<—.

2
Entao,
dv 1 1 1 _
de 4 secly  1+tgly 14+ x?
dy
EXEMPLO 2. Determine a derivada.
a) y = arc sen x*
b) f (x) = x arc tg 3x.
Solugdo
dy : 1 1
a) =L = arc sen’ ¥ - (%) = 2
dx ".II_'I] - (_,T" \j"
ou seja,
d 2 2x
— [arc senx” | = — :

] } dy .
Poderiamos, também, ter calculado d_ da seguinte forma:
5

y = arc sen u no qual u = x*

d‘l-“ d ﬁ'TJ'.f 1
— = — Jarcsenu]- = — &
dx du dx 11— y?
ou seja,
dy 2x

dx .\.';] — ).'4 .

7)) Como f (x) = x arc tg 3x vem:
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f(x)=1-arctg 3x + x [arc tg 3x]'.

"'J"
Mas, [arc tg 3x]" = arctg’ (3x) - 3x) = ———.
[ & 3] = 1+ (3x)%
Assim,
3x
') =arctg3x + ———-.
;7 e 1 4+ 9x2

Observacao. A derivada de arc tg 3x poderia, também, ter sido calculada da seguinte
forma:

d ) )
— [arc tg 3x] = ¢ [arc tg u] ﬂ\ em que u = 3x;
dx dx
assim
d 1 3
arc tg 3x]' = — [arctg 3x] = 3=—
[are:f;3] dx[ &l 1+ u? I + 9x2

Exercicios 8.2

1. Determine a derivada.

a) y = x arc tg x

b) f (x) = arc sen 3x

¢) g (x) = arc sen x°

d) y = arc tg x*

e) y=3arctg (2x + 3)
) y = arc sen e

g) y = e* arc sen 2x

_ sen 3x
hj -1'_1 =
arc tg 4x
1) y= X2 edrcts 2x
) X arc tg x
jy="7"F2
cos 2x

l) y=e3+In (arc tg x)
e~ " arc tg et

tg x

m) f(x)=

2. Sejaf(x) =x + € e seja g a inversa de f. Mostre que g é derivavel e que
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@

o' (x)= ; (Sugestdo: Veja Exercicio 13-8.1.)
g 1 + &)

Seja f (x) = x + e* e seja g a funcao inversa de f. Calcule g' (1) e g"(1).
Sejaf(x)=x+Inx, x> 0.

a) Mostre que f admite funcdo inversa g, que g é derivavel e que
g(x)

1 + g(x)

b) Esboce os graficos de fe de g

c) Calculeg (1),g' (1) eg" (1)

g'(x) =

Seja f(x) = x + x°.

a) Mostre que f admite funcao inversa g
b) Expresse g' (x) em termos de g (x)
c) Calcule g’ (0)

(Fungdo arco-cosseno). A fungdo f (x) = cos x, 0 < x < m, é inversivel e sua
inversa é a funcao g (x) = arc cos x, -1 <x < 1.

a) Calcule arc cos' x
b) Esboce o grafico de g

(Fungdo arco-secante). A funcao f (x) = sec x, 0 =x < — é inversivel e sua

ra | 3

inversa é a funcao g (x) = arc sec x, x > 1. Calcule arc sec’ x.

Verifique que.
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d 1 Py

a) ——raae g y~~—=Io(l+x-)r—ac g%
dx | 2
d [ x3 242

by — arc sen x + -\v-'l = xz = xz arc sen x
dx i

L P — "}] te \'x

c)— |(x arc tg /X — +/X | = arc tg «/:

{_ix L

d | 1 2—x 1
d) — | —— arc sen , = .
de | 2 x 2 X 4 x2 +4x—4

d | 2752 +6x—1 ( 1 —3x ] 1
e) — 3 arc sen = .
dx x 6x x2 \27x2 + 6x —1
[2 23— =x 1
f}{— —.|— arc t ( s = ,
dx V3 \V3(x—2) X4 Sl xS
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9

ESTUDO DA VARIACAO DAS FUNCOES

9.1. TEOREMA DO VALOR MEDIO (TVM)

O objetivo desta secdo € apresentar o enunciado de um dos teoremas mais
importantes do calculo: o teorema do valor médio (TVM). A demonstracdao € deixada
para o Cap. 15.

Teorema do valor médio (TVM). Se f for continua em [a, b] e derivavel em ]a,
b[, entdo existira pelo menos um c em ]a, b[ tal que
fib)y— fa)
b—a

® =f'(c) ou f(b) —f(a)=F(c) (b — a).

Geometricamente, este teorema conta-nos que se s é uma reta passando pelos
pontos (a, f (a)) e (b, f (b)), entdo existira pelo menos um ponto (c, f (c)), com a < ¢ <
b, tal que a reta tangente ao grafico de f, neste ponto, é paralela a reta s. Como

f{b: — /@) é o coeficiente angularde se f (c) o de T, f“? =i £ e)i
»— a ) — da

I (b)

fla)

=
X

[ -
o ———
R e i it

Vejamos, agora, uma interpretacao cinematica para o TVM. Suponhamos que x = f
(t) seja a funcao de posicao do movimento de uma particula sobre o eixo 0x. Assim,
f(b) — f(a)

b—a
TVM conta-nos que se f for continua em [a, b] e derivavel em ]a, b[, entdo tal
velocidade média sera igual a velocidade (instantanea) da particula em algum instante
centreaeb.

As situagOes que apresentamos a seguir mostram-nos que as hipéteses “f continua

sera a velocidade média entre os instantes t = a e t = b. Pois bem, o
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em [a, b] e f derivavel em ]a, b[” sdo indispensaveis.

* § o |
il
I
| |
1 1
[ | f(a) o f{b} B
i I |
[ I |
Il 1 1 - -
a p b f 1
fnio é derivavel em p; nio fnio & continua em [a. b]; ndo
existe ¢ verificando (7). existe ¢ verificando (7).

Antes de passarmos a préxima secdo vamos relembrar as seguintes definicdes.
Sejam f uma funcdo e A um subconjunto do dominio de f. Dizemos que f é
estritamente crescente (estritamente decrescente) em A se, quaisquer que sejam s e t
em A,

s<t=f@)<f@®O  {(©)>f®).

Por outro lado, dizemos que f é crescente (decrescente) em A se, quaisquer que sejam s
etemA,

s<t=f(s)<f(@®) (fG)=f®).
9.2. INTERVALOS DE CRESCIMENTO E DE DECRESCIMENTO

Como consequéncia do TVM temos o seguinte teorema.

Teorema. Seja f continua no intervalo I.

a) Se f'(x) > 0 para todo x interior a I, entdo f sera estritamente crescente em 1.
b) Se f(x) < 0 para todo x interior a I, entdo f sera estritamente decrescente em 1.

Demonstragdo

a) Precisamos provar que quaisquer que sejam setem I, s <t = f(s) < f(t). Sejam,
entdo, setem I, coms <t.

s Xt {

Da hipotese, segue que f é continua em [s, t] e derivavel em ]s, t[; pelo TVM existe
x & ]s, t[ tal que
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fO —fFE =F£(x)(@— 5.

De f'( x) = 0, pois y estd no interior de I, e de t — s > 0 segue

fO-f(s)>0 ou f(s)<f(.

Portanto,
v s, tE€Ls<t=f(s)<f(t).

b) Fica como exercicio. =
(Observacdo: x interior a I significa que x € I, mas x nao é extremidade de I.)

EXEMPLO 1. Determine os intervalos de crescimento e de decrescimento de f (x) =
x> — 2x*> + x + 2. Esboce o gréfico.

Solugdo
f(x)=3x*-4x+1
1
3 —dx+1=0ox=1oux= 5
Entao,
¢ 1
f'(x)>0 em ]—oo, 5 [ eem]l, +oof
; 1
Fix)< D em ]? 1.
f 2 . B ; 3 (variacio do
.l 1 sinal de f ')
&

Como f é continua, segue do teorema anterior que

. i 1
[ € estritamente crescente em |—@, ?] eem/[1, +oof

7 : 1
[ € estritamente decrescente em [;, 1].
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1

L= 4

Antes de esbocar o grafico de f vamos calcular os limites de f parax — +o e x — —oo,

lim [x -2 +x+2]= lim x3[1—3+%+%}:+m

X —=+wm X — 4+ X x= X~
im [ =22 +x+2]=—w
X ——

Grdfico de f v

x| . Jrz)
7 | =2 ;

0 2 i

1 2 i

RE - A

3| 27 1 x

EXEMPLO 2. Seja f(x)= ‘1—_2 Estude f com relacdo a crescimento e
=
decrescimento. Esboce o grafico.

Solugdo

Como (1 + 3x%)* > 0 para todo x, o sinal de f é o mesmo que o do numerador.

3,'c2+2,r—1=01:r,r=—10ux=

L | =
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iy - + (variagiio do
sinal de f')

=

/N S

-1

b=

L 1
f é estritamente crescente em |-, —1] e em [? +oo

, . |
f é estritamente decrescente em | —1, — |.

Temos

’. l—l
. XerrEmR . X
lim —= lim ——=
r— 4o 1+ 3x< X — 4w 1 ey
3 i
x2

L | —

) x2—x 1
lim ——=—.
x——= ]+ 3x° 3

Grdfico de f

X

S~
';-'\.
=

—1

SO = =

I
3
0
1

EXEMPLO 3. Determine os intervalos de crescimento e de decrescimento de

2
filx)= ,;r . Esboce o grafico.

X< —

Solucgdo

D;={x €ER|x=+1} =R - {-1, 1}.
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;(\qu—v.
re (x2 —1)2
Entao,
f'(x)>0 em ]—,—1[ e em ]—1, O[
f'(x)<0 em]0,1[ e em ]1, +oo[.
fr— = =
-1 0 1

Segue que

f € estritamente crescente em |—, —1[ e em |—1, 0]
[ € estritamente decrescente em [0, 1] e em ]I, +2f.

Cuidado: f ndo é estritamente crescente em ]—oo, 0]!!!

Temos

lim = = lim e 1
x— 4w X5 — X —+w 1
7
X
b )
; X~
lim - = 1.
x—=—m x° —1

Os limites laterais de f em 1 e -1 fornecem-nos informacdes sobre
comportamento de f nas proximidades de 1 e —1. Vamos entdo calcula-los.
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= ) 1 - 1
lim 5 = lim 2 8 =40 =4
x—=1t x°—1 r=s1tx—1 x+1 2
) x2 1
lim — = —00:—=—00
xr—=1- x* —1 2
2 L]
A i : 1 X 1
lim ,;r = lim o X =+-x-[——]=—oo
x=s—It x°2 =1 x=a—1rx+1 x-—1 2
2 f 1
lim ,Jx = —o0 L——] = +0o0,
xr—=—1" x= — 2
| |
Grdfico de f : :
|
I
" | %'h__l__
i | 90 g ity it i Wl
0 0 L 1 L
I P4 i
2 & -2 —I: 112 x
3 | :
4 [
-2 E3 | I
3 I I
| I
I I
O

EXEMPLO 4. Suponha f' (x) > 0 em ]a, b[ e que existe ¢ em ]a, b[ tal que f (c) = 0.
Prove que f é estritamente decrescente em Ja, c[ e estritamente crescente em ]c, b[.

Solugdo

f é estritamente crescente em ]la, b[, pois, f' (x) > 0 em ]a, b[. Assim,

F (X< f'(c)=0 em]a, c[
f'(x)=f'(c)=0 em ]c, b[.

Segue que

[ € estritamente decrescente em |a, ¢
[ € estritamente crescente em |c, b[.
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flr
4 - /'/ . @@ =0)
c
\ /
f :
[

EXEMPLO 5. Prove que g (x) = 8x> + 30x* + 24x + 10 admite uma tnica raiz real a,
com -3 <a<-2.

Solugdo

Vamos estudar g com relacao a crescimento e decrescimento.

g' (x) = 24x* + 60x + 24

24:cE +60x+24d=0=x=—-2o0ux= —%

. + - +
4 : |
-2 .
2
4 t .
— e
2
[y 9 : 5 _ ]
Como ¢ [_E] = 5 = (), g estritamente decrescente em |—2, “5 e

estritamente crescente em | — E +oo| , segue que g (x) > 0 para todo x > —2. Por outro

lado, como . E}”lm g (X) = —%€ g astritamente crescente em ]-o0, 2], resulta que g

admite uma tunica raiz neste intervalo. Tendo em vista que g (-3) = -8 e g (-2) > 0,
segue que a Unica raiz esta contida no intervalo [-3, —2].
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EXEMPLO 6.
1) Mostre que, para todo x > 0, e* > x.

) :
) Mostre que, para todo x > 0, ¢* =

-
I\J| NEY

R x
) Concluade (b) que lim ~— = +o.
r—=+4= X

Solugdo
1) Consideremos a funcdo f (x) = ¢ — x. Temos

£(0)=1.

Se provarmos que f é estritamente crescente em [0, +oo[, seguira que, para x > 0,

e“—x>1>0o0ue*>x.

Como f'(x)=e*— 1, parax >0

fx)>0
e, portanto, f é estritamente crescente em [0, +oo[.
L ]
) . : <
) Seja g (x) = ¢ — 2 Temos
g (x)=ée"—x.

Pelo item (a) g’ (x) > O para todo x > 0. Assim, g (x) é estritamente crescente em [0,
+oo[; como g (0) = 1, segue que para todo x > 0
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2 2
X - X s
& =0 oo & =—.

>) Pelo item (b), para todo x > 0

e* X
X 2

_ X
Como lim — =49 resulta
x— 4o 2

i
lim —=+oo,
X—4w X

Para x — +oo, " tende a +o mais rapidamente que x. ®

Vamos mostrar, a seguir, que, para x — +oo, " tende a +o0 mais rapidamente que
qualquer poténcia de x.

Seja a > 0 um real dado. Observamos que

x X}
f?_ f,\-’i-f" _ u
lim — = lim = lim — = +oo,
X—tw X — +oe X u—+o i
[0
[0
Temos, agora,
X o
X .
Iim — = Iim —| = lim u = +co
Xr—+=m X X — +® H— ™
Assim,
eX
lim — =4 (a>=0)
r—4w X

Para x — +, e* tende a +o mais rapidamente que qualquer poténcia de x.

EXEMPLO 7. Suponha g derivavel no intervalo aberto I = ]p, g[, com g' (x) > 0 em I,

etal que lim -1 (x) = 0. Nestas condicoes, prove que, para todo x em I, tem-se g (x)
x—p
> 0.

288



Solugdo

Consideremos a fungdo G, definida em [p, g[ e dada por

G (x) = [g(x) se x E]p, gl

'['”_1_0 se x = p.

Como g é derivavel no intervalo aberto I, g é continua neste intervalo. Logo, G &,
também, continua em I. Por outro lado

lim G(x)= lim g(x)=0=G(0)

X—=p x—p

ou seja, G é continua em p = 0. Logo, G é continua em [p, g[. Para x € I, G'(x) = g'(x)
> 0. De G (p) =0, segue G (x) > 0 para todo x € I, ou seja, g (x) > 0 para todo x €
I =

Na Secdo 9.4, vamos estabelecer as regras de L’Hospital, que sao ferramentas
poderosas e que se aplicam ao calculo de limites que apresentam indeterminacdes dos

oo
apresentaremos a seguir.

. 0 o . . .
tipos 5 e —. Para demonstrar tais regras, vamos precisar dos dois exemplos que

EXEMPLO 8. Sejam f e g duas fungoes derivaveis no intervalo aberto I = ]p, g[, com
g'(x) >0 em I, e tais que

lim f(x)=0e lim g(x)=0.

x—p x—=pt

Suponha, ainda, que existam constantes a e [ tais que, para todo x € I,
'(x

o < ‘ff{ )
g (x)

<< 3. Nestas condic¢des, mostre que, para todo x em I, tem-se, também,

o < fx) <B
g(x)
Solugdo

Pelo exemplo anterior, temos, para todo x € I, g (x) > 0. Por outro lado, para todo x
em I,

f(x)
g'(x)

o <

<B=ag' N<f'X)<Bg'Kx.

Segue que, para todo x em I,

@® ag' (X)—f' (x)<0
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@ Bg'(x)—f (x)>=0.
De lim [ag(x) —f(x)]=0, lim [Bgx) —f(x)]=0.ede D e segue
x—=pt x—pt

ag®)-f(x)<0 e Bg(x)-f(x)>0
para todo x em I. Logo, para todo x em I,

Tlxy
g(x)

o <

= ] ]
EXEMPLO 9. Sejam f e g derivaveis no intervalo aberto I = Jm, p[, com g’ (x) > 0 em
I, e tais que

lim f(x)=4+%e lim g(x)=+o=,
X—=p xX—=p

Suponha, ainda, que existam constantes o e [ tais que, para todo x em I,

T
a < f,{ ; << B. Nestas condig¢des, mostre que existem constantes M, N e s, com s €
gilx
Im, pl, tais que, para todo x € ]s, p[,
a T
M +a{j(:ﬂ{ N N .
g(x) g(x) g(x)

Solugdo

De lim g (x)= +% segue que existe s € ]Jm, p[ tal que, para todo x € s, pl,
X—=p

tem-se g (x) > 0. Por outro lado, para todo x € I, tem-se

ag (x)—f(x)<0

Bg (x)—f(x)>0.

Segue que, para todo x € ]s, p[, tem-se

ag(X)-fx)<ag(s)=f(s)

Bg)-f(x)>Bg(s)—f(s)
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Fazendo M =f(s) —a g (s), N=f(s) — B g (s) e lembrando que g (x) > 0 em I, resulta,
para todo x € ]s, pl,

M o qedB g ¥
2(x) g(x) g(x)

Exercicios 9.2

1. Determine os intervalos de crescimento e de decrescimento e esboce o grafico
(calcule para isto todos os limites necessarios).

a)f(x)= =32 +1 b)f(x) = X2+ x+ 1
| |
Af)=x+ — dyp=2"1=
X X
e)y=x+ L,J Hfx) = 3w — 5x°
x<
) i ) 2
X = )y x =
% 1+ 2 1o
_ 2
j}.'{-zg_{g k J}v: ‘-_:_-]'
1
!r}f{.-"n} = (’.‘2}[ — {’.‘I ”-” g {r} = g i
3 2 i) .
xt—xe 41 3xe + 4x
mfa)= - ————— 0) f(x) = ————
X 5 s e
plgx)=xe q) f(x)= —x 4l -4+ 2
X 2 .
; x“—x+1
rfix) = £ s)g(x)= ool
X 2(x—1)
In x :
N f(x) = i W) g(x)=x—¢"

X

2. Prove que a equacdo x> — 3x* + 6 = 0 admite uma tinica raiz real. Determine
um intervalo de amplitude 1 que contenha tal raiz.

3. Prove que a equacdo x> + x> — 5x + 1 = 0 admite trés raizes reais distintas.
Localize tais raizes.

4. Determine a, para que a equacao

xX+3x*-9x+a=0

admita uma unica raiz real.
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5. Calcule.

. et . X
a) lim — b lim —
X—+® X X—+4w g
1 1
¢) lim xex dy lim xex
x—= 0t x—= 0"
: In x s e*
¢} lim ) lim
r—=4= x x—+= Inx

6. Determine os intervalos de crescimento e de decrescimento e esboce o grafico
(para isto, calcule todos os limites necessarios).

2 X

a)f(x) =

;2
b) f(x)=xInx
€)g(x)= —
2Inx

d) g(x) =x5 x>0

7. Seja

1
ST
‘t’ X ge xF0

flx)y=
w 0 se x =0,

a) Calcule f (0), pela definicao

b) Determine f
c) Esboce o grafico, calculando, para isto, todos os limites necessarios

8. Seja n > 2 um natural dado. Prove que x" — 1 >n (x — 1) para todo x > 1.

(Sugestdo: Verifique que f (x) = [x" — 1] — n (x — 1) é estritamente crescente em
[1, +oo[.)

9. Prove que, para todo x > 0, tem-se
ae*>x+1

he>14+x+ —
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10. Mostre que, para todo x > 0, tem-se

) 3

. X . X
ajcosx>=1— — b)ysenx =>x —
2 3!

11. Mostre que, para todo x > 0, tem-se

) .r-j’ ,rs
ajsenxy<xy— — + —
3! 5!
3 5
X X
Y0 <senx— | x — < —
3! 5!

(Sugestdo: Utilize o item (b) do Exercicio 10 e o item (a) acima.)

12. a) Mostre que, para todo x > 0,

Generalize tal resultado.

13. Suponha que f tenha derivada continua no intervalo I e que f nunca se anula
em I. Prove que f é estritamente crescente em I ou estritamente decrescente

em I.
14‘ SEJH J"L"-} = 1" — ..“::.__1"1 + 3 ~X E R.

a) Verifique que f é continua em R
b) Verifique que f(x) # 0 em R
¢) Tendo em vista que f (0) > 0, conclua que f é estritamente crescente

(Sugestdo: Veja Exercicio 13.)

15. Seja f uma funcao tal que f" (x) > 0 para todo x em ]a, b[. Suponha que existe
c em ]a, b[ tal que f' (c) =f (c) = 0. Prove que f é estritamente crescente em

la, bl.

16. Suponha f derivavel no intervalo aberto I. Prove que, se f for estritamente
crescente em I, entdo f'(x) > 0 para todo x em I.
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Suponha f derivavel no intervalo I. A afirmacdo: “f é estritamente crescente
17. em I se, e somente se, f(x) > 0 em I” é falsa ou verdadeira? Justifique.

18. Suponha f derivavel no intervalo I. Prove: f crescente em [ < f(x) > 0 em I.

(Lembrete: f se diz crescente em I se quaisquer que sejam setem I, s <t = f

(s)<f(®.)

19. Sejam f, g duas funcdes derivaveis em ]a, bl, tais que f(x) < g' (x) V x em ]a,
b[. Suponha que exista ¢ em ]a, b[, com f (c) = g (c). Prove que f (x) < g (x)
parax >cef(x) > g (x) para x < c.

9.3. CONCAVIDADE E PONTOS DE INFLEXAO

Seja f derivavel no intervalo aberto I e seja p um ponto de I. A reta tangente em (p,
f (p)) ao grafico de f é

y=f@=f @ &-p) ou y=f(p)+f () (x-p).

Deste modo, a reta tangente em (p, f (p)) é o grafico da funcao T dada por

Tx)=f@) +f () x-p).

Definicdo 1. Dizemos que f tem a concavidade para cima no intervalo aberto I se

f)>T(x)

quaisquer que sejam x e p em I, com x # p.

vi yi

e

" |
/

Definicao 2. Dizemos que f tem a concavidade para baixo no intervalo aberto I se
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fC)<TX)

quaisquer que sejam x e p em I, com x # p.

Definigdo 3. Sejam f uma fungdo e p € D;, com f continua em p. Dizemos que p é
ponto de inflexdo de f se existirem numeros reais a e b, com p € ]a, b[ C Dj, tal
que f tenha concavidades de nomes contrarios em ]a, p[ e em ]p, bl.

vi
YA \
— ! |
I I
/ i I f
!,.J’ 1 - 1 -
X
r p ¥
p & ponto de inflexiio de f p & ponto de inflexdo de f
(ponto de inflexio obliquo) (ponto de inflexfio horizontal)

Teorema. Seja f uma funcdo que admite derivada até a 2. ordem no intervalo
aberto I.

a) Sef" (x)>0em I, entdo fterd a concavidade para cima em I.

b) Se " (x) <0em I, entdo f terd a concavidade para baixo em I.

Demonstragdo

a) Seja p um real qualquer em I. Precisamos provar que, para todo x em I, X # p,

fx)>TX)
emque T (x) =f(p) +f (p) (x — p).

Consideremos a funcao g (x) = f (x) — T (x), x € I; vamos provar que g (x) > 0 para
todo x em I, x # p.
Temos
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{gTr)=j”mﬂ—-TTx)
T'(x)= f'(p)
dai

g®=f)-f@,x€eL

Como f' (x) > 0 em I, segue que f é estritamente crescente em I. Entdo,

g'(x)>0 parax> p
g'(x)< 0 para x < p.

Segue que g é estritamente decrescente em {x € I | x < p} e estritamente crescente
em {x € I | x> p}. Como g (p) = 0, resultado

gx)>0
para todo x em I, x # p.

b) Ficaaseucargo. =

[

v

EXEMPLO 1. Seja f(x) = ¢ "2 . Estude f com relacdo a concavidade e determine
os pontos de inflexao.

Solucgdo

[

X

FrE==re 2.

-

fix)= F-1e 2.

-

_1.2
Come, 2 = ()paratodo x, o sinal de f" (x) é o mesmo que o de x* — 1.
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e : : (variacio do
i 1 sinal de f'')
f H . i : -t (concavidade
-1 1 de f)

f"(x)=0 em |-, —1[ eem ]l +=[
f"(x)<<0 em |—11[

entao,

f tem a concavidade para cima em ]—o, —1[ eem ]1, +%][
f tem a concavidade para baixo em |—1, 1]

Pontos de inflexdo: —1el. m

2
X
EXEMPLO 2. Esboce o grificode f(x) = ¢ 2 .
Solugdo
—_ _;-2 +
ff=—xe 2 f' :
0
f :
0
1.2
" 2 e " & -
Foigy=ixr=dye 2 f :
-1
P U n
=1
Pontos de inflexdo: -1 e 1.
_a? .
im ¢ 2 =0 e lim € 2 =0
X —tw X——w
v | fw "
0 1
1
= L —/':___
*E : :
| L o I E
'\."IE
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EXEMPLO 3. Seja f derivavel até a 3.* ordem no intervalo aberto I e seja p € I.
Suponha que f' (p) =0, f" (p) # 0 e que " seja continua em p. Prove que p é ponto de
inflexdo.

Solugdo

Para fixar o raciocinio, suponhamos f" (p) > 0. Como f" é continua em p, pela
conservacao do sinal, existe r > 0 (que pode ser tomado de modo que Jp —r, p + r[
esteja contido em I) tal que:

f"x)>0em]p—r,p+rl.

Segue que f" é estritamente crescente em ]p — r, p + r[. Entao,

{fu{p\j=0

" estritamente crescente em |p — r, p+ 1|
implica

f"(x)<0 em ]p—r, pl
f'(x)>0 em ]p, p+r[

logo, p é ponto de inflexao.

f”" :

f” . . - /+ .[f"[p)=|]]

™
I
-
T+
=
+
=

EXEMPLO 4. Seja f derivavel até a 2.* ordem no intervalo aberto I e seja p € I
Suponha f’ continua em p. Prove que f’ (p) = 0 é condi¢do necessdria (mas nao
suficiente) para p ser ponto de inflexdo de f.

Solucgdo
Se f' (p) # 0, pela conservacdo do sinal, existe r > 0 tal que ' (x) tem o mesmo

sinal que f' (p) em ]p — r, p + r[, logo p ndo podera ser ponto de inflexdo. Fica
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provado, assim, que, se p for ponto de inflexdo, deveremos ter necessariamente f" (p)
= 0. Para verificar que a condicdo ndo é suficiente, basta olhar para a funcio f (x) = x*
f' (0) = 0, mas 0 ndo é ponto de inflexdo. =

Exercicios 9.3

1. Estude a funcdo dada com relagdo a concavidade e pontos de inflexdo.

a)f(x) = x> — 3% — ox b) f(x) = 20— — dx+ 1
. —2x 2 1
Ofx)=xe = dyxiy=1+ -
f
2
dg=e ¥ —e ¥ Ngx)= —
b ol
X s
g1y = 5 hf(x)=1—¢e"
1 x*
In x :
Df(x) = — D) =t =28 + 2

x

— 3

Dgx)= 3x* — X3 m)y = -
1% P

[

nfx)y=xex o)f(x) =xInx

2. Esboce o grafico de cada uma das func¢oes do exercicio anterior.

3. Sejaf(x)=ax®+bx*+ cx +d, a#0. Prove que f admite um tinico ponto de
inflexdo.

4. Se p for ponto de inflexao de fe se f (p) = 0, entdo diremos que p é ponto de
inflexdo horizontal de f. Cite uma condicdo suficiente para que p seja ponto
de inflexao horizontal de f.

5. Se p for ponto de inflexdo de f e se f (p) # 0, entdo diremos que p é ponto de
inflexdo obliquo de f. Cite uma condigdo suficiente para que p seja ponto de
inflexdao obliquo de f.

6. Sejam f uma funcdo derivavel até a 5. ordem no intervalo aberto I e p € I.
Suponha f® continua em p. Prove que

f@E=f"@E=fP) =0ef(p)=0

€ uma condigdo suficiente para p ser ponto de inflexdo de f. Generalize tal
resultado.

7. Seja f derivavel até a 2. ordem em R e tal que, para todo x, x f' (x) + f(x) = 4.
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a) Mostre que f" é continua em todo x # 0
b) Mostre que f ndao admite ponto de inflexao horizontal

8. Sejaf(x)=x>+bx*+cx’—2x+1.

a) Que condicGes b e c devem satisfazer para que 1 seja ponto de inflexdo de f?
Justifique.

b) Existem b e ¢ que tornam 1 ponto de inflexdo horizontal? Em caso
afirmativo, determine-os.

9. Suponha que f” (x) > 0 em ]a, +oo[ e que existe x, > a tal que f'(x,) > 0. Prove
lim fi{x) = 4+,
que x—+oo

10. Seja f definida e derivavel no intervalo aberto I, com 1 € I, tal que

f'(x) =x%* + f2(x) para todo x em I
=1

a) Mostre que, para todo x em I, f" (x) existe e que f" é continua em [
b) Mostre que existe r >0 tal que f(x) >0ef' ' (x)>0em 1 —r, 1 +r[
c) Esboce o graficodey =f(x),x € ]1 —r, 1 + [

11. Seja f definida e derivavel no intervalo ]-r, r [(r > 0). Suponha que

filx)= .1'2 + le[x]l para todo x em |—r, r|
L f(0)y=0

a) Mostre que 0 é ponto de inflexao horizontal
b) Mostre que f'(x) > 0 para x # 0
c¢) Estude f com relacdo a concavidade

2 3
d) Mostre que f(x) = P x para0<x<r

e) Faca um esbo¢o do gr.éfico de f

REGRAS DE I’HOSPITAL

As regras de L’Hospital, que vamos enunciar a seguir e cujas demonstracoes sao

deixadas para o final da secdo, aplicam-se a calculos de limites que apresentam

. L .0
indeterminacOes dos tipos — ¢ —

o0

o0

1. REGRA DE I’HOSPITAL. Sejam f e g derivaveis em ]Jp — r, p [e em] p, p + r[(r
>0), com g' (x) #0para 0 <|x — p | <r. Nestas condicoes, se
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lim fix)=0, lim g(x)=0

Xr—=p X —=p

ol 3

existira e

ese lim existir (finito ou infinito), entdo lim
x—=p g(x) x—=p 2(x)

G lim ' (x)

lim —— = i
x—=p g(:c) x—p g (x)

»

Observamos que a 1.* regra de L’Hospital continua valida se substituirmos “x — p
por “x — p*™” ou por “x —» p ” ou por “x — 00",

2. REGRA DE I’HOSPITAL. Sejam f e g derivaveis em Jm, p[, com g' (x) # 0 em
Jm, p[. Nestas condicoes, se

lim f(x)=+%w, lim g(x)= +x
x—=p X—p”

f'(x)

ese lim -——— existir (finito ou infinito) entdo lim
x—=p- 2(x) x—p 8(x

i 42

xX—=p” g(l’\} x—p g'(,ﬂ.

existira e

Observamos que a 2.? regra continua valida se substituirmos “x — p~” por “x —
p*” ou por “x — p” ou por “x — +00”. A regra permanece valida se substituirmos um
dos simbolos +o0, ou ambos, por —co.

EXEMPLO 1. Calcule

. X —6x> +8x — 3
a) lim 7
x—1 x* —1

X
b) lim -

r— 4w X

¢) lim xlInx.
x—= 0

Solucgdo

M
a) lim = mﬂf £ = [E} Temos
x—=1 xt—1 ]
(¥ —6x3+8x—3y . 5x*—18x2+8 -5
lim 7 - = lim > = :
x—1 (x*—1) xr—1 4x- 4
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Pela 1.% regra de L’Hospital

. ox—6x +8x—3 (x> —6x>+8x—3)
lim 7 = lim 0 : =
x—1 x* —1 x—1 x =1

.I“Al':_h

ou seja,

o x—6x3+8x-3 5
lim 7 =——,
x—1 x*—1 4

et o0
B lim _=[_}.
xr— 4w X oo

Pela 2.% regra de L’Hospital,

: et . (eX) : :
lim — = lim — = |lim e*=+w>,
X— 4w X x—= 4o (X) X — +m
Assim,
X
. e
lim —=+oo,
X—+w X

i fr w | — 00 , . . ~ -
C) 1-li>r[1l;}+ XInx=1[0-(=)] que ¢ uma indeterminacio que podera ser colocada na
. .x. Z, . . . r m ., . I
forma — ou —. E mais interessante aqui passa-la para a forma —, que nos permitira
o0 o0

eliminar o In x.

lim xIlnx= lim i = [ > }

xr— 0 x— 0 l 20
X
. f ]
In - o
lim '”TX= i, SO = g L= lim (-x)=0
x>0 * x—=0r 710 x— 0 e, x— 0
: = i

Ou seja,

lim xIlnx=0. ]
xr— 0
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: : : . o 0
Como vimos, as regras de L’Hospital aplicam-se as indetermina¢des da forma 0 e
(v &

—. Os préximos exemplos mostram como as outras formas de indeterminacéo (0 - o,
oo

oo—o0, 0°, o e 1%) podem ser reduzidas a estas. (Observamos que 0°, «® e 1° sdo
indeterminacdes do tipo 0 - 0. Veja: 00 = 0110 = g0 (®); 000 = g0In® = g0 ® o 1% = gxIn1
=e*'0)

EXEMPLO 2. Calcule

1 7
: e : | 1
a) lim x<ex b) lim | ——
=0 x—= 0t x“ sen x
/
‘ 1 1
c) lim L—— }
r—=0L X sen x
Solugdo
=
a) lim x2ex =[0-o0],
=0
1 9 0
L g
Fazendo X~ ¢* = —. somos levados a uma indeterminacdo da forma 0 Entdo
T
1
2 [ . X= 5 2x
lim x<ex = lim —1 = lim
x— 0 x—=0r _— x— 0" L f;—]f'-‘l'
e x 2
e o ultimo limite é igual a
. 2x3
lim g
x>0 ——
e x

Bonito! Em vez de simplificar, complicou!! Vamos, entdo, mudar a nossa estratégia.
l

= l (Veja: ex
P

. { . .
Facamos a mudanca de variavel : esta pedindo a mudanca de

. 1 ~
variavel 4 = —.) Temos, entao
%

] H
lim x<ex = lim _ = [_}

x—= 0 H—s 4o |= =]
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Pela 2.% regra de L’Hospital,

ol (et Y el
lim —= lim a—= lim —
u—s +o W u—+oo (H-) u—s 4o 2U

desde que o ultimo limite exista. Ainda, pela 2.* regra de L’Hospital,

i

; € :
lim —= lim &Y% =+co,
H—+w U u— +w
H EH
Segue que lim — = +e, portanto, lim — =+, Assim,
u— +o 2u u—+oe M
1
: 7
lim x° ex =+w,
r— 0

(Observacao.

lim FACI) = [E} ou {i} lim S ) = [9} ou [—
xX=3p g}fr{‘j 0 o0 x=p g'(x) 0 oo

lim —
x—=p g

existir (finito ou infinito), entdo

x—=p £(x) X—=p g”{.ﬂ'

fim L9 _ i I B

Verifique e generalize.)

¢
. 1 1
b) lim — — = [ 20 — o], Temos
x— 0 X< sen x
1 1 1 { x2 }
A == g b= .
X sen x X sen x
: 1
lim — =+
x—= 0t x-
e
1
. X ) X
lim = lim = (.
r— 0 sen x r— 0 Cos X
Segue que
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| x2 )
i = dim =4w.:]=4m
r—=0t X sen x
ou seja,
. I
lim oo = +00,
x=0F | x*° sen x

(Observagdo. Se lim f(x) =+, lim g(x)=+>e lim J(x) # 1. proceda
X—p . xX—p Xx—p g{x
lim (g (x) — f(x)).)
— D

como acima no calculo de .

{ | ™

i 1
¢) lim | —— = [ @0 — 2¢ |. Temos
r—=0\ X sen x
/
. 1 1 : 7o | e s 0 )
lim | —— = lim ————— = | — |.Pela 1.* regra de L’Hospital,
x=0\{ Xx senx x=0 XxSenx 0

: sen x — X 3 cos x — 1 0
lim — = lim = | —
x—=0 Xxsenx xr—0 sen X+ X Cos Xx 0
) —sen Xx
= lim = 0.
r—=0 cosx+tcosxy —XxXsenx
Portanto,
. | 1
lim — = } = (). ]
x—0 X sen x
_ { 1 ¥
EXEMPLO 3. Calcule lim €| e— | 1+ — | ;
X —+w ' X/
Solucgdo
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X
lim e"{e—(l+i] J = [+ 0]. Temos

X —+= X

regra de L’Hospital resulta

x I 3 I Y
e—[1+l] |1+lr| [1n|1+lr|—ril}
lim X/ - lim -~ 7 R =[

I — L X —+mw e v

Para facilitar as coisas, observamos:

i X
como lim [ 1+ l ] =g, basta entao calcular
.1'—>+\I00 \ | x /
In ( 1+ L J —
lim x e — E
X — oo g 0 | Este tltimo limite ¢ igual a
1
x2 1
1+ (x+1)?
lim " -
X — +o —g
. 'E;..:'.' oo
= lim ——5 = [—} (Confira!)
x—=+4+w x(x+1)° o'
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De(x + 1 [ 1+ l\] segue

X/
e ex
lim —— = = lim 5
X — 4o ‘E{‘E‘F”” x—+e 4 |
x| 14+ — ]
\ X
: 1 e*
= lim : =]1:(+w)=
X — 4w ( 1Y %
=
E.'l.
pois, como ja sabemos, lim —5 = +2.(Ou por L’Hospital:
X — 4o X-
; er : er ; e’ : e’
lim — = Ilim —= Jlim — = lim — = +c=,)Portanto
X —+w X° x—>+w 3x© x— 4o 6Xx X —+w
) 1 X
lim ¢ e—(l-l——] = +o0

X — +w X

EXEMPLO 4. Calcule
1 X
a) lim x* b) lim [] + —2}
x =0 x—tw X

Solugdo

a) lim x* =[0"].

x— 0

=" ¢ lim xInx=0(EXEMPLO 1)

x— 0
Entao

xlnx 'E]'_]_

II
™
I

lim x*= lim ¢
x— 0 x— 0
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1T i
by lim [l-l- ,,} =[1"].
X — oo X~
' 1
X xln| 1+
(1+ L) =)
X<
I ln(]—i—%] 0
lim xln[]—i— ,,]= lim a =[_}_
B e e X< X —+ow l 0
X
O ultimo limite € igual a
2
3
lim XX = lim a =0
X —+w I x—=4m x<+1
X

Logo,

1 T .x‘ln[]+%}
lim [l—i-—j} = lim e =/l=1.

X — 4w X X — 4w

(Observacgdo. Outro modo para calcular este limite é:

- I/ x 1 I | X
¢ \ X s A\ —1In| 14 ]
lim L1+L,J = lim L1+L,JJ = lim e* L 22 =1, pois
X — +ce X ¥ — 4o X< r— 4w
"y X
lim l=O'E: lim [l+1,,] =e) ®
X—=4w X X — 4o\ Xx=: }
EXEMPLO 5. Calcule
. l
' 3 "y o _
a) lim |1+ | b) lim (x+1)ln>
P X/ X—t=
Solucgdo
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X —+w= 'x J X — oo l
%
O ultimo limite € igual a
1 [_ 3
1+3/x x2 :
lim ] = lim 5o i 3

x— +® — e e i S S
2 x

Assim

3y .r]n[l+iJ 9
lim []—i——] = lim e X/ =¢g".

X — 4 X X — 4w

(Este limite poderia, também, ter sido calculado da seguinte forma: fazendo a mudanca

3
Iy o X I U
de Varie'lvelE — lresulta lim [ 1+ i ] = lim L 1+ l J = 93.‘}
X u X — foo X/ X — 4o
R
b) lim (x+1)nx = [,

X — o

. L-lnl{.1l'+]]I

(x+1) Inx _ E]n x
1
+ 2
T N W T Eﬁi—ﬂ=[f}= o R

x—=+co In x X —+w In x oo x — 400 l
X

Assim

R Inix+1)
lim (x+1)"* = lim e ¥ =g m
X =+ X — 4

309



X — o

vx+ 1
EXEMPLO 6. Calcule |im [ L .
In x

Solugdo

i

In x |

lim
x—+wm i

que ndo é indeterminagao. Veja

| x+1 f.x‘+l}ln[—]]_J
o s = e nx
In x

e
{ 1 A
lim (x+ 1)1n L —J = 4o (—0o0) = —om,
x =+ I x
Assim
i i i [.1'+]}]11£;J
l]m _— — “['n e In x — ﬂ -
R ] In x ¥ —s 4w

Vimos anteriormente (Exemplo 8 da Secao 7.2) que se f for derivavel em p entao

lim FER=[f(p+ FpE-=pI1 _
X—p X—p

0

ouseja,0erro E(x)=f(x) - T(x),emque T (x)=f(p) +f (p) (x — p), tende a zero
mais rapidamente do que x — p, quando x tende a p, o que significa

f@O=f@E+Ff (P)(x—p) + @ (X)X — p}J
E (x)

lim ¢@(x)=
X—p

comete nesta aproximacao tende a zero mais rapidamente do que x — p, quando x
tende a p. A seguir, estamos interessados em determinar a de modo que

com 0. Assim, T (x) é um valor aproximado para f (x) e 0 erro que se

P,(x)=f(p) +f (p) (x—p) +a(x-p)’
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seja um valor aproximado para f (xX) com erro tendendo a zero mais rapidamente que (x
- p)%, quando x tende a p.

EXEMPLO 7. Suponha f derivavel no intervalo Jp —r, p + r[, r > 0, e que a derivada
de 2.* ordem de f exista em p. Mostre que se

fO-Lf(p)+ ' (px—p+ax—p?]_

lim = 0
X—p [~ p)"
entao a = I {,tﬂ.
Solugdo

Vamos, entao, calcular o limite

lim

X—=p EXi— p}ﬁ 0

FO-LfP) + f (PG —p+ax—p?]_ [9}

Pela 1.7 regra de L’Hospital, tal limite é igual a

lim S0 —1[f'(p)+2a(x—p)] _

x—=p 2l==p)
— L i | SO ZTD _pp |2 L) - 24),
2 x— P L—p 2
pois, f" (@) = lim -y (p}. Segue da hipétese que
» X—=p X—p
g=1 (,b"}_ m
2

Observacao. Seja

2

().

Prxy=f(p)+r'@)(x—p)+ jT(p}

Do que vimos acima resulta

F(x)= P,y (x) + E,::'U'“Jl (x — p)%
E(x)

m im ¢(x)=

Py 0. oy seja, o polinomio P, (x) é um valor aproximado de f (x) com

co
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erro E (x) = ¢ (x) (x — p)* tendendo a zero mais rapidamente do que (x — p)*, quando x
tende a p. O polinémio P, (x) é denominado polinémio de Taylor de ordem 2 de f em x

:p.

EXEMPLO 8. Suponha f derivavel até a 2.* ordem no intervalo Jp —r,p+r[,r >0, e
que a derivada de 3.* ordem de f exista em p. Mostre que se

=T H e i gy ‘7” P2 +a(x— p)]
lim % =0
xX—=p X —ny
entdo, a = ] (p).
3!
Solugdo

Pela 1.% regra de L’Hospital, o limite acima € igual a

i £ @ L")+ f"(P)(x = p) + 3a(x — p)*] _ [g}
X—=p = Jb"\J'2 0
— lim 3 {.1'}—[,;". (p)y+ 6a(x — p)]

Xr—=p 6[x~— p)

= lim l{j ()~ P) _ ¢, =l[,f”'{p“}—6a],
x—=p 0O X P 6

Da hipétese, segue

;r"”{p‘r

a
O polinémio

JP) 2y TP

Py(x)=f(p+f (px—p) + o 3

(x—p )’
denomina-se polinbmio de Taylor de ordem 3 de f em x = p. Segue, do que vimos
acima, que P; (x) é um valor aproximado de f (x) com erro E (x) = f (x) — P5 (x)
tendendo a zero mais rapidamente do que (x — p)*, para x tendendo a p. Generalize. O
polinémio de Taylor de uma funcdao é uma das ferramentas poderosas do calculo
numérico. No Cap. 15, voltaremos ao polinomio de Taylor.

Para encerrar a secdo, vamos provar as regras de L’Hospital. Para provar tais
regras, vamos substituir a hipotese g’ (x) # 0 em ]p, p + r[, na 1.* regra, e g' (x) # 0 em
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Im, p[, na 2.7 regra, por g' (x) > 0 nestes intervalos. (Este fato ndo restringe em nada as
nossas regras, pois o teorema de Darboux (veja Exercicio 8 da Secdo 9.7) nos diz
exatamente o seguinte: g' (x) # 0 no intervalo aberto I = g'(x) mantém o mesmo sinal
neste intervalo.)

Demonstragdo da 1.° regra de L’Hospital

Suponhamos

lim &)

x—=p* g'(x)

=L LER.

Segue que, dado € > 0 existe § > 0, 6 <r, tal que, parap < x <p + §, tem-se

F'(x)
g'(x)

L—e< <L+e

Do Exemplo 8 da Sec¢do 9.2, segue que, para p < x < p + 6, tem-se, também,

fx)
g(x)

L —e< < L+e

Logo,

lim L&) g
x—= pt g(x)

Fica para o aluno provar, como exercicio, a 1.% regra nos casos:

im L b0 ou tim LD o
x> pt g (x) = pt g (X)
De modo anéalogo, demonstra-se que
f(x) _ fi(x)

lim lim -
X— p- g{x‘} xr—=p g (x)

Demonstragdo da 2.° regra de L’ Hospital

Suponhamos

XxX—p gj'l.r,ﬂ
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Pela definicdo de limite, dado € > 0 existe §, > 0, com p — §; > m, tal que, para p — §; <
x <p,

L_

€Ecf® 1€
2 g'(x) 2

Do Exemplo 9 da Secdo 9.2, segue que existem constantes M, Ne s, com s € |Jp — &,
pl, tal que, para s < x < p,

@ LA ) PR Y X
g(x) 2 g(x) gx) 2

Por outro lado, de

7
T e 0 g Cim =S =i
x—p 2(x) x—p- g(x)
existe 6 > 0, com p — 6 > s, tal que
_E{ M N {E

¢
2 g(x) g(x) 2

parap — § < x < p. Dai e de D resulta, parap — § <x <p,

L—e<d® o1 4e
g(x)
Ou seja,
lim L L |
x—»p £ (x)

: . , f(x)
Fica para o aluno provar, como exercicio, a 2.2 regra no caso lim - = oo,

x—=p 8 (x)

De modo anéalogo, demonstra-se que

G = lim Fx)

x=>pt g(x) =x-opt g'{x“}'

0
Observacao. As regras de L’Hospital contam-nos que, se lim RAC)) = {—} ou

] . x—=p g(x) 0
lim AL [i} ese lim fr Y existir, entio lim 1 (%) também
x—p g(x) o0 x—=p g(X) x—p g(x)
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existird e lim = lim ——. Entretanto, lim
xX—=p g(x) x—-p g'(x) x—=p g(x)

podera existir, sem

que lim ,

exista (veja Exercicio 4).
x—=p g2(x

Exercicios 9.4

1. Calcule
. 4.1(')’ + .rj +3 . xmu = ,rj +x—1
a)  lim z b)) lim 0
x——1 xt +1 x—1 ]|
1 {?3_1'
c) lim xex d)  lim
x=0F x—»+to X
2 In x 3
¢)  lim - ) lim senxlInx
x— o gd = DF
-
g) lim (1l —cosx)lnx h)  lim {,rz —+ I}l” X
x— 0T X —s Fo
| 1
i lim |:— + In .‘{':| J) lim (1 —cos x)X
r—=0tLx r—= 0"
¢
te 3x —sen x sec” x
) lim g : m)  lim
x—=0 sen” x xr—01—cosx
n) lim x3e o) lm [x— %u-'lx-% — x|
X —t+w X —=+w
l
.__,j X
g l x
p) lim ——— g) lim =
Foad e x—=4w| x° +1
1
H -] 8en x . g .3.'2
¥y lim [cos 3x]®"- ) lim x'%F
r— 0t x—=0F

2. Sejam f e g derivaveis até a 2.* ordem em ]p, b[, com g"” (x) # 0 em ]p, bl[.
Suponha que

lim fx)= lim f'(x)=0 e lim gx)= lim g’'(x)=0
X—p X—p X— ﬂ+ X — j"-'+

ou

315



lim f(x)= lim f'x=*xx e lim gx)= lim g’'(x)= *co.

xX— p+ XxX—p X — ;J+ X—p
: J =) ' f(x)
Prove que, se lim existir (finito ou infinito) entdo  lim
T+ g”(x) — pt g(x)
X — g r—p g
fj (x) _ i fr(x)

existira e lim o . Generalize tal resultado.

x—pt gx) _1—>p gl (x

3. Calcule
4 3 ) 2 3
b i e e B x< 4+ tg x
a) lim ~ by lim —%g
x—=1 x*—2x+1 y— 0t sen” x
2x ¥ — tg X
oL ¥ —to x
¢l lim d) lim —%g
X — 4w X- x—=0 Xx-
4. S : o — .2 - 1 J— 1F3
ejam flx)=x"sen —eg(x)=x Verifique que

[

lim f(x)= lim g(x)=0, lim = 0e que lim ndo existe. Ha

x—=0 x—=0 x—=0 g(x) x=0 g'(x)
alguma contradicdo com a 1.* regra de L’Hospital?

9.5. GRAFICOS
Para o esboco do grafico de uma funcao f, sugerimos o roteiro:

1) explicitar o dominio;

7)) determinar os intervalos de crescimento e de decrescimento;

°) estudar a concavidade e destacar os pontos de inflexao;

1) calcular os limites laterais de f, em p, nos casos:
(i) p € Dy, mas p é extremo de um dos intervalos que compdem Dy.
(i) p € Dy, mas f ndo € continua em p.

?) calcular os limites para x — +o0e x — —oo,

) determinar ou localizar as raizes de f.

EXEMPLO 1. Esboce o graficode f(x) =x> - x> — x + 1.
Solucgdo

1) Df:R

7)) Intervalos de crescimento e de decrescimento.
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f(x)=3x*-2x-1

3x2—2x—1=04:>< ou

wil— T

Pl /

W= T

°) Concavidade e pontos de inflexdo.

f'(x)=6x-2
£ - +
1
3
f A -
!
3

Ponto de inflexao: I—

1) Como f é continua em R, precisamos, apenas, calcular os limites para x — +o e x
— —00,
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lim [ —x¥—x+1]= lim 13[1—l_%+%}:+m
X — o X —+m X b X-
lim [xg—xz—x-l—]]:—%.

X——w

>) Asraizes de fsdo: —1 e 1 (1 é raiz dupla).

x | f(x) v
1 0
-1 | o0 |
_l E : 7
3 | 27 -1f =0
dss || o2 A x
3 | 27 T
0 1
|
EXEMPLO 2. Esb ifico d i
. Esboce o grafico de £ (x) = o
Solugdo
1) D;=R - {0}.
7)) Intervalos de crescimento e de decrescimento.
Para calcular f'(x) é conveniente escrever f na forma f(x) = X ],,
:
» = 5 2(x2 +1)(x2 -1
Fr)y=2r—2x 2 ou Frlx)y= (x 1“ )
X
i3 —g W & e 7
=] 0 1
3 : : :
-1 0 1
21
Observacao. O sinal de f(x) é o mesmo que o de o ja que
¥
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_ 0.
52
+ - -+
x? -1 ; !
=1 1
- - + o+
x i
0
x?—1 - + - +
X -1 0 1

°) Concavidade e pontos de inflexdo.

f"(x)=2+6x*
1 +
f” :
0
f U . U
0
Nao ha ponto de inflexao.
1) Limites laterais de f em O.
: ) 1 : 2 1
lim [x"+ —]= lm [xX + —]=+om,
5 7
x0T x= x =0~ X

?) Limites para x — +oeXx — —oo,

lim {,rf‘i'—aJ:-'_m: lim [xj-l_ij}

X — tw X= X— —® X=

) fndo admite raiz.
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x| f{x)

-
X

Observe que, quando x tende a +o ou —oo, o grafico de f vai “encostando” por cima
no graficodey=x> =

4x+ 5
x4 —1

EXEMPLO 3. Esboce o grafico de f(x) =
Solugdo
1) Dj={x €R|x#=1}.

») Intervalos de crescimento e de decrescimento.

x=—2
—4x2 —10x—4 )
)= —4x"— 1x—4=0& 1 ou
Y {J(z—]“ll2 ]
xX=——
2
f = S LN

°) Concavidade e pontos de inflexdo.

(—8x —10) (x2 —1)2 — (—4x2 —10x —H 2 (x2 — 1) 2x

all o (v =
e (x2 —1?

(x2 = 1) [8x +30x2 + 24x + 10]

SR (x2 — 14
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Vimos, no Exemplo 5-9.2, que g (x) = 8x> + 30x* + 24x + 10 admite uma tinica raiz
real a, com -3 <a < -2, e que

g(x)<Oparax<aeg(x)>0parax>a.

Combinando o sinal de g (x) com o de x*> — 1, resulta

Ponto de inflexdo: a é o unico ponto de inflexao.

1) Limites laterais em —1 e 1.

. 4x+35 . 1 4x+5
lim 5 = lim . = 4w
.1'—>]+ I”_] _]"—)|_+ X_] X+]
; 4x+ 5
lim = —oo
Fogl™ xdE =]
+ 4x + ;A
lim AL, e lim [ % - |—l|=—-:>o
r—3 -1 x=—] r—a—1+ x+1 x—1 L 2
4x+5
lim - = 4o
g Rl
A +‘- A +"
e) lim A =0= lim 4{ >
PREC T | X — —®@ '{.'"—]

) A tnica raiz de f é — %
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x | f@) : “4 i
' I
2 0 : !
4 I :
il || ol : !
1 a -2 E 1 -
R U T x
0| -5 | |
I I
o
I I
1 I
| |
I I
: I
&
Seja f uma fungdo. Se existir uma reta y = mx + n tal que
llﬂ}r [f(x) — (mx +n)] = 0, entio diremos que y = mx + n é uma assintota para f:
X— 4w

se m = 0, teremos uma assintota horizontal, e se m # 0, uma assintota obliqua.
vk Yi
f
¥=n //_\\z
; f
I ~—
L o=
/ x X / X

lim [flix)—n]=0
X — +we

v = R & uma assintota y .
: N assintota obliqua
horizontal

O que dissemos para x — +oo vale para x — —oo,

Se f for da forma f(x) = 2

q (x)
“grau de p — grau de q” for menor ou igual a 1. Se “grau de p — grau de q” for 1 ou 0,
para determinar a assintota basta “extrair os inteiros”. Se “grau de p — grau de g” for
estritamente menor que zero, ou seja, se grau de g for estritamente maior que grau de

p, entdo y = 0 é uma assintota.

. com p e q polindmios, f admitird assintota se

X'l'
g

EXEMPLO 4. Determine a assintota e esboce o grafico de f(x) =

Solucgdo

f é uma funcdo racional e a diferenca entre o grau do numerador e do denominador
é 1, logo, f admite assintota. Temos
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J.'? X

x2 +1 ¥2+1
. ; ) X
Como lim ———=0= Ilim ———. quando x tende a +o ou -, 0
x=+4m x<+1 x——o X< +1

grafico de f vai encostando na assintota y = x. Temos, agora,

1) Di=R.

7)) Intervalos de crescimento e de decrescimento.

f é continua em R e f(x) > 0, para x # 0, logo, f é estritamente crescente em R.

°) Concavidade e pontos de inflexdo.

- —2x(x2 =13
(x) = -
y (x2+1)3
£ + il .
—f 3 0 ~ 3
f U N U N
-4/ 3 0 J3
3 3
d) lim ,;r =+ e lim jr— = —ox,
x—=+w x°+1 x—3—w x° 41

2) 0 é a unica raiz de f.

)y = x é assintota.
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Observacado. Como f (0) =0, y = 0 é a reta tangente ao grafico de f em (0, 0).

Muitas vezes, por inspecdo, é possivel prever a existéncia ou nao de assintota. Um
bom indicador para a existéncia de assintota obliqua é o seguinte: se para x
suficientemente grande, f (X) = mx, para algum m, entdo serd razoavel esperar a
existéncia de assintota. Por exemplo, para x suficientemente grande, temos:

Jldxsatl =de Jld— 4 —o =0k
\ 4x  4x-
323 — x2 ==j~i,-"§:c'%:'1—L = 33 x
\ 3x

Entdo, é razoavel esperar que tais funcoes admitam assintotas.

Observe:

lim [ f(x) — mx]
X — oo

lim [f(x)—mx—n]l=0cn=
X —=+w

Para determinar assintota, procedemos assim: primeiro determinamos m (caso
exista) para que

lim [f(x)—mx] (ou lim [f(x)— mx])

X —+o X — —a0

seja finito; em seguida, tomamos para n o valor deste limite.

Observamos que se “”J]r [ f(x) — mx] for finito, entdo
X — 4w
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ou seja,

(Cuidado. lim f(x)

X —+w X

podera ser finito sem que lim [ f(x) — mx] o seja.

X — tom
- ) lim X)) =i -
Verifique.) De modo analogo, se , _, L&) ] for finito, deveremos ter

obrigatoriamente m = lim . A seguir, sugerimos um processo para se
xr—-—w X

determinar assintota.

Primeiro determine m, caso exista, através do limite

m= lim f(ﬂ.
X — +oo X

Em seguida, calcule

n= lim [f(x)— mx].
X — +o0

Se n for finito, y = mx + n sera assintota (para x — +o0). Proceda de modo analogo
para x — —oo,

Observacio. Se 1M f(x) =22 o g lim f'(x) existe pela 2.2 regra de

x —,>(+“T X —=+4w
L’Hospital lim J) _ lim f'(x).(Interprete.)
X—tw X X — 4w

EXEMPLO 5. Determine as assintotas de

flx) = qv-';:cf + 1.
Solucgdo

Temos
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T [ 1
. I 11+ se x>0
. J i1+ Y 2
R i A
Y Y , ]
—il+— se x<0
K2
Segue que
T o | L
Xr—=+=m X x— 4w | Xx=
e
A C P T O N
Xx——wm X X ——w \ Xx=

Assim, m =1, para x — +o, e m = —1 para x — —oo. Vamos, agora, deteminar n. Para x
— +00,

n= lim [f(x)— mx]
e e

n= lim [.\,-'x2 +:1.—x]
xr—+4w
: 1
= lim — =0
e ol B

Assim, para x — +oo, y = x € assintota. Para x — —oo, temos

n= lim [-E.".J(2 +1 + x]

X——
5 { = i’ ]
= lim [u*+1—u]l= Ilim , = (.
—s+oo H—+x *\H."Hj‘i‘l‘i‘h‘

Logo, para x — —oo, y = —x € assintota.
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EXEMPLO 6. Determine as assintotas e esboce o grafico de Py = {4 X2+ x+1.

Solugdo
Temos
|y :';4+l+L .\;';ﬂl‘i‘l-l-i2 se x>0
flx) _ \ x x2 | S
' ! 11
RS e e ]
\ ¥  x2
Dai
im SO - m fa+l+ Ll =
x—=+4m X x—to X X<
e
im f® = m - ja+l+ Ll =
X——m X X ——= V X B

Assim, para x - +oo, m = 2, e, para x - —oo, m = —2. Vamos, agora, determinar n. Para
X — oo, temos

n= lim [f(x)—mx]= Ilim l(ﬁ,k."‘fl:c2 +x+1-—2x)
X —+o X —» oo

Para x>0,

327



x+1

{4:{2 +x+1—-2x=—F———
J4x2 +x+1 + 2x

L
ey x ]
:i 1 1 _
Jillee—drn it )
[} X e

1 1,
Segue que n = e Logo, parax — +oo, y = 2x + 0 é assintota. Para x — —oo,

X——w

n= lim [{412 +x+1+ 2:{}

= lim [1,-"4:.{2 —u+1 - 2:.{}

U— +w

gl
= lim — “ S
EaGa T A Y
i u u-=

. E . . ~ ,
Assim, parax — —oo, y = —2x — T é assintota. Temos, entdo, as assintotas

y=2x+ & (para x — +)

T e % (para x — —x),

Temos, agora,

1) D;=R, pois, 4x* + x + 1 > 0 para todo x.

7)) Intervalos de crescimento e de decrescimento

8x + 1

fiix)= ——
2 \Jax2+ x+1

328



|
oo | = =

|
ml [Sg

°) Concavidade e pontos de inflexdo

15
4(4x2+ x+1)4x2+ x+1

=

f' (x) > 0 para todo x, logo, concavidade para cima em R.

d) lim 4x2+x+1=+o= lim 4x2+x+1.

Xr—+4w X——m
AN}
i
4174
o
el i1 *
8 4

]
EXEMPLO 7. Determine as assintotas e esboce o grafico de f(x) = %;'Ix% — x2

Solucgdo
Temos
5 YiF oo o2
UGl 2 A
x X X
Segue que
. . .' |
lim fi\j: lim 31—— =1
X—+= X X — +w al'n X



lim fx)

X ——%= X

e e, alees ),
X

x——w

Assim, m = 1. Vamos, agora, determinar n.

— e 2 551
fx)—mx= x31——
T

X
L

1
X

Para x — +oo,

X — +oo w— 0 i

T —w —
n= lim [f(x)—mx]= lim w=[g}

Pela 1. regra de L’Hospital,

) _2
—(1—u) 3-(—D

: 1
n= lim = ——.
w— 0F | 3
Para x — —oo,
M—u—1 1
n= lim ——— =——,
w— 0" i 3
Logo, vy = x — " € assintota para x — +oo e para x — —oo,
Temos, agora,
1) Df: R.
7)) Intervalos de crescimento e de decrescimento
: 3x2 — 2x
f'ix)= . —,x#lex#0
3 3(x3 — x2)2
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0 2 1
5 A

°) Concavidade e pontos de inflexdo

-2
f” {I\’ o 1,'. 3 =
93(x? = x2)2 (x-1)
. + + -
f ; L]
0 1
Fo - A
0 I

Ponto de inflexdo: 1 é o tinico ponto de inflexao.

. f = ] ; 1
d lim 3x3—-x2 = lim x31-— =+
x—+o x —+oo Y X
: i -
lim f{x — X = —oo,
X — —w

>) Em 0 e 1 a funcdo é continua mas ndo é derivavel. Vamos entdo estudar o
comportamento do grafico de f nos pontos de abscissas 0 e 1.

(0, 1(0))

Seja s, a reta secante ao grafico de f passando pelos pontos (0, f (0)) e (x, f (x)). O
coeficiente angular de sx é

Fo—fO _ Y —x>

x—20 X X
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im IW=JO _ o oy SDZSO_
x— 0 x—20 x— 0" Xeezit)
(1, (1))

O coeficiente angular da reta secante s,, que passa pelos pontos (1, f (1)) e (x, f (x)) é

e . T | ..
FO=fO 3 =2 5. 1 4
x—1 x—1 3(x — 1)2
O 0 hl () R G Bl N
x—=1 Xl x=>1" x—1

No ponto (1, f (1)) o grafico de f admite uma reta tangente vertical.

Grdfico de f

Interprete graficamente os limites

lim fix)— f(0) e lim j{x‘}—f(m.
x—=0 x—0 x—= 0" x—0

Exercicios 9.5

Esboce o grafico.
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L fO) =x° — 3x* + 3x 2. f)=x —x2+1
3= -~w-'l.r2 — 4 4, y= ¥
%
2 _ax
5. y=— 6. g =xe
b |
— )
7. f)=2x+1+¢ " 8. f(x)= e X"
4 2 :
S T W 10, f(x) = 3x3 —x
4 2
3 3
X X
11. y= 12. y=
' 2 +4 ' x2—1
3 _ : :
R i el 4. y= & — &
£2
15. f(x) = x* — 24 16. y= x2 + 2x+5
P x2
R 18. f(x) = —
: i X" =gi—d
e L ¢ 2
9.5 X jm—i—] 2{]._=4'Y+3:
x“ 1.4 x5
9.6. MAXIMOS E MINIMOS

Defini¢do 1. Sejam f uma fungéo, A C Dy e p € A. Dizemos que f (p) € o valor
mdximo de f em A ou que p um ponto de mdximo de f em A se f (x) < f (p) para
todo x em A. Se f (x) > f (p) para todo x em A, dizemos entdao que f (p) é o valor
minimo de f em A ou que p é um ponto de minimo de f em A.
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fpy) valor maximo de fem A
fips) valor minimo de fem A

Definigdo 2. Sejam f uma fungdo e p € D, Dizemos que f (p) é o valor maximo
global de f ou que p é um ponto de maximo global de f se, para todo x em Dy, f (x)
< f (p). Se, para todo x em Dy, f (x) > f (p), diremos entdo que f (p) é o valor
minimo global de f ou que p é um ponto de minimo global de f.

Defini¢do 3. Sejam f uma fungdo e p € D Dizemos que p € ponto de mdximo
local de f se existir r > 0 tal que

f)<fP)

para todo x em ]p — r, p + r[n D Por outro lado, dizemos que p é ponto de
minimo local de f se existir r > 0 tal que

fx)=f(p)

para todoxem ]Jp —r, p +r[n Dy.

L )

|- P3 & P5 sio pontos de maximo local: f (ps) € o valor maximo global de f

P7. P4 € Pg S0 pontos de minimo local: f(p5) € o valor minimo global de f
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Uma boa maneira de se determinar os pontos de maximo e de minimo de uma
funcdo f é estuda-la com relacdo a crescimento e decrescimento. Sejam a < ¢ < b; se f
for crescente em ]a, c] e decrescente em [c, b[, entdo c serd um ponto de mdximo local
de f; se f for decrescente em ]la, c] e crescente em [c, b[ entdo c serd um ponto de
minimo local de f.

EXEMPLO 1. Seja f (x) = x> — 3x* + 3.

a) Estude f com relacdo a maximos e minimos.
b) Determine os valores maximo e minimo de f em [-2, 3]. Em que pontos estes
valores sdo atingidos?

Solugdo
¥ + 4-
A f | 1
a) | f'(x)=3x" — 6x 0 2
i3 1' }
0 2
ponto de maximo local: 0
ponto de minimo local: 2
) 3 2 . 3 2
Como lim (x" —3x"+3)=+oe lim (x —3x" +3)= —% segue
xXr—+= X— —w

que f ndo assume nem valor maximo global, nem valor minimo global.

i x | f A N S
> 17 4 ; z ; }
0 3 -2 0 2 3
2 -1
3 3

f(=2) = =17 é o valor minimo de f em [-2, 3].
f(0) = f(3) = 3 é o valor maximo de f em [-2, 3].
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EXEMPLO 2. Determine dois numeros positivos cuja soma seja 4 e tal que a soma do
cubo do menor com o quadrado do maior seja minima.

Solugdo
Indiquemos por x o nimero menor (0 < x < 2); assim o maior € 4 — x. Seja
SK=x+(@4-x*0<x<2.
Devemos determinar x que torna minimo o valor de S. Temos

S(x)=3x*+2x—-8

4
xX=—
= 3
x+2x-8=0&
ou
F==g
- +
5 l i
0 4 2
3
S \ : {
0 4 2
3
. 4 .
Assim, x = — torna minimo o valor de S.
Conclusdo. Os nameros procurados sao
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EXEMPLO 3. Pede-se construir um cilindro circular reto de area total S dada e cujo
volume seja maximo.

Solugdo

Precisamos determinar r (raio da base) e h (altura).

Temos
4rea da base = 772
drea lateral = 27rh
Assim,
S =2nr? + 2nrh
dai b = M Prro L

27rr \ 27

Podemos, entdo, exprimir o volume V em funcao de r.

_ : 2 o
Vin=ar - ———,0<r< i (S € constante)
2ar 27w

ou

Vir)= Lo T, 0 < r < 1;i_
2 '5‘2?;'

Devemos determinar r que torna V maximo.

s
ZQE_BTTFZ=D<:>f'= .

Iy Y
Viin=—-—13 —
r) > r \V6m

Observacao. A condicio 0 < r << | ¢ para deixar r > 0e h = 0.
¥

S
| 29
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V' = _

1
0 /s s
bn 2
V | oendl | \‘ |
] ] |
; /S il
6 pl s
Assim, r = _|— torna V maximo.
II‘I ﬁﬂ-
~ | I § . .
Conclusdo. r= |— eh =2 ,|—— sdo, respectivamente, o raio e a altura do
\ 6 \ 67

cilindro de volume méaximo.

Exercicios 9.6

1. Estude a funcdo dada com relagdo a maximos e minimos locais e globais.
X

1+ x2

b)f(x)=xe™

€) f(x)= e — e

d)f(x)=2x>-9x*+12x + 3

e) f(x)=x>+3x+2

N x@)=te™

DFX)=x*—4x3+4x° +2

h) f(x) =sen x + cos x, x € [0, 7 ]

a) f(x)=

Dy =— +3*+41€[-1,3] ) h=— x€ [{1 3[
1 -]I-,r tg x 2
5wk 3 e
I filx)= F e X gl m)y= e X°
5 3
nyy= %\r?’ — x2 o) y= j:ij’ —x

2. Determine as dimensOes do retangulo de area maxima e cujo perimetro 2p é
dado.

3. Determine o nimero real positivo cuja diferenca entre ele e seu quadrado seja
maxima.

4. Determine o numero real positivo cuja soma com o inverso de seu quadrado
seja minima.

5. Determine a altura do cilindro circular reto, de volume maximo, inscrito na
esfera de raio R dado.
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6.

10.

11.

12.

13.

14.

15.

16.

Determine a altura do cone circular reto, de volume maximo, inscrito na
esfera de raio R dado.

Determine a altura do cone circular reto, de volume maximo, e com geratriz a
dada.

Considere a curvay = 1 — x%, 0 < x < 1. Tracar uma tangente a curva tal que a
area do triangulo que ela forma com os eixos coordenados seja minima.

Determine o retangulo de area maxima e lados paralelos aos eixos
coordenados, inscrito na elipse 4x* + y* = 1.

Deseja-se construir uma caixa, de forma cilindrica, de 1 m® de volume. Nas
laterais e no fundo sera utilizado material que custa R$ 10 o metro quadrado e
na tampa material de R$ 20 o metro quadrado. Determine as dimensdes da
caixa que minimizem o custo do material empregado.

r € uma reta que passa pelo ponto (1, 2) e intercepta 0s eixos nos pontos A =
(a,0)e B=(0, b),coma > 0eb > 0. Determine r de modo que a distancia de
A a B seja a menor possivel.

Certa pessoa que se encontra em A, para atingir C, utilizara na travessia do rio
(de 100 m de largura) um barco com velocidade maxima de 10 km/h; de B a
C utilizara uma bicicleta com velocidade maxima de 15 km/h. Determine B
para que o tempo gasto no percurso seja o menor possivel.

B ———

' /‘_ -
Wm & — T I 1o
| 10 /i._. e

| -

10 km

Qual o ponto P da curva y = x* que se encontra mais préximo de (3, 0)? Seja
P = (a, b) tal ponto; mostre que a reta que passa por (3, 0) e (a, b) é normal a
curva em (a, b).

Encontre o ponto da curva y = —, x > 0, que esta mais proximo da origem.

= |t

Duas particulas P e Q movem-se, respectivamente, sobre os eixos Ox e Qy. A
fungio de posicio de P é ¥~ VI eade Q, y=1 — I t > 0. Determine o

instante em que a distancia entre P e Q seja a menor possivel.

Seja g definida e positiva no intervalo I. Seja p € I. Prove: p sera ponto de
méximo (ou de minimo) de 4 (x)= ./g (x) em I, se, e somente se, p for ponto
de maximo (ou de minimo) de g em 1.

339



17. Um solido sera construido acoplando-se a um cilindro circular reto, de altura
h e raio r, uma semiesfera de raio r. Deseja-se que a area da superficie do
solido seja 5. Determine r e h para que o volume seja maximo.

18. A Cia. « Ltda. produz determinado produto e vende-o a um preco unitario de
R$ 13. Estimase que o custo total ¢ para produzir e vender g unidades é dado
por ¢ = g° — 3g> + 4q + 2. Supondo que toda a producéo seja absorvida pelo
mercado consumidor, que quantidade devera ser produzida para se ter lucro
maximo?

19. Determinado produto é produzido e vendido a um preco unitario p. O preco
de venda ndo é constante, mas varia em funcdo da quantidade g demandada
pelo mercado, de acordo com a equacdo p = .\-"2{} —g.0 < g < 20. Admita
que, para produzir e vender uma unidade do produto, a empresa gasta em
média R$ 3,50. Que quantidade devera ser produzida para que o lucro seja
maximo?

20. Do ponto A, situado numa das margens de um rio, de 100 m de largura, deve-
se levar energia elétrica ao ponto C situado na outra margem do rio. O fio a
ser utilizado na agua custa R$ 5 o metro, e o que sera utilizado fora, R$ 3 o
metro. Como devera ser feita a ligacdo para que o gasto com os fios seja o
menor possivel? (Suponha as margens retilineas e paralelas.)

100 m

A - ol
1000 m

21. Sejam P = (0, a) e Q = (b, ¢), em que a, b e c sdao numeros reais dados e
estritamente positivos. Seja M = (x, 0), com 0 < x < b.
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22

23.

24.

25.

26.

@=(,c)

|
|

|

I

|

|

I

|

I

| -
b

a) Determine x para que o perimetro do triangulo PMQ seja minimo.
b) Conclua que o perimetro sera minimo para a = .

. Determine M no grafico de y = x3, 0 < x < 1, de modo que a area do tridngulo

de vértices (0, 0), (1, 1) e M seja maxima.

A Cia. y Ltda. produz um determinado produto e vende-o com um lucro total
dado por L (q) = —-q° + 12g> + 60q — 4, em que g representa a quantidade
produzida. Determine o lucro maximo e a producdo que maximiza o lucro.
Esboce o grafico desta funcao.

Determine uma reta tangente ao grafico de y = 1 — x*, de modo que a distancia
da origem a ela seja a menor possivel.

Determine o ponto da pardbola y = 1 — x*> que se encontra mais préximo da
origem.

Seja (Xo, o), Xo > 0 € y, > 0, um ponto da elipse x* + 4y* = 1. Seja T a reta
tangente a elipse no ponto (X, y)-

a) Verifique que T tem por equacao
XoXx+t4y,y=1.

b) Determine x, de modo que a area do triangulo determinado por T e pelos
eixos coordenados seja minima.

27. Uma particula P desloca-se sobre o eixo x com velocidade constante e igual a

28.

1. Outra particula Q desloca-se sobre a parabola y = 1 — x* de modo que sua
projecdo sobre o eixo x descreve um movimento com velocidade constante e
igual a 2. No instante t = 0, as particulas P e Q encontram-se,
respectivamente, nas posicoes (0, 0) e (0, 1). Determine o instante em que as
particulas encontram-se mais proximas.

Dado o triangulo retangulo de catetos 3 e 4, determine o retangulo de maior
area nele inscrito, de modo que um dos lados esteja contido na hipotenusa.

341



29. Determine o ponto da pardbola y = x> que se encontra mais préximo da reta y
=x- 2.

30. Dois vértices de um retangulo R estdo sobre o eixo x e os outros dois sobre o

-"II b . K r .
grafico de vy = —] .2 x = 0. Considere o cilindro que se obtém girando o
=

retangulo R em torno do eixo x. Determine o retangulo R de modo que o
volume do cilindro seja o maior possivel.

31. Considere duas retas paralelas r e s. Sejam A e C dois pontos distintos de r e
B um ponto de s.

Q B

Determine Q na reta s de modo que a soma das areas dos triangulos APC e
QPB seja minima.

32. Considere o triangulo isosceles ABC, com AB = BC. Seja H o ponto médio de
AC. Determine P no segmento HB de modo que a soma das distancias de P
aos pontos A, B e C seja a menor possivel.

33. (Lei de refragcdo de Snellius). Considere uma reta r e dois pontos P e Q
localizados em semiplanos opostos.

Uma particula vai de P a M com velocidade constante u e movimento retilineo;
em seguida, vai de M a Q com velocidade constante v, também, com
movimento retilineo. Mostre que o tempo de percurso sera minimo se
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9.7. CONDICAO NECESSARIA E CONDICOES SUFICIENTES PARA MAXIMOS E
MiNIMOS LOCAIS

Sejam f uma fungdo e p um ponto interior a D; (p interior a D; < existe um
intervalo aberto I, com I C De p € I). Suponhamos f derivavel em p. O nosso proximo
teorema conta-nos que uma condigdo necessdria, mas ndo suficiente, para que p seja
ponto de maximo ou de minimo local é que f (p) = 0. A figura abaixo da-nos uma
ideia geométrica do que falamos acima.

Yi

P4

P € o ponto de minimo local: f' (p) =0

P5 € o ponto de maximo local: f* (p,) =0

f' (py) = 0, mas py nem é ponto de maximo,
nem de minimo; p, é ponto de inflexfio horizontal
P4 € ponto de méximo local, mas f' (p NEAA

P4 Nio & ponto interior.

Teorema 1. Seja f uma funcao derivavel em p, em que p é um ponto interior a
Dy Uma condigdo necessdria para que p seja ponto de maximo ou de minimo

local é que f (p) = 0.

Demonstragdo

Suponhamos que p seja ponto de maximo local (a demonstracdo sera analoga se p
for ponto de minimo local). Assim, existe r > 0 tal que

fx)<f(p)em]p—r,p+rln D

Como, por hipotese, p € interior a Dy, podemos escolher r de modo que ]Jp —r, p +
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r[C Dy. Assim

f(x)<f(p)paratodoxem ]Jp—r,p +r[.

Como f é derivavel em p, os limites laterais

lim F(x)—= f(p) e 1lim F(x)—f(p)

Fad ph X X=3p x=p

existem e sdo iguais a f (p):

fO=FP) _ o L)

f'(p)= lim
X — p+ X—p xX—p xX—p
(x)— fip)
Parap<x<p+r, ! r_{ — j; P = 0: pela conservagéo do sinal
im XTI
.1'—>p+ X—p
logo, f' (p) < 0.

fF) = 1) o .

Parap —r<x<p, - dai
X P

lim FOxXI =P -
xX—p X—p

logo, f (p)>20.Comof (p)>0ef (p)<Oresultaf (p)=0. =

0

Um ponto p € Dy se diz ponto critico ou ponto estaciondrio de f se f (p) = 0. O
teorema anterior conta-nos, entdo, que se p for interior a D; e f derivavel em p, entédo
uma condi¢do necessdria para que p seja ponto de maximo ou de minimo local de f é

que p seja ponto critico de f.

Vamos, agora, estabelecer uma condig¢do suficiente para que um ponto p seja ponto

de maximo ou de minimo local.

intervalo aberto I e p € I.

a) f(p)=0ef" (p)>0=péponto de minimo local.
b) f (p)=0ef" (p) <0= péponto de maximo local.
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Demonstragdo

a) Como " é continua em I e f' (p) > 0, pelo teorema da conservacao do sinal,
existe r > 0 (tal r pode ser tomado de modo que ]p —r, p + r[ esteja contido em I, pois
estamos supondo I intervalo aberto e p € I) tal que

f'xX)>0em ]p—r,p+rl.

Segue que f' é estritamente crescente neste intervalo; como f (p) = 0, resulta:

j[}"1.’)1"1|=f:lill em|p—r.pl e
ff(x)>0 em]lp, p+rl Y

I
I
1

p

\ / ff)=0ef" (@ >0

) |

Logo, f é estritamente decrescente em ]p — r, p] e estritamente crescente em [p, p + r [.
Portanto, p é ponto de minimo local.

b) Facavocé. =

Exercicios 9.7

1. Determine os pontos criticos da funcao dada e classifique-os (a classificacao
refere-se a ponto de maximo local, ponto de minimo local ou ponto de

inflexao).
4

a

) s Bes e By

Iil-

) x (=31 — 21 +1

C) h(x)=x>-3x*+3x—-1

d) f(x) = ]

203+ a2 41
e) f(x) =x*—4x>+6x> - 4x +1
N g =xe™

2. Suponha que f admite derivada de 3.* ordem continua no intervalo aberto I e
sejap € I. Prove que se f (p) =f" (p) =0e f" (p) # 0 entdo p é ponto de
inflexao horizontal.
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9.

Suponha que f admite derivada até a 4.* ordem continua no intervalo aberto [

esejap € I Provequesef (p) =" (p)=f"(p) =0e f¥(p) # 0, entdo p serd
ponto de maximo local se f*) (p) < 0 e serd ponto de minimo local se f* (p) >
0.

Generalize os resultados obtidos nos Exercicios 2 e 3.

fix)

Seja f derivavel em R e seja g dada por g (x) = .x # 0. Suponha que p é

X
ponto de maximo local de g.

a) Provequepf (p) —f(p) =0.

b) Prove que a reta tangente ao grafico de f no ponto de abscissa p passa pela
origem.

Suponha que f seja derivavel até a 2.* ordem em R e tal que para todo x

frex+xf)=1.

a) Prove que f ndao admite ponto de méaximo local.

b) Prove que, se f admitir um ponto critico x,, entdo X, sera ponto de minimo
local.

c¢) Prove que f podera admitir no maximo um ponto critico.

Suponha que f seja derivavel até a 2.* ordem em R e tal que para todo x
xf' () +fx)=2.
a) Prove que, se x, for ponto de maximo local, entdo x, < 0.
b) Prove que, se x, for ponto de minimo local, entdo x, > 0.
c¢) Prove que f(x) > 0 para todo x.
(Sugestdo: Observe que f' (0) = 2.)

(Teorema de Darboux.) Suponha g derivavel em [a, b], com g' (a) <0 e g' (b)
> 0. Prove que existe ¢ em Ja, b[ tal que g (c) = 0. Interprete
geometricamente.

(Sugestdo: Verifique que o valor minimo g (c) de g em [a, b] é tal que g (c) < g
(@eg(c)<g (b))

Suponha g derivavel no intervalo I e tal que g' (x) # 0 em todo x de I. Prove
que

g (x)>0emtodox €1
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ou

g (x) <0emtodox € I

10. Suponha g derivavel em [a, b] e seja m tal que g' (a) < m < g' (b). Prove que
existe c em Ja, b[ tal g' (c) = m.

(Sugestdo: Aplique o Exercicio 8 a funcao f (x) = g (x) — mx.)

11. Seja y = f (x) uma fungdo derivavel até a 2.* ordem no intervalo aberto I, tal
que para todo x € I.

freo+xf-Ifx)F=0
f(x)#0.

a) Verifique que f" é continua em I.
b) Prove que f nao admite ponto de maximo local em I.

12. Sejay = f (x) derivavel até a 2.? ordem em ]-r, r [, r > 0, tal que, para todo x €
I=n, 1,

f () +f(0) = x[f (0F = 0.
Suponha, ainda, que f(0)=0ef (0) = 1.

a) Prove que f nao admite ponto de maximo local em ]O, r].
b) Prove que f ndo admite ponto de minimo local em ]-r, 0].
c¢) Prove que f é estritamente crescente em ]-r, r].

9.8. MAXIMO E MINIMO DE FUNCAO CONTINUA EM INTERVALO FECHADO

Seja f uma funcdo continua no intervalo fechado [a, b]. O teorema de Weierstrass
(veja Cap. 5) garante-nos que f assume em [a, b] valor maximo e valor minimo. Vamos
descrever, a seguir, um processo bastante interessante para determinar os valores
maximos e minimos de f em [a, b]. Suponhamos f derivavel em ]a, b[. Seja f (p) o
valor maximo de f em [a, b]; deste modo, p ou é extremidade de [a, b] ou p € ]a, b[; se
p € la, b, pelo teorema 1 da secdo anterior, f (p) = 0. Segue que, para se obter o
valor maximo de f em [a, b], é suficiente comparar os valores que f assume nas
extremidades de [a, b] com os assumidos nos pontos criticos que pertencem a la, b[. O
valor maximo de f em [a, b] serd entdo o maior desses valores. Evidentemente, o valor
minimo de f em [a, b] serd o menor daqueles valores.

Deixamos a seu cargo descrever um processo para se determinar os valores
maximos e minimos de f em [a, b], no caso em que f é continua no intervalo fechado
[a, b] e ndo derivavel em apenas um numero finito de pontos de [a, b].

Exercicios 9.8
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Determine os valores maximos e minimos (caso existam) da funcdo dada, no
intervalo dado.

4
Lof) =2 s and e (o)

2. glx)= ,rg e '_h'g +3x—1lem[-2,1].
5 4
3. f@) = YT - -+ 4’ -+ lem[-3,3)

4. f(x) =senx — cosx em [0, 7].

3

5. f(x) = 3;\: —2x2 em [—1.2].

6. f(x)= — L5 °m 10, 2].
Fi— g
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10

PRIMITIVAS

10.1. RELACAO ENTRE FUNCOES COM DERIVADAS IGUAIS

J& sabemos que a derivada de uma funcdo constante é zero. Entretanto, uma funcao
pode ter derivada zero em todos os pontos de seu dominio e ndo ser constante; por
exemplo

[ 1 se x>0
fx) = 4
-1 se x<O0

é tal que f(x) = 0 em todo x no seu dominio, mas f nao é constante. O pr6ximo
teorema, que é uma consequéncia do TVM, conta-nos que se f tiver derivada zero em
todos os pontos de um intervalo, entdo f sera constante neste intervalo.

Teorema. Seja f continua no intervalo I. Se f(x) = 0 em todo x interior a I,
entdo existird uma constante k tal que f (x) = k para todo x em 1I.

Demonstragdo

Seja x, um ponto fixo em I. Vamos provar que, para todo x em I, f (x) = f (x,), 0 que
significara que f é constante em I. Para todo x em I, x # x,, existe, pelo TVM, um &
pertencente ao intervalo aberto de extremos x e x, tal que

fO) = F(x0) =f (x) (x = Xp)-

(Observe que de acordo com a hipotese, f é continua no intervalo fechado de extremos
x e x, e derivavel no intervalo aberto de mesmos extremos.)

Como Y é interior a I, pela hipotese f (i) = 0, logo
F GO = F(x0) =0 ou f(x) = f (x)
para todo x em I. Tomando-se k = f (X,), resulta o teorema. ®
Como consequéncia deste teorema, provaremos que se duas fungdes tiverem

derivadas iguais num intervalo, entdo, neste intervalo, elas diferirdo por uma
constante.
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Corolario. Sejam f e g continuas no intervalo I. Se f(x) = g’ (x) em todo x interior
a I, entdo existira uma constante k tal que

g =fx)+k

para todo x em 1.

Demonstragdo

A fungdo h (x) = g (x) — f (x) é continua em I e para todo x interioral, h' (X) =g’
(x) = f(x) = 0. Pelo teorema anterior, existe uma constante k tal que

g -f)=k ou gx=f(x) +k
paratodoxem . =

Observamos que se f e g satisfizerem as hipdteses do coroléario e se f (xy) = g (X,)
para algum x, € I, entdo f (x) = g (x) para todo x € I. De fato, pelo corolario, existe k
tal que

g =f)+k

para todo x em I. Em particular, g (x,) = f (x,) + k, logo k = 0. Portanto, g (x) = f (x) em
L

Ja vimos que se f (x) = %, x € R, entdo, f(x) = €% ou seja, a funcdo f (x) = e* goza
da seguinte propriedade: a sua derivada é ela propria. O préximo exemplo nos mostra
que as unicas funcdes que gozam desta propriedade sdo as funcdes da forma f (x) =
ke*, em que k é uma constante.

EXEMPLO 1. Seja f definida e derivavel em e tal que, para todo x, f'(x) = f (x). Prove
que existe uma constante k tal que, para todo x, tem-se f (x) = k e*.

Solucgdo

fix)

—— € mostrar que a sua derivada é
P

A ideia para a prova é considerar o quociente

zero. Temos

L’ Filx) J= P ix)e%.— fix) et |

f?']'- f-..._'.\'

Da hipétese f'(x) = f (x) segue
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=0

[I Fix] “|’ _ f(x)e* — f(x) e*
. et J

1™
E.’;']'

A

para todo x em R. Pelo teorema 1, existe uma constante k tal que, para todo x,

I .ﬂ —
E.‘{
ou seja,
f (x) = ke*.

. . ~ . .oy N
O exemplo acima nos diz que as solugdes da equagdo diferencial d_ = y sdo as
X
funcdes da forma y = k e*, k constante, isto &,

. =y y= k,ff'r‘k constante.
ax '

Observe: y = f (x) é solugdo da equacdo diferencial ? = y se, e somente se, a
dx
derivada de f for ela propria.

EXEMPLO 2. Determine y = f (x), x € R, tal que

L y e f(0)=2.
dx

Solucgdo

dy

=y &y = k€, k constante.
dx

Assim, a f procurada é da forma f (x) = k e*, com k constante. A condicao f (0) = 2 nos
permite determinar a constante k. De fato, de f (x) = ke* segue f (0) = k e, portanto, k =
2. A funcao que satisfaz o problema dado é, entao, f (x) =2 e*. Ouseja,y=2¢*. =

Consideremos, agora, a funcao f (x) = e*, a constante. Temos f(x) = a e™, ou seja, f
'(x) = o f (x). Raciocinando como no Exemplo 1, prova-se (veja Exercicio 1) que as
unicas funcbes que satisfazem a equacdo f'(x) = a f (x), x € R e a constante, sdo as
funcdes da forma f (x) = k €™, k constante. Ou seja, sendo « constante, tem-se
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dy :
W ey= ke™, k constante
dx

ou

fx)=af(x) e f(x)=ke™, k constante

EXEMPLO 3. Determine a fungdo y =y (x), x € R, que satisfaz as condicdes

dv
— =3yevy(0)= —1.
dx -
Solugdo
dy -
& 3y y=ke™ (k constante).
dx ' '

Da condicdo y (0) = —1, resulta k = —1. A funcdo procurada é y=—e*,x €ER. =

EXEMPLO 4. Determine uma funcao y = f (x), definida num intervalo aberto I, com 1
€ I, tal que f(1) = 1 e, para todo x em I,

dy
—— =
dx '
Solugdo
Devemos ter, para todo x em I,
f() =xf(x).

Como a funcao f deve ser derivavel em I, resulta que f deve ser, também, continua em
I. Entdo, a condicdo f (1) = 1 e o teorema da conservacao do sinal garantem-nos que,
para x proximo de 1, devemos ter f (x) > 0. Vamos, entdo, procurar f, definida num
intervalo aberto I, e que, neste intervalo, satisfaca a condicao f (x) > 0. Temos, entdo,

m =x,xE L
J(x)

Fix) X
i

Lembrando que[ Inf(x)] ' = e que

(x) T

[In f(x)]'=
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-

para todo x em I. Como as derivadas das funcdes In f (x) e 2 sdo iguais em I, do
2
corolario acima resulta que existe uma constante k tal que, para todo x em I,
)

X<
e .1
In f(x) = + Kk

Da condicao f (1) = 1, segue

nl=—~+k
2

| ) ~
e, portanto, k = ——. Assim, a funcao

Al

satisfaz as condicoes dadas. (Observe que esta é uma funcao satisfazendo as condigoes
dadas. Serd que existe outra? Como veremos no Cap. 13, esta é a unica funcao
definida em R e satisfazendo as condi¢Ges dadas.) =

EXEMPLO 5. Determine uma funcao y = f (x), definida num intervalo aberto I, com 1
€ I, tal que f(1) = —1 e, para todo x em I,

d—\ =2 _1*3'.
dx

Solugdo
Devemos ter, para todo x em I,
o) =210f (1.
A condicdo f (1) = —1 permite-nos supor f (x) < 0 em I. Temos, entdo,
[FCOI2f(x)=2,xEL
Lembrando que {—[ f ()]} = [f (x)]7 f(x) e que (2x)' = 2, resulta

-IfeOI 'Y =(2x), x € I.

Pelo corolario, existe uma constante k tal que, para todo x € I,
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-[fx)I ' =2x+k

Da condicao f (1) = —1, segue k = —1. A funcao

fx)=

X

L]
2 =177 2

. o - 1, .
satisfaz as condi¢des dadas. (A condicdo x = — € para garantir que 1 pertenca ao

dominiodef.)) =

Exercicios 10.1

1.

7.

Sejaf: R — R, derivavel e tal que para todo x, f(x) = « f (x), a constante nao
nula. Prove que existe uma constante k, tal que, para todo x, f (x) = k e™.

Determine y = f (x), x € R, tal que

FO)=2f(x)ef(0)=1.
(Sugestdo: Utilize o Exercicio 1.)

Uma particula desloca-se sobre o eixo 0x, de modo que em cada instante ¢ a
velocidade é o dobro da posicdo x = x (t). Sabe-se que x (0) = 1. Determine a
posicdo da particula no instante t.

A funcdo y = f(x), x € R, é tal que f (0) = 1 e f(x) = -2 f (x) para todo x.
Esboce o grafico de f.

Sejay = f(x), x € R, derivavel até a 2.* ordem e tal que, para todo x, f' (x) + f
(x) = 0. Seja g dada por g (x) = f(x) sen x — f (x) cos x. Prove que g é
constante.

Sejaf: R — R derivavel até a 2.% ordem e tal que, para todo x, f' (x) + f (x) =
0. Prove que existe uma constante A tal que

[ FLxy—:A con:x ] sy

sCNn X

para todo x em ]0, ni[. Conclua que exista outra constante B tal que, para todo x
em ]0, r[, f (x) = A cos x + B sen x.

(Sugestdo: Utilize o Exercicio 6.)

Sejaf: R — R derivavel até a 2.% ordem e tal que, para todo x, f' (x) — f (x) =
0.
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a) Prove que g (x) = e* [f(x) — f ()], x € R, é constante.
b) Prove que existe uma constante A tal que, para todo x,

flx)— Ae™™ ]

X

t?‘
¢) Conclua de (b) que existe uma outra constante B tal que f(x) = Ae™ + B €%,
para todo x.

8. Sejam f e g duas fungoes definidas e derivaveis em R. Suponha que f (0) = 0,
g (0) =1 e que para todo x

f)=gx) e g x=-f(X).
a) Mostre que, para todo x,
(f (x) — sen x)> + (g (x) — cos x)> = 0.
b) Conclua de (a) que f (x) = sen x e g (X) = Cos x.

9. Utilizando o Exercicio 1, determine a unica funcdo y = y (x), x € R, que
satisfaca as condi¢oes dadas.

1y 1y
oZL=2y e y0)=1 by L=—y ¢ y@0=-1
dx dx
iy 1 y _ 5 1
{.} i ey _}1 e _1‘1{{}} — 2 d’} i = '\-'IE }.1 a 1‘{0\} "
de 2 dx 2

10. Determine a funcdo cujo grafico passe pelo ponto (0, 1) e tal que a reta
tangente no ponto de abscissa x intercepte o eixo Ox no ponto de abscissa x +

1.

11. Determine uma funcao y = f (x), definida num intervalo aberto, satisfazendo
as condicOes dadas

?I\I-I x
D P X o=
d-,ll. -.r.
-‘il' ¥
b) @9 ysen x, y(0) = 1.
dx
12. Sejaf: R — R derivavel até a 2.* ordem e tal que, para todo x,

f" () =-f(x).

a) Mostre que, para todo x,

355



d i .
— HF ) +ifx0s | =0
ral ]

b) Conclua que existe uma constante E tal que, para todo x,

[FCO) + [f 0] = E.

13. Sejam £ (t), g (¢t) e h (t) funcdes derivaveis em R e tais que, para todo ¢,

[f’{r}=g,={r}
18 M=—f@® — h(@)
[h'{r}= g(1).

Suponha que f (0) = g (0) = h (0) = 1. Prove que, para todo t,
[f©F +[g ©F +[h(©) =3

14. Sejam f (t) e g (t) fungdes derivaveis em R e tais que, para todo t,
fri=2g(
g'(t) = —f(1).
Suponha, ainda, que f (0) =0 e g (0) = 1. Prove que, para todo t, o ponto (f (t),
g (1)) pertence a elipse = + 2 =1.
E i

s

10.2. PRIMITIVA DE UMA FUNCAO

Seja f uma funcdo definida num intervalo I. Uma primitiva de f em I é uma funcdo
F definida em I, tal que

fx) =1

para todo x em 1.

=

EXEMPLO 1. F (x) = — x é uma primitiva de f (x) = x* em R, pois, para todo x em

R,

.
3

F'(x)= [lﬂ } =
3
Observe que, para toda constante k, (5 (x) = % o+ k ¢, também, primitiva de f (x)
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=x°. =

EXEMPLO 2. Para toda constante k, F (x) = 2x + k é primitiva, em R, de f (x) = 2,
pois,

f)=(2x+k) =2

paratodox. ®

Sendo F uma primitiva de f em I, entdo, para toda constante k, F (x) + k é, também,
primitiva de f. Por outro lado, como vimos na secdo anterior, se duas funcdes tém
derivadas iguais num intervalo, elas diferem, neste intervalo, por uma constante.
Segue que as primitivas de f em I sdo as funcdes da forma f (x) + k, com k constante.
Diremos, entdo, que

y=f(x)+k, kconstante,

é a familia das primitivas de f em I. A notagao ’[f{ X) dx sera usada para representar a

familia das primitivas de f:
jf{.r} dx = f(x) + k.

Na notacao ’[f{ x) dx, a funcdo f denomina-se integrando. Uma primitiva de f sera,

também, denominada uma integral indefinida de f. E comum referir-se a ’[f{.ﬂ dx

como a integral indefinida de f.

Observacdo. O dominio da funcdo f que ocorre em ’[f (x) dx devera ser sempre um

intervalo; nos casos em que o dominio ndo for mencionado, ficard implicito que se
trata de um intervalo.

EXEMPLO 3. Calcule.

a) J x? dx. b) J dx.

Solucgdo

1 ! ’1 ’1 3 -3
a)| —x3| = x2. Logo, JJ'*‘ dx=2_+k
3 3
») O integrando é a funcdo constante f (x) = 1. Entdo

fdx=[1-dx=x+k
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pois, (x)) =1. =
EXEMPLO 4. Calcule [ x“ dx, em que o # —1 é um real fixo.

Solugdo

1 1 ¥ Xﬂ:+]
—x“ = x%, logo, Jx“ dx = + k-
a+1 a+1

EXEMPLO 5. Calcule

a) J x3dx b) J ],,, dx.
X"
Solugdo
. 4 4 1 '
a) | B¥dx=2"+k pois, = [l 14} =%
J 4 4 4
" 1 L | 1 _2 +|. !
b) | —=dx= J Xcdx=—1x + k (veja Exemplo 4)
i —2+1
ou seja,
[ax=—x"+k
]
e, portanto,

J%dx - ks
X &

EXEMPLO 6. Calcule J W2 i

Solucgdo

2
J Yx2 dx = J x3dx =2 +k

ou seja,



EXEMPLO 7. Caleule [ | x° + Lta)ax
% 5 s

X
Solugdo
: ; WS =3l
J{x- +x77 +4)dx = + +4x + k
5+1 -3 41
ou seja,
5 1 6 g
fo +T+4]cfx=—— +4x 4+ k
L X-
e, portanto,
1 \ x0 1
”,\:5+—%+4de=r—_— — + 4x + k.
: g 6 2x“°

EXEMPLO 8. Calcule j Ly
X

Solugdo
1 ) .
J—dx={ln X)+k (x> 0)
= In x)

pois
: 1
(Inx + k) = —.
X
Seja o um real fixo. Dos Exemplos 4 e 8 resulta

xn:+l
+k se a#—1

a+1
Jx“dx=<

(Inx)+k se a=—1(x>0)

& s
EXEMPLO 9. Calculej | =+ x| dx,
LoX

4

Solucgdo
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3
1 = JL'-7
j[_ﬂ-z ]dx={ln1}+T+ﬁ.
X ) =
2
ou seja,
1 i 2 1
J —+4x |dx=(lnx)+ = +x +k [
X J T

EXEMPLO 10. Seja o um real fixo, a # 0. Calcule J e™ dx.

Solugdo

J e® dx = L e + k. [
o

EXEMPLO 11. Calcule.

a) J e* dx. b) J e dk.

Solugdo

ajje-" de=e* + k. E:r,lje*‘dr——w‘ + k.

EXEMPLO 12. Determine y =y (x), x € R, tal que

dv -
et ci
dx
Solucgdo
Tv
) 2 e 1=J:c~ dx
dx
Assim,

Vimos, ao final da secdo anterior, que se f'(x) = G’ (x) para todo x no intervalo I e
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se, para algum x, em I, F (x,) = G (x,), entdo, f (x) = G (x) em I. Segue deste resultado
que se f admitir uma primitiva em I e se x,, y, forem dois reais quaisquer, com x, € I,
entdo existira uma tinica fungao y =y (x), x € I, tal que

ﬁ = fix), xel,
< ¢ g
V(xp) =0

EXEMPLO 13. Determine a tinica funcdo y = y (x), definida em R, tal que

f dl‘lr‘ )
— = x-
dx
y(Q)=2
Solugdo
. 2 = y= J x2dx = l,r-% ol
dx 3

A condicao y (0) = 2 significa que, para x = 0, devemos ter y = 2. Vamos determinar
k para que esta condicao esteja satisfeita.

- ~ 1 .
Substituindo, entdo, em y = —x3 + kx por 0 e y por 2, resulta k = 2. Assim,

y= lx? i

EXEMPLO 14. Determine a funcao y = y (x), x € R, tal que

)
“%

>=x+Ly@M=1ey (0)=0.

dx+
Solucgdo
d: y f:-
': =x+1 :i=J{x'+ 1) dx.
dx+ dx
Assim,
ﬁ = i + x+ ‘f':l'
dx 2
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dy

Paraseter v’ (0) = 0 ou — = (), é preciso que k; = 0. Assim,
dx |y=¢
ddx 2
dai

-~

4

[ x2 ) x> | xl
}-‘=” —+x ‘dx=—+—+kg.
2 ) 6 2
Para k, = 1, a condicdo inicial y (0) = 1 se verifica. Assim,
EXEMPLO 15. Uma particula desloca-se sobre o eixo x e sabe-se que no instante ¢, t

> 0, a velocidade é v (t) = 2t + 1. Sabe-se, ainda, que no instante t = 0 a particula
encontra-se na posicao x = 1. Determine a posicao x = x (t) da particula no instante t.

Solugdo
d—x='2r+l e x(0) = 1.
dt
Temos:
dx ) )
S =2+1=x= j{2r+ Dt =12 + 1+ k

Para k = 1, teremos x = 1 para t = 0. Assim,

x()=t+t+1. =

Exercicios 10.2

1. Calcule.
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2.

3.

al | x dx

) ‘ (3x 4+ 1) dx

i) J (ax + b)dx. a e b constantes

. 1
p) J- [ Nx + — ]{ix
.1(:2

r) J-'[S_E'-."I).': + 3)dx

x2 +1
r) J- dx
i

Seja a # 0 um real fixo. Verifique que

|
al J sen av dy = —— cos aex + &

o

Calcule.
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mjmx

d) | (x2 + x+ Ddx

-

)] (x* +2x+ 3)dx

-

) .[.T-i-—]tf.t

-

j) [ ax

-

m) J 2+ 4x)dx

{0
) J ( x4+ x4+ —= Jd‘r.‘
5

2 3

X -
1“2 o 4 ]dx
5 Xt —-— ;

x*

1
by | cos v dy = — sen ewx + &
o



a) | e** dx by | e Fdx

c) | (x + 3e)dx d) | cos 3xdx

e) | sen Sx dx ) (€2* + e ) dx

g) (x2 + sen x)dx hy | (34 cos x)dx

fef+e” z £ 1

:}J-chx _j'}i i dx
I .

!]IJ- (sen 3x + cos 5x)dx m}J [——i—ex Jcir, r=0
X

i) J Sen = dx a) | cos cud dx

2 . 3

p) J {1: + cos 3x)dx qg) | (x+ 3% ) dx

r) J (34 e )dx 5) | 5e7* dx

f]ljl[l — cos 4x)dx i) [ 2+sen%]cir

4. Verifique que

|
a) J-.—ﬂcix =arcsenx + k —1<x<=1
x,-']—;;‘

|
b J — dx —arctgx + k
1+ x*

5. Determine a fungdo y =y (x), x € R, tal que
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ti‘T_T 3

ﬂ};':}_,(_]ey{(}].:g b) —=x —x+1ey()=1
dx dx
1y Iy
{‘}i=ms,r:‘.}‘{ﬂ}=ﬂ d}i=5¢n3xe}‘{[}}=l
dx dx
dy 1 dy —x
= 2 Friey—nN=1Q l—=e "ey0=1
dx 2 dx
Determine a funcao y =y (x), x > 0, tal que
' 1 1y 1
n}i= — gpfl)=1 !J}i=3+—e}‘l[l}=2
dy xf dx X
iy 1 1y 1
9L =x+ — ¢ ym=0 ===+ —cy=1
dx A X dx X x°

Sabe-se que, no instante t = 0, a particula encontra-se na posigao x = 2.

a) Qual a posicdo da particula no instante t?
b) Determine a posi¢do da particula no instante t = 2.

Uma particula desloca-se sobre o eixo x com velocidade v (t) =t + 3, t > 0.

¢) Determine a aceleracao.

8. Uma particula desloca-se sobre o eixo x com velocidade v (t) = 2t — 3, t > 0.
Sabe-se que no instante t = 0 a particula encontra-se na posicao x = 5.
Determine o instante em que a particula estara mais proxima da origem.

9. Uma particula desloca-se sobre o eixo x com velocidade v (t) = at + v, t > 0
(a e v, constantes). Sabe-se que, no instante t = 0, a particula encontra-se na
posicdo x = x,. Determine a posicao x = x (t) da particula no instante t.

10. Uma particula desloca-se sobre o eixo x com funcao de posicdo x = x (t), t >

0. Determine x = x (t), sabendo que

dx
a)—=2t+3 ex(0)=2

dt
Ly |
=y
) 5 =3,v()=1ex(0)=1
dr<
dr
€) > =cos2t,v(0)=1¢e x(0)=0
dt=
} dx | ©=0
T —_— = - E'l .-1I. r
a1+

365

FJ}L'I[F}=:‘2—] e x(0)y=—1

5
d=x —¢

i —=¢ ,v(0)=0e x(0)=1
dt <
12x
ar-.

h o 3L (=0 e:x(0) =1
ar-



11. Esboce o grafico da fungao y =y (x), x € R, sabendo que

dy dz‘.-‘
a—=2x—1evy(@®M=0 b) —5 = —dcos2x,y(0)=1ey' (0)=0
dx _ dx=

“y dv

d s
c) ; =e Ly(0=0ey' ' O)=-1 d—=
dls ' ' dx  1+x

e y(0)=0

By
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11

INTEGRAL DE RIEMANN

Neste capitulo introduziremos o conceito de integral de Riemann e estudaremos
algumas de suas propriedades. A integral tem muitas aplicacOes tanto na geometria
(célculo de areas, comprimento de arco etc.) como na fisica (calculo de trabalho, de
massa etc.), COmo veremos.

11.1. PARTICAO DE UM INTERVALO

Uma parti¢do P de um intervalo [a, b] é um conjunto finito P = {x,, X, Xy, ..., X,,}
emqueda=xy<x;<x,<...<Xx,=b.
Uma particao P de [a, b] divide [a, b] em n intervalos [x;_, x;l, i=1,2, ..., n.
.l 1. M : : SR 1.
a = .‘4.'[] .".'l .\.'3 .TI: -1 .".'!' -1‘-.,.1 —1 .".'” =b

A amplitude do intervalo [x; _ 4, x;] sera indicada por Ax; = x; — x; _ ;. Assim:

AXx; = Xx; — Xg, DX, = X, — X, etc.

Os numeros Ax;, Ax,, ..., Ax, ndo sdo necessariamente iguais; o maior deles
denominase amplitude da particao P e indica-se por max Ax;.

Uma particdo P = {x;, X;, Xy, ..., X,} de [a, b] sera indicada simplesmente por

P:a=x,<x;<x,<...<x,=b.

11.2. SOMA DE RIEMANN

Sejam f uma funcdo definida em [a, b] e P : a = x, < X; < X, < ... <X, = b uma
particdo de [a, b ]. Para cada indice i (i = 1, 2, 3, ..., n) seja ¢; um numero em [X; _ ;, X;]
escolhido arbitrariamente.

Y L) Gt Cn
o 1 £— & 1 +—8—
=X, A Lo Ry Xx; Xe— 1 b=x,

Pois bem, o nimero

n
Y, f(c) Ax; = f(c)) Axy + f(cp) Axy + ... + f(c,) Ax,,

i=1
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denomina-se soma de Riemann de f, relativa a particao P e aos nimeros c;.

Observe que, se f (c;) > 0, f (c;) Ax; sera entdao a area do retangulo R; determinado
pelasretas x = x; _, X=X,y = 0 ey =f(c); se f(c;) <0, a area de tal retangulo sera —f
(c) Ax.

yi
44
’ \\____JL/“"‘* R, 1
flc;) Ax; = areade R; area de R; = —fc;) Ax;

Geometricamente, podemos entdo interpretar a soma de Riemann
R
Y I le)Ax;
i=1

como a diferenca entre a soma das areas dos retangulos R; que estdo acima do eixo x e
a soma das areas dos que estdao abaixo do eixo x.

v

¥

G
b Flep) A x; = soma das areas dos retin-
]

'« b+ gulos acima do eixo Ox menos soma das dreas
dos abaixo do eixo Ox

o I':] Ca Oy I':_l

SN
T

i)

J_

i
/1
P

Seja F uma funcao definida em [a, b] e seja P : a = x;, < X; < X, < X3 < X, = b uma
particao de [a, b]. O acréscimo F (b) — F (a) que a F sofre quando se passa de x = a
para x = b é igual a soma dos acréscimos F (x;) — F (x; _,) para i variando de 1 a 4:

F () -F(a)=F (xy) = F (xo) = [F (x4) = F (x3)] + [F (x3) = F (xo)] + [F (x5) = F (x1)]
+[F (x)) = F (x) 1.

Isto é:
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F(b)— F(a)=

I

14

Qe — i 1)1
l

De modo geral, se P: a = x, <Xx; <X, <... <X, = b for uma particdo de [a, b], entdo

"
FB)— F(a)= % [F(x;)— F(x;—1)]

i=1

EXEMPLO. Sejam F e f definidas em [a, b] e tais que F' = fem [a, b]; assim F é uma
primitiva de f em [a, b]. Seja a particdo P : a = x, < x; <X, < ... <Xx, = b de [a, b].
Prove que escolhendo convenientemente ¢; em [x; _ ;, X;] tem-se

"
F(b)— F(a)= Y. f(c;) Ax;.
i=1
Solugdo
Pelo que vimos acima
Il
Fib)—F(a)= ¥ [Flx;)—F(x:=1)l
i=1
Pelo TVM, existe ¢; em [x; _ 4, x;] tal que
FU'!'} = F{r,\f{' _= F' (c;) (J(..' =X )
e como F' = fem [a, b] e Ax; = x; — x; _, resulta

H
F(b)— F(a)= Y, f(c;) Ax;. .

i=1

Suponhamos, no exemplo anterior, que f seja continua em [a, b] e que os Ax; sejam
suficientemente pequenos; assim, para qualquer escolha de ¢; em [x; _ 4, x;], f (c;) deve
"

diferir muito pouco de f (¢;). E razoavel, entdo, que nestas condicdes ¥ f(c;) Ax; seja
i=1
uma boa avaliacao para o acréscimo F (b) — F (a), isto é:

n
F(h)— Flay= ¥ f(c;)Ax;:

=1

E razoavel, ainda, esperar que a aproximacdo acima sera tanto melhor quanto
menores forem os Ax;. Veremos mais adiante que, no caso de f ser continua em [a, b ],
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"
F(b)— F(a)= Ilim Y f(c) Ax,.

mix Av;—0 j=]
em que max Ax; indica o maior numero do conjunto {Ax; |i=1, 2, ..., n}

O sentido em que tal limite deve ser considerado sera esclarecido na proxima
secdao. Observe que max Ax; — 0 implica que todos os Ax; tendem também a zero.

Vejamos uma versdao cinematica do que dissemos anteriormente. Consideremos
uma particula deslocando-se sobre o eixo Ox com fun¢do de posicdo x = x (t) e com
velocidade v = v (t) continua em [a, b]. Observe que x = x (t) é uma primitiva de v =v
(t). Sejaa=t,<t; <t, <...<t,=buma particdo de [a, b] e suponhamos max At;
suficientemente pequeno (o que implica que todos os At; sdo suficientemente
pequenos). Sendo c¢; um instante qualquer entre t; _, e t;, a velocidade v (c;) € um valor
aproximado para a velocidade média entre os instantes t; _, e t;:

v(c;) = — ou Ax; =v(c;) At

I

(observe que, pelo TVM, existe um instante ¢; entre t; _; e t; tal que Ax; = v (¢,) At),
onde Ax; é o deslocamento da particula entre os instantes t; _; e t;, Como a soma dos
deslocamentos Ax;, para i variando de 1 a n, € igual ao deslocamento x (b) — x (a),
resulta

x(b) — x(a@) = i viei) At
i=1

yd

E razoavel esperar que, a medida que as amplitudes At; tendam a zero, a soma
M

> v(c¢;) At;tenda a x (b) — x (a):

=1

R
x(b)— x(a)= lim 2 vic;) At;.

max i'u‘ll-—wlf} i=1
11.3. INTEGRAL DE RIEMANN: DEFINICAO

Sejam f uma funcdo definida em [a, b] e L um numero real. Dizemos que
M

2. f(ci) Ax;tende a L, quando max Ax; — 0, e escrevemos
=1

n

lim > fle)Ax;=L

max i"ﬂ'l.'—?'ﬂ i=1

se, para todo € > 0 dado, existir um § > 0 que s6 dependa de € mas ndo da particular
escolha dos c;, tal que
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n
Y fle)Ax; — L

=1

< €

para toda particao P de [a, b], com max Ax; < 4.
Tal nimero L, que quando existe é unico (verifique), denomina-se integral (de

!
Riemann) de f em [a, b] e indica-se por J} £ (x) dx. Entdo, por definigao,
o

I n
faydis W S FEyAE
1

¢ max Ax; =0 =1

b
Sej f(x) dx existe, entdo diremos que f é integrdvel (segundo Riemann) em [aq,
1)

, L
b]. E comum referirmo-nos a ’ f(x) dx como integral definida de f em [a, b].
i

Observacdo. Pomos, ainda, por definicao:

i a b
f(x)dx =0e : f(xydx=—| f(x)dx(a<b)
i 1)

11.4. PROPRIEDADES DA INTEGRAL

Teorema. Sejam f, g integraveis em [a, b] e k uma constante. Entao

a) f + g é integravel em [a, b] e

b b b
J [f(x)+ g (x)] dx = J fx)dx + J g (x) dx.
o i

a

b b
b) kf é integravel em [a, b] e J K(x)de=k | f(x)dx.
a 1

b
) Se f(x) > 0 em [aq, b], entdo J fx)dx=0.
o

d) Sec € ]a, b[ e f é integravel em [q, c] e em [c, b] entdo

b c b
fx)dx=\| f(x)dx+ | f(x)dx
o [#] C
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Demonstragdo

a) Para toda particdo P de [a, b] e qualquer que seja a escolha de c¢; em [x; _ 4, X; ]

b
= i Flo)x— | fix)dx|+
&

=1

n b b
Y [f(c)+ g(c)] Ax; — U f(x)dx + j g(x‘jdx}
' a a

=1

" b
Y glepAx; — | gix)dx
] a

=1

Da integrabilidade de f e g segue que dado € > 0 existe § > 0 tal que

L b €
‘ 3 f(qu,-—j Fode|< £
||'=|_ i 2
e
1] b €
Y gle)Ax; — | g(x)dx| < )
||'=|_ i

para toda particdao P de [a, b] com max Ax; < é. Logo,

<e

n b b
2 [fle)+ glc;)] Ax; — {J Ffx)dxe+ J g(x}dx}

i=1 1 i

para toda particao P de [a, b] com max Ax; < §. Assim,

" b b
im Y [f(c)+g@)lAx=| Fex)ax +j g (x) dx
| a a

mix Axy; =0 7=

ou seja, f + g é integravel e

b b b
J [f(x)+ g(x)]dx = J Flixyde+ J g(x) dx.
i i o

b) Fica como exercicio.
c) Como f (x) = 0 em [a, b], para toda particao P de [a, b] e qualquer que seja a
escolha dos c;
!
X fg) Ax; =0

i=1
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b b
Se tivéssemos J f(x) dx < 0, tomando-se € > 0 tal que J FE e E e
i i

existiria um § > 0 tal que
b i b
Fixyds—e< ¥ flcyldg= J Flxyde e
i |'I =1 i

para toda particdo P de [a, b] com max Ax; < §. Assim, para alguma particio P
terlamos

1
2 Flep) Axy < .
i=1

que é uma contradicao.

d) Para toda particao P de [a, b], com c € P,

€ ) Cm  Cm +1 Cn
} i R } e |
— e+ o | o ——
a ) ] Tm -1 g Tm + 1 Tp— 1 {f
*q Lo Tn
temos
n [ e b
Y fc;) Ax; — j F(x)dx + j f(:c)dx} <
=] | Ya e
i . " ] b
<| S fle)Ax — [ fode|+| S f(e)Ax, —j F(x)dx
i=1 “a i=m+1 c

Como, por hipoétese, f é integravel em [a, c] e em [c, b], dado € > 0, existe § > 0 tal
que, para toda particao P de [a, b], com ¢ € P, e max Ax; < 6

" c =
> f(c;)Ax; —Jf{x}dx < —
i=1 a 2
e
7 i @
2 flcp)Ax; —qu";m: et
i=m c 2

e, portanto,
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< €.

n c b
Y f(c;) Ax; — U Fx)dx + j f{x‘}dx}
=1 o [

Segue, entdo, da integrabilidade de f em [a, b] que

b r b
f(x)dx= J f(x) dx + J f(x) dx. (Porqué?) m

11.5. 1.° TEOREMA FUNDAMENTAL DO CALCULO

De acordo com a definicdo de integral, se f for integravel em [a, b], o valor do
limite

"
lim Y flc;) Ax;
max iu'{- =0 j=1
r . . E:I
sera sempre 0 mesmo, independentemente da escolha dos c; e igual a J f(x) dx.
1)

Assim, se, para uma particular escolha dos c;, tivermos

i
lim 2 flc)Ax; =L

mix Loy =0 =

b
entdo teremos L = | f(x) dx.
i )

Suponhamos, agora, que f seja integravel em [a, b] e que admita uma primitiva f (x)
em [a, b], isto é, F'(x) = f (x) em [a, b]. Seja P : a = xy < x; <x, < ... <Xx,=b uma
particdo qualquer de [a, b]. Ja vimos que (veja exemplo da Secdo 11.2)

N

F(b)—F(a)= Y [F(x) — F(x;_ p].

i=1

Segue, entdo, do TVM, que, para uma conveniente escolha de ¢; em [x; _;, x;],
teremos

i
F(b)—F(a = XY F'(c)Ax;
i=1
ou
H
@ F(b)—F(a)= X f(t,) Ax;

i=1

Se, para cada parti¢do P de [a, b], os ¢; forem escolhidos como em (D, teremos
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"

lim 2 flep))Ax; = F(B)— F (a)

max iu'{- =0 =1

e, portanto,

b
J f(x)dx = F (b)— F (a).
[

Fica provado assim o

1.° teorema fundamental do cdlculo

Se f for integravel em [a, b] e se F for uma primitiva de f em [a, b], entdo

b
fixydx=F (b)— F(a).

o

Provaremos mais adiante (veja Apéndice 4) que toda funcdo continua em [a, b] é
integravel em [a, b]; por ora, vamos admitir e utilizar tal resultado. Segue, entdo, do
1.° teorema fundamental do célculo que se f for continua em [a, b] e F uma primitiva
de fem [aq, b], entdo

I}
rf{,r‘r dx = F (b)— F (a).
o

A diferenca F (b) — F (a) seré indicada por [ F ( x)] Z . assim

h
J fixyde=[F (x‘;]z = F (b)— F (a).

-

EXEMPLO 1. Calcule r ol
!

Solucgdo



ou seja,

Jh x2dx = 1
l 3

3
EXEMPLO 2. Calcule J A

—1
Solugdo

3 2

| dd=[42 =12-4 (- =16
ou seja,
3
j 4dx=16

2
EXEMPLO 3. Calcule | (x3 + 3x — 1) dx.
0

Solugdo

jh (3 +3x—Dde=|*—+
0 TR

ou seja,
2
fo-’* +3x —1) dx =8.

2
EXEMPLO 4. Calcule Lﬁ dx.
| B e

Solucgdo

Assim,
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201 1)
EXEMPLO 5. Caleule |~ | —+—| dx.
1 X x- )
Solugdo
2 \ g o
J (l—k%Jd'{:[ln A lj} .
I %X x X< 3
ou seja,

T

EXEMPLO 6. Calcule J 8 cen 2x dr.
0

Solugdo
T T
e 1 N 1 1
8 sen 2x dy = [—— cos 2:{} B e e @ o &
0 2 T T
ou seja,

T
{}3 sen 2x dx = u

l

EXEMPLO 7. Calculej e
0

Solugdo

Exercicios 11.5

Calcule.
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01 ~1

1. u{x—i—'j}dx 2. ] (2x 4+ 1) dx
.4 ] .]
3. —dx 4. (x2 — 1) dx
Jo 2 J-2
3 2
3 : dx 6. : 4 dx
o 1 s]
T i 8. 5 dx
Jox J—1
a2 4 s 2 1
Q. (x*+3x—3 dx 10. S5x7 — — |dx
20 “() 2
| 0
”'J-l (2x + 3) dx IE.L (2x 4+ 3) ddx
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4
13. — dx
I x
0 3
L# (3 = 2% + 3) dx
2 1
. [ﬁh +T)m.
A .
-3 l .
a (5 T ]dx
% x*=
-1
23, 1 {3-? 1y 18
-4 :
. (5x ++/x) dx
2 1+ x
*7 3 dx
¥
4 -
» J 1—?_—)‘ dx
1 +x

2 ]
SN A

|
33.J1 o0
7

r2

X

T
2

cos 2x

I""Jl"-:l

il
43, J4 sen x dx
0

{.5'2 + 35+ 1) ds

(et

dx
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14

J-4
“Jo
S ¥
J- x dx

0

o1

W

20.

-1
2
-0

26. (.t?

-1

o5 [ in2 &

!

30 Jl s
- x—3)° d
{}{‘i 1= dx

: Jl
3
i J {”2 — Ll +3}d”
0
1 r
J 3\-" dt
-1
2
. jl _r

0
40. J sen 3x dx
-

21+r2
A

dt

36.

1+ 3x2
X o

(x +3x) dx
0

_'r+3}ti‘1.1c



45

47.

49.

51

33.

33.

36.

38.

Fid

— 1
: J 3 (3 + cos 3x) dx 46. J sen 3x dx
0 0
JE - dx 48. J 2%
0 *'.'II = 'l.2 0
I ) 1. 2x
J 2xe* dx 50. 5 dx
0 014 x=
1 1 )
: J dx a2 J x3 e-‘4 dx
0 1+x —1
b . 1 1
3 (sen x + sen 2x) dx 54. J-2 [— + — cos 21] dx
0 2 2
z P - 1 | 3
J{}z cos~ x dx [Sugfsfﬁn: Verifique que cos<x = = + - cos Ex.J

2 X,

2 gen? x dx 57. J.‘L secs x dx
<) 0

3 dx 59. 3* ¥ dx

<) 0

I

4 to“ x dx
o) &

11.6. CALCULO DE AREAS

Seja f continua em [a, b], com f (x) > 0 em [a, b]. Estamos interessados em definir a
drea do conjunto A do plano limitado pelas retas x = a, x = b, y = 0 e pelo grafico de y

=f ).
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A

Va2

A

o=
¥
a b

Seja, entdo, P : a = x, <x; <X, < ... <X, = b uma particdo de [a, b] e sejam ¢; e E
em [x;_ 4, x;] tais que f (c;) é o valor minimo e f(¢;) o valor maximo de fem [x; _, x; ].
Uma boa definicdo para drea de A deverd implicar que a soma de Riemann

" " ey
> f(¢;)Ax; seja uma aproximagdo por falta da drea de A e que .Zlf{cnax;- seja
i=1 =
uma aproximacao por excesso, isto é

n n .
Y f(CcHAx; sdrea A< Y f(C;)Ax;

i =1 i =1

YA YA

-\

|

-
-

el b

b
Como as somas de Riemann mencionadas tendem a J f(x) dx, quando max Ax;
o

— 0, nada mais natural do que definir a drea de A por

b
drea A= | f(x)dx
i

Da mesma forma define-se area de A no caso em que f é uma fungdo integravel
qualquer, com f (x) > 0 em [a, b].

EXEMPLO 1. Calcule a area do conjunto do plano limitado pelas retas x =0, x =1, y
= 0 e pelo gréfico de f(x) = x°.
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Solugdo

l 37!
sread=| x2dr=|2_ -
3 3

0
YA
\ _1.2
-
0 1 X -
EXEMPLO 2. Calcule a area do conjunto
1
A= Jl(,r, VERIII=x=2e Dﬂ}rf_:—jJL.
:

Solugdo

A é o conjunto do plano limitado pelas retas x = 1, x = 2, y = 0 e pelo grafico de
1

V= 4
. 2
x=

vi

As situacOes que apresentamos a seguir sugerem como estender o conceito de area
para uma classe mais ampla de subconjuntos do R?.
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X

T A Como f(x) = 0 em [a, b],

' b
f(x)dx=0.
i

b
drea A = —J f(x)dx
1)

YA

\\C d
a \_/{ B %

Seja A o conjunto hachurado.

; c o b b
Area= ' f(v v - J F(x) dx + L F(x) dx = L | £ (x)]d

Observe:

b C d b
F(x) dx =J F(x) dx +j f(x) dx + L £(x)dx = soma das éreas dos
) i C A

conjuntos acima do eixo Ox menos soma das areas dos conjuntos abaixo do eixo
Ox.

v /_JL/:

N

Sl BRI,
N
o
\
..'

X
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[f (c;) — g (c;)] Ax; = area retangulo hachurado.

R b
lim 2 [flc;)—g(ep]Ax; = | [f(x)— g(x)]dx = drea A
o

max Ax; =0 § =

em que A é o conjunto limitado pelas retas x = a, x = b e pelos graficos de y = f (x)
ey =g (x),comf(x)>g(x)em[aq,b].

EXEMPLO 3.

1) Calcule a area da regiao limitada pelo grafico de f (x) = x5, pelo eixo x e pelas retas
x=-lex=1.

l
) Calcule J x3 dx.
—1

Solugdo
0 1 1 ] 1
) area = —J g dx—l—J O dpm g me
—1 4 4 2
Yok
area A; — _JD x3 dx = 1
-1 4
1 A,
= >
H| | X l ]
area A» :J x3 dx ==
= Jo 4
1 e
b) j ]I?’ dx=|—| =0=drea Ay — drea A O
2 —1

EXEMPLO 4. Calcule a area da regido limitada pelas retas x =0, x = 1, y = 2 e pelo
grafico de y = x,.

Solucgdo
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EXEMPLO 5. Calcule a area do conjunto de todos os pontos (X, y) tais que

2

X"=y= 4X.

Solugdo

1
drea = J [Wx — x2] dx
0

1
A A
— it '\'.-'I __1|'3 —_ ‘_
3 3

0

3 3

Observe: para cada x em [0, 1], (x, y) pertence ao conjunto se, e somente se,
9

X =y= Jx.

EXEMPLO 6. Calcule a area da regidao compreendida entre os graficosde y =xey =

x*, com0<x<2.

Solucgdo
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As curvas y = x e y = x* interceptam-se nos pontos de abscissas 0 e 1. Entdo,

Observacado. Os pontos em que as curvasy =xey = X’ se interceptam sdo as solucoes
do sistema

y=x
A
Y= X

Consideremos, agora, uma particula que se desloca sobre o eixo x com equacdo x =
x (t) e com velocidade v = v (t) continua em [a, b]. A diferenca x (b) — x (a) é o
deslocamento da particula entre os instantes a e b. Como x (t) € uma primitiva de v (t),
segue do 1.° teorema fundamental do calculo que

b
x(b)—x(a)= J v (1) dt.

i

Por outro lado, definimos o espago percorrido pela particula entre os instantes a e b

b
por | |v(f)ldt
7]
Se v (t) > 0 em [a, b], o deslocamento entre os instantes a e b sera igual ao espaco

percorrido entre estes instantes, que, por sua vez, sera numericamente igual a area do
conjunto A limitado pelas retas t = a, t = b, pelo eixo Ot e pelo grafico de v =v ().
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A v=v(t)

=

i1 b [

Suponhamos, agora, por exemplo, que v (t) >0 em [a,c]lev (t)<0em[c, b ].

VA
v=v(t)

Ay

Neste caso, o deslocamento entre os instantes a e b sera
E:I ” -
x(b)y—x(a)= J v(t) dt = éarea A; — drea A
i
enquanto o espaco percorrido entre estes instantes sera
b C b ’ 3
J Lv(t) |l dt = J v(t) dt — J v(t) dt = drea Aj + drea As.
o i o

EXEMPLO 7. Uma particula desloca-se sobre o eixo x com velocidade v (t) =2 — t.

1) Calcule o deslocamento entre os instantes t = 1 e t = 3. Discuta o resultado
encontrado.
7)) Calcule o espaco percorrido entre os instantes 1 e 3.

Solucgdo

3 2P
mxm—x(n=j] @-1ydi=|2——| =0
1
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Em [1, 2 [, v (t) > 0, o que significa que no intervalo de tempo [1, 2] a particula
avanca no sentido positivo; em ]2, 3], v (t) < 0, o que significa que neste intervalo de
tempo a particula recua, de tal modo que no instante t = 3 ela volta a ocupar a mesma
posicdo por ela ocupada no instante t = 1.

x(1)

. -') -
v {3} x(2) A
7)) O espacgo percorrido entre os instantes t=1et=3 ¢

3 2 3
[ 12-na={"@-na-{e-na=1

Observe que o espaco percorrido entre os instantes 1 e 2 é

r il
| >

e que o espaco percorrido entre os instantes 2 e 3 é

3 3 1
[r2-na=-| @-na=— g

Exercicios 11.6

Nos Exercicios de 1 a 22, desenhe o conjunto A dado e calcule a area.

1. A é o conjunto do plano limitado pelas retas x = 1, x = 3, pelo eixo Ox e pelo
grafico de y = x°.

2. A é o conjunto do plano limitado pelas retas x = 1, x = 4, y = 0 e pelo grafico
dey = +x.

3.

A é o conjunto de todos (x, y) tais que x> — 1 <y < 0.
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4. A é o conjunto de todos (x, y) tais que 0 <y < 4 — x°.
5. A é o conjunto de todos (x, y) tais que 0 <y <|sen x|, com 0 < x < 27.

6. A é aregido do plano compreendida entre o eixo Ox e o grafico de y = x> — x,
com 0 <x<2.

7. A é o conjunto do plano limitado pela reta y = 0 e pelo graficode y = 3 — 2x —
x%, com -1 <x<2.

8. A é o conjunto do plano limitado pelas retas x = —1, x = 2, y = 0 e pelo gréfico
dey=x*+2x+5.

9. A é o conjunto do plano limitado pelo eixo 0x, pelo graficode y = x> — x, -1 <
x< 1.

10. A é o conjunto do plano limitado pela reta y = 0 e pelo grafico de y = x> — x,

com(0<x<2,

11. A é o conjunto do plano limitado pelas retas x = 0, x = m, y = 0 e pelo grafico
de y = cos x.

12. A é o conjunto de todos (x, y) taisque x>0 e x> < y < x.

13. A é o conjunto do plano limitado pela reta y = x, pelo gréafico de y = x>, com
-1<x<1.

4 A={x)ERI0sx=1le.y sy=3).
T
15. 4¢0 conjunto do plano limitado pelas retas x = 0, x = o e pelos graficos de
y=senxey=cCosX.
16. A é o conjunto de todos os pontos (x, y) tais que x> + 1 <y <x + 1.

17. A é o conjunto de todos os pontos (x, y) tais que x> — 1 <y < x + 1.

T
18. 460 conjunto do plano limitado pelas retas x =0, x* = T e pelos graficos de

“=

y=cosxey=1-cosx.
19 A={(x,y) ER?|x>0ex’—x<y<-x*+5x}.

20. A é o conjunto do plano limitado pelos gréaficos de y = x> — x, y = sen 7mx, com
-1<x<1.

21. A é o conjunto de todos os pontos (x, y) tais que x>0 e —x <y < x < x*

. . . 1
22. A6 0 conjunto de todos (x, y) taisquex>0e— =y =35 — ax2.
2
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23. Uma particula desloca-se sobre o eixo x com velocidade v (t) = 2t — 3, t > 0.

a) Calcule o deslocamento entre os instantes t = 1 e t = 3.
b) Qual o espaco percorrido entre os instantes t =1 e t = 3?
c) Descreva o movimento realizado pela particula entre os instantes t = 1 e t =
3

24. Uma particula desloca-se sobre o eixo Ox com velocidade v (t) = sen 2t, t > 0.
Calcule o espaco percorrido entre os instantes t =0 e t = 1.

25. Uma particula desloca-se sobre o eixo 0x com velocidade v (f) = —t* + t, t > 0.
Calcule o espaco percorrido entre os instantes t =0 e t = 2.

26. Uma particula desloca-se sobre o eixo Ox com velocidade v (t) = - 2t — 3, t >
0. Calcule o espaco percorrido entre os instantes t =0 e t = 4.

11.7. MUDANCA DE VARIAVEL NA INTEGRAL

Veremos, no Vol. 2, que toda fun¢do continua num intervalo I admite, neste
intervalo, uma primitiva. Por ora, vamos admitir tal resultado e usa-lo na
demonstracao do proximo teorema.

Teorema. Seja f continua num intervalo I e sejam a e b dois reais quaisquer em
I. Seja g : [c,d] - I, com g' continua em [c, d], tal que g (c) =a e g (d) = b.
Nestas condicoes

b d
fx)dx =J f(gu) g (u) du.
a c

Demonstragdo
Como f é continua em I, segue que f admite uma primitiva F em I. Assim,

b
b, f(x)dx=F (b)— F(a)

o

A funcdo H (u) = F (g (u)), u € [c, d], é uma primitiva de f (g (u)) g' (u); de fato,

H) =[F(@ W) =F(gW)gw

ou seja,

H'(u) =f(g W) g'(u)
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pois, F' = f. Segue que
d d
J f(g () g'(wydu = [F (g )] = F(g(d)— F(g ()
"
Por hipétese, g (d) = b e g (¢) = a. Tendo em vista @, resulta

o b
j F(g (@) g'(u) du = F (b) — F(a) = j £(x) dx.
o il

rf{x) dx=?

[,r =g(u):dx=g'(u) du
<X =d iu=cemque g(c)=a
Lt‘ =h cu=demque g(d)=b

b d
Feyde=["f(g @) &' du
s C

1
EXEMPLO 1. Calculej (x — DO dx.
0

Solugdo
Facamos x — 1 =u, ou seja, x =u + 1.
J)[’=H+ lodv=({u+1)du ou dx=du

x=0 u=—1
ll=1 =10

! 0 S L
j (x — D)0 dx=j AL A o L
0 E TH T

YA
: 10
ylu I (x-1)
:
u |
|
T o
-1 0o 1 X




L
EXEMPLO 2. Calcule Jl \2x — 1 dx.
2

Solugdo
1 1
Facamosu=2x-1loux= — i + —
2 2
,1'=lu+l ;d.‘{:l(f:.f
2 2 2
{1=l cu=10
2
| x =1 cu=1
l I — ] [
Jl V22X ldx—J Vi — du = — Ju du
— 0 0
2
- % gt B
J c:"u=|:—'\-uz} = —
0 3 0 3
Assim,
L, 1
N ax=Tde=—. .

2

Observacio. Poderiamos, também, ter feito a mudanca de varidvel 2x — 1 = u? ou
1 » |

= — i + —
2 2
Jr=lz,4r3—|-l cdx = u du
2 2
<x=l =0
2
| x =1 cu=1l(ouu=-—1)
1 1 — 1
Jl J2x =1 dx =J Nuc wdu=| luludu
= 0 0

2

Como u esta variando em [0, 1], | u | = u, dai
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l 1
|u|udu=J u? du =
0

Se em vez de u = 1 tivéssemos tomado u = —1, teriamos

. -1 — -1
J] J2x—1 dx= J Vus udu = J la |l u du.
0 0

)

Como u esta variando, agora, no intervalo [-1, 0], | u | = —u; assim,

-1 = - 377!
J |u|ua’u=J —u*du=—{u—} =l.
0 0 3 3

-0

2

Observe que tanto g (u) = % -+ % u € [0, 1], quanto g (u) = % W+ % u€

[-1, 0], satisfazem as condi¢Oes do teorema de mudanga de variavel.
As vezes, com pequenos ajustes, a integral a ser calculada pode ser colocada na

d
formaj f (g (x)) g'(x) dx. Neste caso, a mudanca de variavel u = g (x), x € [c, d],
.

gid)
transforma a integral J f(u) du du na anterior.
glc)

d
J flgx)g'x)dx=7

[u=g{x‘j cdi = g'(x) dx
1x=c cu=g(c)
x=d cu=g(d)

d 2ld)
J £ g gy de= [ fu)du
C glc

l
EXEMPLO 3. Calculej .t ¥ O
0

Solucgdo
Multiplicando o integrando por 3 e dividindo a integral por 3, nada muda:

] 14 1 |' /T_{:
J e gy = J e2Y 3 dx
0

0 3 (S
du
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[u=3x du = 3dx
s x=0 :u=0
{x=l sUu=3
l . 1: ¢3 | |
Ix - u — 1y — ;G
€ dx——J eldu=—|e = —[e | i
Ju 3 Jo 3[ Io 3[ }
l
EXEMPLO 4. Calculej X
0 x<+1

Solugdo
Fazendo u = x* + 1, du = 2x dx. Vamos entdo multiplicar o integrando por 2 e

dividir a integral por 2.

du
J] x dx _ljl 2x dx
0 x2+1 2Jo0x2+1D
u
[:af:,rf—i-l - die = 2xdx
{x=0 u=1
{,'c:l =2
1 2 2
j A dx=lj B ldu=l[mu]j?
0 x<+1 291 u 291 wu z
ou seja,

1
J‘ jx t{?,x:an.
0 x-+1 2

% g
EXEMPLO 5. Caleule [“x \/x? +1 dx
|

Solucgdo

)

xx2 +1dx= % JAh w.ﬁ:":c2 +1 2x dx
l

)

J
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u=x2+1 diu=2xdx
sx=1 Su=2

b S uH=>5

2

-ﬁ
2 — | 1 ud2 ] 1 . .
Xx=+1 :"x=—J i odi=— =_[5.5—242].
J]‘* ST 2{3&23[“ vl

Antes de passarmos ao proximo exemplo, observamos que o valor da integral de f
em [a, b] ndo depende do simbolo que se usa para representar a variavel independente:

b b b b
jf () dx = jf () du = j £ (s)ds = j £ (@)dOete.
i i i i
EXEMPLO 6. Seja f uma fungao impar e continua em [-r, r], r > 0. Mostre que
,
J f(xydx=0.
i
Solugdo

fimpar © f(-x) = —f (x) em [-r, r ].

Facamos a mudanca de variavel u = —x

[u =—x ;du=—dx
S =
r=r H=-r

Jj (xX)dx = — E _' (x) (—dx) = — J_j{ (—u) du = Ef (—u) du
Como f (-u) = —f (u), resulta

r r
Fix)dt == J f (u) du;
—r —r

¥ ¥
mas, J (1) du = J f (x) dx (veja observagdo acima), logo
& ;

—7F
r '
j i) —j Y e
—r —r

ou seja,
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.
21 fxde=0
o
e, portanto,

,
J [ (x) dx = 0. (Interprete graficamente.) |
i

l [
EXEMPLO 7. Calculej xyx*+3 dx
—1

Solugdo

i 6 et /¥4 + 3 é uma funco impar, pois,
N

f(—x)= —x -x.-"r—,r)J' 3 =i -~.¥-'II4 + 3) = —f ().

Pelo exemplo anterior,
l |
J X o ¥+ +3 dv=0. ]
—1

o

EXEMPLO 8. Calcule [ x? [x + 1 dx.
-1

Solugdo

Aqui é conveniente a mudanga u = x + 1

[u=:c+l cdu = dx
lx=—1 :u=0
lx=0 u=L

De u=x+ 1, segue x = u — 1. Entao,

5 3 1
0 ; l & l = O = o A
J x2 W] dx=_|. (v —1)" . u du=_|. (u2—2u + 1D u2 d:..'=_|. (2 —2u2 +ul) du
—1 0 1] 0

Assim,




Exercicios 11.7

1. Calcule.
-..2_ 5 | 4
a) : (x — 27 dx ) B (3x4+ 1) dx
S 0
c) A3x+1 dx d) (2x + 5]1'jg dx
. J—1
4 2 3
e) A3 —x dx —— dx
g D) (3x — 2)3
l | l 3
) — dx i) J dx
Floarny e
2, -
i) J =Xy )] xe*  dx
0 ]
0 : X
l) J l x4 x+ 1 dx m) J.{)-]I cos 2xdx
L 52 | g
i J dx n}J dn
01+ x° 0 (14 x3)2
] i ) 3 )
1) J x= a1+ x° dx q) dx
R E T P h 5¥
] '1_,'. "']. x
Fl J +x+1 dx 5) — dx
-f Jo (x+1)S
0 2
f) J x(x+ 1]1“:}'[]I dx i) x2 (x — 2}“} dx
_'|_ -

)
2. Suponha f continua em [-2, 0 ]. Calcule J'h f (x — 2) dx, sabendo que
0

]
J.;J fx)de=3.

l
3. Suponha f continua em [-1, 1 ]. Calcule J f(2x— 1) dx sabendo que
0

l
J l f (u) du =35.
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2
4. Suponha f continua em [0, 4]. Calcule j 5 3 O dx.
|
- :
. Calculej 45# dx.
. X bl

6. Calcule a area do conjunto dado.

aA={xneER1=sx=2c0sys= xﬁ}
}

c) A é o conjunto do plano limitado pela reta x = 1 e pelos graficos de y = e
ey=e*,comx>0

A= {(xy)ERI0=x<2c0<ys= _
' 3 i o

X

7. Calcule.

ol o 1 - 5

al X 4 x° + 3 dx ) x(x= + 3 dx
() <
2 - % 5

c) | x {.\’2 — 1) dx d) . x4l —x“ dx
<0 ) ol

e) ; x2e* dx f 5 x4/1+ 2x2 dx

2 3y I 1
) ds i) J s
J 1 1+ s2 014 4s
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l 5
= dx i J 5 s
Jo fx+1 0 [ Fam
o3 2 | 2
X X
)] - dx m) A ax
40 '\.‘I-Y + 1 0 (x+1-
L .3 5.9 =map V3 o3 3
n) J l,r' (x<+3)"" dx a) ,[n x>k ] de
T 'Ti
23 S B e B
p) {}- sen x cos” x dx q) o cos X sen- x dx
ok el
2. = g ety 2 : i
Fl ‘i’ sen x (1 — cos= x) dx 5) JE sen x sen- x dx
3 3
X il
t) J? sen” x dx i) ,[[].6 cos> x dx

3

1
Um aluno (precipitado), ao calcular a integral J 1+ x2 4y, raciocinou da
—1

seguinte forma: fazendo a mudanca de variavel u = 1 + x*, 0s novos extremos
de integracdo seriam iguaisa2 (x =-1 - u=2;x=1 - u = 2) e assim a
integral obtida ap6s a mudanca de variavel seria igual a zero e, portanto,

I — ]
J Jy1+x° dx =00 Onde esta o erro?
—1

9. Seja fuma funcdo par e continua em [-r, r], r > 0. (Lembre-se: f par © f (—x)

=f(x).)
a) 0 r
Mostre que J fix)dx= ,[:} F(x) dx
L

¥ r
b) Conclua de (a) que J f(x)yde=2 L} f(x) dx. Interprete graficamente
5

10. Suponha f continua em [a, b]. Seja g: [c, d] - R com g' continua em [c, d], g
(c)=aeg(d) =b. Suponha, ainda, que g' (u) > 0 em ]c, d[. Seja c = uy < u; <
U, < ... <u, =d uma particao de [c,d] esejaa =x, <x; <X, <...<Xx,=Db
particdo de [a, b], em que x; = g (u;), para i variando de 0 a n.

a) Mostre que, para todo i,i =1, 2, ..., n, existe i; em [u; _, u;] tal que

Ax; =g’ ( ;) Au,
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b) Conclua de (a) que

n R
X flg(u)) g’ (u)Au,= ¥ flc) Ax,
em que ¢; = g ( ;).
c) Mostre que existe M > 0 tal que

Ax; < M Auy;
para i variando de 0 a n
d) Conclua que
" "
lim Y flg(u)) g (u;) Auy = lim Y f(c) Ax;
max i.'.r!- —=0i=] max :i.rf- —=0;=1

ou seja,

d b
J flg)g' (wdu= | f(x)dx
o )

11.8. TRABALHO

Nesta secdo, admitiremos que o leitor ja saiba o que é um vetor. Consideremos,
entdo, um eixo 0s

/
11.
‘I:!

. . — . ) .
e indiquemos por i~ o vetor, de comprimento unitdrio, determinado pelo segmento
orientado de origem 0 e extremidade 1.
. , — —+ —3 , -
Seja a um numero real; g = a 4 € um vetor paralelo a . O numero a ¢é a
— . — . —
componente de g nadirecao u . Se a > 0, a i tem o mesmo sentido que i ; se a < 0, a
ooy . L. —
u tem sentido contrdrio ao de y .
— — .

Suponhamos, agora, que uma for¢a constante g = « y atua sobre uma particula,
que se desloca sobre o eixo 0s, entre as posicoes s = s, e s = s,, COM S; € S, quaisquer.
Definimos o trabalho t realizado por }5, de s, a s,, por

T=a (s = Sy).
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Assim, o trabalho realizado pela forca constante 7 = a i, de s; a S,, 6, por
P ¢ F 1 2 p

definicdo, o produto da componente de ?, na diregdo do deslocamento (isto €, na
direcdo i), pelo deslocamento. Temos os seguintes casos:

Da>0es,>s;,=1>0.

2)a<0es,>s;=1<0.

posicio inicial

posicio final

— . - e A . .
Neste caso, F atua contra o movimento; F euma forga de resisténcia ao movimento.

3Ja>0es,<s;=1<0.

57 posicio inicial

posicio final

— . s A . .
F realiza um trabalho de resisténcia ao movimento: 7 < 0.

4)a<0es,<s;=1>0.

i |
f'rl' ' —

F s U’
e g 1
—— 8n

— .
F atua a favor do movimento: 1 > 0.
Suponhamos, agora, que sobre uma particula que se desloca sobre o eixo Os atua
— . . ~
uma forga constante g, de intensidade F, mas ndo paralela ao deslocamento
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— —
Fr =Fcos @ u

em que 6 é contado no sentido anti-horario de Os para ? O trabalho 7 realizado por ?,
de s, a s,, é, entdo, por definicao,

7= (F cos 0) (s, — ;)

em que F cos 0 é a componente de ? na direcdao do deslocamento.

Observacao. No Sistema Internacional de Unidades (SI) a unidade de comprimento é
o metro (m), a de tempo o segundo (s), a de massa o quilograma (kg), a de forca o
Newton (N) e a de trabalho o Joule (J). Sempre que deixarmos de mencionar as
unidades adotadas, ficara implicito que se trata do sistema SI.

EXEMPLO 1. Sobre um bloco em movimento atua uma forca constante, paralela ao
deslocamento e a favor do movimento. Supondo que a forca tenha intensidade de 10
N, calcule o trabalho por ela realizado quando o bloco se deslocade x =2 m a x = 10
m.

Solugdo

2 10
O trabalho 7 realizado por f é
1=10(10-2)=80J. =

EXEMPLO 2. Um bloco de massa 10 kg desliza sobre um plano inclinado, da altura
de 5 m até o solo. O plano inclinado forma com o solo um angulo de 30°. Calcule o
trabalho realizado pela forca gravitacional. (Suponha a aceleracdo gravitacional

constante e igual a 10 m/s>.)

Solucgdo
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§, =0 (posigio inicial)

solo

¥, (posi¢do final)

Pela lei de Newton, a intensidade de 175 € Mg, em que M é a massa do bloco e g a
aceleracdo gravitacional. A componente de 175 na direcao do deslocamento é Mg cos
60°. O trabalho T realizado por £ é:

7= (Mg cos 60°) (s, — ;).

s, € o comprimento da hipotenusa do triangulo retangulo ABC:
s, sen 30°=5ous, = 10.

Como cos cos 60° = % M=10e g = 10, resulta

=500J)J. m

EXEMPLO 3. Sobre uma particula que se desloca sobre o eixo x agem duas forcas:

—

F =10 T e ﬁ)} — —3 7 Calcule os trabalhos realizados por elas no deslocamento de
" = = . - . ,

x =1 ax = 5. Supondo que F, & F, 50 as Gnicas forcas agindo sobre a particula,

calcule o trabalho realizado, no deslocamento mencionado, pela resultante ﬁ

Solugdo

'
'

Jﬁd‘
Y
———

=~
=y
™

As forcas sdo paralelas ao deslocamento.
Trabalho realizado por 1'?1:

1,=10(5-1)=401J.

Trabalho realizado por £.:
L=-3(5-1)=-121J.
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Trabalho realizado pela resultante 3 (% = El + F_; ouseja, R =77 )

t=7(G-1)=28J]. =m

EXEMPLO 4. Uma particula de massa 5 kg ¢é lancada verticalmente. Calcule o
trabalho realizado pela forca gravitacional quando a particula se desloca da alturay = 1
may=>5m.

Solugdo

Pela lei de Newton, a forca gravitacional ? é dada por

Ay

? = —Mg}} I F
‘ 1
J o

S S S

em que M é a massa da particula e g a aceleracdo da gravidade que suporemos
constante e igual a 10 m/s,. Observe que }:’ ¢ paralela ao deslocamento. O trabalho 1

realizado por F é entéo
T=-Mg(5-1)

ou

t=-200J. m=m

Nosso objetivo a seguir é definir trabalho realizado por uma forca varidvel com a

posicdo. Suponhamos, entdo, que sobre uma particula que se desloca sobre o eixo x
e .~ —* —

atua uma forga paralela ao deslocamento e variavel com a posicdo X, f (x) = f(x) i .

F(x)
| T T—

I]I:' X

Observe que f (x) é a componente de FT x), na direcao do deslocamento. Vejamos,
entdo, como definir o trabalho realizado por £ no deslocamento de x = a a x = b.
Suponhamos, por um momento, a < b e f (x) continua em [a, b ].

Seja P :a=Xx;<x; <X, <...<x,=buma particdo de [a, b].

404



o T 2 I X . xn

:.u .u } X :r t—+—t ~
xﬂ a ,:l..l .t?: =1 | .t'u_ 1 ,{1—.7('”:

Supondo max Ax; suficientemente pequeno e tendo em conta a continuidade de f, o
trabalho realizado de x; _; ax; (i = 1, 2, ..., n) devera ser aproximadamente f ( x;) ;'l‘f!-:
por outro lado, é razoavel esperar que a soma de Riemann

S F(@) Ax,

i=1
deva ser um valor aproximado para o trabalho realizado por ? no deslocamento de x =
a a x = b e que esta aproximacao seja tanto melhor quanto menor for max Ax;. Nada
mais natural, entdo, do que definir o trabalho t realizado por F (y) = f(x) T no
deslocamento de x =a ax = b, por

b
= | f (x)dx.
1

L

Na definicdo acima, a e b podem ser quaisquer e f (x) integravel no intervalo fechado
de extremidades a e b.

Observe que, se a < b e f (x) 2 0 em [a, b], o trabalho realizado por
;_,3 (x) = f(x) ? de x = a a x = b, é numericamente igual a area do conjunto do plano

limitado pelas retas x = a, x = b, y = 0 e pelo grafico de y = f (x).

EXEMPLO 5. Sobre uma particula que se desloca sobre o eixo Ox atua uma forca

paralela ao deslocamento e de componente f(X) = L,J Calcule o trabalho realizado
b

pela forca no deslocamento de x =1 a x = 2.

Solucgdo

O trabalho realizado por Fdex=1ax=26

:) 2
T=J ]_\_ d,r:[—l} =lJ. |
I x% Xdy 2

EXEMPLO 6. Considere uma mola com uma das extremidades fixa
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— 0000 —
0 =

e suponha que a origem, x = 0, coincida com a extremidade livre da mola, quando esta
se encontra em seu estado normal (ndo distendida). Se a mola for distendida ou
comprimida até que sua extremidade livre se desloque a posicdo x, a mola exercera
sobre o agente que a deforme uma forca cujo valor, em boa aproximacao, sera

F(x)=—kxi (lei de Hooke)

no qual k é uma constante denominada constante eldstica da mola.

Suponha, agora, que a mola seja distendida e presa na sua extremidade livre uma
particula. Supondo k = 5, calcule o trabalho realizado pela mola quando a particula se
desloca da posicao

1) x=0,2ax=0.
)) x=0,2ax=-0,2.

Solugdo
0
0 Sy2
ar=[ —sxdx= [—l} —0,11.
0,2 "
02
—0,2
byr= J;}q —35x dx = 0. Interprete. =

EXEMPLO 7 (Relagdo entre trabalho e energia cinética). Uma particula de massa m
desloca-se sobre o eixo x com funcdo de posicdao x = x (t) em que x (t) é suposta
derivavel até a 2.* ordem em [t,, t; ]. Suponha que a componente, na direcao do

deslocamento, da for¢a resultante que atua sobre a particula seja f (x), com f continua
em [x,, X;], em que x, = x (t;) e x; = x (t;). Verifique que o trabalho realizado pela
resultante, de x, a x;, € igual a variagdo na energia cinética, isto &,
x 1 1 "
l f(x)dx = —:m‘ﬁ — — mvg
.‘{ﬂ 2 2

em que v, e v, sao, respectivamente, as velocidades nos instantes ¢, e t;.

Solucgdo
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x=x() ;dx=x'()dt ou dx=v(t)d:
1¥=%X0 t=1
X = Xj =1

X e
) f@de=|" fox@v@ar.
*0 o

Pela Lei de Newton (for¢ca = massa x aceleracao)

f(x (1) =ma (1)
em que a (t) é a aceleracao no instante t. Assim
.‘{'] . Il I]
Fix) dx=J ma (1) v (1) dr‘=mj vit) a (1) dr.
0 ‘0 0

Fazendo na ultima integral a mudanga de variavel v = v (t)

v=v(t) :dv=v'(t)dt ou dv=al(t)dt
Ft=1p V=
f=1 TV =W

X I
J_ : flx)dx=m J : vit)ya(t)ydt = m J v dv = £ = 5 rmﬁ.
0 {0 Y0

~ . : . 1 2 s .
Observacdo. Se v é a velocidade no instante 2 mv= é, por definicdo, a energia

cinética da particula no instante t.

Exercicios 11.8

1. Sobre uma particula que se desloca sobre o eixo x atua uma forca cuja
componente na direcao do deslocamento € f (x). Calcule o trabalho realizado

pela forca quando a particula se desloca de x = a a x = b, sendo dados

a)fx)=3,a=0eb=2
byf(xX)=x,a=-1eb=3

]
c) Flxy—= ;:“u= leb=2
x=

d)f(x)=-3x,a=-1leb=1

2. Uma particula de massa m = 2 desloca-se sobre o eixo Ox sob a agdo da forca

resultante FU'} — _3, ;. Sabe-se que x (0)=1ev (0)=0.

a) Verifique que, para todo t > 0,
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L
o]
(i

[

[
b3 | e

em que x =x (t) ev=v ().

b) Calcule o mddulo da velocidade da particula quando esta se encontrar na
posicao x = 0.

¢) Qual o maximo valor de x? Qual o minimo valor de x?

d) Em que posicao | v | € minimo?

e) Como voceé acha que deve ser o movimento descrito pela particula?

Uma particula de massa m = 1 desloca-se sobre o eixo x sob a acdao da forca
resultante g () = —y ; . Sabe-se que no instante ¢ = 0 a particula encontra-se

na posicdao x = 1 e que, neste instante, a velocidade é v = 2.

a) Verifique que, para todo t > 0,

x> +v*=5

emquex=x(t)ev=v(t)

b) Qual o maximo valor de x? Qual o minimo valor de x?

c) Em que posicao | v | € maximo?

d) Em que posicao | v | € minimo?
Uma particula de massa m = 5 desloca-se sobre o eixo Ox sob a acdo da forca
resultante (x)=—2x 7 Sabe-se que no instante t = 2 a posicio é x =0 e a
velocidade v = 4.

a) Expresse o mddulo de v em funcao de x.
b) Qual o maximo valor de | v |?

¢) Qual o maximo valor de | x |?

d) Em que posicOes a velocidade é zero?

Uma particula de massa m = 2 desloca-se sobre o eixo 0x sob a acdo da forca
— —

resultante F(x) =

— i . Sabe-se que x (0) = 1 e v (0) = 0. Expresse v em

X
funcao de x.

Uma particula de massa m desloca-se sobre o eixo Ox com aceleracdao
constante a, de sorte que a forca resultante sobre a particula é, pela Lei de
Newton, ma _f Sejam x, e v, a posicdo e a velocidade no instante t = 0.

Mostre que, para todo t > 0,
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gl
2 [(X=ag) =3 "~ F{E}

em que x = x (t) ev=v ().

Um corpo de massa m € lancado verticalmente. Seja y = y (t) a altura no
instante t (considere o eixo vertical Oy orientado do solo para cima). Suponha
¥ (0) =0 e v (0) = v, Suponha, ainda, que a unica for¢a agindo sobre o corpo
seja a gravitacional —mg ? em que g é a aceleracdo gravitacional suposta
constante.

o[ ) ]
a) Verifique que v = v{j} —2gy
b) Qual a altura maxima atingida pelo corpo?

Uma particula de massa m = 2 desloca-se sobre o eixo Ox sob a acdo da forca
— —

resultante F(x) = — i . Suponha x(0) =1 e v (0) =v,> 0.
X

a) Relacione v com x.
b) Determine o menor valor de v, para que a particula ndo retorne a posicao
inicial x = 1.
De acordo com a lei da gravitacdao de Newton, a Terra (massa M) atrai uma

particula de massa m com uma forca de intensidade (G é a constante
gravitacional)

Mm

.
re

fin=G

em que r é a distancia da particula ao centro da Terra. Suponha, agora, que a
particula seja langada da superficie da Terra com uma velocidade inicial v, > 0

e que a unica forca atuando sobre ela seja a gravitacional. Mostre que o menor
2GM

i

valor de v, para que a particula ndo retorne a Terra é = .emque MeR
R

sdo, respectivamente, a massa e o raio da Terra. (Despreze a rotacao da Terra.)

10. Sobre uma particula que se desloca sobre o eixo Ox atua uma forca ? de
intensidade 3x e que forma com o eixo Ox um angulo constante de 30°.

—-

E

Calcule o trabalho realizado por ? quando a particula se deslocade x =0ax =
3.

X
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11. Sobre uma particula que se desloca sobre o eixo x atua uma forca ? de
intensidade constante e igual a 3 N e que forma com o eixo Ox um angulo de x

radianos.
F
X

+ -
X

Calcule o trabalho realizado por ? quando a particula se desloca

a)dEXZOaH}dE‘..‘{:'DH X =%

b) de x = 0 a x = mt. Interprete o resultado.

12. Sobre uma particula que se desloca sobre o eixo 0x atua uma forca ?, sempre
dirigida para o ponto P (veja figura), e cuja intensidade é igual ao inverso do
quadrado da distancia da particula a P.

!,r')

-
-

=y
|
|
|
|
I
:
I
F|

X s el ()

Calcule o trabalho realizado por ? quando a particula se desloca de x = -2 a x
=-1.

13. Uma mola AB de constante k esta presa ao suporte A e a um corpo B de massa
m. O comprimento normal da mola é [. Desprezando o atrito entre o corpo B e
a barra horizontal, mostre que a aceleracao a do corpo B é dada por
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em todo instante t em que v # 0.
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12

TECNICAS DE PRIMITIVACAO

12.1. PRIMITIVAS IMEDIATAS

Sejam o # 0 e ¢ constantes reais. Das férmulas de derivacao ja vistas seguem as

seguintes de primitivacao:

a) |cdy =ex+ k

c) |e¥dx =€ +k

w

ER LIS AN
v X

g) | cos x dx =senx + k

i) J sec? x dx =tgx + k

[) j sec xdx =Inlsecx+tgxl+k

1
1) j Ix=arctex + k
1+ x2 t =

EXEMPLO 1. Calcule.
a) J. x2 dx b) _[ dx
Solugdo

: 3
(ﬂj :fzd:c= A_T—i-k.

fﬂlJ. dx=x+ L

c) J cosxdx=senx + k.

+1
]+j;(aa£—])

b [ xo e = 2

o+

aﬁjldx=1nx+mx>m
i

1
ﬁj—dx=1n|x|+ﬁ:

%
h)J sen X dx = —cosx + &k
Nl J. sec x tgx dy =secx +k
m) I tg xdx = —Inlcosxl + &

) J; dy=arcsenx + k
V1= x?

c) J cos x dx

Antes de passarmos ao proximo exemplo, lembramos que o dominio da funcao que
ocorre no integrando de [ f (x) dx deve ser sempre um intervalo; quando nada for
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mencionado a respeito do dominio de f, ficara implicito que se trata de um intervalo.

EXEMPLO 2. Calcule.

a)(Inl1xl)’ mjldx (x> 0)
5
1 1
C) J— dx(x <0) d)j—dx
X X
Solugdo
Vinlx] = Inx sex>0
@MIXT= 10 (—x) se x < 0.
r r 1
Parax>0,[InlxI]"=[lnx] = —
v
r P 1 ] ]
Parax>0,[InlxI]"=[In{(—x)] "= — (—x) " = —.
pat 2 %
Portanto, para todo x # 0
, 1
[InlxI]' = —.
X

b) jl dx=1Inx + k(x> 0)
X

o) jl dx = In(—=x) + k(x < 0)
X

1) Aqui o dominio nao foi explicitado: tanto pode ser um intervalo contido em ]0, +o
[como em] —oo, O[. Em qualquer caso

|
J;d:c:lnlxl—l-k |

EXEMPLO 3. Seja a # 0 uma constante. Calcule

J x“ dx.

Solucgdo

o+
Sea:é—l,J =
o+ 1

+ k.
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Sea¢—1,J x Vax = Jld:c:lnlxl—i-k.
X

Assim:

Xl:t+l
+ kseasx—1

|In lx|+ kseaa=-—1

EXEMPLO 4. Calcule.

: 3
a) j X ~/x dx b) j L. dx
S
1 1
c) j — dx d) j—,} dx
14+ x= 10 Sl o
Solugdo
3 g
i by x2
(ﬂj:\f VX dx=J x2 dx = = +k
= +1
.
ou seja:
: 3 =
J X Ax dx= ?-x;',x:" + k.

B : 3
5 J- a2 il {f,x=J'[.r3+]—|d-r=%+‘“ x|+ k.
- x) 3

. 1
) J T de=arctgx+k

d) J%d’x= arc senx + k
-\‘.'1 b o

EXEMPLO 5. Calcule.

a) j sec” x dx b) j tgE x dx
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Solugdo

a) _[ sec” xdx = igx+k

EﬂJ- tgzxd,r:J(seczx—l“pdx=tgx—x+k. O

EXEMPLO 6. Verifique que

J g xdy= —Inlcos x|k

Solugdo

Pela observacao que fizemos anteriormente, o dominio de f (x) = tg x deve ser um
intervalo I, pois, neste problema, tg x aparece como um integrando. Neste intervalo
temos: cos x > 0 para todo x em I ou cos x < 0 para todo x € I (por qué?).

: —sen X
Secosx>0,[ —Inlcosx|]"=[—Incosx]' = — = tg x.
COs X
sen x
Secosx<0,[ —Inlcosx|]"=[—In(—cosx)]’' = — = tg x.
—COS X
Em qualquer caso,
J texdx= —Inlcos x| + k. 5
EXEMPLO 7. Seja o # 0 uma constante. Verifique que
a) _[ e dx = & e + k. b) J cos ax dx = L sen ax + k.
a a
Solucgdo
1 3 1 : :
a) {l fﬂ-‘} = Lt 22 = e T
a a o
J Fﬂ.l.' d.x — Eﬂ.l.' + k
o
] ] r r
by |—sen ax | = —sen’ ax - (ax)’ = cos ax.
a Q
Assim,
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|
J cosaxdx = —senax + k.
«a

EXEMPLO 8. Calcule.

a) j f’h dx b) j cos 3 x dx
c) J sen 3 x dx d) j e "dx
Solugdo

a) | e dx = % P

by | cos3xdx =

sen 3x + k.

c) gsen Sx dx = — g cos5x + k.

-

L | —
i

dy| e “dx=—¢ " +k

EXEMPLO 9. Calcule J c:i:r:-:2 x dx.

Solugdo
cos 2x = cos’x —sen°x=2cos’ x — 1
1 1
coszx = —_ 4+ — cos 2x.
2 2
Entao:
’) 1 1 1 | :
J CoOs“xdx = J — 4+ —cos2x |dx= —x+ —sen2x+ k
2 2 2 4
ou seja,

j CDSE xdx = l x + l sen 2x + k.
2 4

Exercicios 12.1

1. Calcule e verifique sua resposta por derivacao.
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al 3dx
) v dx
e) {,-'3.2 dx
|
y | — dx
J J ¥

a) e

c) lc’_"' dx

[

-E ]
J0

e)

| s ]
'n,".' I e

1 1
q) — 4+ — | dx
kg ok
(3 2
5) (— + —1} dx
JAx x
w | VT dx

3. Calcule e verifique sua resposta por derivagao.
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il sen x dx

-

c) | cosSxdy

-

€) ‘ cos Tt dt

-

o
_ 1
I}J['+—CUS 3.r)d,x
5
5 .
E}J[ —cos?xjdx
2

cos 2x ] dx

b | —

|
rx}J[ sen 2t+5cns 3;] dx

1 :
p}J-[ cos 3x —?sen ?tjdx

4. Calcule.

il J-T sen 2x dx
]

w

) J::}T (sen 3x + cos 3x) dx

1
a) Verifique que sen” x = =
b) Calcule J sen” x db.

6. Calcule.
al [ -:-:rs,2 2x dx

) 'sv:n2 3x dx

€) ms4 xdx

g) | (senx + cos .1c}2 dx
i) J (5 + sen 3.‘(}2 dx

7. Calcule.

B | =

b) J' stn 2t d
d) J sen 4t dit
i J cos /3 tdt

|

i) J ["’ + — sen 2.1:] dx
'%

_,P}J[ +4scn3t] dx

r |
m) (cos 3x + — sen 4,1'] dx

- : &

* sen 2x

) X

Qo5 X

F
q) [Ef']"r-l-senh']dx

-

bl .
b J-2 cos i dx

d}J'Z[ +— mslxjdx

cos 2x.
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b I -:-:rs,2 Sx dx

x
d) J -:-:rs,2 — dx
2

2[5

i) J (sen x — cos ,1'}2 dx

)

) 2
— COs 2.1:] dx
2

i) J (1 —cnst}de



o td}
il J-DE 4::4:-52 x dx ) Jﬂ4 5,~f:n2 x dx

T

: w
c) {}2 (sen x + cos x)? dx d) ng cos? x dx

2
8. CalculeJ- =

\.-"] + cos x dx.
0

9. a) Verifique que

J secxdr =In(secx +tgx) + £k

T T
com x = }——, —|:
2 2

b) Mostre que
J secxdx =In |5ec Xkl .r| + k.

10. Calcule.
a) | tg x dx b) _[ s,rcA:2 xdx
) ‘ tgzx dx d) J sec x dx
e) | tg2xdx n J sec 3x dx
2 3
g) | 3dx h) J- = — dx
- -"u,'ll —
i) J " + e M) dx B J (x + sec” 3x) dx

COsXx + secx
m — dx

I} J (1 + sec .‘{'}2 dx
COS X
11. a) Determine « e § de modo que

1
sen 6x cos x = E (sen ax + sen fBx)

|
[Sugc?m’;'"ﬂ: sen a cos b= E [sen(a + b)+sen(a— b}].}

b) Calcule J sen 6x cos x dx.
12. Calcule.
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al J sen Jx cos x dx b) J sen Jx cos dx dx
) J sen x cos 3x dx d) J sen 3x cos 3x dx
13. a) Determine «a e 3 de modo que

|
sen 3x sen 2x = — — (cos ax — cos Bx)
3

F=

1
[SHg-:’s‘fﬁO: sen a sen b =: [cos(a—b) —cos(a—+ f)}].}

.

b) Calculej sen 3x sen 2x dx.

14. calcule Jcns 5x cos 2x dx.

|
[Sugcesfﬁn: cosacos h =E [cos(a+ b)+cosia— Er}].]

15. Calcule.
al .‘ sen x sen 3x dx i) J sen v sen Sx dx
) ‘ sen 3x cos 2x dx d) J cos 5x cos x dx
e) ‘ cos 7x cos 3x dx

16. Calcule.
ol b
il Jlﬂ_ cos x sen 3x dx ) Jlﬂ_ sen 3x sen 4x dx
3 2

17. Sejam m e n naturais. Calcule.

m m
a) J sen mx sen nx dx b) J COS X sen nx dx
—T —T

12.2. TECNICA PARA CALCULO DE INTEGRAL INDEFINIDA DA FORMA

Jf(g (x)) g’'(x)dx

Sejam f e g tais que Im g C D; com g derivavel. Suponhamos que F seja uma
primitiva de f, isto é, F' = f. Segue que F (g (x)) € uma primitiva de f (g (x)) g'(x), de
fato,
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F@M)=F@®)g®=fgX)gX®.

Deste modo, de

jfmhm=F&ﬂ+k

segue

jﬂﬂmgmm=F@mHm.

jf@unﬁﬂﬂ=?

u=g(x) :; du=g'(x)dx

j flg(x)) g'(x)dx = J fWdu=Fuw+k=F(gx)+k

Antes de passarmos aos exemplos, observamos que, tendo em vista

J af(x)dx =« J [ (x) dx (a constante)

resulta para a # 0

J fx)dx = é J a f(x) dx

o que significa que, multiplicando o integrando por uma constante a e, em seguida,
dividindo tudo por a, nada muda.

EXEMPLO 1. Calcule J OB k.

Solucgdo

Fazendo

u=x? du=2xdx.

Entao,
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J X COS xz dx = J cos :cz (2x dx) = J cos u du.

L] i
2 2

Como

l J cos U du = lsenu-i-ﬁ:‘
2 2

resulta
J X COs ,rj dx = % sen :cz + k.
EXEMPLO 2. Calcule J e dx.

Solugdo

u = 3x, du = 3dx

Jerans [erdtlopg=Lonsy
- 3

. ]

ou seja,

J e dx = %e“ + k.

EXEMPLO 3. Calculej (2x + 1)° dx.

Solugdo
u=2x+1,du=2dx
] 1
j @2x + 13 dx = 3 j (2x + 1)2 2dx = 3 j i du.
Como
4

l J uﬁa’u= a5

f 8
resulta
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(2x + 14

j (G P = +&

EXEMPLO 4. Calculej ] X ax.

+ x-
Solugdo
u=1+x?% du=2xdx
X 1 j 1 5
= — 2xdyr=— | — du
j 14 x2 2 1+ x2 i
Como
1 1 1
— | —du=—1Inlul+k,
2 i
resulta

j L diy=o i In (T2
1+ x° 2

EXEMPLO 5. Calcule J dx
3x + 2

Solugdo

Fazendo u = 3x + 2, du = 3dx. Assim,

I
j dx=lj : 3dx=ljldu.
3Ix+ 2 3 3x + 2 3 u

Segue que

j L = mix+2+rk
3x+2 3

dx.

EXEMPLO 6. Calcule | ——
L~

Solugdo

Se fizermos u = 1 + x*, teremos du = 4x> dx. Como 4x* ndo é constante,

x 1 4x7 dx
I # j <
j]—i—f‘ir 4x2 1+ x4
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Isto nos mostra que a mudanca u = 1 + x* ndo resolve o problema. Entretanto, se
fizermos u = x?, teremos du = 2x dx; assim,

X 1 1 1 1
fx=—j—2.rdr=—j T4,
Jl—i-,ﬁ{ 20 14 (x2)? 2) 1+.2°

Como
lj 1,,du=larctgu+ﬁ:,
2 1+ u- 2
resulta
J i dr=l*m:t x2 +k n
I R R '

Observacdo. Note que x dx “dentro da integral” j& nos sugere u = x°.

EXEMPLO 7. Calculej xl + x2 d.
Solugdo
: 1 f
J x41+ x? dx = EJ N1+ x? (2x dx)

Fazendo u =1 + X%, du = 2x dx. Assim,

+

b | =

J Ju du=

—
-

I
3

j x ~\I;'II +x2 dx =

1
2

+

b3 | —

ou seja,

J X -x'-';l +x2 dx= l '-..';{] + .r3}3 + & 2]

3 Y
EXEMPLO 8. Calcule | x7 |1+ dx.
Solucgdo

- 0 1 r f
J _][-3 "".::I + A'E dy = :J _1['2 --,'I.'] + .1['2 (2x dx).

“

Fazendo u = 1 + x%, teremos du = 2x dx e x> = u — 1. Assim,
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f 1 s
J X3 --\j]—i-,xg dr=EJ (u—1)u du.
Como
i ) 3 1
— | (u=1)u du=—J(uf —u2)du
1 PO |
5 3
12 = 2= | |
=—|—u2 —=u? |[+k=—~u’ ——u +k,
215 3 5 3
resulta
3, 2 1. 58 1. o A
J X7l x dx = — Al + x°) = il T
J h

EXEMPLO 9. Calcule J sen> x cos x dx.

Solugdo

3 3
J sen” xcos x dx = J sen” x (cos x dx)

A mudanca u = sen x implica du = cos x dx.
J sen” x cos x dx = j W du = %n* + k
ou seja,

]
J 5en31c05xdx= Isenj' x+k

EXEMPLO 10. Calculej T o
cOs" X
Solucgdo
u = cos x, du = —sen x dx
J' s dr=—J. D e P
cos® x u 2u
ou seja,
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[ 5= S

vl
cos” X Lcosrx
4.3
EXEMPLO 11. Calcule | sen” x cos™ x dx.
Solugdo
sen* x cos® x = sen* x cos® x cos x = sen* x (1 — sen? x) cos x.

Fazendo u = sen x, du = cos x dx. Entao,

, ¢ 4
J senJ' xcos xdx = j F:.:e:n4 x(1 — E~.en2 Xx) cos x dx

= J u4{l —uz)du

! 7
=X > +&
5 7
Assim,
54 f
: Ben X, . Rentx
J sen* x cos® x dx = L + k.
5 )
EXEMPLO 12. Calcule.
~ )
v l"—
a) J 3 Ix b) J— dx
I+ (1 + x3)2
Solugdo
N
(ﬂlj al 1cfx=lj ! ?S.rzdr
Lok s % B I o o

Fazendo u =1 + x°, du = 3x? dx; assim,

x2
j - 1d.r=7j—dn
14+ x- 3J u

ou seja,

| = dr=L1lni+x3+£.
] <+ x- 3

426



X ] I A
\}j—dx=—j—3.r“ dx
(14 x3)2 3 1+ x%)?2

Fazendo u = 1 + x>, du = 3x? dx; assim,

ou seja,

x- 1
—  ix=——— — + L.
j (1+ x3)2 3(1 + x3)

EXEMPLO 13. Calcule.

o
) [ ar b) [ —=— ax
4+ x= %, B ot

Solugdo
5 5
(ﬂj ﬁif,x;:—j ] f,,dlf
4+ x= 4 {x)
=

Fazendo u = % du = % dx ou 2 du = dx.

Assim,
5 5 1 5 1
j ,}dr=—j ,}Edn——j 5 du
4 4 x= 4 J 14 u- 24 14+u
Como
57T 1 3
EJ TR du—Em‘l:tgH—i-k,
resulta
3 - X
jal—l—,x,z cfr—Emﬂctg?—i-k.
‘”j 2 2 |
) —,,d,x;=—j—,}dx.
3+ 2x< 3 2x=
+ 2x 8 |+ i’
]
Assim,
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I-I—‘ s ‘
oD
Fazendo
vz ) 73
u=""x, du= \“— dx ou dx = ~— du.
3 W2 V.
Assim,
2 2+/3 1
j 5 dx = - AL j = du
34 2x- 32 14+ u=
logo,
2 247 2
j —— dx = \,_’an:tgw,_,x,—i-k
34 2x“ 3'\,"1_. "\-'3
ou seja,

2 6 6
j—,}dx=x alttgL.r+k.
s f 5 o 3 3

EXEMPLO 14. Verifique que

J secxdx=Inlsecx+tgxl+k

Solucgdo
sec x tg x + sec? x
sec x =
sec x +tg x
u =sec x + tg x; du = (sec x tg x + sec” x) dx.
Assim,

sec x tg x + sec? . 1
J :-“nﬂt::ﬁ::")(=jmﬂ:*JL EXTC T ix=|—du=Inlul+k
secx +Htg x i

ou seja,
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j secxdx=Inlsecx +tgx|+ k.

Exercicios 12.2

1. Calcule.
a) | 3x— 2}3 dx b _[ 3% — 2 dx
¥ 1 |
c) dx d) J- e T dx
4 3x—2 (3x — 2)
[ 2 2
e) | xsenx®dx n J x e’ dx
. 3
2) x2 e* dx h) J sen Sx dx
: 3 4 5 . :
E}J X cosx dx 1) J cos 6x dx
i J -:;053 xsen xdx ) J ‘St".]li xcos x dx
2 I 5
n) J dx ) dx
x+3 Jvo4x 43
} J‘ P \ 3x
i P — ¥ K P s —
: 1+ 4x2 L T
r) J- - dx 5) [ 21+ 3x2 &
. A X .
(1 + 4x2)2 J N
| |
N | etq1+e* dx 1) dx
A J (x — ]}3
A - 2 ]
V) J- SHE,A dx x) | xe ™™ dx
cos< x -
2. Calcule (veja a Secdo 11.7).
T
| 2 — 4
al Jﬂ xe v dx b) ,[93 sen” x cos x dx
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q 3 2
c) dx d) 5 dx
0 2x 41 1 1+ 3x
-]_ X 1 'I(_':g
e) B dx f} B - dx
J0 -.\.'] + .1'2 0 "...-'] + x°
'—1 '\.';1?'
g) 3 (2x + 3}1{}[} dx ) J-ﬂ X sen 3.1:2 dx
i
370 = Sen x
i) j ———dx i) J'ﬁ >— dx
2. k%=1 0 cos® x
it cos” 2x dx
01+ x4 0
3. Calcule.
" 2 : - S
al sen” xcos x dx b) J- sen” xcos” xdx
3 3 S
¢) | cos” xsen xdx d) J- Sen x ./Cos X dx
e€) | sen2x -nk."] + cos? x dx n J sen 2x «E;'IS + sen? x dx
[ ;S 1) 5
g) sen” x dx ) J cos” x dx
i) J tg3 x sec? x dx 7 J tg x sec” x dx
)] J tg x sec3 xdx ) J tg‘q’ x secd’x dx
) J sen X “\-';3 + cos x dx o) SEN X secg xdx
B [ 2 2
p) J sen x sec” x dx q) | sen” xcos” xdx
3  sec? x
r) J tg” x cosx dx 5) | ———dx
J 3+2tgx
4. Calcule.
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r 2 § N
al dx b J [ . ‘ dx
J x—3 |\ x — X
I A
) dx x+ dx
< 2x:4-3 x=2 J
R x + 2
€) dx J
Jox+1 )
F2x 4+ 3
o | =22 dx h) J dx
v ox+1 x+1
5. Suponha a, 5, m e n constantes, com a # 3. Mostre que existem constantes A e
B tais que
mx + n A B
= +

(x — o) (x = ) Cx—a x- B

6. Utilizando o Exercicio 5, calcule.

i 1 2x + 3
al dx b J = W dx
Jx+Dhix—1) x(x — 2)
I X 1
c) dx d) J dx
Jx2 -y x2 -4
I Sy +3 xr+1
) | ——— dx J —_dx
Jx2—3x 42 D - x=2
) 2 h) J R
I S Y 1 _— dx
8 J x2-5x+6 a x2 +3x+2

7. Seja a # 0 uma constante. Verifique que

1 1
J—dr——au tg——i—ﬂ
G gih a a

8. Calcule.

431



I 1 2
a) 5 dx b) J = dx
J 54 x- 44+ x=
+ | 3
) | ————= dx d) J ix
Tloes2 54+ 22"
r X Ix+2
€) dx J dx
b5 442 D 1+ x2
}‘ x—1 d “J‘E.Y—_’a ;
v 1 —— dx
Flara 1+ 4x2
1 |
E}J—cir '}J—civ
1+ (x + 1)2 W = BT
2 |
)] J dx ) J — dx
5+ (x +2)2 2 +4x+8
| 2
i) J—a’x o) J—a’x
X2 +x+1 x2 +2x+2

9. Sejam a # 0 e 3 constantes. Verifique que

1 1 X— o
a) J—d,r= In + k.
x2 — g2 2oy X+ o
1 1 x+
EI]‘J = ,Ja’.r=—an:th B—i—k.
a? +(x + B)? a a
10. Calcule.
. 3 0
a) | ———————dx b) J— — dx
J (16 + x> 16 + x*
. o
) | —— dx d) J tg 2x dx
“Ji6+ 1 ¢
) ‘ ] dx f) J—I 1
€ £ ax
v oxlIn x ' x (In .r}z
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%
g) J tg” x dx

[) J % dx

-'-\.'] _I dx=
[) J 5 dx
W4 — x=
r 2
) = dx
T 44 — Ox=
" X
p) L
Y1 — e2x
II'II
|
r) .' =
Y ox '“:'] — (In x)-
2 e ;
——— dx
b 1+ e2*

V) J l cos (In x) dx
x

dx

'-,II,'II fage¥ i
X
7 J . = dx
-\_‘I'II — 4x-
2x + 3
) J X
J1— 4x?
: i
a) , dx
J - x4
. X
g | ——— dx
e N
2
5) dx

Tl =(x+ 12
et
") J— dx
1 4 3e*

3
X) J

dx

I—|—.1rﬁI

12.3. INTEGRACAO POR PARTES

Suponhamos f e g definidas e derivaveis num mesmo intervalo I. Temos:

[FIg) T =F(x)gx)+f)gX)

ou

fROFE)=[fxg®]-FfXgX.

Supondo, entdo, que f(x) g (x) admita primitiva em I e observando que f (x) g (x) é
uma primitiva de [f (x) g (x) ]', entdo f (x) g'(x) também admitira primitiva em I e

@

J fx)g'xydx=71(x) g(x)— _[ f(x) g(x)dx

que é a regra de integragdo por partes.
Fazendo u = f (x) e v =g (x) teremos du = f'(x) dx e dv = g'(x) dx, o que nos permite
escrever a regra (D na seguinte forma usual:

J udv = uv — _[ v dut
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Suponha, agora, que se tenha que calcular [ a (x) S (x) dx. Se vocé perceber que,
multiplicando a derivada de uma das func¢des do integrando por uma primitiva da
outra, chegase a uma funcdo que possui primitiva imediata, entdo aplique a regra de
integracao por partes.

EXEMPLO 1. Calcule j X cos x dx.

Solugdo

A derivada de x é 1; sen x é uma primitiva de cos x. Como 1 - sen x tem primitiva
imediata, a regra de integracdo por partes resolve o problema.

J xcosxdx=f(x)g(x) — J f'(x) g(x)dx

1
Fz' =x5enx—J 1 - sen x dx.

Assim:

_[ xcosxdx =xsenx — J sen x dx
ou seja,
_[ xcosxdx=xsenx +cosx + k. B
EXEMPLO 2. Calcule J arc tg x dx.
Solugdo

_[ arc tgx dx = _[ arc tg x -+ 1dx.

O truque aqui é acabar com arc tg x; vamos entdo derivar arc tg x e achar uma
primitiva de 1.

j*m,tgm Idr—m—jtdu

i

={arctg,x}',x—jx- = dx.

Assim
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X
14+ x2

Jarc texdx=xarctgx — J dx
ou seja,

J arctgxdx = xarc tgx — %In(l + 2%) + k.

EXEMPLO 3. Calcule J rz sen x dx.

Solugdo
J"fz senx dx = f(x) g (x) — Jf' (x) g (x) dx
T1
fe' = x? (—cos x) — I 2x (—cos x) dx.
Assim,
@ _I. ¥ senxdx = —x” cos x + _[ 2x cos x dx.

Calculemos, novamente, por partes j 2x cos x dx.

jl‘ccosxdx = 2xsenx — _[2 sen x dx

if  F4 44
3 f 8 8

ou seja,

©) JZxcosxdx=szenx—i-Zcosx—l-k.

Substituindo @ em @, vem

) ]
j X senxdx=—x"cosx+ 2xsenx+ 2cosx+ k.

EXEMPLO 4. Calcule J &~ cos x dx.

Solucgdo

Fazendo f (x) = e* e g'(x) = cos x, obtemos
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_[f’ (x) g(x)dx = jf”“ sen X dx

cujo calculo apresenta as mesmas dificuldades que [ e* cos x dx. Se fizermos f (x) = cos
x e g'(x) = e, o problema é o mesmo. Aparentemente, nao vale a pena aplicar a regra
de integracao por partes.

Mas veja:

@ j e cosxdx = ¢ senx — J e sen x dx.

(I
fg'

Por outro lado,

J e senxdx = ¢ (—cosx) — J e* (—cos x) dx

ou
5 j ¢ senxdx = —e'cosx + J e' cos x dx.
Substituindo @ em @
j e cosxdx=e"senx + e cosx — J e' cos x dx
e, portanto,
2 j e cosxdx=¢e" senx + ¢' cos x
ou seja,

_ 1 .
Je'* cos x dx = Ef’" (sen x + cos x) + k. o

O truque foi ter percebido que, aplicando novamente a regra de integracao por
partes a J ¢" sen x dx, volta-se a J e”* cos x dx.

Muito bem!
EXEMPLO 5. Calcule j cos? x dx.
Solucgdo
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_[cosxcosxdx = Ccosxsenx — j(—senx} sen x dx

=senxcosx + j sen? x dx.
Assim,
2 st 2
cos"xdyr=senxcosx+ | (1l —cos”x)dx

ou

,
2 J cos" xdx=x+senxcosx

e, portanto,

1
J cos® x dx = 5 (x + sen xcos x) + k.
1
Como sen x Cos sen X cOs X = — sen 2x, resulta
7 | |
J-ccrs xdx= —x+ —sen2x+ k.
2 4

EXEMPLO 6. Calcule J sec’ x dx.

Solugdo
1 )
j sec” x dx = J sec x sec” x dx
T T
f 8
=secxtgx — J sec x tg x tg x dx
Assim,

1 2
_[ sec” xdx =secxtgx — J BECX1ip X dx

Como tg® x = sec’ x — 1, resulta
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_[ sec” x dx = sec o x— J- sec x (sec” x — 1) dx
ou
J sec® x dx = secxio x —j sec x dx + j BEC XX
e, portanto,
2 j sec” x dx = sec x tg x + J BBC X 4X
e como
J sec xdx = Inlsecx + tg x|,

resulta

1 1
jsechdx=f5ecxtg,r+ Elnlsecx—l-tg:cl—i-k. i

Vejamos, agora, como fica a regra de integracdo por partes na integral definida
(integral de Riemann). Sejam, entdo, f e g duas fun¢des com derivadas continuas em
[a, b ]; vamos provar que

b ; B b
j f(x)g'(x)dx=| f(x) g(x) ]a = j fi(x) g(x) dx.
il il

De fato, de

fR)g ®)=[f)g® ] -fx)g(x) eml[a,b]

segue

b b b
filx)g'(x)dx = j [ f(x) g(x)]" dx — j f(x) g(x)dx
il il i

ou seja,

b h
f(x) g’ (x)de =] f(x)g(x) ]i = j '(x) g(x) dx.
il il

I
EXEMPLO 7. Calcule J' x In x dx.
1
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Solugdo

t
.[]rlnrdr— f{ﬂrz{ﬂ jfu}q{ﬂdr

Assim,

5 At
r e
J :cln,lrf;":c=lr‘3lnr—l it
l 2 2 2

ou seja,

t
J .rln.rd.r=lf2 Inf—lr‘z—i-l.
1 2 4 4

l

EXEMPLO 8. Calcule .E ———

Solugdo
1 1 1
5 o = X
J arc sen x - 1 dx = [x arc sen x]g — 2 — Fi e o
0 .1 —x=
Y
T T
f &
] 1 : | 1 4
o i 2
|7 — dr=—— [4 —du=—Vul? =—22 +1
D -'\.'I]. - .IE ] "\.'I” 2
N
Assim,
: 1 1 3 3
2’l]‘C‘aEﬂAIfA——d]‘C%En—-F\——]—l A2
0 2 2 2 12 2
ou seja,
: 3
2 alﬂcsen,uix,—i—i-——].
0 12 2
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Exercicios 12.3

1. Calcule.
a) ‘ x e dx b) J X sen x dx
c) ‘ ,rg e dx d) J xInxdx
€) ‘ In x dx n J. .rz In x dx
g) ‘ x 561:2 xdx ) J x(In ,r}g dx
i) J (In .‘(}2 dx i) J x EQ'T dx
)] J & cos x dx ) J 6_2"-1\;:‘11 xdx
n) J X 31'2 dx o) J..‘('j' cos x° dx
r) J e ¥ cos 2xdx q) J % sen x dx

2. a) Verifique que

1 _n n — 2 "
see™ © xilegxd J gee™  * xdx
Ba—:d no—1

Jsec” x dx =

em que n > 1 é um natural.
b) Calcule J sec” x dx.

3. Verifique que, para todo natural n # 0, tem-se

1 n—1 9
a) J sen” x dx = —— sen” ~! x cos x + J sen < x dx
n n
| n—1 P
by | cos™ x dx = — cos” L x sen x + J cos T < x dx.
n n

4. Utilizando o item (a) do Exercicio 3, calcule.
al J 5¢n3 xdx b j :\;:‘.n4 x dx.
5. Calcule j e "sentdr s =0 constante.

6. Verifique que para todo natural n > 1 e todo real s > 0

. 1 _ n ol e
Jfnf’”f#:——T”t’ﬂﬁ‘—J‘f” L g=st g,
5 b
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7. Calcule.

1 2
a) J Xie* dx B) J In x dx
0 l
T

fin X .-J
c) J 2 ¢¥ cos x dx d) J 1€
0 0

it (5 0)

Sejam m e n dois naturais diferentes de zero. Verifique que

! m
= ) de = J Sl a—-pm—1 g
a) J{} n+14J0

1 o
b) J xt =z de = _ mm
0 (m+n+ 1!

9. Verifique que, para todo natural n > 2

'I T

e L

J 2 gen” x dx = 2
0 n 0

10. Verifique que, para todo natural n > 1, tem-se

I] %1
(1—x=)" dx =
a) :

m
2

—9
sen”” < x dx

2 1
! J (1 — x2 yit —1 gy
2n+1

2..” {” }..,
(1 — x2)" dx
2 J (2n 4+ 1)!

11. Suponha que g tenha derivada continua em [0, +oo [e que g (0) = 0. Verifique
que

: X
JD g e di=g(x)e ™ + 5 J{} g(r) e d

12. Suponha f’ continua em [a, b]. Verifique que

b
(b— 8 " (1) dr.
o

13. Suponha f"" continua em [a, b]. Conclua do Exercicio 12 que

FfB=f@+f'@®d—a+

fB=f@+f'(a@d—a+ /(@)

b (b — )2
(b —a)? + J % £ () dt.
o i
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12.4. MUDANCA DE VARIAVEL

Seja f definida num intervalo I. Suponhamos que x = ¢ (u) seja inversivel, com
inversa u = 0 (x), x €I, sendo ¢ e 0 derivaveis.

@® Jf(cp{u)‘jcp’{u)d:.f=F{u)—l—ﬁ:{ufﬂw)

entao,

Jﬂﬂm=meﬂ+k
De fato, de @
F'(u)=f (¢ (W) ¢'(u)
entao,
(FO)N) =F'(0(x)8 (x)
=@ (x)) ¢ (B(x) 8 (x)
= f(x)

pois, (0 (X)) =xe ¢'(8 () 0" (x) = (p (0 () = 1.

Jf{x)cn’,r:?
x=@) ; dx=¢ (u)du
Jf(x) il = Jf(cp{u)‘} o' (1) du

observando que, ap6s calcular a integral indefinida do 2.° membro, deve-se voltar
a variavel x através da inversa de ¢.

EXEMPLO 1. Caleule | x? \[x+1 dx.

Solucgdo
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j X2 1\.-"1 +1de=7?
@ (1)
——
x+l=u=x=u—1;dx=du(e'(u) =1)

1
[ 2 tax=[ @-02Judu=| @ —20+1)u? du

7 5 3
5 3 1 = 7 =
L (¥ oS S TTR RN  B s W B
j{n 2u?2 +u) du = 2 3 + 3 + k
2 2 2
2 7 4 = 2 | 5
=7#u+n —?¢u+n3+?ﬁu+n-+k

ou seja,

— 2
J x2 VX + I dv = — (x + 1]'? =
7

w | =

[ 2
gu+n5+§gu+n3+k =

Observacgdo. A mudanca x + 1 = u?, u > 0, também é interessante; veja que esta
mudanca elimina a raiz do integrando. Faca os calculos adotando esta mudanga.

EXEMPLO 2. Calcule | 11— x? dx

Solugdo
[ =22 ax=2
Como 1 — sen” u = cos” u, a mudanca x = sen u elimina a raiz do integrando.
X =senu (—%{ U< %];dx = cos u du.

Entao,
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.. .-J |I "J
J 1= x4 dx = J "';'] — sen© o cos u du

| 2

= J 4/ COS™ U Cos u du

[ 9 : T

veos<u = lcos ul = cos u, pois, u € }——, —[
22
Assim,

2 2 I ]

W1—=x° dx=| cos® udu= 2 + i cos 2u | du =

1 1 1
u+—sen2u+k=—u+—senucosu+k
4 2 2

1
2

T T .
De x = sen u, —E < i < > segue u = arcsenxe cos y = /1 — x2:logo

f 1 | f ’1
J A1 = x2 dv=—arcsenx+ —x gl—gtdni—1 < xa 1]
2 2
Antes de passarmos ao proximo exemplo, faremos a seguinte observacao: supondo
f integravel em [a, b] e F' = fem [a, b], pelo 1.° Teorema Fundamental do Célculo
b

Gi-:' f (x)dx = F(b)— F(a)
i

Observamos que @ continua valida se supusermos [ integravel em [a, b], F
continua em [a, b] e F' = fem ]a, b[ (verifique). =

l r
EXEMPLO 3. Calculej J=n? de
0 =

Solucgdo

: 1 1 .' . o
Pelo exemplo anterior, F (x) = 5 arc senx + — x 4/1— x2 é uma primitiva de

] — x2 em [0, 1 [. Como F é continua em [0, 1] e f(x) = ] — x2 integravel neste
intervalo, segue da observacdo acima que

[ . . l
J J1— x2 dx={larc senx—i-l;c J1— x* } =

| 1 - , . -
Observacao. E arc sen x + E xX.,1- y2 € uma primitiva de H-'Il — 2 em 1-1, 1
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[(verifique). Cuidado, arc sen x e V11— x2 ndo sdo derivaveisem 1 e —1.

1
No proximo exemplo, vamos calcular novamente J y1— x2 dx utilizando a
0
férmula de mudanga de variavel na integral definida. =

|
EXEMPLO 4. Calculej A e ? i
n '}
Solugdo

l ‘
[ 1= ax=2
0

(x = sen u; dx = cos u du

x=0 ;u=0(sen0=0)

/
G <=t ;u=£t5en£=]]
2 2
Observe que x = g (u) = sen u tem derivada continua em [ 0, % } g(@0)=sen0=0

i e A ern ., .
e g |?‘| = sen 5 = 1. Pelo teorema de mudanca de variavel na integral de
Y !

Riemann
(0 '
Lo 2 2 2 T
J 11— x% dx= J < 4J1—sen® u cos u du = J < 4/cos= u cos u du
0 0 0
logo,
1 B
J J1—x2 dx = J 2 |cos ul| - cos u du.
0 0

T ,
Como u €[ 0, 5 ].cos u > 0; dai | cos u | = cos u.

Assim,

‘i T
g

I [ - A >y ] 1 3
J J1I—x“ dx=]* cos® u du=J~ (——i——cos ZNJn’:..*
(VI 0 0 2 2

ou seja,
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™

1
J A1 = x2 (fx=[l:.f+lsen 211}2 — -
0 2 4 0 4

Observe que ndao houve necessidade de se retornar a variavel x!
Observacado importante. Na mudanca da variavel na integral definida

ah aid
J fi(x) d.r=J flg(u))g'(u)du
il o

a mudanca x = g (u), u € [c, d] ndo precisa ser inversivel, o que precisa € g' ser
continua, g (c)=ae g (d) =b.

A ocorréncia de raiz no integrando é algo muito desagradavel; se perceber uma
mudanca de variavel que a elimine, ndo vacile.

EXEMPLO 5. Indique, em cada caso, qual a mudanca de variavel que elimina a raiz
do integrando.

a) ] + x2 dx b) J‘wm,-'ll — 4x? dx

c) ' hm dx d) J\m dx

e) "x-':l — cos X dx ii Jxl —(x—1D? dx
g) ‘-x.';lr — x2 dx h) J«x:"—xf +4x -3 dx
i) Jxﬁ +2x+2 dx 7 J“E — x% dx
Solugdo

a) J] +x2 dx=1?
Como 1 + tg® 0 = sec’ #, a mudanca x = tg 0 elimina a raiz do integrando.

by [1- 432 ax =

y1—4x? = J1-(2x).
A mudancga 2x =sen tou x = % sen t elimina a raiz do integrando.

&) [5-ax? ax=>
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o

N

T I: II( e
".-:I — '-I-J.z - '\5 ] — Lﬁ]
\

2k 5
— =senfouy= '~ gen t elimina a raiz do integrando.
WO 2
\3
d)x = B tg u

e) J.\;"l —cosx dx="1

2 . 2
CO5 X = COSs =i

b | =

l\J|¢-<

Entao,

1—cosx dx = |, 1—cos2 X +sen? X ax
A \ 2 2

B ,[ 2sen? = dy =12 J isen? = dx
2 \ 2

e, portanto, nenhuma mudanca de variavel é necessaria.
| 2 —_
NDIVI—-(x—1* dx="1

x—1=senuoux=1+senu

resolve o problema.
.'.. : 2 : oy
g2) |V2x—x° dx =1
Primeiro vamos expressar o radicando como uma soma de quadrados:

2xX—-x=—-(xX*-2)=—-(x*-2x+1)+1

ou seja,

2x-x*=1-(x— 1)~

Assim,
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J«\;"Z,r —x2 dx = J‘-\*.';] —(x—1)? dx.
A mudanca x — 1 = sen u resolve o problema.
h) J-w.-';—ﬂ +4x—3 dx =7
X +4x-3=-(x*-4x+3)=—(*-4x+4)+1
ou seja,

X +4x-3=1-(x-2)

A mudanca de variavel x — 2 = sen u resolve o problema.

D [Vt 2x 2 de= [+ @+ 12 dxe=2

x+t1l=tgu
resolve o problema.
, . ='] / 12
) J--‘x—r dx=J1.’—— xX——| dx=7?
7?7 0 2 *"2)
1 1
X ——=—senu
2 2

resolve o problema. ®

EXEMPLO 6. Calcule [ |1+ 27 dx.

Solucgdo
2 ™ ™
X =tgu,dx = sec” udu [ ——<u< —]
2 2
{ 2 [ a 2 2
j-x.'] + x° dx= j-x\.'sec:“ u sec” udu = | |seculsec” udu.
: ™ ™
| sec u | = sec u, pois, sec u = 0 ( — s };
2 2
assim,

J-%-"] + x2 dx = Jsecﬁ i dii.
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Pelo Exemplo 6 da secdo anterior,

1
Jsec-j’ udu = E[secutgu+ln|secu+tgul]+ﬁ:.

Voltemos a variavel x:

x=tgu;1+x*=sec’u

como sec u > 0, sec = -\,"1 + J.'E

Entao,
.- 1 ; .'
J};‘] + x2 dx = 5 [,r 1+ ¥2 + In(x+ 1+ x2 ):| + k.
1
EXEMPLO 7. Calculej J1+ x2 dx.
0
Solugdo
1 :
j J1+x2 dx =2
0’
xX=tgu s dx = sec? u du
x=10 u=0(tg0=0)
a il & )
x=1 ;u=—Ltg—=1J
4 4
3 = L
Y1+ x2 dx = er J1+ tg? u sec? udu=
40 0
ud | =
= | 4 sec udu= —[sec utgu + In(secu+tg N‘}:|4
A > : 4n
assim,

=1

)

1 +x2 dx = '; [+2 +In (42 + D]
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EXEMPLO 8. Calcule a area do circulo de raio r.

Solugdo

" o 2

drea=4 | fr°—x“ dx

0
i
gl 1t

\j‘ x2+ yz = r?

Temos

x=rsenu dx=rcosudu
<Jc=li] cu=10
i
xX=r U= —
2
o T
J -gu-'r2 —x2 dx= rjf il sen® u rcos u du =
0 0
w w
[~ b g 2 | 1
=yr- |coscudu=r —+ —cos 2u | du
0 0 2 2
ou seja,

A ) 2| 1 1
J"u."" —xc dx=r [—u—i——senZu} =
0 2 4

Portanto,
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F o

drea = 4 \."rz — x2 dx = 7. m
0
Exercicios 12.4
1. Calcule.
[ 1
i) -1.","] — 4x2 dx b J ——dx
. ] J4—x2
: 1
0| T & d) J — dx
T a4+ i+ 22
[ X ;
eli) = — dx h J-x-'_’a —4x? dx
".,..'] =X X
. Ry
b N y —
o) T & m [x21-x? ax
".III'I _— .-1|.H
‘ I 7 [ 9
. — dx . | 2
1) | N -uhf']—i-.rj I} Jyg—{x—l} dx
D [y - 4x? dx m) [\=2? + 20+ 2 dx
[ y. I ;
n) J.ﬂ.ll,'_,'t'” + 2x 4+ 3 dx ) J ﬁ dx
X 1.'] +x*

2. Calcule a 4rea do conjunto de todos os (x, y) tais que 4x* + y* < 1.

2 2
Calcule a area do conjunto de todos os (x, y) tais que ‘_j + % =]1.(@a>0e

a< b=
b>0.)
4. Calcule.
a) J..rj (x + I]lmd,r b J..\c2 '\."I*" —1 dx
1 2
c) J — il d) J ———— dx
1+ +/x 1+ +/x)
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J‘ x+ 2
LI PR
g) J.I —e* d
x2 41
:}J

'l._'l.”

[ J.,r arc sen x dx

n) J arc tg \/x dx

x—1
P2
,,?.-:z,r + 1
h) J.";'I] + Jx dx

1
) J —dx
/ x2 +2x+5

m) J.,r (arc tg .‘(}2 dx

arc tg et
) J g dx

5. Sejam m e n constantes ndo nulas dadas. Verifique que

mu + n
J—a’u——ln{l+u )+ narctgu + k.
14+ u< 2

6. Com uma conveniente mudanga de variavel, transforme a integral dada numa

+
do tipo J M du (m e n constantes) e calcule.
1+ u?

o g =1

a) ‘—,J dx b) J ‘—,, dx
e xs A —H*
( x:+:10 th S

) ==————= d) J ddx
il s o £ X2+ x+1
( 2x 1 %

e) | ——dx J
J x2 +4x+5 2 9+ x2

7. Calcule a &rea do conjunto de todos (x, y) tais que x* + 2y* <3 e y > x°.

8. Calcule a drea do conjunto de todos (x, y) tais que y = /1 + v2 e 2 +y<2

9. Indique uma mudanca de variavel que elimine a raiz do integrando.
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- - -
a) |9~ x% dx by | yx* =9 dx
o) |A/x% +9 ax d) | x2 \1-x2 dx
e) .,_‘ll-llj — 4__1,'2 dx ﬂ J.-\ul:4_.'|.'2 —3 dx
i‘ IS— - __'Il.
g) | /4x2 3 ds h) | ﬁ‘i"
J dx J dx
DY 5= “
0 J,r "-;"Y — 1 dx m) J.\\.'] + et dx
[ 9 3 e
i) J.‘f X hkax k3 dx a) J."f'l ++fx dx
12.5.
INTEGRAIS INDEFINIDAS DO TIPO p (.1“) dx
(x —a) (x = p)
ol . :
Para calcular J dx, vamos precisar do seguinte teorema.
e~ =]

Teorema. Sejam «a, 3, m e n reais dados, com « # 3. Entdo existem constantes A

mx + n _ A 4 B _
(== 0 X=&" X
Y +
b) mx f:-;: A N B .
(X —a) % (X —a)
Demonstragdo

A ,_B _(A+B)x—AB—oB
x—a x—p (x—a)(x—B)

Basta entdao mostrar que existem A e B tais que

a)
[A-I—B:m

|Ba+aB=—»

Este sistema admite solucao tnica dada por
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am+ n m+n
A = _ @ B — —B—
a—pB a—p
xm +n MY — Mo ma + n mi(x — a) moa + n
b) = + = + -

(x — a)? B (x —a) (x — a)? (x — a)? (x — a)~
Tomando-se, entdio, A=me B=ma + n
mx + n A B

5 T
(X —)” X — o

(x — a)? |

Observe que em cada fracdo que ocorre no teorema acima o grau do numerador é
estritamente menor que o grau do denominador.
Vejamos, agora, como calcular

J ) dx, coma # 3,
(e—a)(x = H)

em que P (x) é um polinémio. Se o grau de P for estritamente menor que o grau do
denominador (grau de P < 2) pelo item (a) do teorema

P tx) A + B

(x—a) (x—8) - Xy - X

e, assim,

,[ ) dx =Alnlx —al+Blnlx— Bl +k.
Ee—a) (X =)

Se o grau de P for maior ou igual ao do denominador, precisamos antes “extrair 0s
inteiros”.

P (x) 00+ R (x)
[t X ) (Xt} (X =ef)

em que Q (x) e R (x) sdo, respectivamente, o quociente e o resto da divisdao de P (x) por
(x—a) (x = p).

Observe que o grau de R é estritamente menor que o grau do denominador.

Ndo se esquega: vocé so pode aplicar os resultados do teorema anterior quando o grau
do numerador for estritamente menor que o do denominador. Se o grau do numerador
for maior ou igual ao do denominador, primeiro “extraia os inteiros”.

" x+ 3

EXEMPLO 1. CalculeJ T2
AT — aX ya
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Solugdo

X*-3x+2=x-1)(x—-2).

O grau do numerador é menor que o do denominador. Pelo item (a) do teorema,
existem constantes A e B tais que

x+3 A+B

_t3—3,r+'2:,r—] _r—2'

Ja sabemos que A e B existem; o problema €é calcula-los. Para todo x, devemos ter
x+3=AK-2)+B((x-1).
Fazendo x =1
4=A(1-2)ouA=-4.
Fazendo x = 2
5=B(2-1)ouB=5.

Assim,

qu;gdx=j = dx+j D dr=—dlnlx—11+5Inlx—21+k
x==3x42

el s S

ou seja,
x+3
[ == dx=—41nlx—11+5Inlx — 21+ k. 0
" e s A
EXEMPLO 2. Caleule [ T
b s

Solugdo

O grau do numerador é igual ao do denominador. Primeiro precisamos extrair os
inteiros.

x: +0x+2 W
—x*+3x—2 1
3x

assim,
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Vamos, agora, determinar A e B tais que

3x A+B

,\:3—31-!—'2:1—] :c—'2'

3x=Ax-2)+B((x-1).

Fazendo x = 1, obtemos A = —3. Fazendo x = 2, obtemos B = 6. Assim,

3; -3 6
J - ' dx=J dx-l—J de=-3Inlx—11+6Ilnlx—2L
s e b 2t | g
Portanto,
x2 +2
J = gx=x—3hmlx—11+6lnlx =21+ £k B
x4 —3x+12
P (x) e .
Para calcular J rEg ] dx, é mais interessante fazer a mudanca de variavel u =
X =)

x — a do que utilizar o item (b) do teorema.

x3+2

EXEMPLO 3. Calcule J e
(x —1)°

Solucgdo

u=x—-1lex=u+1;dx=du

x3 + i+ 13 +
J‘(r 2 m::J‘{H 1) Zd”

x—1)2 u?

9 .
T (B e B T By 3 3
=J : 5 a’u=J[:..*+3+—+ ﬂ,}du.
u= u ouc

Assim,

3
dx=—+3u+3Inlul—=—+%

J‘ x3 42 1>
(x —1)2 2 u
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ou

3, — 12
j Tt 2 de=E" D gy smip=1=_°
(x— 1) 2 x—1
EXEMPLO 4. Calculej dx.
COS X
Solugdo
| 5 >
J‘ dr — J‘ L(‘ri)( dx — J‘ CcDS 'z =
CcOoS X COS< X 1 —senc x
u = sen x; du = cos x dx.
Entao
1
J dx = J — dut
COS X - -
De
1 : :l | N ]
] —u~ 21 1—u 14+ u
resulta
| 1
[——5du=—[-min—u+mn+al]
1 — u~ 2
e, portanto,
+ s )
J 1 dx = l In ﬂ + k.
CcOSs X 2 1 —sen x

Por outro lado

1+sen x (1+sen x)?
= = (sec x + tg x)2,

1
1—sen x cOs” X

entao

J : dx =Inlsec x + tg x|+ £
€08 X
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Ou seja,

jsec,xd,x=ln secx+tgx [+k =
Exercicios 12.5
Calcule.
1 X
1 J dx 2 v
r2—4 . xz—S,r-l-ﬁ
X 2x +1
3. dx 4 dx
o 12 — 4 J 1'2 _I
5x° +1 r x+3
5 k dx 6 : dx
. v — 1 J (x —1)*
2 4+3x+1 x% +1
7 : : v 8. i T v
S s b Jo(x=2)
7
¥+ 3 x4+ x+1
9, J ~T° ax 0. | 2027 &
X< —x v X< —2x
2+ x+1 s B+ x+1
11. J —_——dx 12, | ——————uix
2 — 9% 41 Y x¢ —4x+3
1 Fox+ 1
13, J . 4. | 2
x< +5 J x4+ 9
7
x< +3 i 1
5. | S5 dx 6. | ———
x=< —9 L e

12.6. PRIMITIVAS DE FUNCOES RACIONAIS COM DENOMINADORES DO TIPO (x — a) (x

~B) (x-vy)

A demonstracao do proximo teorema é deixada para o final da secao.

Teorema. Sejam a, 3, y, m, n, p reais dados com a, 3, y distintos entre si. Entao
existem constantes A, B, C tais que

mx2 + nx + p A 4 B ” |
(F=~ajlex—=PiE—=y XT—a F—3 =%

B ju :
mx-+nmnx+p A i B n c

(x—a)x—pB)?2 x—a x-p {x—Bﬁz.
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Observe que, em cada fracao que ocorre no teorema acima, o grau do numerador é
estritamente menor que o do denominador.

xt+2x+1

3

= dx.
x? —x-—2x

EXEMPLO 1. Calcule J
Solugdo

O grau do numerador é maior que o do denominador. Primeiro devemos “extrair os
inteiros”.

4 3 2
x4+Dx%+Dxﬂ+2x+l o SEmny S,
=Ly o dse TS

x4+ 2x“+2x+1

—x3 4+ x2 +2x
3x2 +4x + 1
assim,
xt+2x+1 3x2 + 4x + 1
3 ~ =Xt s = :
x*—x=—2x X —x=—2x
Temos

X=X -2x=x(x-x-2)=x(x+1)(x—-2).

3x2 + 4x + 1 _A B C
rlxrlx=2Y X% x4l x=2Z

3x*+4x+1=A(x+1)(x—2)+Bx(x— 2) + Cx(x + 1).

Fazendox=0,x=—1ex=2,obtemosA=—%‘B=0ef=?Assnn,
\ 12
XtT+2x+
J 1; %r 1(?’:{=J x+1-2 46 |a=
X XS — 2% X X2
e e L B
2 2 6
ou seja,
4 L 2, 4 2 ;
j LT = tx— S+ L nix - 21+ k. o
L i - Z 2 6
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dx.

2x + 1
3

EXEMPLO 2. Calcule J 5
x'—x“—x+1

Solugdo

1 é raiz de x> — x> — x + 1. Entdo,

¥ —x2—x+1 x —1
—x3 + x2 Iﬁ
—x+ 1
5=
0

C-xX-x+1=(x-1D-1)=x-1)7°(x+1).

2x+1 A B C
— = + + =
x? —x<=—x+1 x+1 X=1 ° fe=1)"

2x+1=A(x-1P?+Bx+1)(x-1)+C(x+1).

3
Fazendox=1,3=2Cou(C = E

1

Fazendox=-1,-1=4Aou A = —I.
1 3 1
Fazendox=0,1= —— — B+ — ou B= —.
4 2 4
Assim,

+ 3
J - 2:2 : ffx=—]—J ] dx-l—lj : dx—i—“—J%dx
S S Ao S | 4.4 ‘x4 4J x—1 2 kxS

ou seja,

X+ 3
J 3 22 1 ﬂ"ff=—llnl,r+]I+l1n|x—1|_—+k_ -
B —xr—x+1 7 2 T

Antes de provar o teorema enunciado no inicio da se¢ao, vamos mostrar que se m,
n, p e a sao reais dados, entdo existem reais m,, n, e p, tais que

mx*+nx+p=m; (x-a)’+n, (x—a)+p,.

De fato, fazendo x = (x — a) +a vem

460



m:cﬁ—I—n,r—l-p=m[(.r—a‘j+a]2+ﬁ[(:c—a)+a]>+p
=m(x—a)t 2am+n)(x—a) +ma” +na+p
=m@x—a) +n(x— a)+ p

em que my =m, n; =2am+nep; =ma; + na + p.
A seguir, faremos a demonstracao do teorema mencionado acima.

1) Pelo que vimos na secdo anterior, existem constantes A, e B; tais que
1 . 1 1
Z—a)x—Bx—y] E—a)x—pB) x—Y

_| 4 n B | 1
X—m Xl Xy

B Ay n By |
X—a)x—=y] RE=Hix—%)

Segue que existem constantes A,, B,, A;, B, tais que

A 5 By 4 , B . A, B

(X —a) (x—%) (x—B‘j(x—ﬂ:x—af Ty x—'}».

Assim,

1 Ay + By + Cy

{.r—a}{x—B}{.r—}f}_x—af x—f8 x—v

em que A, = A,, B, =A; e C, = B, + B;. Temos, agora,

mx2 + nx + p _my (x— a) 4+ (x—a)+ p
Cx~=ia) (=) Lxi=%) [ it o - 1 6 el )
m (X — @) H| Pl
+ +

B (x=—Bix—y) x—Bix—y) (x—a)x—PBx— |
Segue que existem constantes A, B, C (por qué?) tais que

mx® + nx + p A B C
= + + :
x—a)ix—Bx-y) x—a x—8 x—vy
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1 1

1

(x—a)(x—PB)F (x—a)(x—p) x—B
:{A]_l_ﬂl}]: A +B]q_
e el e fr—mmpie—g)y (=Bt
Assim, existem constantes A,, B,, C, tais que
1 o Ay 4 B> + G _
(=) {x =8 =g X  [x—=0)

Deixamos a seu cargo terminar a demonstracao deste item.

Exercicios 12.6

1. Calcule.
B3 et + 1
a) a : dx b) J i dx
Jo(x = 1) r{x—E}{tJr’ﬂ}
I :
x4+ x4+
c) % dx d) J dx
. Xk H—I—Q}H—I}“
} x+3 d h J‘ x+5
e v x
J 3 —2x2 —x472 ' 3 _ 4x2 + 43
2 5 5 m
2 +1 3+
53]' ‘— dx h) J : dx
(x — 2} x- — 4dx
7
e o
:}J dx f]lj 3 : = dx
3 —x2 —2x Y —x< —2x
2. a) Determine A, B, C, D tais que
x—3 A B C D
3 5 = T 5+
=10 (x +32)" x—1 (x —1)= x+ 2 (x + 2)=
x—3
b) Calculej ; 5 dx.
(x—D*° (x+ 2)°
3. Calcule.
+ 1 2
a) J ai dx b J 5 dx
(x —I} “ix4+2)
}J‘ x—1 . ﬂJ‘ 3 3
c ——dx i e
x2 {.1r+l}2 {.‘{'2—”{1"——“

12.7. PRIMITIVAS DE FUNCOES RACIONAIS CUJOS DENOMINADORES APRESENTAM

FATORES IRREDUTIVEIS DO 2.° GRAU
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X
ax2 +bx + ¢

Vamos mostrar, através de exemplos, como calcular J quando A =

b?> — 4ac < 0.

2x +
EXEMPLO 1. Calculej 2l e

x“+2x+2

Solugdo

Primeiro vamos escrever o denominador como soma de quadrados:

XH2X+2=(+2x+1D+1=(x+1)y>+1.

Assim,

2x+1 2x+1
J 5 d,r=J—jd,r.
x4+ 2x+2 1+ (x + 1)+

Facamos, agora, a mudanca de variavel
u=x+1,du=dx.

Entao,

2x + — 1)+ 2t —
J 12)( ] (fI=J afu n,, ]dIJ=J ZH,J du+J ],, du =
X2 Xl 1+ u- L4512 1+ u-

= In (1 +u2‘}—arctgu+k

ou seja,

2x+1 ’)
J = dx=In{x"+2x+ 2) —arctg{x+ 1)+ Lk i
X2

x242x+3
x2 +4x+13

EXEMPLO 2. Calcule J

Solucgdo

Como o grau do numerador é igual ao do denominador, primeiro vamos extrair 0s
inteiros.

_¥3+2I+ 3 |I2+4I+]3
e b il [ ]
—-2x—10
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assim,

X2 +2x+3 2x +10
J 5 dx=J 1— 5 dx
x“+4x+13 x*+4x+13

ou

J x2 +2x+3 4 _r_J 2x + 10
x2 +4x +13 x2 +4x +13

Dex* +4x+13=x*+4x +4+9 = (x + 2)* + 3%, segue

J 2x + 10 d _J 2x + 10
2+ 4x+13 (x+2)% +32

Fazendo x + 2 = 3u, dx = 3du,

J‘ Alr-i—][] dx=J2{3:..*:2)—!-][}3({:;:_2"‘ u+1
X< dx4:13 Ou- +9

=J ,;2:"‘ du+J ,,2 du
e +1 + 1

HL

ou seja,
2x + 10
J - d:c=ln(1+u2)+23rctgu+k.
X< +dx 413

Assim,

¥2+2x+3 ¥2 +4x+13 (x+2)
J - dx=x—In — 2arctg + K. G|

¥ dax13 9 L. & )

Vejamos, agora, como calcular integrais indefinidas do tipo

Prx)
J - dx
(x —a) (ax= + bx + ©)

em que P é um polinémio A = b*> — 4ac < 0.
Para tal, vamos precisar do

Teorema. Sejam m, n, p, a, b, ¢ e a niimeros reais dados tais que A = b*> — 4ac <
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0. Entdo existem constantes A, B, D tais que

mx2 + nx + 2 A " Bx+ D

(x — @) (ax? + bx + ¢) T x—a axl+bx+c

Demonstragdo

A . Bx+D _(aA+ B) x2 + (bA — aB + D) x+(cA—aD)
Y—a ax?+bx+c (% =) (axy +hx+c)

Basta, entao, mostrar que existem A, B, D tais que

al+ B =m
<bA—aB+ D =n
cA —aD = p.

O determinante do sistema é

a 1 0
b —a 1 |=aa?+ba+c#0,
c 0 —o

ax’> + bx + ¢ ndo admite raiz real. O sistema acima admite, entdo, uma unica
solucdo. =

5
EXEMPLO 3. Calcule J bl il NPT

x? =8
Solugdo

O grau do numerador é maior que o do denominador; vamos entdo extrair os
inteiros:

x3+0x* +0x3+0x2+ x+1 3-8
e + 8x2 x2
8x2 + x+1

Y+ x+1 a 8x2 4 x+1
—————=x%+ . .
x° —8 x° —8

Assim,
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Pelo teorema existem A, B, C tais que

8x2 + x +1 A Bx+C
3 == B T '
x° —8 x—2 x> +2x+4

82 +x+1=AX*+2x+4)+(Bx+C) (x - 2).

Fazendox=2,35=12AouA=%.
16
Fazend0x=0,1=4A—2CouC=T-
61
Fazendox=1,1O=7A—B—C0uB=E-
Assim,
6]_{4_16
x2+x+ 3 e s
[Etatl, 30 1 .1 "5
x” —8 124 =12 xrA2x+4
35 x + 64
=2 mix-2i+ [ T
12 12 x=+2x+ 4

Precisamos, agora, calcular

dx.

J‘ 61x + 64
x2+2x+4

Temos
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61x + 64 61x + 64 6l(u—1)+64
J ) d = J 5 d__ =J = d”.
x%+2x+4 (A1) +3 u* +3
i 1
— 61 j LB SR j LI
= +3 uc +3
61 . 3 u
=—1In(u- +3)+ — arc te —
2 J3 BT
61 3 x+1
= — In(x? +2x+4)+ — arc tg ——
2 e S 156
Conclusdo
S+ x+
J‘ X ; e o ol .
x—8
3 35 \3 i
=X+ -2+ 2@ + 20 +4) + 22 are tg — L 4k
3 12 24 12 AJ5
O
Exercicios 12.7
Calcule.
o 4x2 +17x +13 . 42
]' : B : d.-"u' 2. 1_. s = ;_i‘(
Jo(x—1)(x° + 6x +10) L i s e b
4x + 1 : dx + 1
3. 5 - dx 4. q‘—a’x
Joxs +6x4+12 Jo x4+ 6x+8
2 p ]
x4+ 5x+4 s Iyt 44
3. ’am 3 - dx 6. z—ﬁr_r
o ox?Fxc+x—3 J 3 _3
i ,rg + 412 + 6x + 1 i .r4 + 2.?2 —8x+ 4
?' 3 b ] "i"l' 8 ] ,,i\'
s x° +axvdx—=3 f U

12.8. INTEGRAIS DE PRODUTOS DE SENO E COSSENO

Nesta secdo serdo utilizadas as formulas a seguir, cuja verificacdo deixamos a seu
cargo.
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sen a cos b = % [sen(a + b) + sen(a — b)]
cos a cos b= % [cos(a + b) + cos(a — b)]

sen a sen b = % [cos(a — b) — cos(a + b)]

EXEMPLO 1. Calcule Jsen 3x cos 2xdx.

Solugdo

Pela primeira férmula acima (a = 3x e b = 2x),

1
[sen(3x + 2x)+ sen(3x — 2x)] = :{‘sen 5x +sen x).

&

ta | —

sen 3xcos 2x =
Dai

Jsen 3x cos 2xdx =%J{5en Sx+senx)dx= —%cos Bop— %cos x+k.

EXEMPLO 2. Calcule Jcasz xdx.

Solugdo

cos® x = cos x cos x. Pela segunda férmula acima (a = x e b = x),

cos 2x +—-
2

" 1 1 1
COS” X = E[ms{x +x)+cos(x—x)]= E{CDS 2x+ cos0) =a

Dai,
- ] ] | X
JCDS” xdx = J —cos2x+—|dx=—sen2x+—+k&k.
2 2 4 2
EXEMPLO 3. Calcule Jsen 3x sen 5x dr.

Solucgdo

sen 3x sen Sx =%[c05{3:c —3x)—cos(3x+ 5x)] =%[c05{— 2x)—cos8x].
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Como cos(—2x) = cos 2x, pois o cosseno é fungao par, resulta

sen 2x _sen 8x
4 16

+ k. o

Jsen 3xsen Sx dx= %J[ms 2x—cos 8x]dx =

EXEMPLO 4. Calcule J‘s;enji xdx.

Solugdo
De
1 1 cos2x
sen x sen x =—[cos(x — x)—cos(x + x)|=——
2 2 2
segue
7 senx senxcos2x senx sen3x+sen(—x)
sen” x = = = — -
2 2 2 4
Como o seno é fungdo impar, sen(—x) = —sen x, e, portanto,
3 3senx sen3x
sen” x = 7 :
4 4
Logo,
—3cosXx . coE3X
Jsen3 xdx = : + - ol |

i

EXEMPLO 5. Calcule J COS 71X cos mxdx, cos nx cos mxdx, sendo m e n naturais
-7

nao nulos.

Solucgdo

1
COS HIX COS IHX = E[cos(ﬂ + m)x + cos(n— m)x].

1.°CASO:n=m

T | 1
J COS AX cos mxdx = — J [cos 2nx +1]dx = —[
2 - 2

T
sen 2nx
sen2nx }

—iT —r

2n

2° CASO:n#Zm
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T 1| sen(n+m)x  sen(n—m)x
COs 11X cos mxdx = — + = (.
- 2 n+m n—m S
Conclusao:
T 2 e
T senp=—m
j COs nY COs H?J['d.lf ZT[ i |

e |10 sen¥Fm

Exercicios 12.8

Calcule.

- -

i) J sen 7x cos 2xdx b) J sen 3x sen Sxdy

c) | cos 2x cos xdx d) J Ccos X sen 2xdx

e) J sen nx cos mxdy, sendo m e n naturais nao nulos.
h J sen x sen 2x sen 3xdxy g) J C0s X cos 2x cos 3xdy

Calcule J sen nx cos mxdx, sendo m e n naturais nao nulos.
—x

T
Calcule J sen nx sen mxdy, sendo m e n naturais nao nulos.
—x

12.9. INTEGRAIS DE POTENCIAS DE SENO E COSSENO. FORMULAS DE RECORRENCIA

Inicialmente, vamos recordar as formulas

cos 2x o
- e COs“Xx=—

sen? x=l —
2 2 2 2

v - 2 2
JSE n for impar, facau=cos xesen~ x=1—cos“ x

| _ cos 2x

Jsen” xdx =174 5
¥ " § = —
Se n for par, facasen” x

2 2

Se n for impar, faga u =sen x e cos® x =1—sen? x
1  cos2x
Se n for par, faga cos? x = 3 + ==

Jcas” xdx ="

EXEMPLO 1. Calcule | cos? xdx.

-

Solucgdo
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7 )
co0s” xdx = | cos< x cos xdx.
‘-—-.Y.-_r'
atl

Fazendo u = sen x e, portanto, du = cos xdx, resulta

. 3
Jc053 xdx = J(] — sen? :c)cos xdx = J(l - :..*z)du =i — i + k.
- 3

Logo,

SEI]?' X

+ k. ]

JC053 xdx =senx —

EXEMPLO 2. Calcule Jsen3 3x dx.
Solugdo
Jsen3 Ixdx= Jsenﬁ 3x sen 3xdx.

A mudanca de variavel u = cos 3x implica du = —3 sen 3xdx. Temos, entao,

-1 ~1 3)  —cos3x | cos33
Jsen-j’ 3,rdx=TJ(_l—:.fz)cfu= 2 [”_u J= LT 2 g X—i—ﬁ:_ n

EXEMPLO 3. Calcule Jserﬁ xdx.

2 Py . 2 :
Jserﬁ IdI=J(5&ﬂE x_) dx =“%— Lozz"‘f] dx %J(l — 2 cos 2x + cos? ZI)dx.

1 cos 4x
+

De cos® cos2 2x = — _resulta

Jsenj' xdx = o Hi — 2 cog2x + CDSZLH ]dx = %(%r_ sen 2x + sen;x ] + k.

Portanto,

3 §
Jsenjr xdx="—— A2 + et + k. ]
8 4 32

Para o calculo das integrais Jsen” xdx e Jms” xdx, comn = 5, recomendamos
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utilizar as formulas de recorréncia que serao estabelecidas no préximo exemplo.

EXEMPLO 4. Seja n um nimero natural, com n > 2. Mostre que

| n—1 5
a) Jsen” xdx=——sen" ! xcosx+ Jsen”‘* xdx.
n n
H I n—1 n—1 n—2
b) | cos” xdx = —cos xsenx+ 4 R Y b
n n
Solugdo
a) Vamos integrar por partes.
Jsen” Xdx = Jsen”‘l xsen xdx =—sen” ! xcosx — J(n = l):?.o:n”_2 X ¢os xX(—cos x)dx
“—“\“,—_‘“‘_’Wr__'l
dai T 8

1

i pitiln )
Jsen” xdx=—sen™ " xcosx+(n— ])Jsen” < x(1—sen” x)dx

ou seja,
Jsen” xdx=—sen" ! xcosx+(n—1) J sen2 xdx —(n—1) Jsen” xdx.

Passando para o primeiro membro o ultimo termo e somando, obtemos

= iy |
f?JSEﬂ” xdx=—sen" ! xcos x+ (n— ]‘jjsen” = xdx

e, portanto,

1 n—1
Jsen” xdvy=——sen" ! xcosx+
n n

L |
Jsen” < xdx.

b) Deixamos a cargo do leitor. =

EXEMPLO 5. Calcule jmsf‘ xdx.

Solucgdo

Pela férmula de recorréncia, temos

1 ; 4
JCDSS xdx = 3 cos* xsenx +— Jc053 xdx,
5

2
JCDSB xdx = — cos? x sen x + ? Jms xdx.

A
3
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Como Jms xdx = sen x, resulta

1 4 8
Jmss xdx=— c054 xsen x -+ E «::052 Xsen x + E sen x + k. [ |

Vejamos, agora, como calcular integrais de produtos de poténcias de seno e
cosseno. Sejam m e n numeros naturais.

J sen” x cos™ xdx =7

Se n for impar, faca u = cos x.
Se m for impar, faca u = sen x.
Se m e n forem pares ndo nulos, faca sen® x = 1 — cos® x

ou cos® x = 1 — sen® x e utilize as férmulas de recorréncia acima.

N ] cos 2x 1 Ccos 2x
Ou entdo, faca sen x=————"" ecosl x=—+ 2",
2 2 2 2

EXEMPLO 6. Calcule Jsen3 3x cos® 3 xdx.

Solugdo

dz _

Inicialmente, vamos fazer a mudanca de variavel z = 3x e, portanto, dx = ;

Segue que

1 -
Jsen:% 3x cos” 3 xdx ?Jsen-" zcos? zdz.
Vamos, entdo, ao calculo de Jsen 3 7 cos? zd7. Como ambos os expoentes sao

impares, podemos escolher a mudanca de variavel u = cos z ou u = sen z. Vamos
escolher a segunda.

3 o)
sen- 7 cos< z cos zdz
H,_-'
du

Escolhendo u = sen z, du = cos zdz. Lembrando que cos® z = 1 — sen? z, vem

47 sen

6 4 6

4 w5 sen

6 -
2 2 i .
Jsen3 Zcos*- zdz = Ju-‘(l —us)du= g - =
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Portanto,

]
Jsen3 3x cos 3 xdx = ?{

Sen - ax . 531]6._,1':|+k.

EXEMPLO 7. Calcule Jsenz x cos? xdx.

Solugdo
1.° PROCESSO
Jsenf x cos? xdx = J[l ,  COSZZ }[l L Cos2x }dx
2 2 2 2
dai

2 ! I ¢(1  cosdx)
Jsen“ x cos? xdx = —J{l — cos? 21“}&‘{=—“—- = de
% 2 2

e, portanto,

Jsenf x cos? xdx = l(i_ sen 4x
41\ 2 8

]+k.

2. PROCESSO

Lembrando que sen 2x = 2 sen x cos X e, portanto, sen x cos X = sen 2x, temos

ta | —

J‘sen2 xcos? xdx=%Jsen3 2m’x=%“ salhe J ] (X o 45{]_,_ k.

l - dx=—
2 2 , 8
3.° PROCESSO

Fazendo sen” x = 1 — cos? x, vem
1 o) A /
Jserr Xcos< xdx = JCDS” xdx — Jcmﬁ xdx.

Pela férmula de recorréncia,
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COS X sen X IJ‘ﬁ,x:senh_'_x
4 2

Jcosﬁ xdx=— "+
2 2

; 1 3
Jmsj' xdx= E cos® xsen x + I Jcasz xdx=

7
B 3s 3
COS8 Y'EEﬂx_i_ qenlr_'__'c_

4 16 8

Subtraindo membro a membro as duas ultimas igualdades, resulta

sen2x  cOs- xsen x
16 4

X
JSE[‘IEXCDSE xdx= +§+k. ]

EXEMPLO 8. Calcule Jmsz Tx sen xdx.

Solugdo

Aqui a melhor alternativa é proceder como na sec¢dao anterior. Temos

Jcosﬁ Txsen xdx = % J(l + cos 14 x)sen xdx = % Jsen xdx + % J sen xcos 14dxdx.

De sen x cos 14x = %[sen 15x + sen(— 13:{]1] = %{sen 15x —sen 13x), segue

—cosx cosldx . coslix
Jcasz 7x sen xdx = - + + k. E
2 60 52
Exercicios 12.9
1. Calcule.

e o . :
a) | cos= Sxdx by | sen x cos= xdx

[ e [ o
c¢) | cos xsen™ xdy d) | sen 2x cos= 2xdy
e) sen® x cos* xdx 1 cosZ 2x sen? 2xdx
g) sen? 2x cos? 3xdx h) Jcos x cos? 4xdx

2. Sejaf(x) uma fungdo continua.

a) Mostre que a mudanca de variavel u = sen x transforma a integral

Jf(sen X)cos xdx em J.f (et ).

b) Mostre que a mudanca de variavel u = cos x transforma
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Jfl[ms x)sen xdx em —J flu)du.

3. Utilizando o Exercicio 2, calcule.

a) | cosxd/senx dx b) |cos? x(1+ \/sen x )dx
. . 3
sen x sen” x
¢) |—=—dx d) dx
J cos? x J cos x
cos> x Cos x
¢) J o b J—,, dx
sen’ X 1+ sen” x

12.10. INTEGRAIS DE POTENCIAS DE TANGENTE E SECANTE. FORMULAS DE
RECORRENCIA

Inicialmente vamos relembrar as seguintes férmulas:

1. | sec xdx=In|secx+tg x|k

2. | tg xdx = —In|cos x|+ k

3. | sectxdx=tg x+k

4, ‘tgz,rrf,t=stec3 x—1)dx=tgx—x+k

ahit1

5. | tg” xsec2xdx=—_—"+k(n#—1)
. n+1
. L+l

6. | sec” xsecxtg:cd:c=T+k(ﬁ¢—l‘}
. n

Para o calculo de integrais de poténcias de tangente e de secante, com expoente
natural n, n > 2, utilizam-se as seguintes formulas de recorréncia:

pelt =1y
g—]1 _J tg”_j xdx (Exemplo 3)

f

1 th” xidx =

-5
gecl “xtgx A2
+

2. Jsec” xdx = Jsac”_z xdx (Exemplo 7)

n—1 n—1

EXEMPLO 1. Calcule th-’* xdx.
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Solugdo
1. PROCESSO

th:% xdx = th x(sec? x—1)dx= th x sec? xdx — th xdx
portanto,

Ly |
o 18, In|cos x| + k.

2. PROCESSO

3

)
sen< x sen X
Jt o3 xdx =J dx.
cos” X

Fazendo u = cos x e, portanto, du = —sen xdx, vem

— g2 { -
Jt33 xdx = —J 1 ,J” =—“u‘-" —l](m= ],, +In|u|+k.
u= u 2

Portanto,

i)
BEC* X
th:% xdx = + In

cos x|+ k.

) )
(Observe que SECT X difere de 187X por uma constante!) ®
; 2

EXEMPLO 2. Calcule th4 xdb.

Solugdo
thjf xdx = thf x(sec? x—1)dx= thf xsec? xdx — thf xdx.
Segue do formulario acima

; tg?
thj' xd:c=%— (lzx— x)-Fk |

No proximo exemplo, estabeleceremos a formula de recorréncia para o calculo de
integrais de poténcias de tangente.

EXEMPLO 3. Sendo n um ndmero natural, n > 2, mostre que
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ten—1 y
th” xdx=-2_%

= th”_f xdx.
n—1

Solugdo
th” xdx = th”_f x(sec? x—1)dx= th”_z xsec? xdx — th”_f xdx.

Portanto,

n—1

X
th” xdx=-=2—%_ th”_f xdx.
n—1
EXEMPLO 4. Calcule thi‘ xdx.
Solugdo
Pela férmula de recorréncia,
4 4 2
5 o J‘_; e T J‘
te” xdy=————|tg” xdx= - + | tg xdx.
Portanto,
4 2
te™x 1gcx
thS xdx = ':"'4 - ’:’2 — In|cos x|+ k.

EXEMPLO 5. Calcule jsecf* xtg3 xdx.

Solugdo

1. PROCESSO
Vamos utilizar a férmula 6 do formulario dado no inicio da secao. Temos

2
JSECS xtg3 xdx = Jsecj' x(sec™ x — 1)sec x tg xdx.
Dai,
szl 3 ] [ R _ e
sec” x tg” xdx = |sec” x sec x tg xdx sec” xsec x tg xdx

e, portanto, pela férmula mencionada, resulta
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SEC? X SECS X

JSECS xtg? xdx= — +k
7 3

2.° PROCESSO (Expressando o integrando em termos de sen x e cos X.)

sen“ x
Jsecﬁ xtgi xdx = J—B sen xdx.

cos® x

Fazendo u = cos x e, portanto, du =—sen xdx, resulta
1—u? : 1 1
Jsecf’ xtgd xdr = —J 3 du = —Ju‘s du + Ju_f‘ du= e Al k
u Tu Su-
e, portanto,
7 5
sec’ x sec’ x
Jsecf’ xtg? xdx = ==k =
2

EXEMPLO 6. Calcule Jsec X1 gz xdx.

Solugdo
Jsec xtg? x dx = Jsec x (sec? x—1)dx = Jsec3 X% Jsec xdx.

Para o calculo de Jsec3 xdx, vamos utilizar integracdo por partes. Temos

Jseci xdx = Jsec xsec? xdx =sec x tg x — Jsec X tg x tg xdx.
f '
g

Segue que
Jsec3 xdx=secxtgx— Jsec x(sec? x—1)dx=sec x tg x — Jsec-“ Xax+ Jsec xdx.

Temos, entao,

ZJSECP’ xdx =sec x tg x + Jsec xdx

e, portanto,

sec x tg

gx In|sec ,r+tg,r|.

2

J sec’ xdx =
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Conclusao:

secxtg,'c_In|5e:c:c+tg:c|+k .

2
Jsec x tg= xdx =

No proximo exemplo sera estabelecida a férmula de recorréncia para o calculo de
integrais de poténcias de secantes.

EXEMPLO 7. Sendo n um nimero natural, n > 2, mostre que

sec" 2 xtgx - 2

L |
Jsec” xdx= Jsec” < xdx.

n—1 n—1
Solugdo

Vamos proceder exatamente como no calculo da integral de sec® x efetuado no
Exemplo 6. Temos

3 7 = f) e
Jsec” xdx = jsec” £ xsec” xdx=sec™ “ xtg x— _[{n —2)sec" 3 x sec x tg x tg xdx

‘-—...-.—.-.v:_._-r"\u_._.v.'_._-'

I 2

dai

et e o G n—2 2

Jsec xdx = sec x:tgx—(n— 2‘}J sec x(sec” x —1)dx
e, portanto,
Jsec” xdx = sec" % xtg x—(n— Z‘jjsec” Xdx + (n— ZEJ sec"™2 xdx.

Segue que

(n— lijsec” xdx = sec" % xtg x + (n— ZEJSEC”_E xdx.
Logo,

sec" 2 xtgx L 2

. |
Jsec” xdx= Jsec” < xdx. |

n—1 n—1

Para finalizar a secdo, sugerimos a seguir como proceder no calculo de produto de
poténcias de tangente e secante.
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Jsec” x tg" xdx=7?

Se m for impar, proceda como no Exemplo 5.
Se m for par, expresse o integrando em poténcias de sec x, como no Exemplo 6, e
utilize a férmula de recorréncia para o calculo de integrais de poténcias de sec x.

Exercicios 12.10

1. Calcule.
a) tgf1 x sec? xdx b) J.tg'l' x sec* xdx
i dig g 3a.
c) |tg” 2xsec 2xdx d) |tg” 3xdx
[ i to- x
e) |tgx3fsecx dx i, J g
- sec?
) 56L4 xdx by | secd 3xt r 3xdx
g g
i) tg'5 xdx 7 Jsecs xdx
2. Verifique que
a) | cotg xdx =Injsen x|+ k b) Jcoscc xdy =
¢) | cosec? xdx = —cotg x + k d) Jmtgﬁ xdx=-—cotgx—x+k
- cote™ 1 x
e) |cotg” x cosec? xdx=— g+ : Tt =1
« n
cosec 1 x
f J.n.men:” x cosec x cotg xdy =— L—] +ikn#—1
n+

Ly i
N4 xde,n=2

-1

. cosec” "< xcotgx mn—2

g) | cosec” xdx =— + COSEC
11 n—1

n—1 x

cot
h) Jmtg”,rd,r e i J mtg”_2 xdx,n=2
—
3. Calcule.
1 u:ns
a) J T c:"x c) J
sen sen?

0s2
B J k
sen’
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A X
12.11. A MUDANCA DE VARIAVEL U= tg

*

2

X .
A mudancga de variavel # = (g 5 é recomendavel sempre que o integrando for da

forma Q (sen x, cos x), em que Q (u, v) é um quociente entre dois polindmios nas
variaveis u e v. Se o integrando for da forma Q (sen ax, cos ax), @ constante, sugere-se
ax
a mudancga i = tg s
Antes de passarmos aos exemplos, vamos relembrar duas identidades
trigonométricas importantes.

sen —
X % - %
sen x = 2 sen_—ms—:'Z—_cmsz —-
- - cos — 2
2
Assim,
2tg —
sen x = 2 = 2
1+ tg= —
2
Por outro lado,
X
% X X X - tg? 2
Ly | g 7 Ly ] %
cos x=1—2 sen” — = cos“ —[sec:“ kA i —}=—
2 2 2 2 2 X
1+ tg= —
2
ou seja,
%
Ccos X = ;-
1+ tg2 =
e
Observe que
T e 1—tg2 2
(=l ] = 3
sen oy = ?Mecoswf—] o
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EXEMPLO 1. Calcule J

dx.
COS X
Solugdo
| 1+ g2 =
J dr=J zdx
Cos X a2 X
=8
X 1 ( R
u=tg—;du=—|1+1tg- — |dx
ey (162 3)
Assim,
+ur -
J 1 dx=J] ”j-zdu,,=J zjdu,
COB X l1—u~ 14 u< 1 — u=
Como
2j= | i |
] — u“ 1— 1+ u
resulta

| 1+ u
j dr=-lnll—ul+ll+ul+k=In + k.
COS X | =ik
Assim,
X
I L+t —
J dx = In —i + k.
COS X 1 —tg X
Por outro lado,
X . x
1+tg— cos—+sen— LLDS—"“?E 2] _1+senx
%= % i = _{ " =sec x+ tg x.
l—tg=— cos——sen— cosZ——sen? cos x
2 : 2
Portanto,

483



1
J dx=Inlsecx +tgx| + k.
Cos X

EXEMPLO 2. Calcule J !

dx.
1l —cos x+sen x

Solugdo

f—

e

X X 2y
1 —cos x +sen x 1—tg2 = g
1+t2 L 1+tg2 2
2 2
]-i-tgEi
=J = - _{dx.
2tgc —+2tg —
2 2
Fazendo a mudanga de variavel
f

u=tg£;a’u=lL]+tgfi]dx.

2 2 2
+u?
J‘ 1 dX:lJ‘ 17 u- 2{;"1{&:"‘;{1”.
l—cosx+senx 2 o 1ot us uu+1
Como
_ b
uiu+1) uw wu+tl
resulta
1 u
j dx = In + k
| —cos x +sen x u+
ou seja,
x
1 )
J : dx = In 2 + k.
l —cos x-+sen x 1 +tg >
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Como

X : X X
tg — sen — sen — cos —
2 _ 2 2
X X R x : ¢ T
l1+tg= cos—+sen— cos? =+ sen = cos —
2 2 2 2 2
1
—HET X _
_ 2 _ sen Xx
i A 1 B ~ ;
E_,_ECDSX_,_ESEHI . A=cos:x-F sen:x

resulta

| sen x
J x = 1n + k.
l—cos x+senx 1+ cos x+sen x
Exercicios 12.11
Calcule.
COS X I 1

1; ———dx 2. dx

v 4 —sen” x Y sen x + cos x

sen 2x - 2t x

3. SRR dx 4. AL, dx

4 1+ cosx v 24+ 3cosx

I 1 I 1

i , dx 6. — dx

Y /3 cos x —sen x v 2+ sen x
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13

MAIS ALGUMAS APLICACOES DA INTEGRAL.
COORDENADAS POLARES

13.1. VOLUME DE SOLIDO OBTIDO PELA ROTACAO, EM TORNO DO EIXO x, DE UM
CONJUNTO A

Seja f continua em [a, b], com f (x) > 0 em [a, b]; seja B o conjunto obtido pela
rotacdo, em torno do eixo x, do conjunto A do plano limitado pelas retas x =a e x = b,
pelo eixo x e pelo grafico de y = f (x). Estamos interessados em definir o volume V de
B.

A

Seja P:a = xy <x; <X, <...<Xx;_1 <X, <...<x,=b uma particao de [a, b] e,
respectivamente, ¢; ¢ ¢; pontos de minimo e de maximo de f em [x; _ 4, x;]. Na figura
da pagina anterior, ¢; = x; _ ;e ¢; = x;. Temos:

7[R Ei].]2 Ax; = volume do cilindro de altura Ax; e base de raio f{ ¢;) (cilindro de
“dentro”)

ﬂ[ﬁc':!-)]z Ax; = volume do cilindro de altura Ax; e base de raio f{ ¢; ) (cilindro de
“fora”).
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Uma boa defini¢do para o volume de V devera implicar

R

Z T [j"{f;_}-‘y]2 Ax; = volume = Z T [f{:)]2 Ax;

i=1 =1

para toda particdo P de [a, b]. Para max Ax; — 0, as somas de Riemann que
b

comparecem nas desigualdades tendem a J L f( .ﬂ]2 dx: nada mais natural, entdo, do
o

que definir o volume V de B por

b
V=r | [f(x)]* dx
i

ou

b
V= R‘J v2 dx,em que y= f(x)
[’

1

EXEMPLO 1. Calcule o volume do s6lido obtido pela rotacdo, em torno do eixo x, do
conjunto de todos os pares (x, y) tais que x> + y* < r*, y > 0 (r > 0).

Solugdo

x> +y*<r’ y >0, é um semicirculo de raio r. Pela rotacdo deste semicirculo em
torno do eixo x, obtemos uma esfera de raio r. Temos:

2

) ? [ ]
X'+yYy Sr,y20 & y=s\yr‘—x",—rxsr.

Segue que o volume pedido é

)

v2 dx =21 f r-~.-'lr3 —x2| dx
r* =)

:
volume = R‘J
0

—r

)
= ZEJ o -
0

37" g
=2E{rzx—x—} =ifrr3. 2
0

EXEMPLO 2. Calcule o volume do s6lido obtido pela rotacao, em torno do eixo x, do
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: . 1
conjunto de todos os pares (x, y) tais que —=y=x,1<x<2.
X

Solugdo

_]

x

-
1 2 X

O que queremos € o volume do solido obtido pela rotagdao, em torno do eixo x, do
conjunto hachurado. O volume V pedido ¢ igual a V, — V; em que V, e V; sdo,
respectivamente, os volumes obtidos pela rotacdao, em torno do eixo x, dos conjuntos
A, e A, hachurados.

Vi A
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T

O préoximo exemplo € um caso particular do teorema de Papus (Papus de
Alexandria, IV século d.C.) para volume de solido obtido pela rotacdo, em torno de
um eixo, de uma figura plana que ndo intercepta o eixo. Tal teorema nos diz que, sob
determinadas condic¢des, o volume do so6lido obtido pela rotacao, em torno de um eixo,
de uma figura plana que nao intercepta tal eixo é igual ao produto da area da figura
pelo comprimento da circunferéncia gerada, na rotacdo, pelo baricentro (ou
centro de massa) da figura. (Veja Exercicio 3, Secao 13.9.)

EXEMPLO 3. Considere um retangulo situado no semiplano y > 0 e com um lado
paralelo ao eixo x. Seja P a intersecao das diagonais. Mostre que o volume do solido
obtido pela rotacdo em torno do eixo x é igual ao produto da drea do retdngulo pelo
comprimento da circunferéncia gerada, na rotagdo, pelo ponto P.

Solugdo

Consideremos o retangulo

a<x<b e 0<c<y<d

A

Iy b X

O volume do sélido obtido pela rotacao, em torno do eixo x, deste retangulo é

b . b 5
Ven J Fe T EJ S
a [

1
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ou seja,
V=n(d*-c*)®b-a)
e, portanto,

d+c

V=2rx (d—c)ib—a)

+c , . . ~ .
em que 27 sl é o comprimento da circunferéncia gerada pelo ponto P e (d — c)(b

—a) é a area do retangulo. (Observe que o resultado expresso neste exemplo continua
valido se as expressdes “semiplano y > 0” e “em torno do eixo x” forem substituidas,
respectivamente, por “semiplano x > 0” e “em torno do eixo y”.) =

Antes de prosseguirmos, vamos destacar o 2.° Teorema Fundamental do Calculo
(ou simplesmente Teorema Fundamental do Calculo) cuja prova é deixada para o Vol.
2. Seja g uma fungao continua em um intervalo I e a um ponto de I, a fixo. Assim,

para cada x em I, | g(x)dx existe. Podemos entdo considerar a fungdo que a cada x

a
X

em [ associa 0 numero J g(x)dx. Pois bem, o 2.° Teorema Fundamental do Calculo
a

X
nos diz que J g(x)dx € uma primitiva de g(x) em I. Vejamos como podemos nos

i
convencer desse fato. Conforme veremos no Vol. 2, sendo g continua em I, existird G
tal que, para todo x em I, G'(x) = g(x). Pelo 1.° Teorema Fundamental do Calculo,

J g(x)dx = G(x)— G(a), dai, e lembrando que G(a) é constante, resulta, para todo x

em I,

1
(;_1 g{rjdr——[G{ x)— G(a)]= g(x)

e, portanto,

{Jr X
—J g(x)dx = g(x).
X ~a

Agora, podemos prosseguir.
Seja f (x) > 0 e continua em [a, b]; para cada x em [a, b],

Al
Vix)= ;rrJ [F(0)]* dx
i

é o volume do sélido obtido pela rotacdao, em torno do eixo x, do conjunto hachurado.
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| -
0 a ¥ Xrdr x

Sendo f continua em [a, b], m [f (x)]* também serd continua neste intervalo. Dai, pelo
2.° Teorema Fundamental do Calculo,

dv 1 x A
== T [ﬂx}]1 dx=m[f(x)]".
dx dxJa

Assim, dV = 1 [f (x)]* dx, ou seja 7 [f (x)]* dx nada mais é do que a diferencial do
volume V(x). Observe que a diferencial dV = n[f (x)]*> dx é o volume do cilindro
gerado, na rotacao em torno do eixo x, pelo retangulo de base dx e altura f (x); dV é um
valor aproximado para a variagao AV em V correspondente a variagao dx em x. Entdo,
o volume do solido de revolucdo, em torno do eixo x, do conjunto {(x, y)la<x <b, 0 <
y <f(x)} é obtido calculandose a integral da diferencial do volume para x variando de
aab.

Exercicios 13.1

1. Calcule o volume do sélido obtido pela rotacdo, em torno do eixo x, do
conjunto de todos os pares (x, y) tais que

a)l<x<3e0<y<ux

b)lﬂ_rﬂﬁeﬂﬂvﬂi.
5

2 ' X
Al=x=4de0=y=<.x.
d)2x*+y*<ley>0.
e)y>0,1<x<2ex’*-y*>1.
Hosx=sledx=y=3.

g x*<y<x.

hyo<y<xex*+y*<2.

) y2x*ex’+y*<2.
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D 1<x*+y*’<dey>0.

D1ley<iei=x=<2
=

m)x*+ (y - 2)* < 1.

2. (Teorema de Papus para a elipse.) Considere o conjunto A de todos os pontos
(x, y) tais que

['l'—{?t]:]" f‘l'—BﬁE
———+——=1 (a=0eb=0)
a b=

e situado no semiplano y > 0. Mostre que o volume do sélido obtido pela
rotacdo, em torno do eixo x, do conjunto A é igual ao produto da area da elipse
pelo comprimento da circunferéncia gerada, na rotacao, pelo centro (a, ) desta
elipse.

3. Considere um triangulo isoésceles situado no semiplano y > 0 e com base
paralela ao eixo x. Mostre que o volume do sélido obtido pela rotagao deste
triangulo, em torno do eixo x, é igual ao produto da area deste triangulo pelo
comprimento da circunferéncia gerada, na rotacao, pelo baricentro do
triangulo.

13.2. VOLUME DE SOLIDO OBTIDO PELA ROTACAO, EM TORNO DO EIXO Y, DE UM
CONJUNTO A

Suponha f (x) > 0 e continua em [a, b], com a > 0. Seja A o conjunto do plano de
todos os pares (x, y) tais que a < x<be 0 <y < f(x). Seja B o conjunto obtido pela
rotacdo, em torno do eixo y, do conjunto A. Nosso objetivo, a seguir, € mostrar que €é
razoavel tomar para volume de B o nimero

b
@ V= ZTTJ x f(x)dx
o

ou

b
V=2m| xydx,emque y= f(x)
i

SejaP:a=xy<x; <X, <...<X;_;<X; <...<x,=buma particao de [a, b] e seja c; 0
ponto médio de [x; _ 1, x;].
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da X_ CX b

Seja R; o retangulo x; _; < x < x; e 0 <y < f{(c;). Pelo teorema de Papus para retangulo, o
volume do so6lido gerado pela rotagao do retangulo R;, em torno do eixo y, é

2me; fie;) Ax; (Confira.)

Deste modo, a soma de Riemann

i
z 2 ¢; f(c;)Ax;

=1

é um valor aproximado para o volume do so6lido obtido pela rotacdao, em torno do eixo
y, do conjunto A. Por outro lado, pelo fato de f ser continua, tem-se

L h
lim 2w ¢ f(c;) Ax; = 2 J x f(x)dx
1 i

mix Ax; — 0 4

=

Logo, é razoavel tomar (D para volume de B. Veremos no Vol. 3 que esta nossa atitude
é correta. (Para uma prova de O, num caso particular, veja Exercicio 3 desta se¢do.)

EXEMPLO 1. Calcule o volume do s6lido obtido pela rotacdo, em torno do eixo y, do
conjunto de todos (x, y) tais que

0<x<leO<y<x-—x.

Solucgdo
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|
V=2*rrj _r[_r—x?’}dx=é_l—1'—. B
0 I3

N
Ja sabemos que dV = 271 xf(x)dx é a diferencial de V(x)= ZTTJ xf(x)dx. Agora,
o

observe que f (x)dx é a area do retangulo de altura f (x) e base dx e, para dx
suficientemente pequeno, 2rtx é aproximadamente o comprimento da circunferéncia
gerada pelo baricentro do retangulo mencionado e dai, pelo teorema de Papus para
retangulos, 2m xf(x)dx é aproximadamente o volume do invélucro cilindrico obtido
pela rotacdo, em torno do eixo y, de tal retangulo.

xx+dx

Ly

. ™
O volume obtido pela rotacao, em torno do eixo y, do conjunto A é entdo a integral

b
dessa diferencial, para x variando de a até b, ou seja, V = 27| xvdx, onde y = fix).

s
Este método de determinar volume é as vezes denominado método dos involucros

cilindricos ou método das cascas.

X

Vejamos, agora, uma outra féormula, que é do mesmo tipo daquela da secdo anterior,
para calcular volume de so6lido obtido pela rotacdo, em torno do eixo y, de um
conjunto que ndo intercepta tal eixo. Seja entdo B o conjunto: B = {(x,y) |0 <x<b, c
<y<dey=>=f(x)}, em que f é suposta continua e estritamente crescente (ou
estritamente decrescente) em [a, b], com a > 0, f(a) = c e f(b) = d.
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) ¥i

d

Como y = f (x) é continua e estritamente crescente em [a, b], entdo é inversivel, com
inversa x = g(y) continua em [c, d], em que c = f(a), d=f(b)ey=f(x) @ x =g (y).
Raciocinando como na secdo anterior, o volume do sélido obtido pela rotacdao, em
torno do eixo y, do conjunto B é

d
volume = TTJ x2 dv,em que x = g(v)
C

Observe que 1 x*dy é o volume do cilindro obtido pela rotacdo, em torno do eixo y, do
retangulo de base x e altura dy. (Veja figura acima.)

EXEMPLO 2. Calcule o volume do s6lido obtido pela rotacdo, em torno do eixo y, do
conjunto de todos os pares (x, y) tais que x> <y <4, x > 0.

Solugdo
) 2
Temos:y = x",x=0=x= .y.
Segue que

4

4 2
Volume = 7| x2dv=1r [\] dy.

0 0

E, portanto,

4
Volume = Wjﬂ y dy= 8.
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0 - - -
X 2 X m

Observacao. Este volume poderia, também, ter sido calculado utilizando-se a férmula
anterior. Neste caso, o volume pedido seria a diferenca entre o volume gerado pela
rotacdo, em torno do eixo y, do retangulo 0 < x < 2, 0 <y <4 e o volume gerado pela
rotacdo, em torno do eixo y, do conjunto 0 < x <2 e 0 <y < f(x), em que f (x) = x°. Ou
seja,

-~

volume = 167 — 27 r.g'(,r“}dx =16m — 2 | x” dx=8r.
0 0

EXEMPLO 3. Calcule o volume do s6lido gerado pela rotagdao, em torno do eixo y,
do conjunto de todos os pares (x, y) tais que 0 < x < 2, 0 < y <
)

X )
ﬂﬁ:;ya:T +leysx — 1.

Solugdo

1.° PROCESSO (Utilizando a primeira formula.)

, T 3 .
volume = ZTTL} X XT + ]de - Z?TL x(xc — Ddx.

T
E, portanto, volume = o
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2.° PROCESSO (Utilizando a segunda férmula.)

xE ) ¢ )
—+l=yeox =2y—2ex —l=yex =y+1

Entao

3 r3 7
volume = TI'J (v+ l,chy—frJ ,2}?—2,1&’}-:?;- u
{0 l “

Para encerrar a se¢dao, vamos resumir num quadro o que aprendemos nesta secao e
na anterior.

L |

v =fix)

S |

o & X+ b

A={x,Va<x<b,0<y<f(x)}eB={(x,y)J0<x<b,c<y<d,y<f(x)}

l
D ﬂj }."r’ﬁ dx = volume gerado por A na rotagdo em torno do eixo x.(y = f (x))
o

rel
m WJ x2 dy = volume gerado por B na rotagdo em torno do eixo y.(x = g(y))
A

111 b
)2 T

a

xv dx = volume gerado por A na rotagdo em torno do eixo y.(y = f (x))

d
IV)Z WJ vx dy = volume gerado por B na rotagdo em torno do eixo x.(x = g(y))
-

Exercicios 13.2
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Calcule o volume do sélido obtido pela rotagcdo, em torno do eixo y, do
conjunto de todos os (x, y) tais que

a)l1<x<eeO0<y<Inx
b)0s=x=8el=sy=< x.
0)1<x<2e0<y<x*—1.
d)0<x<me0<y<senx.
e)0<x<leO<y<arctgx.
Nl<x<del=ys x.
9 y*<2x-x*y=0.

MNosx<2.y= x—1cosy=si

2. Calcule o volume do solido obtido pela rotagdao, em torno do eixo y, do
conjunto de todos os (x, y) tais que
A0=x<60<y<=ley= x—2.
bJxsys—x+6x=0.
c)0<x<e,0<y<2ey>Inx.
dy=x=y.
e)0<x<1l,x<y<x*+1.
3. (Volume de sdlido de revolugdo em torno do eixo y.) Suponha f estritamente
crescente e com derivada continua em [a, b], a > 0 e f(a) = 0. Seja g:[0, f(b)]
- [a, b] a funcao inversa de f.
a) Verifique que o volume do s6lido obtido pela rotacdao, em torno do eixo y,
do conjunto
2 2 fib) 2
A={(x,WER Jasx=b,0sy=<fix)} éiguala wb” fib) — = L} [g (¥)]” dy.
b) Mostre que
= fib) . b
wb< f(b) — ﬂ'J [g(w)]° dv= Eﬂj x f(x)dx
0 a
(Sugestdo: Faca a mudanca de variavel y = f (x) e depois integre por partes.)
¢) Conclua que o volume mencionado em a é
b
volume = Eﬂj x f(x)dx
i
13.3. VOLUME DE UM SOLIDO QUALQUER
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b
Vimos no paragrafo anterior que | [ f{_ﬂ]ﬁ dx é a férmula que nos fornece o

=
volume do solido de revolugdo obtido pela rotagdao, em torno do eixo x, do conjunto A

={(x,y) ER?|a<x<b,0<y<f(x)}. Observe que

A(x) = nlf (I

1
| _area=A (x)
H-t“ltl A WX

-

€ a area da intersec¢do do solido com o plano perpendicular ao eixo x e passando pelo
ponto de abscissa x. Assim, o volume mencionado anteriormente pode ser colocado na
forma

b

volume= | A(x)dx
o

Seja, agora, B um solido qualquer, ndo necessariamente de revolucao e seja x um
eixo escolhido arbitrariamente. Suponhamos que o sélido esteja compreendido entre
dois planos perpendiculares a x, que interceptam o eixo x em X = a e em x = b. Seja A
(x) a area da intersecdo do sélido com o plano perpendicular a x no ponto de abscissa
x. Suponhamos que a funcdo A (x) seja integravel em [a, b]. Definimos, entdo, o
volume do s6lido por

b
volume = J A(x)dx

{

EXEMPLO. Calcule o volume do sélido cuja base é o semicirculo x* + y* < r?, y > 0,
e cujas seccoes perpendiculares ao eixo x sdo quadrados.

Solucgdo
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A(x)=(r2 = x2)2.

volume = J (P —x*)dx = J (r* — x*)dx

2 —x2

ou seja

, . R 3
volume = ZJ (rz —xH)dx=2|rix— * | = ﬂ o
0 3 0 3

Exercicios 13.3

1. Calcule o volume do sélido cuja base é o semicirculo x* + y* < r%, y > 0, e
cujas seccoes perpendiculares ao eixo x sdo triangulos equilateros.

2. Calcule o volume do sélido cuja base é a regido 4x> + y* < 1 e cujas seccdes
perpendiculares ao eixo x sdao semicirculos.

3. Calcule o volume do solido cuja base é o quadrado de vértices (0, 0), (1, 1),
(0, 1) e (1, 0) e cujas seccoes perpendiculares ao eixo x sdo triangulos
is6sceles de altura x — x.

4. Calcule o volume do soélido cuja base é um triangulo equilatero de lado I e
cujas seccoes perpendiculares a um dos lados sao quadrados.

13.4. AREA DE SUPERFICIE DE REVOLUCAO

Sabe-se da geometria que a area lateral de um tronco de cone circular reto, de
geratriz g, raio da base maior R e raio da base menor r, é igual a area do trapézio de
altura g, base maior 2nR e base menor 27r:
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area lateral do tronco=n(R+r) g
Sendo S o ponto médio do segmento PQ.

R+r

5= .daim (R+ r) g = 2wsg.

area lateral do tronco de cone = 27msg

Observe que a area da superficie gerada pela rotacao da geratriz, em torno do eixo PQ,
é igual ao produto do comprimento g desta geratriz pelo comprimento 27rs da
circunferéncia gerada pelo ponto médio da geratriz. Este resultado é um caso particular
do Teorema de Papus para superficies de revolucao. (Veja Exercicio 9, Secao 13.9.)

Vamos, agora, estender o conceito de area para superficie obtida pela rotacdo, em
torno do eixo x, do grafico de uma funcao f, com derivada continua e f (x) > 0 em [aq,
b].

Seja, entdo, P : a = x5 < x; < X, < ... < X, = b uma particao de [a, b] e
c;= # o ponto médio do intervalo [x;_;, x;].

Na figura, f (c;) = tg a;; o segmento M; _; M; é tangente ao grafico de f no ponto (c;,
f(c;)). Entao

M; _1M; . |sec a| Ax; = ‘»":] +[f (c)H* Ax;.

COS avj
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A area da superficie gerada pela rotacao, em torno do eixo x, do segmento M; _ ;M

(observe que tal superficie nada mais é do que a superficie lateral de um tronco de
cone de geratriz M; _ | M; ) €:

2 f (¢;) M;_1M; = 2 f(c;) 1+ (cp)]? Ax;

e se Ax; for suficientemente pequeno esta area sera uma boa aproximacao para a “area”
da superficie gerada pela rotacdo, em torno do eixo x, do trecho do gréafico entre as
retas x = x; _ ; € x = x;. Observe que trocando f(c;) por ci na igualdade acima,

27c; 1+ (f'(c; N2 Ax; sera uma boa aproximagdo para a “area” da superficie gerada
L]
pela rotacdo, em torno do eixo y, do trecho do gréafico acima mencionado.

Como a funcao 27 fix) \;"1 +[f {x)]f é continua em [a, b], teremos

n

{ ” h _
. i . I- + r v Fa e 2 ; .”. + F ; 2 :
m‘;féhﬂz 2 [ @)L ()F Axi= | 2m f) 1+ (OF dr

Definimos a drea A, da superficie obtida pela rotacao do grafico de f, em torno do
eixo x, por

b i
A= 27 | f)\1+[f (0] dx
i

De forma andloga, a drea A, da superficie obtida pela rotagdo, em torno do eixo y,
do gréafico de f sera

bl ( dy
A, =27 | x ,jl—i—L—'] dx, em que y = f(x).
3 a |\ dx

EXEMPLO 1. Calcule a area da superficie gerada pela rotacdao, em torno do eixo x,
do graficode f (x) =senx, 0 < x < 7t

Solucgdo
drea = 2w J_rsen X +/1+cos” x dx
0
u = cos x; du = — sen x dx
x=0;u=1

x=mu=-1.
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-1 5
= ZTTJ 1+ u”(— du)
1

u=tg 0; du = sec’> 0 do
u=—10=—=
: . 4

T

=] E
= Eﬂ'J A1+ u? du
—1

m
= ZTTFF sec> @ de.
B
Integrando por partes:

w

Iﬂ sec? 3secﬂdﬂ=[tgﬂsecﬁ }J'
n

J%]T sec” ﬂ-:fﬁ=J
4

—JT,‘T [sm:j" f —sec 0| d6.
A vy

A
4

Dai

Cl

4

w

—_—

._1

-2E, sec” 6 df =22 + {lnfsecﬁ + tgﬁ?}
£

ou seja,

J 4 sec’@dh =2+ In(N2 + 1.
o7

Portanto, drea =27 (/2 + In(+/2+1). =

EXEMPLO 2. Determine a area da superficie obtida pela rotagdao, em torno do eixo y,
2

do grafico de y = X_H’ 0<x<1.

Z
Solugdo
dv d [:c2 ]
S LS = vemn
ax dxl X |
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L 2 i 3 | |
A, =2;rj x.ﬁ=1+(ﬂJ dx=2;rj 122 de= KT =1,
- 0"\ Udx 0 3

Exercicio 13.4

1. Calcule a area da superficie gerada pela rotacdo, em torno do eixo x, do
grafico da funcao dada.

e* +e*
a) flx)=———, =1 xs]

¥
=

by f)= R =32 —R<x<R(R>0)
: \

,
oy=x,0=x<

hora | —

d)y= Jx,1<x<4

13.5. COMPRIMENTO DE GRAFICO DE FUNCAO

Seja y = f (x) com derivada continua em [a, b]esejaP:a=x, <x; <x, <... <X, =
b uma particao de [a, b]. Indicando por L(P) o comprimento da poligonal de vértices
P,=(x;, f(x)),i=1,2,...n, temos

L(P)= Z J& = m P — (%))

i=l1

=%

e m——————
L
=

) e e Sl g

bt
=
1

i Xu-q x,= b

( 2 . 2 - . o
em que 1:'{ X, — x,_)” + (f(x;)— f(x,_,))" éo comprimento do lado de vértices P;
_; e P;. Pelo teorema do valor médio, para cada i, i =1, 2, ... n, existe ¢, x;_; < ¢; < X;,
tal que
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f(x) = f (x;-1) = f (c)Ax;, em que Ax; = x; = X; ;.

Segue que
n

L(P)= Z -~\‘:'.ﬁxf+ (f'(c;) Ax;)* = Z -1..';] + (f'(¢;))* Ax;.

=1 =1

b

Dai, para max Ax; tendendo a zero, L(P) tendera para J 14+ (' x))2 dx. Nada mais
o

natural, entdo, do que definir o comprimento do gréfico de f, ou da curva y= f (x), por

)

: i b | ay \”
C,Dmprlment0=J Jl == dx
a \ dx

| A
i LI
Nosso objetivo a seguir € interpretar geometricamente a diferencial | _|_| 23 dx.

| \dx
Seja, entdo, s = s(x), x € [a, b], o comprimento do trecho do grafico de extremidades
(a, f(a)) e (x, f (x)). Sejam As e Ay as variacOes em s e y correspondentes a variacao dx

em x, com dx > 0. Para dx suficientemente pequeno, Ay ~ dy e

A%s = d*x + A%, ou seja,

| ( dy 2
.ﬁs;ﬂ,lfl-l-Ld—'J dx
i vr

§

EXEMPLO. Calcule o comprimento da curva y = I_h’ 0<x<1.

Solucgdo
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dy . ol g
De — = x, segue que o comprimento é: J .1+ x2 dx. Fazendo a mudanga de
-l. D ¥
variavel x = tg u, vem

ki

w
1 3 L o 3
| 2 / | 2 2 / 3
J W1+ x" dx= J4 1+ (tgu)” sec” udu= |* sec’ udu.
0o o 0

| 1 e
Dejsec o du = ESEC utgu + ;In |sec u + tgu|+ k (verifique), resulta

m
L; \.".1 +x2 dx= L}T sec” u du= %[\J + ln(] + 42 )]

Exercicios 13.5

1. Calcule o comprimento do grafico da funcao dada.

3
i L :
a)y=—x2,0<x<1 B y=——x+t30=x=2
o3 3
= 3
c)y=lhx,1=sx=e d) y=+x,—SsSxs—
4 4
E.J.' +€—.'l.' .
e) }‘=T~D=ﬂ1=ﬂ] N y=eX¥0=x=1

2. Quantos metros de chapa de ferro sdo necessarios para construir um arco AB,
de forma parabdlica, sendo A e B simétricos com relacdo ao eixo de simetria
da parabola e com as seguintes dimensdes: 2 m a distanciade AaBe 1 ma
do vértice ao segmento AB.

13.6. COMPRIMENTO DE CURVA DADA EM FORMA PARAMETRICA

Por uma curva em R? entendemos uma funcdo que a cada t pertencente a um
intervalo I associa um ponto (x(t), y(t)) em R?, em que x(t) e y(t) sdo funcdes definidas
em I. Dizemos que

[:c = x(1)
4 tel
L-*= V(i)

sdo as equagoes paramétricas da curva. Por abuso de linguagem, vamos nos referir ao
lugar geométrico descrito pelo ponto (x(t), y(t)), quando t percorre o intervalo I, como
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a curva de equacOes paramétricas x = x(t) e y = y(t).
EXEMPLO 1. Desenhe a curva dada em forma paramétrica por x =t,y = 3t, t € R.
Solugdo

x=t,y =3t=y = 3x. Quando ¢ percorre R, o ponto (t, 3t) descreve a reta y = 3x.

Ay

-
X

EXEMPLO 2. Seja a curva de equacdes paramétricas x = t, y = %, t em R. Quando ¢
varia em R, o ponto (t, *) descreve a pardbola y = x.

Vi

(t, t3

\

=
I
-

EXEMPLO 3. Seja a curva de equagOes paramétricas x = cos t,y = sen t, t € [0, 27m].
Quando t varia em [0, 27t], o ponto (cos t, sen t) descreve a circunferéncia x> + y* = 1.

Yi

/Ncm t, sen i)
s
K/ L

EXEMPLO 4. Desenhe a curva dada em forma paramétrica por x =2 cos te y = sen t,
comt € [0, 2x].
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Solugdo

”
—=cost
[:c=2c053‘ 2

Lv=5enr

v=sent

Yi
| ’, (2 cos I, sen i)

N
_/ X

2
Assim, para cada t € [0, 2r] o ponto (2 cos t, sen t) pertence a elipse By I-,;l =1.

Por outro lado, para cada (x, y) na elipse, existe t € [0, 2] tal que
x=2cost

. =0y
J[}-*=senr (por qué?)

Assim, quando t percorre o intervalo [0,2 1], o ponto (2 cos t, sen t) descreve a
elipse. =

Nosso objetivo a seguir é estabelecer a férmula para o calculo do comprimento de
uma curva dada em forma paramétrica. A férmula serd estabelecida a partir de
consideracOes geomeétricas, e deixamos o tratamento rigoroso do assunto para o Vol. 2.

Suponhamos que s = s(t), t € [a, b], seja o comprimento do trecho da curva de
extremidades A = (x(a), y(a)) e P(t) = (x(t) y(t)), em que x = x(t) e y = y(t) sdo supostas
de classe C'. Sejam Ax, Ay e As as variacdes em x, y e s correspondentes a variacio At
em t, com At > 0. Para At suficientemente pequeno, vemos, pela figura, que

A%s = A°x + A’y e, portanto,

A[i +|'£J At
|||: ﬂ\f F .lf
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y=xy(1)

E razoavel, entdo, esperar que a diferencial da funcdo s = s(t) seja

|f dy \2 i

|dff

Definimos entdo o comprimento da curva x = x(t), y = y(t), t € [a, b], com x = x(t) e y
= y(t) de classe C' em [a, b], por

{ A A

_ b {(dx\* (dy)
comprimento =J Jdl— 1 Fl— | dt
a |\ dt

Observacdo. O grafico da funcdo y = f (x), x € [a, b], pode ser dado em forma
paramétrica por x = t,y = f (t), t € [a, b]. Segue que a férmula para o comprimento do
grafico de uma funcao é um caso particular desta.

EXEMPLO 5. Calcule o comprimento da circunferéncia de raio R > 0.
Solucgdo

Uma parametrizacdo para a circunferéncia de raio R e com centro na origem é: x =

Rcostey=Rsent, comt € [0, 2n].Ded_X= —Rsenreﬁ= R cos t, segue
dt dt

|d\'

comprimento = j ]r
I\ ar }

27
= jD v (—R sen 1?2 + (R cos 1 dr.

e —
Portanto, comprimento = J VR dt=2wR. ®
0

EXEMPLO 6. As equacOes paramétricas do movimento de uma particula no plano
sao
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J}J =sent
t=[0, 7).

‘_ y=sen? t
1) . . . . O ——
Quais as posicOes da particula nos instantes t = 0, I = ) et=1

7)) Qual a trajetoria descrita pela particula?

>) Qual a distancia percorrida pela particula entre os instantes t =0 e t = 7?

Solugdo

1) : . . T o~
No instante ¢t = 0 a particula encontra-se na posi¢ao (0, 0), em I = ? na posicao (1,
1) e, no instante t = 7, novamente na posicao (0, 0).

T
) x=sent ey =sen’t =y = x> Segue que a particula, det=0a = Tk descreve 0
arco da parabola de extremidades (0, 0) e (1, 1) e no sentido de (0, 0) para (1, 1).

w
De 1= ? a t = m descreve o mesmo arco s6 que em sentido contrario.

°) A distancia d percorrida entre os instantes t = 0 e t = it € dada por

T ::r' 2 ;)2 al2
d=J Ld—x} + [ﬂ} dt = ZJ \Jcos? t+ (2sentcost)? dt
o\ dr . dt 0

ou seja

w2
d=2j
0

Observe que as distancias percorridas entre os instantes t = 0 e f =

/ ml2 |
cost|y/1+4sen? t dt = 2J cost+/1+4sen?t dt.
¥ n ¥

2
T T
de I=E a t = m. Observe ainda que |cos t| = cos t, para DEIE?' Fazendo a

mudanca de variavel u = 2 sen t teremos du = 2 cos t dt, u = 0 parat = 0 u = 2 para
2

ra Z :
I= ? Assim, d = J 1+ u? du. Fazendo, agora, u = tg 0, teremos
0

arc tg 2 -
d= L sec’ A df = %[sec 6 tg 6 + In|sech + tg 9“3& g2

Como O =arctg2 =tg 0 =2c¢€sgech= 1 + 1g3§ = ./5, resulta que a distancia
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percorrida pela particula é d = %[2--.;"5 +In(2++/5)]. =

Exercicios 13.6

1. Calcule o comprimento da curva dada em forma paramétrica.

a)x=2t+ley=t—-1,1<t<2
b) s

x=3tey=212,0=st=1
c)x=1-costey=t—sent,0<t<m
d .2 )

X— )

k2|

O0=sr=1

f

e)x=e'costey=e'sent, 0 <t<m.
2. Uma particula desloca no plano com equagoes parameétricas x = x(t) e y = y(t).

Sabe-se que, para todo
d, ; ﬂrj / " e'l /

t, e 2 (cm/s), : =—2(cm/s“)e e = 4 (cm / s). Sabe-se, ainda,
dt dt= dt

=0

que no instante t = 0 a particula encontra-se na posicao (0, 0). Determine a
distancia percorrida pela particula entre os instantes t=0et=T,em que T é 0
instante em que a particula volta a tocar o eixo x. Como € a trajetoria descrita
pela particula?

13.7. AREA EM COORDENADAS POLARES

Fixado no plano um semieixo Ox (tal semieixo denomina-se eixo polar, e o ponto
O, polo),

( X

cada ponto P do plano fica determinado por suas coordenadas polares (0, p), em que 6
é a medida em radianos do angulo entre o segmento OP e o eixo polar (tal angulo
sendo contado a partir do eixo polar e no sentido anti-horario) e p o comprimento de
OP; assim p > 0.

Se considerarmos no plano um sistema ortogonal de coordenadas cartesianas (o
habitual) em que a origem coincide com o polo e o semieixo Ox com o eixo polar e se
(8, p) forem as coordenadas polares de P, entdo as suas coordenadas cartesianas serao

dadas por
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x=pcosf
v=psenf

Observe que se P ndo coincide com o polo

pP=+ x4 y2
= 0 CO% X
J]"x::p":ﬂ%g — CGSﬁ':ﬁ—q
|V = psen ..v-'_]["-' —+ ye
‘kl‘
sen fl = — = >
Afxs+ y*

Até agora, destacamos p como um numero positivo. Entretanto, para as aplicacoes
€ importante que p possa assumir, também, valores negativos. Vejamos como
interpretar (0, p) no caso p < 0:

Y& |
v Lpcos f, psen g) —
0 Yp=-=====-5 cos #, P sen ¢
el .f",: {cos {1, sen ()
A s
g 3 X ol
;S i N g
i &~ 5
]
i
(cos . sen §/) \\_/
ra

I
f\ﬁﬁ
1 x '
o
(pros@,psenf) ¥————————— 1y

Se p <0, (6, p) é o simétrico, em relagdo ao polo, do ponto (6, —p).

Para podermos trabalhar com p < 0, serda melhor olharmos para o eixo polar como
uma reta com um sistema de abscissas: sobre tal reta marcam-se dois pontos, um o
polo 0 representando o zero e outro representando o 1. O sentido positivo sera o de 0
para 1 e a unidade de comprimento sera o segmento de extremidades 0 e 1. Para
representar no plano um ponto de coordenadas polares (6, p) proceda da seguinte
forma: primeiro gire o eixo polar, no sentido anti-horario, de um angulo 8; em seguida,
sobre este novo eixo, marque o ponto que tenha abscissa p.

I
I
I
[ &
I
I
I

)
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(#.p).comp=0 (f, pl.comp=<<0

A, p)
(,-!

EXEMPLO 1. Represente no plano o ponto (8, p) em que

1) 6=0ep=1
)) 6=0ep=-1

) 8=Ee =2
1 P

1)9:3,3 = —
1 P
Solugdo
«
A
#
e
L, E=§ep=2
#
Fs
41
e s e :
&
p=0cp=-T _~ Ng=0ep=
\ﬂzgcpz—]

EXEMPLO 2. Um ponto P desloca-se no plano de modo que a relacdao entre suas

coordenadas polares é dada por p = 0, 0 < 6 < 2. Desenhe o lugar geométrico descrito
por P.
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Solugdo

g"m|§" 30y &3 o
¥reolf awla &3 oo

Sempre que formos esbocgar o grafico de uma curva dada em coordenadas polares, é
bom antes fazer um esboco da curva supondo 8 e p coordenadas cartesianas e olhar,
por meio deste grafico, a variacao de p em funcao de 6.

e
~
[y //

=
/// ‘H g
i

/
// m

Y

(= o SR S T SRS,
[==]

EXEMPLO 3. Desenhe a curva cuja equagdo, em coordenadas polares, é p = sen 6, 0
<0<

Solugdo ip Em coordenadas
carteslanas

6 [

0 0

T A2

4 2
T |1

6 2
Z

2
3 | A2

4 | 2 =
T 0
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Observe que parap # 0
p=senfep’=psenfox*+y’=y.
f- 1Y 1
x> +y* -y =06 aequacdo de uma circunferéncia de centro | 0, 2 |e raio —. Deste
Y !

modo, p = sen 0, 0 < 0 < m, é em coordenadas polares, a equacdo de tal
circunferéncia. =

EXEMPLO 4. Desenhe o lugar geométrico da equacao (em coordenadas polares) p =

1 - cos 0.
Solugdo
0 P 3 P Em coordenadas
. cartesianas ., _ | ... p
ﬂ G ‘__..___....__;_-,-._,_-.-T ’/
. | A
w i 00 R o
3 2 5 ' g
= 2
— 1
2
2w &
3 2
™ 2
4r | 3
3 2
3
— 1
2

Esta curva denomina-se cardioide. =

EXEMPLO 5. Desenhe a curva cuja equacdo, em coordenadas polares, é p = cos 20.
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Solugdo

6 | p g e

0 I l\ /-\-'P gL
T |2 N L a

= i A Ir a

8 2 o3 W ] T \/T
= Il

4
_ A | 2

8 2
L

4

= | i

2 [}
37 . '-.,2

8 2

. . : . RE
Veja como fica o trecho da curva acima para 6 variando de 0 a —.

Quando 0 varia de % a “T e de 5; a ?:r ,p permanece negativo. ®

EXEMPLO 6. Desenhe o lugar geométrico descrito por um ponto P que se desloca no

plano, sabendo que a relacdo entre suas coordenadas polares é p = | tg 0 |,
T T
——<f<—.

¥ 3
“ “

Solucgdo

T T
Vejamos, primeiro, o que acontece para 0 variando de 0 a —. Quando #— —. p

— + oo, A projecdo de P sobre o eixo polar tem abscissa

x=pcosf=tg0cosB=senb.
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Assim, quando #—

™ o~ .
5+ @ projecdo de P sobre o eixo polar tende para o ponto de

. T Lo ~
abscissa 1. O trecho da curva correspondente a 6 em |— e D} € simétrico, em relacao

: ™
ao eixo polar, ao trecho correspondente a 8 em | ), —| .

\
\ 0
e
X =senf

Nosso objetivo, a seguir, é estabelecer uma férmula para o calculo de area de
regido limitada por curvas dadas em coordenadas polares.

Inicialmente, observamos que a area de um setor circular de raio R e abertura

Agé % R* AB. Esta drea se determina por uma regra de trés simples:

27 rd — éarea niR?
ANOrd —7

=M=%R3 A6

?
2

Consideremos, agora, a funcdo p = p () continua e > 0 em [0, _ ;, 6;]. Seja A; o
conjunto de todos os pontos (6, p),com B, _; <0<0;e0<p<p(6).
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Seja E =p (E.) o maior valorde pem [0, 1, 0]le p=p (Ef-} o menor valor. A area do
conjunto A; esta, entdo, compreendida entre as areas dos setores circulares de abertura
AB; e raios p, (g, ) e p(B;):

1 — 72 2 1 = 72
E[p(ﬁﬂ] Af; = drea AEEE[p{SE}] Af..

Suponhamos, agora, p = p () continua e > 0 em [a, ], com B — a < 271. Seja A o
conjunto de todos os pontos do plano de coordenadas polares (0, p) satisfazendo as
condicoes: a <O <Le0<p<p(6).

(6, B

SejaP:a=0,<0,<..<0,_,<06;,<...<0,= [ uma particao de [a, f]. Sejam
P(ﬁ_ﬂ e piif-':;) os valores minimo e maximo de p em [0, _ ;, 6;]. Pelo que vimos
anteriormente, a area da parte do conjunto A compreendida entre as retas 0 =0, _; e 0
= 0, esta compreendida entre as areas dos setores circulares de abertura Af; e raios

p(6;) e p(8; ). Uma definigdo razoavel para a area de A deverd implicar, para parti¢do P

de [a, B,

n

L .
Z %[p{ﬂ:' )2 Af; = drea A< Z %[p(&;)]ﬁ Ag;.

i=1 i=1

Para max Af; — 0, as somas de Riemann acima tendem para a integral Jﬁl pz de.
a 2

Nada mais natural, entdo, do que definir a drea de A por
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B,
fxreafi:lj p-db
2 Ja

EXEMPLO 7. Calcule a area da regido limitada pelo cardioide p = 1 — cos 6.
Solugdo

Para cobrir todo o conjunto, 8 devera variar de 0 a 27.

~ 3 I
-
S
- 5 !
L y o |
-
= |
-
e ARe -
-
o RN
LAY Y
-
- - 1“
= i

1 2w 5 1 2w 5
dgrea=—| p- d€=—J (1—cos ) db.
270 270

Temos

2 5 2ar . 2 .
L} (1—cosf)- di= L} [1—2cos#+ cos< #]de=2x +L cos= 6 df

2 ] 1
=2+ [— + —cos '28} do = 3m
o |2 2

. , ) , 37
Assim, a area do conjunto é —, m
2

EXEMPLO 8. Calcule a area da intersecio das regioes limitadas pelas curvas
(coordenadas polares) p =3 cos 8 ep =1+ cos 6.

Solucgdo

Primeiro devemos determinar as intersecoes das curvas.

3cosf=1+cos0

ou seja,

cosfl= l
2
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T T
Assim, = ?E 0=— Y resolvem o problema. Seja A; o conjunto de todos (0, p)

com 0=f=—e0=p=1+cosf e seja A, o conjunto de todos (A, p) com
™

T
?Eﬁf’:geOspSSCOSG.Temos,entéo:

w9

area pedida = 2 (area A, + area A,).

udl 0.3
drea A, =—J (14 cos §)* do = E \\_ :
4 16
] it 3 943
irea A, =—J“ (3+ cos® ) dog = — — ;
25 ¢ 8 16

Ul

Conclusdo: area pedida = :’r Veja figuras a seguir.

I 4 y, p=3cosd l + cos @
: / /
I e
| ; A
T3 %
’ff‘\ ’ 1 o
s

EXEMPLO 9. Calcule a area da regido limitada pela curva dada em coordenadas
T
polares porp =tg 0, 0 = @ < > pela reta x = 1 (coordenadas cartesianas) e pelo eixo

polar.
Solucgdo
Indiquemos por A (0) a area da regido hachurada. A area que queremos é:

drea= lim A(9).
ﬁ'—:m‘}

Temos
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6
A(f)=drea A OPM — drea 4| = % te f sen” @ — %J:D tes @ d8.

=

A ()

6
Vamos calcular J tgz A d6. Temos
0

- ﬂ N
ﬁtg‘ﬁ de =J (sec* @ —1)do =[tgd — 0, =tg6 — 0.
0 0
Assim

1 a 1 1 1 - 1
A(f)y=—tglsen- 0 ——tgf+—0=——1tgl(l —sen-H)+—40
2 . 2 2 2

=—lsenﬁcosﬁ+lﬁ.
2 2

Portanto,

1 1 T
area= lim |— —senf cosf +—0 |=—.
6,_;1[ 2 2 } 4

Observacado. No triangulo OPM temos:
OM = pcosf =tgh cosf=senf e MP= psen f = tg f sen 6.

Assim, area drea A OPM = sen’ @ tg 6.

ta | —

Exercicios 13.7

1. Desenhe a curva dada (coordenadas polares).
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a}p=€_3~ﬂ;—={} b) p=cos @

" T _1,-# ,fE =7
c)pcosf =1, 5 xﬂxz dp=2
T T T
Elli=r—= =tgf,——<f<—
4 De=te 2 2
1
g) p = cos 30 h) p2= =
1+sen“ @
)p=2—cosé@ Dp=1—sené
2 T
[)p=cos 48 m)yp - =tg 0= ﬂ{i:{p?ﬁ'—ﬂ)
n}p3=tg2ﬁ~ﬂﬁﬂ{%{p&-ﬂ} n}p=l,m;2ﬁ

Passe a curva dada para coordenadas polares e desenhe-a.

a) x* —y*=2xy
b) )

Sy Iy T =2

. 7 = 7
) x2 +y2 px=4/x2+y2

d) (XZ +y2)2 — X2 _y2

Calcule a area da regido limitada pela curva dada (coordenadas polares).

a)p=2-cosb

b) p?> =cos 0 (p > 0)
c) p = cos 20

d) p = cos 30

Calcule a area da intersecao das regides limitadas pelas curvas dadas em
coordenadas polares.

ayp=2-cosfBep=1+cosB
byp=senfep=1-cosB
c)p=3ep=2(1-cosb)

d) p>=cos Qe p?=sen (p>0)
e)p=cosBep=senb

) p=1lep=2(1-cosB)

Calcule a 4rea do conjunto de todos os pontos (0, p) tais que 6> < p < 0
(coordenadas polares).

Calcule a 4rea da regido situada no 1.° quadrante, limitada acima pela curva x*

— y* = 2xy (coordenadas cartesianas) e abaixo por p> = 2 sen 20 (coordenadas
polares), com p > 0.
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)
7. Xy 2
a) Escreva, em coordenadas polares, a equacdao da elipse — +-—— =1
at  b?
tomando como polo a origem e como eixo polar o semieixo Ox.

! 2

b) Escreva, em coordenadas polares, a equacgao da elipse 1—,3 + 1'—} = | tomando
a- b=
como polo o foco F = (c, O.)’ c > 0, e como eixo polar a semirreta FA onde A
=(a,0),a>0.(Facae — £ ep=a— ec)
a
8. Sejam F, e F, dois pontos distintos do plano e seja k a metade da distancia de
F, a F,. O lugar geométrico dos ponto P do plano tais que PF - PF = k2
denomina-se lemniscata de focos F, e F,.

a) Tomando-se F, = (—k, 0) e F, = (k, 0), determine a equacao, em coordenadas
cartesianas, da lemniscata.

b) Passe para coordenadas polares a equacdao obtida no item a) tomando para
polo a origem e x como eixo polar. Desenhe a curva.

13.8. COMPRIMENTO DE CURVA EM COORDENADAS POLARES

Consideremos a curva dada em coordenadas polares por

p=pO),a<<p,

sendo a funcdo suposta de classe C' no intervalo [a, f]. Em coordenadas paramétricas,
esta curva se escreve da seguinte forma

x=p(@)cos® e y=p(B)senh,a<O<p.

Utilizando a féormula de comprimento de curva em forma paramétrica (observe que
aqui o pardmetro t esta sendo substituido pelo pardmetro 0), temos

\(d
comprimento = J i \
o k (fﬁ
dx _ dp dv dp
i cos §— psenfl e ——=——senf + pcos @, resulta
6 db P 6 a6 P
( dx W | {Jr"u _ : + -Id_p]‘_‘ onde p= p(e) (Verifique.)
\de /) \de) . de

Assim, o comprimento da curva p = p(0), a < 6 < 3, em coordenadas polares, é
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. B |
comprimento = J p? -I— |
o \ dﬁ

Nosso objetivo a seguir ¢ interpretar geometricamente a diferencial

p* +| dp \” | d6. Seja, entdo, s = s(0), 0 €[a, ], o comprimento do trecho da curva

de extremldades (o, p () e P = (6, p (B)). Sejam As e Ap as variacoes em s e p
correspondentes a variacdo df, em 60, com df > 0. O comprimento do arco (de
circunferéncia) PM de abertura df e raio p = p(6) é p df; por outro lado, o
comprimento do segmento MN é Ap. Para df suficientemente pequeno, Ap ~ dp, PMN
€ quase um triangulo retangulo e

s % (p dO)’ + (Ap)?

ouseja, As= |p2? + [{j—"‘;}h do.
! g

EXEMPLO. Calcule o comprimento da curva p = sen 6, 0 < 6 <, em coordenadas
polares.

Solucgdo

De p = sen 0, segue :;—g = cos #. Dal

(dp \

5 J dg = J::«b-'l.(sen 0)° + (cos9)* do =r.

comprimento = JJr pt+ L

O comprimento da curva é it (unidades de comprlmento) (Observe que p =sen 0 é a

1
equacdo de uma circunferéncia de centro | 0, — | e raio —. Confira.) =
/..

Exercicios 13.8

Calcule o comprimento da curva dada em coordenadas polares.
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1. p=6,0<0<n
2. p=e?0<0<2n
3. p=1+cosh,0<0<n

4. p=5ecti'.{}=fé.ﬁ-sé.1%

1 .
p=—1=8=< -3
6

6. p=040<6<1

13.9. CENTRO DE MASSA

Consideremos um sistema de “massas pontuais” m,, m,, ..., m, localizadas nos
pontos (X1, ¥1), (X2, ¥9), -y (X, ¥,,). O centro de massa do sistema é, por definicdo, o
ponto (x,, y.) onde

"

z X;jm;

xm + xamy +..TX,my, i=1
i

A 7

ny+ngt+..ttm,
m;

Vi Yoyttt VM, i
m+m+..+m, ia

EXEMPLO 1. Determine o centro de massa do sistema constituido pelas massas m;,
m, localizadas nos pontos (x;, y;) € (x5, y»), supondo m = m; = m,.

Solucgdo

Xy Tt XatH, X+ x5

my + m, 2

_ymtyrmm _ ynty

my + ma 2

Deste modo, (x. y.) € o ponto médio do segmento de extremidades (x;, y;) e (xy,
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yy). ®

EXEMPLO 2. Considere o sistema de massas m,, m,, ms localizadas em (xy, y;), (X5,
y,) € (X3, y3). Seja M; = m; + m, e considere o sistema M; e m;, com M, localizada no
centro de massa de m;, m,. Verifique que o centro de massa de M;, m; é 0 mesmo que
o de my, m,, m.

Solugdo

Seja (X, V) o centro de massa de m, e m,:

— Xpmy t+ Xamy — yymy t+ yams
xX= —=— e y==- ——
) + o My + o

Seja(Xx.. V) o centro de massa de M,, mj:

— XMy +xamy  xymyp+ xomy + xamy

X Xe
M|+ my my + my +my
/ \
— xXimp + x2m?
xMy = = — M| = xymy + xam>y
my + > )
5w yM| + yamz _ yymy + yamo + yvamy y
i M +mj my + my +my 4
Assim,
(Xc: ¥e) = (X, ¥,)- B

Deixamos a seu cargo generalizar o resultado do Exemplo 2.

Vejamos, agora, como determinar o centro de massa de uma regidao A do plano que
sera imaginada como uma lamina delgada, homogénea, de modo que a densidade
superficial p é constante (p é massa por unidade de area). Suponhamos, inicialmente,
que A possa ser decomposta em n retangulos R;, R,, ..., R,. Seja m; a massa do

retangulo R;: m; é o produto de p pela area de R,. Neste caso, definimos o centro de
massa de A como o centro de massa do sistema m;, m,, ..., m,, com m; localizada no
centro de R,.

Suponhamos, agora, A da forma

A={xy) €ER*|a<x<b, f(x)<y<g ()}
em que f e g sdo supostas continuas em [a, b], e f (x) < g (x) em [a, b]. Seja

P:a=Xx,<x; <x,<..<x,=buma particao qualquer de [a, b] e seja c; o ponto médio
de[x;_,x](i=1,2,..,n).
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R;

I I g

I ' 5 {c;) + F(c;)

| - I (“:'= 3 A - am)
| I 1 =

| ! !

[ ! ;

| 1
+ 4 f‘ -
& Wy Sy b x

A massa m; de R; &: m; = p [g (¢;)) = [ (c)] Ax;. O centro de massa da figura formada
pelos retangulos R, R,, ..., R, €:

i n ] N

> cinlgien— f@)Ax Y Slg e+ f el - f ()] Ay
i=1 i=1
Z plg (c;)— f (¢;)] Ax; Z plg(ci)— f(c)]Ax;

i=1 i=1

Nada mais natural, entdo, do que tomar como centro de massa de A o ponto (X, y.)
onde

n

Z ci lg(e;) — f ()] Ax; j;[g{x}—f{l}]fh

i=1

X.= lim =4
méix Ax,—0 arecade A
Y gl = f Ay,
i=1
e
n
1 : :
Y. S lstc+f (@glc— f () Ax;
: i=1
ve = lim
max Ay, —0 n
> g (c) = f (@) Ax;
i=1
1 P
= [g(x)+ f(x)l[g(x)— f(x)]dx
- area de A '
Ou seja,
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b
J x[g(x)— f(x)]dx
x, ==°f

dreade A

|
> [ leo+ 7 om0 = 7 (1

dreade A

.I‘r!I i

Suponha, finalmente, que A possa ser decomposta em n regides A;, A,, ..., A,, onde

Ai={(xy) ER*|aq;<x<b; fi(x) <y <g; 0}

com f;, g; continuas em [a;, b;] e f; (x) < g; (x) em [a;, b;]. Como vocé calcularia o centro
de massa de A?

EXEMPLO 3. Determine o centro de massa da figura A limitada pela reta y = 1 e pela
paréabola y = x%.

Solugdo
l v
J x(1— x2) dx A
= =0
drea de A ‘
1 ] ) )
—J (+x°)A—x")dx P
V., = 2 - = E A
o area de A 5
0] centro de massa de A é 0 ponto
{ 2 A
L = J ®
tu )7
EXEMPLO 4. Calcule o centro de massa do conjunto A = {(x,y) € R? | 1 < x* +y* <
4,x>0ey>0}.
Solucgdo

Vamos imaginar A como uma lamina delgada, homogénea, com densidade
superficial p = 1. Sendo m; e m, as massas de A; e A,, respectivamente, teremos, por
serp =1,

m; = area A; e m, = area A,.
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-

Sejam (x;, ¥;) e (x,, y,) 0s centros de massas de A, e A,, respectivamente. O centro de
massa de A sera, entdo, o centro de massa do sistema m;, m, com as massas

localizadas, respectivamente, em (x;, ¥;) e (x,, y,). Sendo, entdo, (X, y.) 0 centro de
massa de A teremos

XMy + Xamo> Vi T+ Vo
= —= € Y. =- SR M

‘ my + m> ¢ my + mo
Como
L = . i 2 —
j,x-[ﬂ.-at — x? — [1— x? 1dx jxﬂ .
Xy =0 . Xy = ’
area A, area A,
1 | f a2 . f 7.9 1 2 | .9
| 1642 ) = (1= 52 )1ax [ (a2 ax
o T - e ]
.1|. et - E -12 " e
area A] area AE
resulta
1 — 2 —
J;},r[xv-'cl—:c* —J1- 2 ]dx—i—J xJ4—x2 dx
l
Xo =
‘ area A
2 - 1 —
J XA 4—x= dx— J Xfl—x° dx
_J0 0
drea A
e
1 ¢! 1 2 7 12
—j Scfx—i-—j {4—.1(3}:'&; ———j x2 dx
v, =_240 2 _2 24
ik darea A area A
Temos:
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Segue que

Vejamos, a seguir, como determinar o centro de massa do grafico de uma funcao,
que serd imaginado como fio fino, homogéneo, de modo que a densidade linear p é
constante (densidade linear é massa por unidade de comprimento). Seja f uma funcao
definida e com derivada continua em [a, b]. Seja P : a = x, < x; <X, < ... <X, = b uma

3
dreade A = —;

)

2 0,
J X ‘-.4 — xz dy=— lj Vi du=
0 2J4

l i = 1 ¢0 .
J x-\ﬁ:l—,r* dx=—5 Vi du=

¥ s )

s s
X, =— g V.= —
C o L

T Qqr

particao de [a, b] e sejac; (i = 1, 2, ..., n) o ponto médio de [x; _ 4, X;]

O segmento P; _ ,P; é tangente em (c;, f (c;)) ao grafico de f: o comprimento deste
segmento € |+ f’{q)]? Ax; (veja Secdo 3.4); logo, sua massa m; é:

m;= p ] +[F"
L Pi(i=1,2, ..,

n

>

=1

y 4

; wr_-,f{ci-}j

.—..-u ——

1

1

+ -
I Xj € X b

(c; \,]f Ax;. O centro de massa do sistema formado pelos segmentos P;

n) é o ponto

H
GoVTHL ()P Ax Y flepyT+If ()P Ax,

=1

5

i=1

Nada mais natural, entdo, do que tomar para centro de massa do grafico de f o ponto

P+ @) A pI+Lf () Ax,

=1
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(Xe y) em que

b
[ 1+ o ax
o

L
j JIHLF (O dx

1

h F
FWL+f'(x)]? dx
[t}

¥c =

b
j JIHLF (O dx
i

b
Observe que J \_51 +[f( ﬂ]f dx é o comprimento do grafico de f.

a

Observacao importante. O centro de massa de um conjunto do plano ndao tem
obrigacdo alguma de pertencer a este conjunto.

Exercicios 13.9

1.

Determine o centro de massa da regiao A dada.

A)A={(x,y) ER?|0<x<1,0<y<x’}
b)A={(x,y) ER*|x*+4y’<1,x>0ey>0}
A)A={(x,y) ER?|xX*+4y°<1,y>0}
d)A={(x,y) ER*|x*<y<x}

Determine o centro de massa do grafico da funcao dada.

DfE) = J4—x2, -2<x<2

e I
JJ}-..f‘{-JI} = -1{-‘_\- e E-: x :EL\:- T

2 2

: T
oOfx)= ———-1=sx=s1

(Teorema de Papus.) Considere o conjunto

A={(xy) ER*|a<x<b f(x)<y<g ()}
em que f e g sdo supostas continuas em [a, b] e 0 < f (x) < g (x) em [a, b].

Mostre que o volume do so6lido, obtido pela rotacdo em torno do eixo x do
conjunto A, é igual ao produto da area de A pelo comprimento da
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10.

circunferéncia descrita pelo centro de massa de A.

Sejam f e g continuas em [a, b], com a < f (x) < g (x) em [a, b] em que o é um
real dado. Seja o conjunto

A={(x,y) ER?’|a<x<b,f(x)<y<g )}

Mostre que o volume do sélido, obtido pela rotacdao em torno da reta y = a do
conjunto A, é igual ao produto da area de A pelo comprimento da
circunferéncia descrita pelo centro de massa de A.

Calcule o volume do sélido obtido pela rotacdo do circulo x* + (y — 2)*> < 1 em
torno

a) do eixo x
b) daretay=1.

Calcule o volume do sélido obtido pela rotacdo da regido x* + 4y* < 1, em
torno daretay = 1.

SejaA={(x,y) ER?|x*<y<1}.

a) Calcule o centro de massa de A.
b) Calcule o volume do s6lido obtido pela rotacdo de A em torno da reta y = 2.

Calcule o volume do sélido obtido pela rotacdo do circulo x* + y* < 1 em
tornodaretax +y = 2.

(Teorema de Papus para drea de superficie de revolugdo). Suponha f (x) > 0 e
com derivada continua em [a, b]. Mostre que a area da superficie, obtida pela
rotacao em torno do eixo x do gréfico de f, é igual ao produto do comprimento
do grafico de f pelo comprimento da circunferéncia descrita pelo centro de
massa do grafico de f.

Seja A o conjunto do plano de todos os (x, y) taisque 0 <a<x<b, 0 <f(x) <
y < g(x), em que f e g sdo supostas continuas em [a, b]. Imagine A como uma
lamina delgada, homogénea, de modo que a densidade superficial p é
constante (p é massa por unidade de area). Seja (x., y.) o centro de massa de

A. Sejam V, o volume do sdlido obtido pela rotacao de A em torno do eixo x e
V, 0 volume obtido pela rotagdo de A em torno do eixo y. Pelo teorema de
Papus (Exercicio 3 acima), V, é igual ao produto da drea de A pelo

comprimento da circunferéncia gerada, na rotagcdo em torno do eixo x, pelo
centro de massa de A. Do mesmo modo, V), é igual ao produto da drea de A

pelo comprimento da circunferéncia gerada, na rotacdo em torno do eixo y,
pelo centro de massa de A. Pois bem, destas informacoes conclua que
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11.

12.

13.

14.

15.

16.

17.

Vy Vy

Xe =_—— e Ve = -
2ar(area de A) 2a(area de A)

Determine o centro de massa da regido A dada por 1 < x? +y’<4,x>0ey>
0. (Sugestdo: Com as fungdes f e g dadas por f(x)= 4 —y2 0<x<2e
glx)= ] —x2se0<x<1loug(x)=0sel<x<?2o teorema de Papus se
aplica. éalcule entdo V), V, e a area de A e utilize o Exercicio 10. Compare a
sua solucao com a do Exemplo 4.)

Determine o centro de massa da regido A dada por 4x*> + y* < 4, y > 0.
(Sugestdo: Para o célculo de x, aproveite a simetria da figura.)

Calcule o centro de massa do setor circular A dado por x* + y* <R*, 0 < y < «
xe0<x<R,comR>0eO<aq.

Suponha que a regido A do plano, situada no semiplano y > 0, possa ser
dividida em duas partes A, e A, as quais se aplica, em relacdao ao eixo x, o
teorema de Papus. Suponha, ainda, que a area de A seja igual a soma das areas
de A,eA,eV, =V, +V, emque V,, V,, e V, sdo os volumes respectivos
dos solidos obtidos, pela rotacdao em torno do eixo x, de A,;, A, e A. Mostre
que, em relacdao ao eixo x, o teorema de Papus aplica-se, também, a A.
(Estabeleca resultado analogo em relacdo ao eixo y, supondo A situada no
semiplano x > 0.)

Sejam A; = {(x,¥) | 1<x<3,1<y<2} A ={(x,y)|2<x<4,2<y<3}e
A areunido de A, e A,. Determine o centro de massa de A.

Determine o centro de massa do conjunto -1 < x <3 e 0 <y < (x + 1)°
(Sugestdo: Resolva o problema no plano (u, y), comu =x + 1.)

Utilizando o Exercicio 9, estabeleca, para grafico de funcdo, resultado
analogo ao do Exercicio 10.
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14

EQUACOES DIFERENCIAIS DE 1. ORDEM DE VARIAVEIS
SEPARAVEIS E LINEARES

14.1. EQUACOES DIFERENCIAIS: ALGUNS EXEMPLOS

As solugdes de muitos problemas que ocorrem tanto na fisica como na geometria
dependem de resolucdes de equagdes diferenciais. Vejamos alguns exemplos.

EXEMPLO 1. Uma particula desloca-se sobre o eixo x de modo que, em cada instante
t, a velocidade é o dobro da posicdo. Qual a equacgdo diferencial que rege o
movimento?

Solugdo

Neste problema, o que nos interessa determinar é a funcdo de posicao x = x (t). De
acordo com o enunciado do problema, o movimento é regido pela equagdo diferencial
de 1. ordem

d;l =P

dt

Conforme o Exercicio 2 da Secao 10.1, as funcdes que satisfazem tal equacdo sao
da forma x = ke*, k constante. Assim, a funcdo de posicdo do movimento é da forma x
=ke’. =

EXEMPLO 2. Uma particula de massa m = 1 desloca-se sobre o eixo x sob a acao de
uma Unica forga, paralela ao deslocamento, com componente f (x) = —x. Qual a
equagdo diferencial que rege o movimento?

Solucgdo

Pela lei de Newton

Assim, o movimento é regido pela equacdo diferencial de 2. ordem
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d=x

—+x=0D.
dt+

Uma solugdo desta equacdo é uma funcdo que é igual a oposta de sua derivada
segunda. Por exemplo, (sen t)” = —sen t, assim x = sen t é uma solucdao da equacao.
Veja, sendo x = sen t, para todo t,

d?x .
—+ x=(sent)" +sent=0.
dt=

A funcgdo x = cos t é também solucdo (verifique). Veremos posteriormente que as
funcoes que a satisfazem sdo da forma x = A cos t + B sen t, com A e B constantes. ®

EXEMPLO 3. Determine uma funcdo y = f (x) que satisfaca a propriedade: o
coeficiente angular da reta tangente no ponto de abscissa x é igual ao produto das
coordenadas do ponto de tangéncia.

Solugdo
Se f é uma tal funcdo, para todo x no seu dominio

fx)=xf ).

Assim, a funcdo y = f (x) procurada é solugdo da equagdo diferencial de 1.° ordem

dy

= XV.
dx

Veremos mais adiante como determinar as funcdes que satisfazem tal equacdo. ™
14.2. EQUACOES DIFERENCIAIS DE 1. ORDEM DE VARIAVEIS SEPARAVEIS

Por uma equagdo diferencial de 1.® ordem de varidveis separdveis entendemos uma
equacao da forma

dx :
@® — =g () h(x)
dt
em que g e h sdo fungoes definidas em intervalos abertos I, e I,, respectivamente.

Uma solugdo de O é uma funcdo x = x (t) definida num intervalo aberto I, I C I,
tal que, para todo t em I,

X(6) =g © h(x(0).

EXEMPLO 1. E= tx2 é uma equacdo diferencial de 1.* ordem de variaveis

dt
separdveis. Aquig () =teh(x)=x*>. =

535



EXEMPLO 2. ax =12 4+ x2 é uma equacdo diferencial de 1. ordem, mas ndo de

di
variaveis separaveis. ®

EXEMPLO 3. Verifique que x(f) = r‘:z T -1 <t < 1, é solugao da equacao

dx 9
—=1x".
dt

Solugdo
Precisamos mostrar que, para todo t em ]—1, 1[,
X () =tx @O
Temos

2 ¢ 4t
e

=

X (=|- e GG 1
> ‘ (2 — 1)

2

)

— 41
tx(OP =t-| - = _
L@l L~ —1} (t? — 1)?

Logo, para todo t em ]-1, 1],

X' () =t [x ()

ouseja, x (f) = — i —-1<t<1, ésolucdo da equacdo. =
lra— J—

Na equacdo @, x estd sendo olhado como varidvel dependente e t como variavel
independente. A equacdo @ pode também ser escrita na forma

dv
— = g(x) h(y)
dx . '

em que, agora, y é a variavel dependente e x a independente.

Exercicios 14.2

1. Assinale as equacoes diferenciais de variaveis separaveis.
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d 3

o= = R
dt dx X
ix d

)= =1+ d = =x+t
dt t
dy  x+y d

g 2T P =xa+A
dx -+ 1 dt

T T dx 5
a)x(f)=tgt, ——<t<—e —=1+x
2 2 dt
_2 if"f )
B) Y= e — =xy°
' x<+1 dx z
d.-.
c)x(f)=4e o =f{.¥2 — 16)
dt
dx x% —1
dx(=11t>0e — = PE
dt i
La |
;_:l} _‘||_1 = g 2 e e .-".I_T
dx

3. Determine as funcbes constantes, caso existam, que sejam solucOes da
equacao dada.

dx dx

a) Z =12 p) E = 2
dt dt
AN dv

)= =y 4+ 2ay + 1 d) = =14+
dx : : dx :
dx dx x

el — =t{x—1) — = —_ =0
dt dt i

14.3. SOLUCOES CONSTANTES

Consideremos a equacao de variaveis separaveis
dx
— =g (1) h(x)
® 5 =8

com g e h definidas em intervalos abertos I, e I,, respectivamente, e g ndo
identicamente nula em I,.
Consideremos a funcdo constante

@ x(®)=atel.
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Se h (a) = 0, entdo x (t) = a, t € I, sera solugdo de D (por qué?). Reciprocamente,
se @ for solugdo de @, devemos ter para todo t em I,

0=g(®h(a)

e como g (t) ndo € identicamente nula em I, resulta h (a) = 0. Assim,

x (t) = a, t € I, (a constante) é solucdo de @D se, e somente se, a for raiz da
equacao h (x) = 0.

EXEMPLO 1. Determine as solucdes constantes de % =t(1 — _1'2],
I

Solugdo
h(x)=1-x3h(x)=0<1-x*=0.Como
1-x¥*=0ex=1oux=-1
resulta que
x(=1lex(t)=-1

sdo as solugOes constantes da equacao. ®

EXEMPLO 2. A equacdo ? = 4 + x* ndo admite solucdo constante, pois h (x) = 4
I

+ x° ndo admite raiz real. =

Exercicios 14.3

Determine, caso existam, as solucdes constantes.

l.dr—‘1.=i'_1':E E.HT—'Y=1£—-
dt dt
3.£=f{l+_r2} 4_d_x=l
dt dt X
de 2 -1 de  x2—1
3, = 6. — = R £
dt X dt t

14.4. SOLUCOES NAO CONSTANTES
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O teorema que enunciamos a seguir e cuja demonstracdo é deixada para o
Apéndice 4 nos sera util na determinagao das solu¢des ndo constantes.

Teorema. Seja a equacgao

@® -%=gmhm

at

em que g e h sdo definidas em intervalos abertos I, e I,, respectivamente, com g
continua em I, e h' continua em I,. Nestas condicdes, se x = x (t), t € I, for
solugdo ndo constante de D, entdo, para todo t em I, h (x (¢)) # 0.

Vejamos, entdo, como determinar as solug¢des ndo constantes de @, supondo que g
e h satisfacam as condicdes do teorema anterior.

Suponhamos que x = x (t), t € I, seja uma solugdo ndo constante de D; assim, para
todo t em I,

X0 =g ©hx(@®)
ou

X1

) B
@ hx ) S

Seja J = {x (t) | t € I}; J é um intervalo, pois x = x (t) é continua. Observe que para

todo x em J, h (x) # 0. A funcao ; sendo continua em J admite uma primitiva H

1(x)

(x), neste intervalo: H' (x) = .Xx € J. Segue que, para todo t em I,

h(x)
x'(1)
©) [H(x@®)] = m'
Resulta de @ e 3 que, para todo t em 1,
@ [H (x ()] = g (D).

Sendo G (f) uma primitiva de g em I, segue de O que existe uma constante k tal
que, para todo t em I,

® Hx(®) =G®+k

Como h (x) # 0 em J e pelo fato de h ser continua, segue que mantém o

h (x)
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mesmo sinal em J, logo, H é estritamente crescente ou estritamente decrescente em J
e, portanto, inversivel. Sendo - a fungdo inversa de H em J, resulta de ® que

x(O)=H (G(t)+k),t€EL
Por outro lado, deixamos a seu cargo verificar que toda funcao do tipo

x()=H (G(t)+k)

é solugdo de O, onde 2 é a inversa de uma primitiva de num intervalo em que

h (x)
h (x) # 0, G (t) uma primitiva de g (t) num intervalo I C I, e k uma constante.

14.5. METODO PRATICO PARA DETERMINAR AS SOLUCOES NAO CONSTANTES

Seja a equacgao
@® fg=ewmn1
dr ° '

com g e h nas condigOes do teorema da se¢do anterior. O quadro que apresentamos a
seguir fornece-nos um roteiro pratico para determinar as solu¢des ndao constantes de

.

d
—;=gmhﬁi

dx
hlx)

= g (f) dt (separagdo das varidveis)

J ;;; =J g (1) dt

Hx)=G(1) +k

EXEMPLO 1. Resolva a equacao

.

dx
— =X f
dt

Solucgdo
Inicialmente, vamos determinar as solugdes constantes.
h(x)=x3x*=0e=x=0.
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Assim, x (t) = 0 é a Uinica solugdo constante.
Vamos, agora, determinar as solugdes nao constantes.

dx 7
dt
df = tdt
X~
1
j i dx=j  dt
X~
2
12,
X 2
-2
X =
1= + 2k

Como g (t) = te h' (x) = 2x sdo continuas resulta

x(t)=0
e
x(H)= W 2 (k constante)
42k ‘

é a familia das solu¢des da equacao.

x(£)}
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EXEMPLO 2. Com relacdo a equacao do exemplo anterior, determine a solucdo que
satisfaca a condic¢do inicial dada.

N x(1)=0
) x(0)=1
) x(0)=-1
Solugdo

1) A solucdo constante x (t) = 0 satisfaz a condigao inicial x (1) = 0.

) b) x (1) = 2_—22}1 ex(0)=1.
Assim,
= ou k=—1.
0- + 2k
Segue que

X {f}= 3 ,—1.-"2 <t << '-\-'2,
2 )

satisfaz a condicdo inicial dada. (Lembre-se: o dominio de uma solu¢do é sempre um
intervalo; no caso em questdo, tomamos —/2 << t << +/2, pois o dominio deve conter
t=0.)

c) xX(f) = j—ZET(D} = —1.

1= +.2k
—-1= ,,_2 ouk =
b i
Segue que
x (f) = ,,_2 . TER
iy

satisfaz a condicdo inicial dada. m

EXEMPLO 3. Resolva ‘:‘;—X = xt2,
t

Solucgdo
x (t) = 0 é a tnica solugdo constante.
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Determinemos, agora, as solucdes ndo constantes.

dx
= =2 dr
X
dx
—=J 2 dt
X
£3
Inlxl= —+Kk
dai
id
|_r|=€£1 g3
ou
i
Ixl=ky €3, kp >0 (kg = ')
] il 2
Sex>0,x=kyed esex<0,x=—kre? seguequex= ke3, 6 k#O0real

qualquer. Para k = 0, temos a solucdo constante x (t) = 0. Assim
o
x(H)= ke3  kreal,

é a familia das solu¢Oes da equacdo. ™

EXEMPLO 4. Determine a funcao y = f (x) tal que f (1) = 1 e que goza da
propriedade: o coeficiente angular da reta tangente no ponto de abscissa x € igual ao
produto das coordenadas do ponto de tangéncia.

Solucgdo

Para todo x no dominio de f devemos ter

f) =xf ().

Assim, a funcao procurada é solucao da equacao

Temos
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Para k = ——. a condicdo y = 1 para x = 1 estara satisfeita. Assim, a funcao

ba | —

procurada é

By
ou y=—¢ b |

EXEMPLO 5. Determine o tempo necessario para se esvaziar um tanque cilindrico de
raio 2 m e altura 5 m, cheio de agua, admitindo que a agua se escoe através de um
orificio, situado na base do tanque, de raio 0,1 m, com uma velocidade

v= ./ 2gh m/s, sendo h a altura da dgua no tanque e g = 10 m/s® a aceleracio
gravitacional.

Solugdo

Seja h = h (t) a altura da agua no instante t. O volume V = V (t) de agua no tanque
no instante t sera

V(@)=4nh (1)
e assim

’
o av _, dh,

dt E

Por outro lado, supondo At suficientemente pequeno, o volume de agua que passa
pelo orificio entre os instantes t e t + At é aproximadamente igual ao volume de um

cilindro de base nr® (r raio do orificio) e altura v () At (observe que a 4gua que no
instante t esta saindo pelo orificio, no instante t + At se encontrara, aproximadamente,
a uma distancia v (t) At do orificio, onde v (t) é a velocidade, no instante t, com que a
agua esta deixando o tanque). Entdo, na variacdo de tempo At, a variacao AV no
volume de agua sera

AV = —v (t) nr? At.
E razoével, entdo, admitir que a diferencial de V = V (t) seja dada por

dV =—v (t) nr* dt
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ou que
@ — = —uv(l) 1‘?‘1‘2,

De D e @ resulta

d—? = —u(f) .

4 7
d

Sendo v = -/20h e r= 0.1, resulta que a altura h = h (t) da dgua no tanque é
regida pela equacao

i —0,01+20h, h > 0.
dt

Temos

De h (0) = 5, resulta k = 400. Assim

B2 o ADOY2
400

2

O tempo necessario para esvaziar o tanque sera entao de 400 segundos ou 6 min 40
s. =m

EXEMPLO 6. Uma particula move-se sobre o eixo x com aceleracdo proporcional ao
quadrado da velocidade. Sabe-se que no instante t = 0 a velocidade é de 2 m/s e, no
instante t = 1, 1 m/s.

1) Determine v = v (t), t > 0.

)) Determine a fungdo de posicao supondo x (0) = 0.

Solucgdo

) O movimento é regido pela equacao

duv -
— = v~
dt
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em que o é a constante de proporcionalidade.

d—?=J{IcJ’I
v-
1
——=af + &
v
ou
=
at + k
Parat =10, v =2, assim
=L gt
= . ouk = 2
Parat=1,v =1, assim
. -
= lou&— >
a-—_
2
Portanto,
U{ﬂ=i, =10
1+t
b‘rd—x=i,r;eﬂ.
dt 1+t
de= 2
1+t

x=2In(1+0+k
Tomando-se k = 0, a condicdo inicial x (0) = 0 estara satisfeita. Assim,

x(®=2ln(l+f). m

Exercicios 14.5

1. Resolva
dx dv -
a) — = xt b — =y~
dt drx
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iv
oL =2+
dx
dx t
e)—=—,x=0
dt ¥
}d,l' 2 ]
Eiscosmcgll
i dt
dv -
[) — =v —v
dt
dy 14 y?
|'r} ——. = X -~ D
dx X
n}ﬂi: U =10
du 0=
T ra
p)—=cos"y, —— <y < —
X 2 2
dy L 3
F) —=cos"y, — < y< —
dx 2 ’ 2
dW

c
= — (C constante)

dV

o) — =

dt 141

q) — = i

dx t T
-
dt CoOs X 2

dx
1) e = ax (x + 2) (@ constante)
dt

Determine y = y (x) que satisfaca as condi¢es dadas.

v . Iv
n']li=-:=}e_vl[{]}=l ;;}i=}~3_4e}1,[|}=2
dx dx
1y 1 rAY
c‘}i=3}'ge}‘{ﬂ}=— cf}i=_v3—4e_v{ﬂ}=l
dx 2 dx
dVv Vv
Suponha que V =V (p), p > 0, satisfaca a equacao 5 = —— (y constante).
dp w

Admitindo que V =V,, V; > 0, para p = p,;, mostre que V'p = V,"p,, para todo

p>0.

O coeficiente angular da reta tangente, no ponto de abscissa x, ao grafico de y
= f (x), é proporcional ao cubo da ordenada do ponto de tangéncia. Sabendo

1
que f(0)=1e f(l)= T~determine f.

A2

Um corpo de massa 10 kg é abandonado a uma certa altura. Sabe-se que as
unicas forcas atuando sobre ele sdo o seu peso e uma forca de resisténcia
proporcional a velocidade. Admitindo-se que 1 segundo apos ter sido
abandonado a sua velocidade é de 8 m/s, determine a velocidade no instante t

(suponha a aceleragdo da gravidade igual a 10 m/s?).

A reta tangente ao grafico de y = f (x), no ponto (x, y), intercepta o eixo y no
ponto de ordenada xy. Determine f sabendo que f (1) = 1.



7. Determine a curva que passa por (1, 2) e cuja reta tangente em (x, y)
intercepta o eixo x no ponto de abscissa :

8. Um corpo de massa 70 kg cai do repouso e as unicas forcas atuando sobre ele
sdao o seu peso e uma forca de resisténcia proporcional ao quadrado da
velocidade. Admitindo-se que 1 segundo apds o inicio da queda a sua
velocidade é de 8 m/s, determine a velocidade no instante t. (Suponha a
aceleracdo da gravidade igual a 10 m/s*.)

9. Para todo a > 0, o grafico de y = f (x) intercepta ortogonalmente a curva x> +
2y? = a. Determine f sabendo que f (1) = 2.

10. Para todo a > 0, o grafico de y = f (x) intercepta ortogonalmente a curva xy =
a, x > 0. Determine f supondo f (2) = 3.

11. Determine uma curva que passa pelo ponto (0, 2) e que goza da propriedade:
a reta tangente no ponto (x, y) encontra o eixo x no ponto A, de abscissa > 0,
de tal modo que a distancia de (x, y) a A é sempre 2.

.
12. Verifique que a mudanca de varidvel # = — transforma a equacdo
X
dy ¥ . .. du - . N
— = na de varidveis separaveis — = —————— Determine, entdo,
dx x+vy dx (14 u)x
) N dy _
solucdes (na forma implicita) da equacao — =
dx Xy
13. . ~ ~ dy y — 3x o
Determine solucbes da equagao f_ = - . (Sugestdo: Olhe para o
dx ;-

Exercicio 12.)

14. Verifique que a mudanca de varidvel u = y — x transforma a equacdo
dy 2 . , . du > . ~
— = (y — x)” na de varidveis separdveis — = y“ — 1. Determine, entdo,

dx ' dx

solucoes da primeira equagao.

14.6. EQUACOES DIFERENCIAIS LINEARES DE 1. ORDEM

Por uma equagdo diferencial linear de 1.” ordem entendemos uma equacao do tipo

: dx
) — =g i)l
7 g f

| =k

em que g e f sdo funcdes dadas, continuas e definidas num mesmo intervalo I.

EXEMPLO 1. ﬁ = xt + 1 élinear de 1.? ordem; aquig (t) =tef(t)=1. =

dt
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Ix - . . e Lo
EXEMPLO 2. &&= y% é linear de 1.? ordem (é também de variaveis separaveis);

dt
aquig(H=tef()=0. m

EXEMPLO 3. & _ 5.2

7 + sent ndo é linear (também ndo €é de variaveis
t

separaveis).

Observe que na equacado linear, tanto a variavel dependente como sua derivada
ocorrem com grau 1.
Se f () = 0 em I, a equacdo D é de varidveis separaveis e a solugdo geral serd

x = ke®® (k € R)

em que G é uma primitiva de g em I. Por simplicidade, escreveremos

" =k€"|‘g[” {f."{k /)

em que f o (1) dt estara representando, entdo, uma particular primitivade g. =

EXEMPLO 4. Resolva a equacao % = x%.
r

Solugdo

Trata-se de uma equacao de 1.? ordem, linear e de variaveis separaveis. A solucao
geral é

J‘ 12 dt

x = ke ke /)

ou

Ir’%

x:= keI

Vamos, agora, resolver D no caso em que f (t) ndo é identicamente nula em 1.
Observamos, inicialmente, que

1 —[e ol T 0
B YA BN e )l - [g(tydr _
(J'rf nlrf

d. o

dt
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Isto é,

(—f[xe_Jg{”dr]= [d_,r_ x g{ﬂ} e
dt dt

A igualdade acima nos indica um caminho para obtermos a solugdo geral de O no
caso em que f (¢) ndo é identicamente nula em I. Temos que D é equivalente a

dx
— = (f) = f(1).
dt %k ]

- Jle (1) dt

Multiplicando os dois membros pelo fator integrante ¢ . obtemos

[%—,\:g(r‘;}fﬁ”“"’ Y LA

ou

%[M_J‘gmdr]=fm .?_IH'[T}R?.
Dai

% [xe g {r}dr] - J'g{r}ﬁr;.
ou

X = kejg{r}{# +€Jg{r}{# J f(r) E_Jg{r}{# d (ke R)

que é a familia das solucdes da equacdo . =

Na férmula acima, J g(hdte J f E_J g (D)t ¢t indicam particulares primitivas

de g(hef(n E—Jﬁ{?‘}cﬁ respectivamente.

EXEMPLO 5. Resolva a equacgao ? = 3x + 4.
t

Solucgdo

Aqui g (t) =3 e f(t) = 4. O fator integrante é E_I 3dr _ ¢ 3" Entdo
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[d_x — 31} e 3 = 43

ou

‘:g
x=ke’ —

W |

E claro que vocé poderia ter aplicado diretamente a férmula obtida
anteriormente. ®

Exercicios 14.6

1. Resolva.

d_-. -'.

n']l—t=—,r+2 Er};=2.¥—l
dt dt

(‘}£=rs:‘.nf d}£=i+f~r}ﬂ
dt dt I
1y dl

t:}i:_l{'—y f}—=—2{T—3}
dx dt
dx '

g) D x4 sent h) L. —2y + cos 2x
dt dx

£}£=vlnr j}£= ,,} L1l ==x=1
dx dx x- —1

2. Suponha E, R e C constantes nao nulas. Resolva a equacao.

g _2 RE L2
dr C dr C

a) r E

3. Suponha E, R e L constantes nao nulas. Determine a solugdo i = i (t) do
problema
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dli .
L —+ Ri=E
dt

‘_ i(0)=0

4. Um objeto aquecido a 100°C é colocado em um quarto a uma temperatura
ambiente de 20°C; um minuto apos a temperatura do objeto passa a 90°C.
Admitindo (lei de resfriamento de Newton) que a temperatura T = T (t) do
objeto esteja variando a uma taxa proporcional a diferenca entre a temperatura
do objeto e a do quarto, isto €,

ar
dt

= a (T — 20) (x constante)

determine a temperatura do objeto no instante t. (Suponha t dado em
minutos.)

5. Um investidor aplica seu dinheiro em uma instituicdo financeira que

o . . dC
remunera o capital investido de acordo com a equacao T —o008cC
dt

a) Supondo que o capital investido no instante t = 0 seja C,, determine o valor
do capital aplicado no instante t.

b) Qual o rendimento mensal que o investidor esta auferindo? (Suponha t dado
em meses.)

6 Um capital C = C (t) esta crescendo a uma taxa dd_i proporcional a C. Sabe-se
t
que o valor do capital no instante t = 0 era de R$ 20.000 e 1 ano apds, R$

60.000. Determine o valor do capital no instante t. (Suponha t dado em anos.)

. L . dm .
Um material radioativo se desintegra a uma taxa 3 proporcional a m, em que
at
m = m (t) é a quantidade de matéria no instante t. Supondo que a quantidade

inicial (em t = 0) de matéria seja m, e que 10 anos apds ja tenha se
desintegrado + da quantidade inicial, pede-se o tempo necessario para que
metade da quantidade inicial se desintegre.

Uma particula desloca-se sobre o eixo x com aceleragdao proporcional a
velocidade. Admitindo-se que v (0) = 3, v (1) = 2 e x (0) = 0, determine a
posicdo da particula no instante t.

Determine a funcao y = f (x), x > 0, cujo grafico passa pelo ponto (1, 2) e que
goza da propriedade: a area do triangulo de vértices (0, 0), (x, y) e (0, m), m >0
é igual a 1, para todo (x, y) no grafico de f, em que (0, m) é a intersecdo da reta
tangente em (x, y) com o eixo y.

552



553



15

TEOREMAS DE ROLLE, DO VALOR MEDIO E DE CAUCHY

15.1. TEOREMA DE ROLLE

Teorema (de Rolle). Se f for continua em [a, b], derivavel em ]a, b[ e f (a) = f
(b), entdo existira pelo menos um c em ]a, b[ tal que f (c) = 0.

(> _

Y

B =
Ly
o e ——

Demonstragdo

Se f for constante em [a, b], entdo f(x) = 0 em ]a, b[; logo, existira ¢ em ]a, b[ tal
que f' (c) = 0. Suponhamos, entdo, que f ndo seja constante em [a, b]. Como f é
continua no intervalo fechado [a, b], pelo teorema de Weierstrass, existem x; e x, em
[a, b], tais que f (x,) e f (x,) sdo, respectivamente, os valores maximo e minimo de f em
[a, b]. Como f (x;) # f (x,), pois estamos supondo f ndo constante em [a, b], segue que
X, ou x, pertence a ]a, b[ (estamos usando aqui a hipotese f (a) = f (b)), dai f(x;) = 0 ou
f (x,) = 0. Portanto, existe c em ]a, b[ tal que f (c)=0. =

Exercicios 15.1

1. Prove que entre duas raizes consecutivas de uma funcdo polinomial f existe
pelo menos uma raiz de f'.

2. Suponha f derivavel em R. Prove que entre duas raizes consecutivas de f ha,
no maximo, uma raiz de f.

3. Sejam f e g continuas em [a, b] e derivaveis em ]a, b[, com g (x) # 0 em [a,
b]. Suponha, ainda, que f (a) = g (a) e f (b) = g (b). Prove que existe ¢ em ]a,
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b[ tal que f (c) g (c) =f(c) g’ ().

4. Suponha f continua em [a, b], derivavel em ]a, b[ e tal que f (a) = f (b) = 0.
Suponha, ainda, que 0 < a. Prove que existe ¢ em Ja, b[ tal que

gmens: ALY .
o= . Interprete geometricamente.
5

5 ”“ {TJ ””
- Provequese —+—+ ...+
I 2 n+1

=0.entdo a, + a;x + ... + a,x" = 0 tem

pelo menos uma raiz em ]0, 1.

6. Suponha f derivavel até a 2.% ordem em R e tal que

‘f Fx)+x f'(x)= f(x) paratodox
|_ fla)y=f(b)=10 (a-=< b dados).

Prove que f (x) = 0 em [aq, b].

7. Suponha f continua em [a, b] e derivavel até a 2.* ordem em ]a, b[. Sejam x,,
X, e x, pontos de [a, b], com X, < x; < x,, e tais que f (xy) = f (x;) = f (x,) = 0.
Prove que existe pelo menos um ¢ em ]Ja, b[ tal que f" (c) = 0.

8. Suponha f continua em [a, b] e derivavel até a 3.* ordem em Ja, b[. Sejam Xx,,
Xy, X, € X5 pontos de [a, b], com x, < x; < x* < xa, e tais que [ (x,) = [ (x)) = |
(x5) = f (x3) = 0. Prove que existe pelo menos um c em ]a, bl tal que f” (c) = 0.
Generalize.

9. Suponha f continua em [a, b] e derivavel até a 3.* ordem em Ja, b[. Sejam Xx,,
X, e X, pontos de [a, b], com x, < x; < X,, e P (x) o polinomio de grau no
méximo 2 e, portanto, da forma P (x) = a, x* + a, x + a,, tais que

P (xo) = [ (x0), P (x1) = [ (x1) e P (xp) = f (xp).
Seja z um ponto de [a, b], com z & {x,, X, X,} € seja a o nimero real tal que
f@)=P @)+ (z-x)(z-x) 2z~ x)a

Prove que existe pelo menos um c em ]a, b[ tal que & = J k) _

(Sugestdo: Considere a funcao
fCI=F(x) =P (x)—(x—X) (x—x)) (x~ X)) &
e aplique o exercicio anterior.)

10. Nas condicdes do exercicio anterior, prove que, para cada x em [a, b], existe
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pelo menos um c em Ja, b[ tal que

l‘f‘.f.f.f{{,}

-
3!

fx)=P(x) +

(x — xg) (x — xp) (x — xy).

Generalize. (Observagdo. O polinomio P (x) acima denomina-se polinomio
interpolador de f (x) relativo aos pontos x, X; e X, e pode ser obtido
rapidamente pela férmula

) (X — Xp)(x — Xx2) : (X —xp)(x —xa) (X —xpg)(x —xp) )
P(x) = ] f (x0) + - } —f(x1) + L ; — f(x2)
(Xp — Xp)(xp — xz) (X —xp)ixg —x2) (X2 — xg) (x2 — x1)

devida ao matematico italiano J. L. Lagrange (1736-1813).)

15.2. TEOREMA DO VALOR MEDIO

Seja f uma funcao definida em [a, b]. Consideremos a funcao S dada por

f(b)—f (a) (x

—

S{x)=f (a)+ — a).

g{x}{

S —

A i
/| a

| |

|
[
[
]
1
[
|
|
L
b

O grafico de S é a reta passando pelos pontos (a, f (a)) e (b, f (b)). Na demonstracao
do TVM iremos utilizar a fungdo dada por

g =f(x) —-S(x),xem [aq, b].

Observe que g (a) = g (b) = 0.

Teorema (do valor médio — TVM). Se f for continua em [a, b] e derivavel em
la, b[, entdo existira pelo menos um c em Ja, b[ tal que

f®)-f(a)=f(c) (- a).
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Demonstragdo

Seja g funcdo dada por
g(x)=fx)—S(x),xeml[a,b]

Como g € continua em [a, b], derivavel em ]a, b[ e g (a) = g (b), pelo teorema de
Rolle existe ¢ em ]a, bl tal que g’ (c¢) = 0. Temos

W =f -5 mes =L BO-f@

b:—:a
Assim,
glixy=F'[x) = F(B)— f(a) _
bt
Dai
b oy g
gl LTI _
by
Portanto,

fo)-f(@=f()(b-a. =

Exercicios 15.2

1. Sejam I um intervalo, f uma funcao continua em I e tal que | f(x) | < M para
todo x no interior de I, em que M > 0 é um real fixo. Prove que quaisquer que
sejam x e y em [

[f-fO) [<M|x-y]
2. Prove que quaisquer que sejam s e t em [1, +oo[
|Ins—Int|>|s—t].

3. Sejam a < b dois reais dados. Prove que

4. Prove que quaisquer que sejam a e b, a < b,
arctg b —arctga <b — a.

Conclua que para todo x > 0
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arctg x < x.

vt

Seja f: R — R uma fungado. Dizemos que x, é um ponto fixo de f se f (x,) =
Xg-

a) Determine os pontos fixos de f (x) = x> — 3x.
b) f (x) = x* + 1 admite ponto fixo?
c) Mostre que f tera ponto fixo se o grafico de f interceptar a reta y = x.

6. Sejaf: R — R e suponha que f(x) # 1 para todo x. Prove que f admitira no
maximo um ponto fixo.
7. Suponha que g (t) seja uma primitiva de f (t) em [0, 1], isto é, para todo t em

[0, 1], g’ (t) = f (¢). Suponha, ainda, que f (t) < 1 em ]O, 1[. Prove que
g®—-g0)<tem ]O, 1].

8. Uma particula desloca-se sobre o eixo x com funcao de posicdo x = o(t).
Sabe-se que ¢(0) = 0 e ¢ (1) = 1, isto é, nos instantes 0 e 1 a particula
encontra-se, respectivamente, nas posicoes x = 0 e x = 1. Prove que em algum
instante ¢, 0 <c <1, v (c) > 1. (Sugestdo: Observe que ¢' (t) =v (t) em [0, 1] e
utilize o exercicio anterior.)

15.3. TEOREMA DE CAUCHY

Para motivar geometricamente o teorema de Cauchy, vamos, inicialmente, definir
reta tangente a uma curva em R?.
Por uma curva em R? entendemos uma funcdo que a cada t pertencente a um

intervalo I associa um ponto (g (t), f (£)) em R? em que f e g sdo funcdes reais
definidas em I. Dizemos que,

[_r =g (1)
|_1*=f{ﬂ =

sdo as equagoOes paramétricas da curva.

EXEMPLO 1. Seja a curva de equacdes paramétricas x = t, y = %, t em R. Quando ¢
varia em R, o ponto (t, *) descreve a parabola y = x°.
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Yy

(1, t%)

=Y

EXEMPLO 2. Seja a curva de equacOes paramétricas x = cos t, y = sen t com t € [0,
27t]. Quando t varia em [0, 271], o ponto (cos t, sen t) descreve a circunferéncia x> + y?
=1.

Y

AN
N

Suponhamos, agora, f e g derivaveis em I, t, € I e g' (t;) # 0. Vamos definir reta
tangente a curva no ponto (g (t), f (ty)).

A
@ (1), £ (1,))
\ & ©,f 1)

O coeficiente angular da reta secante s, é

f )y — f (tpg) _
g(t)— gty)

Nada mais natural do que definir o coeficiente angular da reta tangente a curva no
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ponto (g (to), f (t,)) igual a

lim f)—fit)
t—ty 8 (1) — g (to)

Temos:
I (@) — f (tp)
lim F) =7 {n) — lim t —tp _ flff{}\i_
t=tg 8(1)—g (o) t—1 g (t)— g (to) TP
I —1p

Definimos, entdo, a reta tangente a curva em (g (t), f (t,)) como a reta que passa

In) R
por esse ponto e que tem coeficiente angular 0 A equacao da reta tangente a

[

curva em (g (t,) (t), f (t,)) é entdo

ftg)

v— ftg)= (x — g (y)).
tp)

Suponhamos, agora, f e g continuas em [a, b], derivaveis em Ja, b[ e g'(t) # 0 em ]aq,
b[. Observe que as condic¢Oes apresentadas anteriormente implicam g (a) # g (b).

I\
fe)
e
f)
fa)
f I
:
gla) glc) gb)
JB)— f(a)

O coeficiente angular da reta S é
g (b)) —zg(a)

Vemos, geometricamente, que existe um ponto (g (c), f (c)) tal que a tangente neste
A

C
. Entao, para este c,

ponto é paralela a reta S. O coeficiente angular de T é — ©
g ¢

fF®—f@ _ [
g(b)y—gla) g (o)
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Teorema (de Cauchy). Se f e g forem continuas em [a, b] e derivaveis em ]a,
b[, entdo existira pelo menos um c em ]a, b[ tal que

[f (b) = f(@)]lg'(c)=1[g (b) - g (@]f(c)

ou

fb)—fa) _ f'(e)
g(b)—gla) g'(c)

seg(b) #g(a)eg' (c) # 0.

Demonstragdo
Sejah (x) =[f(b) - f(a)] g (x) —[g (b) —g (@] f (x), x € [a, D].
(h é continua em [a. b] e derivdavel em Ja. b[
h(a) = h(b) (verifique).

Pelo teorema de Rolle, existe c em ]a, b[ tal que h’ (c) = 0, dai

[f(b)-f(@]g'(c)-[g () -g@]f(c)=0

ou seja,

[f(b) - f(@]g(c)=1[g (b) —g(@]f(c). =

Observacao. Fazendo, no teorema acima, g (x) = x, obtemos o TVM.
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16

FORMULA DE TAYLOR

16.1. APROXIMACAO LOCAL DE UMA FUNCAO DIFERENCIAVEL POR UMA FUNCAO
AFIM

Seja f uma funcdo derivavel em x, e seja T dada por

T (x) = (x0) + f (x0) (x = Xp)-

O grafico de T é a reta tangente ao grafico de f em (x,, f (X,))-

|

Para cada x € Dy, seja E (x) o erro que se comete na aproximagdo de f (x) por T (x):

@® Fix)y=f (@) ¥ f' (xp) (x —xg) + E(x), *E Dy.
T}:.ﬂ

Observe que, para x # X,,.

E(x) _ fx)— f(x)

= =" (xn)
xX—Xp X — Xp
dai,
. E (x)
lim =10
x=x, X— Xp

ou seja: quando x — X, o erro E (x) tende a zero mais rapidamente que (x — x,).
A funcao

T (x) = (xo) + f(Xo) (x = Xop)
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é a tnica fungdo afim que goza da propriedade de o erro E (x) tender a zero mais
rapidamente que (x — x,). De fato, se S (x) = f (x,) + m (x — x,) for uma funcdo afim
passando por (X, f (X,)) tal que

FG)=f(x) +m (x—xp) + E; (), x € D,

E[ (x)
X — An

em que lim = 0, entdo necessariamente m = f(x,). (Verifique.)

X = X

Segue que, se f for derivavel em x,,

T (x) = [ (xo) + f (X0) (x = Xo)

é a funcdo afim que melhor aproxima localmente a f em volta de x,,.

A funcao T acima é uma funcao polinomial de grau no méaximo 1; serd do grau 1 se
f(x,) # 0. Assim, T é o polinbmio de grau no mdximo 1 que melhor aproxima

localmente a f em volta de x,,.
Observe que os valores de f e T em x, sdo iguais, bem como os de suas derivadas:

f (x0) = T (xo) € f(xo) = T'(xo).
O polinémio
P (x) = (xo) + f (Xp) (x = Xo)

denomina-se polinémio de Taylor de ordem 1 de f em volta de x,,.

O préximo teorema fornece-nos uma expressao para o erro E (x), que aparece em
D em termos da derivada 2.* de f.

Teorema. Seja f derivavel até a 2.* ordem no intervalo I e sejam x, x, € I.
Entdo, existe pelo menos um y no intervalo aberto de extremos x e Xx, tal que

f(x)=f(xg) + 1 (xg) (x — xp) + J ;'ﬂ (x— I{_}}E.

E (x)

Demonstragdo
E (x) =1 ()~ [f (x0) + f(xo) (x = Xp)].

Assim,
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E (xy) =0eE'(xy) =0.

(Observe que E'(x) = f(x) — f'(xy), pois f (x,) e f(x,) sdo constantes.)
Seja h (x) = (x — x,)%; segue que

h(xy) =0eh'(xy) =0.
Temos

E (x) _ Elx)=— E(.Tﬂ}_
h(x) h(x)— h(xg)

Pelo teorema de Cauchy, existe x| no intervalo de extremos x, e x tal que

E (x) _ E!(?l] _
hix) h'(x))

Tendo em vista E'(x,) = h'(x,) =0

E(x) _E'(x)— E'(xg)
hix)y h'(x))— h'(xg)

Novamente, pelo teorema de Cauchy, existe x| no intervalo aberto de extremos x, e
x tal que

E(x) _ E"(X)
hix) h"(X)

Como E"(x)=f'(x) e h"(x) =2

E(x) _ ,;""{.ﬂ‘
hi(x) 2

Portanto,

f"(x)

E{x)=> (x — xp)2

para algum ¥ no intervalo aberto de extremos x e x,. ®

EXEMPLO 1. Seja f derivavel até a 2.* ordem no intervalo I e seja x, € I. Suponha
que existe M > 0 tal que | f'(x) | < M para todo x € I. Prove que para todo x em [
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J"f
I Fe)—Fix] = ?f lx — X, 2

em que P (x) = f (xp) + f(x) (x ~ Xo).
Solugdo

De acordo com o teorema, existe Y entre x e x, tal que

If)—Pl=|L 2“” (x — xp)2
ou
1f(x)— P ()| = % F7(%)11x — x 2

dai

f(x) = P(x)| < % lx—xgl P xEL

EXEMPLO 2. Avalie In 1,003.
Solugdo

Seja f (x) = In x. O polinémio de Taylor, de ordem 1, de f em volta de x, = 1 é:

PR=fM+f1)x-1)
e como, f(1)=0e f(1) =1, resulta
Px)=x-1.
Assim,
f(1,003) = P (1,003)
ou
In 1,003 = 0,003.
Interprete graficamente este resultado.

Avaliagdo do erro
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gy B ggmpne . A
X B e

Segue:
If'(x)| <1 parax>1.

Pelo exemplo anterior,
1 2
L b)) | == 5 | x— 1" 2= 1.

Para x = 1,003
If (1,003) — P (1,003) | < 0,0000045.
Assim, 0 modulo do erro cometido na aproximacgao
In 1,003 = 0,003

é inferior a 10™. Observe que 0,003 é um valor aproximado por excesso (faca os
graficos de fe de P e confira). =

Exercicios 16.1

1. Calcule o polindmio de Taylor de ordem 1 da fun¢do dada, em volta de x,

dado.
a)f(@) = x, xp=1 b) f(x) = senx, xg=0
oOf)=Yx,x3=8 dfx)=¢ex=0
1
e) f(x) =cos 3x,x3 =0 D= ,Xp = 0.
1+ x

2. Calcule um valor aproximado e avalie o erro.

a) /4,001

b) 3/32.002
c¢) sen 0,02
d) e0,00l

e) cos 0,01
f) In 0,99

16.2. POLINOMIO DE TAYLOR DE ORDEM 2

Vimos que o polindmio de Taylor, de ordem 1, de f em volta de x,, tem em comum

566



com f o valor em x, e o valor da derivada em x,,.

Suponhamos que f tenha derivadas até a 2.* ordem no intervalo I e seja x, € I
Vamos procurar o polinémio P, de grau no maximo 2, que tenha em comum com f 0
valor em x,, o valor da derivada 1.* em X, e o valor da derivada 2.* em x,. Queremos,
entdo, determinar P, de grau no maximo 2, tal que

f (xo) = P (xo), f (x0) = P'(xo) € f"(x) = P" ().
Podemos procurar P da forma
P(x)=A,+A, (x—Xx,) +A, (x — xp)*
Como P (x,) = Ay, devemos ter A, = f (x,).

P'(x) = Ay + 24, (x — X,)

P"(x) = 2A,.

Dai, P'(x,) = A; e P"(x,) = 2A,. Segue que devemos ter

A; = (%)
e
2;""!2 = f ”{-Tﬂ) ol r‘lz = %f ”{']'-ﬂ}'
O polinémio procurado € entdo
® P =g+ () (= x) + L {2‘”}\’{_1— - xg)%.

O polindmio D denomina-se polinémio de Taylor, de ordem 2, de f em volta de x,,.

Observe que f e P admitem a mesma reta tangente em (X, f (x,)). Como P"(x,) = f"
(xo), segue que se f'(x,) # 0 e f' continua em x,, para x proximo de x,, os graficos de f e
P apresentam concavidades com mesmo sentido. E razoavel esperar, entdo, que, para x
suficientemente proximo de x,, o polinomio de Taylor de ordem 2 aproxime melhor f

do que o polindmio de Taylor de ordem 1.

EXEMPLO 1. Seja f (x) = e*. Determine os polinomios de Taylor, de ordens 1 e 2, de
f em volta de x, = 0. Esboce os graficos de f e dos polinomios.

Solucgdo
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Indiquemos por P; e P, os polindmios pedidos.
Temos

P, (x)=f(0) +f(0) (x - 0)

Py (x) =f(0) + f'(0) (x — 0) + % (x — 0)°.

De f(x) = f'(x) = €", segue f (0) = f'(0) = 1.

Assim,

P,(x)=1+x

Seja P o polindmio de Taylor, de ordem 2, de f em volta de x,. Para cada x em Dj,

seja E (x) o erro que se comete na aproximacao de f (x) por P (x). Assim, para todo x
em D
P

f"(x0)

F@) =f(xg) +f(xg (x —xg) + (x — x{}‘jz + E (x)

ou

E(x)=f(x) — [f (xp) + f'(xg) (x — xg) + J (o) (x — xp)? }

Temos:
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E'(x)=f"(x) — [f'(xg) +f"(xp) (x — xg)]
E"(x) =f"(x) — f"(xp)
E.ru(x\’ Zf.w(x\j.

Assim,
E (xo) = E'(xo) = E"(x0) = 0.

O proximo teorema fornece-nos uma expressao para o erro E (x) em termos da
derivada de 3.? ordem de f.

Teorema. Seja f derivavel até a 3. ordem no intervalo I e sejam Xx,, x em I.
Entdo, existe pelo menos um y entre x e x, tal que
F(x)
!

F(x)=f(xg) +f'(xp) (x — xp) + % (x — xp)2 + (x — xp)?

E (x)

Demonstragéo
E (x0) = E'(xo) = E"(x0) = 0 e E"(x) = "(x).

Sendo h (x) = (x = xo)?,
h(x)=h'(x)=h"(x) =0eh”(x)=6=3

Temos

E(x) _E(x)— E(xg)
h(x) h(x)—h(xp)

Pelo teorema de Cauchy existe x| entre x e X, tal que

E(x) _E'(x)
hix) h'(x)

Temos

E(x) _ E'(x)— E'(x0)
h(x) (7)) — h'(xp)

Pelo teorema de Cauchy, existe x3 entre x, e x| tal que
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E (x) _ E"'I.'fj}_
hi(x) h"(x)

DeE" (x))=0=h" (x,) segue

E(x) _ E"(X)— E"(xo)
h(x) h"(Xy)—h"(xp)

Novamente, pelo teorema de Cauchy, existe y entre x7 e x, tal que

E(x) _ E"(X) ,
hix) h"(X)

Como

E")=f")eh”(x)=3!

f m{ f}
1

Ex)= (x — x{}ﬁ. |

EXEMPLO 2. Seja f derivavel até a 3. ordem no intervalo I e seja x, € I. Suponha
que existe M > 0 tal que | f “(x) | < M para todo x em I. Prove que, para todo x em I,

I Fe)—Fix] = e lx — x|

onde
P(x)=f(xp) +f' (xp) (x — xp) + %Mﬂ (e :cﬂ‘}z.

Solugdo

De acordo com o teorema anterior

f e I)

3

| Fl—= )= (3= xﬂ}}I = % 1L f™ (x)Ilx — x|

Dai, para todo x em I,

M 3
If{x‘}—P(x‘}IE?Ix—xDI. n

EXEMPLO 3. Calcule um valor aproximado para In 1,03 e avalie o erro.
Solucgdo

Seja f (x) = In x. Vamos utilizar o polinomio de Taylor de ordem 2 em volta de x, =

570



FD . 1)2,

Px)=Ff(1y+f" (Dilx—1)+

De f'(x) = 1 ef”(x) = —L,J‘ seguef' (1) = 1ef" (1) = —1. Assim,
x x<

PxX)=0+(x—1)— %u—nz

ou
Px)=(x—1)— %(:c— )2,
Temos
In 1,03 = P (1,03)
mas,
P (1,03) = 0,02955,
logo

In 1,03 = 0,02955.

Avaliagdo do erro

" ix) = i,; assim, | f” (x) | < 2 para x > 1. Pelo exemplo anterior,

| f (x) —P(x‘}lﬁé%lx— llg,parax;? =

Segue que

3

| £(1,03) = P(1,03) | = — - 0,03

ey | =

ou
| £(1,03) - P (1,03) | < 0,000009.
Assim, o modulo do erro cometido na aproximacao

In 1,03 = 0,02955

é inferior a 107°. (Observe: 0,000009 =9 - 10° < 107))
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[r= ]‘j3 = (), segue que 0,02955 é uma

Como, para x > 1, E (x) =

fm {(f)

aproximagdo por falta deIn 1,03. =

EXEMPLO 4. Calcule um valor aproximado para 3\,"?,9 e avalie o erro.

Solugdo

Seja f(x) = 3\r Vamos utilizar o polinomio de Taylor de ordem 2 em volta de x,
= 8.

" 8 :
P(x)=Ff(8) +f" (8)(x—8)+ J _"r L=l
De
2 3
P e N T
37 0"
segue que
-2 -1
'8)= —===—c¢ef"(8) = e |
FO=s@mr -z 9@38) 144
Dai
P)=2+ — (x—8) — — (x— 8)2
" 127 288
logo,
paoy=2- 2L 00 456310,
12 288
Assim,

37,9 =1,99163109.

Avaliagdo do erro

s =8
173 (-x_'\j _ L.{. _1' Du N {‘-x - - ;
r 27 ¥ ) >7 3'\' x5

Neste problema, interessa-nos o intervalo de extremos 7,9 e 8. Como 1,8% = 5,832 <
7,9, segue que, para todo x, 7,9 < x < 8.

3/
31,83 < x
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e, portanto,
3 »
(1.8)% < xS
Dai

10

' 10 =x=38
27 3 x8

< .719=<
27-(1,8)8

e, portanto, para 7,9 < x < 8,

, 5 i
If(x)— P()|l= —— | x— 8
J &) ) 81-(1,8)8
e dai
-2
£(7.9)— P9 1< 9" <1075
81 (1.8)%

(Observe: 81 . (1.8)% > 1.000 = < 1077.) Deste modo, o médulo do

81-(1,8)8

erro cometido na aproximacao
37,9 = 1,9916319
é inferiora 10™°. =

Observacado. A escolha de 1,8 foi feita por inspecao. Poderiamos ter escolhido 1,9,

pois, (1,9)° < 7,9. Com a escolha de 1,8 conseguimos um M =0 | M = Lﬂ
\ 2? = {‘],8\} |
o 10 e .
tal que [f"(x)l= 5 < Mpara7.9=x=8, 0 que nos permitiu utilizar o
273 x

Exemplo 2. Evidentemente, quanto menor o M, menor sera a majoragao para O eIro.
Neste problema, a escolha de 1,9 seria preferivel. Se tivéssemos escolhido 1,9,
chegariamos a conclusdao de que o erro cometido na aproximacao €, em realidade,

F" ) _gp <o,

inferior a 1075, Observe, ainda, que, para 7,9 < x < 8, E (x) = =

0 que mostra que 1,9916319 é aproximacao por excesso. -

Seja f derivavel até a 2.* ordem no intervalo I e seja x, € I. Seja E (x) o erro que se
comete na aproximacao de f (x) por P (x), em que P (x) é o polinomio de Taylor de
ordem 2 de f em volta de x:

" ixa)

f(x) =flxg) + " (x) (x — x) + fx— xﬂ)z + E (x).
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Vamos mostrar a seguir que, para x — X, 0 erro E (x) tende a zero mais
rapidamente que (x — x,)>. De fato,

E(x) J(x) = f(xo) — f'(x0)(x — xp) — ﬂ{

x — xg)2 0
X=X, (x — X{}}E x = (x — I'D\J'E _|:_:|

Pela 1. regra de L’Hospital

lim E(x) _ lim T @)= f xoYy=J (Xo)l{x—=Xq)
X —xp fae— I{}\}” X = X 2 e Iﬂ)
:l lim j (x)— f {Xﬂ) _‘}c.l'.l' {Xﬂ)
2 X — Xy X — Xq
= 0.
Assim,
; E(x)
lim

X — X (I — X{}\}E

Provaremos a seguir que
P (x) =f () +F" () Ge—ap)+ @ [ase= xﬂ)z

€ 0 unico polinbmio de grau no maximo 2 que goza da propriedade de o erro E (x)
tender a zero mais rapidamente que (x — x,)% quando x — X,
Seja entdo

f)=f(x) +A(X=x0) + B(x—x0)*+ E; (%)
em que
; E[ (x)
lim ———==
X —+Xp (Xe—Xa )
Vamos provar que
A=f'(x) e B=I %0

2
De fato, de

lim Efx) 0 e 1L E (x)

== lim =—=10
X — X kX I{}\J"' X — X (= I{}\}"
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segue

i E()— Ey j(:c) 7
X = X fi—Xg )"

e, portanto,

[f’ Ea =iyl % (x — x0)? } ol by L B )2

lim = =
X — X (= Iﬂ)"

uma vez que

Ex)—E;(x)=
_| £ _ F"x0) | A 2
= fi(xp)(x—xp)+ : (x — xg) [A(x—xp)+ B(x—xp)° 1
Segue que
I'( L
(f" (x0) = A) (x = x0) + | 7 %) _p ] (x = x0)?
. 2 =
lim - =0
x = X [x=axn )"
dai

[fr(_»\f(}\}_ A]+|:@_ B:|f,‘\f—,‘\f(}}

lim =0
X = Xy X —Xp

o que implica A = f(x,) (observe que, se tivéssemos A # f(x,), o limite acima ndo
poderia ser zero). Assim

: 2
lim
X=X, X — Xy

=0

f" (x0)

e, portanto, B = >

EXEMPLO 5. Seja f(x) = % Mostre que P (x) = 1 + x + x* é o polinémio de
ek

Taylor, de ordem 2, de f em volta de X, = 0.
Solucgdo
Basta mostrar que E (x) = f (x) — P (x) tende a zero mais rapidamente que x>,
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quando x — 0.

E( (x) = P(x) 1—] L
i ) i SEIRE), g r
xr—=0 Xx- x—0 X< x—0 X<
3
= lim —>— = lim —— =0,
xr—0 X° —x x=01—x
Outro processo. Calcular f (0), f(0) e f'(0) e verificar que
"(0
]+,\:+_r2=f(0‘j+f’{0}{x—m+f;){x—mz. m
Dizemos que ¢ (x) é um infinitésimo, para x — X, se , Il)mm ¢(x)=0. Sejam ¢ (x)

e ¢, (x) dois infinitésimos, para x — Xx,. Dizemos que ¢ (x) é um infinitésimo de ordem
superior a de ¢, (x) se, para x — X, ¢ (x) tende a zero mais rapidamente que ¢, (x), ou

; X
seja, se lim Ll
X=X, @ (x)

= 0. E usual a notacdo

@ (x) =0 (¢, (x)) parax — X

para indicar que ¢ (x) é um infinitésimo de ordem superior a de ¢, (x), para x — X,.
Assim, sendo ¢ (x) e ¢, (x) infinitésimos para x — Xx,,

lim -2 ()
x— x5 @1 (x)

=0 & ¢(x) = 0 (¢ (x)) parax — X,,.

Observe que x — x,, s6 é infinitésimo para x — x,; assim,
E (x) =0 (x—Xp)

significa que E (x) é um infinitésimo de ordem superior a de x — x,, para x — X,.
Do que vimos anteriormente, segue que

() ) =1f(x0) +f(x0) (x = Xp) +0(x~Xp)
(i) " (xp)

f(x)=f(xg) + 1 (xg) (x — xp) + [, S xﬂ)z +o((x — Ig)z“r.

Exercicios 16.2

1. Determine o polindmio de Taylor, de ordem 2, de f em volta de x, dado.
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a)fx)=Imn(l+x e xg=0
b)f(x)=¢" e xg=0
of=3x . xo =
1
l'.f} __f {-—"l} = = e YD = {]
=z
f}}f{‘(} = '\.I'II e YD — 4
Nf(x)=senx e X =0
g)f(x)=cosx e Xg =10

2. Utilizando polindmio de Taylor de ordem 2, calcule um valor aproximado e
avalie o erro.

a In1,3
b) /4.1
c) +/3.9
d) 382
e) 00

f) senO0,1
g) /0.8
h) cos 0,2

3. Mostre que, para todo x,

3
allsenxy —xl= — x|
1

l:cns,r—[]—i}
2

4. Mostre que, para0 <x <1

= xpP.

3!

b

= ]
0=e* —[I—i—x—i——,r*]c:—_r-‘_
2 2

-

5. Utilizando a relacdo sen x = x + o (x%), calcule

b )

. senx—x . ST

a) lm ——— b)  lim
x—=0 x- x— 0t X~

]

(Sugestdo : o (x*) é um infinitésimo de ordem superior a x*, para x — 0, isto

577



e

e, lim =
x—0 X-

Gl[x:'} _

0.)

6. Verifique que

' 1
a) e=1+x+ 5 ,rg +0 HE}

-~

X v,
bycosx =1 — ? + o (x7)

clsenx=x+ o '[J.'E}

|
dihx=(x—1)— :{x— ]}2+0{L"-'— ]}2}

i

7. 8 oy 1
Seja f (x) = x% sen 2 se x #0

0 sex =10

a) Determine o polindmio de Taylor de ordem 2 de f em volta de x, = 0.

b) Seja a > 0 um numero real dado. Mostre que ndo existe M > 0 tal que para

todoxem [0, al, |f” (xX) | < M.

8. Seja f derivavel até a 2.* ordem no intervalo I e seja x, € I. Mostre que existe

uma funcao ¢ (x) definida em I tal que, para todo x em I,

f" (xq)

J@) =f(xp) + ' (xp (x — xp) + T s ,'I.'D}Q + ¢ (x) (x — xp }2

com lim ¢(x)=10.
X — ID

9. Seja f derivavel até a 2.* ordem no intervalo fechado [a, b] e seja x, € [a, b].

Mostre que existe M > 0 tal que para todo x em [a, b].
[fG)-P ()| <M|x=x

f‘.f.f {.-1| } 2
- L x— xp) -

em que P(x) = f(xg) + [ (xg) (x — xg) +

(Sugestdo: verifique que a funcdo ¢ (x) do Exercicio 8, com ¢ (x,) = 0, é

continua em [a, b].)

16.3. POLINOMIO DE TAYLOR DE ORDEM n

Seja f derivavel até a ordem n no intervalo I e seja x, € I. O polinomio
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P(x)=f(xg) +f (xp) (x — xp) +

(1)
i (:m) (x — xﬂ)z + ...+ S (%) fxﬂ) (x — xp)"
n!

denomina-se polinémio de Taylor, de ordem n, de f em volta de x,,.

O polinomio de Taylor, de ordem n, de f em volta de x, é o tnico polinbmio de
grau no mdximo n que aproxima localmente f em volta de x, de modo que o erro E (x)
tenda a zero mais rapidamente que (x — X,)", quando x — Xx,. (Verifique.)

O polindmio de Taylor, de ordem n, de f em volta de x, = 0 denomina-se também
polinébmio de Mac-Laurin, de ordem n, de f.

EXEMPLO 1. Determine o polindmio de Taylor, de ordem 4, de f (x) = ¢* em volta de

Xo = 0.
Solugdo
1 (4)
P ) =f(0) +£ (@ (x—0)+ L 2“3” =pgnd q“:” — 07 + %u—oﬁ
FrEr= _ =f(0) =1
flx)y=¢€* =f"(0)=
b = =1"(0)=1
j..rn' Lr} — F.J.' ::’f " (0‘] _ 1
Y= =fP0 =1
Assim,
1 1 |
Px)=1+x+—x2+—x2+— x4, m
2 3! 4!

EXEMPLO 2. Determine o polinémio de Taylor, de ordem 3, de f (x) = In x, em volta
de x, = 1.

Solucgdo

(x — 1)

s 0
1) +—'

By = PV Fiie=14d 2“\’

f(x)=Inx =f(1)=0

f’{x‘;=l =f"(1)=1
X

1

ffix)y=- =f"(1)= -
2

of 2 e E

ffo=— =1=2
x-

Assim,
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P{x‘}={x—l‘}—%(:c—l‘r3—I—%{x—l‘}?". &

Teorema. (Formula de Taylor com resto de Lagrange.) Seja f derivavel até a
ordem n + 1 no intervalo I e sejam x, x, € I. Entdo existe pelo menos um y no
intervalo aberto de extremos x, e x tal que

f[n +1) (%)

fx)y=P(x)+
(n+ 1!

(x— X{})”‘H

onde

- , (n)
P(x) =f(xg) +f' (xp) (x — xp) + % = A fiw (x — xg)".
n!

Demonstragdo. Fica a seu cargo. =

EXEMPLO 3. Seja f derivavel até a ordem n + 1 no intervalo I e seja x, € I. Suponha
que existe M > 0 tal que, para todo x em I,

[fT V<M.

Prove que, para todo x em I,

| Flx)y— )= . M
(n+1)!

em que P (x) é o polindmio de Taylor, de ordem n, de f em volta de x,.
Solugdo

Segue do teorema anterior que, para todo x em I, existe y entre x e x, tal que

. f[” + 1) (X) |
L&) —P XY= | ————— | —xg]
i ‘ (n+1)! ’
Como para todo xem I, | f "V (x) | < M, resulta

| f(x) — P(x)] ELLI—I{:H
(n+1)!

EXEMPLO 4.

1) Mostre que, para todo x em [0, 1],
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: 'l 1 3
et —| 1+x+lxz+i13+...+LI” | T A
\ 2 3l n! / (n+ 1!

’) Avalie e com erro, em mdédulo, inferior a 107,
Solugdo

1) Sejaf(x)=e.Def(x)=FfX)=f" (x)=...=f7" D (x) segue que o polindémio de
Taylor, de ordem n, de f (x) = €* em volta de x, =0 é

| 1 |
PX)=1+x+—x2+—x3+... 4+ —x"
2 3! n!
Paraxem[0,1],0<e=f(""H) (x)<e<3.
De acordo com o teorema anterior, para todo x em [0, 1], existe y entre 0 e x tal que
1 | |

H—{l+x+—wz+—ﬂ3+nﬂn—fﬂ
2 3! n'

_f[”—i_l](*?} n+1
T T

Assim, para todo x em [0, 1] (tendo em vista a desigualdade na pagina anterior)

e-"—(l—l-:c—l-lxz-l-ix}—l-...-i-ix”}{—3 G
2 3! n! (n+1)!

)) Parax=1

1 1 1 3
r{rﬂ+—+—+m+—J{————
2. 4 n! (n—+ 1)t

Precisamos determinar n de modo que

_3 <108
(n+ D!

Por tentativas, chega-sean = 8 | % <1073 |
Assim,
1 1 1 1 1 1 1
e=2+—4+—+—F+—+—+—+—
2 31 41 5 6 T 8

com erro inferiora 10™°. =

) 3
Observacgdo. Como lim ——— = 0, segue do teorema do confronto, que
n—+o (n+1)!
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lim [l—i-]—i-%—i-i—i-,.,—i-i}:e.

n — oo 31 J'?!

Mostraremos, no proximo exemplo, que e € um numero irracional.
EXEMPLO 5. O nimero e é irracional.
Solugdo

Suponhamos que e fosse racional; assim existiriam inteiros positivos a e b tais que
a

€=_.
b

Para todo natural n,

e>1+1+ l—l—l + ok i1.'[1u:r1'qué'?",ll
2 3 !

e, pelo exemplo anterior,

e—b+1+l+l+m+l}{_QL_
2 3 n! (n+1)!

Dai, para todo natural n,

{ A 3
D{E—LH4+l+l+m+LJ{ -
b\ 2 Al n!

Paran > b e n > 3, temos

1 i
D{ﬂk—mp+]+l+l+m+lqi B
b 2 3 n! n+1 4

an! . . : )
A = — é inteiro pois n > b e b é natural.
b

i A
B=n|1+1+ . s TP . € inteiro (por qué?).
\ 2 n! J

Assim, A — B é um inteiro estritamente positivo e menor que —, que é impossivel.
4

Conclusdo. O numero e é irracional. =

No proximo exemplo mostraremos que
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H
Iim —=0
n— 4w !l

em que a > 0 é um real fixo. Este resultado sera ttil na resolucdo de alguns dos
exercicios que serdo propostos no final da secdo.

" a”
EXEMPLO 6. Mostre que lim —— = (0 em que a > 0 é um real fixo.
n—+wo !
Solugdo
g
Tomemos um natural N tal que = < 5
I

Temos, entao:

e, assim, para todo natural p > 1,

ar - l]
(N+1D)(N+2)...(N+ p) Lz '

N

Multiplicando ambos os membros por 4
Nl

. vem:

II'rr+p [1
W+ \2) v"

Fazendon=N+p

N
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"
lim —=0.
n—+wo n

EXEMPLO 7. Mostre que, para todo x.

lim [] + x+ l)r2 + i:c:% + ...+ Lx” } =it
n—+w 2 3! n!

Solugdo
Para todo x, existe y entre 0 e x tal que

_ 1 1 1 e’
eX=1+x+—x2+_—x3+.. +—_xn4+_—__ xn+l
2 3! n! (n+ 1!

Sex >0, ¥ <€ pois y € 10, x [, logo

_ I 5, 1 4 1 sl
g — Izt 0¥ T F A e ———
2 3! n! (n+1)!
xn+1
Como lim ——— = (), pelo confronto,
n—+o (n+1)!
A ( | = 1 \ :
lim L]—i—x—l——r g R, EE J=€-‘.
n—+w 2 !
Se x <0, ox <e’=1, pois y € Ix, O[; logo
- 1 1 1 )| lxint]
e* —Ll—l—x—l——x2 +—x3 4.+ =" || < —
2 3! n! (n+1)!
| y|n+1
De lim ——— =0, segue
n—+w [0+ 1)
: ke o oo b i L » s
i [T+ Frs -t =rr+...T % =2
n—+m 2 3! mn!
Fica provado, assim, que, para todo x,
: E I 1 4 1
e* = hm. | l+x+—xr4+—x*F ... F—=x" |
n—+m 2 3! mn!
Esta igualdade é usualmente escrita na forma
. | 1 4 1
Rl B o0 T o i e i PR e S LB
2 3! n!

584



EXEMPLO 8. Mostre que, para todo x,

2 b, 1 l 1 3
et — [1 +xl+ —xt a0+ o+ —,r“”} ¢ ——.
2 3 ! (n+ 1)
Solugdo
Pelo exemplo anterior, para todo x > 0,
o 1 1 I 7 - xntl
e"—[]-I—x—i——:cf—i-—x}—i-...—i-—x” S Y s -
\ 2 3! nl ) (n+ 1!

Como, para todo x, x% > 0, resulta, substituindo na desigualdade acima x por X2,

o) L]

) 1_:_ X“”+"

=E |
(n+ 1!

ex’ — (1 P JPRE B SIUE I SR i,rf”]
2 3! n!

Para discutir o proximo exemplo, vamos precisar antes estabelecer uma
desigualdade para integrais. Ja vimos que, se f for continua em [a, b] e f (x) > 0 em [aq,

b], entdo J f(x)dx = 0. Segue desta desigualdade que, se f e g forem continuas em

[a, b] e f(x) < g (x) em [a, b], entao
b b
J f(x)dx =] g(x)dx.(Verifique.)
i i

Suponhamos, entdo, f continua em [a, b]; assim, | f | também é continua em [a, b] e
temos para todo x em [a, b],

< f<fX]

dai,
b b b
” J £ () dxﬁ‘éj £ dxféj | £ ()l dx
i e i
logo

b b
| fendxri= j | £ (x) | dx.
i i

l ~
EXEMPLO 9. Calcule J e*~ dx com erro, em médulo, inferior a 10™°.
0

Solucgdo

Para x em [0, 1], ex* < e < 3. Segue entdo do exemplo anterior que, para todo x em
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[0, 11,

Temos:

1 " l
J e’ dx —J [ 1+ x2 —l—%x”‘ + ... +i121r de
( (

2 ; "
e¥ —(1+x2+=_x%+
) ) n! : 2

l
!
0

1 2n+2
+ ...+ i:cE”J dx = < i X
n! 0 (n+1)
Como
l 3; 2n+2 3
J T YT
0 (n+1)! (2n+ 3)(n+ 1)!
resulta

- 3
2n+3)(n+ 1)

- 1/ ”
J er” c:":c—J Ll—i—:r +lx4 +,,,+ix2”]dx
0 0 2 n!

Por tentativas, chega-se que, paran =7,

= <1073,
2n+3)(n+ 1)

Assim,

1 - 1 .
J X dx = J [ B St BBl A
0 0 2 3! 7!

com erro, em modulo, inferiora 10°. =

Exercicios 16.3

1. Determine o polindmio de Taylor de ordem 5 em volta de x, dado.

a)f(x) =senx e xp=0
b) f(x) = cos x e xp=0
c)f(x)=Inx e xp =1
dfx) = 3x c xp =1
e)fx) = (1 + x)* e xp = 0, em que a # 0 € um real dado.

2. Sejam n um natural impar e f (x) = sen x. Mostre que, para todo x,
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,'l."j' ,1.'5 ”:l " \ |.,{_|n+2
senx—|x—+——..+(—-1) 2 —|s=——.
(n+2)!

Avalie sen 1 com erro, em mddulo, inferior a 107, (Sugestdo: utilize o
Exercicio 2.)

Mostre que, para todo x,

3 5 2n+1
. X X X
sen ¥ = lim xr——+t——.. (D —
n—s 4o 3! 5! 2n+ 1!
ou
x% 15 1?
sen x=x — + — M
31 51 7!

Calcule um valor aproximado com erro, em mddulo, inferior a 1073,

l 9 l .5
a) J sen x< dx b) J e ' dx
0 0

Mostre que, para todo x,

. _,(2 ,1.'4 J.f; _Yﬁn
cos x = lim 1 — + — + ...+ (D ——

n—s +x 2 4! a! (2n)!

ou

X2 x*
cosx=1——4+ ———-+ ...
2 4! 6!

.t
a) Verifique que 1 + r+ # + ... + ' = st 5 (t # 1). Conclua que, se | t
1

<1

1
lim (1+t+t2+.. . +t")y=—1o
n—s 4o 1—1t

ou seja,

1 ’
7 g DhipchRiba i ks
—

b) Verifique que 1 —t+ £ - + ... + (-1)" t" é o polinémio de Taylor, de

ordem n, de em volta de 0.

L+t
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1
— (A —t+E— = (=" ")
- oo LAk
Sugestdo: Mostre que lim = 0.

=0 1

c) Mostre que a fungao E (t) dada por

1
—r —dee P e I R
1+t

¢ continua em |—1, + oo[.
d) Mostre que, para todo x > —1,

PR B Lt
mx+1)=x— —+ et BT ot
2 3 4 e g

X
+ | E (1) dt.
0

|
Sugestdo: In (x + 1) = J dr ... ]
0 141t

2 3 4 n+ 1
€) Verifique que x —%4—%—74—...—!— (—1)" -

Taylor, de ordem n +“1, de In (x + 1) em volta de 0.

€ o polindomio de
n+ 1

8. Determine o polinomio de Taylor, de ordem 5, de g (x) = arc tg x em volta de
0.

"

9. .
Seja f(x) =
af 1 + x-

a) Mostre que P (x) =1 — x> + x* = x® + x® — x!1° é 0 polindmio de Taylor, de
ordem 10, de f em volta de x, = 0. (Ndo é necessario calcular as derivadas
de f!!)
b) Mostre que a funcdo E (x) dada por
1
1+ x?

=1- ¥2 + f‘ . ,rﬁ + .‘{'8 = ,rlD + E(x)

€ continua em .
¢) Olhando para o polinémio do item (a), calcule f (0), f" (0), f™ (0) etc.

10. Determine o polindmio de Taylor, de ordem 11, de g (x) = arc tg x em volta de
Xy = 0.

X 1
[ Sugestdo: arc tg x :J. {172 dt e utilize o Exercicio 9.
\ 0 1+
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Seja f(x) = (1 + x)%, em que a # 0 é um real dado. Determine o polindmio de
" Taylor, de ordem n, de f em volta de x, = 0 e dé a expressdo do erro em
termos da derivada de ordem n + 1.
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17

ARQUIMEDES, PASCAL, FERMAT
E 0 CALCULO DE AREAS

17.1. QUADRATURA DA PARABOLA: METODO DE ARQUIMEDES

Um dos criadores do Calculo Diferencial e Integral foi o grande matematico grego
Arquimedes, que viveu no século 3 a.C. em Siracusa. Uma de suas inumeras
descobertas foi a férmula para o célculo da drea de um segmento de pardbola. Nosso
objetivo aqui é obter tal féormula seguindo o raciocinio rigoroso de Arquimedes.
Vamos entdo considerar o segmento de parabola limitado pela parabola y = x* e pela
corda AB.

| y=x2
B/
f
/ /f ia+2my’
yird
/ /N
& %«* [(a+2m)+a’)r2
T
|!'|!2
T ' [} -
a a+m a+2m
Fig. 17.1

Lembrando que em um trapézio o segmento que liga os pontos médios dos lados

_— 3
ndo paralelos € a semissoma das bases, resulta que a ordenada de y « (a+2m)” +a”

Pela Fig. 17.1,

(a+2m)* + a*
MN = >

— (a + m)>.

Ou seja,

(OK?)

A altura do triangulo AMN em relacao a base MN é m. Também, a altura do triangulo
BMN em relacdo a base MN é m. Como
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MN

I
3

altura em relacdo a base MN = m

segue-se que a soma das areas dos triangulos AMN e BMN é:

drea AAMN + drea ABMN = 2™ 4 M "M _ 3

It

Portanto, a area do tridngulo ANB é m®. Vamos destacar este resultado

Area do tridngulo ANB = m®,

Vamos entdo ao calculo da area do segmento parabolico. A seguir, suporemos A
coincidindo com a origem do sistema de coordenadas.

P
e
0 b2 b -
Fig. 17.2

Na Fig. 17.2, o valor de m é b/2. Assim, a area T do tridngulo ANB é (b/2)® = b%/8.

; 3
Area do triangulo = 2~ — 7
8

A area do triangulo ANB é uma primeira aproximacdo para a area do segmento
parabolico ANB. Vamos melhorar esta aproximacao. Vamos somar a esta area as areas
dos triangulos AN;N e NN,B (Fig. 17.3).

Area AN,N = Area NN,B = (b/4)* = b’/64

Segue-se que
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Area AN,N + Area NN,B = b%/32 = T/4.

Observe que a soma das areas dos triangulos AN;N e NN,B é exatamente um

quarto da area T do triangulo ANB.

Assim,

I-.]
|
I-.]
—
+
|

T+ = =

A e
bi4 b2 3b/4

Fig. 17.3

Dividindo, agora, o intervalo [0, b] em 8 partes iguais e somando-se as areas dos
novos tridngulos obtidos, verifica-se que a soma dessas novas areas é b%/128, que é
exatamente um quarto da 4rea anteriormente acrescentada, que era de b%/32.

Assim,
L =r[l+l+ ‘,,]
4 42 4 42

é uma terceira aproximacao, e melhor, para o nosso segmento parabolico.

Continuando o raciocinio acima, é razoavel esperar que a formula para o calculo de

tal area seja:
1 1
—T 4—2 o]

Area do segmento parabélico= T [] +
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Entdo, para chegar a formula para a area do segmento parabdlico, é s6 calcular a

~ e e o L ~
soma da progressao geometrica lnflnlta de primeiro termo 1 e razao I que sabemos ser

4 . . ~ L
- (De acordo?) S6 que Arquimedes ndo trabalhava com limites infinitos. Para chegar

a formula

. . 4
Area do segmento parabolico = ?T,

Arquimedes primeiramente utilizou o seu METODO de descoberta: verificou “por
meio de uma balan¢a” que o peso do segmento de parabola era exatamente quatro
tercos do triGngulo ANB (veja referéncia bibliografica 1 no final do capitulo). Em

seguida, admitiu que o valor da area era ?T e, por uma dupla reducdao ao absurdo,

provou a sua veracidade. E o que faremos a seguir. Temos

4 3 | 3 4 3 3 1
== =af 5= s vbhe a0k ’&+_2=
4 4 4 4 42 4 42 4
Continuando o raciocinio acima, obtém-se
3 3
pe g 2 g B g o B ap 1B
4 42 43 4n  4n

Somando 3 aos dois membros, em seguida dividindo por 3 e por ultimo multiplicando
os dois membros por T, resulta

T=T+E+{+%+,.,+T+ i
4 42 4 4n " 3.4n

SN

C ~ . s . 4 .
O objetivo é entdao provar que a area do segmento parabdlico ANB é ?T. A prova sera

feita em duas etapas: na primeira, prova-se que a area do segmento parabodlico nao

4 , - ~
pode ser menor que ?T. e na segunda, que a area do segmento parabdlico ndao pode

. 4 1 . - . ~
ser maior que TT' Indicando por S a area do segmento parabdlico, sera provado entdao
4
que § = ?T.

Para a prova da primeira etapa Arquimedes utilizou o seguinte postulado: “A
diferenca pela qual a maior de duas dreas excede a menor pode, sendo somada a si
mesma repetidas vezes, exceder qualquer drea finita dada”, cujo enunciado moderno
é: “Dados os ntimeros reais x e y, com x > 0, existe um natural m tal que mx > y”, que
nada mais é do que a nossa conhecida propriedade de Arquimedes.

Para a prova da segunda etapa, Arquimedes utilizou as duas seguintes
propriedades:
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I. “Dadas duas grandezas distintas, se da maior subtrai-se mais que sua metade, do
restante mais que sua metade, e assim por diante, acabara restando uma grandeza
menor que a menor das grandezas dadas.”

IL. “A reta tangente a pardbola y = x* no ponto de abscissa a + m é paralela a corda de
extremidades (a, a*) e (a + 2m, (a + 2m)?).” (Verifique.)

///\/

+
I
I
|
I
I
|
I
I
I
I

+

a+m a—+ Lim

Fig. 17.4

Observe que a area do triangulo XYZ ¢é maior que a metade do segmento parabdlico
XYZ. (Vocé concorda?)

PROVA DA PRIMEIRA ETAPA. (§ < i‘TI

Suponhamos por absurdo que § < %T. Assim, ;T — § = 0. Pela propriedade de

Arquimedes, existe um natural n tal que

S-f[iT—S]}T

3
e, portanto,
4
—T —5= f
; 3.4n
Dai,
T
—T —
3 340
Ou seja,
T T ‘g T
e L et O, e
P 4"

que é contradicao, pois para todo n
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T+ L + ]: + i T b % < 8. (Vocé concorda?)

4 4% 4

PROVA DA SEGUNDA ETAPA. (S > % T

4 . . .
Suponhamos, agora, § = TT' Das propriedades I e II acima, existe um natural n tal

que
s-[r+£+{+...+£]{s-ir
4 42 4n 3
e, portanto,
S—[T+I+£+...+l]c:5— Fepiopat o il T° of
4 42 4n 4 42 4n  3.4n
Segue que
T T T T T T T
b dsbuaha= S ke bandhr ik :
4 4 4n 4 42 4n  3.4m

que é uma contradicao.

. . ~ . 4
Se a area do segmento parabolico ndo pode ser maior e tampouco menor que ?iﬁ

o 4 N . e
resulta que tal area é exatamente TT' Em consequéncia, a area da regido limitada pela
i 3
pardbola y = x%, 0 < x < b, pelo eixo x e pelareta x = p & E}T

17.2. PASCALE O CALCULO DE AREAS

Pela formula de Arquimedes para a drea de um segmento de parabola, segue, como

vimos na secdo anterior, que a area da regido limitada pela curva y = x>, 0 < x < b, pelo
3
. i . .
eixo x e pela reta y=pé E__ Passados quase dois mil anos dessa descoberta de
3

Arquimedes, Bonaventura Cavalieri (1598-1647) interessou-se pelo calculo da area da
regido limitada pela curva y = x*, 0 < x < b, pelo eixo x e pelareta x = b, com k> 3 e
natural. Utilizando o seu método dos indivisiveis, Cavalieri provou, para k de 3 até 9, a
bﬁ.‘ +1

férmula para area de tal regido e afirmou que a férmula era valida para todo k.

k+1
Nesta secdo, utilizando as ideias de Blaise Pascal (1623-1662), vamos mostrar como
chegar rapidamente e de forma maravilhosa a esta féormula, e na préxima secao
veremos como Fermat brincou com esse problema.
Para se chegar a formula, divide-se o intervalo [0, b] em n partes iguais e

: . . b [ ib\F :
considera-se a soma S(n) das areas dos retangulos de base — e altura LEJ  parai=1,
H i
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2,...,n(Fig. 17.5).

')

Fig. 17.5

n\n

k
S(n) = il [E—}] +

k k
S0 B g o B
n i i " n

E, portanto,

S(n) =

Indicando por S; a soma 1¥+ 2K+ 3K+ +n

. . Ay
Para resolver o problema, basta determinar o limite de ﬁ para n tendendo a +o. E
n

isto se faz utilizando a identidade de Pascal, que estabelece uma relacdo entre as
., S e que sera obtida a seguir (veja p. 266 da referéncia bibliografica 2

somas Sq, S, ..
deste capitulo).

Primeiro, vamos relembrar a formula para o desenvolvimento do binémio de
Newton. Chamamos de bindmio de Newton a expressdo (A + B)*. Observamos que, no
tempo de Pascal, tal expressao ndo era, ainda, conhecida como binémio de Newton;
alias, na época em que Pascal estava pensando nesse assunto, Newton deveria estar

k+1
) S, S, k
kK resulta
_ G k+1 Sk
Sm=0b"""

com mais ou menos 12 anos de idade. Temos

A+BY=A+24B+ B, =
(A+B)y =4’ +3A’B+34AB* + B

e, de modo geral,
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{A+Bf=A"+[ﬂA" B+[‘"]A" e o +[§]AK_PBP+...+[£;E]jABk_]+Bk

em que G‘}] € o coeficiente binominal de ordem (k, p) e é dado por
s

[k) _ k!
r p!{k—p}!'

o .. . . ~
Observamos que (P] nada mais é do que o numero de combinagées de k elementos

tomados p a p. No final da secdo, utilizando o principio de indugdo finita, que foi
praticamente estabelecido por Pascal (veja p. 265 da referéncia bibliografica 2 deste
capitulo), provaremos a féormula para o desenvolvimento do bindmio de Newton.

Para obter a identidade de Pascal, vamos trocar k por k + 1, fazer B = 1, substituir A
sucessivamente por 1, 2, 3, ..., n e, em seguida, somar membro a membro as
igualdades obtidas.

A+ = fc+1+[k l] +[Et:]13+[k;]]l+lk+l

gEpnt gt [k;rl]z ..+[£f:]22+[kzl]2+lk+l

k+1_ k+1 [k+1) 4 k+1\.o  (k+1 k+1
(n+ 1) =n +[ 1 ]ﬁ' +"'+[k—l]ﬂ+ % n+1
Somando membro a membro as igualdades acima e observando que (1 + 1)** ! na
primeira linha e 21, (2 + 1)¥* ! (ambos na segunda linha) e 3** ! na terceira linha, ...,
n - 1)+ 1)** ! na pendltima linha e n* * ! na dltima linha podem ser cancelados,
p p
resulta

m+ 1T =1+ [k:r]]sk + [k;]].ﬁk_ﬁ el [Et:]fr‘g + [k;l]51+ﬁ

que ¢é a identidade obtida por Pascal.
Da identidade acima segue que, para k = 1,

m+ D=1+ [:]2]51+1r

e, portanto (lembrando que G] = 2),

m+12—=(1+n) _ (n+1)n _ n3+n_
2 2

Sl=

-3

Para k=2,
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1
m+17 =1+ [ﬂﬂg + [;]51 + .

E assim por diante.

Logo, S; é um polinomio de grau 2 na variavel n. Observe que S; nada mais é do
que a soma da progressao aritmética 1, 2, 3, ..., n. Como S; é do grau 2, pela
identidade acima, S, sera do grau 3 na variavel n. Fica a seu cargo verificar que S; é
um polinomio de grau 4 na variavel n e, de modo geral, S, é um polindomio de grau k
+ 1 na variavel n. Esta observacao sobre o grau de S, serd fundamental no céalculo do

Sk

limite de ———- para n tendendo a infinito, e é esta observacao que, para mim, torna
n

lindo o método de Pascal. Espero que vocé concorde comigo! Vamos, entdo, ao
calculo do limite mencionado acima.

Primeiro, vamos dividir os dois membros da identidade de Pascal por n“ 1. Temos

(n+ DEFL l+n+[k+]j Sk [k-i—l] Sk-1 _I_[k-i—lj S5
Ak P 1 k] 2 o k=1] k1
k + 1) 8
+ ; .
[ k =
De
(n+ DETL _ [u -|—1]’H_1 _ [] e lT"_H
nk+1 n n
segue que
. (ntDETL
lim =t 1.
H— @ n
Como os graus de S, _ 1, Sy _», ..., S, e S; sdo, respectivamente, k, k — 1, ..., 3e 2,e0
grau de n* "1 é k + 1, segue que o limite, para n tendendo para infinito, de
Sk—1 Sk-2 S, 5
F+1° k+1° k4L © k41
n n n n

é zero. (Vocé concorda?) Como [k —ll_ ]] =k + 1, resulta

lim Sk _ ]
nR—w pk+l f{-l'l.

Conclusao:

pk+1

: : : k+1 S
lim Sin)= lim & = ,
n— o ) n— = nkt1 k+1

Observamos que S(n) é uma aproximacado por excesso da area da regido limitada
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pela curva y = x, 0 < x < b, pelo eixo x e pela reta x = b. Por outro lado,

b [ﬂ]* b [b]k b [zh]* b [U1—l}b]k
siny=—|—| +—|—| +—|=—| +..+ —|——
n n i H n il n n

(veja Fig. 17.6) é uma aproximacao por falta da area em questdao. Procedendo-se de
forma analoga, prova-se que

. b.ic +1 L
lim s(n) = ; (Verifique.)
n.=y % g il
&
Gt Ik'“'“m\
Y
i 2b (i —1b n—nb B B
n T n n
Fig. 17.6

Fica assim estabelecida, pelo método de Pascal, a férmula para o calculo da éarea
acima mencionada.

A seguir, utilizando o principio de inducao finita, vamos provar a férmula para o
desenvolvimento do bindmio de Newton. Antes porém vamos estabelecer tal principio.
No que se segue, P(k) indicarda uma proposicao (que pode ser falsa ou verdadeira)
associada ao natural k. Por exemplo,

2k >k
k+1=k
1+2+3+...+k=@

sdo proposicoes associadas ao natural k. Qual o menor nimero possivel de condi¢coes
que devemos impor a P(k) para que P(k) seja verdadeira para todo natural k > a (a
natural)? Evidentemente, a primeira condicdo a impor é que P(k) seja verdadeira para
k = a. Suponhamos, além disso, que para todo k > a

P(k) = P(k + 1).

Sendo entdo P(a) verdadeira e como
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P(a) = P(a + 1),
resulta que P(a + 1) sera também verdadeira.
P(a+1)=P(a+2)

logo, P(a + 2) também sera verdadeira. Prosseguindo com este raciocinio, € razoavel
que se conclua que P(k) seja verdadeira para todo k > a. Quem nos garante que isto
realmente acontece é o principio de indugdo finita, cujo enunciado é o seguinte:

Principio de inducao finita (PIF). Sejam a um nimero natural dado e P(k) uma
proposicdo associada a cada natural k, k > a. Suponhamos que

(i) P(k) seja verdadeira para k = a;
(ii) para todo natural k > a

P(k) = P(k + 1).

Nestas condicOes, P(k) sera verdadeira para todo natural k > a.

Para a prova da férmula do desenvolvimento do bindmio de Newton, vamos
precisar, ainda, da seguinte propriedade dos coeficientes binomiais

K\ k) (k+1

p p+1)  (p+1
e cuja verificacdao deixamos a seu cargo. Vamos entao a prova de que para todo natural
k, k > 2, P(k) é verdadeira em que P(k) é a proposicao

A+ BF=a"+ [ﬂa"".&+ [i]ﬂk_232+ . [;]A"‘PBP+ vz et

Para k = 2 a formula é verdadeira, pois,

]
i

A+BY=A+24B+ B =4+ []

]AB + B

Provemos entdo que P(k) = P(k + 1). Para isto, basta multiplicar os dois membros de

P(k) por A + B. Multiplicando o segundo por A e, em seguida, por B e utilizando a
propriedade dos coeficientes binomiais acima (e lembrando que 1= [gj = [ij}

resulta:
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[g]AHI + [ﬂﬂkﬁ E S [ijﬂ“l—ﬁgﬁ £k [ijﬂﬂk =

+ [é]a“3+...+[ k ]A*"+1‘PBP+...+ [ k )AB“+BH1
il k—1

AR, [RT]]A"‘B +..+ [k;leHl—PBP +..+ [k;]]AB" + Bk+1

cuja soma é exatamente o desenvolvimento do bindmio de Newton (A + B)* * L.
Portanto, para todo k > 2, P(k) = P(k + 1). Fica, assim, provada a férmula do

desenvolvimento do binomio de Newton para todo natural k, k > 2.

17.3. FERMATE O CALCULO DE AREAS

Vejamos como Pierre de Fermat (1601-1665) obteve a férmula B para o
Kokl
calculo da area limitada pela curva y = x5, 0 < x < b, pelo eixo x e pela reta x = b, k

natural. Fermat procedeu da seguinte forma: considerou um numero E, como 0 < E <
1, e dividiu o intervalo ]0, b] em infinitos subintervalos da forma

...,[bE', bE'"1, ..., [bE°, bE?], [bE?, bE], [bE, b].

Observe que b, bE, bE®, bE®, ..., bE' "1, bE ', ... é uma progressdo geométrica de razdo
E e que E' tende a zero para i tendendo a infinito, pois 0 < E < 1.

ij pEi—1 BE?  BE b

Fig. 17.7
A &rea do retangulo R ; dado por bE ‘< x<bE' "1, 0<y<(bE'"1)k¢

dreaR;=bE "Y1 - E)p'ENI -V =p 11 -E)EFT ) "1 i=1,2,3,...
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Segue que as areas dos retangulos R; formam uma progressao geométrica de primeiro
termo b* " (1 — E) e razdo EX* 1. Antes de prosseguir, vamos relembrar as férmulas
para as somas dos termos da progressiao geométrica finita e infinita de razdo q e
primeiro termo 1:

2 _ okt
L+ g+ @+ + .. +q=121
l—gq
(verifique por indugdo finita) e para0 < g <1
l+q+q3+q3+...+cf+...=—]l :
—q

Fazendo g =E k+1 a soma das areas dos retangulos Ri é

Pr 0 —EB(+g+¢+...+4d+..)= —bitlg;;f}'
De
\+E+ B+ B+ +p 2B
1-FE
resulta
pk+1

soma das areas dos retangulos g, — :
Y R ERELHEE

Observamos que a soma das areas dos retangulos ¢ uma aproximacao por excesso da
area da regido em questdo e que quanto mais proximo de 1 estiver E melhor sera a
aproximacao. Para E tendendo a 1 (em verdade, Fermat simplesmente substituiu E por
bk +1
k+1
considerarmos aproximacao por excesso considerassemos aproximacao por falta.

Vocé gostou? Se gostou mesmo, verifique que o método de Fermat continua valido
mesmo quando k é um ndmero racional! Mas se vocé gostou muito mesmo, utilizando
a progressdo geométrica 1, E, E% E3, ..., com E > 1, e supondo k natural, k > 2, mostre

1 na soma acima), a soma acima tendera a ~ Nada mudaria se em vez de

que a area da regido limitada pelo grafico de y = Lk, x = 1, pelo eixo x e pela reta x =
=z

1 é dada pela férmula L
k—1
Bem, por volta de 1670, Sir Isaac Newton (1642-1727) ja estava calculando a area

qylmtn Wr da

sob a curva y = ax™", para x de 0 a x, utilizando a primitiva ;=
m+n

funcdo. O Teorema Fundamental do Cdlculo estava nascendo, e o Calculo
Diferencial e Integral, nas mdos de Newton, se consolidando. (Veja referéncia
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bibliografica 2, abaixo, p. 290.)
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Apéndice
1

PROPRIEDADE DO SUPREMO

Al.1. MAXIMO, MiNIMO, SUPREMO E INFIMO DE UM CONJUNTO

O objetivo desta secdo € introduzir os conceitos de que necessitaremos para
enunciar a propriedade do supremo. Como veremos, é esta propriedade que diferencia
R de Q; é, ainda, esta propriedade que torna o sistema dos numeros reais uma copia
perfeita da reta. O enunciado de tal propriedade sera objeto da préxima secao.

Seja A um conjunto de numeros reais. O maior elemento de A, quando existe,
denomina-se mdximo de A e indica-se por mdx A. O menor elemento de A, quando
existe, denomina-se minimo de A e indica-se por min A.

Dizemos que um niimero m é uma cota superior de A se m for maximo de A ou se
m for estritamente maior que todo nimero de A. Diremos que m é uma cota inferior de
A se m for minimo de A ou se m for estritamente menor que todo nimero de A.

EXEMPLO 1. Seja A= {1, 2, 3}. Temos:
1) 1éominimo de A, 1 =minA; 3 é o maximo de A, 3 = max A.

) 3, g 100 sdo cotas superiores de A.

5 L . e
’) 1, 0, —? sdo cotas inferioresde A. =

EXEMPLO 2. SejaA={x € R|1<x<2}. Temos:

1) 1 =minA.

+
)) Paratodo t € A, e também pertencea A et < e (verifique).

Assim, para todo t em A, existe um outro numero em A que é estritamente maior
que t; logo, A ndo admite maximo.
) Todo nimero m < 1 é uma cota inferior de A.

2

I

1
=

L1
L
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1) Todo ntimero m > 2 é uma cota superior de A. ™

Um conjunto A pode ndo admitir maximo; entretanto, podera admitir uma menor
cota superior. Por exemplo, o conjunto

A={x€R|1<x<2}
ndo admite maximo, mas admite uma menor cota superior que € 2.

A menor cota superior de um conjunto A, quando existe, denomina-se supremo de
A e indica-se por sup A.

E claro que se A admitir maximo m, entdo, m sera, também, o supremo de A.
Entretanto, A podera ndao admitir maximo, mas admitir supremo; por exemplo, o
conjunto A acima nao admite maximo, mas admite supremo 2 : 2 = sup A.

A maior cota inferior de um conjunto A, quando existe, denomina-se infimo de A e
indica-se por inf A.

Se A admitir uma cota superior, entao diremos que A € limitado superiormente.

Se A admitir uma cota inferior, diremos que A é limitado inferiormente.

Exercicios Al.1

1. Determine, caso existam, 0 maximo, minimo, supremo e infimo.

a)A={x€R|-3<x<4}
byA={x€R|-3<x<4}
c)A={x€R|x<5}
d)A={x€R|x>2}
@A:{IEHII_EﬂﬂL
_ x+3 J
lA={x€E€R||3x-1]|>1}
gA={-3,-1,0,2,1}

h
)A={ ”|nem}
n+ 1 |

2. Assinale os conjuntos do Exercicio 1 que sao limitados superiormente.

3. _1'.2
A= J| T IxeER l[ é limitado superiormente? Por qué?
Fx™

Al.2. PROPRIEDADE DO SUPREMO

Admitiremos a seguinte importante propriedade dos nimeros reais.

Propriedade do supremo. Todo conjunto de ntimeros reais, ndo vazio e limitado
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superiormente, admite supremo.

Pelo fato de R satisfazer a propriedade do supremo, diremos que R é um corpo
ordenado completo. Os teoremas centrais do calculo dependem desta propriedade de
R.

Uma consequéncia importante da propriedade do supremo € a propriedade de
Arquimedes.

Propriedade de Arquimedes. Se x > 0 e y sdo dois reais quaisquer, entao existe
pelo menos um numero natural n tal que

nx > y.

Demonstragdo

Suponhamos, por absurdo, que para todo natural n, nx < y; consideremos entao o
conjunto

A={nx|n € N}.

A é ndo vazio (1 - x = x € A) e limitado superiormente por y, logo admite supremo.
Seja s o supremo de A. Como x > 0, s — x < s; assim s — x ndo € cota superior de A (por
qué?); logo existe um natural m tal que

s —x<mx
e dai
s<(m+1)x

que é uma contradicdo, pois s é o supremo de A e (m + 1) x € A. Deste modo, supor nx
< y para todo natural n leva-nos a uma contradicdo, logo, nx > y para algum natural
n o m

O préximo exemplo exibe-nos duas consequéncias importantes da propriedade de
Arquimedes.

EXEMPLO

. 1
1) Para todo x > 0, existe pelo menos um natural n tal que — << x.
n

») Para todo real x existe pelo menos um natural n tal que n > x.

Solucgdo
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. . 1
1) Como x > 0, por Arquimedes, existe um natural n tal que nx > 1 e, portanto, — <Z x.
n
(Observe: nx>1=n#0).

7)) Como 1 > 0, por Arquimedes, existe um natural ntal quen>x. =

A propriedade que apresentaremos na proxima secao € uma outra consequéncia
importante da propriedade do supremo e sera utilizada varias vezes no texto.

Exercicio Al.2

Prove que se A for ndo vazio e limitado inferiormente, entdo A admite infimo.

A1.3. DEMONSTRACAO DA PROPRIEDADE DOS INTERVALOS ENCAIXANTES

Sejal[aybyl,[a, by, [a,by 1, ....,[ a, b, ], ... uma sequéncia de intervalos
satisfazendo as condicdes:

(i) [aypbyl1D[a,b;1D[ay,b,]1D...D[a,b,]D ... (ouseja, cada intervalo
da sequéncia contém o seguinte);

(ii) para todo r > 0, existe um natural n tal que
b,—a,<r

(ou seja, a medida que n cresce, o comprimento do intervalo [ a,, b,, ] vai
tendendo a zero).

Nestas condigoes, existe um unico real a que pertence a todos os intervalos da
sequéncia, isto é, existe um unico real a tal que, para todo natural n, a, < a < b,,.

[ B [ - b ] ] ] -
L it L ] ] K
a, a, iy by, b, by
Demonstragdo
A={ay, ay, ay, ..., a,, ...} € ndo vazio e limitado superiormente, pois todo b, é cota

superior de A. Assim, A admite supremo; seja a tal supremo. Como « é a menor cota
superior de A, para todo natural n temos

a,<a<b,.

Se 3 for outro real tal que, para todo n,
a,<p<b,

teremos, para todo n,
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la-B|<b,—a,
Tendo em vista a propriedade (ii), para todo r > 0,
la=Bl<r
Logo, a = B (por qué?). =
Al.4. LIMITE DE FUNCAO CRESCENTE (OU DECRESCENTE)

Sejam fuma fungdo e A um subconjunto do dominio de f. Dizemos que f é limitada
superiormente em A se existir um nimero real M tal que, para todo x € A, f (x) < M.

Por outro lado, dizemos que f é limitada inferiormente em A se existir um nimero
real m tal que, para todo x € A, f (x) > m.

Teorema Seja f uma funcao definida e crescente em ] a, b [.

a) Se ffor limitada superiormente em ] a, b[, entdo

lim f(x)= L, L finito,

x—= b
comL=sup{f(x)|x€]labl}.
b) Se fnao for limitada superiormente em ] a, b [, entao

lim f(x)=+ e-.

xr—=hT

Demonstragdo

a) O conjunto { f(x) | x € ] a, b [ } é ndo vazio e limitado superiormente, logo,
admite um supremo L. Dado, entdo € > 0, existe um x; € ] a, b [, tal que, L — € < f(x,)
< L. Dai, para todo x em ] x;, b [, tem-se

L-e<f(x)<f(x)<L<L+e€

ou seja,
L-e<f(x)<L+e
Logo,
lim f(x)=L
x= b

b) Como f ndo é limitada superiormente, para todo M > 0 dado, existe x;, € ] a, b [,
tal que f (x;) > M. Pelo fato de f ser crescente, tem-se, para todo x € ] x;, b [,
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f()>M

ou seja,

lim f(x)=+ co. [ |

xr—=b"

Fica para o leitor enunciar e provar teorema analogo para o caso de f ser
decrescente em ] a, b [.

Conforme as palavras seguintes de Richard Dedekind (1813-1916) em seu livro
Essays on the theory of numbers, a razdo que o levou a definicdo de nimero real (veja
Apéndice 6) foi exatamente o teorema anterior.

“Minha atencdo voltou-se primeiramente para as considera¢Oes que constituem o
assunto deste folheto no outono de 1858. Como professor na Escola Politécnica em
Zurique, vime pela primeira vez obrigado a dar aulas sobre os elementos do calculo
diferencial e senti mais agudamente do que nunca a falta de um fundamento realmente
cientifico para a aritmética. Ao discutir a nocao de limite e especialmente ao provar o
teorema segundo o qual toda magnitude que cresce continuamente, mas ndo além de
todos os limites, deve certamente se aproximar de um valor finito, tive que recorrer a
evidéncias geométricas. Mesmo agora, esse recurso a intuicdo geométrica numa
primeira apresentacdo do calculo diferencial, eu o vejo como extremamente Uutil, do
ponto de vista didatico, e até mesmo indispensavel se ndo se quer perder muito tempo.
Mas ninguém pode negar que essa forma de introdugdo ao calculo diferencial ndao
pode se pretender cientifica. Para mim, esse sentimento de insatisfacdo foi tdo
esmagador que mantive a firme intencdo de continuar refletindo sobre a questdo até
encontrar um fundamento puramente aritmético e perfeitamente rigoroso para o0s
principios da anélise infinitesimal.” (Dover Publications, Inc., Nova York.)
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Apéndice
2

DEMONSTRACOES DOS TEOREMAS DO CAP. 5

A2.1. DEMONSTRACAO DO TEOREMA DO ANULAMENTO

Teorema (do anulamento). Se f for continuaem [ a, b ] e se f (a) e f (b) tiverem
sinais contrarios, entdo existird pelo menos um c em [ a, b ] tal que f (c) = 0.

Demonstragdo

Para fixar o raciocinio, suponhamos f (a) < 0 e f (b) > 0. Facamos a = a; e b = b;
seja c, o ponto médio do segmento [ a,, b, ]. Temos

fleg) <0ouf(cy =0. ‘ - : : ‘
L ap cn by |

Suponhamos f (c,) < 0 e facamos ¢, = a, e b, = b,. Temos f (a;) <0 e f (b;) > 0.

Seja c; o ponto médio do segmento [ a;, b; ]. Temos

f{(lj < DDuxf{(‘l} = (.

[ Co bq ‘

\ Cl by

Suponhamos f (c;) > 0 e fagamos a, = a, e ¢; = b,. Assim, f (a,) <0 e f (b, > 0.
Prosseguindo com este raciocinio, construiremos uma sequéncia de intervalos

[ao,bo]D[al,bl]D[az,bz]:)"':)[an,bn]:)"'

que satisfaz as condi¢cOes da propriedade dos intervalos encaixantes e tal que, para
todo n,

@® fla,) <0ef(b,)=0.
Seja c o unico real tal que, para todo n,

a,<c<b,.

As sequéncias de termos gerais a, e b, convergem para c (verifique). Segue, entdo,
da continuidade de f, que
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@ lim f(a,)=f(c)e lim f(b,)= f(c)

n— +w n—s+o
Segue de @D e de @ que
f(c)<0ef(c)=0
e, portanto, f(c)=0. =

A2.2. DEMONSTRACAO DO TEOREMA DO VALOR INTERMEDIARIO

Teorema (do valor intermedidrio). Se for continua no intervalo fechado [a, b ]
e se y for um real compreendido entre f (a) e f (b), entdo existird pelo menos um ¢
em [ a, b]tal quef(c)=y.

Demonstragdo
Para fixar o raciocinio, suponhamos f (a) <y < f (b). Consideremos a funcao
gx¥)=f(x)-y,xem[a,b]
Como f é continua em [ a, b], g também o é; temos, ainda
g@=f(@-y<0eg()=f(b)-y>0.

Pelo teorema do anulamento, existe ¢ em [a, b ] tal que g (c) = 0, ou seja, f (c) =
y. =

A2.3. TEOREMA DA LIMITACAO

Para a demonstracdo do teorema de Weierstrass, necessitaremos do teorema da
limitacdo, cujos enunciado e demonstracdo serdao objeto desta secao.
Dizemos que f € limitada em A € Dy se existir M > 0 tal que, para todo x em A

[f() <M.

Da defini¢do acima, segue que, se f ndo for limitada em B C Dy, para todo natural
n, existe x, € B, com | f (x,) | > n.

Teorema (da limitagcdo). Se f for continua no intervalo fechado [a, b], entdo f
sera limitada em [a, b].

Demonstragdo

Suponhamos, por absurdo, que f ndo seja limitada em [ a, b]. Facamos a = a, e b =
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by; existe, entdo, x; em [a,, b, ] tal que | f (x,) | > 1. Seja ¢, o ponto médio de [a,, b,]; f
ndo sera limitada em um dos intervalos [ a;, ¢; ] ou [ ¢y, b; ]; suponhamos que ndo seja
limitada em [c;, b; ] e facamos a, = ¢, e b, = b,. Nao sendo f limitada em [a,, b, ],
existira x, € [a,, b, ] tal que | f (x,) | > 2. Prosseguindo com este raciocinio,
construiremos uma sequéncia de intervalos

[al,bl]D[az,b2]3[03,b3]3°°°3[an,bn]3"'

satisfazendo as condi¢des da propriedade dos intervalos encaixantes e tal que, para
todo natural n > 0, existe x, € [ a,, b,, ] com

Q) [ flx ) =,

lim

|f(x,) I = +%. Seia, agora, c o tinico real tal que, para
n— +®

Segue de O que
todon > 0,

c€la,b,l

Como a sequéncia x, converge para c (verifique) e f é continua em c, resulta que

lim 1f(x,)I=1f(c)l que estd em contradicdo com lim 1f(xy) 1= +%. pjca
n— +® n— tw

provado que a suposicdo de f nao ser limitada em [ a, b ] nos leva a uma contradicao.
Portanto, f é limitadaem [a, b]. ™

A2.4. DEMONSTRACAO DO TEOREMA DE WEIERSTRASS

Teorema (de Weierstrass). Se f for continua em [a, b ], entdo existirao x; e x,
em [ a, b ] tais que f (x;) <f(x) <f(x,) paratodoxem [ a, b ].

Demonstragdo
Sendo f continua em [aq, b ], f sera limitada em [ a, b], dai o conjunto
A={f(X)|x€[abl}
admitira supremo e infimo. Sejam

M=sup{f(x)|x€l[a,bl}

m=inf { f(x)|x € [a, b]}.

Assim, para todo x em [ a, b], m < f (x) < M.
Provaremos, a seguir, que M = f (x,) para algum x, em [ a, b ]. Se tivéssemos f (x) <
M para todo x em [ a, b ], a funcdo
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g(x)= ; x € [a, D] (veja observagio abaixo)
M~ Flx)

seria continua em [ a, b ], mas nao limitada em [ a, b ], que é uma contradicao (se g
fosse limitada em [ a, b], entdo existiria um f3 > 0 tal que para todo x em [a, b ]

1

0= < B

) ;"'-’i'l = f{l\} )
e, portanto, para todoxem [ a, b ],

1
fF)<M-——
B

e assim M ndo seria supremo de A).

Segue que f (x) < M para todo x em [ a, b ] ndo pode ocorrer, logo devemos ter M =
f (x,) para algum x, em [a, b]. Com raciocinio analogo, prova-se que f (x;) = m para
algum x;,,em[a,b]. =

Observacao. A ideia que nos levou a construir tal funcao g foi a seguinte: sendo M o
supremo dos f (x), por menor que seja r > 0, existird x tal que M — r < f (x) < M; assim,
a diferenca M — f (x) podera se tornar tdo pequena quanto se queira e, portanto, g (x)
podera se tornar tao grande quanto se queira.
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Apéndice
3

DEMONSTRACOES DO TEOREMA DA SECAO 6.1 E DA
PROPRIEDADE (7) DA SECAO 2.2

A3.1. DEMONSTRACAO DO TEOREMA DA SECAO 6.1

Lema 1. Seja a > 1 um real dado. Entdo para todo € > 0, existe um natural n tal
que
L
an —1 <e.
Demonstragdo

Pelo bindmio de Newton (veja Secdo 17.2), para todo natural n > 1

(1+e">1+ne

Tomando-se ntal que 1 + ne > a | basta que n = A i) resulta
1+e">a
ou
=
|4 >an
e,l portanto,
an —1<e. m

Lema 2. Sejam a > 1 e x dois reais dados. Entdo, para todo € > 0, existem
racionais r e s, com r < x < s, tais que

ad—-a<e
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Demonstragdo

Inicialmente, tomemos um t > x, t racional; assim, para todo racional r < x, a" < d/,
pois, estamos supondo a > 1. Temos

ad-a=dad@ "-1).

Pelo lema 1, existe um natural n tal que

I
an —1<a'te

ou

{1

a'lan —1|<e

L . 1
Escolhamos, agora, racionais r e s, r < x < s, tais que § — y <~ —_ Para estes
n

racionais

o
E _ e, o &
ad—ad =ad @ "T—-1<a aﬂf—]}:f. B
A

Lema 3. Seja a > 1 um real dado. Entdo, para todo x real dado, existe um unico
real y tal que

ar<y<a5

quaisquer que sejam oS racionaisres, comr <x <s.

Demonstragdo

Primeiro vamos provar que existe tal y. O conjunto {a" | r racional, r < x} é nao

vazio e limitado superiormente por todo @, s racional e s > x; tal conjunto admite,
entdo, supremo que indicaremos por y. Segue que

a<y<a

para todo racional r < x e todo racional s > x.
Fica a seu cargo verificar que em realidade temos

ar<y<as

quaisquer que sejam 0s racionaisre s, comr < x <Ss.
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Vamos, agora, provar que tal y é unico. Se for tal que a" < < GS, uaisquer que
1 1
sejam 0s racionais r e s, com r < x < s, teremos

ly-yil<a-d
para todo racional r < x e todo racional s > x. Segue, entdo, do lema 2 que
ly—vil<e

paratodo € > 0,logoy=y;,. ®

Com relacdo ao lema anterior, observe que, se x for racional, entdo y = @*. O tnico y
(a que se refere o lema anterior) sera indicado por f (x). Fica construida, assim, uma
funcdo f, definida em R, e tal que f (r) = a" para todo racional r. Antes de provar a
continuidade de f, provaremos que f é estritamente crescente. De fato, se x; < x, (x; e
X, reais quaisquer), teremos

al < f(x)<a® e a2 < f(xz) < a™

quaisquer que sejam 0s racionais ry, Sy, ', € S, tais que r; <x; <s; er, <X, <s,. Sendo
s um racional, x; < s < X,, teremos

f(x) <a <f(xy)

0 que prova que f é estritamente crescente.

Vamos provar, agora, a continuidade de f. Seja p um real qualquer. Pelo lema 2,
dado € > 0, existem racionais r e s, com r < p < s, tais que

a-dac<e
Para todo x € ]r, s[, teremos

[f)-f)|<a-d<e

0 que prova a continuidade de f em p. Como p foi tomado de modo arbitrario, segue
i ] y—X

que [ é continua em R. Se 0 < a < 1, a funcdo f(x)= | — | é continua em R e
\a/

coincide com a" nos racionais. Completamos, assim, a demonstracdo do teorema da
Secao 6.1.

Vamos provar, agora, a propriedade (1) da Secao 6.1. Sejam r,, e s, duas sequéncias
de nuimeros racionais que convergem, respectivamente, para x e y; segue que r, + s,

converge para x + y. Da continuidade da funcao f (x) = a*, segue

lim a" =a* e lim a’ =a”
n— +w n— +w

dai
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a*a¥ = lim a™a® = lim a"t% =g*ty,
n— +w n— +w

(Observe que g g%n = g'n +%: _pois r, e s, sdo racionais.)
As demonstragoes das demais propriedades ficam a seu cargo.

A3.2. DEMONSTRACAO DA PROPRIEDADE (7) DA SECAO 2.2

Teorema. Existe a > 0 tal que cos a = 0.

Demonstragdo

Suponhamos, por absurdo, que nao exista um tal nimero a. Como cos 0 = 1 e cos x
é uma funcdo continua, segue do teorema do valor intermediario que cos x > 0 para
todo x > 0; como sen’ = cos, terlamos que a funcdo sen x seria estritamente crescente
em [0, +oo[ e como sen 0 = 0, teriamos sen x > 0 em ]0, +oo[. De cos' = —sen, seguiria,
entdo, que cos x seria estritamente decrescente em [0, +oo[. Como cos x >0 e sen x < 1
em [0, +oo, existiriam, entdo, reais @ e 5, com a € ]0, 1] e 8 € [0, 1[, tais que

lim senx=a e lim cosx=f.
X —t+w X —+®

Teriamos, também,

lim sen2x=a e lim cos2x = .
X—+= X —+®

Como sen 2x = 2 sen x cos x e cos 2x = 2 cos>x — 1, passando ao limite, para x —
+0o, resulta

a=2afef=2p-1

que admite como Unica solucao o par (a, ) em que @ = 0 e § = 1, que contradiz a
condicdo a € ]0, 1] e B € [0, 1[. Tal contradicdo é consequéncia de termos admitido a
ndo existéncia de um a > 0, com cos a = 0. Fica provado assim que existe a > 0 com
cosa=0. m

Propriedade (7). Existe um menor nimero a > 0 tal que cos a = 0.

Demonstragdo

O conjunto A = {x > 0 | cos x = 0} é ndo vazio e limitado inferiormente; logo,
admite infimo a. Provemos que a € A. Se cos a # 0, pela conservacao do sinal, existe r
> 0 tal que cos x # 0 para a < x < a + r, que contradiz o fato de a ser o infimo de A.
Segue que a é o minimo de A, ou seja, a é o menor real > 0talquecosa=0. =
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Apéndice
4

FUNCOES INTEGRAVEIS SEGUNDO RIEMANN

A4.1. UMA CONDICAO NECESSARIA PARA INTEGRABILIDADE

Vamos provar que uma condi¢do necessdria, mas ndo suficiente, para f ser
integravel, segundo Riemann, em [a, b] é que f seja limitada em [a, b]. Lembramos
que dizer que f é limitada em [a, b] significa que existe M > 0 tal que, para todo x em
[a, DL, [ f(x) | <M.

Teorema. Se f for integravel, segundo Riemann, em [a, b], entdo f sera limitada
em [a, b].

Demonstragdo

Como f é integravel em [a, b], tomando-se € = 1 existe uma particao P de [a, b] tal
que

n
2 1 (er) ek

=1

b
<1 (L= f(x)dx)
!

(

qualquer que seja a escolha de ¢; em [x; 4, x,], 1 =1, 2, ..., n. Sejam x; _, e x; dois
pontos consecutivos da particio P; vamos provar que f € limitada em [x; _ ;, x].
Seguira dai que f sera limitada em [a, b] (por qué?). Temos

n
> flepAx; —L|I<1
i=1
ou
{ A
i
flep) Axj+| X () Ax— L||<1
J J i=
x_l'.?r-'_.l;

Segue que (lembre: | X+ Y |>|X|—|Y])
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n
() Ax1=1.E f(e) Ax; = LI<I

!:

[¥ ]
ou

”
@ | flc) Ax 1 <1+ 1 .Zl Fici) Ax; = L.
: e
iZj

Fixemos ¢, i # j, em [x; _ {, x;]; como D se verifica para todo ¢; em [xj _ 1 xj],
resulta que f é limitada em [x; -1, x1,j=1,2, ..., n; logo f é limitada em [a, b]. ®

EXEMPLO 1 (de fungdo limitada e ndo integrdvel). A funcao

J] se y € Q)
|0 se x € Q

f(x)=
ndo € integravel em [0, 1].
Solugdo
Para toda particao P de [0, 1]

- 1 sec; for racional (i=1,2 n)
ud i . I LS L. ¥ W v e
.Z flei) Ax; {ﬂ se ¢; for irracional (i=1,2,....n)

i=1

n

logo  lim Y. f(c;) Ax; ndo existe (por qué?) e, portanto, f ndo é integravel em
max Ax; = 0 j=1
[0,1]. m
EXEMPLO 2. A funcao
1 sex=0

fx)= II— se0<x=<1
L

ndo ¢é integravel, segundo Riemann, em [0, 1], pois, f ndo é limitada neste
intervalo. =

A4.2. SOMAS SUPERIOR E INFERIOR DE FUNCAO CONTINUA

Sejam f uma funcdo continua em [a, b]e P:a=xy <Xx; <X, <...<X; 1 <x;<... <
x, = b uma particao de [a, b]. Como f é continua, f assume em [x; _;, X;] (i =1, 2, ..., n)
valor maximo M; e valor minimo m;. As somas

_ "
S(f,P)= Y M; Ax;

=1
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"
S(f.Py= X m; Ax;

=1

denominam-se, respectivamente, soma superior e soma inferior de f, relativa a
particao P.
Como m; < M,, segue que, para toda particao P de [a, b],

© S(f,P)<5 (f, P).

Sejam P e P’ duas particoes de [a, b]; dizemos que P’ é um refinamento de P se P’
D P. O proximo teorema conta-nos que quando se refina uma particdo, a soma
superior decresce e a inferior cresce.

Teorema. Seja f continua em [a, b] e sejam P e P’ duas parti¢coes quaisquer de
[a, b], com P C P'. Entao,

a) S (f, P)<S(f, P). b 3(f. P)=3(f. P)

Demonstragdo

a) Suponhamos que P’ tenha um ponto a mais que P, isto é, P* = P |J Xxj, com
x € [x_ . X]. Assim,

Pra=xy<x;<..<x_;<x<..<x,=b

FI:(I=X{}{_I']{:...{,I:F-_[{: ‘fl {:"t‘:,r'{:'”{*rﬁ:b'

Sejam m e m ; os valores minimos de f em [,l'j-_ - X1] e [fl‘_\:;-]‘

J1 J2
respectivamente. Observe que

@ mp= omjoem;< m;

em que m; € o valor minimo de f em [xj 1 xj].
Temos

"

S(f.P)= !E] m; Ax; + m; Ax,

[
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"

S(f,P)= X m;Ax; + :Hj]{fl = P m; {,rj-— x1).

i=1 2

iF ]
Segue de @

mj (X1 — % — 1)+ mj (5 — x1) =m;(x1 — % 1) +m(x;— x1)

ou seja,

mj, (x] — Xj — ) mij, (x; — x)) = m, ﬁ:cj-.
Portanto,

S(f. P)y= 5 (f. P). (Interprete geometricamente.)

Deixamos para o aluno demonstrar, por inducdo finita, que se P’ tem n pontos a
mais que P, entdao

S(f.P)< S (f. P).

b) Fica a cargo do aluno. =

Corolario. Quaisquer que sejam as particoes P, e P, de [ a, b ],
S (f. P1)= S(f. P>). (Isto §, toda soma inferior € menor ou igual a toda soma
superior.)

Demonstragdo
Seja P = P, U P,; assim P é um refinamento de P;, bem como de P,. Por ©
S(f,P=<S(f, P
e, pelo teorema,
S(f,P)<S(f,P) e S(f,PY<S(f, Py).
Assim,
S(LPD=S(f,P=<S(f, P)=S(f, P).
ou seja,
S(f, P)< S (f, Py). .

Seja f continua em [a, b]. Pelo corolario acima, toda soma inferior S ( f., P) é cota
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inferior do conjunto

A={5(f, P)| P patticio de [a, b] .

Segue que tal conjunto admite infimo. Seja L o infimo de A. Como toda soma
inferior é cota inferior de A resulta, para toda particao P de [aq, b],

@ SifiP=1=5.5
Por outro lado, para toda particao P de [a, b] e qualquer que seja a escolha de c¢; em

[Xi -1 Xi],

] .
@ S(f,P)<s X f(g)Ag<S(f,P)

=1

De ® e @ resulta

R —
® | £ fl)A;—LISS(f,P)—-S(f, P)

=1

para toda particdo P de [a, b] e qualquer que seja a escolha de c; em [x; _ 4, X;].

Provaremos, na préxima secdo que, se f for continua em [a, b], dado € > 0, existira
6 > 0 tal que

S(f.P—-S(f.P)<e

para toda particao P de [a, b], com max Ax; <.
Seguird, entdo, de ® que toda fungdo continua em [a, b] é integrdvel em [a, b].

A4.3. INTEGRABILIDADE DAS FUNCOES CONTINUAS

Antes de passarmos a demonstracao do proximo lema, observamos que, se f for
continua em p, dado € > 0, existird § > 0 tal que, para todo s e t no dominio de f,

s,t€lp-8,p+rél=|f(s)-f(O]<e

De fato, sendo f continua em p, dado € > 0 existira § > 0 tal que, para todo x € Dj,
@ xE]p—54}-!-5[:>|,;"U".i—,;r"{p‘r|{%-

De @D e de
[FE)=fOI=IfE-fE+f@-FOI<IfE)-f@I|+]fP)-fO]

segue que quaisquer que sejam s, t € Dy

s,t€lp-6,p+dl=[f()-fO|<e
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Lema. Seja f continua em [a, b]. Entdo, dado € > 0, existe uma particao
P:a=Xx,<x,<x,<...<x,=bdela, b] tal que

Ml_ml<€(i: 1, 2, ceey n)

em que M, e m; sdo, respectivamente, os valores maximos e minimos de f em [x; _
1» Xi]-

Demonstragdo

Suponhamos, por absurdo, que, para um dado € > 0, ndo exista particao P de [a, b]
para a qual se tenha M; — m; < eparai =1, 2, ..., n. Facamos, entdo, a = a;, b=b, e
seja c¢; o ponto médio de [a;, b,]; segue que [a,, c,] ou [c;, b;] ndo admitira particao
que satisfaca a condicdo M; — m; < € em todo subintervalo da particdo. Seja [a,, b,]
aquele dos dois intervalos acima que ndo admite particao satisfazendo a condicao
citada. Seja ¢, o ponto médio de [a,, b,]; [a,, c,] ou [c,, b,] ndo admitira particao
satisfazendo a condigdo citada; seja [a;, b;] aquele dos dois intervalos acima que ndo

admite tal particdo. Prosseguindo com este raciocinio, construiremos uma sequéncia
de intervalos

[ay, b1 D [ay by]1 D ... D [a, bl D ...

satisfazendo a propriedade dos intervalos encaixantes e tal que para todo natural k > 1,
[a,, bi] ndo admitira particdo satisfazendo a condi¢do M; — m; < € em todo subintervalo

de tal particdo. Seja p o tnico real de [a, b] tal que para todo k > 1, p € [q,, b,]. Como
f é continua em p, para o € > 0 acima existe § > 0 tal que quaisquer que sejam s, t em
[a, D]

s,t€lp-8,p+rél=|f()-fO]<e
Por outro lado, existe k tal que
la,, bl Clp—6,p + 6l
e, assim, para toda particdo de [q,, b;], terlamos
M,—-m;<e

em todo subintervalo de tal particdo, que é uma contradicdo. Fica provado, deste
modo, que, para todo € > 0, existe uma particdo P de [a, b] tal que

em todo subintervalo [x; _;, x;] determinado por tal particdo. ™
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Teorema. Se f for continua em [a, b], dado € > 0, existira § > 0, tal que
quaisquer que sejam s, t € [a, b]

|s—t]<é=[f(s)-f(O|<e

Demonstragdo

Pelo lema, dado € > 0, existe uma particao P de [a, b] tal que

[
M;—m; < 5

em todo subintervalo [x; _ ;, x;] determinado pela particdo. Seja § o menor dos niimeros
Axq, DXy, ..., Ax,, em que Ax; = X; — X; _ 1.

Sejam s e t dois reais quaisquer em [a, b], com |s — t| < §. Dois casos podem
ocorrer: s e t pertencem a um mesmo intervalo [x; _ ;, x;] ou s ou t pertencem,
respectivamente, a intervalos consecutivos [xj_l, xj] e [xj, Xj 41 ]. No 1.° caso teremos

. . €
L5 —fD < 5 << € No 2.° caso, teremos

Il
th

£ = FOI<S1F6) = fo) 1+ 17 ) =1 < = +

r3 | m

Fica provado, assim, que quaisquer que sejam s e t em [a, b]

|s—t]|<s=[f()-f(O]<e =

Teorema. (Integrabilidade das fungées continuas). Se f for continua em [a, b],
entdo f serd integravel em [a, b].

Demonstragdo

Segue do teorema anterior que, para todo € > 0, existe § > 0, tal que quaisquer que
sejam s, t em [a, b]

Is—t1< 8= 1f(s) —F(H < —

—da

Assim, para toda particdao P de [a, b], com max Ax; < §, teremos

_ i ¥
S, P)-S(f,P)= 3 (Mi-m)Au< 5 —° Arj=¢
- i=1 i=1 lr.}_f.{'

e, portanto,
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" _
L2, Fleiydxy— L= S (. P)—S ([, P)<e

=1
(Veja ® de A4.2))
ou seja, f é integravel em [a, b], com integral r}f (x)dx = L, em que L é o infimo
das somas superiores de fem [a, b]. ™ )

A4.4. INTEGRABILIDADE DE FUNCAO LIMITADA COM NUMERO FINITO DE
DESCONTINUIDADES

Lema. Se F for crescente em [a, b[ e se existir M tal que, para todo x em [a, b[, f
(x) < M, entdo existira um real L tal que

lim Fi{x)=L.

x—= b

Demonstragdo

O conjunto {f (x) | x € [a, b [} é ndo vazio e limitado superiormente por M, logo
admite supremo L. Dado € > 0, existe x, em [a, bl tal que

L-€e<F(x)<L
e, portanto, pelo fato de F ser crescente
Xg<x<b=L-€<f(x)<L

logo,
lim F(x)=L. ]
x— b

Teorema. Se f for limitada em [a, b] e continua em [a, b[, entdo f sera
integravel em [a, b].

Demonstragdo

Vamos supor, inicialmente, f (x) > 0 em [a, b]. Como f é continua em [a, b[, para

;
todo t em [a, b[,J f (x) dx existe. Seja
i

;
F(f) = j f(x)yde,a<t<b.
i
Como f (x) > 0 em [a, b] e limitada neste intervalo, resulta que F é crescente e
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limitada em [a, b[; pelo lema, existe L tal que

Q) lim Jj{x‘}dx—

t— b~

Vamos provar que f é integravel em [a, b] e que J f(x)dx= L. Como f é

limitada, existe M > 0 tal que para todo x em [qa, b], 0 < f (x) < M. Tendo em vista D,
dado € > 0, existe by, a < b; <b, tal que

h

| €
" (x)dx— L|<—.
f ‘ ‘

a

€
Podemos escolher b, de modo que M (b — b) < e Por outro lado, existe § > 0

A
(que pode ser tomado de modo 2Mé << %J tal que, para toda particao P, de [a, b,],

com max Ax; < 6,

b
SFe) A — | faydel<s

i

R
Temos, também, para toda particao P, de [b;, b],

1T £ (c;) Ax;l < E (por qué?).
2 ;

Seja, agora, uma particdo P qualquer de [a, b], com max Ax; < §, e suponhamos que
by € [x; -1, x; ]

o

§ -——)
§

B -
HR
by
[

- e |
—_——
—
o

-
]
s

b
- |

temos
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g =l n
|y flepA, =Ll =13 flepAx; +f(cpAx;+ X flepAx,—Ll=

i=1 i=1 i=j+1
|.JF_] 'r}l bl
=1 X fi(c) Ax; +f{tJ]]fb f—l]__[f f(.x}dr—i—L f@dx—-L+

f—]

+ Z Fle) o3 fle; 1ix—by) +Fle) &x; = Flep ) (b = %= 1)
i=j+1 ’
_;—] by
—fle;)—bpl<l X flepAx+fic)) b x,,-_]*;—j £ del +
:—l ' a
by
IJ "roode— LI+ 5 Fe) Ax; +f(cj) = bl + | f(cp o —x; = ) —
i=j+1
+—+—+

—f(cj) by —x;— 1) —f(cjy) (x;— by) | < B

LR
4 4

B m

Lot
4
Portanto, f é integravel em [a, b] e
b
j f(x)dx=L.
i

Deste modo, o teorema fica provado no caso f (x) > 0 em [a, b]. Se f ndo verifica
esta condicao, pelo fato de f ser limitada em [aq, b], existird a > 0 tal que f(x) + a >0
em [a, b]. Pelo que vimos acima, f (x) + a sera entdo integravel em [a, b]. Para todo x
em [a, b]

f)=1f(x)+a]l-
logo, f é integravel em [a, b], por ser soma de duas integraveis em [a, b]. =

Observacdo. Do mesmo modo, prova-se que, se f for limitada em [a, b] e continua em
la, b], entdo f sera integravel em [a, b].

Deixamos a seu cargo a demonstracao da propriedade: se f for integravel em [a, c]
e em [c, b], entdo f sera integravel em [a, b] e

b C b
f(x)dx= J fi(x)dx+ J £ Ly,
o e [

Como consequéncia do teorema anterior e da propriedade acima, vem o seguinte
corolario, cuja demonstracao é deixada para o leitor.

Corolario. Se f for limitada em [a, b] e descontinua em apenas um numero finito
de pontos, entdo f sera integravel em [a, b].

A4.5. INTEGRABILIDADE DAS FUNCOES CRESCENTES OU DECRESCENTES
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Se f for crescente em [a, b], f assumira em [a, b] valor maximo f (b) e valor minimo
f (a). Seja P uma particdo qualquer de [a, b]; podemos, entdo, considerar as somas
superior e inferior de frelativa a particao P:

_ i
S(f,P)= X f(x;)Ax;

i=1

H
S(f,P)= X f(xi_1)Ax.

=1

As propriedades demonstradas no caso de f se continuas permanecem validas no
caso de f ser crescente. Temos

_ [
S(f,P)=S(f,P)= X [f (x)— f(xi—1) ] max Ax; (verifique)

i =1
e, portanto,
S(f.P)— S(f.P)<[f (b)— f (a)] mix Ax;.

Se f (b) = f (a), f sera constante, logo integravel. Podemos supor, entao, f (b) > f (a).

Entdo, dado € > 0 e tomando-se 0 = — - - para toda particao P de [a, b],
by —f(a)

com max Ax; < 6,
S(f.P)—S(f.P)<e

e, portanto,

n
& e A — L

=1

<S(f.P)—S(f.P)<Ee

em que L é o infimo das somas superiores § ( f, P). Fica provado assim o

Teorema. Se f for crescente em [a, b], entdo f sera integravel em [a, b].

Observacado. Se f for decrescente em [a, b], entdo — f sera crescente e, portanto,
integravel; como f = — (—f), segue que f sera, também, integravel em [aq, b].

O préximo exemplo nos mostra uma funcao integravel cujo conjunto dos pontos de
descontinuidade ¢ infinito.

EXEMPLO. Sejaf: [0, 1] — R dada por
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n e n el n+1
fx)=9n+1 ™ a+l 7 " n+2
1 se x=1

(n e M)

o Y
= x <= etc. |
3 J

|' f(x)=0 se ﬂ%.x'{%;f{.ﬂ=

1
se —
2

bd | —

Como f é crescente, resulta que f é integravel em [0, 1]. Observe que f é
descontinua em todos os pontos do conjunto infinito

{HJ_LIIHEN*}. @

A4.6. CRITERIO DE INTEGRABILIDADE DE LEBESGUE

Henri Lebesgue (1875-1941) estabeleceu um critério de integrabilidade que nos
permite reconhecer se uma funcao f é ou nao integravel em [a, b], olhando apenas para
o conjunto dos pontos de [a, b] em que f é descontinua. Para estabelecer tal critério,
precisamos primeiro definir conjunto de medida nula.

Seja A um subconjunto de R e seja I, I,, ..., I, ... uma sequéncia de intervalos;
dizemos que tal sequéncia cobre A se

+im
Ayl ... WEU. = o 5

i=1

isto é, se A estiver contido na reunido de tais intervalos.

i

1
EXEMPLO 1. Seja A= { —InelN* }; a sequéncia dada por
n

1 { R 1
I, = }— -, —+ —[,n =1, 2, ..., cobre A, pois
n 2% "m " 2P

ACLULUILU ...

im

Observe: 1 € [} = l—l‘1+l[;l' ;2=}l_ lj‘l_k 1?
2 2 2 ;

No que segue, m (I) indicara a amplitude do intervalo I; assim, se I = [0, 2], entdo
1 1 1
mH=2-0=2;sel=|— —|.m([)=—-
Seja A C R; dizemos que A tem medida nula se, para todo € > 0 dado, existir uma
sequéncia de intervalos Iy, I,, I, ..., I, ... que cobre A e tal que

+ o0
L mil)=<k& n
n=1
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+ @ k
Observacdo: ¥ m (/)= lim X m(l).

n=1 k— 4w p=1

Antes de passarmos aos exemplos, lembramos que, se 0 < g < 1, entdo

g+ @ +g@+ A+ = ; 9 (verifique).
—q
Se tomarmos 0 < g < (€ = 0), teremos
g+ @ +@+ ...+ g+ .. = - 1 <
- g

EXEMPLO 2. Mostre que A = { jl—: | n e N* } tem medida nula.

Solugdo

Dado € > 0, tomemos g tal que 0 << g << e

Consideremos a sequéncia de intervalos

] | | ]
IL,=|—m—g*, —+—qg*|.n=12,...
" ]ﬂ? 2! n 29‘ [

Tal sequéncia cobre A e, como m (I,,)) = q", resulta
+ .
Y m(I)=q+qg°+...+q¢"+..= 7 — <e
n=1 - q

portanto, A tem medida nula.

Seja A C R; dizemos que A é enumerdvel se existir uma sequéncia a,, a,, ..

tal que
A={a,|n €EN*}. =
EXEMPLO 3. N é enumeravel, pois,
N={a,|n € N*}

emquea,=n—1. =

EXEMPLO 4. O conjunto A dos racionais estritamente positivos é enumeravel.

Solucgdo
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4 4 4 4
2 3 4 57
A={a,|n € N*}
em que
WIS SRS _ N S )
l 1‘ 2 ]‘ 3 2‘ 4 3‘.., 2]

EXEMPLO 5. O intervalo [0, 1] ndao é enumeravel.
Solugdo

Suponhamos, por absurdo, que fosse enumeravel; existiria, entdo, uma sequéncia
a,, a,, ... tal que

[0, 1] = {a, | n € N}.
Seja, agora, c; € ]0, 1[, com c; # a;; a, ndo pode pertencer a
@ [0, ¢(] e [cy. 1.

Seja [ay, B,] o intervalo em @ que ndo contém a;.
Seja, agora, ¢, € ]ay, B;[, com ¢, # a,; a, ndo pode pertencer a

@ [{II‘C‘E]E[C‘Z‘ﬁl].

Seja [ay, B,] o intervalo em @ que ndo contém as.
Prosseguindo com este raciocinio, construiremos uma sequéncia de intervalos

[ay, By D [y, Bol D ... D e, B,1D ...

tal que, para todo natural n > 1,
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a, € [a, B,
Por outro lado, existe pelo menos um real p € [0, 1] tal que
p € [ay, B,
para todo n > 1. Segue que
p#a,
para todo n > 1, que é uma contradicao. =
EXEMPLO 6. Todo conjunto A enumeravel tem medida nula.
Solugdo

Dado € > 0, consideremos a sequéncia

I, = :|{1” _%q:‘F* ay +%*?H [ n=123...

como 0 < g < e A = {a,|n & N*}. Tal sequéncia cobre A e

+ .
Y miI)=q+g +..+q +..<e m
n=1
EXEMPLO 7. Prove que A = {1, 2, 3} tem medida nula.

Solugdo

A={a,|n € N*},emquea, =1,a,=2,a;=3ea, =3 paran > 3; logo A é
enumeravel e, portanto, tem medida nula. =

EXEMPLO 8. Seja A C R; se A for finito, entdo A tera medida nula.

Solucgdo
Suponhamos que A tem p elementos; batizando os elementos de A por Xy, X,, ..., X,,
resulta A = {x;, x,, ... x,} = {a, | n € N*} em que a; = x;, a, = X, ..., a, = X, € q, = X,

para n > p. Assim, A é enumeravel; logo, tem medida nula. =

Vamos, agora, enunciar, sem demonstracdao (para a demonstracdo, veja Elon Lages
Lima, Curso de Andlise — Volume 1), o seguinte

Critério de Lebesgue

Seja f limitada em [a, b] e seja A o conjunto dos pontos de [a, b] em que f é
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descontinua: A = {x € [a, b] | f é descontinua em x}. Entdo,

f integravel em [a, b] © A tem medida nula.

Exercicios

1. Prove que se A estiver contido em B e se B tiver medida nula, entdo A tera,
também, medida nula.

2. Prove que o conjunto vazio tem medida nula.

3. Prove que se A e B tiverem medida nula, entdo A U B também tera medida
nula.

l sexe@
0 sexe@
Utilizando o critério de Lebesgue, conclua que [0, 1] ndo tem medida nula.

Ja foi visto que a funcao fi(x)= { ndo é integravel em [0, 1].

5. Utilizando o critério de Lebesgue, prove que se f for integravel em [a, b],
entdo f serd continua em pelo menos um ponto p € [a, b].

b
Suponha f integravel em [a, b] e f (x) > 0 em [a, b]. Prove quej f (x)dx = 0.

7. Utilizando o critério de Lebesgue, prove que se f for integravel em [a, b],
entdo | f| e f* também serdo.

8. Seja A o conjunto dos numeros irracionais pertencentes ao intervalo [0, 1].
Prove que A ndo tem medida nula.

9. Dé exemplo de um conjunto ndo enumeravel que tenha medida nula.
(Pesquise!)

10. Utilizando o critério de Lebesgue, decida se a funcao dada é ou nao

integravel.
R : R [ W
a) f:10,1] — R dada por f(x)= {ﬂ wxe0
\
1 I =
sen | —— | sesen —#0

b) f:10,1] — R dada por f(x) = sen i e
X
I

1 sesen—=0 ou x=0
X

l sexe A

1
0 sexgd Smaue A —{?In e M }

¢) f:10,1] = R dada por f(x)= {
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Apéndice
5

DEMONSTRACAO DO TEOREMA DA SECAO 13.4

Seja a equacgao

dx
— =g (1) h(x)
dt £

em que g e h' sdo supostas continuas nos intervalos abertos I, e I,, respectivamente.
Consideremos 0s numeros reais t; e x,, com t, € I, e x, € I,.
Tomemos r; > 0 e r, > 0 tais que

Da continuidade de g e h', segue que existem a > 0 e § > 0 tais que

@ lg () =aem [ty —ri.tg+ 1]
e
@ A (x) | < Bem [xy — ry. xp + 1],

Observamos, ainda, que, quaisquer que sejam u e vem [X, — Iy, X, + I, ],
@ lh(W) —hWI<Blu—vl
De fato, pelo TVM existe i entre u e v tal que
hiu)y—h(v)=h"(u)u—yv)

e tendo em vista @ segue Q.
Suponhamos, agora, que x = x (t), t € I, onde I é um intervalo aberto contido em I;,
seja solucdo do problema

dx

—=g(t)h .
@ dt FON

x (tg) = xp.

Entdo, para todo t em I,

X (O=9g@®hx®)
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e, portanto, para todo t em I

14
g(s) h (x(s5))ds = [x (s5) ]iﬂ =x () — Xy
Iy

ou seja,

I
® x() —xg= -[* 2(s) h(x (s5)) ds.

Sendo x = x (©), t € I, solugdo de @, tal funcdo sera continua, logo, existe r > 0
(com [ty —r, t; + r] CI)tal que

® fh—rst=stytr=xg—n=x{t)<xy+r.

Podemos escolher r de modo que

|
@ rsrer< —.

aB

Lema 1. Se x = x (1), t € I, for solugdo de @ e se h (x,) = 0, entdo

X(t):XOem[tO_r, t0+r].

Demonstragdo

De @ e da hip6tese segue

xX(t)—xg= rg{g} [h(x(s)) — h(xy)]ds.
fy

Segue de @ e de ® que, para todo s em [ty —r, ty+r ],
|h(x(s)) —h(x)) [<B[x(s) — x|

Entdo, para todo tem [t, — 1, t, + 1]

X () —xp| < aB | J'Iu (s) — %o 1ds|.

§ i

Sendo M o maximo de | x (t) — x, | em [t, — 1, t, + r], resulta

r
lx (1) —xgl = aBM| | dsi
fo

ou
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| x () —Xxo [ <apM |t -t
e, assim, para todo tem [t, —r, t, + 1]
[x({t)—Xxo|<afMr
e, portanto,

M < ofSMr (por qué?).

Se tivéssemos M > 0 (observe que M > 0), terilamos 1 < affr ou r = —— que
!

contradiz @); segue entdo que M = 0. Logo

x(t)=xpem|[ty—r,tp+tr]. =

Lema 2. Se x = x (1), t € I, for solugdo de @ e se h (x,) = 0, entdo

x (t) =x,em L

Demonstragdo

Pelo lema 1, existe r > 0 tal que
x()=xpem|[ty—r,t,+r].

SejaB={b €1]|x(t)=x,em|[t,—r, b[}. Se Bndo for limitado superiormente,
teremos x (t) = x, em [t, — r, +o [e +oo sera, entdo, a extremidade superior de I. Se B
for limitado superiormente, admitira supremo j, e, assim,

x()=xpgem[ty—r, bL

Se j, pertencer a I, pela continuidade de x = x (t), resultard x ( b)= Xp: seguira,
entdo, pelo lema 1 que existira 7 = () tal que

x (1) = xgem [f? —F. b+ F]

contradi¢do. Assim }, € a extremidade superior de I. Deixamos a seu cargo concluir
que

x(t)=x,emlI. =

Teorema. Seja a equagao
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dx
— =g (t) h(x)
dt 8

em que g e h sdo definidas em intervalos abertos I, e I,, respectivamente, com g
continua em I, e h' continua em I,. Nestas condicoes, se x = x (t), t € I, for solugdo
ndo constante da equacao, entdo, para todo t em I,

h (x (6) # 0.

Demonstrag¢do

Se, para algum ¢, em I tivéssemos h (x (t;)) = 0, pelo lema 2, teriamos, para todo ¢
em I,

x(t)=x(t). =
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Apéndice
6

CONSTRUCAO DO CORPO ORDENADO DOS NUMEROS
REAIS

A6.1. DEFINICAO DE NUMERO REAL

Definicdo. Seja a um subconjunto de Q. Dizemos que a é um ntimero real se
satisfaz as condicoes:

R azpeazqQ.
(R2)Vp,geQ,sep €Eaeqg<p;entdoq € a.
(R3) a ndo tem maximo.

A ideia que esta por tras de tal definicdo é a de caracterizar um nuimero real pelo
conjunto de todos os numeros racionais que o precedem. Pela definicdo acima,
estamos representando um numero real a pelo conjunto dos racionais que o precedem.

EXEMPLO 1.a={p € Q| p <2 } é um nimero real. De fato:

(R a # ¢, pois, 0 € a.
a#zQ,pois,5€Qe5 ¢ a.

(R2) Sejam p, g racionais quaisquer, com p € a e q < p. Temos:
pEaep<2
Dep<2eq<p,segueq<2,logo,q € a.
(R3) @ ndo tem maximo (verifique).

Assim, o conjunto a = { p € Q | p < 2} satisfaz as condicdes (R1), (R2) e (R3),
logo, é nimero real.

Seja r um nimero racional qualquer. Deixamos a seu cargo a tarefa de verificar
que o conjunto { p € Q| p <r } é um nimero real. Tal nimero real sera indicado por
r:

r*={p€Q|p<r}(rracional). =
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EXEMPLO 2.a=Q_U {p € Q, | p? <2 } é um ntimero real (quem é a?).
De fato:

(R a#¢,pois, Q. Ca(Q_.={x €Q|x<0})
a#Q,pois,5€Qe5¢a.

(R2) Sejam p, q dois racionais quaisquer, com p € a e q < p. Temos:
(i)sep € Q_, entdo g € Q_, logo, q € a.
(ii))sep>0eg<0,entdoq € a.

(iii)sep>0eqg>0

qg<p ’) o
St

De p? < 2, segue ¢* < 2, logo, q € a.
(R3) Seja p € a, com p > 0. Temos, para todo n € N*,

( ] ;}*-I—E—I-L-- pf—i-E—i-l

ou

Por outro lado,

4 1 2p +1
pPrt—(2ptli<2 S n= P s
n di= P&
. o 2P+
Tomando-se, entao, i1 = > 5. resulta
— p?

|r D l |d D
\ n

0 que mostra que @ ndo tem Maximo. M

Exercicios

1. E ndmero real? Justifique a resposta.

aAa={p€Q[3p+1<2p-5}
bya={p€Q|(+1)(p-3)<0}
)a={p€EQ|p*-2p*+3p-6<0}
Da={peQ|p®+2p°+5<0}
e)a={p€Q|p*<3}
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2. Seja a um numero real e indique por M, o conjunto dos racionais que sao
cotas superiores de a. Prove que

f={p€Q|-pEM,e—p#min M, }

€ namero real.
3. Sejam a e B nimeros reais. Prove que o« U 3 e o n B sdo, também, niimeros
reais.

4. Sejam os niimeros reaisa = {p € Q| p><5} e B={p € Q| p < 2}. Determine

anfealp.
S. ) i noo\.
Para cada n € N, seja o numero real @, =| —— | *. Complete:
 2n+1
a)a, =
b) a; =
o a,=
3
d U a,=ayUa Uar Uaz =...
n=>0
6. . . (a1,
Para cada n € N, seja o nimero real a, =t —— | *. Prove que
C2n+1
+ w : 1 +
U a, = { pEQIp<— } onde | q, indica a reunido de todos os
H= '[:} 2 } n= {_}
numeros reais Qg, Ay, «.., Ay, ...

7. SejaA={r*|r €Q,r>0er’<2}. Determine areunido de todos os reais a,
com a € A. Verifique que tal reunido é um numero real.

A6.2. RELACAO DE ORDEM EM R

O simbolo R sera usado para indicar o conjunto dos ntimeros reais: R = {a | a é
nuamero real}.

Definicdo. Sejam a e 3 dois nimeros reais. Definimos

a) a<feaCp.
b) a<feaCfea?p.

Deixamos a seu cargo verificar que, “<” é uma relagdo de ordem sobre R, isto é,
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“<” satisfaz as propriedades:

0H)Va€eER,a<a.
Q) Va,LER,a<fef<a=a=p.
03)Va,B,yER,a<Pfef<y=a<y.

Para provar (04), vamos precisar do

Lema. Se a é um nimero real e se x é um racional, com x € a, entdo, p < x, para
todo p € a.

Demonstragdo

Suponhamos, por absurdo, que exista p € @, com p > x. Pela (R2), terilamos, entdo,
que x € a, contradicdo. Portanto, se x € a, entdop <xparatodop €Ea. =

Este lema nos diz que todo racional x que ndo pertence ao real a, é uma cota
superior de a.

Vamos, agora, demonstrar a seguinte propriedade.

Propriedade (04). Quaisquer que sejamae fem R, a < ouf <a.

Demonstragdo

Quaisquer que sejam os reais a e B, a C Boua € B.
Se o C f3, entdo, a < .
Se a ndo esta contido em B (o € B), entdo existe um racional x, com x € a e x & f3.

Como x & 3, segue do lema que p < x, para todo p € 8. Como x € « e, para todo p
€ B, p <x, segue de (R2) que p € a, paratodop € B,isto é, 3 C a, ouseja, F<a. W

A6.3. ADICAOEM R

Teorema 1. Se « e [§ sdo nimeros reais, entao
y={a+bla€a,bEP}

também é nuimero real.

Demonstragdo

Precisamos provar que y satisfaz as condicoes (R1), (R2) e (R3).
(R1) Como « e B ndo sdo vazios, existema € a, b € B; assima + b € y, logo, y # ¢.
Por outro lado, como o # Q e  # Q, existem racionais se t, coms ¢ a e t &€ f3; pelo
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lema da se¢do anterior, tem-se:
Va€a,a<seVbeEpPS b<t
dai
Va€a,VbeEB, atb<s+t.

Logo, s + t € y e, portanto, y # Q.
(R2) Precisamos provar que, se x € y e y < x, entdo y € y. Para provar que y €y,
precisamos fabricarum s € e eum t € 5, de modo que y = s + t.
Temos:

XE€yex=a+bparaalguma € aealgumb € £.
Dey <xseguey<a+b,daiy—a<b; comob € f3, segue que y — a € . Entdo,
y=a+(y—a),coma€ae(y—a)€p.

Logo,y €.
(R3) Para provar que y ndao tem maximo, precisamos provar que, se X € y, entao existe
y € ycom x <y. Temos:

XE€yex=a+bparaalguma € aealgumb € .

Como a e $ ndo tém maximo, existem racionais s € aet € fcoma <s e b < t; dai,
a+ b <s +t Tomando-se y = s + t, tem-se x < y, com y € y. Assim, y ndo tém
maximo.

Como (R1), (R2) e (R3) estdo verificadas, segue quey €E R. =

Definicdo. Sejam « e 8 dois niimeros reais; o nimerorealy={a+b|a € a, b €
B} denomina-se soma de a e [ e é indicado por a + 3. Assim,a + B={a+b|a €
a,b € f}.

A operacdo que a cada par (a, B) de numeros reais associa a sua soma o + f3
denominase adi¢do e é indicada por +.

EXEMPLO. Sejam r e s dois racionais; prove:
r¥ +s*=(r+s)*.
Solucgdo
Precisamos provar que r* + s* C (r + s)* e que r* + s* D (r + s)*.

Lembramos, inicialmente, que
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r*={x€Q|x<r};s*={x€Q|x<s}

(r+s)*={x€Q|x<r+s}.

r¥+s* C(r+s)*

XE€r*+s*ex=a+bparaalguma <realgumb <s, com a e b racionais.

x=a+ b
a<r =YE sz e frle
b<s

Provamos, assim, que
XEr*+s*=x€(r+s)¥

logo, r* + s* C (r + s)*.

(r+s)* Cr*+s*

XET+s)!=x<r+s=x-r<s.
Tomemos um racional u, comx —r<u <s.

u<s=ue€s*
x—-r<u=x-u<r=Xx-UEr*

Segue que
X=(X-u)tu comx—u€r*eu € s*

logo, x € r* + s*,
Provamos assim, que

XE((r+s)*=xe€r*+s*
logo
(r+s)*Cr*+s* =
A6.4. PROPRIEDADES DA ADICAO

Nosso objetivo, nesta secao, é provar que a adicdo satisfaz as propriedades (A1),
(A2), (A3), (A4) e (0OA).
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Para provar (A4), vamos precisar do

Lema. Sejam a um numero real, u < 0 um racional e M, o conjunto das cotas
superiores de a. Nestas condigoes, existem p € a, ¢ € M, g # min M,, (caso min
M, exista), taisque p — q = u.

Demonstragdo

o M

oy

T eem eme

Estamos interessados em determinar p € a, q € M,, q # min M,, com p — q = u.
Para isto tomemos um racional s € a, com s # min M, e, para cada n € N,
consideremos o racional g, = nu + s.

Seja, agora, ;7 0 maximo dos naturais n para os quais q,, € M, e q,, # min M,,.
Dois casos podem ocorrer:

1°CASO.g; EM_ e g7+, € a.

95 + 1 gr=nu + 5§

o M
Tomando-se§ = ¢z €P = {y+1:p—q=1uU.

2.°CASO. g; = M_ e g+ = min M, (que s6 podera ocorrer se min M, existir).
1 1
Tomando-se g = g5 + 5 Hep= gy+1+ Eu‘p— g=u,comp€aeq€
M,, q # min M,,.
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97 + 1 d5

P q=fl.fﬁ+%u

Teorema. A adicdo satisfaz as propriedades:

A1) Associativa: YV o, B,y ER,a+ (B+y) =(a+ ) +y.

A2) Comutativa:Va,BER,a+ =+ .

A3) Existéncia de elemento neutro: YV a € R, a + 0* = a.

A4) Existéncia de oposto: Para todo a € R, existe f € R com a + 3 = 0*.

0A) Compatibilidade da adi¢do com a ordem: Y a, B,y E R,a<f=a+y<f +
y.

Demonstragdo

A1) e (A2) ficam a seu cargo.
A3) Precisamos provar que a + 0* Cae a C a + 0*.

a+0* Ca

Lembramos que 0* = {u € Q| u <0 }. Temos:

XEa+0*ex=ag+uparaalguma € aealgumu<0,u € Q.
u<0=a+u<a=x<a=x€a«a

portanto,
XEaq+0*=>x€Ex

Logo, a + 0* C a.

a Ca+0*

Precisamos provar que, se x € a, entdao é possivel fabricar um a € a e um u < 0 tal
quex =a+ u.
Entao,

X € a = da € a, com x < @, pois & ndo tem maximo.

x<a=x-a<0.
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Assim,
x=a+(x—-a),coma€aex—a<0,
logo, x € a + 0*. Portanto,
a Ca+0*,

A4) Seja a um numero real; de acordo com o Exercicio 2-A6.1,
B={p €Q|-p € M, e —p # min M,} é um nimero real. Vamos provar que a + f§ =
0*.

a+ B CO0*

X€a+B=x=a+bparaalguma € aealgumb € L.
bef=-b>a=a+b<0.

Assim,

X € a+ f=x€0* ouseja, a+f CO*.

0O*Ca+p

Precisamos provar que, se x € 0*, entdo x = a + b para algum a € o e algum b € 5.

Como x < 0, segue, do lema anterior, que existem a € a e —b € M,, com —b # min
M,, tais que x = a — (-b); assimx=a+bcoma Eaeb € L.

Portanto, 0* C o + 5.

Provamos, assim, que, dado um real a, existe um real 3 tal que o + B = 0%;
provaremos mais adiante que tal 3 é Unico e serd, entdo, denominado oposto de a e
indicado por —a.

(OA) Sejam a, B, y € R, com « < f3; vamos provar que a + y < 3 + y. Temos:
XEa+y=x=a+cparaalguma € aealgumc € y.

Da hipétese, segue que a € a = a € (. (Lembre-se:a <= a C .)
Assim x = a + c para algum a € S e algum c € y. Logo, x €  +.
Provamos, assim, que

asp=at+tyCpty=at+ty<f+y =

Teorema. (Unicidade do oposto)
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Sea+f=0%ea+y=0%entdo [ =y.

Demonstragdo

p=0*+p=(y+a)+B=y+(a@+f)=y+0*=y. =

Teorema (Unicidade do elemento neutro)

Se a +y =« paratodo a € R, entdo y = 0*.

Demonstragdo

Da hipotese, segue que 0* + y=0*; daiy=0*. =

Exercicios
1. Prove:Va,B,yER,a=B=a+y=L+y.
2. Prove:Va,B,yER,a+y=p+y=a=[(lei do cancelamento).
3. Prove:Va€R,-(-a)=a.
4. Prove:Va €ER,a<0* = 0*<—q.
5. Prove:Va,B,y, ER,a<fey<d=a+y<p+6.

A6.5. MULTIPLICACAO EM R

Teorema. Sejam a, € R, com a > 0* e B > 0*. Entao

y=Q_U{ab|la€a,b€P,a>0,b>0}

é um numero real.

Demonstragdo

(R y# ¢, poisQ_Cy.
Para provar que y # QQ, procedemos assim: como «a e 3 sdo nimeros reais, existem
racionaismencomm & aen & B, dai:

Va€a,coma>0,a<m
VbeB, comb>0,b<n

logo,

ab < mn para todo a € a, a > 0, para todo b € f3, b > 0, portanto, mn € y. (Por qué?)
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(R2) Sejam p, g racionais com p € y e g < p; precisamos provar que q € y. Entdo:
(a) Sep <0, entdo g<0,logoqg €y.
(b)Sep>0eqg<0,q€y.
(c)Sep>0eq>0, vem:

p€E€yep>0=p=abparaalguma € a,a> 0, e paraalgum b € 3, b > 0.

g G
De0<q<p=ab,vem—f‘:1 fhassim—fEB,ei}U:logo,
a

a a
g g g

q=(:-—fcomaEa‘a‘;}{}e—‘tEB, Losen:
a a a

Portanto, g € y.

(R3) Para provarmos que y ndo tem maximo, basta provarmos que, se p € ye p > 0,
entao existe q € y com q > p.
Temos:

pE€y,p>0=p=abparaalguma € a,a>0ealgumb € 5,b> 0.

Como a e § sdo numeros reais, existem a’' > a, coma’ € a, b’ > b, com b’ € f3; dai a
'b’>ab=p,comab €y. n

A seguir daremos a definicao de produto de dois nimeros reais.

Definicdo. Sejam a, § € R. Definimos o produto de a por [ por:

@_u{ablaEa,bEB,n}D,b}{}} se a>0% e B>0%
0% se a=0% ou B=0*%

a-B= —{{—a}-ﬁ}sea{{}* e B=>0%

—{a-{—ﬁ}} sea=0% g B< 0%

[(—a)-(—B)sea <0* e B<O*

EXEMPLO. Sejaa=Q_U {p € Q, | p* < 2}; prove que a - a = 2%,
Solucgdo
a-a=Q_U{ab|a>0ea*<2,b>0eb’<2}.

Precisamos provar que o - a C 2* eque 2* C a - a.

a-a C2*
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XEa-aex<0=x € 2*,
xX€Ea-aex>0=x=ab,coma>0ea’*<2,b>0eb’><2.

x=ab=x*=a’*-b*<4.
x>0ex’<4= x<2. Portanto,
XEa-aex>0=x € 2%,

Segue que a - a C 2*.

2*Ca-«a

XE2*ex<0=x€a-a.

)

xEZ*ex:}D::»D{x{Z:)%{Z.

Existe a racional, a > 0, tal que
2

)'(TH < a? < 2 (veja adiante).

2 2

fx) x [ x X~ :
Dai \ _J < 2.como— = 0e _W < 2, resulta que — & @. Assim,
e a . a ) a
N
_‘1' =('II' [
a

% b
comoa>0,a Ea, —=0e — & a:logo,
a a

XEa:a.
Assim,
XE2*ex>0=x€a-a.

Portanto, 2* C a - a.
Provamos, assim, que a - a = 2*, ou seja, 2* admite raiz quadrada em R.
L ]

. X ~ : .
Vamos provar a seguir que, se —— < 2_entdo existe a > 0, racional, tal que
2

2 7 o) 3
x- 9 L. X =
Z < g~ < 2. De fato, como x é racional,

=] oux;}]_ Sex_hg]‘basta

11 2
tomar g = ﬁ Se y = — = |, tomemos um natural n tal que
' 2
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)
b

1 F .0 F 2
™ h+— {ye“+—J{—.
\ n ) n y

) 2 | 3
J =]+ —+ — =1+ —, tomando-se n tal que

i n- n

3 .
l1+—<youn>—
no po—il

A
= 2l
em que y = min < ¥, — , (1) se verifica.
"L.

| Ly '
3
[y ) )

: 1 . . -
Sejau =1+ —, em que n é um dos naturais que verifica . Um dos termos da
n
progressao geométrica

esta compreendido entre £ a2 (por qué?).
2

Seja k o natural para o qual se tem

-

< uk <2,

Basta, entdo, tomara = u*, =

Exercicio

Prove que, se o e b sdo dois racionais quaisquer, entdao a*b* = (ab)*.

A6.6. PROPRIEDADES DA MULTIPLICAGCAO

Nesta secdo, vamos provar as propriedades (M1), (M2), (M3), (M4), (D) e (OM).
Para provar (M4), precisamos do

Lema. Sejam a > 0* um numero real e u, racional, com 0 < u < 1. Entdo, existem
racionais p € a, ¢ € M,, com q # min M, (caso M, admita minimo), tais que

B . . .
E = U. (M, é o conjunto das cotas superiores de a.)

Demonstragdo. Fica a cargo do leitor. (Sugestdo: Tome um s & « e, para cada natural
n, considere o racional g, = su"; agora, proceda como na demonstracdo do lema da

652



Secao A6.4.) =

Teorema. Sejam a, [ e y reais quaisquer. A multiplicacdo verifica as seguintes
propriedades:

M1) (af) y = a (By).

M2) aff = Ba.

M3) a -1* = q.

M4) Se a # 0*, existe § € R tal que o - B = 1*.
D)a(B+y)=aB+ay.
OM)a<fe0*<y=ay<pfy.

Demonstragdo

(M1) e (M2) ficam a seu cargo.

(M3) Suponhamos, inicialmente a > 0*. Precisamos provar que a - 1* Caea C a
-1,

a-1*Ca

Lembramos, inicialmente, que a - 1*=Q_U {ab|a € a,a>0,0<b < 1}.

xXEa-1*ex<0=x€aq.
x€a-1*ex>0=x=au,coma€a,a>0,e0<u<l.

Deu<1ea>0,segue au < a e, portanto, x = au € «a. Fica provado, deste modo,
que a - 1* C a.

aCa-1*

XE€Eaex<0=x€a-1*
X€Eaex>0=da € a, comx<a.

x s > 5
Assim, x = a - — S a* 1*, pois,a € @, a >0, e — < 1, com — = 0. Portanto, a C
a a a
a- 1*,

Provamos, assim, que se a > 0*, entao a - 1* = a.
Se a = 0*, pela definicdo de produto, o - 1* = 0* - 1* = 0* = q.
Sea<0*a-1*=-[(—a) 1*]=-[-a] =a.

Segue que, paratodoa € R, o - 1* = q.
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(M4) Fica a cargo do leitor. (Sugestdo: Suponha, inicialmente, a > 0* e considere o
nimero real

p==0_ LJ{pE@Ip:}{),iEMafi#min M, ¢
P p )

Proceda, entdao, como na demonstracao de (A4) e conclua que o - 3 = 1*.
Se a < 0*, —a > 0*, logo, existe 3 tal que (—a) - B = 1*, mas, (—a) f = a - (—B); logo,
a(-p)=1*)

(D) Precisamos provar que
aB+y)Caf+ayea(B+y)DaB+ay.

1.° CASO: a > 0*, 3> 0* ey > 0*.

a(B+y CaB+ay

xXEa(B+y)ex<0=x€ af +ay.
XE€Ea(B+y)ex>0=x=adparaalguma>0,a € a, e paraalgumd € B +y,d> 0.
deEf+y=d=b+c,comb€fec€Ey.

Assim, x =ab + ac € aff + ay, pois, ab € a - e ac € ay. Portanto, a (8 +y) C aff +
ay.

af +ay Ca(B+y)

XEaf+ayex<0=x€a((B+y).
Suponhamos, entdao, x > 0 e x € af3 + ay. Como aff > 0* e ay > 0*, existem u € af,
u>0,ev€ay,v>0,tais que x = u + v. (Verifique.)
Segue que existema,a’ € a,coma>0ea >0,b € f,comb>0,c €y, com c >
0, tais que x =ab + d'c.
Supondo a’ < a, resulta

x=ab+dc<ab+ac=a(b+c)€a(f+y);
logo, pela (R2), x € a (B + y). Fica provado que
af +ay Ca(B+y).

2°CASO: a>0*ef+y>0*
Suponhamos f3 > 0*. Temos:

ay=a[(B+y)+(Bl=a(B+y)+a(-p) (1.° caso);
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dai
a(B+y) =ap+ay.
3.° CASO: a > 0% e 8 +y < 0%,
aBty=-la(-B-vI=-la (=P +a(-y)]
ou seja,
a(B+y) =ap+ay.

Deixamos a seu cargo verificar os demais casos.
(OM) Deixamos a seu cargo. ®

A6.7. TEOREMA DO SUPREMO

Um subconjunto A de R se diz limitado superiormente se existe um numero real m
tal que, paratodoa € A, a < m.
Para demonstrar o teorema do supremo, vamos precisar do seguinte

Lema. Seja A um subconjunto de R, ndo vazio e limitado superiormente. Entdo,

Y= Ua = {.r € Q| x € a para algum a € .4.}
a E A

€ um numero real. (y é a reunido de todos a pertencentes a A.)

Demonstragdo

(R1) Sendo A # ¢, existe a € A e, como a # ¢, resulta y # ¢.

Sendo A limitado superiormente, existe um numero real m tal que a < m, para todo
a € A. Como m é niimero real, existe x racional, com x € m; dai para todo a € A, x &
a, logo, x € y e, portanto, y # Q.
(R2) Sejam p e g dois racionais quaisquer, com p € y e g < p. Temos:

pEy=p€aparaalguma € A

pEaeq<p=qgq€a

geEa=qey.
(R3)p € y= p € a para algum 0 € A. Como a ndo tem maximo, existe p & q, com
p=p.pEa= p &y Assim, para todo p € y, existe p £y, com p < p.
Portanto, y ndo tem maximo.

Como (R1), (R2) e (R3) estdo verificadas, segue que y é um numero real. =
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Teorema (do supremo). Se A for um subconjunto de R, ndo vazio e limitado
superiormente, entdo A admitira supremo.

Demonstragdo

Seja¥ ~ ';—",”1' Pelo lema, y é numero real. Vamos mostrar que y é o supremo de A,
Q=

isto é, y = sup A. De fato, como y é a reunido dos a pertencentes a A, segue que, para
todo a € A,

Y O a, ou seja, y > a.

Logo, y é cota superior de A. Por outro lado, se y’ € uma cota superior qualquer de A, y'
> q, para todo a € A, e, portanto, para todo o € A,

Y D a;

logo,V = Y =%.0useja,y >y. Assim, y é a menor cota superior de A, isto é,

aEA

y=supA. =
A6.8. IDENTIFICACAO DE Q COM @

Inicialmente, vamos definir aplicagdo bijetora (aplicacao e funcdo sdo palavras
sindbnimas). Sejam A e B dois conjuntos nao vazios e ¢ uma aplicacdo de A e B.

Dizemos que ¢ € bijetora se
i) Imp=B8B
ii) Vs, t €A s#t=o(s) Z o(t).

A condicdo (i) significa que @ é sobrejetora e a (ii), injetora. Deste modo, ¢ é
bijetora se, e somente se, ¢ for injetora e sobrejetora.

Seja a um numero real. Dizemos que a é um ntimero real racional se existe um
racional r tal que a = r*.

O conjunto dos niimeros reais racionais sera indicado por {}: () = {r *lre 'I;I_J}.

Seja a um numero real. Se a ndo pertencer a () _ diremos que a é um nimero real
irracional. Verifique que

a=Q_ U {x€EQ,|x*<2}

€ um numero real irracional.

Olhemos, agora, para a aplicagdo ¢ : () — (@ dada por ¢(r) = r*, que a cada
racional r associa o real racional r*. Tal aplicagdo é bijetora (verifique). Além disso,
temos:

(D) o(r +5)=(r+s)*=r"+s%=0(r) + 9(s).
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(ii) (r - s) = (rs)* =r* - s* = (1) - 9(s).
(iii)) r <s e r* <s*,

Tal aplicacdo ¢ nos permite, entdo, identificar o racional r com o real racional r*.
Neste sentido, podemos olhar para Q como subconjunto de R.
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RESPOSTAS, SUGESTOES OU SOLUCOES

CAPITULO 1
1.2
HNx=1

| —

. a)x< byx << -2 c‘)x%—% dix=1 e)x<

12 |

2. a)3x—1>0parax> %;31— I{Upamx{%:h— 1 =0parax = .

L]

b)3 —x>0parax<3;3—x<Oparax>3;3— x=0Oparax =3

¢)2—3x>0parax < %;2 —3x<Oparax > 3;2 —3x=0parax = %

d)5x+ 1>0parax> —é;ix+l<:0parax€: —%;5x+ l=0parax= —;

o | x—1 I et |
>0parax<<loux>2; <Oparal <x<2;

-3 =i X

x = 1. A expressio nio esta definida para x = 2

= 0 para

e)

HD2x+ 1 (x—2)>0parax < —% oux>2;(2x+ 1) (x — 2) < Opara

—% <x<2(x+1)(x—2)=0parax = —% oux =2

XA 3 — 33 !
g) ’ I:}Dpara—Q{:xi E;2 3t<iﬂparax<:—20ux:>£;
x+2 3° x+2 3
1—3x 2 L : .
2 = (parax = o A expressao nao estd definida parax = —2
X :
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h) 2T >0parax<2oux>3; ol <0Opara2 <x < 3; = =0
Xk it B X

parax = 2. A expressio nido esta definida parax = 3

[} (2x — 1)(3 —.2x) < 0 pard X< %oux} %; 2x—1D3-2x1=0

1 3 1 3
—<x< 3 (2x—1)3-20)=0parax= —oux= —
para X 3 [ X )( '{) para x oux

NDx@x—3)>0parax<Ooux>3x(x—3)<OparaQ < x < 3;
x(x —3)=0parax=0oux=3

Dx(x—1)(2x+ 3) > 0 para —% <x<Ooux=lLx(x—D(2x+3H <0

3
para x << _E ouD<x<lix(x—1)(2x+3)=0parax=0oux = 1

3
oux = ——
2

m)(x— 1)(1 +,¥)(2—3I)3‘Upﬂrﬂx‘i—l(}u£ =rsd:

2
x—1({(1+x(2—3x)<0para—1<x< qoux}l;

(x— D1 +x(2—3x)=0parax=1loux=—loux=

w2

n) x(x2 + 3):>Gparax}();x(12 + 3)‘::(][3111‘511{(];)((12 + 3) = 0 para
x=0

1 1
o) (2x — l)(Jc2 + 1) > 0 para x > E; (2x — l)(x2+ 1) < 0 para x < E

4 1)(12+ 1) = O parax = é
b b
pl)la=0)ax+b>=0parax> ——;ax+b<Oparax< ——;ax+b=0
a a
b
parax = ——
a

b b
g) (a<0)ax+b>0parax< ——;ax+b<0QOparax> ——;ax+b=10
a a

b
parax = ——
a

a)—l-::x{% bix=loux=>=3 (')x{—%oux>2 d)—S{x{é

e)x=—oux=>2 ﬂxEDOuxB% gx<—-2oux>2 h]’_%{x-f:%

w | s
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6.

10.

" 3 8 . 3 _ 1
.'J,r{?ou,r;-:g Jx<—oux=>2 “_]{I{DDUI}E

2 2
. 1 _ 3 .
un,r{?ou,r}’} mx{E 0)x <3
3
e DT e gy gyt gy mnE R
x+2 X X~
5 el | 1 i ekepy oo 2 2 3
=— 8- h=-— == P +px"+pz+p
L5 o Sx xp x<p©
. | 7 g
D2x+h m)———— m3x +3xh+h" o)dx

x(x+h)
a) x<-2oux>?2
b) -1<x<1
c) x<-2oux>?2
d)x<-loux>1
e) x<-3ou-1<x<3

P x<-2oux>2

g)XS—ZOlllSXSZ

h) x<-4oux>4
i) r<x<r

J) x<-roux=x>r
a) (x-1)(x-2)
b) (x+1)(x~-2)
0) (x-1)°

d) (x-3)°

e) x(2x - 3)

D x-1)(2x-1)
g) x=5)(x+5)
h) (x+1)(3x-2)
i) (2x—3)(2x+3)
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11.

13.

17.

j) x(2x-5)
a 1<x<2
b) x<2oux>3
c) x<0oux>3
d) 3<x<3

e) x<-loux=>2

f x<—1oux>E

i) Nao admite solugdo

M -

ta | —

a) Qualquer x
b) Qualquer x
¢) Nao admite solucao
d) Nao admite solucdo

e) x>3

b) -2
c) 1,1e?2
d 1
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1.3

19.

20.

e) 2

p -3,-2,2
ax-1D)x+1)(x+2)
b) x-1(x+1)(x-2)
) x(x+3)(x-1)

d) (x=2)(x+2)(x+3)
e) (x+1)(x+2)(x+3)
N x-1DE*+x+1)
a x>1

b) x<-3ou-2<x<-1
c) 3<x<-2oux>2

d) x<-3oul0<x<l1

a) 7

b) 3

c) a

d) —a
e)asea>0;—asea<0
p —asea>0;asea<0
a x=2oux=-2

b) x=2oux=-4

c) x=1loux=0

d) Nao admite solucdo

e)X_ 3

5
N, -_1
3

a) -1<x<1
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b) -1<x<2

¢) Nao admite solucao

d)£<x<—
9 9

e) 1<x<1,x#0
p —1<x<7

g) x<-3oux>3
h) x<-4oux>-2

i) x<0oux>3

j)l<X<1
3

) x<Ooux>2

1
3
n)x>1
0) x<loux>2
5. a) 2x—1sex<-1;1se-1<x<0;2x+1sex>0

b) 3sex<-1;-2x+1se-1<x<2;-3sex>2
c) —3x+35ex£l;x+lsel<x<2; 3x—3sex>2

d) 3x+3sex<0;—x+3se0<x<1;x+1sel<x<2;3x—3sex>2

1.4

1. 5 - 31

a) |——,+x= By =1, E) L2 e -
} 5 [ 1 [ [1,2] ] 3|

2. 0<r<1

3. 0 <r<s, emque s é o menor dos nimerosb—pep—a.

4. 1
a)ll. 2] b) }—?E{ c) |—oe, +oof d)|—3;3

CAPITULO 2
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2.1

!\J

2
a)—3e b}{l?e

3
4

1\.2 C) 4

6

d) —

a

gl dx=—1 px<tp 4yl #rx Ho g}xz+2,r+4

WX —2+4 DR +px+p? -1 -
X

. x+3 x—3

Ox~ Ox~

a) 2

b) 3

c) 2

d) 2x + h

e) 2x+3+h
p 2x—-h

g) 2x—2+h
h) 2x-2+h
i) —4x - 2h
J) 4x+1+2h
I) 3x* + 3xh + h?

m)3x? + 2 + 3xh + h?

n 32 +2x— 1+ 3xh+ h+ h?

g-')ﬁ,rz— 1+ 6xh+ 28 1) —

1
pl——
xp

)0

2x+ h
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x2 (x + h)2

A,

m)x—35
2x
x+
qg) —— f’
xX=p-
) — 1
B x(x+ h)

1

e B 1 o P )



b)D, = R c)D, =R

|

=
- = N - |
e)D, =R HND,=R
L
\3 |
a f! . 3/2
I
A “
= 2 \\
=T | L
R -y —1 1 - =2
ND,=R ) Dp=R
A
2
|

- /--
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m)D, =R n) sz X3

[

ot

Y

P) Dg={xE Rlx+#1)}

2 —2x+1
g(x):L:x—lgx:f:l
X~

r) Dg= (xeRIx#1)

11_ 1 P p—

Y
Y

]

n
=)
s
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i) b)

)
hg N2
— Y
c) d)
'}
4
\}\/ 1
| 1 = _:,/ y -

a)f(x)>0sex>3;f(x)=0sex=3f(x)<0sex<3

b)f(x) > 0sex < %;f(x) =0sex= %;f(x){{]sex}%
1 1 1
e)f(x)>0sex> —;;f(x) =0sex= —;; fx)<0Osex< “&

d)f(x) > 0sex < —%;f(x) =0sex= —%;f(x){{}sex} —%
e)fx)>0sex>—-3:;fix)=0sex=—-3f(x) <Dsex< -3

DFfx)>0sex< é;f(x) =0sex= %; fxy=0Deex> %
2)f(x)>0sex> —E;f(x) =0sex= —E;f(x){{}sex{ i
a a a

h)f(x) >0sex < —E;f(x)= Osex= —E;f(x){{}sex:} .
a a a
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a)f(x) >0sex << —2oux>=>1.f(x) =0sex=—2oux=1;f(x) <<0se
-2<x<]1

3
b) f(x)=>0sex< —5 oux>—1;f(x)=0sex= —% oux=—1:f(x)<0

3
se —— < x< —1
2

c)fx)=0se0<x<1:f(x)=0sex=0o0ux=1;f(x)<0Osex<0
oux =1

d)f(x) > 0se2<x<3;f(x)=0sex=2oux=3:;f(x)<0sex<2oux>3

e)f(x) Z0sex<< —loux=1;f(x) =0sex=1;f(x) <Ose—1<x<1
ﬁf(x}:}ﬂsel{:t{ E'f(vcj|='Dsevc= i'f()f){:ﬂse.x{il(}ux{ii
2. 2T - 1 2 2

3

gl fix)=>0sex < _E oux>0;f(x) =0sex=0;f(x) <0se —— <x<0

b2 | e

1 1 1
h)f(x) >0sex<< _E oux>2f(x)=0sex= —E;f(x) <(0se _E <x<2

1 1
DfxX)<0sex<—lould<x< 5;f(x)= Dsex=0o0ux= E;f(x)‘}ﬂ

se—l‘f:x{:[)c-ux}%

Nf(x) <0sex < %; f(x)=0sex= ;f(x):r-[lgex:r-é

o | —

3 3
Hf(x)<Osex<<—1ou E <x<2fi(x)=0sex=—loux= EDUI:Q;

fix) >05e —1<x=< %oux}z

3
m)f(x)<<0Osex< %mul L S A %;f(x}= Osex= E;f(x)}ﬂse % <x<1

oux > 4
2
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9. a){xeRIx#1} bH{xeRIx#—-1lex#1} R
d){xERIx#-2} e){xeERIx=-2} H{xERIx #0ex# —1}
giixeRIx<—-loux=1} M{xeRIx<-3oux=0}

iR j)[ﬂ,%} f}}%%} m){xeRlx< — 2oux= 3}
n{teERIt=—-lour=1} o){xERIx=0ex# 1} p)[—2.2]

q{_ 12 i} 1,31 s)[0.1] r)[t},%} u) {0} UL, +oof

10. a) b) c)
[ | [}
\y/
N -
= -1
d) e) h

|

g2) Ir) i)

J) h m)
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n) o)
A
E. < 1--1---7/
-1 I T g -
_1--; _1__//2 3
2 3
p)y=x"sex=0y=—x"sex<0 g)y=xsex=0y= —Xsex<0
[
=1 A M
ik ng
r) 5)
i
} ---3
I
I
'\ 1
| 1 -
2 \ 1
11. &) ¢)f(—2) = 1¢ o menor valor

atingido por f

Y
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c)

b)

a)

13.

€)

d)

8)

J)

i)
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14. a) f(x)20sex<-loux>1;f(x)<0se-1<x<1
b) f(x)>0sex<2oux>3;f(x)<0se2<x<3
¢) f(x) > 0 para todo x
d)f(xX)>20se0<x<3;f(x)<0sex<0oux>3
e) f(x)<Oparax#—-1;f(x)=0parax=-1
p f(x)>0parax#-3;f(x)=0parax=-3
g) f(x)>0para—-3<x<3;f(x)<Oparax<-3oux>3

hfix)y=0parax= —1 — \? onx=—1+ -\V-"?;f(:c) < (0 se
—1 =47 <x<—1+447

3—.7 3+47 3— 47 N
if(x)=0sex= 2‘“ oux = ; f(x)<<0se .\ < x _\“
J) f (x) <0 para todo x
15. a) D= (xe Rlx # 0} byD={xeRIx+# 1}

c)D={xeRIx# —1)} dyD={xeRIx#0)

[
—

/
[

|
(Y]
|

I
——— e ===
L1
1
[ -y

|
____..-r";
-
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eyD={xeRIx+#0}

-

NDD={xcRIlx+0}

N

T B

673

Hd={xERIx+0)




h D= {xeRIx#1)} m)y D={xeRIx#1)}

0)D={xeRIx#0}

A

]
_____ R e

-1 1

|

gD={xeRIx+#0)}

W 1
™ X v
W3 'f‘ #
\\ 1| AT
] B
1~ | s |\"‘--.___
ra 1 e -
- -
| 1
-~
i ik
A 1
1
!
]
1
[
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r) D=1[1, +o«f s) D=[—-2, 4o

1 2 5
H D=[R
T 1 —
-1
viD=R x)»D=R

Y

17. D={xERIx<=-1oux=1}

&
o
P
o
., -
Y i
t 3

-1 | 1
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18.

e) i) = [=3,3]

[

h)D={xeRIlx= —-2oux=2)}

2 -1 L2
dyD=R
\\‘ ‘,/
- i
= 2 i
N !
1A
HD=[-3 -1]

=

3 -3 -1 |

i ) 9 )
"}! — ,.\I.g—_x‘ %' —|—}.'" = g!}s__}_,

2

JI—(x+2) e @+2 +y¥ =1y=0

19. a) f(x)=+4—x2

20. a) y= -»,l.-'ll — x2

676

b)
—2 ‘\ L 12 -
Y Fi
I‘~-|. d"’
b) y=/x




¢) y= 14— (x— 1)

-1]1 3

e) x+ 12+ +2=5y=< -2

21. a)f(2) = mix {2%} =2

f(-1)=max {—1, -1} = —1

ff%] = mix {%2} =2

5,

22. ﬁ)f[%}=mﬂx{ﬂeZIn$
f

f(1)= 1,f|\%] =1le

()

677

2

DX +y +2y=0x+y +
+ 2+ 1 =1
12 + (y+ l)2= 1,
y=—ley=—1+ 41— x2
1
e
1
ﬂ v =
x—1
I 3
l\\
1
I
I -
I
-1 [ -
\j\q 11 2 7
1
<
1
I
1
1
EJ)Df= [xERIx#0)
!
=1 // E\""h-ﬂ
. : -
: 1
\
|
}=0 b) —
| SRS S
oo | b,
I Iz B B
e
A




23.

24.

26.

27.

T (x)=|x? +100 + —

- =

f | X
b) y=+/3 J1——
) Y= 1

\

a)

-y
>
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|30—x|]
— = |5

AN
I

b)

—b

Li



29.

30.

34.

36.

Cr)=

A=x.4r2 — x

a)

2.000
r

IL'! }.—:1,1}’}0
g Yo g2 ‘
oS
y=0
z ; 2 ,2
IV by y=—y1—4x2 & T_2+-"1*—2=1
(3)
=1/2 1/2
B)y=2x+3 c)y=-3x—-5 dyy=-—=x
ix—|—£
2 2
51, =l Ll
i
2 “\."II?} 2
+ 3.000 7r 33. A T!
hZ
2 35. V=ah!|r2 -1
: 4
byh(2)=4

|
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2.2

37.

39.

41.

42,

43.

Quadrado 38. Divida em partes iguais
40 107 144 43 324
e 40. — e —
m+4 w+4 9+4+43 9+443
2., 2_ 2 1) Bl B
a)x— 12 +y2=1 m(x—_j +(\__] =[_
s ’ ; 2 o2 V2
32 2 2 2
1 g -3 1
)|l x+—| +y =|— d) | x+—| +|y——| =
J( 4] |\4] }[ } ( 2] [
D3 BE 9L @=Lt §=3 s
3 ’ 3
2
a)y—3=2x—1ouy=2x+1 b}}-‘=—§x+1
)y=x+3 (f}‘}-‘=—lt
- - 2"
a)v=—x+3 b)y=——x c)y= lx+ s dyy = iJc sl
3 3 2 2
2
e)y= ——x Ny=—x+1
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b)

a)

24

681



2.

b)
'
-
: o
| e
1 .
\ e 1=
e ]
i '
K " ’ F
c)
4 '
i
2'_/ |
\ I
1 ; : 1 '/’T’_
1 2 g 12 5 i
d)
[
i
|
| [
i |
I |
_.--""———I__ l
______ FEE O o -

e)fx)+g(xy=10e 167 —1 para todo x
J (x)
: 2 4.4
Dh@=3+7 bBh@= 2412 ohm=>1"2
Xl
2

e)h(x)= ——

d)h (x) = —4x* + 18x — 17

Nh@=—2x+1,x# -1 gh@)=+x2—x

682
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2
x+5

. a)A={xeRIlx+-5LhXx) =

—_—

A= {xERIx=—-loux=1}h(x)= /x2—1

:: + £

C}fjl={XER|X=‘E—4DUX}3}‘.;?(X)=1.x 4

'\’1_3
ffJA={:cE[FEI:c#De:HEl}‘h(x)=—11 =
R

e)A =]-0, —3]U[—1, 1JU [¥3, +eo[, h(x) = /(x2 — 2)2 -1

4 af®W=-~ BFe-= % Of@)=x df@=1+ . 1+x
2 —

3

e) f(x)y=—1+ =2+ 1+x

CAPITULO 3
3.1
1. a) Em todo p real
b) Em todo p real
¢) Em todo p real
d) Emtodop #1
e) Emtodop # +1
i
2| g

|
/'
1

P Em todo p real
A

2
9

—
-1 1
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2.

3.2

a3
b) 3

4x2 — 1

f@= = =n+ L1

a) 4
b) 1

\ x —1

Jx —1

1

c)% Observe :
d) 0

e) -2

po

684

x—1 (Wx-DWx+1) Ax+1

]

x#1




!‘J

g ¥ e>0,x=0,lx —J0l<eslxl< €*. Entiio, dado € > 0 e toman-
do-se & = €, para todo x € D¢(x = 0)

lx—01<8=1yx —+0l<e
logo, f (x) = +/x é continuaemp =0

¥ e>01-e<¥xr <l+ecm(l—ef<x<(l+ée . Dadoe>0e
tomando-se [ = J(1 — E]g.(l + E‘JE[,I el

xEI=sl1-e<ix <l+e
logo., 3x é continua em p=1
Paratodoe > 0, x #0ep # 0,

Loenlel pon /L6 ] TR

P x p p x P

Parap>=0el —ep =10 [E{iJ

P
l_f“:l{L'FE{:? P _egpa oF
p x p 1+ep 1 —ep
Entio, dado e = 0, € {l, (p > 0), e tomando-se [ = P . p .
p l+ep 1—ep

_ _ 1 1 1 | g
peElxel=——e< —<— + € logo, f(x)=— écontinua em p = 0.
P X P X

Analise o caso p < 0. (Veja como as coisas acontecem graficamente.)

N | S . . . ~
5. Nio. Para e :5 nao existe § > 0 que torna verdadeira a afirmagdo

“NxED, 1 8<x<1+8= f)—= <f() <f(1)+ =

i

8. Seja p racional, entdo f (p) = 1; se f fosse continua em p, pela conservacao

9.

11.

do sinal, existiria 6 > 0 tal que f(x) > 0O parap —§ <x <p + 4, que é
impossivel, pois em ] p — &, p + § [ existem infinitos irracionais

a) {(xER|xEZ}

b) {xER|x¢&Z}

c) {0} (s6 é continua em 0)
d) {-1,1}

a) L=4;comL =4, f(x)=x+ 2 para todo x, que é continua em p = 2

685



b) L=-
12. a) 4
b) -1
¢) Nao existe
d) 6
e) 1
P Nao existe

13. Como f é continua em 2, para todo € > 0 dado, existe § > 0 tal que % x €
D
f

2-6<x<2+6=8-e<f(x)<8+e
Em particular, para € =1 existirda§ > 0talque2 -6 <x<2+§=7<f(x)

15.

o

Para se ter | f (x) — f(p) | < € basta que se tenha M | x — p | < €. Tomando-
sefﬁ—%f~ lx—pl<o=1fx)—fFf(p)l <€
17. Para se ter | f (x) — f(0) | < € (observe que f (0) = 0) basta que se tenha

¥t = Ix—ﬂl“ffoulx—{)laxg Tomando-se 5= e
lx =0l é=L{x) —Fl=&

18.

=]

Observe que | f(x) | < | x|

20. Suponha que exista p, com f (p) # 0, e aplique a conservacao do sinal

21. Aplique o Exercicio 20 a funcdo h (x) = g (x) — f (x)
a ”2_- -+ o
)If{x}—f{l}l= x+l—2‘= = "= < l‘u—n
X X X
b) Observe que it =1+ L
X |xl
)Dadoe>0etornando seﬁ—mlnjl% %]F

[x-1[<é=|f)-f(1)]<e€

25. Verifique | f(X) —f (1) | <7 | x— 1| para x 3:;% e proceda como no

Exercicio 23(c)
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3.3

27.

? €
Dado € > 0 e tomando-se & = min 4 | pl, 77

h) 3-3
i) /5
J) 6
o

|x-p|<é=|x-p’|<e€

687
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2. a) 12

3. Nao é continua em —1. Em O é.

4. a) 2x
b) 4x + 1
c) 0
d) -3x*+2
) __1
x2
p 3
- 3 e B g0 1 1 .
5. a) ~5 byo c)yx d)3x~ e)0 f) T 5 Py h) o0
3xp° 43 p
3 — -
D= A2 D3p* mdpd map" ! o) ; p) —;
7 7l :',IFY.'P”_I 4
1 2
g =i p) =" dE=1
pE p3
6. Como lim (x* + X) = 2, omando-se e = ~...
x—1 3
8. , Jx)
Tomando-se € = 1, existe 6= 0, 0<I|x—pl<dé= ; — 0] <1,
glx

logo ...
10. Sugestdo: |[f(x)-L|<1=|fXx)|—|L|<1 (Porqué?)

Ve>=0,36 =0
D<Ix—pl<d=If(x)— Li<e

Ve>038>0
Flo<lx—pl<d=I(f(x)— L) —0l<e
& lim [f(x)— L]=0.

X—=p

11. lim f(,ﬂ=L@{

X—=p

3.4
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3.5

b) -1

o1

d) 0

e) Nao existe

P Nao existe

91

h) 1

i) 2

J) 2

D1

m) Nado existe
2. F falsa

3. Nao, pois f nao esta definida em 1

j—
g 2
e
]

2]
-

b) 3L
c) 2L
d) -L

689



3.6

3 0. [ Sugestdo: Verifique que —1xP =

12

3.8

2
3

b) 0
a0
b) Nao existe
a) 0. (Observe que| g (x) | = %/4)
b) 0
b) 0
f(h) _ f(h) b

X

" Sugestdo: Para (=): Mokt

|71l h 1Al

a1
b) 1
c) 3
d) -1
e) 0
N3
g) 3

h) 0
i) 0
No
n 1

m)2p
n) 0
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h
i

g(x) -

Ix13, x # 0. ]

=]

==



0) 2

p) 0

q) 1

b) 0

a) cosp
b) —senp
C) sec’ p

d) secptgp

CAPITULO 4

4.1

a0
b) 0
c) 5
d) 2
e) 2
D 2
g) |

h)

=|uo W

i) lim

X — o X(] +

=
N
—_

691
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4.2

2

p)O0
q 0
r) 0

$) .. (Jx+l=ifx+3)(fx+1+.[x+3) =3

lim , : = lim — ..
X+ 1_#-' x+1+ -\‘,-' x+3 x— 400 A [X +1+ . x+3

= lim 1 P ]—'2i - =0-(—=0
X—=+w X ]+_+1+;
y X \ X

) {f(x‘} = M . g(l’ﬂ
2(x)

a) l
2
b) . . . _ 4

Aplique a definicdo de limite com € = e
a) 0

a) +oo
b) —oo
c) —©

d) +oo

692



2. Dado €>0etomando-se § = " x> 6 = %x > ¢
3. a)0

b) 1
2

c) +oo
d) —oo
e) 0

p +o

g9 1
>

h) —oo
4. a) —«
b) —o©
c) +oo
d) —
e) +oo
p —
g) —©
h) +o
i) +oo
J)
I) +oo
m)+oo
n) +oo
0) +o0
p) —
q) +oo

r) —oo

693



§) —o©

9. Aplique a definicdao com € =1

4.3

1. a)?2
b) +oo
o1
d) 0
e) 2
po
g) +oo
h 3

]

7. a) aT?

4.4
1. a) 0 (Observe: — | x|<f(Xx)<|x]|.)

2. —1+ \,5
g
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5. 2
6. . : 1 . A
Seja fix) =sen — e considere as sequéncias
X
1 2
a =—eb = ——— Verifique que

" am " (4n+ D7
lim f(a,) # lim f(b,).

n—s oo n—s too

CAPITULO 5
1. f(-1)=-1,f(0) =1 e fé continua em [—1, 0]

2. Verifique que f (x) = x> — 4x + 2 tem uma raiz real em cada intervalo [-3,
—2],10,1]e[1, 2]

3. [ | } [ 1 3 } { : 5 }
SR 1 - T = T
2 2 4 2 8
x 3 é continua em [-2, 2]; pelo teorema de Weierstrass

5. (¥ =
a) f(x)=
)] e o
existem x;, X, em [—2, 2] tais que f (x;) < f (x) < f (x,) em [-2, 2]. Assim, f
(x;) é o valor minimo e f (x,) o valor maximo do conjunto

[

<L,,I—25;_x':‘£2 :
[_]-i-)c'L
7.a) Seja f (x) = ax®> + bx¥* + cx + d e suponhamos

a>0. lim f(x)=+®, lim f(x)=—x, logo, existem X, € X,
X —+w X——w
com x; < X, tais que f (x;) <0 e f (x,) > 0. Como f é continua em [x;, X,]

9. SejaJ={f(x) | x € I}

1.° Caso. J ndo é limitado nem superiormente nem inferiormente.
Para todo m real, existem x; e x, em I com f (x;) <m < f (x,).

Tendo em vista a continuidade de f, pelo teorema do valor
intermediario existe c entre x; e x, com f (c) = m. Segue que J = R = ]—oo,
+oo].

2.° Caso. J é limitado superiormente, mas ndo inferiormente.
Seja M = sup J. Seja m um real qualquer em ]-oo, M[. Existem x;, x, em I,
com f (x;) < m < f (x,) (por queé?).

Pelo teorema do valor intermediario existe c entre x; e x, tal que f (c) =

m. Segue que ]-oo, M[ C J. Por outro lado, para todo x em I, f (x) < M.
Logo, se, M nao for maximo de J, J = ] —oo, M [; se M for maximo de J, J

= J~co, M.
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Analise os demais casos.

11. Sef(0) =0 ou f (1) = 1 nada ha o que provar. Suponha que nenhuma das
situacOes anteriores ocorra; aplique o teorema do anulamento a g (x) = f

x) —x

12. Suponha, por absurdo, que existam u, vem [ a, b ], com u < v, e tais que f
(u) > f(v). Se f(a) < f(v), pelo teorema do valor intermediario, existe ¢
em ] a, u [, tal que f (c) = f (v), contradicdo. Se f (v) <f(a) <f(u) ...

CAPITULO 6
6.1

1. a) +o
b) 0
c)0
d) 0
e) —©
po
9)0
h) +o00
i) +oo

]) +00

!‘J

a) b)

d) e)
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6.2

1.

8)

i)

a) 2
b) -4

o _1
2

d 1
4

e) 0

p Nao existe
9)0

h) 5

a x>-1

b) x<-1oux>1
c) x<0

d) x#0

e) x<-1(oux>1)

D x>0ex#1
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J)




6.3

. )

d)

TN
fid
A

e)

8)

. @) +o

b) +oo
c) —®
d) 0

e) In2
p In2

g) —

698
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c)

N




e)e

p1

g9) e

h) ¢?
2. Sugestdo: a"=el'Ina
3. a)?2

b) 0

c) In5

d) +oo

CAPITULO 7
7.2
1. a)?2
c) 2x
2. 2
3. a)3
b) 3
c) 3
4. a) 3
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14.

15.

16.
17.
7.3

!\J

Y]
b

:Jl

a)y=4x-4

b).1*=—;x+]
) x-6y+9=0
dy=x-1
)2 +1 B3 )3 d) — -
X~
gx)—g) [ 2sex<l1
T
x)—gll
lim g(x) g()?& e g(x)
xr—1 x =1 xr—=1"
a) 2
LY
b)
2’5
A ”
;f 1 X
b) 0
b) Nao
a) 5x*
b) 0
c) 80
|
a6 b)100x”  ¢) ——
Ay
91 ) —3x*
}-‘=—ix+1
1 1
a) — b) =
53 x4 D

700

—g(1)

4. y=—2x+3

B)s——

5 HO R L
=t o &) (x+ 1)
. 3
d)2x e)—— [~
X

]

ft) —i




7.4

7.5

N

. b) c)
| x- 6 9 x3 8

e
bt
200

7

W=
.
+
w | o

y=4x—-4

Ly=x+1

cy=x-1
a) 2XIn2
b) 5*In 5
¢) Inn
d) ¢

b) c)
xIn3 xIn5 xInmw

9 _ 3
2

& 2
Ex

a) sec’ x

b) sec x tg x

LYy=X

a) —cosec’ x
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d) ———

d) =

e



7.7

4.

b) -2

a) —cosec x cotg x

b) -2
a)6x D)3+ )9F —dx  d) 3+ —
2x
s 2 1 4 10
el —b6x 3 fj s g} o B }r” TRE_Eh: -
33 x2 g X X
i)2x3+lx J) 1 o 1. ) 2- 12_21
2 3% x2 A X X X
. ) 1 3 2
m) 18x- + o n) 20x” + 3bx™ + 2cx
34x2
2. y=2x

. ’1:‘_ -
™ 1
\l 1
W —
W2

a)f'(x) >0em]—o, —2[eem ]O, +oo[ ; f' (x) <0em ]—2, 0
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Eﬂ

C

a)f'(x)=0em }—m,—

b) +me —o

c)

s | Ln

E

em ]I, +oo[ ; f' (x) < Oem }—%,1[

a)y = 3x byf'(x) =0em R
c)
A
1 — x2 2 4+2x+1 15x2 — 18x — 15
a) — 3 3
(x=+1)" (x+1 (5x — 3)
1—x " 1 0x2
| o 3 S=r—m e =~73 5
24x (x +1)? (x—1) 240x (x3+2)2
g 35 ix 4 Y3 3—x2)— 7x2 +3
6x *\."II 4 %.'13 (IE X 3)2

o(-1-4)e(14)

V2

b) g (xX) >0em]—1, 1]
g (x) <Oem ]—%=, —1]

eem |1, +o¢f

c)0
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d) .




(x2 4+ 1) sen x + 2x cos x
— clsenx + xcosx

9., a)b6x—5senx b)

(x2 +1)2
te x — (x + 1) sec? x —3 (cos x —sen x
d}x[21gx+x5eczx] e) = ( = ) . G ,,\J
tg= x (sen x + cos x)-

sec x[3xtgx+2tgx— 3]

vl
~ hysenx[2x — 1] + cosx [x~ + 1]
(3x + 2)-

sec x [1+2xteg x ; 2
cxl = | J)—3senx+ Ssecxtgx [)cotgx — xcosec” x

2 -\,"I X

2x—(x2+Dtgx

= . )
m)dsecxtgx —cosec“x n)2x+3tgx + 3xsecx o)
Sec X

x(x+1)cos x+senx 1+ x cotg x
pP)— 5 3 q) ——
X< sen” x cosec x
f (x—1)cosx—(x+1)senx—1
r) cosec x | 3x2+ - —(x++ X )cotgx 5) ) 2)
2+/x (x—cosx)

10. a) (2x - 1) sen x + x* cos x
b) 0
¢) (6a — 1) sen (3a) + 9a* cos (3a)
d) (2x* - 1) sen x* + x* cos x*

S

11. a)fr(x):?‘ﬂem[ﬂ,%[eem }—,27:} b) T

L

4 L Sn
1 I B
z ] 4 1
f'(x) <0em }E—W[ :\\\:/’217
4 4 B O DO, :

12. a)xe'[2+x] b) 3+

c)e' [cosx —senx] d)

H|UI

—-x—Inx—1

e)2xInx+x+2 =
[xIn x]*

) 5x 1+ 2 Inx]

et = 1]2 ; ] ==l 3 xe*

2 s - _wEeE
(x2 +1)2 x2 g (x +1)2
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14. a)e*[cosx + xcosx — xsenx] byx[(1 +1Inx)(2cosx — xsenx)+

+ cos x]

2 2
¢) e [sen xcos x + cos” x — sen” x]

—

d) ex { lg X +(1+4/x) (tg x + sec2x)

WX
7.8
1. a)f'(x) =16 + 2,F"(x) = 48x% e [ (x) = 96x
6
D@ =~ = 2 e 0 = -5
X X ]
* 3 FF 12 R _6
chf'(x)=10x + x—4’f (x) =10 — F e f"(x) = 60x
d)f'(x) =9 — 6,f"(x)= 18x e f"'(x) = 18
2 =
_ ) x*sex=0 pon_ | 2xs5ex=0 .. _ | 25ex>0
€)fx) = {_xz sex ey Fe {_—2,15 se x < (0 re {—2 T AL |
f"(x)=0parax # 0
_ | ¥sex=0 . _ [ 3x%sex=0 _,u._[ 6xsex=0
2 BpgE {—x?' se x <0 L= —3x2sex<0 efm= {_5~‘7 sex <0
: 2x+3sex=sl s AEE X =1
by (=15 sex>1 ¢S M= 0sex>1
n—1
(—1) 2 cos x sen for impar
3. afPm=¢ Hf"m=1 n
(=12 sen x sen for par
n+1
-1) 2 for imp:s
c)f{”} = ( ‘)n sen x se n for impar
(—1)2 cos x se n for par
Af"” @ ==t e- "
7.9
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7.11

. a) D =152+6 p) ds_ 1 3 od__ 1

dx dr 534 12 dt (t+1)°
E L T . L E L kil M S Y
dt du u (In u)= dt
; , 2 i3
2) ds =€r[tgf+ . fl ) i= 3x<senx (::: +1)cosx
dt dx sen< x
l;}ﬁ:sec:.r[l—i-'}utg:.f] f}ﬂ:—i_i
du 33u? T oar 23
I
.’}£=€r[cosr—sem‘] ””d_u:mv_i u}ﬂ = dr?
dr dv V- dr
dE dE _ o du 12a  6b
d) = =N ) —=mv ) —=——0+—
dv dv dx x13 x!
2. a) X @4Vx+5) ) 9
2+4/x (x ++/x)2 8
3. 8
4. 36
dt dt
. & ) T N e
= ﬁ=dx( ) ( de_f?T,"r’| _2
dx (x + 1)2 “dxl,—; 9
8. a) 6x

b) 2cost—tsent
12

) 908 + —
X

d) 1

I

e) —2e'sent

H e (x2—-2x+2)

x3

1. a) 4 cos 4x

b) -5 sen 5x
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2.

d) —8 sen 8x
e) 3t* cos £

i) 2
2t+1

g) e*"cost
h) —¢* sen e*

i) 3 (sen x + cos x)* (cos X — sen x)

. 3
J) ———
2 3x + 1
. | 3\ 2 _ _
)] 2 . | x+ 1 m) —5¢ % ) _2A+3 ) eten
3(x+1)? {\x—1 12 +3+9

p) —sen xcos (cosx) ¢q) 8t (£ + 3)° r) —2x sen (* + 3)

G L HE

: t) 3 sec? 3x #) 3 sec 3xtg 3x
2.x+e*

10

3. 4
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E}'I

7.
8.

a) e (1 + 3x) b) ¢' (cos 2x — 2 sen 2x) e)e " (cosx — senx)
2 4
2x +1 (e' +e")?

dye 2 (3cos3t—2sen3t) e) —2xe ¥ +

gl 5 sen 5x sen 2x 1— 2 cos 5x cos 2x B3+ ¥R (—e * + ixeX)
sen” 2x

1

g3 2 f
i)3tte (1 —1t et | 2xIn(l+ +/x) + .
) 2 { T 2(Wx + %)

5 i3 gt X
I) 3 (sen 3x + cos 2x)” (3 cos 3x — 2 sen 2x) ) :

2 \.'e-* + et

1 dx[x + e¥* 2x
A = a) : p)ln(2x + 1) + T

-x."xz + 1 41.",1(3 + xeV¥

6x[In (x2 + 1D]?
x2 +1

a 3
r)secx 5) —9x° C052 IS Sen x”

q)

3t
3t +1

- ) (1+20In (3t +1)—
_sen‘x+2c05 x

f) - u) e?! ~
sen” x [In (3t 4+ D]°

a) —25 sen 5t b) —16 cos 4t c) —w? sen wt d) Qe ¥

eX (x24+1) 2(1—x2) i) 2

e)2e 2 (2% —1) 2d—x7) 2
7 b il (x2 +1)2 (x —1)3

—2x

2x (x2 = 3)

i) e ™ — 4e
(x2 + 1)

) e ¥ (4 sen 2x — 3 cos 2x) )]

203x3 +3x2 +3x + 1) n) —21[4 sen 3x + 3 cos 3x]
(% +x) e’

p)de “F({x—1) P) —COS X Cos (Cos x) — sen” x sen (cos X)

m)

7) 8x3 + 30x2 + 24x + 10 " ellx 5) 7, (_f3 — 3x2 -L- 1)
(x2 —1)3 x3 (X% + x + 1)
3 4x+12

D (12 +3) 2 +3 “) 9 3(x +2)°

8

11
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12, +2
13. 1ou?2

16. a) 3 sec? 3x
b) 4 sec 4x tg 4x
€) —2x cosec? x*
d) sec? x sec (tg x) tg (tg x)
e) 3x* sec x° tg x>
N 2x sec® x* '8 x?
g) —2 cosec 2x cotg 2x
h) x* [3 tg 4x + 4x sec® 4x]
i) 3 sec 3x
J) —e™sec x* [1 — 2x tg x*]
) 6x (x* + cotg x*)* (1 — cosec? x?)

m) 2x [tg 2x + x sec” 2x]

23. b) 7
c)y=2x-1
28. _ 4
!
30. 8
7.12
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I. a)3* In5+ 1

B} T e R

xlIn3
)23+ p3 2% d)y 2x+1y | In(2x+1)+ =
(x*+1)1n2 2x+1
2 sen 3x
e) x5n=%1 3cos3x Inx +
: 3
(3 + cos x)* {ln (34 cos x) — ﬂ}
34+cosx
2+
2) X" [(1 + In x) sen x + cos x] ) wx {2,1[ Inx+ = 1 }
2
=1+ "In(l + i J) (10" 4+ 10" 1n 10
: ] 3
I) (2 + sen x)°° 3% [—3 sen 3x In (2 +sen x) + w}
2+senx
X x
m) i “+l[_1 %) n) (l—i—l] ln(l—kij— 1
1+ x* x : - 1+ x

o) xx'rx-”[(l+ln x) lnx+l} p) o™ 7 nw
x

—x : e*
1+ x)¢ " | —e*In(l+x)+
q) (1+ x) { € *1In(1+ x) H_x}

3. a)(x+ 2 In(x+2) +x(x+ 2!
b) 2x (1 + €¥)* In (1 + e¥) + x2(1 + e¥)x> —1 gx
¢) (4 + sen 3x)* In (4 + sen 3x) + x (4 + sen 3x)° 1 (3 cos 3x)

d) 2x (x + 3% In (x + 3) + x2 (x + 3)*2 -1
) 2xB+mT InG+am)  fH2meE+ )T !
7.13
— 14 —4x2 FAx +1

2. y= 5 3.
X

|
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)

b o=k B AL S .. B

dx ¥ edx 3}-‘3 =g cx 2xy + 2
Hy__ 1 oy, B8 ;jd_‘_ 1=y
de 1+ 5y* dx 4y dx  x+3y?
o9& ___X mﬁ___z‘“ +_‘ .'J“r_‘z——-v-f_{"'v
dx y+1 dx 3xiy? + x dx xe¥ + x
jld—"—— 2% ! B Y n”ﬁ:;
dx x2+y2 +2y de S—seny-—x de  24cosy
xXpX |, VoV
5. y=—tx+1 6. 0= +207
' 2 a* b2
3
8. a)l k) y—~l=——_[x~=1]
7
11. y= = (x +3)
Y= ,
7.14
. a)dy =3 dx b)dy = (2x — 2) dx
1 1
£) dy=——=dx d) dy = G dx
(x4 1= 3 3/ x2
2. a) dA=2ldl
3. a) dV=4nr’*dr
4. a) dy=(2x+ 3)dx
b) (dx)*
7.15
1. a)2-2t
b) -2

c) v(t)>0em [0, 1[
v (t) <0em ]1, +oof
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d) %
4l.
3"\
| X
1 3\ t
2. a) 1
2
b) 0

3. a)v()>0em]O,2[
v(t) <0em ]2, +oof

b) a (t)>0em [0, 1[
a(t)<0em ]1, +oof

c) —©
d) = Iy
ab----

2|4 |
i s
L 2 \ ' !
7. a) f(t)>0em ]J-oo, —2[ e em ]0, +oo[
f(®) <0em ]-2, 0[

Y

b) f"(t) <0 em ]-oo, —1[
f"(t)>0em ]-1, +oo[

c) +00 @ —00

d) I

v
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8.

d)
2 - L‘\\

a)f'(Hh>0em]—2,2[
F'(<Oem]—ce, —2[eem |2, +0[

bYf"(f) > 0em]—+12.0[

by y=—x

+ 2 ey=—12¢+08

eem |12, +
FU(f) < 0em]—o, — 12
e em |0, \.-'ﬁ[
9. a)vgy - D t
c) —1-'Okf_kr _E ————————————
e) YO
k
10. «¢)
/ﬁ-ﬁ—’ e -
5 ey
11. Ponto de abscissax = — 12. 1[}{1
6 (101)<
15. (—2, 1) 16: ——
(55
3 0.9
17. ——(cm/s) 18.
2 1007
dx
19. —=1—cosfe —=senf
dt > di
7.16

713

3.

dyv=2ex=1

y=6x—2ouy=6x+2



25 1 2 1 2
4. y=2x—— 5. y=—x——ony=—x+—
YUY e m T e
- 1 3
6. a)(l, 1) b) y=——x+—
' 2 2
7. y=—3rouy= —4x 8. (0,12), (-2 —12)e [+, 22
\2 16 )
9. Pontos de abscissas i e _2 10. y=3x+2
2 3
1 4
11. }-‘=—;x+? 12. (a, b)tal queb{a?‘
13. =*1 14. —1
= 1 1
15, y=—x+—ouy=x+—.
4 4
7.17
1 n}—l b)l ¢)-— d)0 0 h'£ i)l
. 9 ) ) g) ) g )
: - :
& a) 4 ’\-'Il.x -\‘-:1 + "-.-'Il.x bj '\‘.'Ill + 9:{2 f') 5-1 [1 +2x7In 5]
d) (2 + sen x)" {ln (R ) s
2+sen x
e)secx f) €f2[2r‘ sen 3t + 3cos 3]  g) In 2 -1 ¥ 4r°
) 2+1 -1
s 24 4x—1 312 — 14 _ 3x(4+ x2)sec? 3x+(4 — xz]tg 3x
Daa+nyr+t Dz P (x? + 4)2

€5 VI [/x sec +/x tg Jx = 2]

n) e x*(1+ In x)

l)sec x n)

3 1—x
g x P2

1

24/x cos+/x

§)

714

s ]
2x-

) —6 ¢ **cos 3x

12 1n 2
r {23': +2—3r)2

< 3
i) —35 cotg” S5x



V COS XV 1—y

B W) 5od b) ;
) 3V e~k b CoR XY ) x+ &
3 X )
1= %*1n ¥ g) Ysenx —cosy
£} 2y — xy*—1 j
y— X COS X — XxXseny

4. y—5= —i{x—l‘}ev—5=£{x—])
' 38 ' 5

xty=2oux+y=-2
x+t4y=9ou-x+4y=9

x+y=-1

® L e wm

0,5 m?/s

M []*]3}"5

21. a) 2x*+2

b) 4x3 + 4x
22. a) cos (sen x)
b) —x*

) 2ln(x2+1D
1+ [In(x2+1]?

d) -2'?.1'2 E,I{e"'j )2
23. a) cos (sen x) cos x

b) 1

25. a) LF = —ox hyas
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27.

28.

29.

41.

a) h"(t) = -9 cos 3t f'(cos 3t) + 9 sen® 3t f"(cos 3t)
a) y? + 26y

b) 3

a) cosy + (x +seny) (cos 2y — x sen y)

P”(_l)

P"(1)
!

Pix)=P()+P'(1H(x— 1)+ (x— 17 +

P)=6+50—1)+3x—-12+x-1)°
101 1 8

el
a) — by — ) — d) —
08 18 17 2

(x — 1), ou seja,

¢) —o d) +o e) % Jf‘j ﬁ_

CAPITULO 8

8.1

9.

a) — e i p= o-— p T 9-Z
%) 6 3 4 4 3 6
Wi i) & i) A ) — m) ——
2 3 3
*\,5 L ra .
a) T by — c) — d) /2 e)x Nx g T h)O
O :
i) — X
3 J)
3 A
a)g(x) = ~x b)
x° LY =x
s
&3 f xi
TR p— V5
g(:c“}—"t+1 ] |
s | 5
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10. a)y=In(x+ /x2+1)

b) [ f
=X
//
s &
//
f
11.
[ 3 f
/ )
9o £
-
// -
J/ 1
-,
/l
,.'
8.2
2 23
1. a)arctgx + & ~ b) ; c},L d) :
1+ x= 1= 0y2 -\."l — x6 1+ x
() x )
3 ﬁ.P—,‘ g) e 33rcsen2x+#ﬂ
1+ (2x + 3)- «\."1 _ g2x -\."l — 4x2

)

3(1+16x) cc:-_s. L;ix arc tg 4x —24 sen 3x 0 2xe®ctE2| 4 X i
(1+ 16x“) (arc tg 4x) 1+ 4x~ |

1+ x2

{a_rc (2 G g } cos 2x + 2x arc tg x sen 2x

5
cos? 2x

[) —3¢ 3% 1

(1+ x?)arc tg x

. | .
—e " arc tg e* + ———— |tg x — ¢~ arc tg e sec? x
: 1 + e<X
m) =

t X

i
(=]
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1

1
J. g(h)=—eg'(l)=——
8 > 8 3
4. b)
g
. — 1
5. b)g'(x)= 5
1+ 3 (g (x)°
6. a) 1 —1<x<l
'\.Ulll_.l'z
I
,x'nk;',rz—l

CAPITULO 9
9.2

1. a) Est. cresc. em ]—oo, 0] e [2, +oo[

Est. decresc. em [0, 2]

-1
I
[
|

1
m 2|

718

)g()=1,g'(1) = %eg”(l) =

b)

c)g'(0)=1

L]
5




b) Est. cresc.em |—, —1] e

4]

Est. decresc. em {— 1, —%}

c) Est. cresc. em ]-o0, —1] e [1, +oo[

Est. decresc. em [—1, O[ e ]O, 1]

%)

d) Est. cresc. em {% —|—oc-|:

Est. decresc. em
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e) Est. cresc.em |—, 0 e | 32, +oo[

Est. decresc. em [0, 32 ]

) Est. cresc. em ]-o0, —1] e [1, +oo[
Est. decresc. em [—1, 1]

Observe que f (0) = 0.

g) Est. decresc. em ]—oo, —1] e [1, +oo[
Est. cresc. em [-1, 1]

A
-
h) Est. decresc. em ]—oo, 0]
Est. cresc. em [0, +oo[
L

i) Est. cresc. em R
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J) Est. cresc. em |-, 0]
Est. decresc. em [0, +oo[

I) Est. cresc. em [—In 2, +oo[
Est. decresc. em ]—oo, —In 2]

n) Est. cresc. em [1, +oo[

Est. decresc. em ]—oo, O[ e ]0, 1]
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3 o)

x° —x<+1 1

Observe: =x2—x4+_=
X X

o) Est. cresc. em [— % '2}

Est. decresc. em }—%, ——} ¢

[2, +oof

p) Est. cresc. em [—1, +oo[
Est. decresc. em ]—oo, —1]

]

q) Est. cresc. em ]-o0, 0] e [1, 2]
Est. decresc. em [0, 1] e [2, +oo[

r) Est. cresc. em [1, +oo[
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Est. decresc. em ]—oo, O[ e ]O, 1]

I ]

s) Est. cresc. em ]—oo, 0] e [2, +oo[
Est. decresc. em [0, 1[ e ]1, 2]

]

Y

I
I
I
I
J=F
..-"rf 12
1\|
=1 1!
2 I
I
|

Observe: g (x) = l,x- + .
2 2{x—1)

t) Est. cresc. em ]0, e]
Est. decresc. em [e, +oo[

i

1
3 e T

u) Est. cresc. em ]—oo, 0]
Est. decresc. em [0, +oo[

]

s¥=X
&
rd

#

I/. l

2. [-2,-1]

3. Cada um dos intervalos [-3, 2], [0, 1] e [1, 2] contém uma raiz.
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4. a<-27o0ua>5
5. a) +o

b) 0

c) +00

d) 0

e) 0

p +o

6. a) Est. cresc. em ]—oo, O[ e [2, +oof
Est. decresc. em 0, 2]

\_/

I
I
1
2

b) Est. cresc. em [e™!, +oo[
Est. decresc. em ]0, ]

c) Est. decresc. em ]0, 1[ e ]1, €]
Est. cresc. em [e, +oo[

\/

|
|
|
Lol
| 1
I
I
|
I
I

i

B
2

1 e

d) Est. cresc. em [e !, +oo]
Est. decresc. em ]0, e '].
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9.3

1.

a) Conc. para cima em ]1, +oo[
Conc. para baixo em ]—oo, 1[

Ponto de inflexao: 1

1
b) Conc. p/cima em }E +co [

Conc. p/baixo em | —®, %[

Ponto de inflexdo: %

c) Conc. p/cima em ]1, +oo[
Conc. p/baixo em ]—oo, 1[
Ponto de inflexdo: 1

d) Conc. p/cima em ]—oo, —1[ e ]0, +oo[
Conc. p/baixo em ]-1, O[
Ponto de inflexdo: -1

e) Conc. p/cima em ]In 4, +oo[
Conc. p/baixo em ]—oo, In 4[
Ponto de inflexao: In 4

f) Conc. para cima em |—o0, — /2 [e ]2, 4o
Conc. p/baixo em |— /2, /2 [
Ponto de inflexdo: nao ha

g) Conc. p/baixo em |—oo, — 3 [e]0, +/3 [
Conc. p/cima em ]— N.-‘g L0[e]+/3 . +oo
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2.

Pontos de inflexdo: +./3 e 0

h) Conc. para baixo em R. Nao ha ponto de inflexao

i) Conc. p/cima em ]e?, +oo[
Conc. p/baixo em ]0, e°[
Ponto de inflexdo: e’

J) Conc. p/cima em ]—oo, O[ e ]1, +oo[
Conc. p/baixo em ]0, 1[
Pontos de inflexdo: 0 e 1

I) Conc. p/baixo em]—oo, O[ e em ]O, 1[
Conc. p/cima em ]1, +oo[
Ponto de inflexdo: 1

m) Conc. p/cima em ]-o, — /3 [eem ]0, 3 [./3 [
Conc. p/baixo em ]-./3,0[ e em ] /3, +oo[
Pontos de inflexdo: +./3 e 0

n) Conc. p/baixo em ]—oo, O[
Conc. p/cima em ]0, +oo[
Ponto de inflexao: ndo ha

0) Conc. p/cima em ]0, +oo[
Ponto de inflexdo: ndo ha

a) c)

a

Y

e ] =
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e)

m)

8. a)10+6b+3c=0e
10+4b+c#0

b)yb = . ec= 4]
2 3
9.4
1. a)?2

b) 99
10
) +0o
d) +oo
e) 0
po
9)0
h) ¢?
i) +o00
J) +o
I) +oo

m) +00

727

)]

x3
Observe: =x —

X
1+ x2 1+ x2




9.5

0) 0
p) O
q) 0
r) 1
s) 1

3. a0

b) +00
c) +00

d_1

fd
b
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o |

I -
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10.

12.

A

—In 3

14.

11.

13.
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15. 16.
1
l—llX;".f . \\:‘/1/
ER N L V2 \:l\’,
Y
17 18.
|
< I_i_‘___lr____
a4 =1 i \ﬁ }
| |
| |
| |
19. 20,

______ iy —_—— — s of L Ty

Obs. Os pontos de inflexio estdo localizados

nos intervalos [—2, —% } {0, % } e[2,3]

9.6
1. a) 1 é ponto max. global
—1 é ponto de min. global

b) % é ponto de max. global

¢) Nao ha ponto de max. local nem de min. local

d) 1 é ponto de max. local
2 é ponto de min. local

e) _ %e’ ponto de min. global

P 1 é ponto de max. global

g) 0 e 2 ponto de min. globais
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10.

1 ponto de max. local

T
h) 1 ponto de max. global

nt ponto de min. global

i) —1 e 2 ponto de max. globais
0 e 3 ponto de min. globais

J) a é ponto de méx. global onde « é a raiz da equacdo 1 — x* sec’ x = 0.

I) -1 e 1 ponto de max. locais
0 e 2 ponto de min. locais

m) 2 é ponto de max. global

n) 0 é ponto de max. local

% é ponto de min. local

0) _~3 g ponto de max. local

3

A € ponto de min. local
3

Quadrado de lado %

R R
W= B2

2

AR
3
a

Tangente no ponto de abscissa p= i
3

1 .
Base T e altura . /2

Raio da base %L e altura 3,'3
\ 3 N
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1. y—2=-32 (x-1)

12. £ »

I
|
|
@
A
13. (1, 1). O coef. angular da reta que passa por (1, 1) e (3, 0) é — % e o da
reta tangente em (1, 1) é 2.

14. (\/2,4/2)

15. t=0

17. r=1eh=1

18. g =3.

19. q=4

20. BI
+

75 m

gy

22. '\_3
X=—
3

23. q=10eL,, =L (10)

24'y=—2px+1+p2emquep_ioup_ N2
2 2
25 iﬁl‘ﬂu‘_ﬁ‘l
\ 2 2 e 2 iRy
26. b}% 27, ¢ = 14

28. . A (ol e} | o
E o retangulo em que| 2 0 | é um dos vértices.
1Y !

f] 1\1
> &%

30.

, /
E o retangulo de vértices (p, 0), [ L ‘ } e LL £ 5 }
\p U1 + p?
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9.7

9.8

1.

J—

N

&~ W

o

onde P= -\.-'I3 — 2-\.-';2 x

a) —1 e 4 pontos de min. local
0 ponto de max. local

b)

ponto de max. local

W | 9]

\
\
\

ponto de min. local

Yy

\
¢) 1 ponto de inflexdo horizontal

d) —1 e 0 ponto de max. local

- %ponto de min. local

e) 1 ponto de min. local

p 0 ponto de min. local

2
— ponto de max. local

f (=2) = 7 valor max.

f(3)= —% valor min.

f (-2) = —27 valor min.
f (1) = 0 valor max.
f (=3) valor min.; f (=2) valor max
£ g
7l a ]Valor maéx.; f(0) valor min.
I\. - A
f (1) valor min.; f (0) = f (2) valor max.
(4
f (— |Valor max.

L 3

Nao possui valor minimo.
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CAPITULO 10

10.1
2. y=eX
3. x(H)=e*
4.
}.l
\ y:e—z.x
1
\\.__ il
x
9 a) y:eZX
b) y=—-¢*
c) l_t
yv=2 el
d) Yy = —le'\,:j.l'
' 2
10. y=e*
1L a) y=42x2 +1
b) y= e(l—cosx)
10.2
x2 . 347 s X2
1. a) + k b)3x+ k c) +x+k drT-I-T—i-,r-l-k
4 4 2
e) 1+ fJII—+x3+3,r+k g}—l+k F.rJ'"x———l2
4 4 2k
i) E Va3 +k J) — 3 x4 [) 2 Inx + & m) 2x + i Y3
3 4 7 J
2 , N
22 ipe+k o) B3+ - 1,, +k p) 3-\-'&-* s A
2 2 2x“ 3 X
qJanx—g+k r) = 5\-'::{?4-3:{+k
X 7
4 2
s}%+%+k X +nx+k
. TP
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2
3. n’}%gh_kk by —e ¥ +k (‘)%+3€-”+k d’}%sen Ix+ k

| 3

e) ——cos Sx + k ﬁ%ez-”—ge“l+k g)

u.|.—
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1. a) b) \
c) T d) A
T —D—
i
A | |
“ 2 : :
w4 i :
- ! 1
-1, 1
| |
I |
8) ) vz
) h) ’

I
—
IJE ; .
e
Y
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I m) A

s T
Pt 4
- -
n) A o 0)
. A
.
F
&
AN o
p T o
2.a)p =tg2f by p= sen” @
|
/!, \\ -1
:
cyp=1—cos @ d) p~ = cos 280

|

, )
N, &
%
£ A

F
# At
~

T T
3. a) — b)1 c) — d) —
) ) IS g
T
= [3 (- 2 x 2 g0 _ 4]
4 @ drea=|3 (2= coso) dB+J,r 1+ cos 0)2 do === =33,
3

n—2 9.3 J2 87 713
B = % — gy p=H5 ”
) & 2 ’ 1T D577
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13.8

13.9

L3

!Q

11.

15
1 b l1+1In2
2 [2 sen 20 — tg 26| d6 = 1
™ [ 2 1 [ 9
?\-1‘1’ S | -I—Eln(q:r—l-ﬁ;w +1)
V2(1—e27)
4
*\,-"§
N 2+/3 tIn 2+ 43
3 1+ 2
5+/5 ».
3 3
a) (isi] b) (i‘i] c) ( _] d) |l_ji|
s T i 3m RYi4 Lk 15
o 32 —In(+2 +1 2 44— g2
a(0.2) » o N2l Craze
\ 1652 + 16 In (2 + 1) de—e)
a) 4
b) 2
s
{ 5“‘.
B [P
208w
b)
45
22 2
Os volumes em torno dos eixos x e y sao iguais:
V, =V, = 2:r —13) = _l4r LY/

= Aareae—(Z* —-12)y=_,
4 4

Portanto, x. = v, = o (Compare esta solu¢do com a do Exemplo 4.)
T
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12.

13.

14.

15.

16.

. . . % ,
Pela simetria da figura, x, = 0; v. =—‘ Como area = 7 e
27T area
167

.resulta, v. = —.

1 l
Vo= TTJ v2 dx = '277:[ (4 —4x2)dx =
i 0 3 Ry

2Rsend 2R(1 — cosB) 3
Xp=———€eY: = .em que 6 = arctg a.
360 ' 30
Sejam y,., y,. e y. as ordenadas dos centros de massa de A;, A, e A,
Vi VA,
respectivamente. Entdo, Vi = # ey = # Segue
2m(aread; ) 2m(areads)
. Vi (dread; ) + yo.(dread, ) Vy
ue ] E f— = — — .
e % dread; + drea, 271 (dread)
. = 3 ey — 19
277 10
3
Fazendou=1+x,resulta0 <u<4e0<y<u’. Area = 64/3; = 4_‘T e

V, = 128m. Portanto, u. =3 e y

e

= E Segue que x, =2e vy, = &
5 ' 3

CAPITULO 14

14.2

14.3

1. a),b), o), /)

3. a)x(®)=1loux()=-1
by x(®)=0
) y(x)=-1
d) Nao ha
e)x(H=1
Hx®=0,t>0

1. x(©)=0

2. x(®)=0oux(®)=1

3. Nao ha

4. Ndo ha

5. Nao ha
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6. x(H)=1oux()=-1

14.5
A B
. a)x=kel b)v(x)=0o0u y(x)=
) )y (x) : "
3 .,
c) }-‘=T+x+k dTH=Ke <+ 10
e) x =12 +k Ny=k
g 2
g)x(H)= —1lou xm=ﬂ hyv=In(x+k)
1 — ke
i)v(t)y=0o0u v(r)= : PDx=tlnt—t+ k
1 — ke’
w T -
Dy=tg(lnkx), ——<Inkx<—m) s=In| —+k
2 2 . 2
[ 34,2 .
n) u= _fﬁ;i + k 0) x=k 1+ 12
\ 2
p)y=arctg(x + k) q) x = arc sen %-I—k}

r) tgy:x+k,%<y<37ﬂ;detgy:tg(}-'— T e —%{F_ﬂ-{%

resulta: tg (y —m) =x+kouy=m+arctg (x + k)

2 (ke¥ = 1)
shvih)= —-2ouvi) = ——
v ) 1 + ke*
t) w=cln|v|
2 kelat
H}I(ﬂ=—2ﬂux(ﬂzm
2. a) .1-=—ln(l—x] byy(x)=2,xeR
e
in 4x
£) s | d}‘:ﬁ 2e
2—13x 34 et
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> A queda do corpo € regida pela equagao m

Jx+1

W

2

= mg — av ou 10

? = 100 —av e sabe-se que v (0) = 0 e v (1) = 8. Tem-se:
I
00 [ -
vi)=— |1—e 10 em que a € a raiz da equacdo
o h !
[ 4
25 g
== (1 — 10
a > (1—e )
6.y = xe! = ¥ (veja: a reta tangente em (x, y) tem equacdo
¥ =y = j—l (X—x); para X = 0, Y = xy, dai
a
dy dy X—y
Xy —y=—x—ou —=———),
dx dx x
7. y= 2x2
8. L 700 .
(700 e 33 = . N
Wt = | . : .sendo « a raiz da equagao
Voo L 700 o .
1+e 35
1\;"'.-"I:}'[}-:n:
g = _;’?Dﬂ € 35 =1
\ a 700 a
l1+e 35
9. y = 2x* (veja: o coeficiente angular da reta tangente a curva no ponto (x, y)

10.

11.

12.

dy X
é e = —2—: a equacdo diferencial associada ao problema é, entdo,

X v
dy 2y
dx X
y= \\;":c2 ol A

2+ 44—y
x=-21In i~ 7 - J4-y2,0<y<2
'ﬁr!'

X =Inklyl; 3 :
T N1V L observe que y (x) =0, x>0, ey (x) = 0, x < 0 sdo também
éolugées
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Vv
13. Sugestdo: Faga it = —
i

14.6

1.

5.

=]

.. [E
f':—
i(1) R

In3—In?2

a) x=ke'+?2

b) 1

x=ke +_—

) x = ke !

d) x=kt+ ¢

e) y=ke™*+x-1
N T=ke®+3

g),r:ﬁ:e’—%(senr—l- cos 1)

h) y= ke 2% + % (cos 2x + sen 2x)

i) y= kex(lnx—l)

j)] (1—x
|1~ N |

a) sl
) = ke RC
b) o
Q=ke RC +CE

{ R

——t
l1—e L

r*;\f

" T=80 _J + 20

b
a) C (1) = Cp e

b) 8,3287% a.m.

. C (t) = 20.000 - 3"

101n 2 anos = 17 anos
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3 2
8 =2 (e - emque a=In=
¥ E,

1
S y=x+—

X

CAPITULO 15
15.1

5
g(x)

3. Aplique o teorema de Rolle a /1 (x) =

6. Verifique que o valor maximo de f nao pode ser estritamente positivo e o
valor minimo estritamente negativo. (Veja: se o valor maximo f (x,) fosse
estritamente positivo teriamos x, em Ja, b[, logo, f(x;) = 0; seguiria,

entdo, f" (x) =f(xy) ...)
15.2

1. Quaisquer que sejam x e y em I, com x # y, f serd continua no intervalo
fechado de extremo x e y é derivavel no intervalo aberto de mesmos
extremos, entdo, pelo TVM, existe X no intervalo aberto de extremo x e y
tal que f(x) — f(v) =f' (X )(x — v). Da hipétese | f(x) | < m no intervalo
de I, segue | f(x) ~ f(y) | < M|x -]

5. a)0e4
b) Nao

6. Suponha que x, e x,, X; # X, sejam pontos fixos e aplique o TVM

CAPITULO 16
16.1

a)]-l—l{x—l‘r
2
b) x

oy Lixog
12

d) 1+x
e) 1
p1-x

2. @) 2,00025; 1,/4,001 — 2,00025] < 10’
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16.2

16.3

b) 2,000025; 13/32,002 — 2,000025| < 10~°

c) 0,02; | sen 0,02 - 0,02 | < 1073
d) 1,001; | e*' - 1,001 | <107
e) 1;|cos 0,01 -1|<107*

f) -0,01; |1n 0,99 - (-0,01) | < 1074

a}x—le b}l+x+lxz t‘,‘ll]+l|(:c—1‘11—l{x—])2
2 2 3 9
2

/ | | . :
d) 1+ x° ) B et bt B ) x } li——
) ) 4{t — (2 h 2) 1 5

a) 0,255; | In 1,3 — 0,255 | < 107% (Utilizamos o polinémio de Taylor de
ordem 2 de In x em volta de x, = 1.)

b) 2,02484; 1,/4,1 — 2,02484] < 107>

€) 1.97484: | N,"lg —1,97484| = 102 (Utilizamos o polindmio de
Taylor de ordem 2 em volta de x, =4 de ./ x.)

d) Utilize o polindmio de Taylor de 3/ x , de ordem 2, em volta de x, = 8.

N 0,1;|sen0,1-0,1|<1073

a0
b)+oo
3 5 2 4
g}x_i_|_x__ b}l_i+x_
3 5! 2! 4!

1

| o
= ——(x—12+—
e) (x—1) 2('6 ) 3

(x—1)3 — l{x— 4 + ]fo— 1)°
4 5

DT =T = TP = TP i T 2o e 1}
3 9 81 243 729

ala—1) g a(a—D(a—2) B alfa—)(a—2)a—3) A
! 3 4!

@ (a1 {e—2) (o= 3) a4} %

5!

e) 1+ax+

_l’_
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O polinémio de Taylor de ordem n + 1, de sen x em volta de x, = 0, é (n
- impar)

1 5 L
X- X :
x——+——...(—-D 2 —, Assim
3 5! n!
23 x3 A XM flnt 2) (%) 5
SEI']X_ T_—+T—,,,{—l) 2 o _x-”+._,
3! 5 n! (n+ 2)!

Como | fln+ 2) (¥ = 1 (por qué?), segue a desigualdade.
. Pelo exercicio anterior

n—1

| | 1 1
senl—|1—-—+——...(-1) 2 —|=—, Basta

3 A n! (n+ 2)!
determinar n, por tentativas, de modo que ——— 03,

(n+ 2)!
. No Exercicio 2, substitua x por x%, assim
x40 n-l  on y2n+4
BB XS = X = —— s (1) 2 S
3! 5 mn! (n <4+ 2)!
l 1 a n—l 20 1 .2n+4
jsen x2 d.r—j {.rz—'_r——i-...{—l} 2 Vx| = }'—dx
0 0 3! n! 0(n+2)
1 rﬁn +4 1
Como J ——dx = - , basta determinar n, por
0 (n+2)! (2n 4+ 5)(n+ 2)!
tentativas, de modo que 103,
(2n+ 5)(n+ 2)!
. Verifique que
2 4 [§] 2n 2n+1

X X X b X

cosx—|1-— + ——+ ..+ (D = :
2 4! 6! (2n)! (2n + 1!

Para x fixo, faca n tender a +oo.
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Newton, Sir Isaac, 504
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definicdo de, 538
Operagoes com fungoes, 51
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Regras de derivacao, 154
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Reta tangente, 138, 204
Sequéncia,

definicdo de, 111

limite de, 112
Soma de Riemann, 300
Supremo

definicdo, 506

propriedade do, 507
Taxa de variacao, 199
Teorema

de Cauchy, 464

de Darboux, 282

de Rolle, 458

de Weierstrass, 122

do anulamento ou de Bolzano, 121
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do confronto, 90

do supremo, 507

do valor intermediario, 122

do valor médio (TVM), 225, 460

fundamental do célculo, 306, 404
Trabalho

definicdo, 326, 330

energia cinética e, 331, 332
Valor absoluto, 14
Variavel

dependente, 27

independente, 27
Velocidade, 196
Volume de solido de revolugao

em torno do eixo x, 400, 410

em torno do eixo y, 406, 408, 410
Volume de sélido qualquer, 411
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