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PREFÁCIO

Este	 livro	 baseia-se	 nos	 cursos	 de	 Cálculo	 ministrados	 aos	 alunos	 da	 Escola
Politécnica	da	USP,	do	Instituto	de	Matemática	e	Estatística	da	USP	e	do	Instituto	de
Ensino	de	Engenharia	Paulista	—	IEEP.

Os	 assuntos	 abordados	 neste	 volume	 são	 os	 de	 limite,	 derivada	 e	 integral	 de
funções	de	uma	variável	real.

O	 curso	 é	 desenvolvido	 de	 forma	 que	 os	 conceitos	 e	 teoremas	 apresentados
venham,	 sempre	 que	 possível,	 acompanhados	 de	 uma	 motivação	 ou	 interpretação
geométrica	ou	física.	As	demonstrações	de	alguns	teoremas	ou	foram	deixadas	para	o
final	 da	 seção	ou	 colocadas	 em	apêndice,	 o	que	 significa	que	o	 leitor	 poderá,	 numa
primeira	leitura,	omiti-las,	se	assim	o	desejar.

Muitos	 problemas	 que	 ocorrem	 muito	 cedo	 na	 Física	 requerem,	 para	 suas
resoluções,	 o	 conhecimento	 de	 equações	 diferenciais;	 por	 esse	motivo,	 é	 importante
que	o	aluno	entre	em	contato	com	elas	o	mais	rápido	possível.	Neste	volume,	no	Cap.
14,	 estudamos	 as	 equações	 diferenciais	 ordinárias	 de	 1.ª	 ordem,	 de	 variáveis
separáveis,	e	as	lineares	de	1.ª	ordem.	Deixamos	para	o	início	do	Vol.	2	o	estudo	das
equações	diferenciais	lineares	de	2.ª	ordem	com	coeficientes	constantes.	Outros	tipos
de	equações	diferenciais	serão	estudados	ao	longo	dos	Vols.	2,	3	e	4.

Para	 atender	 ao	 curso	 de	 Física,	 talvez	 haja	 necessidade	 de	 o	 professor	 ter	 que
antecipar	o	estudo	das	integrais;	se	este	for	o	caso,	sugerimos	deixar	o	capítulo	sobre	o
estudo	das	variações	das	funções	(Cap.	9)	para	ser	estudado	após	o	Cap.	14.

Quanto	aos	exemplos	e	exercícios,	pensamos	tê-los	colocado	em	número	suficiente
para	a	compreensão	da	matéria.	Procuramos	dispor	os	exercícios	em	ordem	crescente
de	 dificuldade.	 Existem	 exercícios	 que	 apresentam	 certas	 sutilezas	 e	 que	 requerem,
para	suas	resoluções,	um	maior	domínio	do	assunto;	deste	modo,	não	se	aborreça	caso
não	consiga	resolver	alguns	deles:	tudo	que	você	terá	que	fazer,	nestas	horas,	é	seguir
em	frente	e	retornar	a	eles	quando	se	sentir	mais	senhor	de	si.	Coloco-me	à	disposição
para	 quaisquer	 esclarecimentos	 ou	 troca	 de	 ideias,	 tanto	 pessoalmente	 quanto	 por
carta,	 aos	 cuidados	 da	 Editora.	 Ficaria,	 ainda,	 muito	 feliz	 em	 receber	 sugestões	 ou
críticas	visando	a	um	aprimoramento	do	texto.

Observamos	 que	 o	 2.º	 Teorema	 Fundamental	 do	 Cálculo	 bem	 como	 as	 integrais
impróprias	serão	vistos	no	Vol.	2.

Na	4.ª	edição,	foram	incluídos	dois	capítulos:	um,	atual	Cap.	13	e	que	antes	fazia
parte	 do	Vol.	 2,	 sobre	 aplicações	 das	 integrais	 ao	 cálculo	 de	 volumes	 de	 sólidos	 de
revolução,	de	áreas	de	superfícies	de	revolução,	de	comprimentos	de	curvas,	de	áreas	e
comprimentos	de	curvas	em	coordenadas	polares	e	de	centros	de	massa;	e	outro,	novo
(Cap.	17),	sobre	Arquimedes,	Pascal,	Fermat	e	o	cálculo	de	áreas.	Três	novas	seções,
sobre	integração	de	funções	trigonométricas,	foram	acrescentadas	ao	Cap.	12.	A	Seção
12.9	 (exercícios	 do	 capítulo)	 da	 edição	 anterior	 foi	 eliminada	 e	 os	 exercícios
distribuídos	 pelas	 seções	 do	 capítulo.	 A	 Seção	 1.8	 (Princípio	 de	 Indução	 Finita)	 da
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edição	anterior	foi,	também,	eliminada	e	parte	dela	deslocada	para	a	Seção	17.2.
Nesta	 5.ª	 edição	 foram	 feitas	 uma	 revisão	 meticulosa	 do	 texto	 e	 correções	 de

algumas	falhas	gráficas	relacionadas	ao	texto	e	às	figuras.
Não	 poderíamos	 deixar	 de	 agradecer,	 pela	 cuidadosa	 leitura	 do	 manuscrito,	 às

colegas	Élvia	Mureb	Sallum	e	Zara	Issa	Abud.	É	ainda	com	satisfação	que	agradeço	ao
colega	Nelson	Achcar	pelas	 sugestões	 e	 comentários	que	muito	 contribuíram	para	o
aprimoramento	 das	 apostilas	 precursoras	 deste	 livro.	 Finalmente,	 agradecemos	 à
Editora	LTC	pelo	excelente	trabalho	gráfico	e	pela	forma	cordial	com	que	sempre	nos
tratou.

Hamilton	Luiz	Guidorizzi
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Material	Suplementar

Este	livro	conta	com	o	seguinte	material	suplementar:

■	Manual	de	Soluções	(restrito	a	docentes)

O	acesso	ao	material	suplementar	é	gratuito,	bastando	que	o	leitor	se	cadastre	em:
http://gen-io.grupogen.com.br.
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1.1.

1

NÚMEROS	REAIS

O	objetivo	deste	capítulo	é	a	apresentação	das	principais	propriedades	dos	números
reais.	Não	 nos	 preocuparemos	 aqui	 com	 a	 definição	 de	 número	 real,	 que	 é	 deixada
para	 o	 Apêndice	 6.	 No	 que	 segue,	 admitiremos	 a	 familiaridade	 do	 leitor	 com	 as
propriedades	 dos	 números	 naturais,	 inteiros	 e	 racionais.	 Mesmo	 admitindo	 tal
familiaridade,	gostaríamos	de	falar	rapidamente	sobre	os	números	racionais.	É	o	que
faremos	a	seguir.

OS	NÚMEROS	RACIONAIS

Os	números	racionais	são	os	números	da	forma	 	sendo	a	e	b	inteiros	e	b	≠	0;	o

conjunto	dos	números	racionais	é	indicado	por	ℚ,	assim:
	

no	qual	ℤ	indica	o	conjunto	dos	números	inteiros:
	

ℤ	=	{…,	−3,	−2,	−1,	0,	1,	2,	3,	…}.

Indicamos,	ainda,	por	ℕ	o	conjunto	dos	números	naturais:
	

ℕ	=	{0,	1,	2,	3,	…}.

Observamos	que	ℕ	é	subconjunto	de	ℤ,	que,	por	sua	vez,	é	subconjunto	de	ℚ;	isto
é,	 todo	 número	 natural	 é	 também	 número	 inteiro,	 e	 todo	 inteiro	 é	 também	 número
racional.

Sejam	 	 dois	 racionais	 quaisquer.	A	 soma	 e	 o	produto	 destes	 racionais	 são

obtidos	da	seguinte	forma:
	

A	operação	que	a	cada	par	de	números	racionais	associa	a	sua	soma	denomina-se
adição,	e	a	que	associa	o	produto	denomina-se	multiplicação.
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O	número	racional	 	se	diz	positivo	se	a	·	b	∈	ℕ;	se	a	·	b	∈	ℕ	e	a	≠	0,	então	 	se

diz	estritamente	positivo.
Sejam	r	e	s	dois	racionais;	dizemos	que	r	é	estritamente	menor	que	s	 (ou	que	s	 é

estritamente	maior	 que	 r)	 e	 escrevemos	 r	 <	 s	 (respectivamente	 s	 >	 r)	 se	 existe	 um
racional	t	estritamente	positivo	tal	que	s	=	r	+	t.	A	notação	r	≤	s	(leia:	r	menor	ou	igual
a	s	ou	simplesmente	r	menor	que	s)	é	usada	para	indicar	a	afirmação	“r	<	s	ou	r	=	s”.	A
notação	r	≥	s	(leia:	r	maior	ou	igual	a	s	ou	simplesmente	r	maior	que	s)	é	equivalente
a	s	≤	r.	Observe	que	r	positivo	equivale	a	r	≥	0.	Se	r	≤	0,	dizemos	que	r	é	negativo.

A	 quádrupla	 (ℚ,	 +,	 ·,	 ≤)	 satisfaz	 as	 seguintes	 propriedades	 (x,	 y,	 z	 são	 racionais
quaisquer):
	
	 Associativa

(A1) (x	+	y)	+	z	=	x	+	(y	+	z) (M1)	(xy)	z	=	x	(yz) 	

	 Comutativa 	 	

(A2) x	+	y	=	y	+	x (M2)	xy	=	yx 	

	 Existência	de	elemento	neutro 	 	

(A3) x	+	0	=	x (M3)	x	·	1	=	x (1	≠	0)

	 Existência	de	oposto 	 	

(A4) Para	 todo	 racional	 x	 existe	 um	 único	 racional	 y	 tal	 que	 x	 +	 y	 =	 0.	 Tal	 ydenomina-se	oposto	de	x	e	indica-se	por	−x.	Assim,	x	+	(−x)	=	0.

	 Existência	de	inverso 	 	

(M4)
Para	 todo	 racional	 x	 ≠	 0	 existe	 um	 único	 racional	 y	 tal	 que	 x	 ·	 y	 =	 1.	 Tal	 y

denominase	inverso	de	x	e	indica-se	por	x−1	ou	 	Assim,	x	·	x−1	=	1.

	 Distributiva	da	multiplicação	em	relação	à	adição

(D) x(y	+	z)	=	xy	+	xz.

	 Reflexiva

(O1) x	≤	x.

	 Antissimétrica

(O2) x	≤	y					e					y	≤	x	⇒	x	=	y

	 (leia-se:	se	x	≤	y	e	y	≤	x,	então	x	=	y	ou	x	≤	y	e	y	≤	x	implica	x	=	y).

	 Transitiva
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(O3) x	≤	y				e					y	≤	z	⇒	x	≤	z.

	 Quaisquer	que	sejam	os	racionais	x	e	y

(O4) x	≤	y	ou	y	≤	x.

	 Compatibilidade	da	ordem	com	a	adição

(OA) x	≤	y	⇒	x	+	z	≤	y	+	z.

	 (Somando-se	a	ambos	os	membros	de	uma	desigualdade	um	mesmo	número,	o
sentido	da	desigualdade	se	mantém.)

	 Compatibilidade	da	ordem	com	a	multiplicação

(OM) x	≤	y			e					0	≤	z	⇒	x	z	≤	y	z.

	 (Multiplicando-se	 ambos	 os	 membros	 de	 uma	 desigualdade	 por	 um	 mesmo
número	positivo,	o	sentido	da	desigualdade	se	mantém.)

Observação.	 Seja	 	 um	 conjunto	 qualquer	 com	 pelo	 menos	 dois	 elementos	 e
suponhamos	que	em	 	estejam	definidas	duas	operações	indicadas	por	+	e	·;	se	a	terna
( ,	+,	·)	satisfizer	as	propriedades	(A1)	a	(A4),	(M1)	a	(M4)	e	(D),	diremos	que	( ,	+,
·)	é	um	corpo.	Se,	além	disso,	em	 	estiver	definida	uma	relação	(≤)	de	modo	que	a
quádrupla	( ,	+,	·,	≤)	satisfaça	todas	as	15	propriedades	anteriormente	listadas,	então
diremos	 que	 ( ,	 +,	 ·,	 ≤)	 é	 um	 corpo	ordenado.	 Segue	 que	 (ℚ,	 +,	 ·,	 ≤)	 é	 um	 corpo
ordenado;	entretanto,	(ℤ,	+,	·,	≤)	não	é	corpo	ordenado,	pois	(M4)	não	se	verifica.

Os	 números	 racionais	 podem	 ser	 representados	 geometricamente	 por	 pontos	 de
uma	reta.	Para	isto,	escolhem-se	dois	pontos	distintos	da	reta,	um	representando	o	0	e
o	outro	o	1.	Tomando-se	o	segmento	de	extremidades	0	e	1	como	unidade	de	medida,
marcam-se	os	representantes	dos	demais	números	racionais.
	

Se	o	ponto	P	for	o	representante	do	número	racional	r,	diremos	que	r	é	a	abscissa

de	P.	Na	figura	acima,	 	é	a	abscissa	de	A;	5	é	a	abscissa	de	B.

Todo	número	racional	r	é	abscissa	de	um	ponto	da	reta;	entretanto,	nem	todo	ponto
da	 reta	 tem	 abscissa	 racional.	 Antes	 de	 construir	 um	 ponto	 da	 reta	 que	 não	 tem
abscissa	racional,	vejamos	os	seguintes	exemplos.
	
EXEMPLO	1.	Seja	a	um	número	inteiro.	Prove:	(i)	se	a	for	ímpar,	então	a2	 também
será	ímpar;	(ii)	se	a2	for	par,	então	a	também	será	par.
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Solução

(i)	Como	a	é	ímpar,	a	é	da	forma	a	=	2k	+	1,	k	inteiro.	Então:

	
a2	=	(2k	+	1)2	=	4k2	+	4k	+	1	=	2(2k2	+	2k)	+	1;

como	2k2	+	2k	é	inteiro,	resulta	a2	ímpar.
(ii)	Por	hipótese,	a2	 é	par;	 se	a	 fosse	 ímpar,	 por	 (i),	 teríamos	a2	 também	 ímpar,	que
contraria	a	hipótese.	Assim,
	

a2	par	⇒	a	par.					■

EXEMPLO	2.	A	equação	x2	=	2	não	admite	solução	em	ℚ.

Solução

De	 fato,	 suponhamos,	 por	 absurdo,	 que	 exista	 uma	 fração	 irredutível	

	então:

	

sendo	a	par,	será	da	forma	a	=	2p,	p	inteiro;
	

Assim,	b2	é	par	e,	portanto,	b	também	o	é;	sendo	a	e	b	pares,	a	fração	 	é	redutível,

contradição.					■

Vejamos,	agora,	como	construir	um	ponto	da	reta	que	não	tenha	abscissa	racional.
	

Pelo	teorema	de	Pitágoras,	d2	=	12	+	12	=	2	(veja	figura	acima);	assim	a	abscissa	de
P	deveria	ser	d	que	não	é	número	racional	(Exemplo	2).

Admitiremos	 que	 todo	 ponto	 da	 reta	 tem	 uma	 abscissa	 x;	 se	 x	 não	 for	 racional,
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1.2.

diremos	 que	 x	 é	 irracional.	 O	 conjunto	 formado	 por	 todos	 os	 números	 racionais	 e
irracionais	é	o	conjunto	dos	números	reais	que	será	indicado	por	ℝ.

OS	NÚMEROS	REAIS

Como	dissemos	na	seção	anterior,	o	conjunto	dos	números	reais	será	indicado	por
ℝ.	ℝ	contém	ℚ,	isto	é,	todo	número	racional	é	um	número	real.	Os	números	reais	que
não	são	racionais	denominam-se	irracionais.

Em	ℝ	estão	definidas	duas	operações,	adição	(+)	e	multiplicação	(·)	e	uma	relação
(≤).	A	adição	associa	a	cada	par	(x,	y)	de	números	reais	um	único	número	real	indicado
por	x	+	y;	a	multiplicação,	um	único	real	indicado	por	x	·	y.	As	operações	de	adição	e
multiplicação	definidas	em	ℝ,	quando	 restritas	a	ℚ,	 coincidem	com	as	operações	de
adição	e	de	multiplicação	de	ℚ;	o	mesmo	acontece	com	a	relação	(≤).

Admitiremos	 que	 a	 quádrupla	 (ℝ,	 +,	 ·,	 ≤)	 é	 um	 corpo	ordenado,	 isto	 é,	 satisfaz
todas	 as	 15	propriedades	 listadas	 na	 seção	 anterior:	 (A1)	 a	 (A4),	 (M1)	 a	 (M4),	 (D),
(O1)	a	(O4),	(OA)	e	(OM).	Reveja	tais	propriedades.

Os	exemplos	que	damos	a	seguir	mostram	como	obter	outras	propriedades	a	partir
das	já	mencionadas.
	
EXEMPLO	1.	Quaisquer	que	sejam	os	reais	x,	y,	z,	w
	

(Somando-se	membro	a	membro	desigualdades	de	mesmo	sentido,	obtém-se	outra	de
mesmo	sentido.)

Solução

Pela	(OA)

Pela	transitiva	(O3)
	

	
Portanto,

Como	observamos	anteriormente,	a	adição	associa	a	cada	par	de	números	reais	um
único	número	real;	assim,	se	x	=	y	e	z	=	w,	então	x	+	z	=	y	+	w;	em	particular,	se	x	=	y,
então	x	+	z	=	y	+	z	para	todo	z,	o	que	significa	que,	somando	a	ambos	os	membros	de
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uma	igualdade	um	mesmo	número,	a	igualdade	se	mantém.
	
EXEMPLO	2.	(Lei	do	cancelamento.)	Quaisquer	que	sejam	os	reais	x,	y,	z
	

x	+	z	=	y	+	z	⇒	x	=	y

Solução

Somando-se	−z	a	ambos	os	membros	da	igualdade	x	+	z	=	y	+	z,	vem:
	

(x	+	z)	+	(−z)	=	(y	+	z)	+	(−z).

Pela	associativa	(A1),
	

x	+	[z	+	(−z)]	=	y	+	[z	+	(−z)].

Daí,
	

x	+	0	=	y	+	0

ou	seja,
	

x	=	y.

Assim,
	

x	+	z	=	y	+	z	⇒	x	=	y.					■

	
EXEMPLO	3.	Quaisquer	que	sejam	os	reais	x,	y,	z,	w
	

(Multiplicando-se	membro	a	membro	desigualdades	de	mesmo	sentido	e	de	números
positivos,	obtém-se	desigualdade	de	mesmo	sentido.)

Solução
	

Vamos,	 agora,	 fazer	 uma	 lista	 de	 outras	 propriedades	 dos	 reais	 que	 podem	 ser
obtidas	das	15	anteriormente	listadas	e	que	nos	serão	úteis	no	decorrer	do	curso.
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a)
b)

c)

d)
e)

h)

i)

a)

b)

c)

a)

b)

Quaisquer	que	sejam	os	reais	x,	y,	z,	w,	tem-se:

x	<	y	⇔	x	+	z	<	y	+	z.
z	>	0	⇔	z−1	>	0.
z	>	0	⇔	−z	<	0.
se	z	>	0,	x	<	y	⇔	xz	<	yz.
se	z	<	0,	x	<	y	⇔	xz	>	yz.

(Multiplicando-se	 ambos	 os	 membros	 de	 uma	 desigualdade	 por	 um	mesmo	 número
negativo,	o	sentido	da	desigualdade	muda.)
	

(Tricotomia.)	Uma	e	somente	uma	das	condições	abaixo	se	verifica:

x	<	y	ou	x	=	y	ou	x	>	y.

(Anulamento	do	produto.)

xy	=	0	⇔	x	=	0	ou	y	=	0.

(Um	produto	é	nulo	se	e	somente	se	um	dos	fatores	for	nulo.)

EXEMPLO	4.	Suponha	x	≥	0	e	y	≥	0.	Prove:

x	<	y	⇒	x2	<	y2.
x	≤	y	⇒	x2	≤	y2.
x	<	y	⇔	x2	<	y2.

Solução

	(Veja	item	f	do	Exemplo	3.)

Faça	você.

c)	Por	(a),	x	<	y	⇒	x2	<	y2.	Suponhamos,	agora	x2	<	y2;	se	 tivéssemos	x	≥	y,	por	 (b)
teríamos	x2	≥	y2,	contradição.	Assim,	x2	<	y2	⇒	x	<	y.	Fica	provado,	deste	modo,	que
quaisquer	que	sejam	os	reais	x	≥	0	e	y	≥	0

x	<	y	⇔	x2	<	y2.					■

EXEMPLO	5.	Resolva	a	inequação
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5x	+	3	<	2x	+	7.

Solução

Assim,	 	é	o	conjunto	das	soluções	da	inequação	dada.					■

EXEMPLO	6.	Estude	o	sinal	da	expressão	x	−	3.

Solução

x	−	3	>	0	⇔	x	>	3;	x	−	3	=	0	⇔	x	=	3;	x	−	3	<	0	⇔	x	<	3.

Assim,	x	−	3	>	0	para	x	>	3;	x	−	3	<	0	para	x	<	3	e	x	−	3	=	0	para	x	 =	 3.	Esta
discussão	será	representada	da	seguinte	forma:

EXEMPLO	7.	Estude	o	sinal	de	

Solução
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(∄	=	não	existe.)

Conclusão

EXEMPLO	8.	Resolva	a	inequação	

Solução

Inicialmente,	estudaremos	o	sinal	de	

Assim,	 	 é	 o	 conjunto	 das	 soluções	 da	 inequação

dada.					■

EXEMPLO	9.	Resolva	a	inequação	

Solução
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Multiplicando	por	−1	ambos	os	membros	da	última	desigualdade,	resulta:

Assim,	 	 Logo,	 	 é

o	conjunto	das	soluções	da	inequação	dada.

CUIDADO!

	não	é	equivalente	a	3x	−	1	≥	5	(x	+	2)!!

A	 equivalência	 será	 verdadeira	 para	 x	 >	 −2,	 pois,	 x	 >	 −2	 ⇒	 x	 +	 2	 >	 0;
multiplicando,	 então,	 ambos	 os	 membros	 da	 desigualdade	 por	 x	 +	 2,	 o	 sentido	 se
manterá;	assim,	para	x	>	−2,

Por	outro	lado,	para	x	<	−2,
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1.

a)
b)
c)
d)
e)
f)

2.

a)
b)
c)
d)
e)

f)
g)

h)

i)
j)
l)
m)
n)
o)
p)
q)

3.

Exercícios	1.2	

Resolva	as	inequações.

3x	+	3	<	x	+	6
x	−	3	>	3x	+	1
2x	−	1	≥	5x	+	3
x	+	3	≤	6x	−	2
1	−	3x	>	0
2x	+	1	≥	3x

Estude	o	sinal	das	expressões.

3x	−	1
3	−	x
2	−	3x
5x	+	1

(2x	+	1)(x	−	2)

(2x	−	1)(3	−	2x)
x(x	−	3)
x	(x	−	1)(2x	+	3)
(x	−	1)(1	+	x)(2	−	3x)
x(x2	+	3)
(2x	−	1)(x2	+	1)
ax	+	b,	em	que	a	e	b	são	reais	dados,	com	a	>	0.
ax	+	b,	em	que	a	<	0	e	b	são	dois	reais	dados.

Resolva	as	inequações.
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4.

5.

a)
b)
c)
d)
e)

6.

Divida	x3	−	a3	por	x	−	a	e	conclua	que	x3	−	a3	=	(x	−	a)	(x2	+	ax	+	a2).

Verifique	as	identidades.

x2	−	a2	=	(x	−	a)(x	+	a)
x3	−	a3	=	(x	−	a)(x2	+	ax	+	a2)
x4	−	a4	=	(x	−	a)(x3	+	ax2	+	a2x	+	a3)
x5	−	a5	=	(x	−	a)(x4	+	ax3	+	a2x2	+	a3x	+	a4)
xn	−	an	=	(x	−	a)(xn	−	1	+	axn	−	2	+	a2xn	−	3	+	…	+	an	−	2x	+	an	−	1)	em	que	n	≠	0
é	um	natural.

Simplifique.
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7.

a)
b)
c)
d)
e)

f)

g)
h)
i)
j)

8.

Resolva	as	inequações.

x2	−	4	>	0
x2	−	1	≤	0
x2	>	4
x2	>	1

(2x	−	1)(x2	−	4)	≤	0
3x2	≥	48
x2	<	r2,	em	que	r	>	0	é	um	real	dado.
x2	≥	r2,	em	que	r	>	0	é	um	real	dado.

Considere	o	polinômio	do	2.º	grau	ax2	+	bx	+	c,	em	que	a	≠	0,	b	e	c	são	reais
dados.
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a)

b)

c)

9.

10.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)

11.

a)
b)
c)
d)
e)

Verifique	que

Conclua	 de	 (a)	 que,	 se	 Δ	 ≥	 0,	 as	 raízes	 de	 ax2	 +	 bx	 +	 c	 são	 dadas	 pela
fórmula

Sejam	 	as	raízes	de	ax2	+	bx	+	c.

Verifique	que

Considere	o	polinômio	do	2.º	grau	ax2	+	bx	+	c	e	sejam	x1	e	x2	como	no	item
(c)	do	Exercício.	Verifique	que

ax2	+	bx	+	c	=	a(x	−	x1)(x	−	x2).

Utilizando	o	Exercício	9,	fatore	o	polinômio	do	2.º	grau	dado.

x2	−	3x	+	2
x2	−	x	−	2
x2	−	2x	+	1
x2	−	6x	+	9
2x2	−	3x
2x2	−	3x	+	1
x2	−	25
3x2	+	x	−	2
4x2	−	9
2x2	−	5x

Resolva	as	inequações.

x2	−	3x	+	2	<	0
x2	−	5x	+	6	≥	0
x2	−	3x	>	0
x2	−	9	<	0
x2	−	x	−	2	≥	0
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f)
g)
h)
i)
j)

12.

a)
b)

13.

a)
b)
c)
d)
e)
f)
g)
h)
i)

j)

14.

15.

16.

17.

3x2	+	x	−	2	>	0
x2	−	4x	+	4	>	0
3x2	−	x	≤	0
4x2	−	4x	+	1	<	0
4x2	−	4x	+	1	≤	0

Considere	o	polinômio	do	2.º	grau	ax2	+	bx	+	c	e	suponha	Δ	<	0.	Utilizando	o
item	(a)	do	Exercício	8,	prove:

se	a	>	0,	então	ax2	+	bx	+	c	>	0	para	todo	x.
se	a	<	0,	então	ax2	+	bx	+	c	<	0	para	todo	x.

Resolva	as	inequações.

x2	+	3	>	0
x2	+	x	+	1	>	0
x2	+	x	+	1	≤	0
x2	+	5	≤	0
(x	−	3)(x2	+	5)	>	0
(2x	+	1)(x2	+	x	+	1)	≤	0
x(x2	+	1)	≥	0
(1	−	x)(x2	+	2x	+	2)	<	0

Prove:

A	afirmação:

“para	todo	x	real,	

é	falsa	ou	verdadeira?	Justifique.

Suponha	que	P(x)	=	a0xn	+	a1xn	−	1	+	…	+	an	−	1	x	+	an	seja	um	polinômio	de
grau	n,	 com	coeficientes	 inteiros,	 isto	 é,	a0	 ≠	 0,	a1,	a2,	…,	an	 são	 números
inteiros.	Seja	α	um	número	inteiro.	Prove	que	se	α	 for	 raiz	de	P(x),	 então	α
será	um	divisor	do	termo	independente	an.

Utilizando	 o	 Exercício	 16,	 determine,	 caso	 existam,	 as	 raízes	 inteiras	 da
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a)
b)
c)
d)
e)
f)

18.

19.

a)
b)
c)
d)
e)
f)

20.

a)
b)
c)
d)

21.

22.

23.

a)

equação.

x3	+	2x2	+	x	−	4	=	0
x3	−	x2	+	x	+	14	=	0
x4	−	3x3	+	x2	+	3x	=	2
2x3	−	x2	−	1	=	0
x3	+	x2	+	x	−	14	=	0
x3	+	3x2	−	4x	−	12	=	0

Seja	P(x)	um	polinômio	de	grau	n.	Prove:

α	é	raiz	de	P(x)	⇔	P(x)	é	divisível	por	x	−	α.

(Sugestão:	dividindo-se	P(x)	por	x	−	α,	obtém-se	um	quociente	Q(x)	e	um	resto	R,
R	constante,	tal	que	P(x)	=	(x	−	α)	Q(x)	+	R.)

Fatore	o	polinômio	dado.

x3	+	2x2	−	x	−	2
x4	−	3x3	+	x2	+	3x	−	2
x3	+	2x2	−	3x
x3	+	3x2	−	4x	−	12
x3	+	6x2	+	11x	+	6
x3	−	1

Resolva	as	inequações.

x3	−	1	>	0
x3	+	6x2	+	11x	+	6	<	0
x3	+	3x2	−	4x	−	12	≥	0
x3	+	2x2	−	3x	<	0

A	afirmação:

“quaisquer	que	sejam	os	reais	x	e	y,	x	<	y	⇔	x2	<	y2”

é	falsa	ou	verdadeira?	Justifique.

Prove	que	quaisquer	que	sejam	os	reais	x	e	y,	x	<	y	⇔	x3	<	y3.

Neste	exercício	você	deverá	admitir	como	conhecidas	apenas	as	propriedades
(A1)	a	(A4),	(M1)	a	(M4),	(D),	(O1)	a	(O4),	(OA)	e	(OM).	Supondo	x,	y	reais
quaisquer,	prove:

x	·	0	=	0.
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b)

c)
d)
e)
f)

g)
h)

1.3.

a)

b)

(Regra	dos	sinais)
(−x)	y	=	−xy;	x	(−y)	=	−xy;	(−x)	(−y)	=	xy.
x2	≥	0.
1	>	0.
x	>	0	⇔	x	−1	>	0.
(Anulamento	do	produto)
xy	=	0	⇔	x	=	0	ou	y	=	0.
x2	=	y2	⇔	x	=	y	ou	x	=	−y
Se	x	≥	0	e	y	≥	0,	x2	=	y2	⇔	x	=	y.

MÓDULO	DE	UM	NÚMERO	REAL

Seja	x	um	número	real;	definimos	o	módulo	(ou	valor	absoluto)	de	x	por:

De	acordo	com	a	definição	acima,	para	 todo	x,	 |	x	 |	≥	0,	 isto	é,	o	módulo	de	um
número	real	é	sempre	positivo.

EXEMPLO	1.

|	5	|	=	5.

|	−3	|	=	−(−3)	=	3.					■

EXEMPLO	2.	Mostre	que,	para	todo	x	real,

|	x	|2	=	x2.

Solução

Se	x	≥	0,	|	x	|	=	x	e	daí	|	x	|2	=	x2.
Se	x	<	0,	|	x	|	=	−x	e	daí	|	x	|2	=	(−x)2	=	x2.

Assim,	para	todo	x	real,	|	x	|2	=	x2.
Lembrando	que	 	indica	a	raiz	quadrada	positiva	de	a	(a	≥	0),	segue	do	exemplo

anterior	que,	para	todo	x	real,

EXEMPLO	3.	Suponha	a	>	0.	Resolva	a	equação

|	x	|	=	a.
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Solução

Como	|	x	|	≥	0	e	a	>	0,

|	x	|	=	a	⇔	|	x	|2	=	a2.

Mas	|	x	|2	=	x2,	assim

|	x	|	=	a	⇔	x2	=	a2	⇔	(x	−	a)	(x	+	a)	=	0	⇔	x	=	a	ou	x	=	−a.

Portanto,

|	x	|	=	a	⇔	x	=	a	ou	x	=	−a.					■

EXEMPLO	4.	Resolva	a	equação	|	2x	+	1	|	=	3.

Solução

Assim,

|	2x	+	1	|	=	3	⇔	x	=	1	ou	x	=	−2.					■

Sejam	x	e	y	dois	números	reais	quaisquer.	Definimos	a	distância	de	x	a	y	por	|	x	−	y
|.	Sendo	P	e	Q	os	pontos	do	eixo	0x	de	abscissas	x	e	y,	e	u	o	segmento	de	extremidades
0	e	1,	|	x	−	y	|	é	a	medida,	com	unidade	u,	do	segmento	PQ.

De	|	x	|	=	|	x	−	0	|,	segue	que	|	x	|	é	a	distância	de	x	a	0.
Seja	r	>	0;	o	próximo	exemplo	nos	diz	que	a	distância	de	x	a	0	é	menor	que	r	se,	e

somente	se,	x	estiver	compreendido	entre	−r	e	r.

EXEMPLO	5.	Suponha	r	>	0.	Mostre	que

|	x	|	<	r	⇔	−r	<	x	<	r.

Solução

|	x	|	<	r	⇔	|	x	|2	<	r2	⇔	x2	<	r2

mas,
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x2	<	r2	⇔	(x	−	r)(x	+	r)	<	0	⇔	−r	<	x	<	r.

Portanto,

|	x	|	<	r	⇔	−r	<	x	<	r.					■

EXEMPLO	6.	Resolva	a	inequação	|	x	|	<	3.

Solução

Pelo	Exercício	5,

|	x	|	<	3	⇔	−3	<	x	<	3.					■

EXEMPLO	7.	Elimine	o	módulo	em

|	x	−	p	|	<	r	(r	>	0).

Solução

|	x	−	p	|	<	r	⇔	−r	<	x	−	p	<	r	⇔	p	−	r	<	x	<	p	+	r.

Assim,

|	x	−	p	|	<	r	⇔	p	−	r	<	x	<	p	+	r.

(A	 distância	 de	 x	 a	 p	 é	 estritamente	 menor	 que	 r	 se,	 e	 somente	 se,	 x	 estiver
estritamente	compreendido	entre	p	−	r	e	p	+	r.)					■

EXEMPLO	8.	Mostre	que	quaisquer	que	sejam	os	reais	x	e	y

|	xy	|	=	|	x	|	|	y	|.

(O	módulo	de	um	produto	é	igual	ao	produto	dos	módulos	dos	fatores.)

Solução

|	xy	|2	=	(xy)2	=	x2y2	=	|	x	|2	|	y	|2	=	(|	x	|	|	y	|)2.

Como	|	xy	|	≥	0	e	|	x	|	|	y	|	≥	0	resulta

|	xy	|	=	|	x	|	|	y	|.

Antes	de	passarmos	ao	próximo	exemplo,	observamos	que,	para	todo	x	real,

x	≤	|	x	|	e	−x	≤	|	x	|.	(Verifique.)					■

EXEMPLO	9.	(Desigualdade	triangular.)	Quaisquer	que	sejam	os	reais	x	e	y

|	x	+	y	|	≤	|	x	|	+	|	y	|.
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1.

a)
b)
c)

(O	módulo	de	uma	soma	é	menor	ou	igual	à	soma	dos	módulos	das	parcelas.)

Solução

Se	x	+	y	≥	0,	|	x	+	y	|	=	x	+	y	≤	|	x	|	+	|	y	|.
Se	x	+	y	<	0,	|	x	+	y	|	=	−(x	+	y)	=	−x	−	y	≤	|	x	|	+	|	y	|.

Assim,	quaisquer	que	sejam	os	reais	x	e	y.

|	x	+	y	|	≤	|	x	|	+	|	y	|.					■

EXEMPLO	10.	Elimine	o	módulo	em	|	x	−	1	|	+	|	x	+	2	|.

Solução

Para	x	<	−2,	x	−	1	<	0	e	x	+	2	<	0,	assim

|	x	−	1	|	+	|	x	+	2	|	=	−(x	−	1)	−	(x	+	2)	=	−2x	−	1.

Para	−2	≤	x	<	1,	x	−	1	<	0	e	x	+	2	≥	0,	assim

|	x	−	1	|	+	|	x	+	2	|	=	−(x	−	1)	+	(x	+	2)	=	3.

Para	x	≥	1,	x	−	1	≥	0	e	x	+	2	≥	0,	assim

|	x	−	1	|	+	|	x	+	2	|	=	(x	−	1)	+	(x	+	2)	=	2x	+	1.

Conclusão

Exercícios	1.3	

Elimine	o	módulo.

|	−5	|	+	|	−2	|
|	−5	+	8	|
|	−a	|,	a	>	0
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d)
e)
f)

2.

a)
b)
c)
d)
e)
f)

3.

a)
b)
c)
d)

e)
f)
g)
h)
i)
j)
l)
m)
n)
o)

4.

5.

a)
b)
c)
d)

6.

|	a	|,	a	<	0
|	−a	|
|	2a	|	−	|	3a	|

Resolva	as	equações.

|	x	|	=	2
|	x	+	1	|	=	3
|	2x	−	1	|	=	1
|	x	−	2	|	=	−1
|	2x	+	3	|	=	0
|	x	|	=	2x	+	1

Resolva	as	inequações.

|	x	|	≤	1
|	2x	−	1	|	<	3
|	3x	−	1	|	<	−2

|	2x2	−	1	|	<	1
|	x	−	3	|	<	4
|	x	|	>	3
|	x	+	3	|	>	1
|	2x	−	3	|	>	3
|	2x	−	1	|	<	x
|	x	+	1	|	<	|	2x	−	1	|
|	x	−	1	|	−	|	x	+	2	|	>	x
|	x	−	3	|	<	x	+	1
|	x	−	2	|	+	|	x	−	1	|	>	1

Suponha	r	>	0.	Prove:

|	x	|	>	r	⇔	x	<	−r	ou	x	>	r

Elimine	o	módulo.

|	x	+	1	|	+	|	x	|
|	x	−	2	|	−	|	x	+	1	|
|	2x	−	1	|	+	|	x	−	2	|
|	x	|	+	|	x	−	1	|	+	|	x	−	2	|

Prove:
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7.

a)
b)
c)

1.4.

1.

a)

|	x	+	y	|	=	|	x	|	+	|	y	|	⇔	xy	≥	0.

Prove:

|	x	−	y	|	≥	|	x	|	−	|	y	|
|	x	−	y	|	≥	|	y	|	−	|	x	|
|	|	x	|	−	|	y	|	|	≤	|	x	−	y	|

INTERVALOS

O	objetivo	desta	seção	é	destacar	certos	tipos	de	subconjuntos	de	ℝ,	os	intervalos,
que	serão	bastante	úteis	durante	todo	o	curso.

Sejam	a	e	b	dois	reais,	com	a	<	b.	Um	intervalo	em	ℝ	é	um	subconjunto	de	ℝ	que
tem	uma	das	seguintes	formas:

[a,	b]	=	{x	∈	ℝ	|	a	≤	x	≤	b}
]a,	b[	=	{x	∈	ℝ	|	a	<	x	<	b}
]a,	b]	=	{x	∈	ℝ	|	a	<	x	≤	b}
[a,	b[	=	{x	∈	ℝ	|	a	≤	x	<	b}
]−∞,	a[	=	{x	∈	ℝ	|	x	<	a}											(−∞	=	menos	infinito)

Observação.	−∞	não	é	número,	−∞	é	apenas	um	símbolo.

]−∞,	a]	=	{x	∈	ℝ	|	x	≤	a}
[a,	+∞[	=	{x	∈	ℝ	|	x	≥	a}
]a,	+∞[	=	{x	∈	ℝ	|	x	>	a}
]−∞,	+∞[	=	ℝ.

Os	 intervalos	 ]a,	 b[,	 ]−∞,	 a[,	 ]a,	 +∞[	 e	 ]−∞,	 +∞[	 são	 denominados	 intervalos
abertos;	[a,	b]	denomina-se	intervalo	fechado	de	extremidades	a	e	b.

EXEMPLO.	Expresse	o	conjunto	{x	∈	ℝ	|	2x	−	3	<	x	+	1}	em	notação	de	intervalo.

Solução

2x	−	3	<	x	+	1	⇔	x	<	4.

Assim,

{x	∈	ℝ	|	2x	−	3	<	x	+	1}	=	]−∞,	4[.					■

Exercícios	1.4	

Expresse	cada	um	dos	conjuntos	abaixo	em	notação	de	intervalo.

{x	∈	ℝ	|	4x	−	3	<	6x	+	2}
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b)
c)
d)

2.

3.

4.

a)
b)

c)
d)

1.5.

(i)

(ii)

{x	∈	ℝ	|	|	x	|	<	1}
{x	∈	ℝ	|	|	2x	−	3	|	≤	1}

Determine	r	>	0	de	modo	que	]4	−	r,	4	+	r[	⊂	]2,	5[.	(Lembre-se:	A	⊂	B	⇔	A
é	subconjunto	de	B.)

Sejam	a	<	b	dois	reais	e	p	∈	]a,	b[.	Determine	r	>	0	de	modo	que	]p	−	r,	p	+
r[	⊂	]a,	b[.

Expresse	 o	 conjunto	 das	 soluções	 das	 inequações	 dadas	 em	 notação	 de
intervalo.

x2	−	3x	+	2	<	0

x2	+	x	+	1	>	0
x2	−	9	≤	0

PROPRIEDADE	DOS	INTERVALOS	ENCAIXANTES	E	PROPRIEDADE	DE
ARQUIMEDES

A	seguir	destacaremos	duas	propriedades	fundamentais	dos	números	reais	e	cujas
demonstrações	serão	apresentadas	no	Apêndice	1.

Propriedade	dos	Intervalos	Encaixantes.	Seja	[a0,	b0],	[a1,	b1],	[a2,	b2],	…,	[an,
bn],	…	uma	sequência	de	intervalos	satisfazendo	as	condições:

[a0,	b0]	⊃	[a1,	b1]	⊃	[a2,	b2]	⊃	…	⊃	[an,	bn]	⊃	…	(ou	seja,	cada	intervalo	da
sequência	contém	o	seguinte);
para	todo	r	>	0,	existe	um	natural	n	tal	que

bn	−	an	<	r

(ou	seja,	à	medida	que	n	cresce	o	comprimento	do	intervalo	[an,	bn]	vai
tendendo	a	zero).

Nestas	condições,	existe	um	único	real	α	que	pertence	a	todos	os	intervalos	da
sequência,	isto	é,	existe	um	único	real	α	tal	que,	para	todo	natural	n,	an	≤	α	≤	bn.

Propriedade	de	Arquimedes.	Se	x	>	0	e	y	são	dois	reais	quaisquer,	então	existe
pelo	menos	um	número	natural	n	tal	que
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a)

b)

a)

b)

1.6.

nx	>	y.

EXEMPLO

Para	todo	x	>	0,	existe	pelo	menos	um	natural	n	tal	que	

Para	todo	real	x	existe	pelo	menos	um	natural	n	tal	que	n	>	x.

Solução

Como	x	>	0,	por	Arquimedes,	existe	um	natural	n	tal	que	nx	>	1	e,	portanto,	

(Observe:	nx	>	1	⇒	n	≠	0.)
Como	1	>	0,	por	Arquimedes,	existe	um	natural	n	tal	que	n	>	x.					■

EXISTÊNCIA	DE	RAÍZES

Inicialmente,	observamos	que	se	[a0,	b0],	[a1,	b1],	[a2,	b2],	…,	[an,	bn],	…	for	uma
sequência	 de	 intervalos	 satisfazendo	 as	 condições	 da	 propriedade	 dos	 intervalos
encaixantes	e	se	para	todo	n,	an	>	0	e	bn	>	0,	então	a	sequência	de	intervalos	 	

	…,	também	satisfará	aquelas	condições	(verifique).
Antes	de	apresentar	o	próximo	exemplo,	lembramos	que	por	um	dígito	entendemos

um	natural	pertencente	ao	conjunto	{0,	1,	2,	3,	…,	9}.

EXEMPLO	1.	Mostre	que	a	equação	x2	=	2	admite	uma	única	raiz	positiva	α.

Solução

Seja	A0	o	maior	natural	tal	que

daí

(A0	+	1)2	>	2	(A0	+	1	=	2,	22	>	2).

Façamos,	agora,	a0	=	A0	e	b0	=	A0	+	1.	Seja	A1	o	maior	dígito	tal	que

Façamos:
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Assim,

(Observe:	a1	=	1,4	e	b1	=	1,5).

Seja	A2	o	maior	dígito	tal	que

Façamos:

(Observe:	a2	=	1,41	e	b2	=	1,42.)

Assim,

Prosseguindo	com	este	raciocínio,	obteremos	uma	sequência	de	intervalos	[a0,	b0],
[a1,	 b1],	 …,	 [an,	 bn]	 satisfazendo	 as	 condições	 da	 propriedade	 dos	 intervalos

encaixantes	 (observe	que	 	e	quando	n	 cresce	bn	 −	an	 tende	 a	 zero).

Assim,	existe	um	único	real	α	tal	que,	para	todo	n,

an	≤	a	≤	bn

e,	portanto,

Mas	α2	é	o	único	real	tendo	esta	propriedade,	pois,	
…	também	satisfaz	as	condições	daquela	propriedade.	Como,	para	todo	n,

segue-se	que	α2	 =	 2.	 Fica	 provado,	 assim,	 que	 existe	 um	 real	α	 >	 0	 tal	 que	α2	 =	 2.
Vejamos,	 agora,	 a	 unicidade.	 Suponhamos	 que	 β	 >	 0	 também	 satisfaça	 a	 equação;
temos
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Teorema.	Sejam	a	>	0	um	real	e	n	≥	2	um	natural.	Então	existe	um	único	real	α
>	0	tal	que	αn	=	a.

Demonstração.	 É	 deixada	 para	 o	 leitor	 [sugestão:	 siga	 o	 raciocínio	 utilizado	 no
exemplo	anterior].					■

Notação.	Sejam	a	>	0	um	real	e	n	≥	1	um	natural.	O	único	real	positivo	α	tal	que	αn	=	a
é	indicado	por	 	Dizemos	que	α	é	a	raiz	n-ésima	(ou	de	ordem	n)	positiva	de	a.

Sejam	 a	 >	 0	 e	 b	 >	 0	 dois	 reais,	m	 ≥	 1	 e	 n	 ≥	 1	 dois	 naturais	 e	 p	 um	 inteiro.
Admitiremos	a	familiaridade	do	leitor	com	as	seguintes	propriedades	das	raízes:

EXEMPLO	2.	Seja	a	um	real	qualquer.	Mostre	que	 se	n	 for	 ímpar,	n	natural,	 então
existe	um	único	real	αn	=	a.

Solução

Se	a	>	0,	pelo	 teorema	anterior,	 existe	um	único	α	>	0	 tal	que	αn	=	a.	 Por	 outro
lado,	para	todo	β	<	0,	βn	<	0	(pois	estamos	supondo	n	ímpar).	Segue	que	o	α	acima	é	o
único	real	tal	que	αn	=	a.

Se	a	<	0,	existe	um	único	real	β	tal	que	βn	=	−a	e	daí	(−β)n	=	a	(lembre-se	de	que
(−β)n	=	−βn).	Assim,	−β	é	o	único	real	tal	que	(−β)n	=	a.

Notação.	Se	n	for	ímpar	e	a	um	real	qualquer,	o	único	α	tal	que	αn	=	a	é	indicado	por	
					■

EXEMPLO	3.	Calcule.

Solução

(Lembre-se:	 	indica	a	raiz	positiva	de	ordem	4	de	16.)					■

EXEMPLO	4.	Verifique	que
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Solução

Assim:

Observação.	Veja	uma	forma	interessante	de	fixar	a	identidade	acima:

a3	−	b3	=	(a	−	b)	(a2	+	ab	+	b2)

agora,	extraia	a	raiz	cúbica	de	todos	os	termos	desta	identidade.
Já	vimos	que	a	equação	x2	=	2	não	admite	solução	em	ℚ;	como	 	é	 raiz	de	 tal

equação,	resulta	que	 	não	é	racional,	isto	é,	 	é	um	número	irracional.
Observe	 que	 x2	 =	 2	 ter	 solução	 em	ℝ	 é	 uma	 consequência	 da	 propriedade	 dos

intervalos	encaixantes;	como	esta	equação	não	admite	solução	em	ℚ,	isto	significa	que
o	corpo	ordenado	dos	racionais	não	satisfaz	tal	propriedade.	Esta	é	a	grande	falha	dos
racionais.	A	grande	diferença	entre	o	corpo	ordenado	dos	reais	e	o	dos	racionais	é	que
o	primeiro	satisfaz	a	propriedade	dos	intervalos	encaixantes	e	o	segundo,	não.

Os	 dois	 próximos	 exemplos	mostram-nos	 que	 entre	 dois	 reais	 quaisquer	 sempre
existem	pelo	menos	um	racional	e	pelo	menos	um	irracional.

EXEMPLO	5.	Sejam	x	e	y	dois	reais	quaisquer,	com	x	<	y.	Então,	existe	pelo	menos
um	irracional	t	tal	que	x	<	t	<	y.

Solução

x	é	racional	ou	irracional;	suponhamos	inicialmente	x	irracional.	Temos

x	<	y	⇔	y	−	x	>	0.

Por	Arquimedes,	existe	um	natural	n	tal	que
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com	t	irracional	(a	soma	de	um	racional	com	um	irracional	é	irracional).	Suponhamos,

agora,	 x	 racional.	 Por	 Arquimedes	 existe	 um	 natural	 n	 tal	 que	

tomando-se	 	tem-se	x	<	t	<	y,	com	t	irracional.					■

EXEMPLO	6.	Sejam	x,	y	dois	reais	quaisquer	com	x	<	y.	Então	existe	pelo	menos	um
racional	r	com	x	<	r	<	y.

Solução

1.º	Caso:	0	<	x	<	y

Por	Arquimedes	existe	um	natural	k,	com	k	>	y;	ainda,	por	Arquimedes,	existe	um
natural	n	tal	que

Sejam	 	 seja	 j	 o	 maior

índice	 tal	 que	 aj	 ≤	 x;	 assim	 aj	 +	 1	 >	 x	 e	 como	

resulta	x	<	aj	+	1	<	y	tomando-se	t	=	aj	+	1,	tem-se	x	<	t	<	y,	com	t	racional.

2.º	Caso:	x	<	0	<	y

Basta	tomar	t	=	0.

3.º	Caso:	x	<	y	<	0

x	<	y	<	0	⇔	0	<	−y	<	−x.

Pelo	1.º	caso,	existe	um	racional	s	tal	que

−y	<	s	<	−x.

Portanto
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

x	<	−s	<	y.

com	−s	racional.

4.º	Caso:	x	=	0	ou	y	=	0

Faça	você.					■

Exercícios	1.6	

Prove	que	a	soma	de	um	racional	com	um	irracional	é	um	irracional.

O	produto	de	um	racional	diferente	de	zero	com	um	irracional	é	racional	ou
irracional?	Justifique.

Prove	que	é	irracional.

	é	racional	ou	irracional?	Justifique.

Verifique	as	identidades	em	que	x	>	0	e	y	>	0.

Determine	uma	aproximação	por	 falta,	 com	duas	casas	decimais	 exatas,	de	

Prove:	se	para	todo	r	>	0,	r	real,	|	a	−	b	|	<	r,	então	a	=	b.

Sejam	x,	y	dois	reais	quaisquer	com	x	>	0	e	y	>	0.	Mostre	que

Sejam	x,	y	dois	reais	quaisquer,	com	0	<	x	<	y.	Prove

Seja	∊	>	0	um	real	dado.	Prove	que	quaisquer	que	sejam	os	reais	positivos	x	e
y,	tem-se:

Sejam	x,	y	dois	reais	quaisquer,	com	0	<	x	<	y.	Prove
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12.

1.7.

(1)

(2)

(3)

(4)

(5)

(6)

A	afirmação:

“para	todo	real	x	≥	0,	x	≥	 ”

é	falsa	ou	verdadeira?	Justifique.

POTÊNCIA	COM	EXPOENTE	RACIONAL

Sejam	a	>	0	um	real	e	 	um	racional.	Definimos

Tendo	em	vista	a	propriedade	(2)	das	raízes,	segue	que	tal	definição	não	depende
da	particular	fração	 	que	tomamos	como	representante	do	racional	r.

EXEMPLO

Sejam	 a	 >	 0	 e	 b	 >	 0	 dois	 reais	 quaisquer	 e	 r,	 s	 dois	 racionais	 quaisquer.	 Das
propriedades	das	potências	 com	expoentes	 inteiros	 e	das	 raízes	 seguem	as	 seguintes
propriedades	 das	 potências	 com	 expoentes	 racionais	 e	 cujas	 demonstrações	 são
deixadas	como	exercícios:

ar	·	as	=	ar	+	s.

(ar)s	=	ars.

(ab)r	=	arbr.

Se	a	>	1	e	r	<	s,	então	ar	<	as.

Se	0	<	a	<	1	e	r	<	s,	então	ar	>	as.
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2.1.

2

FUNÇÕES

FUNÇÕES	DE	UMA	VARIÁVEL	REAL	A	VALORES	REAIS

Entendemos	por	uma	função	f	uma	terna

(A,	B,	a	↦	b)

em	que	A	e	B	são	dois	conjuntos	e	a	↦	b,	uma	regra	que	nos	permite	associar	a	cada
elemento	a	de	A	um	único	b	de	B.	O	conjunto	A	é	o	domínio	de	f	e	 indica-se	por	Df,
assim	A	 =	Df.	 O	 conjunto	B	 é	 o	 contradomínio	 de	 f.	 O	 único	 b	 de	B	 associado	 ao
elemento	a	de	A	 é	 indicado	por	 f(a)	 (leia:	 f	de	a);	diremos	que	 f	 (a)	 é	o	valor	que	 f
assume	em	a	ou	que	f	(a)	é	o	valor	que	f	associa	a	a.

Uma	função	f	de	domínio	A	e	contradomínio	B	é	usualmente	indicada	por	f	:	A	↦	B
(leia:	f	de	A	em	B).

Uma	função	de	uma	variável	real	a	valores	reais	é	uma	função	f	:	A	↦	B,	em	que	A
e	B	são	subconjuntos	de	ℝ.	Até	menção	em	contrário,	só	trataremos	com	funções	de
uma	variável	real	a	valores	reais.

Seja	f	:	A	↦	B	uma	função.	O	conjunto

Gf	=	{(x,	f	(x))	|	x	∈	A}

denomina-se	gráfico	de	f;	assim,	o	gráfico	de	f	é	um	subconjunto	do	conjunto	de	todos
os	 pares	 ordenados	 (x,	 y)	 de	 números	 reais.	 Munindo-se	 o	 plano	 de	 um	 sistema
ortogonal	de	coordenadas	cartesianas,	o	gráfico	de	 f	pode	então	ser	pensado	como	o
lugar	geométrico	descrito	pelo	ponto	(x,	f	(x))	quando	x	percorre	o	domínio	de	f.

Observação.	Por	simplificação,	deixaremos	muitas	vezes	de	explicitar	o	domínio	e	o
contradomínio	 de	 uma	 função;	 quando	 tal	 ocorrer,	 ficará	 implícito	 que	 o
contradomínio	é	ℝ	e	o	domínio	o	“maior”	subconjunto	de	ℝ	para	o	qual	faz	sentido	a
regra	em	questão.
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a)
b)

c)
d)

a)

b)

c)

d)

e)

É	 usual	 representar	 uma	 função	 f	 de	 uma	 variável	 real	 a	 valores	 reais	 e	 com
domínio	A,	simplesmente	por

y	=	f	(x),	x	∈	A.

Neste	 caso,	 diremos	que	x	 é	 a	variável	 independente,	 e	 y,	 a	 variável	 dependente.	 É
usual,	ainda,	dizer	que	y	é	função	de	x.

EXEMPLO	1.	Seja	y	=	f	(x),	f	(x)	=	x3.	Tem-se:
Df	=	ℝ.
O	valor	que	f	assume	em	x	é	f	(x)	=	x3.	Esta	função	associa	a	cada	real	x	o
número	real	f	(x)	=	x3.
f	(−1)	=	(−1)3	=	−1;	f	(0)	=	03	=	0;	f	(1)	=	13	=	1.
Gráfico	de	f

Gf	=	{(x,	y)	|	y	=	x3,	x	∈	ℝ}.

Suponhamos	x	>	0;	observe	que,	à	medida	que	x	cresce,	y	também	cresce,	pois	y	=
x3,	sendo	o	crescimento	de	y	mais	acentuado	que	o	de	x	(veja:	23	=	8;	33	=	27	etc.);
quando	x	se	aproxima	de	zero,	y	se	aproxima	de	zero	mais	rapidamente	que	x	((1/2)3	=
1/8;	 (1/3)3	 =	 1/27	 etc.).	 Esta	 análise	 dá-nos	 uma	 ideia	 da	 parte	 do	 gráfico
correspondente	a	x	>	0.	Para	x	<	0,	é	só	observar	que	f	(−x)	=	−f	(x).

EXEMPLO	2.	Seja	f	a	função	dada	por	 	Tem-se:

Df	=	{x	∈	ℝ	|	x	≥	0}.
	(o	valor	que	f	assume	em	4	é	2).

Gráfico	de	f

A	função	f	é	dada	pela	regra	x	↦	y,	 	Quando	x	 cresce,	y	 também	cresce,
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a)

b)

c)

d)

sendo	o	crescimento	de	y	mais	lento	que	o	de	
quando	x	se	aproxima	de	zero,	y	também	se	aproxima	de	zero,	só	que	mais	lentamente
que	 	

EXEMPLO	3.	Considere	a	função	g	dada	por	 	Tem-se:

Dg	=	{x	∈	ℝ	|	x	≠	0}.

Esta	função	associa	a	cada	x	≠	0	o	real	

Gráfico	de	g

Vamos	olhar	primeiro	para	x	>	0;	à	medida	que	x	vai	aumentando,	 	vai	 se

aproximando	de	zero	 	à	medida	que	x

vai	 se	 aproximando	 de	 zero,	 	 vai	 se	 tornando	 cada	 vez	 maior	

	 	 Você	 já	 deve	 ter

uma	ideia	do	que	acontece	para	x	<	0.
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b)

a)

(i)

(ii)

EXEMPLO	4.	Dada	a	função	f	(x)	=	−x2	+	2x,	simplifique:

Solução

assim

Observe:	f	(1)	=	−12	+	2	=	1.

Primeiro	vamos	calcular	f	(x	+	h).	Temos
f	(x	+	h)	=	−	(x	+	h)2	+	2(x	+	h)	=	−x2	−	2xh	−	h2	+	2x	+	2h.

Então

ou	seja,

EXEMPLO	5.	(Função	constante.)	Uma	função	y	=	f	(x),	x	∈	A,	dada	por	f	(x)	=	k,	k
constante,	denomina-se	função	constante.

f	(x)	=	2	é	uma	função	constante;	tem-se:

Df	=	ℝ

Gráfico	de	f

Gf	=	{(x,	f	(x))	|	x	∈	ℝ}	=	{(x,	2)	|	x	∈	ℝ}.

O	gráfico	de	f	é	uma	reta	paralela	ao	eixo	x	passando	pelo	ponto	(0,	2).
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b)

a)

b)

g	:	[−1,	+∞[	↦	ℝ	dada	por	g	(x)	=	−1	é	uma	função	constante	e	seu	gráfico	é

EXEMPLO	6.	Seja	

Tem-se:

Df	=	ℝ

Gráfico	de	f

Observe	que	(0,	1)	pertence	ao	gráfico	de	f,	mas	(0,	−1)	não.					■

EXEMPLO	 7.	 (Função	 linear.)	 Uma	 função	 f	 :	 ℝ	↦	 ℝ	 dada	 por	 f	 (x)	 =	 ax,	 a
constante,	denomina-se	função	linear;	seu	gráfico	é	a	reta	que	passa	pelos	pontos	(0,
0)	e	(1,	a):
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a)

b)

c)

a)

b)

c)

Se	a	=	0,	o	gráfico	de	f	coincide	com	o	eixo	x.					■

EXEMPLO	8.	Esboce	os	gráficos.

f	(x)	=	2x.

g	(x)	=	−2x.

h	(x)	=	2	|	x	|.

Solução

O	gráfico	de	f	é	a	reta	que	passa	pelos	pontos	(0,	0)	e	(1,	2).

O	gráfico	de	g	é	a	reta	que	passa	pelos	pontos	(0,	0)	e	(1,	−2).

Primeiro	eliminemos	o	módulo
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EXEMPLO	9.	 (Função	afim.)	Uma	 função	 f	 :	ℝ	↦	ℝ	 dada	 por	 y	 =	ax	 +	b,	 a	 e	 b
constantes,	denomina-se	função	afim.	Seu	gráfico	é	a	reta	que	passa	pelo	ponto	(0,b)	e
é	paralela	à	reta	y	=	ax.					■

EXEMPLO	10.	Esboce	o	gráfico	de	f	(x)	=	|	x	−	1	|	+	2.

Solução

Primeiro	eliminemos	o	módulo

Agora,	vamos	desenhar,	pontilhadas,	 as	 retas	y	=	x	+	1	e	y	=	−x	+	3	e,	 em	seguida,
marcar,	com	traço	firme,	a	parte	que	interessa	de	cada	uma:

Sempre	que	uma	 função	 for	dada	por	 várias	 sentenças,	 você	poderá	proceder	desta
forma.

Outro	modo	de	se	obter	o	gráfico	de	f	é	o	seguinte:	primeiro	desenhe	pontilhado	o
gráfico	de	y	=	|	x	|;	o	gráfico	de	y	=	|	x	−	1	|	obtém-se	do	anterior	transladando-o	para	a
direita	de	uma	unidade;	o	gráfico	de	f	obtém-se	deste	último	transladando-o	para	cima
de	duas	unidades.
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a)

b)

c)

EXEMPLO	11.	(Função	polinomial.)	Uma	função	f	:	ℝ	↦	ℝ	dada	por

f	(x)	=	a0xn	+	a1xn	−	1	+	…	+	an	−	1	x	+	an

em	que	a0	≠	0,	a1,	a2,	…,	an	são	números	reais	fixos,	denomina-se	função	polinomial
de	grau	n	(n	∈	ℕ).

f	(x)	=	x2	−	4	é	uma	função	polinomial	de	grau	2	e	seu	gráfico	é	a	parábola

O	 gráfico	 de	 uma	 função	 polinomial	 de	 grau	 2	 é	 uma	 parábola	 com	 eixo	 de
simetria	paralelo	ao	eixo	y.
g	(x)	=	(x	−	1)3	é	uma	função	polinomial	do	grau	3;	seu	gráfico	é	obtido	do	gráfico
de	y	=	x3,	transladando-o	uma	unidade	para	a	direita.

f	 (x)	 =	 x4	 −	 1	 é	 uma	 função	 polinomial	 do	 grau	 4;	 seu	 gráfico	 tem	 o	 seguinte
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a)

b)

aspecto:

EXEMPLO	12.	 (Função	racional.)	Uma	 função	racional	 f	 é	 uma	 função	 dada	 por	

	em	que	p	e	q	são	duas	funções	polinomiais;	o	domínio	de	f	é	o	conjunto

{x	∈	ℝ	|	q	(x)	≠	0}.

	 é	 uma	 função	 racional	 definida	 para	 todo	 x	 ≠	 0.	 Como	

	 segue	 que	 o	 gráfico	 de	 f	 é	 obtido	 do	 gráfico	 de	

transladando-o	uma	unidade	para	cima	(veja	Exemplo	3).

	é	uma	função	racional	com	domínio	{x	∈	ℝ	|	x	≠	0}.	Observe	que	

	À	medida	que	|	x	|	vai	crescendo,	 	vai	se	aproximando	de	zero	e	o

gráfico	de	g	vai,	então,	“encostando”	na	reta	y	=	x	(por	cima	se	x	>	0;	por	baixo	se	x
<	0).	À	medida	que	x	se	aproxima	de	zero,	o	gráfico	de	g	vai	encostando	na	curva	
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c) 	é	uma	função	racional	com	domínio	{x	∈	ℝ	|	x	≠	−	2}.	O	gráfico	de

h	é	obtido	do	gráfico	de	 	transladando-o	duas	unidades	para	a	esquerda.

EXEMPLO	13.	Determine	A	e	B	para	que	a	terna	(A,	B,	x	↦	y)	seja	função,	sendo	a
regra	x	↦	y	dada	implicitamente	pela	equação	xy2	=	x	−	1.

Solução

Para	se	ter	função,	é	preciso	que	a	regra	x	↦	y	associe	a	cada	x	∈	A	um	único	y	∈
B.	Basta,	então,	tomar

e

B	=	{y	∈	ℝ	|	y	≥	0}.

Temos	assim	a	função	f	:	A	↦	B	dada	por
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Observação.	 A	 escolha	 de	 A	 e	 B	 acima	 não	 é	 a	 única	 possível.	 Quais	 as	 outras
possibilidades?					■

EXEMPLO	14.	O	conjunto	H	=	{(x,	y)	∈	ℝ2	|	2x	+	3y	=	1}	é	gráfico	de	função?	Em
caso	afirmativo,	descreva	tal	função.

Solução

	 segue	 que	 H	 é	 o	 gráfico	 da	 função	 dada	 por	

					■

Notação.	 O	 símbolo	 ℝ2	 é	 usado	 para	 representar	 o	 conjunto	 de	 todos	 os	 pares
ordenados	de	números	reais,	ℝ2	=	{(x,	y)	|	x,	y	∈	ℝ}.

Observação.	Sejam	H	um	conjunto	de	pares	ordenados	e	A	=	{x	∈	ℝ	|	∃y	∈	ℝ	com	(x,
y)	∈	H}.	Então	H	é	gráfico	de	função	se,	e	somente	se,	para	cada	x	em	A,	 existe	um
único	y,	com	(x,	y)	∈	H.

Antes	 de	 passarmos	 ao	 próximo	 exemplo,	 lembramos	 que	 a	distância	d	 entre	 os
pontos	(x0,	y0)	e	(x1,	y1)	é	definida	por

Veja
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Pois	bem,	a	circunferência	de	centro	(a,	b)	e	raio	r	(r	>	0)	é,	por	definição,	o	lugar
geométrico	 dos	 pontos	 do	 plano	 cujas	 distâncias	 a	 (a,	 b)	 são	 iguais	 a	 r.	 Assim,	 a
equação	da	circunferência	de	raio	r	e	centro	(a,	b)	é

(x	−	a)2	+	(y	−	b)2	=	r2.

EXEMPLO	15.	Esboce	o	gráfico	da	função	f	dada	pela	regra	x	↦	y,	em	que	x2	+	y2	=
1,	y	≥	0.

Solução

Como	x2	+	y2	=	1	⇔	(x	−	0)2	+	(y	−	0)2	=	12,	segue-se	que	x2	+	y2	=	1	é	a	equação	da
circunferência	 de	 centro	 na	 origem	 e	 raio	 1;	 o	 gráfico	 de	 f	 é	 a	 parte	 desta
circunferência	correspondente	a	y	≥	0.

EXEMPLO	16.	O	conjunto	H	=	{(x,	y)	∈	ℝ2	|	x2	+	y2	−	2y	=	0}	é	gráfico	de	função?
Por	quê?

Solução

x2	+	y2	−	2y	=	0	⇔	x2	+	y2	−	2y	+	1	=	1	⇔	x2	+	(y	−	1)2	=	1	que	é	a	equação	da
circunferência	de	centro	(0,	1)	e	raio	1.	Temos
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1.

2.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)

l)

m)
n)

o)

Assim,	para	cada	x	∈	]−1,	1[	existe	mais	de	um	y,	com	(x,	y)	∈	H;	H	não	é	gráfico
de	função.

Exercícios	2.1	

Calcule.

Simplifique	 	sendo	dados:

f	(x)	=	x2	e	p	=	1
f	(x)	=	x2	e	p	=	−1
f	(x)	=	x2	e	p	qualquer
f	(x)	=	2x	+	1	e	p	=	2
f	(x)	=	2x	+	1	e	p	=	−1
f	(x)	=	5	e	p	=	2
f	(x)	=	x3	e	p	=	2
f	(x)	=	x3	e	p	=	−2
f	(x)	=	x3	e	p	qualquer

f	(x)	=	x2	−	3x	e	p	=	−2
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p)

q)

3.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
l)
m)
n)
o)
p)

q)
r)

s)

4.

a)
b)
c)
d)
e)
f)

Simplifique	 	sendo	f	(x)	igual	a

2x	+	1
3x	−	8
−2x	+	4
x2

x2	+	3x
−x2	+	5
x2	−	2x
x2	−	2x	+	3
−2x2	+	3
2x2	+	x	+	1
x3

x3	+	2x
x3	+	x2	−	x
5

2x3	−	x

Dê	o	domínio	e	esboce	o	gráfico.

f	(x)	=	3x
g	(x)	=	−x
h	(x)	=	−x	+	1
f	(x)	=	2x	+	1
g	(x)	=	−2x	+	3
g	(x)	=	3
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5.

a)

b)

6.

a)
b)
c)
d)

7.

a)
b)
c)
d)
e)
f)
g)
h)

8.

Considere	a	função	f	(x)	=	|	x	−	1	|	+	|	x	−	2	|.

Mostre	que	

Esboce	o	gráfico	de	f

Esboce	o	gráfico.

f	(x)	=	|	x	|	+	|	x	−	2	|
g	(x)	=	|	x	|	−	1
y	=	|	|	x	|	−	1	|
f	(x)	=	|	x	+	1	|	−	|	x	|

Olhando	para	o	gráfico	de	f,	estude	o	sinal	de	f	(x).

f	(x)	=	x	−	3
f	(x)	=	−2x	+	1
f	(x)	=	3x	+	1
f	(x)	=	−3x	−	2
f	(x)	=	x	+	3
f	(x)	=	−8x	+	1
f	(x)	=	ax	+	b	(a	>	0)
f	(x)	=	ax	+	b	(a	<	0)

Estude	a	variação	do	sinal	de	f	(x).
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9.

10.

a)
b)
c)
d)
e)
f)
g)
h)

Determine	o	domínio.

Esboce	o	gráfico.

f	(x)	=	x2

y	=	x2	+	1
y	=	x2	−	1
y	=	(x	−	1)2

y	=	(x	+	1)2

y	=	(x	−	1)2	+	1
y	=	(x	+	1)2	−	2
y	=	−x2
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i)
j)
l)
m)
n)
o)
p)
q)
r)

s)

11.

a)
b)
c)

12.

a)

b)

c)

d)

13.

a)
b)
c)
d)
e)
f)
g)
h)

y	=	−(x	−	2)2

y	=	|	x2	−	1	|
y	=	x4

y	=	(x	+	1)3

y	=	−x3

y	=	(x	−	2)3

y	=	x	|	x	|
y	=	x2	|	x	|

Considere	a	função	f	dada	por	f	(x)	=	x2	+	4x	+	5.

Mostre	que	f	(x)	=	(x	+	2)2	+	1
Esboce	o	gráfico	de	f
Qual	o	menor	valor	de	f	(x)?	Em	que	x	este	menor	valor	é	atingido?

Seja	f	(x)	=	ax2	+	bx	+	c,	a	≠	0.

Verifique	que	 	em	que	Δ	=	b2	−	4ac.

Mostre	que	se	a	>	0,	então	o	menor	valor	de	f	(x)	acontece	para	

Qual	o	menor	valor	de	f	(x)?

Mostre	que	se	a	<	0,	então	 	é	o	maior	valor	assumido	por	f.

Interprete	(b)	e	(c)	graficamente.

Com	relação	à	função	f	dada,	determine	as	raízes	(caso	existam),	o	maior	ou	o
menor	valor	e	esboce	o	gráfico.

f	(x)	=	x2	−	3x	+	2
f	(x)	=	x2	−	4
f	(x)	=	x2	−	4x	+	4
f	(x)	=	x2	+	2x	+	2
f	(x)	=	2x2	+	3
f	(x)	=	2x2	−	3x
f	(x)	=	−x2	+	2x
f	(x)	=	−x2	+	4
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i)
j)

14.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)

15.

f	(x)	=	−4x2	+	4x	−	1
f	(x)	=	−x2	−	4x	−	5

Olhando	para	o	gráfico,	estude	a	variação	do	sinal	de	f	(x).

f	(x)	=	x2	−	1
f	(x)	=	x2	−	5x	+	6
f	(x)	=	x2	+	x	+	1
f	(x)	=	−x2	+	3x
f	(x)	=	−x2	−	2x	−	1
f	(x)	=	x2	+	6x	+	9
f	(x)	=	−x2	+	9
f	(x)	=	x2	+	2x	−	6
f	(x)	=	2x2	−	6x	+	1
f	(x)	=	−x2	+	2x	−	3

Dê	o	domínio	e	esboce	o	gráfico.
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16.

b)

17.

18.

19.

a)
b)

20.

a)
b)
c)
d)
e)
f)

21.

a)

b)

22.

a)

b)

23.

a)	 Verifique	 que	 	 Conclua	 que	 à	 medida

que	|	x	|	cresce	a	diferença	 	se	aproxima	de	zero.

Esboce	o	gráfico	de	

Dê	o	domínio	e	esboce	o	gráfico	de	

(Sugestão:	 Verifique	 que	 à	 medida	 que	 |	 x	 |	 vai	 crescendo,	 o	 gráfico	 de	 f	 vai
“encostando”,	por	baixo,	no	gráfico	de	y	=	|	x	|.)

Dê	o	domínio	e	esboce	o	gráfico.

Seja	f	dada	por	x	↦	y,	y	≥	0,	em	que	x2	+	y2	=	4.

Determine	f	(x)
Esboce	o	gráfico	de	f

Esboce	o	gráfico	da	função	y	=	f	(x)	dada	implicitamente	pela	equação.

x2	+	y2	=	1,	y	≤	0
x	−	y2	=	0,	y	≥	0
(x	−	1)2	+	y2	=	4,	y	≥	0
x2	+	y2	+	2y	=	0,	y	≥	−1
x2	+	y2	+	2x	+	4y	=	0,	y	≤	−	2

Considere	a	função	

Calcule	

Dê	o	domínio	e	esboce	o	gráfico

Considere	a	função	f	(x)	=	máx{n	∈	ℤ	|	n	≤	x}.	(Função	maior	inteiro.)

Calcule	

Esboce	o	gráfico

Calcule	a	distância	entre	os	pontos	dados.
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a)
b)
c)
d)
e)
f)

24.

25.

26.

a)

b)

27.

a)

b)

28.

29.

(1,	2)	e	(2,	3)
(0,	1)	e	(1,	3)
(−1,	2)	e	(0,	1)
(0,	2)	e	(0,	3)
(−2,	3)	e	(1,	4)
(1,	1)	e	(2,	2)

Seja	d	a	distância	de	(0,	0)	a	(x,	y);	expresse	d	em	função	de	x,	sabendo	que
(x,	y)	é	um	ponto	do	gráfico	de	

Um	móvel	desloca-se	(em	movimento	retilíneo)	de	(0,	0)	a	(x,	10)	com	uma
velocidade	 constante	 de	 1	 (m/s);	 em	 seguida,	 de	 (x,	 10)	 a	 (30,	 10)	 (em
movimento	retilíneo)	com	velocidade	constante	de	2	(m/s).	Expresse	o	tempo
total	 T	 (x),	 gasto	 no	 percurso,	 em	 função	 de	 x.	 (Suponha	 que	 a	 unidade
adotada	no	sistema	de	referência	seja	o	metro.)

(x,	y)	é	um	ponto	do	plano	cuja	soma	das	distâncias	a	(−1,	0)	e	(1,	0)	é	igual	a
4.

Verifique	que	

Supondo	y	 ≥	 0,	 expresse	 y	 em	 função	 de	 x	 e	 esboce	 o	 gráfico	 da	 função
obtida

Sejam	F1	e	F2	dois	pontos	fixos	e	distintos	do	plano.	O	lugar	geométrico	dos
pontos	 (x,	y)	 cuja	 soma	das	 distâncias	 a	F1	 e	F2	 é	 sempre	 igual	 a	 2k	 (2k	 >
distância	de	F1	a	F2)	denominase	elipse	de	focos	F1	e	F2	e	semieixo	maior	k.

Verifique	que	 	é	a	equação	da	elipse	de	focos	(−c,	0)	e	(c,	0)	e

semieixo	maior	a,	em	que	b2	=	a2	−	c2

Verifique	que	 	é	a	equação	da	elipse	de	focos	(0,	−c)	e	(0,	c)	e

semieixo	maior	b,	em	que	a2	=	b2	−	c2

c)	Desenhe	os	lugares	geométricos	descritos	nos	itens	(a)	e	(b)

Determine	o	domínio	e	esboce	o	gráfico.

Você	aprendeu	em	geometria	analítica	que	y	−	y0	=	m	(x	−	x0)	é	a	equação	da
reta	que	passa	pelo	ponto	(x0,	y0)	e	que	tem	coeficiente	angular	m.	Determine
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a)
b)
c)
d)

e)
f)

30.

31.

32.

33.

34.

35.

36.

a)
b)

37.

38.

39.

a	 equação	 da	 reta	 que	 passa	 pelo	 ponto	 dado	 e	 tem	 coeficiente	 angular	m
dado.

(1,	2)	e	m	=	1
(0,	3)	e	m	=	2
(−1,	−2)	e	m	=	−3

(5,	2)	e	m	=	0

A	 reta	 r	 intercepta	 os	 eixos	 coordenados	 nos	 pontos	 A	 e	 B.	 Determine	 a
distância	entre	A	e	B,	sabendo-se	que	r	passa	pelos	pontos	(1,	2)	e	(3,	1).

A	reta	r	passa	pelo	ponto	(1,	2)	e	intercepta	os	eixos	coordenados	nos	pontos
A	e	B.	Expresse	a	distância	d,	entre	A	e	B,	em	função	do	coeficiente	angular
m.	(Suponha	m	<	0.)

Na	fabricação	de	uma	caixa,	de	forma	cilíndrica,	e	volume	1	(m3),	utilizam-
se,	nas	laterais	e	no	fundo,	um	material	que	custa	$1.000	o	metro	quadrado	e
na	tampa	um	outro	que	custa	$2.000	o	metro	quadrado.	Expresse	o	custo	C	do
material	utilizado,	em	função	do	raio	r	da	base.

Expresse	a	área	A	de	um	triângulo	equilátero	em	função	do	lado	l.

Um	 retângulo	 está	 inscrito	 numa	 circunferência	 de	 raio	 r	 dado.	 Expresse	 a
área	A	do	retângulo	em	função	de	um	dos	lados	do	retângulo.

Um	cilindro	circular	reto	está	inscrito	numa	esfera	de	raio	r	dado.	Expresse	o
volume	V	do	cilindro	em	função	da	altura	h	do	cilindro.

Um	móvel	 é	 lançado	 verticalmente	 e	 sabe-se	 que	 no	 instante	 t	 sua	 altura	 é
dada	por	h	(t)	=	4t	−	t2,	0	≤	t	≤	4.	(Suponha	o	tempo	medido	em	segundos	e	a
altura	em	quilômetros.)

Esboce	o	gráfico	de	h
Qual	 a	 altura	 máxima	 atingida	 pelo	 móvel?	 Em	 que	 instante	 esta	 altura
máxima	é	atingida?

Entre	os	retângulos	de	perímetro	2p	dado,	qual	o	de	área	máxima?

Divida	um	segmento	de	10	cm	de	comprimento	em	duas	partes,	de	modo	que
a	soma	dos	quadrados	dos	comprimentos	seja	mínima.

Um	arame	de	10	cm	de	comprimento	deve	ser	cortado	em	dois	pedaços,	um
dos	quais	será	torcido	de	modo	a	formar	um	quadrado	e	o	outro,	a	formar	uma
circunferência.	De	 que	modo	deverá	 ser	 cortado	 para	 que	 a	 soma	das	 áreas
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40.

41.

a)
b)
c)
d)

42.

a)
b)
c)

d)
e)
f)

43.

a)
b)
c)
d)

44.

45.

a)
b)
c)
d)
e)
f)

das	regiões	limitadas	pelas	figuras	obtidas	seja	mínima?

Um	arame	de	36	cm	de	comprimento	deve	ser	cortado	em	dois	pedaços,	um
dos	quais	será	torcido	de	modo	a	formar	um	quadrado	e	o	outro,	a	formar	um
triângulo	 equilátero.	De	 que	modo	 deverá	 ser	 cortado	 para	 que	 a	 soma	 das
áreas	das	regiões	limitadas	pelas	figuras	obtidas	seja	mínima?

Coloque	na	forma	(x	−	a)2	+	(y	−	b)2	=	r2.

x2	+	y2	−	2x	=	0
x2	+	y2	−	x	−	y	=	0
2x2	+	2y2	+	x	=	1
x2	+	y2	+	3x	−	y	=	2

Determine	a	para	que	as	retas	dadas	sejam	paralelas.

y	=	ax	e	y	=	3x	−	1
y	=	(a	+	1)	x	+	1	e	y	=	x

y	=	−x	e	y	=	3ax	+	4
2x	+	y	=	1	e	y	=	ax	+	2
x	+	ay	=	0	e	y	=	3x	+	2

Determine	a	equação	da	reta	que	passa	pelo	ponto	dado	e	que	seja	paralela	à
reta	dada.

y	=	2x	+	3	e	(1,	3)
2x	+	3y	=	1	e	(0,	1)
x	−	y	=	2	e	(−1,	2)
x	+	2y	=	3	e	(0,	0)

Justifique	 geometricamente:	 y	 =	 mx	 +	 n	 (m	 ≠	 0)	 e	 y	 =	 m1x	 +	 n1	 são
perpendiculares	se	e	somente	se	mm1	=	−1.

Determine	 a	 equação	 da	 reta	 que	 passa	 pelo	 ponto	 dado	 e	 que	 seja
perpendicular	à	reta	dada.

y	=	x	e	(1,	2)
y	=	3x	+	2	e	(0,	0)
y	=	−3x	+	1	e	(−1,	1)
2x	+	3y	=	1	e	(1,	1)
3x	−	2y	=	0	e	(0,	0)
5x	+	y	=	2	e	(0,	1)
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2.2.

(1)
(2)
(3)

(4)

(5)

FUNÇÕES	TRIGONOMÉTRICAS:	SENO	E	COSENO

Com	os	elementos	de	que	dispomos	até	 agora,	 ficaria	muito	 trabalhoso	definir	 e,
em	 seguida,	 demonstrar	 as	 principais	 propriedades	 das	 funções	 seno	 e	 cosseno.
Observamos,	entretanto,	que	apenas	cinco	propriedades	são	suficientes	para	descrever
completamente	tais	funções.	O	teorema	que	enunciamos	a	seguir	e	cuja	demonstração
será	feita	após	estudarmos	as	séries	de	potências	resolverá	completamente	o	problema
referente	a	tais	funções.

Teorema.	Existe	um	único	par	de	funções	definidas	em	ℝ,	indicadas	por	sen	e
cos,	satisfazendo	as	propriedades:

sen	0	=	0
cos	0	=	1
Quaisquer	que	sejam	os	reais	a	e	b

sen	(a	−	b)	=	sen	a	cos	b	−	sen	b	cos	a
Quaisquer	que	sejam	os	reais	a	e	b

cos	(a	−	b)	=	cos	a	cos	b	+	sen	a	sen	b
Existe	r	>	0	tal	que

para	0	<	x	<	r.

Vejamos,	 agora,	 outras	 propriedades	 que	 decorrem	 das	 cinco	 mencionadas	 no
teorema	acima.

Fazendo	em	(4)	a	=	b	=	t,	obtemos

cos	0	=	cos	t	cos	t	+	sen	t	sen	t

ou	seja,	para	todo	t	real,

Deste	modo,	para	todo	t,	o	ponto	(cos	t,	sen	t)	pertence	à	circunferência	x2	+	y2	=	1.
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a)

b)

a)

b)

Para	efeito	de	interpretação	geométrica,	você	poderá	olhar	para	o	t	da	mesma	forma
como	aprendeu	no	colégio:	t	é	a	medida	em	radianos	do	arco	 	Lembramos	que	a
medida	de	um	arco	é	1	rd	(rd	=	radiano)	se	o	comprimento	do	arco	for	igual	ao	raio	da
circunferência	(1	rd	≅	57º16').

A	próxima	propriedade	será	demonstrada	no	Apêndice	2.

(7)	Existe	um	menor	número	positivo	a	tal	que	cos	a	=	0.	Para	este	a,	sen	a	=	1.

O	número	a	acima	pode	ser	usado	para	definirmos	o	número	π.

Definição.	Definimos	o	número	π	por	π	=	2a,	em	que	a	é	o	número	a	que	se	refere
a	propriedade	(7).

Assim	 	é	o	menor	número	positivo	tal	que	cos	 	Temos,	também,	sen	

Seja	f	uma	função	definida	em	ℝ.	Dizemos	que	f	é	uma	função	par	se,	para	todo	x,

f	(−x)	=	f	(x).

Dizemos,	por	outro	lado,	que	f	é	uma	função	ímpar	se,	para	todo	x,

f	(−x)	=	−f	(x).

EXEMPLO	1.	Mostre	que

sen	é	uma	função	ímpar.

cos	é	uma	função	par.

Solução

Fazendo	em	(3)	a	=	0	e	b	=	t,	resulta	sen	(−t)	=	sen	0	cos	t	−	sen	t	cos	0	ou	seja

sen	(−t)	=	−sen	t.

Fazendo	em	(4)	a	=	0	e	b	=	t	resulta	cos	(−t)	=	cos	t.
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EXEMPLO	2.	Mostre	que	quaisquer	que	sejam	os	reais	a	e	b

cos	(a	+	b)	=	cos	a	cos	b	−	sen	a	sen	b
e

sen	(a	+	b)	=	sen	a	cos	b	+	sen	b	cos	a.

Solução

cos	(a	+	b)	=	cos	[a	−	(−b)]	=	cos	a	cos	(−b)	+	sen	a	sen	(−b)	=	cos	a	cos	b	−	sen	a	sen
b.	sen	(a	+	b)	=	sen	[a	−	(−b)]	=	sen	a	cos	(−b)	−	sen	(−b)	cos	a	=	sen	a	cos	b	+	sen	b
cos	a.					■

EXEMPLO	3.	Mostre	que,	para	todo	x,

cos	2x	=	cos2	x	−	sen2	x	e	sen	2x	=	2	sen	x	cos	x.

Solução

cos	2x	=	cos	(x	+	x)	=	cos	x	cos	x	−	sen	x	sen	x	=	cos2	x	−	sen2	x.
sen	2x	=	sen	(x	+	x)	=	sen	x	cos	x	+	sen	x	cos	x	=	2	sen	x	cos	x.					■

EXEMPLO	4.	Mostre	que,	para	todo	x,

Solução

cos	2x	=	cos2	x	−	sen2	x	=	cos2	x	−	(1	−	cos2	x)

logo
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b)

c)

d)

Verifique	 você	 que	

EXEMPLO	5.	Calcule.

Solução

Provaremos	mais	adiante	que	cos	x	>	0	e	sen	x	>	0	em	]0,	

daí,	 	e	como	 	resulta

	(verifique).

Fazendo	 	em	cos	2x	=	1	−	2	sen2x,	obtemos

cos	π	=	−1.

Fazendo	 	em	sen	2x	=	2	sen	x	cos	x,	resulta

sen	π	=	0.

Interprete	geometricamente	os	resultados	deste	exemplo.					■
Deixamos	a	seu	cargo	verificar	que,	para	todo	x,

sen	(x	+	2π)	=	sen	x
e

cos	(x	+	2π)	=	cos	x
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As	funções	sen	e	cos	são	periódicas	com	período	2π.
Os	gráficos	das	funções	sen	e	cos	têm	os	seguintes	aspectos:

EXEMPLO	6.	Esboce	o	gráfico	da	função	dada	por	

Solução

Primeiro	vamos	estudar	o	comportamento	de	y	para	

Assim,	para	 	À	medida	que	x	aumenta,	 	vai	se	aproximando

de	zero,	o	mesmo	acontecendo	com	sen	 	Para	 	é	só	observar	que	sen	 	é

ímpar.
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Observe	que	para	

Vejamos,	agora,	o	comportamento	de	sen	 	para	

Quando	x	varia	em	 	fica	oscilando	entre	1	e	−1.

Exercícios	2.2	
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1.

2.

2.3.

Esboce	o	gráfico.

Sejam	a	e	b	reais	quaisquer.	Verifique	que

AS	FUNÇÕES	TANGENTE,	COTANGENTE,	SECANTE	E	COSSECANTE

A	função	tg	dada	por	tg	 	denomina-se	função	tangente;	seu	domínio	é	o
conjunto	 de	 todos	 os	 x	 tais	 que	 cos	 x	 ≠	 0.	 O	 gráfico	 da	 tangente	 tem	 o	 seguinte
aspecto:

Geometricamente,	interpretamos	tg	x	como	a	medida	algébrica	do	segmento	AT,	no
qual	T	é	a	 interseção	da	reta	OP	com	o	eixo	das	tangentes	e	AP	o	arco	de	medida	x
rad.
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1.

a)
b)

2.

3.

Os	triângulos	0MP	e	0AT	são	semelhantes.	Assim:	 	isto

é,	

As	funções	sec	(secante),	cotg	(cotangente)	e	cosec	(cossecante)	são	dadas	por

O	gráfico	da	secante	tem	o	seguinte	aspecto:

Exercícios	2.3	

Determine	o	domínio	e	esboce	o	gráfico.

f	(x)	=	cotg	x
g	(x)	=	cosec	x

Verifique	que	sec2	x	=	1	+	tg2	x	para	todo	x	tal	que	cos	x	≠	0.

Mostre	que,	para	todo	x,	com	cos	 	tem-se:
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2.4.

a)

b)

c)

d)

a)

b)

c)

OPERAÇÕES	COM	FUNÇÕES

Sejam	f	e	g	duas	funções	tais	que	Df	∩	Dg	seja	diferente	do	vazio.	Definimos:

A	função	f	+	g	dada	por

(f	+	g)	(x)	=	f	(x)	+	g	(x)

denomina-se	soma	de	f	e	g.	O	domínio	de	f	+	g	é	Df	∩	Dg.	Observe	que	f	+	g	é
uma	notação	para	indicar	a	função	dada	por	y	=	f	(x)	+	g	(x).

A	função	f	·	g	dada	por

(f	·	g)	(x)	=	f	(x)	·	g	(x)

denomina-se	produto	de	f	e	g.	O	domínio	de	f	·	g	é	Df	∩	Dg.

A	função	 	dada	por

denomina-se	quociente	de	f	e	g.	O	domínio	de	 	é	x	∈	Df	∩	Dg	|	g	(x)	≠	0}.

A	função	kf,	k	constante,	dada	por

(kf)	(x)	=	kf	(x)

é	o	produto	de	f	pela	constante	k;	Dkf	=	Df.

EXEMPLO	1.	Sejam	

	O	domínio	de	f	+	g	é	[2,	7]	=	Df	∩	Dg.

	O	domínio	de	fg	é	[2,	7]	=	Df	∩	Dg.

Sendo	f	uma	função,	definimos	a	imagem	de	f	por	Imf	=	{	f	(x)	|	x	∈	Df	}.

Definição	(de	função	composta).	Sejam	f	e	g	duas	funções	tais	que	Imf	⊂	Dg.	A
função	dada	por

y	=	g	(f	(x)),	x	∈	Df,
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denomina-se	 função	 composta	 de	 g	 e	 f.	 É	 usual	 a	 notação	 g	 º	 f	 para	 indicar	 a
composta	de	g	e	f.

Assim,

(g	º	f)	(x)	=	g	(f	(x)),	x	∈	Df.

Observe	que	g	º	f	tem	o	mesmo	domínio	que	f.

EXEMPLO	2.	Sejam	f	e	g	dadas	por	f	(x)	=	2x	+	1	e	g	(x)	=	x2	+	3x.	Determine	g	º	f	e	f
º	g.

Solução

(g	º	f)	(x)	=	g	(f	(x))	=	[f	(x)]2	+	3	[f	(x)]	=	(2x	+	1)2	+	3	(2x	+	1),	x	∈	ℝ	=	Df.
(f	º	g)	(x)	=	f	(g	(x))	=	f	(x2	+	3x)	=	2(x2	+	3x)	+	1,	x	∈	Dg	=	ℝ.					■

EXEMPLO	3.	Sejam	f	(x)	=	x2	 	Determine	g	º	f	e	f	º	g.

Solução

Imf	=	ℝ+	e	Dg	=	ℝ+,	assim	Imf	⊂	Dg.	(Notação:	ℝ+	=	{x	∈	ℝ	|	x	≥	0}.)

Img	=	ℝ+	e	Df	=	ℝ,	logo	Img	⊂	Df.

Definição	(de	igualdade	de	funções).	Sejam	as	funções	f	 :	A	↦	ℝ	e	g	 :	A′	↦	ℝ.
Dizemos	 que	 f	 é	 igual	 a	g,	 e	 escrevemos	 f	 =	g,	 se	 os	 domínios	 de	 f	 e	g	 forem
iguais,	A	=	A′,	e	se,	para	todo	x	∈	A,	f	(x)	=	g	(x).

EXEMPLO	4.	Sejam	f	:	A	↦	ℝ	e	g	:	A	↦	ℝ	duas	funções.	Prove	que	f	+	g	=	g	+	f.

Solução

Df	+	g	=	A	=	Dg	+	f.

Por	outro	lado,	para	todo	x	em	A,

(f	+	g)	(x)	=	f	(x)	+	g	(x)	=	g	(x)	+	f	(x)	=	(g	+	f)	(x).

Assim,

f	+	g	=	g	+	f.
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1.

2.

3.

Observe	que	f	(x)	+	g	(x)	=	g	(x)	+	f	(x),	pois	f	(x)	e	g	(x)	são	números	reais	e,	em	ℝ,
vale	a	propriedade	comutativa.					■

EXEMPLO	5.	As	funções	f	e	g	dadas	por	 	são
iguais?

Solução

f	≠	g	pois	Df	≠	Dg	(Df	=	[1,	+∞	[e	Dg	=	]−∞,	0]	∪	[1,	+∞[).					■

Exercícios	2.4	

Dê	os	domínios	e	esboce	os	gráficos	de	

Verifique	que	Imf	⊂	Dg	e	determine	a	composta	h	(x)	=	g	(f	(x)).

Determine	o	 “maior”	 conjunto	A	 tal	 que	 Imf	⊂	Dg;	 em	 seguida,	 construa	 a
composta	h	(x)	=	g	(f	(x)).
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4. Determine	f	de	modo	que	g	(f	(x))	=	x	para	todo	x	∈	Df,	sendo	g	dada	por
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3.1.

3

LIMITE	E	CONTINUIDADE

INTRODUÇÃO

Neste	 capítulo,	 vamos	 introduzir	 dois	 dos	 conceitos	 delicados	 do	 cálculo:	 os
conceitos	de	continuidade	e	de	limite.

Intuitivamente,	uma	função	contínua	em	um	ponto	p	de	seu	domínio	é	uma	função
cujo	gráfico	não	apresenta	“salto”	em	p.

O	gráfico	de	f	não	apresenta	“salto”	em	p:	f	é	contínua	em	p.	Observe	que	à	medida
que	 x	 se	 aproxima	 de	 p,	 quer	 pela	 direita	 ou	 pela	 esquerda,	 os	 valores	 f	 (x)	 se
aproximam	de	f	(p);	e	quanto	mais	próximo	x	estiver	de	p,	mais	próximo	estará	f	(x)	de
f	 (p).	O	mesmo	não	 acontece	 com	 a	 função	g	 em	p:	 em	p	 o	 gráfico	 de	g	 apresenta
“salto”,	g	não	é	contínua	em	p.

Na	 próxima	 seção,	 tornaremos	 rigoroso	 o	 conceito	 de	 continuidade	 aqui
introduzido	de	forma	intuitiva.

EXEMPLO	1.	Consideremos	as	funções	f	e	g	dadas	por

Vemos,	intuitivamente,	que	f	é	contínua	em	todo	p	de	seu	domínio.	Por	sua	vez,	g
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não	é	contínua	em	p	=	1,	mas	é	contínua	em	todo	p	≠	1.					■
Intuitivamente,	 dizer	 que	o	 limite	 de	 f	 (x),	quando	 x	 tende	 a	 p,	é	 igual	 a	 L	 que,

simbolicamente,	se	escreve

significa	que	quando	x	tende	a	p,	f	(x)	tende	a	L.

EXEMPLO	2.	Utilizando	a	ideia	intuitiva	de	limite,	calcule	

Solução

EXEMPLO	3.	Utilizando	a	ideia	intuitiva	de	limite,	calcule	

Solução

Seja	 	x	≠	1;	f	não	está	definida	em	x	=	1.
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Para	x	≠	1

Intuitivamente,	é	razoável	esperar	que	se	f	estiver	definida	em	p	e	for	contínua	em
p,	então,	 	e	reciprocamente.	Veremos	que	isto	realmente	acontece,
isto	é,	se	f	estiver	definida	em	p

Veremos,	ainda,	que	se	 	e	se	f	não	for	contínua	em	p,	então	L	 será
aquele	valor	que	f	deveria	ter	em	p	para	ser	contínua	neste	ponto.

f	não	está	definida	em	p.

L	é	o	valor	que	f	deveria	ter	em	p	para	ser	contínua	em	p.
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	f	está	definida	em	p,	mas	L	≠	f	(p).

L	é	o	valor	que	f	deveria	ter	em	p,	para	ser	contínua	em	p.

Com	toda	certeza

é	 o	 limite	mais	 importante	 que	 ocorre	 na	matemática,	 e	 seu	 valor,	 quando	 existe,	 é
indicado	por	f′(p)	(leia:	f	linha	de	p)	e	é	denominado	derivada	de	f	em	p:

Este	limite	aparece	de	forma	natural	quando	se	procura	definir	reta	tangente	ao	gráfico

de	f	no	ponto	(p,	f	(p)).	O	quociente	 	chamado	às	vezes	de	razão

incremental,	nada	mais	é	do	que	o	coeficiente	angular	da	reta	s	que	passa	pelos	pontos
M	=	(p,	f	(p))	e	N	=	(p	+	h,	f	(p	+	h))	do	gráfico	de	y	=	f	(x)

Observe	que	a	equação	da	reta	s	é

y	−	f	(p)	=	ms	(x	−	p)
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em	 que	 	 Quando	 h	 tende	 a	 zero,	 o	 ponto	 N	 vai	 se

aproximando	cada	vez	mais	de	M,	e	a	reta	s	vai	tendendo	para	a	posição	da	reta	T	de
equação

y	−	f	(p)	=	f′(p)	(x	−	p).

A	reta	T	é	denominada	reta	tangente	ao	gráfico	de	f,	no	ponto	(p,	f	(p)).
NOTA	HISTÓRICA.	Por	volta	de	1630,	Pierre	de	Fermat	(1601-1665)	estabeleceu	dois
métodos:	um	para	se	determinar	o	coeficiente	angular	da	reta	tangente	em	um	ponto
qualquer	 do	 gráfico	 de	 uma	 função	 polinomial	 e	 o	 outro	 para	 se	 determinar	 os
candidatos	a	pontos	de	máximo	ou	de	mínimo	(locais)	de	uma	tal	função.	Pois	bem,	a
ideia	 que	 acabamos	 de	 utilizar	 para	 definir	 reta	 tangente	 é	 essencialmente	 a	mesma
utilizada	por	Fermat.	Por	outro	lado,	para	Fermat	os	candidatos	a	pontos	de	máximo
ou	de	mínimo	 (locais)	 nada	mais	 eram	do	 que	 as	 raízes	 da	 equação	 f′(x)	 =	 0.	 (Veja
História	 da	Matemática,	 p.	 255,	 de	 Carl	 Benjamin	 Boyer,	 editoras	 Edgard	 Blücher
Ltda.	e	Universidade	de	São	Paulo.)

EXEMPLO	4.	Seja	f	(x)	=	x2.	Utilizando	a	ideia	intuitiva	de	limite,	calcule	f′(1).

Solução

O	que	queremos	aqui	é	calcular	f′(p),	com	p	=	1.

Temos

Segue	que

EXEMPLO	5.	Seja	f	(x)	=	x2.	Utilizando	a	ideia	intuitiva	de	limite,	calcule	f′(x).

Solução

Temos
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1.

a)
b)

Segue	que

Ou	seja,	a	derivada,	em	x,	de	f	(x)	=	x2	é	f′(x)	=	2x.					■
Como	veremos,	um	outro	modo	de	expressar	f′(p)	é	através	do	limite

(Observe:	fazendo	x	−	p	=	h	recaímos	no	limite	anterior.)

EXEMPLO	6.	Seja	f	(x)	=	x3.	Utilizando	a	ideia	intuitiva	de	limite,	calcule	f′(2).

Solução

Temos

(Lembre-se:	a3	−	b3	=	(a	−	b)	(a2	+	ab	+	b2).)

Assim

A	 derivada	 é	 um	 limite.	 Então,	 para	 podermos	 estudar	 suas	 propriedades,
precisamos	antes	estudar	as	propriedades	do	limite.	É	o	que	faremos	a	seguir.

Antes	 de	passar	 à	 próxima	 seção,	 queremos	destacar	 as	 funções	de	uma	variável
real	 que	 vão	 interessar	 ao	 curso;	 tais	 funções	 são	 aquelas	 que	 têm	 por	 domínio	 um
intervalo	ou	uma	reunião	de	intervalos.	Portanto,	de	agora	em	diante,	sempre	que	nos
referirmos	 a	 uma	 função	 de	 uma	 variável	 real	 e	 nada	 mencionarmos	 sobre	 seu
domínio,	 ficará	 implícito	 que	 o	 mesmo	 ou	 é	 um	 intervalo	 ou	 uma	 reunião	 de
intervalos.

Exercícios	3.1	

Esboce	 o	 gráfico	 da	 função	 dada	 e,	 utilizando	 a	 ideia	 intuitiva	 de	 função
contínua,	determine	os	pontos	em	que	a	função	deverá	ser	contínua.

f	(x)	=	2
f	(x)	=	x	+	1
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c)
d)

e)

f)

2.

3.

4.

3.2.

f	(x)	=	x2

f	(x)	=	x2	+	2

Utilizando	a	ideia	intuitiva	de	limite,	calcule

Esboce	 o	 gráfico	 de	 	Utilizando	 a	 ideia	 intuitiva	 de	 limite,

calcule	

Utilizando	a	ideia	intuitiva	de	limite,	calcule

DEFINIÇÃO	DE	FUNÇÃO	CONTÍNUA

Sejam	f	e	g	funções	de	gráficos
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Observe	 que	 f	 e	 g	 se	 comportam	 de	 modo	 diferente	 em	 p;	 o	 gráfico	 de	 f	 não
apresenta	“salto”	em	p,	ao	passo	que	o	de	g,	sim.	Queremos	destacar	uma	propriedade
que	nos	permita	distinguir	tais	comportamentos.

Veja	as	situações	apresentadas	a	seguir.

A	função	f	satisfaz	em	p	a	propriedade

para	todo	∊	>	0	dado,	existe	δ	>	0	(δ	dependendo	de	∊),	 tal	que	 f	 (x)	permanece
entre	f	(p)	−	∊	e	f	(p)	+	∊	quando	x	percorre	o	intervalo	]p	−	δ,	p	+	δ[,	com	x	no
domínio	de	f.

ou	de	forma	equivalente

Entretanto,	a	função	g	não	satisfaz	em	p	tal	propriedade:
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para	o	∊	>	0	acima,	não	existe	δ	>	0	que	torne	verdadeira	a	afirmação

“∀x	∈	Df,	p	−	δ	<	x	<	p	+	δ	⇒	g	(p)	−	∊	<	g	(x)	<	g	(p)	+	∊”.

Qualquer	que	seja	o	δ	>	0	que	se	tome,	quando	x	percorre	o	intervalo	]p	−	δ,	p	+	δ[,
g	(x)	não	permanece	entre	g	(p)	−	∊	e	g	(p)	+	∊.

A	 propriedade	①	 distingue	 os	 comportamentos	 de	 f	 e	 de	g	 em	p.	Adotaremos	 a
propriedade	①	como	definição	de	função	contínua	em	p.

Definição.	Sejam	f	uma	função	e	p	um	ponto	de	seu	domínio.	Definimos:

Observação.	Sabemos	que

|	x	−	p	|	<	δ	⇔	p	−	δ	<	x	<	p	+	δ

e

|	f	(x)	−	f	(p)	|	<	∊	⇔	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊.

A	definição	anterior	pode,	então,	ser	reescrita,	em	notação	de	módulo,	na	seguinte
forma:

Dizemos	que	f	é	contínua	em	A	⊂	Df	se	f	 for	contínua	em	todo	p	∈	A.	Dizemos,
simplesmente,	 que	 f	 é	 uma	 função	 contínua	 se	 f	 for	 contínua	 em	 todo	 p	 de	 seu
domínio.

EXEMPLO	1.	Prove	que	f	(x)	=	2x	+	1	é	contínua	em	p	=	1.
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Solução

Precisamos	 provar	 que,	 para	 cada	 ∊	 >	 0	 dado,	 conseguiremos	 um	 δ	 >	 0	 (δ
dependendo	apenas	de	∊),	tal	que

1	−	δ	<	x	<	1	+	δ	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.

O	∊	>	0	é	dado,	queremos	achar	δ	>	0.	Devemos	determinar	δ	>	0	de	modo	que	f	(x)
permaneça	entre	f	(1)	−	∊	e	f	(1)	+	∊	para	x	entre	1	−	δ	e	1	+	δ.	Vamos	então	resolver	a
inequação

f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.

Temos

f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊	⇔	3	−	∊	<	2x	+	1	<	3	+	∊.

Somando	−1	aos	membros	das	desigualdades	e	dividindo	por	2,	resulta

Então,	dado	∊	>	0	e	tomando-se	 	(qualquer	δ	>	0	com	 	também	serve!),
resulta

1	−	δ	<	x	<	1	+	δ	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.

Logo,	f	é	contínua	em	p	=	1.
O	exemplo	acima	pode	também	ser	resolvido	em	notação	de	módulo.	Neste	caso,

precisamos	provar	que	dado	∊	>	0,	existe	δ	>	0	tal	que

|	x	−	1	|	<	δ	⇒	|	f	(x)	−	f	(1)	|	<	∊.

Temos

Assim,	dado	∊	>	0	e	tomando-se	

|	x	−	1	|	<	δ	⇒	|	f	(x)	−	f	(1)	|	<	∊.

Logo,	f	é	contínua	em	p	=	1.					■

EXEMPLO	2.	A	função	constante	f	(x)	=	k	é	contínua	em	todo	p	real.

Solução

|	f	(x)	−	f	(p)	|	=	|	k	−	k	|	=	0	para	todo	x	e	todo	p;	assim,	dado	∊	>	0	e	tomando-se
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um	δ	>	0	qualquer

|	x	−	p	|	<	δ	⇒	|	f	(x)	−	f	(p)	|	=	|	k	−	k	|	<	∊.

Logo,	 f	 é	contínua	em	p,	 qualquer	 que	 seja	p.	Como	 f	 é	 contínua	 em	 todo	p	 de	 seu
domínio,	resulta	que	f	(x)	=	k	é	uma	função	contínua.					■

EXEMPLO	3.	A	função	afim	f	(x)	=	ax	+	b	(a	e	b	constantes)	é	contínua.

Solução

Se	a	=	0,	f	é	constante,	logo	contínua.
Suponhamos,	então,	a	≠	0.	Temos:

|	f	(x)	−	f	(p)	|	=	|	ax	+	b	−	ap	−	b	|	=	|	a	|	|	x	−	p	|.

Assim,	para	todo	∊	>	0	dado

Tomando-se,	então,	

|	x	−	p	|	<	δ	⇒	|	f	(x)	−	f	(p)	|	<	∊

logo,	 f	 é	 contínua	 em	 p.	 Como	 p	 foi	 tomado	 de	 modo	 arbitrário,	 resulta	 que	 f	 é
contínua	em	todo	p	real,	isto	é,	f	é	contínua.					■

Os	dois	próximos	exemplos	poderão	facilitar	as	coisas	em	muitas	ocasiões.	Antes,
porém,	observamos	que	se	p	∈	]a,	b[,	a	e	b	reais,	então	existe	δ	>	0,	tal	que	]p	−	δ,	p	+
δ[	⊂	]a,	b[;	basta,	por	exemplo,	tomarmos	δ	=	mín	{b	−	p,	p	−	a}.

Veja

Em	qualquer	caso,	δ	=	mín	{b	−	p,	p	−	a}	resolve	o	problema.

EXEMPLO	4.	Prove	que,	se	para	todo	∊	>	0	dado	existir	um	intervalo	aberto	I	=	]a,
b[,	com	p	∈	I,	tal	que	para	todo	x	∈	Df
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x	∈	I	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊

então	f	será	contínua	em	p.

Solução

Pela	hipótese,	para	todo	∊	>	0	dado	existe	um	intervalo	aberto	I	=	]a,	b[,	com	p	∈	I,
tal	que

Tomando-se	δ	=	mín	{b	−	p,	p	−	a},	]p	−	δ,	p	+	δ[	⊂	]a,	b[.	Assim,

x	∈	]p	−	δ,	p	+	δ[	⇒	x	∈	]a,	b[.

Segue	de	①	que

x	∈	]p	−	δ,	p	+	δ[	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊.

Logo,	f	é	contínua	em	p.					■

EXEMPLO	5.	Seja	r	>	0	um	real	dado.	Suponha	que,	para	todo	∊	<	r,	∊	>	0,	existe	um
intervalo	aberto	I,	com	p	∈	I,	tal	que	para	todo	x	∈	Df

x	∈	I	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊.

Prove	que	f	é	contínua	em	p.

Solução

Precisamos	provar	(tendo	em	vista	o	exemplo	anterior)	que,	para	todo	∊	>	0,	existe
um	intervalo	aberto	I,	com	p	∈	I,	tal	que	para	todo	x	em	Df

x	∈	I	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊.

Pela	hipótese,	se	∊	<	r,	existe	tal	intervalo.
Suponhamos,	então,	∊	≥	r.	Seja	0	<	∊1	<	r.
Pela	hipótese,	para	o	∊1	dado,	existe	I	tal	que

x	∈	I	⇒	f	(p)	−	∊1	<	f	(x)	<	f	(p)	+	∊1.

Para	este	mesmo	I	teremos,	também,

x	∈	I	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊

pois,	f	(p)	−	∊	<	f	(p)	−	∊1	e	f	(p)	+	∊1	<	f	(p)	+	∊.	(Interprete	graficamente.)
Assim:
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para	f	ser	contínua	em	p,	basta	que,	para	cada	∊	<	r,	∊	>	0	(em	que	r	>	0	é	fixado	a
priori),	exista	um	intervalo	aberto	I,	com	p	∈	I,	tal	que,	para	todo	x	em	Df,

x	∈	I	⇒	f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊.

■

EXEMPLO	6.	Mostre	que	f	(x)	=	x3	é	contínua	em	1.

Solução

Precisamos	mostrar	que	dado	∊	>	0,	 existe	um	 intervalo	 aberto	 I,	 contendo	1,	 tal
que

x	∈	I	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.

Vamos	resolver	a	inequação	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.
Temos

Tomando-se	

x	∈	I	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.

Logo,	f	(x)	=	x3	é	contínua	em	1.

Observação.	Tomando-se	

1	−	δ	<	x	<	1	+	δ	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊.					■

EXEMPLO	7.	Prove	que	f	(x)	=	x2	é	contínua.
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Solução

Precisamos	provar	que	f	é	contínua	em	todo	p	real	(Df	=	ℝ).
Primeiro	vamos	provar	que	f	é	contínua	em	0.	Convém,	aqui,	usar	a	definição	em

notação	de	módulo.	Vamos	provar,	então,	que	dado	∊	>	0	existe	δ	>	0	tal	que

|	x	−	0	|	<	δ	⇒	|	x2	−	02	|	<	∊.

Para	se	ter	|	x2	|	<	∊,	basta	que	se	tenha	 	Tomando-se	

|	x	−	0	|	<	δ	⇒	|	x2	−	02	|	<	∊.

Logo,	f	(x)	=	x2	é	contínua	em	0.
Vamos	provar,	agora,	a	continuidade	de	f	em	todo	p	≠	0.	Temos

f	(p)	−	∊	<	f	(x)	<	f	(p)	+	∊	⇔	p2	−	∊	<	x2	<	p2	+	∊.

Para	∊	<	p2,	∊	>	0,

Se	p	>	0,	tomamos	 	assim

x	∈	I	⇒	p2	−	∊	<	x2	<	p2	+	∊.

Se	p	<	0,	tomamos	 	assim

x	∈	I	⇒	p2	−	∊	<	x2	<	p2	+	∊.

Logo,	f	(x)	=	x2	é	contínua	em	todo	p	real.	(Interprete	graficamente.)					■

EXEMPLO	8.	

é	contínua	em	p	=	1?	Justifique.

Solução

Intuitivamente,	 vemos	 que	 f	 não	 é	 contínua	 em	 p	 =	 1,	 pois	 o	 gráfico	 apresenta
“salto”	neste	ponto.	Para	provar	que	f	não	é	contínua	em	p	=	1,	precisamos	achar	um	∊
>	0	para	o	qual	não	exista	δ	>	0	que	torne	verdadeira	a	afirmação

“∀x	∈	Df,	1	−	δ	<	x	<	1	+	δ	⇒	f	(1)	−	∊	<	f	(x)	<	f	(1)	+	∊”.

Como	f	(x)	=	1	para	x	<	1	e	f	(1)	=	2,	tomando-se	 	(ou	0	<	∊	<	1),	para	todo	δ

>	0,
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1	−	δ	<	x	<	1	⇒	f	(x)	=	1

e	 1	 não	 está	 entre	 	 Logo,	 não	 existe	 δ	 >	 0	 que	 torna

verdadeira	a	afirmação

Portanto,	a	função	dada	não	é	contínua	em	p	=	1.	Observe	que	f	é	contínua	em	todo
p	≠	1.					■

O	 próximo	 exemplo	 destaca	 uma	 propriedade	 importante	 (conservação	 do	 sinal)
das	funções	contínuas.	Tal	propriedade	conta-nos	que	se	f	for	contínua	em	p	e	f	(p)	≠	0,
então	existirá	um	δ	>	0	tal	que	f	(x)	conservará	o	sinal	de	f	(p)	para	p	−	δ	<	x	<	p	+	δ,	x
∈	Df.

EXEMPLO	9.	Seja	f	contínua	em	p	e	f	(p)	>	0.	Prove	que	existe	δ	>	0	tal	que,	∀x	∈
Df,

p	−	δ	<	x	<	p	+	δ	⇒	f	(x)	>	0.

Solução

Como,	por	hipótese,	f	é	contínua	em	p,	dado	∊	>	0,	existirá	δ	>	0	tal	que	∀x	∈	Df
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1.

a)
b)
c)
d)
e)

h)

2.

3.

4.

5.

6.

7.

8.

f)
g)

Como	para	todo	∊	>	0	existe	δ	>	0	tal	que	①	ocorre,	tomando-se,	em	particular,	∊	=
f	(p)	(por	hipótese	f	(p)	>	0),	existirá	um	δ	>	0	tal	que,	∀x	∈	Df,

p	−	δ	<	x	<	p	+	δ	⇒	f	(p)	−	f	(p)	<	f	(x)	<	f	(p)	+	f	(p)

e,	portanto,

p	−	δ	<	x	<	p	+	δ	⇒	f	(x)	>	0.

De	modo	análogo,	prova-se	que	se	f	for	contínua	em	p	e	f	(p)	<	0,	então	(neste	caso
basta	tomar	∊	=	−f	(p))	existirá	δ	>	0	tal	que

p	−	δ	<	x	<	p	+	δ	⇒	f	(x)	<	0.					■

Exercícios	3.2	

Prove,	pela	definição,	que	a	função	dada	é	contínua	no	ponto	dado.

f	(x)	=	4x	−	3	em	p	=	2
f	(x)	=	x	+	1	em	p	=	2
f	(x)	=	−3x	em	p	=	1
f	(x)	=	x3	em	p	=	2
f	(x)	=	x4	em	p	=	−1

Prove	que	 	é	contínua	em	todo	p	≠	0.

Seja	n	>	0	um	natural.	Prove	que	f	(x)	=	xn	é	contínua.

Prove	que	 	é	contínua.

	é	contínua	em	1?	Justifique.

Dê	exemplo	de	uma	função	definida	em	ℝ	e	que	seja	contínua	em	todos	os
pontos,	exceto	em	−1,	0,	1.

Dê	exemplo	de	uma	função	definida	em	ℝ	e	que	seja	contínua	em	todos	os
pontos	exceto	nos	inteiros.

Seja	f	dada	por	 	Mostre	que	f	é	descontínua	em	todo	p

real.
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9.

a)

10.

11.

12.

13.

Determine	o	conjunto	dos	pontos	em	que	a	função	dada	é	contínua.

	(Função	maior	inteiro.)

Dê	exemplo	de	uma	função	definida	em	ℝ	e	que	seja	contínua	apenas	em	−1,
0,1.

Determine	L	para	que	a	função	dada	seja	contínua	no	ponto	dado.	Justifique.

Dê	o	valor	(caso	exista)	que	a	função	dada	deveria	ter	no	ponto	dado	para	ser
contínua	neste	ponto.	Justifique.

Sabe-se	que	f	é	contínua	em	2	e	que	f	(2)	=	8.	Mostre	que	existe	δ	>	0	tal	que
para	todo	x	∈	Df

2	−	δ	<	x	<	2	+	δ	⇒	f	(x)	>	7.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

c)

24.

a)
b)

25.

Sabe-se	que	f	é	contínua	em	1	e	que	f	(1)	=	2.	Prove	que	existe	r	>	0	tal	que
para	todo	x	∈	Df

Seja	f	uma	função	definida	em	ℝ	e	suponha	que	existe	M	>	0	tal	que	|	f	(x)	−	f
(p)	|	≥	M	|	x	−	p	|	para	todo	x.	Prove	que	f	é	contínua	em	p.

Suponha	que	|	f	(x)	−	f	(1)	|	≤	(x	−	1)2	para	todo	x.	Prove	que	f	é	contínua	em
1.

Suponha	que	|	f	(x)	|	≥	x2	para	todo	x.	Prove	que	f	é	contínua	em	0.

Prove	que	a	função	 	é	contínua	em	0.

Sejam	f	e	g	definidas	em	ℝ	e	suponha	que	existe	M	>	0	tal	que	|	f	(x)	−	f	(p)	|
≤	M	 |	g	 (x)	−	g(p)	 |	para	 todo	x.	 Prove	que	 se	g	 for	 contínua	 em	p,	 então	 f
também	será	contínua	em	p.

Suponha	f	definida	e	contínua	em	ℝ	e	que	f	(x)	=	0	para	todo	x	racional.	Prove
que	f	(x)	=	0	para	todo	x	real.

Sejam	f	e	g	contínuas	em	ℝ	e	tais	que	f	(x)	=	g	(x)	para	todo	x	racional.	Prove
que	f	(x)	=	g	(x)	para	todo	x	real.

Suponha	que	f	e	g	são	contínuas	em	ℝ	e	que	exista	a	>	0,	a	≠	1,	tal	que	para
todo	r	racional,	f	(r)	=	ar	e	g	(r)	=	ar.	Prove	que	f	(x)	=	g	(x)	em	ℝ.

Seja	 	Prove

f	é	contínua	em	p	=	1

Seja	f	(x)	=	x3	+	x.	Prove	que

|	f	(x)	−	f	(2)	|	≤	20	|	x	−	2	|	para	0	≤	x	≤	3
f	é	contínua	em	2

Prove	que	 	é	contínua	em	1.
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26.

27.

a)
b)

3.3.

Prove	que	 	é	contínua	em	todo	p	>	0.

Sejam	f	(x)	=	x3	e	p	≠	0.

Verifique	que	|	x3	−	p3	|	≤	7	p2	|	x	−	p	|	para	|	x	|	≤	2	|	p	|
Conclua	de	(a)	que	f	é	contínua	em	p

DEFINIÇÃO	DE	LIMITE

Sejam	 f	 uma	 função	 e	 p	 um	 ponto	 do	 domínio	 de	 f	 ou	 extremidade	 de	 um	 dos
intervalos	que	compõem	o	domínio	de	f	(veja	o	final	da	Seção	3.1).	Consideremos	as
situações	a	seguir:

Na	situação	(a),	f	não	está	definida	em	p,	mas	existe	L	que	satisfaz	a	propriedade:

Na	situação	(b),	f	está	definida	em	p,	mas	não	é	contínua	em	p,	entretanto	existe	L
satisfazendo	①;	observe	que	neste	caso	a	restrição	x	≠	p	é	essencial.	Na	situação	(c),	f
é	contínua	em	p,	assim	L	=	f	(p)	satisfaz	①.	Finalmente,	na	situação	(d),	não	existe	L
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satisfazendo	①	em	p.
A	propriedade	①	é	equivalente	a

para	todo	∊	>	0	dado,	existe	δ	>	0	tal	que,	para	todo	x	∈	Df,

0	<	|	x	−	p	|	<	δ	⇒	|	f	(x)	−	L	|	<	∊.

Observe	que	0	<	|	x	−	p	|	<	δ	⇔	p	−	δ	<	x	<	p	+	δ,	x	≠	p.
Vamos	 provar	 a	 seguir	 que	 existe	 no	 máximo	 um	 número	 L	 satisfazendo	 a

propriedade	acima.	De	fato,	suponhamos	que	L1	e	L2	satisfaçam,	em	p,	a	propriedade
acima;	então,	para	todo	∊	>	0	dado,	existem	δ1	>	0	e	δ2	>	0	tais	que

0	<	|	x	−	p	|	<	δ1	⇒	|	f	(x)	−	L1	|	<	∊

e
0	<	|	x	−	p	|	<	δ2	⇒	|	f	(x)	−	L2	|	<	∊;

tomando-se	δ	=	mín	{δ1,	δ2}

0	<	|	x	−	p	|	<	δ	⇒	|	f	(x)	−	L1	|	<	∊	e	|	f	(x)	−	L2	|	<	∊.

Das	hipóteses	sobre	p	e	sobre	o	domínio	de	f,	segue	que	existe	x0	∈	Df	com	0	<	|	x0
−	p	|	<	δ;	temos:

|	L1	−	L2	|	=	|	L1	−	f	(x0)	+	f	(x0)	−	L2	|	≤	|	L1	−	f	(x0)	|	+	|	f	(x0)	−	L2	|.

Assim,	para	todo	∊	>	0,

|	L1	−	L2	|	<	2∊.

Logo,	L1	=	L2.
De	acordo	com	a	definição	que	daremos	a	seguir,	o	único	número	L	(caso	exista)

satisfazendo	①	é	o	limite	de	f	(x),	para	x	tendendo	a	p	:	

Definição.	Sejam	f	uma	função	e	p	um	ponto	do	domínio	de	f	ou	extremidade	de
um	dos	intervalos	que	compõem	o	domínio	de	f.	Dizemos	que	f	tem	limite	L,	em	p,
se,	para	todo	∊	>	0	dado,	existir	um	δ	>	0	tal	que,	para	todo	x	∈	Df,

0	<	|	x	−	p	|	<	δ	⇒	|	f	(x)	−	L	|	<	∊.

Tal	número	L,	que	quando	existe	é	único,	será	indicado	por	

Assim
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Observações.

1.	Suponhamos	f	definida	em	p.	Comparando	as	definições	de	 limite	e	continuidade,
resulta

2.	O	limite	de	f	em	p	não	depende	do	valor	(caso	f	esteja	definida	em	p)	que	f	assume
em	p,	mas	sim	dos	valores	que	f	assume	nos	pontos	próximos	de	p.	Quando	estivermos
interessados	no	 limite	 de	 f	 em	p,	 basta	 olharmos	 para	 os	 valores	 que	 f	 assume	 num
“pequeno”	intervalo	aberto	contendo	p;	o	conceito	de	limite	é	um	conceito	local.

3.	Sejam	f	e	g	duas	funções.	Se	existir	r	>	0	tal	que	f	(x)	=	g	(x)	para	p	−	r	<	x	<	p	+	r,	x
≠	p,	e	se	 	existir,	então	 	também	existirá	e
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EXEMPLO	1.	Calcule	 	(k	constante).

Solução

O	que	queremos	aqui	é	 	no	qual	f	é	a	função	constante	f	(x)	=	k.	Como	f
é	contínua	em	todo	p	real

isto	é,

(O	limite	de	uma	constante	é	a	própria	constante.)					■

EXEMPLO	2.	Calcule	

Solução

f	(x)	=	3x	−	2	é	uma	função	afim,	logo,	contínua	em	todo	p	real,	em	particular	em	p
=	2;	assim

EXEMPLO	3.	Calcule	

Solução

	 para	 x	 ≠	 1;	 g	 (x)	 =	 x	 +	 1	 é	 contínua	 em	 1,	 logo	

Como

segue	da	observação	3,	que
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(2	é	o	valor	que	 	deveria	ter	em	1	para	ser	contínua	neste	ponto.)					■

EXEMPLO	4.	Calcule	

Solução

Para	x	≠	1;	 	assim

(Observe	que	f	(1)	=	3.)	Pelo	fato	de	 	segue	que	f	não	é	contínua	em
1.					■

EXEMPLO	 5.	 As	 funções	 dadas	 por	 f	 (x)	 =	 xn	 e	 	 (n	 ≥	 1	 natural)	 são
contínuas.	(Verifique.)	Assim

e

	para	todo	p	no	domínio	de	 						■

Provaremos,	na	Seção	3.6,	que	se	 	então

(O	limite	de	uma	soma	é	igual	à	soma	dos	limites	das	parcelas.)

(O	limite	de	um	produto	é	igual	ao	produto	dos	limites	dos	fatores.)
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Por	enquanto,	vamos	admitir	tais	propriedades	e	usá-las.

EXEMPLO	6.	Calcule	

Solução

Assim,

EXEMPLO	7.	Calcule	

Solução

Como	 	a	propriedade	(d)	não	se	aplica.

e

segue-se	que

Deixamos	 a	 seu	 cargo	 verificar,	 por	 indução	 finita,	 que	 se	 	

	então

e

para	todo	natural	n	≥	2.
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EXEMPLO	8.	Calcule	

Solução

Como	 	 pela

propriedade	(d),

EXEMPLO	9.	Calcule	

Solução

	logo	a	propriedade	(d)	não	se	aplica.	Como	−1	é	raiz	de

x3	+	1	e	de	x2	+	4x	+	3,	estes	polinômios	são	divisíveis	por	x	+	1:

x3	+	1	=	(x	+	1)	(x2	−	x	+	1)	e	x2	+	4x	+	3	=	(x	+	1)	(x	+	3).

Assim

EXEMPLO	10.	Calcule	

Solução

Assim

Segue
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O	 próximo	 exemplo	 mostra-nos	 que	 soma,	 produto	 e	 quociente	 de	 funções
contínuas	são	contínuas.

EXEMPLO	11.	Sejam	f,	g	contínuas	em	p	e	k	uma	constante.	Então	f	+	g,	k	f	e	f	 ·	g

são	contínuas	em	p;	 	também	será	contínua	em	p,	desde	que	g	(p)	≠	0.

Solução

Como	f	e	g	 são	contínuas	em	p,	 	Segue
das	propriedades	(a),	(b)	e	(c)	dos	limites	que

e

logo,	f	+	g,	k	f	e	f	·	g	são	contínuas	em	p.
Sendo	g	(p)	≠	0

logo	 	é	também	contínua	em	p.					■

Deixamos	a	seu	cargo	verificar	que	se	f1,	f2,	…,	fn	(n	≥	2	natural)	forem	contínuas
em	p,	então	f1	+	f2	+	…	+	fn	e	f1	·	f2	·	f3	·	…,	fn	também	o	serão.

EXEMPLO	12.	Toda	função	polinomial	é	contínua.

Solução

Sendo	f	uma	função	polinomial,	existem	n	∈	ℕ	e	números	reais	a0,	a1,…,an	tais	que

f	(x)	=	a0xn	+	a1xn	−	1	+	…	+	an	−	1x	+	an;

assim	f	é	soma	de	funções	contínuas,	logo	f	é	contínua.					■

EXEMPLO	 13.	 f	 dada	 por	 	 é	 contínua,	 pois	 se
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trata	 de	 uma	 função	 polinomial.	 (Lembre-se:	 dizer	 que	 f	 é	 uma	 função	 contínua
equivale	a	dizer	que	f	é	contínua	em	todos	os	pontos	de	seu	domínio.)					■

EXEMPLO	14.	Toda	função	racional	é	contínua.

Solução

Sendo	f	uma	função	racional,	 	em	que	g	e	h	são	funções	polinomiais.	Assim,
f	é	contínua	em	todo	p	que	não	anula	o	denominador,	isto	é,	f	é	contínua.					■

EXEMPLO	15.	 	é	contínua	em	todo	

Solução

f	é	uma	função	racional,	assim	 f	é	contínua	em	todo	p	de	seu	domínio,	 isto	é,	 f	 é
contínua	em	todo	 					■

EXEMPLO	16.	Prove	que

Solução

EXEMPLO	17.	Prove	que

Solução

Suponhamos	 	assim	dado	∊	>	0	existe	δ	>	0	tal	que

0	<	|	x	−	p|	<	δ	⇒	|	f	(x)	−	L|	<	∊

daí

0	<	|	h	|	<	δ	⇒	0	<	|	(p	+	h)	−	p	|	<	δ	⇒	|	f	(p	+	h)	−	L	|	<	∊,

ou	seja,
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1.

0	<	|	h	|	<	δ	⇒	|	f	(p	+	h)	−	L	|	<	∊.

Assim

Verifique	você	a	recíproca.					■

EXEMPLO	 18.	 (Conservação	 do	 sinal.)	 Suponha	 que	 	 Prove	 que
existe	δ	>	0	tal	que,	∀	x	∈	Df,

p	−	δ	<	x	<	p	+	δ,	x	≠	p	⇒	f	(x)	>	0.

Solução

Sendo	 	para	todo	∊	>	0	dado	existe	δ	>	0	tal	que,	∀	x	∈	Df,

p	−	δ	<	x	<	p	+	δ,	x	≠	p	⇒	L	−	∊	<	f	(x)	<	L	+	∊.

Para	∊	=	L,	existe	δ	>	0	tal	que,	∀	x	∈	Df,

p	−	δ	<	x	<	p	+	δ,	x	≠	p	⇒	L	−	L	<	f	(x)	<	L	+	L,

ou	seja,

p	−	δ	<	x	<	p	+	δ,	x	≠	p	⇒	f	(x)	>	0.

■

Exercícios	3.3	

Calcule	e	justifique.
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2.

3.

4.

Determine	L	para	que	a	função	dada	seja	contínua	no	ponto	dado.	Justifique.

	é	contínua	em	−1?	E	em	0?	Por	quê?

Calcule	 	sendo	f	dada	por
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a)
b)
c)
d)
e)

f)

5.

6.

7.

8.

f	(x)	=	x2

f	(x)	=	2x2	+	x
f	(x)	=	5
f	(x)	=	−x3	+	2x

f	(x)	=	3x	+	1

Calcule.

Prove	que	existe	δ	>	0	tal	que

Prove	que	existe	δ	>	0	tal	que

Sejam	 f	 e	 g	 definidas	 em	 ℝ	 com	 g	 (x)	 ≠	 0	 para	 todo	 x.	 Suponha	 que	

	Prove	que	existe	δ	>	0	tal	que
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9.

10.

11.

12.

13.

14.

15.

3.4.

0	<	|	x	−	p	|	<	δ	⇒	|	f	(x)	|	<	|	g	(x)	|.

Suponha	que	 	 Prove	 que	 existem	 r	 >	 0,	α	 e	β	 tais	 que,	 para
todo	x	∈	Df,

0	<	|	x	−	p	|	<	r	⇒	α	<	f	(x)	<	β.

Interprete	graficamente.

Suponha	que	 	Prove	que	existem	r	>	0	e	M	>	0	tais	que,	para
todo	x	∈	Df,

0	<	|	x	−	p	|	<	r	⇒	|	f	(x)	|	≤	M.

Prove:	

Prove:	

Prove:	

Suponha	 que	 existe	 r	 >	 0	 tal	 que	 f	 (x)	 ≥	 0	 para	 0	 <	 |	 x	 −	 p	 |	 <	 r	 e	 que	
	Prove	que	L	≥	0.

(Sugestão:	Suponha	L	<	0	e	use	a	conservação	do	sinal.)

Suponha	f	contínua	em	ℝ	e	f	(x)	≥	0	para	todo	x	racional.	Prove	que	f	(x)	≥	0
para	todo	x.

LIMITES	LATERAIS

Sejam	f	uma	função,	p	um	número	real	e	suponhamos	que	existe	b	tal	que	]p,	b[	⊂
Df.	Definimos:

O	número	L,	quando	existe,	denomina-se	limite	lateral	à	direita	de	f,	em	p.
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Quando	x	tende	a	p,	pela	direita,	f	(x)	tende	a	

Suponhamos,	 agora,	 que	 exista	 um	 real	 a	 tal	 que	 ]a,	 p[	 ⊂	 Df.	 Definimos	

O	número	L,	quando	existe,	denomina-se	limite	lateral	à	esquerda	de	f,	em	p.

Quando	x	tende	a	p,	pela	esquerda,	f	(x)	tende	a	L:	

É	uma	consequência	imediata	das	definições	de	limite	e	de	limites	laterais	que	se	
	e	se,	para	algum	r	>	0,	f	(x)	=	g	(x)	em	]p,	p	+	r[,	então

	Se	ocorrer	f	(x)	=	g	(x)	em	]p	−	r,	p[,	então

EXEMPLO	1.	Calcule	

Solução

EXEMPLO	2.	Calcule	

Solução
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1.

2.

3.

1.

Teorema.	Sejam	f	uma	função,	p	um	número	real	e	suponhamos	que	existam	a
e	b	tais	que	]a,	p[	e	]p,	b[	estejam	contidos	em	Df.	Então,

Demonstração.	Deixamos	para	o	leitor.					■

Observações

Se	 	existirem	e	 forem	diferentes,	 então	 	não
existirá.

Se	existirem	a	e	b	tais	que	]a,	p[	e	]p,	b[	estejam	contidos	em	Df	e	se,	em	p,	um	dos
limites	laterais	não	existir,	então	 	não	existirá.

Se	 existirem	 reais	 r	 >	 0	 e	 b	 tais	 que	 ]p,	b[	⊂	Df	 e	 ]p	 −	 r,	 p[	 ∩	Df	 =	 φ,	 então	
	desde	que	o	limite	lateral	à	direita	exista.	Se	ocorrer	]b,

p[	⊂	Df	e	]p,	p	+	r[	∩	Df	=	φ,	então	 	desde	que	o	limite
lateral	à	esquerda	exista.

EXEMPLO	3.	 	existe?	Por	quê?

Solução

Como	 	segue	que	 	não	existe.					■

Exercícios	3.4	

Calcule,	caso	exista.	Se	não	existir,	justifique.
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2.

3.

4.

5.

6.

	em	que	g	é	a	função	do	item	(j)

A	afirmação

	 conínua	 em	 p”	 é	 falsa	 ou	 verdadeira?
Justifique.

Dada	a	 função	 	verifique	que	

Pergunta-se:	f	é	contínua	em	1?	Por	quê?

Dê	exemplo	de	uma	função	definida	em	ℝ,	que	não	seja	contínua	em	2,	mas
que	

Suponha	 que	 exista	 r	 >	 0	 tal	 que	 f	 (x)	 ≥	 0	 para	p	 <	 x	 <	p	 +	 r.	 Prove	 que	
	desde	que	o	limite	exista.

Sejam	f	uma	função	definida	num	intervalo	aberto	I	e	p	∈	I.	Suponha	que	f	(x)
≤	f	(p)	para	todo	x	∈	I.	Prove	que	 	desde	que	o	limite

exista.

(Sugestão:	estude	os	sinais	de	 	e	de	
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3.5. LIMITE	DE	FUNÇÃO	COMPOSTA

Sejam	f	e	g	duas	funções	tais	que	Imf	⊂	Dg,	em	que	Imf	é	a	imagem	de	f,	ou	seja,
Imf	=	{	f	(x)	|	x	∈	Df}.	Nosso	objetivo	é	estudar	o	limite

Supondo	que	 	é	razoável	esperar	que

desde	que	 	exista	(observe:	u	=	f	(x);	u	↦	a	para	x	↦	p).	Veremos	que	①	se
verifica	se	g	for	contínua	em	a	ou	se	g	não	estiver	definida	em	a.	Veremos,	ainda,	que
se	 g	 estiver	 definida	 em	 a,	 mas	 não	 for	 contínua	 em	 a	 	①	 se
verificará	desde	que	ocorra	f	(x)	≠	a	para	x	próximo	de	p.	Os	casos	que	interessarão	ao
curso	são	aqueles	em	que	g	ou	é	contínua	em	a	ou	não	está	definida	em	a.	O	quadro
que	 apresentamos	 a	 seguir	 mostra	 como	 iremos	 trabalhar	 com	 o	 limite	 de	 função
composta	no	cálculo	de	limites.

Suponhamos	que	existam	funções	g	(u)	e	u	=	f	(x),	no	qual	g	ou	é	contínua	em	a
ou	não	está	definida	em	a,	tais	que

e	que	 	exista.	Então

Vamos	antecipar	alguns	exemplos	e	deixar	para	o	final	da	seção	a	demonstração	da
validade	de	①.

EXEMPLO	1.	Calcule	

Solução
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Assim,

EXEMPLO	2.	Calcule	

Solução

Façamos	u	=	3	−	x3;	assim

Para	x	↦	1,	u	↦	2.	Então:

EXEMPLO	3.	Calcule	

Solução

Façamos	 	assim	x	=	u3	−	2.
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Assim,

EXEMPLO	4.	Se	 	então	

Solução

Como	h	(u)	=	u2	é	contínua	(veja	Exemplo	7-3.2)

EXEMPLO	5.	Suponha	g	(x)	≠	0,	para	todo	x	∈	Dg,	L	≠	0	e	 	Prove

que	

Solução

Como	 	é	contínua	em	todo	u	≠	0	(veja	Exercício	2-3.2),	segue-se	que

Observação.	Se	 	L	≠	0,	pela	conservação	do	sinal,	existe	r	>	0	tal	que

g	(x)	≠	0	para	0	<	|	x	−	p	|	<	r,	x	∈	Dg.

Como	o	conceito	de	limite	é	um	conceito	local,	segue-se	que	a	hipótese	g	(x)	≠	0
que	aparece	no	Exemplo	5	é	dispensável.	Assim,
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Vamos,	agora,	demonstrar	①	no	caso	em	que	g	é	contínua	em	a.

Teorema	1.	Sejam	 f	 e	g	 duas	 funções	 tais	 que	 Imf	⊂	Dg.	 Se	
contínua	em	a,	então,

Demonstração

Sendo	g	contínua	em	a,	 	Precisamos	provar	que,	para	todo	∊	>
0	dado,	existe	δ	>	0	tal	que

0	<	|	x	−	p	|	<	δ	⇒	g	(a)	−	∊	<	g	(f	(x))	<	g	(a)	+	∊.

Como	g	é	contínua	em	a,	dado	∊	>	0,	existe	δ1	>	0	tal	que

Como	 	para	o	δ1	>	0	acima	existe	δ	>	0	tal	que

De	②	e	③	segue-se	que

0	<	|	x	−	p	|	<	δ	⇒	g	(a)	−	∊	<	g	(f	(x))	<	g	(a)	+	∊.					■

Observação.	 O	 teorema	 acima	 conta-nos	 que,	 se	 g	 for	 contínua	 em	 a	 e	
	 então	 	 o	 que	 nos	 mostra

que	os	símbolos	 	podem	ser	permutados	em	

O	próximo	exemplo	nos	diz	que	composta	de	funções	contínuas	é	contínua.

EXEMPLO	6.	Sejam	f	e	g	tais	que	Imf	⊂	Dg.	Se	f	for	contínua	em	p	e	g	contínua	em	f
(p),	então	a	composta	h	(x)	=	g	(f	(x))	será	contínua	em	p.

Solução
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logo,	h	(x)	=	g	(f	(x))	é	contínua	em	p.					■

Teorema	2.	Sejam	f	e	g	duas	funções	tais	que	Imf	⊂	Dg,	 	 e	

	Nestas	condições,	se	existir	um	r	>	0	tal	que	f	(x)	≠	a	para	0	<	|	x

−	p	|	<	r,	então	 	existirá	e

Demonstração

Como	 	dado	∊	>	0,	existe	δ1	>	0	tal	que

Como	 	para	o	δ1	>	0	acima	existe	δ2	>	0	tal	que

Tomando-se	δ	=	mín	{δ2,	r},	segue	de	②	e	da	hipótese

De	①	e	②	resulta

0	<	|	x	−	p	|	<	δ	⇒	|	g	(f	(x))	−	L	|	<	∊.

Assim,

Observação.	Se	g	não	estiver	definida	em	a,	segue-se	da	hipótese	Imf	⊂	Dg,	que	f	(x)
≠	a	para	todo	x	∈	Df.	Assim,	neste	caso,	a	condição	“existe	r	>	0	tal	que	f	(x)	≠	a	para
0	<	 |	x	−	p	 |	<	r”	é	dispensável.	Entretanto,	 se	g	 estiver	definida	em	a,	mas	não	 for
contínua	em	a,	tal	condição	é	indispensável	como	mostra	o	próximo	exemplo.

EXEMPLO	 7.	 Sejam	 f	 e	 g	 definidas	 em	 ℝ	 e	 dadas	 por	 f	 (x)	 =	 1	 e	

Temos
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1.

2.

3.

3.6.

Como	g	(f	(x))	=	3	para	todo	x,	segue	que

Este	fato	ocorre	em	virtude	de	não	estar	satisfeita	a	condição	“existe	r	>	0	tal	que	f
≠	(x)	1	para	0	<	|	x	−	p	|	<	r”.					■

Exercícios	3.5	

Calcule

Seja	f	definida	ℝ.	Suponha	que	 	Calcule

Seja	 f	 definida	 em	 ℝ	 e	 seja	 p	 um	 real	 dado.	 Suponha	 que	

	Calcule

TEOREMA	DO	CONFRONTO

Teorema	(do	confronto).	Sejam	f,	g,	h	três	funções	e	suponhamos	que	exista	r
>	0	tal	que

f	(x)	≤	g	(x)	≤	h	(x)
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a)

b)

a)

b)

para	0	<	|	x	−	p|	<	r.	Nestas	condições,	se

então

Demonstração.	(Veja	Seção	3.9.)
■

EXEMPLO	1.	Seja	f	uma	função	e	suponha	que	para	todo	x

|	f	(x)	|	≤	x2.

Calcule,	caso	exista,	

f	é	contínua	em	0?	Por	quê?

Solução

|	f	(x)	|	≤	x2	⇔	−x2	≤	f	(x)	≤	x2.

Como	 	segue	do	teorema	do	confronto	que

Segue	de	(a)	que	f	será	contínua	em	0	se	f	(0)	=	0.	Pela	hipótese,	|	f	(x)	|	≤	x2
para	todo	x,	logo,	|	f	(0)	|	≤	0	e,	portanto,	f	(0)	=	0.	Assim,

ou	seja,	f	é	contínua	em	0.					■

O	próximo	exemplo	nos	diz	que	se	f	tiver	limite	0	em	p	e	se	g	for	limitada,	então	o
produto	f	·	g	terá	limite	0	em	p.

EXEMPLO	 2.	 Sejam	 f	 e	 g	 duas	 funções	 com	 mesmo	 domínio	 A	 tais	 que	
	e	|	g	(x)	|	≤	M	para	todo	x	em	A,	em	que	M	>	0	é	um	número	real	fixo.

Prove	que

Solução
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1.

2.

3.

4.

b)

5.

|	f	(x)	g	(x)	|	=	I	f	(x)	|	|	g	(x)	|	≤	M	|	f	(x)	|

para	todo	x	em	A.	Daí,	para	todo	x	em	A

−M	|	f	(x)	|	≤	f	(x)	g	(x)	≤	M	|	f	(x)	|.

De	 	 segue	 que	 	 e	 	 Pelo
teorema	do	confronto

EXEMPLO	3.	Calcule	 	em	que	

Solução

	 como	 	 não	 existe	 (verifique)	 não	 podemos	 aplicar	 a

propriedade	relativa	a	limite	de	um	produto	de	funções.	Entretanto,	como	g	é	limitada,
(|	g	(x)	|	≤	1	para	todo	x)	e	 	pelo	exemplo	anterior

Exercícios	3.6	

Seja	 f	 uma	 função	 definida	 em	 ℝ	 tal	 que	 para	 todo	 x	 ≠	 1,	

	Calcule	 	e	justifique.

Seja	f	definida	em	ℝ	e	tal	que,	para	todo	x,	|	f	(x)	−	3	|	≤	2	|	x	−	1	|.	Calcule	
	e	justifique.

Suponha	que,	para	todo	x,	|	g	(x)	|	≤	x4.	Calcule	

a)	Verifique	que	 	não	existe.

Calcule,	caso	exista,	 	(Justifique.)

Calcule,	caso	exista,	 	em	que	f	é	dada	por
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6.

7.

a)
b)

8.

9.

10.

11.

12.

3.7.

Sejam	f	e	g	duas	funções	definidas	em	ℝ	e	tais	que,	para	todo	x,	[g	(x)]4	+	[f
(x)]4	=	4.	Calcule	e	justifique.

Seja	f	definida	em	ℝ	e	suponha	que	existe	M	>	0	tal	que,	para	todo	x,	|	f	(x)	−	f
(p)	|	≤	M	|	x	−	p	|2.

Mostre	que	f	é	contínua	em	p.

Calcule,	caso	exista,	

Sejam	a,	b,	c	 reais	fixos	e	suponha	que,	para	todo	x,	 |	a	+	bx	+	cx2|	≤	 |	x	 |3.
Prove	que	a	=	b	=	c	=	0.

Prove:	

(Sugestão:	verifique	que	|	|	f	(x)	|	−	|	L	|	|	≤	|	f	(x)	−	L	|	e	aplique	o	teorema	do
confronto.)

A	afirmação

	é	falsa	ou	verdadeira?	Por	quê?

Dê	exemplo	de	uma	função	f	tal	que	 	existe,	mas	 	não
exista.

Prove:	

CONTINUIDADE	DAS	FUNÇÕES	TRIGONOMÉTRICAS

Lembrando	 que	 sen	 (−x)	 =	 −sen	 x,	 segue	 da	 propriedade	 (5)	 da	 Seção	 2.2,	 que
existe	r	>	0	tal	que,	para	todo	x,	com	|	x	|	<	r,

(Interprete	geometricamente	esta	desigualdade.)
Vamos,	agora,	utilizar	①	para	mostrar	que
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para	|	x	−	p	|	<	2r.	Temos

De	 	segue

De	①	segue	que,	para	|	x	−	p	|	<	2r.

De	③	e	④	resulta

|	sen	x	−	sen	p	|	≤	|	x	−	p	|

para	|	x	−	p	|	<	2r.
Fica	a	seu	cargo	mostrar	que

para	|	x	−	p	|	<	2r.

Teorema.	As	funções	sen	e	cos	são	contínuas.

Demonstração

Seja	p	um	real	qualquer.	Por	②,

|	sen	x	−	sen	p	|	≤	|	x	−	p	|

para	|	x	−	p	|	<	2r.	Como	 	segue,	do	teorema	do	confronto,	que

ou	seja,

Logo,	sen	x	é	contínua	em	p.	Como	p	foi	tomado	de	modo	arbitrário,	resulta	que	sen	x
é	 contínua	 em	 todo	p	 real,	 isto	 é,	 sen	 x	 é	 uma	 função	 contínua.	 Fica	 a	 seu	 cargo	 a
demonstração	da	continuidade	da	função	cos.					■

Deixamos	a	seu	cargo	provar,	como	exercício,	que	as	funções	tg,	sec,	cotg	e	cosec
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3.8.

são,	também,	contínuas.

O	LIMITE	FUNDAMENTAL	

Pela	propriedade	(5)	da	Seção	2.2	(veja	justificação	geométrica	ao	final	da	seção)
existe	r	>	0	tal	que

0	<	sen	x	<	x	<	tg	x

para	0	<	x	<	r.	Dividindo	por	sen	x

e,	portanto,	para	0	<	x	<	r,

Por	outro	lado,

Como	cos	

Assim,	para	todo	x,	com	0	<	|	x	|	<	r,

Como	 	pelo	teorema	do	confronto,

Observe	que,	para	módulo	de	x	suficientemente	pequeno,	 	ou	x	≅	sen	x.
Interprete	geometricamente.

EXEMPLO	1.	Calcule	

Solução
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ou	seja,

EXEMPLO	2.	Calcule	

Solução

pois,	

Justificação	geométrica	da	propriedade	(5)	da	Seção	2.2:

área	 	e	área	 	(Veja	figura	na	página	seguinte.)

Por	uma	regra	de	três	simples	calculamos	a	área	α	do	setor	circular	OAP:

2π	rad	−	área	π

x	rad	−	área	α

Portanto,	área	do	setor	circular	
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1.

2.	a)

b)

Assim,	para	 	(x	é	a	medida	em	rad	do	arco	AP),

ou

sen	x	<	x	<	tg	x.

■

Exercícios	3.8	

Calcule.

Prove	que	existe	r	>	0	tal	que

para	0	<	|	x	|	<	r.

Calcule	

3.	Calcule.
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3.9.

a)

b)

PROPRIEDADES	OPERATÓRIAS.	DEMONSTRAÇÃO	DO	TEOREMA	DO	CONFRONTO

Teorema.	Se	k	for	uma	constante,	 	então

Demonstração

|	f	(x)	+	g	(x)	−	(L	+	L1)	|	≤	|	f	(x)	−	L	|	+	|	g	(x)	−	L1	|.	Da	hipótese,	dado	∊	>	0,
existe	δ	>	0	tal	que

daí

0	<	|	x	−	p	|	<	δ	⇒	|	[f	(x)	+	g	(x)]	−	(L	+	L1)	|	<	∊.

Se	k	=	0,	kf	(x)	=	0	para	todo	x	∈	Df,	logo

Se	k	≠	0,	dado	∊	>	0,	existe	δ	>	0	tal	que

daí
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0	<	|	x	−	p	|	<	δ	⇒	|	kf	(x)	−	kL	|	<	∊.

Daí

Demonstração.	(Veja	Exemplo	5	da	Seção	3.5.)					■

Demonstração	(do	Teorema	do	Confronto).

Como,	por	hipótese,	 	dado	∊	>	0,	existem	δ1	>	0	e	δ2	>	0
tais	que

0	<	|	x	−	p	|	<	δ1	⇒	L	−	∊	<	f	(x)	<	L	+∊

e

0	<	|	x	−	p	|	<	δ2	⇒	L	−	∊	<	h	(x)	<	L	+∊.

Tomando-se	δ	=	mín	{δ1,	δ2,	r}	vem:

0	<	|	x	−	p	|	<	δ	⇒	L	−	∊	<	f	(x)	≤	g	(x)	≤	h	(x)	<	L	+∊;

logo

0	<	|	x	−	p	|	<	δ	⇒	L	−	∊	<	g	(x)	<	L	+∊,

ou	seja,
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4.1.

4

EXTENSÕES	DO	CONCEITO	DE	LIMITE

LIMITES	NO	INFINITO

Nosso	objetivo,	nesta	seção,	é	dar	um	significado	para	os	símbolos

(leia:	limite	de	f	(x),	para	x	tendendo	a	mais	infinito,	é	igual	a	L)	e

Definição	1.	Seja	f	uma	função	e	suponhamos	que	exista	a	tal	que	]a,	+∞[	⊂	Df.
Definimos

Definição	2.	Seja	f	uma	função	e	suponhamos	que	exista	a	tal	que	]−∞,	α[	⊂	Df.
Definimos
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a)

b)

EXEMPLO	1.	Calcule	 	e	justifique.

Solução

Quanto	maior	o	valor	de	x,	mais	próximo	de	zero	estará	

Justificação

Dado	∊	>	0	e	tomando-se	

e,	portanto,

Logo,	

Deixamos	para	o	leitor	as	demonstrações	dos	seguintes	teoremas:

Teorema	1.	Sejam	f	e	g	duas	funções	tais	que	Im	f	⊂	Dg	e	

Se	g	for	contínua	em	a,	então

Se	g	não	estiver	definida	em	a	e	se	 	existir,	então
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Teorema	 2.	 Seja	 k	 uma	 constante	 e	 suponhamos	 que	 	 e	

	Então

Observamos	que	os	teoremas	acima	continuam	válidos	se	substituirmos	“x	→	+∞”
por	“x	→	−∞”.

EXEMPLO	2.	Calcule	 	no	qual	n	>	0	é	um	número	natural	dado.

Solução

■

EXEMPLO	3.	Calcule	

Solução

Vamos	colocar	em	evidência	a	mais	alta	potência	de	x	que	ocorre	no	numerador	e
proceder	 da	 mesma	 forma	 no	 denominador.	 Deste	 modo,	 irão	 aparecer	 no

denominador	e	numerador	expressões	do	tipo	 	que	tendem	a	zero	para	x	→	+∞,	o

que	poderá	facilitar	o	cálculo	do	limite.
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1.

2.

3.

b)

4.

b)

Exercícios	4.1	

Calcule.

Sejam	 f	 e	 g	 definidas	 em	 [a,	 +	 ∞[	 e	 tais	 que	

	para	todo	x	≥	a.	Calcule,	caso

exista,	

a)	Calcule	

Mostre	que	existe	r	>	0	tal	que

a)	Calcule	

Mostre	que	existe	r	>	0	tal	que
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5.

4.2.

Sejam	f	e	g	definidas	em	[a,	+∞[	e	tais	que	f	(x)	≥	0	e	g	(x)	>	0	para	todo	x	≥

a.	Suponha	que	 	Prove	que	existe	r	>	0,	r	>	a,	 tal

que	para	todo	x	>	r

Conclua	daí	que	se	 	então	

LIMITES	INFINITOS

Definição	1.	Suponhamos	que	exista	a	tal	que	]a,	+∞[	⊂	Df.	Definimos

Definição	2.	Sejam	f	uma	função,	p	um	número	real	e	suponhamos	que	exista	b
tal	que	]p,	b[	⊂	Df.	Definimos
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Deixamos	 a	 seu	 cargo	 definir	
	

EXEMPLO	1.	Calcule	 	e	justifique.

Justificação

Dado	∊	>	0	e	tomando-se	

Logo,
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EXEMPLO	2.	Calcule	 	e	justifique.

Solução

Dado	∊	>	0	e	tomando-se	δ	=	∊
x	>	δ	⇒	x	>	∊.

Logo,

Teorema
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Demonstração.	 Para	 as	 demonstrações	 de	 (a)	 e	 (b),	 veja	 os	 Exemplos	 13	 e	 14.	 As
demonstrações	dos	demais	itens	ficam	a	cargo	do	leitor.					■

Observamos	que	o	teorema	anterior	continua	válido	se	substituirmos	“x	→	+∞”	por
“x	→	−∞”	ou	por	“x	→	p+”	ou	por	“x	→	p−”	ou	por	“x	→	p”.

Observação.	O	teorema	anterior	sugere-nos	como	operar	com	os	símbolos	+∞	e	−∞:
+∞	+	(+∞)	=	+∞,	−∞	+	(−∞)	=	−∞,	L	·	(+∞)	=	+∞	se	L	>	0,	L	·	(+∞)	=	−∞	se	L	<	0,	L	·
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(−∞)	=	−∞	se	L	>	0,	L	·	(−∞)	=	+∞	se	L	<	0,	L	+	(+∞)	=	+∞	se	L	∈	ℝ,	L	+	(−∞)	=	−∞
se	L	∈	ℝ,	+∞	·	(+∞)	=	+∞,	(−∞)	·	(−∞)	=	+∞	e	+∞	·	(−∞)	=	−∞.

Indeterminações

EXEMPLO	3.	Calcule	

Solução

EXEMPLO	4.	Calcule	

Solução

EXEMPLO	5.	Calcule	

Solução

O	próximo	exemplo	conta-nos	que,	se	f	(x)	tende	a	zero	para	x	→	p+	e	se	f	(x)	>	0,

então	 	tende	a	+	∞	para	x	→	p+.

EXEMPLO	6.	Suponha	que	 	e	que	existe	r	>	0	tal	que	f	(x)	>	0	para
p	<	x	<	p	+	r.	Prove	que

Solução

Pela	hipótese,	dado	∊	>	0,	existe	δ	>	0,	com	δ	<	r,	tal	que
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daí

Logo

EXEMPLO	7.	Calcule	

Solução

Interprete	graficamente.					■

EXEMPLO	8.	Calcule	

Solução

x	−	1	<	0	para	x	<	1	e	 	logo

Interprete	graficamente.					■

EXEMPLO	 9.	 Sejam	 f	 e	 g	 duas	 funções	 tais	 que	
	e	que	existe	r	>	0	tal	que	g	(x)	≠	0	para	p

<	 x	 <	 p	 +	 r.	 Prove	 que,	 nestas	 condições,	 ou	

	não	existe.

Solução
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Basta	 provar	 que	 	 não	 pode	 ser	 finito.	 Se	 tal	 limite	 fosse	 finito,

teríamos

que	é	uma	contradição.					■

EXEMPLO	10.	Calcule	

Solução

Pelo	exemplo	anterior,	o	limite	proposto	ou	é	+∞,	ou	−∞	ou	não	existe.	Vejamos	o
que	 realmente	 acontece.	 Inicialmente,	 vamos	 separar	 o	 fator	 que	 é	 responsável	 pelo
anulamento	do	denominador.

Como	 	resulta

■

EXEMPLO	11.	Calcule	

Solução

Como	1	é	raiz	do	numerador	e	denominador	vamos,	primeiro,	simplificar.

Então:
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a)

b)

■

EXEMPLO	12.	Calcule	

Solução

EXEMPLO	13.	Suponha	que	 	Prove

Solução

Segue	da	hipótese	que	dado	∊	>	0	existem	δ1	>	0	e	δ2	>	0,	tais	que

e

Tomando-se	δ	=	máx{δ1,	δ2}

Logo,	

Segue	da	hipótese	que,	dado	∊	>	0,	existe	δ	>	0	tal	que

daí

x	>	δ	⇒	f	(x)	g	(x)	>	∊,

ou	seja,
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a)

b)

1.

■

EXEMPLO	14.	Suponha	que	 	L,	real,	e	 	Prove

Solução

Segue	da	hipótese	que,	dado	∊	>	0,	existem	δ1	>	0	e	δ2	>	0	tais	que

Tomando-se	δ	=	máx{δ1,	δ2}

x	>	δ	⇒	f	(x)	g	(x)	>	∊.

	Pelo	item	a),	 	Então,	dado
∊	>	0,	existe	δ	>	0	tal	que

x	>	δ	⇒	−	f	(x)	g	(x)	>	∊.

Logo,

x	>	δ	⇒	f	(x)	g	(x)	<	−	∊.

■

Exercícios	4.2	

Calcule.
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2.

3.

4.

Prove	que	 	no	qual	n	>	0	é	um	natural.

Calcule.

Calcule.
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5.

6.

7.

8.

9.

4.3.

Dê	 exemplo	 de	 funções	 f	 e	 g	 tais	 que	

	mas	 	não	existe.

Dê	 exemplo	 de	 funções	 f	 e	 g	 tais	 que	
	e	

Dê	exemplo	de	funções	f	e	g	tais	que	

e	

Seja	f	(x)	=	ax3	+	bx2	+	cx	+	d,	em	que	a	>	0,	b,	c,	d	são	reais	dados.	Prove	que
existem	números	reais	x1	e	x2	tais	que	f	(x1)	<	0	e	f	(x2)	>	0.

Sejam	 f	 e	 g	 duas	 funções	 definidas	 em	 ]a,	 +∞[	 tais	 que	

	 para	 todo	x	>	a.	 Prove	 que	 existe	 r	 >	 0	 tal

que	para	todo	x	>	r,	f	(x)	>	g	(x).

SEQUÊNCIA	E	LIMITE	DE	SEQUÊNCIA
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Uma	sequência	ou	sucessão	de	números	reais	é	uma	função	n	↦	an,	a	valores	reais,
cujo	domínio	é	um	subconjunto	de	ℕ.	As	sequências	que	vão	interessar	ao	curso	são
aquelas	cujo	domínio	contém	um	subconjunto	do	tipo	{n	∈	ℕ	|	n	≥	q}	no	qual	q	é	um
natural	fixo;	só	consideraremos	tais	sequências.

A	notação	an	(leia:	a	índice	n)	é	usada	para	indicar	o	valor	que	a	sequência	assume
no	natural	n.	Diremos	que	an	é	o	termo	geral	da	sequência.

EXEMPLO	1.	Seja	a	sequência	de	termo	geral	an	=	2n.	Temos

a0	=	20,	a1	=	21,	a2	=	22,	…

■

EXEMPLO	2.	Seja	a	sequência	de	termo	geral	sn	=	1	+	2	+	3	+	…	+	n.	Temos

s1	=	1,	s2	=	1	+	2,	s3	=	1	+	2	+	3	etc.

Sejam	m	≤	n	dois	naturais.	O	símbolo

(leia:	 somatória	de	ak,	para	k	variando	de	m	 até	n)	 é	 usado	 para	 indicar	 a	 soma	 dos
termos	am,	am	+	1,	am	+	2,	…,	an:

EXEMPLO	3.

EXEMPLO	4.	Seja	a	sequência	de	termo	geral	 	Temos
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EXEMPLO	 5.	 Considere	 a	 sequência	 de	 termo	 geral	 	 t	 ≠0	 e	 t	 ≠	 1.

Verifique	que

Solução

Multiplicando	ambos	os	membros	por	t,	vem

Subtraindo	membro	a	membro	①	e	②,	obtemos

sn	(1	−	t)	=	1	−	tn	+	1

logo

Observe	que	sn	é	a	soma	dos	termos	da	progressão	geométrica	1,	t,	t2,	t3,	…,	tn.					■

Definição.	Consideremos	uma	 sequência	de	 termo	geral	an	 e	 seja	a	um	número
real.

Definimos
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Se	 	diremos	que	a	sequência	de	termo	geral	an	converge	para	a	ou,

simplesmente,	 que	an	 converge	 para	 a	 e	 escrevemos	 an	↦	 a.	 Se	
diremos	que	an	diverge	para	+∞	e	escrevemos	an	↦	+∞.	Se	 	diremos
que	an	diverge	para	−∞.

Observamos	que	as	definições	acima	são	exatamente	as	mesmas	que	demos	quando
tratamos	com	limite	de	uma	função	f	(x),	para	x	↦	+∞;	deste	modo,	 tudo	aquilo	que
dissemos	sobre	os	limites	da	forma	 	aplica-se	aqui.

EXEMPLO	6.	Calcule	

Solução

EXEMPLO	7.	 Suponha	 que	 existe	 um	natural	n1	 tal	 que	an	 ≥	bn	 para	 todo	n	 ≥	n1.
Prove	que	se	 	então	

Solução

Como	 	dado	∊	>	0	existe	um	natural	n2	tal	que

n	>	n2	⇒	bn	>	∊.

Tomando-se	n0	=	máx{n1,	n2}	resulta

n	>	n0	⇒	an	≥	bn	>	∊

logo

EXEMPLO	8.	Suponha	a	>	1.	Mostre	que
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Solução

a	=	1	+	h,	h	>	0.	Pela	fórmula	do	binômio	de	Newton

daí

ou	seja,

an	≥	1	+	nh	para	n	≥	1.

Como	h	>	0,	 	logo

EXEMPLO	9.	Supondo	0	<	b	<	1,	calcule	

Solução

Inicialmente,	 observamos	 que	 se	 	 então	

(verifique).

De	0	<	b	<	1,	segue	que	 	então

pois,	 	(Exemplo	8).					■

EXEMPLO	10.	Calcule	

Solução
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1.

EXEMPLO	11.	Calcule	

Solução

	(veja	Exemplo

5).

Como	 	resulta

A	igualdade

é	usualmente	escrita	na	forma

Exercícios	4.3	

Calcule.
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2.

3.

4.

a)

b)

Supondo	0	<	a	<	1,	mostre	que

Calcule	

(Sugestão:	 	para	k	≥	0.)

Seja	f	(x)	=	x,	x	∈	[0,	1].	Considere	a	sequência	de	termo	geral

Calcule	S3.	Observe	que,	geometricamente,	S3	pode	ser	interpretado	como	a
soma	das	áreas	dos	retângulos	hachurados.

Calcule	 	(Pensando	geometricamente,	qual	o	valor	esperado	para
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5.

6.

7.

a)

b)

o	limite?)

Calcule	

(Sugestão:	Verifique	que	 	Veja

Seção	17.2.)

Seja	f	(x)	=	x2,	x	∈	[0,	1].	Considere	as	sequências

e

Calcule

(Interprete	geometricamente	tais	limites.)	(Sugestão:	Utilize	o	Exercício	5.)

Uma	partícula	desloca-se	sobre	o	eixo	0x	com	aceleração	constante	a,	a	>	0.
Suponha	que	no	instante	t	=	0	a	velocidade	seja	zero.	A	velocidade	no	instante
t	é,	então,	dada	por	v	(t)	=	at.

Divida	o	intervalo	de	tempo	[0,	T]	em	n	intervalos	de	amplitudes	iguais	a	

No	instante	 	a	velocidade	será	 	no	instante	 	será	 	etc.	Supondo

n	suficientemente	grande,	o	espaço	percorrido	entre	os	instantes	 	será

aproximadamente	 	 (por	quê?);	 entre	os	 instantes	 	o	espaço

percorrido	será	aproximadamente	 etc.

Calcule	

Interprete	cinematicamente	e	geometricamente	o	limite	acima.
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8.

9.

a)
b)

c)

4.4.

Suponha	que	a	sequência	de	termo	geral	an,	n	natural,	 seja	crescente	 (isto	é,
quaisquer	que	sejam	os	naturais	n	e	m,	n	<	m	⇒	an	≤	am)	e	que	exista	M	real
tal	 que	 an	 ≤	M	 para	 todo	 natural	 n.	 Prove	 que	 	 existe	 e	 que	

	(Veja	Seção	A1.4.)

Considere	a	sequência	de	termo	geral

Prove	que	an	é	crescente.
Prove	que	para	todo	natural	n	≥	1

Prove	que	 	existe	e	que	é	menor	que	2.

(Compare	com	o	Exercício	3.)

(Sugestão	 para	 (b):	 Verifique	 que	

LIMITE	DE	FUNÇÃO	E	SEQUÊNCIAS

Seja	f	uma	 função	 tal	que	 	uma	sequência	que	converge	a	p,
com	an	∈	Df	e	an	≠	p	para	todo	natural	n.	É	natural	esperar	que

De	fato,	sendo	 	dado	∊	>	0,	existe	δ	>	0	tal	que

Como	an	↦	p,	para	o	δ	>	0	acima	existe	um	natural	n0	tal	que

n	>	n0	⇒	|	an	−	p	|	<	δ

e	como	an	≠	p,	para	todo	n,

De	①	e	②

n	>	n0	⇒	|	f	(an)	−	L	|	<	∊
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1.

a)

b)

2.

3.

logo

Em	particular,	se	f	for	contínua	em	p	e	se	an	convergir	a	p,	com	an	∈	Df	para	todo	n,
então	

Do	que	vimos	acima	resulta	que	se	existirem	duas	sequências	an	e	bn,	com	an	≠	p	e
bn	≠	p	 para	 todo	n,	 que	 convergem	 a	p	 e	 se	 	 então	

	 não	 existirá.	 Frequentemente,	 usa-se	 este	 processo	 para	 mostrar	 a	 não
existência	de	limite	de	uma	função	num	ponto.

EXEMPLO.	Seja	

Prove	que	para	todo	real	p,	 	não	existe.

Solução

Para	todo	natural	n	≠	0,	existem	an	e	bn,	an	racional	e	bn	irracional,	tais	que

Segue,	pelo	teorema	do	confronto,	que

Como	 	pois	f	(an)	=	1	para	todo	n	≠	0,	e	 	pois	f

(bn)	=	0	para	todo	n	≠	0,	resulta	que	 	não	existe.					■

Exercícios	4.4	

Seja	

Calcule	

Mostre	que,	para	todo	p	≠	0,	 	não	existe.

Seja	a	sequência	de	termo	geral	an,	com	an	>	0	para	 todo	natural	n.	Sabe-se

que	 	a	real,	e	que	 	para	todo	n.	Calcule	a.

Sejam	 f	 uma	 função,	 p	 um	 número	 real	 e	 suponha	 que	 existam	 duas
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4.

5.

6.

4.5

sequências	an	e	bn	convergindo	a	p,	com	an	e	bn	pertencentes	a	Df	para	todo	n,
tais	que

Podemos,	então,	afirmar	que	 	Por	quê?

Sabe-se	 que	 a	 sequência	 	 é

convergente.	Calcule	

Sabe-se	que	a	sequência	 	é	convergente.

Calcule	seu	limite.

Prove	que	 	não	existe.

O	NÚMERO	e

Nosso	objetivo,	nesta	seção,	é	provar	que	a	sequência	de	termo	geral

é	convergente.	Definiremos,	então,	o	número	e	como	o	limite	de	tal	sequência.

Para	provar	a	convergência	de	tal	sequência,	é	suficiente	provar	que	ela	é	crescente
e	que	existe	M	>	0	tal	que	an	<	M	para	todo	n	≥	1	(veja	Apêndice	1).

Primeiro,	vamos	provar	que	 	para	todo	n	≥	1.	Temos

daí
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Como	2n	≤	(n	+	1)!	para	todo	n	≥	1	 (verifique),	 resulta	que	 	para

todo	n	≥	1,	daí

e	como

resulta

Vamos	provar,	agora,	que	tal	sequência	é	crescente.	Sejam	n	e	m	naturais	≥	1	tais
que	n	<	m.	Temos

e

De	n	<	m	resulta

e	daí
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Observe:	

Segue	que

se	n	<	m.	Assim,	a	sequência	é	crescente.

158



5

TEOREMAS	DO	ANULAMENTO,	DO	VALOR
INTERMEDIÁRIO	E	DE	WEIERSTRASS

Os	 teoremas	 do	 anulamento	 (ou	 de	 Bolzano),	 do	 valor	 intermediário	 e	 de
Weierstrass	 são	 fundamentais	 para	 o	 desenvolvimento	 do	 curso.	 Neste	 capítulo,
apresentaremos	seus	enunciados	e	faremos	algumas	aplicações;	as	demonstrações	são
deixadas	para	o	Apêndice	2.

Teorema	 (do	 anulamento	 ou	 de	 Bolzano).	 Se	 f	 for	 contínua	 no	 intervalo
fechado	[a,	b]	e	se	f	(a)	e	f	(b)	tiverem	sinais	contrários,	então	existirá	pelo	menos
um	c	em	[a,	b]	tal	que	f	(c)	=	0.

EXEMPLO	1.	Mostre	que	a	equação	x3	−	4x	+	8	=	0	admite	pelo	menos	uma	raiz	real.
	
Solução

Consideremos	a	função	f	(x)	=	x3	−	4x	+	8;	temos	f(0)	=	8,	f(−3)	=	−7	e	f	é	contínua
em	[−3,	0]	(os	números	0	e	−3	foram	determinados	por	inspeção),	segue	do	teorema	do
anulamento	que	existe	pelo	menos	um	c	em	[−3,	0]	tal	que	f(c)	=	0,	isto	é,	a	equação	x3
−	4x	+	8	=	0	admite	pelo	menos	uma	raiz	real	entre	−3	e	0.	■

Teorema	(do	valor	intermediário).	Se	f	for	contínua	em	[a,	b]	e	se	γ	for	um	real
compreendido	entre	f	(a)	e	f	(b),	então	existirá	pelo	menos	um	c	em	[a,	b]	tal	que	f
(c)	=	γ.
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Observe	que	o	 teorema	do	anulamento	é	um	caso	particular	do	 teorema	do	valor
intermediário.

Teorema	(de	Weierstrass).	Se	f	 for	contínua	em	[a,	b],	 então	existirão	x1	 e	x2
em	[a,	b]	tais	que	f	(x1)	≤	f	(x)	≤	f	(x2)	para	todo	x	em	[a,	b].

O	teorema	de	Weierstrass	nos	conta	que,	se	f	for	contínua	em	[a,	b],	então	existirão
x1	e	x2	em	[a,	b]	tais	que	f	(x1)	é	o	valor	mínimo	de	f	em	[a,	b]	e	f	(x2)	o	valor	máximo
de	f	em	[a,	b].	Ou	de	outra	forma:	se	f	for	contínua	em	[a,	b],	então	f	assumirá	em	[a,
b]	valor	máximo	e	valor	mínimo.	Chamamos	sua	atenção	para	o	fato	de	a	hipótese	de	f
ser	contínua	no	intervalo	fechado	[a,	b]	ser	indispensável;	por	exemplo,	 	x

∈	]0,	1],	é	contínua	em	]0,	1]	mas	não	assume,	neste	intervalo,	valor	máximo.

EXEMPLO	2.	Prove	que	o	conjunto

admite	máximo	e	mínimo.
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1.

2.

3.

4.

5.

6.

a)
b)

7.
a)
b)

Solução

	 é	 contínua	 em	 	 segue,	 do	 teorema	 de	Weierstrass,	 que

existem	x1	e	x2	em	 	tais	que	f	(x1)	é	o	valor	mínimo	de	f	em	 	e	f	 (x2)	o

valor	máximo	de	f	neste	intervalo.	Assim

e

.

Veremos,	mais	adiante,	como	determinar	x1	e	x2.	■

Exercícios	

Seja	f	(x)	=	x5	+	x	+	1.	Justifique	a	afirmação:	f	tem	pelo	menos	uma	raiz	no
intervalo	[−1,	0].

Prove	que	a	equação	x3	−	4x	+	2	=	0	admite	três	raízes	reais	distintas.

Seja	α	a	menor	raiz	positiva	da	equação	x3	−	4x	+	2	=	0.	Determine	intervalos
de	amplitudes	 	que	contenham	α.

Prove	que	a	equação	 	admite	ao	menos	uma	raiz	real.

Prove	que	cada	um	dos	conjuntos	abaixo	admite	máximo	e	mínimo.

Seja	f	:	[−1,	1]	→	ℝ	dada	por	

Prove	que	f	(1)	é	o	valor	máximo	de	f.
Prove	que	existe	x1	∈	]−1,	0	[tal	que	f	(x1)	é	o	valor	mínimo	de	f.

	
																
Prove	que	todo	polinômio	do	grau	3	admite	pelo	menos	uma	raiz	real.
Prove	que	todo	polinômio	de	grau	ímpar	admite	pelo	menos	uma	raiz	real.
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8.

9.

10.

11.

12.

13.

14.

a)
b)

c)

15.

	
Seja	f	:	[a,	b]	→	ℝ	uma	função	contínua	e	suponha	que	f	não	seja	constante
em	[a,	b].	Prove	que	existem	números	reais	m	e	M,	com	m	<	M,	tais	que	Imf	=
[m,	M].

(Observação:	Imagem	de	f	=	Imf	=	{f	(x)	|	x	∈	[a,	b]}.)

Seja	 f:	 I	 →	ℝ	 contínua,	 em	 que	 I	 é	 um	 intervalo	 qualquer.	 Prove	 que	 a
imagem	de	f	é	um	intervalo.

Suponha	que	f:	[0,	1]	→	ℝ	seja	contínua,	f	(0)	=	1	e	que	f	(x)	é	racional	para
todo	x	em	[0,	1].	Prove	que	f	(x)	=	1,	para	todo	x	em	[0,	1].

Seja	f	 :	 [0,	1]	→	ℝ	contínua	e	 tal	que,	para	 todo	x	em	[0,	1],	0	≤	 f	 (x)	≤	1.
Prove	que	existe	c	em	[0,	1]	tal	que	f	(c)	=	c.

Seja	f	contínua	em	[a,	b]	e	 tal	que	 f	(a)	<	 f	 (b).	Suponha	que	quaisquer	que
sejam	s	e	t	em	[a,	b],	s	≠	t	⇒	f(s)	≠	f(t).	Prove	que	f	é	estritamente	crescente
em	[a,	b].

(Observação:	f	estritamente	crescente	em	[a,	b]	⇔	∀	s,	t	 em	 [a,	b],	s	<	 t	⇒
f(s)	<	f(t).)

Suponha	 f	 contínua	no	 intervalo	 I	 e	 que	 f	 admita	neste	 intervalo	uma	única
raiz	a.	Suponha,	ainda,	que	existe	x0	em	I,	com	x0	>	a,	tal	que	f	(x0)	>	0.	Prove
que,	para	todo	x	em	I,	com	x	>	a,	f	(x)	>	0.

Considere	a	função	f	dada	por

Verifique	que	f	é	contínua	em	[0,	+∞[.

Mostre	que	1	é	a	única	raiz	de	f	em	]0,	+∞[,	que	f	(2)	>	0	e	que	

Conclua	que	f	(x)	>	0	em	]1,	+∞[	e	que	f	x(x)	<	0	em]0,	1[.
	

Suponha	f	contínua	em	I	e	sejam	a	e	b	pertencentes	a	I,	com	a	<	b,	as	únicas
raízes	de	f	em	I.	Sejam	x0,	x1	e	x2	em	I	com	x0	<	a,	a	<	x1	<	b	e	b	<	x2.	Estude
o	sinal	de	f	em	I,	a	partir	dos	sinais	de	f	(x0),	f	(x1)	e	f	(x2).	Justifique.
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6.1.

6

FUNÇÕES	EXPONENCIAL	E	LOGARÍTMICA

POTÊNCIA	COM	EXPOENTE	REAL

Na	 Seção	 1.7	 definimos	 potência	 com	 expoente	 racional,	 	 e

estudamos	 suas	 principais	 propriedades.	 Nesta	 seção,	 vamos	 definir	 potência	 com
expoente	real.

Observamos,	inicialmente,	que,	se	f	e	g	são	duas	funções	definidas	e	contínuas	em
ℝ	tais	que	f(r)	=	g(r)	para	todo	racional	r,	então	f	(x)	=	g(x)	para	todo	real	x,	isto	é,	se
duas	 funções	 contínuas	 em	ℝ	 coincidem	 nos	 racionais,	 então	 elas	 são	 iguais	 (veja
Exercício	21,	Seção	3.2).

Seja,	agora,	a	>	0	e	a	≠	1	um	real	qualquer.	Se	existirem	funções	f	e	g	definidas	e
contínuas	em	ℝ	e	tais	que	para	todo	racional	r

f(r)	=	ar	e	g(r)	=	ar

então	 f	 (x)	=	g(x)	para	 todo	x	 real.	 Isto	 significa	que	poderá	existir	no	máximo	uma
função	definida	e	contínua	em	ℝ	e	que	coincide	com	ar	em	todo	racional	r.	O	próximo
teorema,	cuja	demonstração	é	deixada	para	o	Apêndice	3,	garante-nos	a	existência	de
uma	tal	função.

Teorema.	 Seja	a	 >	 0	 e	 a	 ≠	 1	 um	 real	 qualquer.	 Existe	 uma	 única	 função	 f,
definida	e	contínua	em	ℝ,	tal	que	f(r)	=	ar	para	todo	racional	r.

Damos,	agora,	a	seguinte

Definição.	Sejam	a	>	0,	a	≠	1,	e	f	como	no	teorema	anterior.	Definimos	a	potência
de	base	a	e	expoente	real	x	por
	

ax	=	f	(x).

A	função	f,	definida	em	ℝ,	e	dada	por	f	(x)	=	ax,	a	>	0	e	a	≠	1,	denomina-se	função
exponencial	de	base	a.

Sejam	a	>	0,	b	>	0,	x	e	y	reais	quaisquer;	provaremos	no	Apêndice	2	as	seguintes
propriedades:

(1)	axay	=	ax	+	y.
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(2)	(ax)y	=	axy.
(3)	(ab)x	=	axbx.
(4)	Se	a	>	1	e	x	<	y,	então	ax	<	ay.
(5)	Se	0	<	a	<	1	e	x	<	y,	então	ax	>	ay.

A	 propriedade	 (4)	 conta-nos	 que	 a	 função	 exponencial	 f	 (x)	 =	 ax,	 a	 >	 1,	 é
estritamente	crescente	em	ℝ.	A	(5)	conta-nos	que	f	(x)	=	ax,	0	<	a	<	1,	é	estritamente
decrescente	em	ℝ.

O	gráfico	de	f	(x)	=	ax	tem	o	seguinte	aspecto:

	
EXEMPLO	1.	Avalie	
	
Solução

Como	f	(x)	=	2x	é	contínua	em	

De	 	segue	

Como	 	 resulta	 que	 21,4142	 é	 uma	 aproximação	 por	 falta	 de	

	
EXEMPLO	2.	Esboce	o	gráfico	de
a)	f	(x)	=	2x.

Solução
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A	 função	 exponencial	 de	 base	 e	 (e	≅	 2,718	 281),	 f	 (x)	 =	 ex,	 desempenhará	 um
papel	bastante	importante	em	todo	o	nosso	curso.	Como	e	>	1,	o	gráfico	de	f	(x)	=	ex
tem	o	seguinte	aspecto

	
EXEMPLO	3.	Suponha	a	>	1.	Verifique	que

	
Solução
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1.

2.

a)
b)
c)
d)
e)
f)
g)
h)

a)	Já	vimos	(Exemplo	8	da	Seção	4.3)	que

Assim,	dado	∊	>	0	existe	um	natural	n0	tal	que

n	≥	n0	⇒	an	>	∊.

Como	ax	é	crescente	(a	>	1),	resulta

x	>	n0	⇒	ax	>	∈

logo

Exercícios	6.1	

Calcule.

	

Esboce	o	gráfico.

f	(x)	=	3x

g(x)	=	(0,12)x

f	(x)	=	e−x

g(x)	=	1	+	e−x

f	(x)	=	−e−x

g(x)	=	1	−	e−x

f	(x)	=	ex	+	e−x

g(x)	=	e−x	sen	x
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i)
j)

6.2.

f	(x)	=	e1/x

g(x)	=	e−x
2

LOGARITMO

Teorema.	Sejam	a	>	0,	a	≠	1,	 e	β	 >	 0	 dois	 reais	 quaisquer.	Então	 existe	 um
único	γ	real	tal	que
	

aγ	=	β.

Demonstração

Suponhamos,	primeiro,	a	>	1.	Como	 	segue

que	existem	reais	u	e	v,	com	u	<	v,	tais	que

au	<	β	<	av.

Como	f	(x)	=	ax	é	contínua	no	intervalo	fechado	[u,	v],	segue	do	teorema	do	valor
intermediário	que	existe	γ	em	[u,	v]	tal	que

f(γ)	=	β	ou	aγ	=	β.

A	unicidade	de	γ	segue	do	fato	de	f	ser	estritamente	crescente.
O	caso	0	<	a	<	1	deixamos	a	seu	cargo.	■

Sejam	a	>	0,	a	≠	1,	e	β	>	0	dois	reais	quaisquer.	O	único	número	real	γ	tal	que

aγ	=	β

denomina-se	logaritmo	de	β	na	base	a	e	indica-se	por	γ	=	loga	β.	Assim

γ	=	loga	β	⇔	aγ	=	β

Observe:	loga	β	somente	está	definido	para	β	>	0,	a	>	0	e	a	≠	1.

EXEMPLO	1.	Calcule.

a)	log2	4
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c)	log5	1

	
Solução

a)	x	=	log2	4	⇔	2x	=	4	⇔	x	=	2.	Logo

log2	4	=	2.

c)	log5	1	=	0,	pois	50	=	1.	■

Observação	importante

aγ	=	β	⇔	γ	=	loga	β

assim

aloga	β	=	β

O	logaritmo	de	β	na	base	a	é	o	expoente	que	se	deve	atribuir	à	base	a	para	reproduzir
β.

O	logaritmo	na	base	e	é	indicado	por	ln,	assim,	ln	=	loge.	Temos	então

y	=	ln	x	⇔	ey	=	x.

Da	observação	acima,	segue	que,	para	todo	x	>	0,

eln	x	=	x.

Sejam	a	 >	 0,	a	 ≠	 1,	b	 >	 0,	b	 ≠	 1,	α	 >	 0	 e	β	 >	 0	 reais	 quaisquer.	 São	 válidas	 as
seguintes	propriedades:

(1)	loga	α	β	=	loga	α	+	loga	β.

(2)	loga	αβ	=	β	loga	α.
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(4)	(Mudança	de	base)

(5)	Se	a	>	1	e	α	<	β,	então	loga	α	<	loga	β.
(6)	Se	0	<	a	<	1	e	α	<	β,	então	loga	α	>	loga	β.

Vamos	demonstrar	(1),	e	as	demais	ficam	a	seu	cargo.

Demonstração	de	(1).

X	=	loga	α	⇔	α	=	aX
Y	=	loga	β	⇔	β	=	aY

Assim,	α	β	=	aXaY;	pela	propriedade	(1)	das	potências	com	expoentes	reais,	aXaY	=
aX	+	Y;	segue	que

α	β	=	aX	+	Y	ou	X	+	Y	=	loga	α	β.

Portanto,

loga	α	+	loga	β	=	loga	α	β.	■

Seja	a	>	0,	a	≠	1.	A	 função	 f	dada	por	 f	 (x)	=	 loga	 x,	x	>	0,	denomina-se	 função
logarítmica	de	base	a.

A	propriedade	(5)	conta-nos	que	se	a	>	1,	a	função	logarítmica	f	(x)	=	loga	x,	x	>	0,
é	 estritamente	 crescente.	 Da	 propriedade	 (6)	 segue	 que	 se	 0	 <	 a	 <	 1,	 a	 função
logarítmica	f	(x)	=	loga	x,	x	>	0,	é	estritamente	decrescente.
	
EXEMPLO	2.	Esboce	o	gráfico

a)	f	(x)	=	log2	x.

Solução

a)	Domínio	de	f	=	{x	∈	ℝ	|	x	>	0}.
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b)	Df	=]0,	+∞[.

	
EXEMPLO	3.	Suponha	a	>	1.	Calcule	e	justifique.

Solução

Se	o	limite	existir,	deverá	ser	igual	a	+∞:

Justificação	(por	∊	e	δ)

Dado	∊	>	0,	precisamos	encontrar	δ	>	0	tal	que	x	>	δ	⇒	loga	x	>	∊.
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1.

Tomando-se	δ	=	a∊

x	>	δ	⇒	x	>	a∊	⇒	loga	x	>	∊.

Portanto,

b)	Vamos	mostrar	que

De	fato,

pois,	

Deixamos	a	seu	cargo	a	prova	de	que	f	(x)	=	loga	x	é	contínua.

Exercícios	6.2	

Calcule.

a)	log10	100

e)	log10	1
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2.

3.

4.

f)	log5	(−5)

g)	loga	1	(a	>	0	e	a	≠	1)

h)	log3	243

Determine	o	domínio.

a)	f	(x)	=	log2	(x	+	1)

b)	g	(x)	=	ln	(x2	−	1)

c)	g	(x)	=	ln	(−x)

d)	f	(x)	=	log3	|	x	|

f)	g	(x)	=	logx	3

	
Ache	o	domínio	e	esboce	o	gráfico.

a)	f	(x)	=	log3	x

b)	g	(x)	=	ln	x

d)	g	(x)	=	ln	(x	−	1)

e)	f	(x)	=	ln	(−x)

f)	g	(x)	=	ln	|	x	|

g)	f	(x)	=	|	ln	x	|

h)	g	(x)	=	|	ln	|	x	|	|

Calcule.
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6.3. O	LIMITE	

Já	 provamos	 que	 a	 sequência	 de	 termo	 geral	 converge	 para	 o

número	e	(veja	4.5),	isto	é,

Vamos	provar,	agora,	que

Sejam	n	>	0	um	natural	qualquer	e	x	>	0	um	real	qualquer.

daí

ou	seja,
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EXEMPLO	1.	Verifique	que	

Solução

Fazendo	x	=	−(t	+	1),	t	>	0,	vem

Para	x	→	−∞,	t	→	+∞,	assim

	
EXEMPLO	2.	Verifique	que

	
Solução

a)	Fazendo	 	vem

b)	Faça	você.

Segue	do	Exemplo	2	que

	

EXEMPLO	3.	Mostre	que	

	
Solução

Fazendo	u	=	eh	−	1	ou	h	=	ln	(1	+	u)	vem
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1.

2.

3.

(h	→	0	⇒	u	→	0);	assim

Exercícios	6.3	

Calcule.

Seja	a	>	0,	a	≠	1.	Mostre	que

	

Calcule.
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7.1.

7

DERIVADAS

INTRODUÇÃO

Sejam	f	uma	função	e	p	um	ponto	de	seu	domínio.	Limites	do	tipo

ocorrem	de	modo	natural	tanto	na	geometria	como	na	física.
Consideremos,	por	exemplo,	o	problema	de	definir	reta	tangente	ao	gráfico	de	f	no

ponto	(p,	f	(p)).	Evidentemente,	tal	reta	deve	passar	pelo	ponto	(p,	f	(p));	assim	a	reta
tangente	 fica	 determinada	 se	 dissermos	 qual	 deve	 ser	 seu	 coeficiente	 angular.
Consideremos,	então,	a	reta	sx	que	passa	pelos	pontos	(p,	f	(p))	e	(x,	f	(x)).

Coeficiente	angular	de	

Quando	x	tende	a	p,	o	coeficiente	angular	de	sx	tende	a	f′	(p),	onde

Observe	que	f′(p)	(leia:	f	linha	de	p)	é	apenas	uma	notação	para	indicar	o	valor	do
limite	acima.	Assim,	à	medida	que	x	vai	se	aproximando	de	p,	a	reta	sx	vai	tendendo
para	a	posição	da	reta	T	de	equação
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7.2.

É	natural,	então,	definir	a	reta	tangente	em	(p,	f	(p))	como	a	reta	de	equação	①.
Suponhamos,	 agora,	 que	 s	 =	 f	 (t)	 seja	 a	 equação	 horária	 do	movimento	 de	 uma

partícula	vinculada	a	uma	reta	orientada	na	qual	se	escolheu	uma	origem.	Isto	significa
dizer	que	a	função	f	fornece	a	cada	instante	a	abscissa	ocupada	pela	partícula	na	reta.	A
velocidade	média	da	partícula	entre	os	instantes	t0	e	t	é	definida	pelo	quociente

A	velocidade	(instantânea)	da	partícula	no	instante	t0	é	definida	como	o	limite

Esses	 exemplos	 são	 suficientes	 para	 levar-nos	 a	 estudar	 de	 modo	 puramente

abstrato	as	propriedades	do	limite	

DERIVADA	DE	UMA	FUNÇÃO

Definição.	Sejam	f	uma	função	e	p	um	ponto	de	seu	domínio.	O	limite

quando	 existe	 e	 é	 finito,	 denomina-se	derivada	 de	 f	 em	p	 e	 indica-se	 por	 f′	 (p)
(leia:	f	linha	de	p).	Assim

Se	f	admite	derivada	em	p,	então	diremos	que	f	é	derivável	ou	diferenciável	em	p.

Dizemos	que	f	é	derivável	ou	diferenciável	em	A	⊂	Df	se	f	for	derivável	em	cada	p
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∈	A.	Diremos,	 simplesmente,	que	 f	 é	uma	 função	derivável	ou	diferenciável	 se	 f	 for
derivável	em	cada	ponto	de	seu	domínio.

Observação.	Segue	das	propriedades	dos	limites	que

Assim

Conforme	vimos	na	introdução,	a	reta	de	equação

	

y	−	f	(p)	=	f′(p)	(x	−	p)

é,	por	definição,	a	reta	tangente	ao	gráfico	de	f	no	ponto	(p,	f	(p)).	Assim,	a	derivada
de	 f,	 em	 p,	 é	 o	 coeficiente	 angular	 da	 reta	 tangente	 ao	 gráfico	 de	 f	 no	 ponto	 de
abscissa	p.

EXEMPLO	1.	Seja	f	(x)	=	x2.	Calcule.

a)	f′(1)
b)	f′(x)
c)	f′(−3).
	
Solução

Assim

f′(1)	=	2.

(A	derivada	de	f	(x)	=	x2,	em	p	=	1,	é	igual	a	2.)

Como
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segue	que

Portanto,

f	(x)	=	x2	⇒	f′(x)	=	2x.

Observe	que	f′(x)	=	2x	é	uma	fórmula	que	nos	fornece	a	derivada	de	f	(x)	=	x2,	em
todo	x	real.

c)	Segue	de	(b)	que

f′(−3)	=	2	(−3)	=	−6.					■

EXEMPLO	2.	Seja	f	(x)	=	x2.	Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no
ponto

a)	(1,	f	(1)).
b)	(−1,	f	(−1)).
	
Solução

a)	A	equação	da	reta	tangente	em	(1,	f	(1))	é

substituindo	em	①	vem

y	−	1	=	2	(x	−	1)	ou	y	=	2x	−	1.

Assim	y	=	2x	−	1	é	a	equação	da	reta	tangente	ao	gráfico	de	f	(x)	=	x2,	no	ponto	(1,	f
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(1)).
b)	A	equação	da	reta	tangente	em	(−1,	f	(−1))	é

y	−	f	(−1)	=	f′(−1)	(x	−	(−1))

ou

y	−	f	(−1)	=	f′(−1)	(x	+	1)

substituindo	estes	valores	na	equação	vem

y	−	1	=	−2	(x	+	1)	ou	y	=	−2x	−	1

que	é	a	equação	da	reta	tangente	pedida.					■
	
EXEMPLO	3.	Seja	f	(x)	=	k	uma	função	constante.	Mostre	que	f′(x)	=	0	para	todo	x.
(A	derivada	de	uma	constante	é	zero.)
	
Solução

Como	f	(x)	=	k	para	todo	x,	resulta	f	(x	+	h)	=	k	para	todo	x	e	todo	h,	assim

EXEMPLO	4.	Seja	f	(x)	=	x.	Prove	que	f′(x)	=	1,	para	todo	x.
	
Solução

Assim:

f	(x)	=	x	⇒	f′(x)	=	1.					■

	
EXEMPLO	5.	Seja	 	Calcule	f′(2).
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Solução

Assim:

isto	é,

EXEMPLO	6.	Seja

Calcule,	caso	exista,	f′(0).
	
Solução

Assim,

Logo,	f′(0)	existe	e	f′(0)	=	0.					■

EXEMPLO	7.	Mostre	que	f	(x)	=	|	x	|	não	é	derivável	em	p	=	0.
	
Solução

daí
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logo,	 	não	existe,	ou	seja,	f	não	é	derivável	em	0.	Como	f′(0)	não

existe,	o	gráfico	de	f	(x)	=	|	x	|	não	admite	reta	tangente	em	(0,	f	(0)).
Sejam	f	uma	função	e	(p,	f	(p))	um	ponto	de	seu	gráfico.	Seja	sx	 a	 reta	que	passa

pelos	pontos	 (p,	 f	 (p))	 e	 (x,	 f	 (x)).	 Se	 f′(p)	 existir,	 então	 o	 gráfico	 de	 f	 admitirá	 reta
tangente	T	em	(p,	f	(p));	neste	caso,	à	medida	que	x	se	aproxima	de	p,	quer	pela	direita,
quer	pela	esquerda	(só	pela	direita,	se	f	não	estiver	definida	à	esquerda	de	p;	só	pela
esquerda,	se	f	não	estiver	definida	à	direita	de	p),	a	reta	sx	 tenderá	para	a	posição	da
reta	T.

Por	 outro	 lado,	 se,	 à	 medida	 que	 x	 tender	 a	 p	 pela	 direita,	 sx	 se	 aproximar	 da
posição	de	uma	 reta	T1	 e	 se	 à	medida	que	x	 se	 aproximar	de	p	 pela	 esquerda,	 sx	 se
aproximar	da	posição	de	uma	outra	reta	T2,	T2	≠	T1,	então	o	gráfico	de	f	não	admitirá
reta	tangente	em	(p,	f	(p)),	ou	seja,	f′(p)	não	existirá.

O	próximo	exemplo	destaca	uma	propriedade	importante	da	reta	tangente.					■
	
EXEMPLO	8.	Suponha	f	derivável	em	p	e	seja	ρ	(x),	x	∈	Df	e	x	≠	p,	dada	por

f	(x)	=	f	(p)	+	f′(p)	(x	−	p)	+	ρ	(x)	(x	−	p).

Mostre	que
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Solução

Daí

	

De	 	segue

Observação.	 Se	 definirmos	 ρ	 (p)	 =	 0,	 a	 igualdade	 que	 aparece	 no	 Exemplo	 8	 será
válida	em	x	=	p	e	a	função	ρ	(x)	tornar-se-á	contínua	em	p.

Façamos	no	exemplo	anterior	E	(x)	=	ρ	(x)	(x	−	p).	Então,	E	(x)	será	o	erro	que	se
comete	na	aproximação	de	f	pela	reta	tangente	em	(p,	f	(p)).

Quando	x	tende	a	p,	evidentemente	E	(x)	tende	a	zero.	O	Exemplo	8	nos	diz	mais:
nos	diz	que	quando	x	tende	a	p	o	erro	E	(x)	tende	a	zero	mais	rapidamente	que	x	−	p,
isto	é,

Fica	para	o	leitor	verificar	que,	entre	todas	as	retas	que	passam	por	(p,	f	(p)),	a	reta
tangente	em	(p,	f	(p))	é	a	única	que	aproxima	 f	(x)	de	modo	que	o	erro	 tenda	a	zero
mais	rapidamente	que	x	−	p.	(Sugestão:	Suponha	que	E	(x)	seja	o	erro	que	se	comete
na	aproximação	de	f	pela	reta	passando	por	(p,	f	(p)),	com	coeficiente	angular	m	≠	 f′
(p),	e	calcule	o	limite	acima.)
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1.

a)
b)
c)

2.

3.

a)
b)
c)

4.

5.

6.

7.

8.

Exercícios	7.2	

Seja	f	(x)	=	x2	+	1.	Calcule

f′(1)
f′(0)
f′(x)

	
Seja	f	(x)	=	2x.	Pensando	geometricamente,	qual	o	valor	que	você	espera	para
f′(p)?	Calcule	f′(p).

Seja	f	(x)	=	3x	+	2.	Calcule

f′	(2)
f′	(0)
f′(x)

	
Calcule	f′	(p),	pela	definição,	sendo	dados

	
Determine	a	equação	da	reta	tangente	em	(p,	f	(p))	sendo	dados

Calcule	f′(x),	pela	definição.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′	(1)	=	0.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′(x)	>	0	para	todo	x.
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9.

10.

11.

12.

13.

14.

15.

a)
b)

16.

a)
b)

17.

a)
b)
18.

19.

7.3.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′	(0)	<	f′	(1).

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	 f,	definida	e	contínua
em	ℝ,	tal	que	f′	(1)	não	exista.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′(x)	>	0	para	x	<	1	e	f′(x)	<	0	para	x	>	1.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′(x)	>	0	para	x	<	0,	f′(x)	<	0	para	0	<	x	<	2	e	f′(x)	>	0	para	x	>	2.

Dê	exemplo	(por	meio	de	um	gráfico)	de	uma	função	f,	definida	e	derivável
em	ℝ,	tal	que	f′	(0)	=	0	e	f′	(1)	=	0.

Mostre	que	a	função

não	é	derivável	em	p	=	1.	Esboce	o	gráfico	de	g.

	

Seja	

Mostre	que	g	é	derivável	em	p	=	1	e	calcule	g′	(1).
Esboce	o	gráfico	de	g.

	

Seja	

Esboce	o	gráfico	de	f.
f	é	derivável	em	p	=	0?	Em	caso	afirmativo,	calcule	f′	(0).

	

Seja	

Esboce	o	gráfico	de	g.
g	é	derivável	em	p	=	1?	Por	quê?

Construa	uma	função	f	:	ℝ	→	ℝ	que	seja	contínua	em	ℝ	e	que	seja	derivável
em	todos	os	pontos,	exceto	em	−1,	0	e	1.

Construa	uma	função	f	:	ℝ	→	ℝ	que	seja	contínua	em	ℝ	e	derivável	em	todos
os	pontos,	exceto	nos	números	inteiros.

DERIVADAS	DE	

185



Teorema.	Seja	n	≠	0	um	natural.	São	válidas	as	fórmulas	de	derivação:

a)	f	(x)	=	xn	⇒	f′(x)	=	nxn	−	1.
b)	f	(x)	=	x−n	⇒	f′(x)	=	−nx−n	−	1,	x	≠	0.

	 em	que	x	 >	 0	 se	n	 for	 par	 e	x	 ≠	 0	 se	n	 for

ímpar	(n	≥	2).

Demonstração

Fazendo	x	+	h	=	t	(t	→	x	quando	h	→	0)	vem

Assim,

ou	seja

f′(x)	=	x	n	−	1

Por	 (a),	 	 Como	

resulta

Portanto,

f	(x)	=	x−n	⇒	f′(x)	=	−nx−n	−	1.

	Temos
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Fazendo	 	resulta

	

Assim,	para	x	≠	0	e	x	no	domínio	de	f,
	

ou	seja

	
EXEMPLO	1.	Seja	f	(x)	=	x4.	Calcule.

a)	f′(x)

	
Solução

a)	f	(x)	=	x4	⇒	f′(x)	=	4x4	−	1,	ou	seja,

f′(x)	=	4x3.

b)	Como	f′(x)	=	4x3,	segue	 	ou	seja,

	
EXEMPLO	2.	Seja	f	(x)	=	x3.

a)	Calcule	f′(x).
b)	Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	1.
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Solução

a)	Como	f	(x)	=	x3,	segue	f′(x)	=	3x2.
b)	A	equação	da	reta	tangente	no	ponto	de	abscissa	1	é

y	−	f	(1)	=	f′(1)	(x	−	1)

Assim,	y	−	1	=	3	(x	−	1)	ou	y	=	3x	−	2	é	a	equação	da	reta	tangente	no	ponto	(1,	f
(1)).					■
	

EXEMPLO	3.	Calcule	f′(x)	sendo

a)	f	(x)	=	x−3.

Solução

a)	f	(x)	=	x−3	⇒	f′(x)	=	−3x−3	−	1	=	−3x−4;	assim,	f′(x)	=	−3x−4.

	
EXEMPLO	4.	Seja	 	Calcule

a)	f′(x)
b)	f′(3).

Solução

	
EXEMPLO	5.	 Determine	 a	 equação	 da	 reta	 tangente	 ao	 gráfico	 de	 	no
ponto	de	abscissa	8.
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1.

a)
b)
c)

2.

a)
b)

d)

g)
h)

3.

4.

Solução

A	equação	da	reta	tangente	no	ponto	de	abscissa	8	é

y	−	f	(8)	=	f′(8)	(x	−	8)

Assim,	 	ou	 	é	a	equação	da	 reta	 tangente	ao

gráfico	de	 	no	ponto	(8,	2).					■

Exercícios	7.3	

Seja	f	(x)	=	x5.	Calcule

f′(x)
f′(0)
f′(2)

	
Calcule	g′(x)	sendo	g	dada	por

g	(x)	=	x6

g	(x)	=	x100

g	(x)	=	x2

g	(x)	=	x
g	(x)	=	x−3

Determine	 a	 equação	 da	 reta	 tangente	 ao	 gráfico	 de	 	 no	 ponto	 de

abscissa	2.	Esboce	os	gráficos	de	f	e	da	reta	tangente.

Determine	a	equação	da	reta	 tangente	ao	gráfico	de	 	no	ponto	de

abscissa	1.	Esboce	os	gráficos	de	f	e	da	reta	tangente.
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5.

a)
b)
c)

6.

7.

8.

9.

7.4.

Seja	 	Calcule.

f′(x)
f′(1)
f′(−32)

	
Calcule	g′(x),	sendo	g	dada	por

Determine	a	equação	da	reta	 tangente	ao	gráfico	de	 	no	ponto	de
abscissa	1.	Esboce	os	gráficos	de	f	e	da	reta	tangente.

Seja	 r	 a	 reta	 tangente	 ao	 gráfico	 de	 	 no	 ponto	 de	 abscissa	 p.

Verifique	que	r	intercepta	o	eixo	x	no	ponto	de	abscissa	2p.

Determine	a	reta	que	é	tangente	ao	gráfico	de	f	(x)	=	x2	e	pararela	à	reta	y	=	4x
+	2.

DERIVADAS	DE	ex	e	ln	x

Teorema.	São	válidas	as	fórmulas	de	derivação

a)	f	(x)	=	ex	⇒	f′(x)	=	ex.

Demonstração
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1.

2.

3.

4.

a)
b)
c)
d)

5.

6.

a)
b)
c)

Exercícios	7.4	

Determine	 a	 equação	 da	 reta	 tangente	 ao	 gráfico	 de	 f	 (x)	 =	 ex	 no	 ponto	 de
abscissa	0.

Determine	a	equação	da	reta	tangente	ao	gráfico	de	 f	(x)	=	 ln	x	no	ponto	de
abscissa	1.	Esboce	os	gráficos	de	f	e	da	reta	tangente.

Seja	f	(x)	=	ax,	em	que	a	>	0	e	a	≠	1	é	um	real	dado.	Mostre	que	f′(x)	=	ax	ln	a.

Calcule	f′(x).

f	(x)	=	2x

f	(x)	=	5x

f	(x)	=	πx

f	(x)	=	ex

Seja	 g	 (x)	 =	 loga	 x,	 em	 que	 a	 >	 0	 e	 a	 ≠	 1	 é	 constante.	 Mostre	 que	

Calcule	g′(x)

g	(x)	=	log3	x
g	(x)	=	log5x
g	(x)	=	logπx
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d)

7.5.

g	(x)	=	ln	x

DERIVADAS	DAS	FUNÇÕES	TRIGONOMÉTRICAS

Teorema.	São	válidas	as	fórmulas	de	derivação.

a)	sen′x	=	cos	x.
b)	cos′x	=	−sen	x.
c)	tg′x	=	sec2	x.
d)	sec′x	=	sec	x	tg	x.
e)	cotg′x	=	−cosec2	x.
f)	cosec′x	=	−cosec	x	cotg	x.

Demonstração

Fazendo	t	=	x	+	h	(t	→	x	quando	h	→	0)
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1.

a)

2.

3.

a)
b)

4.

a)
b)

5.

6.

	

tg′x	=	sec2	x.

(d),	(e)	e	(f)	ficam	a	seu	cargo.					■

Exercícios	7.5	

Seja	f	(x)	=	sen	x.	Calcule.

f′(x)

Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	(x)	=	sen	x	no	ponto	de
abscissa	0.

Seja	f	(x)	=	cos	x.	Calcule.

f′(x)
f′(0)

Calcule	f′(x)	sendo

f	(x)	=	tg	x
f	(x)	=	sec	x

Determine	a	equação	da	reta	tangente	ao	gráfico	de	 f	(x)	=	 tg	x	no	ponto	de
abscissa	0.

Seja	f	(x)	=	cotg	x.	Calcule.
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a)

7.

a)

7.6.

f′(x)

Seja	g	(x)	=	cosec	x.	Calcule.

g′(x)

DERIVABILIDADE	E	CONTINUIDADE

A	função	 f	 (x)	=	 |	x	 |	 não	é	derivável	 em	p	=	0	 (Exemplo	7-7.2);	 entretanto,	 esta
função	é	contínua	em	p	=	0,	o	que	nos	mostra	que	uma	função	pode	ser	contínua	em
um	ponto	sem	ser	derivável	neste	ponto.

Deste	modo,	continuidade	não	implica	derivabilidade.
Entretanto,	derivabilidade	implica	continuidade,	como	mostra	o	seguinte	teorema.

Teorema.	Se	f	for	derivável	em	p,	então	f	será	contínua	em	p.

Demonstração

Pela	hipótese,	f	é	derivável	em	p,	logo	 	existe	e	é	igual	a	f′(p).

Precisamos	provar	que	f	é	contínua	em	p,	isto	é,	que	 	Temos

	
daí,
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a)
b)

b)

ou	seja,

	
e,	portanto,

Observação.	Segue	do	teorema	que,	se	f	não	for	contínua	em	p,	então	f	não	poderá	ser
derivável	em	p.
	

EXEMPLO	1.	A	função	 	é	derivável	em	p	=	1?	Por	quê?

Solução

f	não	é	contínua	em	1,	pois	 	é	diferente	de	 	Como	f

não	é	contínua	em	1,	segue	que	f	não	é	derivável	em	1.					■
	

EXEMPLO	2.	Seja	

f	é	contínua	em	1?
f	é	diferenciável	em	1?

Solução

	logo,	f	é	contínua	em	1.

Como	f	é	contínua	em	1,	f	poderá	ser	derivável	ou	não	em	1.	Temos
	

	
Assim,
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1.

a)
b)

logo,	 	não	existe,	ou	seja,	f	não	é	derivável	em	1.

	

	

EXEMPLO	3.	Seja	

a)	f	é	derivável	em	1?
b)	f	é	contínua	em	1?
	
Solução

Logo,	f	é	derivável	em	1	e	f′(1)	=	2.

b)	Como	f	é	derivável	em	1,	segue	que	f	é	contínua	em	1.					■

Exercícios	7.6	

Seja	

f	é	contínua	em	2?	Por	quê?
f	é	derivável	em	2?	Por	quê?
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2.

a)
b)

3.

a)
b)

7.7.

	

Seja	

f	é	derivável	em	0?	Justifique.
f	é	contínua	em	0?	Justifique.

	

Seja	

f	é	derivável	em	3?	Justifique.
f	é	contínua	em	3?	Justifique.

REGRAS	DE	DERIVAÇÃO

Teorema	 1.	 Sejam	 f	 e	 g	 deriváveis	 em	 p	 e	 seja	 k	 uma	 constante.	 Então	 as
funções	f	+	g,	kf	e	f	·	g	são	deriváveis	em	p	e	têm-se

(D1)	(f	+	g)′(p)	=	f′(p)	+	g′(p).
(D2)	(kf)′(p)	=	kf′(p).
(D3)	(f	·	g)′(p)	=	f′(p)	g(p)	+	f	(p)	g′(p).

Demonstração

(Em	palavras:	a	derivada	de	uma	soma	é	igual	à	soma	das	derivadas	das	parcelas.)

(kf)′	(p)	=	kf′(p).

	
(Em	palavras:	a	 derivada	 do	 produto	 de	 uma	 constante	 por	 uma	 função	 é	 igual	 ao
produto	da	constante	pela	derivada	da	função.)
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Observe	que,	 pelo	 fato	de	g	 ser	derivável	em	p,	g	 será	 contínua	 em	p,	 e,	 assim,	

(Em	palavras:	a	derivada	do	produto	de	duas	funções	é	igual	à	derivada	da	primeira
multiplicada	 pela	 segunda	 mais	 a	 primeira	 multiplicada	 pela	 derivada	 da
segunda.)					■

Teorema	2.	(Regra	do	quociente).	Se	f	e	g	forem	deriváveis	em	p	e	se	g	(p)	≠	0,

então	 	será	derivável	em	p	e

(Em	 palavras:	 a	 derivada	 de	 um	 quociente	 é	 igual	 à	 derivada	 do	 numerador
multiplicado	 pelo	 denominador	menos	 o	 numerador	multiplicado	 pela	 derivada
do	denominador,	sobre	o	quadrado	do	denominador.)

Demonstração

Somando	e	subtraindo	f(p)	g	(p)	ao	numerador	resulta

e,	portanto,
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Observação.	A	notação	[f	(x)]′	é	usada	com	frequência	para	indicar	a	derivada	de	f	(x)
em	x.

EXEMPLO	1.	Seja	f	(x)	=	4x3	+	x2.	Calcule.

a)	f′(x).
b)	f′(1).

Solução

Pela	(D2),	(4x3)′	=	4	·	(x3)′	=	4	·	3x2	=	12x2.

Segue

f′(x)	=	(4x3)′	+	(x2)′	=	12x2	+	2x,

ou	seja,

f′(x)	=	12x2	+	2x.

b)	Como	f′(x)	=	12x2	+	2x,	segue	f′(1)	=	14.					■
	
EXEMPLO	2.	Calcule	g′(x)	em	que	g(x)	=	5x4	+	4.

Solução

g′(x)	=	[5x4	+	4]′	=	(5x4)′	+	(4)′.

Já	vimos	que	a	derivada	de	uma	constante	é	zero,	assim,	 (4)′	=	0.	Como	(5x4)′	=
20x3	resulta

g′(x)	=	20x3.					■

	

EXEMPLO	3.	Calcule	f′(x)	em	que	
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Solução

Pela	regra	do	quociente

Como

(2x	+	3)′	=	2	e	(x2	+	1)′	=	2x

resulta

ou

	
EXEMPLO	4.	Seja	f	(x)	=	(3x2	+	1)	ex.	Calcule	f′(x).

Solução

Pela	regra	do	produto

f′(x)	=	(3x2	+	1)′	ex	+	(3x2	+	1)	(ex)′.

Como
(3x2	+	1)′	=	6x	e	(ex)′	=	ex

resulta

f′(x)	=	6x	ex	+	(3x2	+	1)	ex,

ou	seja,
f′(x)	=	(3x2	+	6x	+	1)	ex.					■

	

EXEMPLO	5.	Seja	 	Calcule	h′(x).

Solução

Pela	regra	do	quociente
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Assim,

EXEMPLO	6.	Seja	f	(x)	=	x3	+	ln	x.	Calcule	f′(x).

Solução

ou	seja,

	
EXEMPLO	7.	Sejam	f1,	f2,	…,	fn,	n	≥	2,	funções	deriváveis	em	p.	Prove,	por	indução
finita,	que	f1	+	f2	+	…	+	fn	é	derivável	em	p	e	que

	
Solução

i)	Para	n	=	2	é	verdadeira	(D1).
ii)	Seja	k	≥	2.	De

f1	+	f2	+	…	+	fk	+	fk	+	1	=	[f1	+	f2	+	…	+	fk]	+	fk	+	1

segue	que	se	a	afirmação	for	verdadeira	para	n	=	k	também	o	será	para	n	=	k	+	1.					■

EXEMPLO	8.	Calcule	a	derivada

Solução

Assim,
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1.

2.

3.

a)

b)
4.

a)
b)

c)
5.

6.

ou	seja,

	
Exercícios	7.7	

Calcule	f′(x).

Seja	 	Determine	a	equação	da	reta	tangente	ao	gráfico	de	g	no

ponto	(1,	g(1)).

Seja	

Determine	o	ponto	do	gráfico	de	f	em	que	a	reta	tangente,	neste	ponto,	seja
paralela	ao	eixo	x.
Esboce	o	gráfico	de	f.

Seja	f	(x)	=	x3	+	3x2	+	1.

Estude	o	sinal	de	f′(x).
Calcule	

Utilizando	as	informações	acima,	faça	um	esboço	do	gráfico	de	f.
Mesmo	exercício	que	o	anterior,	considerando	a	função	f	(x)	=	x3	+	x2	−	5x.

Seja	f	(x)	=	x3	+	3x.
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a)
b)
c)

7.

8.

a)

b)
c)

d)

9.

Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	0.
Estude	o	sinal	de	f′(x).
Esboce	o	gráfico	de	f.

	
Calcule	F′(x)	em	que	f	(x)	é	igual	a

Seja	

Determine	 os	 pontos	 do	 gráfico	 de	 g	 em	 que	 as	 retas	 tangentes,	 nestes
pontos,	sejam	paralelas	ao	eixo	x.
Estude	o	sinal	de	g′(x).
Calcule	

Utilizando	as	informações	acima,	faça	um	esboço	do	gráfico	de	g.
	

Calcule	f′(x)	em	que	f	(x)	é	igual	a
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10.

a)
b)
c)
d)

11.

a)
b)

12.

Seja	f	(x)	=	x2	sen	x	+	cos	x.	Calcule:

f′(x)
f′(0)
f′(3a)
f′(x2)

	
Seja	f	(x)	=	sen	x	+	cos	x,	0	≤	x	≤	2π.

Estude	o	sinal	de	f′(x).
Faça	um	esboço	do	gráfico	de	f.

	
Calcule	f′(x).
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13.

14.

a)
b)
c)

7.8.

Sejam	f,	g	e	h	funções	deriváveis.	Verifique	que

[	f	(x)	g(x)	h	(x)]′	=	f′(x)	g(x)	h	(x)	+	f	(x)	g′(x)	h	(x)	+	f	(x)	g(x)	h′(x).

Calcule	F′(x)	sendo	f	(x)	igual	a

x	ex	cos	x	b)
x2	(cos	x)	(1	+	ln	x)

ex	sen	x	cos	x

FUNÇÃO	DERIVADA	E	DERIVADAS	DE	ORDEM	SUPERIOR

Sejam	f	uma	função	e	A	o	conjunto	dos	x	para	os	quais	f′(x)	existe.	A	função	f′	:	A
→	ℝ	dada	por	x	↦	f′(x),	denomina-se	função	derivada	ou,	simplesmente,	derivada	de
f;	diremos,	ainda,	que	f′	é	a	derivada	de	1.ª	ordem	de	f.	A	derivada	de	1.ª	ordem	de	f	é
também	indicada	por	f(1).

A	derivada	de	f′	denomina-se	derivada	de	2.ª	ordem	de	f	e	é	indicada	por	f″	ou	por
f(2),	assim,	f″	=	(f′)′.	De	modo	análogo,	define-se	as	derivadas	de	ordens	superiores	a	2
de	f.
	
EXEMPLO	1.	Seja	f	(x)	=	3x3	−	6x	+	1.	Determine	f′,	f″	e	f″′.

Solução

f′(x)	=	9x2	−	6, para	todo	x;	assim	Df′	=	ℝ.
f″(x)	=	18x, para	todo	x;	Df″	=	ℝ.
f″′(x)	=	18, para	todo	x;	Df″′	=	ℝ.					■
	

EXEMPLO	2.	Seja	

Esboce	os	gráficos	de	f	e	f′.

	
Solução

Para	x	<	1,	f	(x)	=	x2,	daí	f′(x)	=	2x.
Para	x	>	1,	f	(x)	=	1,	daí	f′(x)	=	0.

Em	1	devemos	aplicar	a	definição	(se	você	já	desenhou	o	gráfico	de	 f,	deve	estar
prevendo	que	f′(1)	não	existe).

205



1.

2.

3.

daí

Logo,	f	não	é	derivável	em	1,	isto	é,	f′(1)	não	existe.	Portanto

Exercícios	7.8	

Determine	f′,	f″	e	f‴.

Esboce	os	gráficos	de	f,	f′	e	f″.

Determine	a	derivada	de	ordem	n.
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a)
b)
c)
d)

7.9.

f	(x)	=	ex

f	(x)	=	sen	x
f	(x)	=	cos	x
f	(x)	=	ln	x

NOTAÇÕES	PARA	A	DERIVADA

Frequentemente,	 usamos	 expressões	 do	 tipo	 y	 =	 f	 (x),	s	 =	 f(t),	u	 =	 f(v)	 etc.	 para
indicar	 uma	 função.	 Em	 y	 =	 f	 (x),	 y	 é	 a	 variável	 dependente	 e	 x	 a	 variável
independente;	em	s	=	f(t),	s	é	a	variável	dependente	e	t	a	variável	independente.

Se	a	função	vem	dada	por	y	=	f	(x),	a	notação,	devida	a	Leibniz,	 	(leia:	derivada

de	 y	 em	 relação	 a	 x)	 é	 usada	 para	 indicar	 a	 derivada	 de	 f	 em	 	 De

acordo	com	a	definição	de	derivada

Observe	que	o	símbolo	Δx	(leia:	delta	x)	desempenha	aqui	o	mesmo	papel	que	o	h

em	 	Fazendo	Δy	=	f	(x	+	Δx)	−	f	(x)	resulta

A	notação	 	é	usada	para	indicar	a	derivada	de	y	=	f	(x)	em

Usaremos,	 ainda,	 a	 notação	 	 para	 indicar	 a	 função	 derivada	 de	

A	derivada	de	y	=	f	(x),	em	x,	será	então	indicada	por	
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Se	 a	 função	 f	 for	 dada	 por	 s	 =	 f(t),	 as	 notações	 	 serão	 usadas	 para

indicar	f′(t).

Pela	definição	de	derivada

	
EXEMPLO	1.	Seja	y	=	5x3	+	x2.	Calcule	a	derivada.

Solução

Assim,

Observe	que	o	símbolo	 	aplicado	a	5x3	+	x2	 indica	a	derivada	de	5x3	+	x2,	 em

relação	a	x.	Da	mesma	forma,	a	notação	(5x3	+	x2)′	indica	a	derivada	de	5x3	+	x2,	em
relação	a	x.

■

EXEMPLO	2.	Calcule	 	sendo	

	
Solução

ou	seja,

Aqui	 as	 notações	 	 indicam	 a	 derivada	 de	 	 em

relação	a	t.
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					■

EXEMPLO	3.	Seja	y	=	u2.	Calcule	 	pela	definição.

Solução

Façamos	f(u)	=	u2.	Assim,

Assim,	

					■

	
EXEMPLO	4.	Calcule.

Solução

EXEMPLO	5.	Seja	x	=	t2	sen	t.	Calcule.

	
Solução
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Assim,

É	muito	 comum	a	notação	y	=	y	 (x)	 para	 indicar	 uma	 função;	 observe	 que	 nesta
notação	a	letra	y	está	sendo	usada	para	indicar	a	função	e	ao	mesmo	tempo	a	variável
dependente.

					■

EXEMPLO	6.	Sejam	u	=	u	(x)	e	v	=	v	(x)	funções	deriváveis	num	mesmo	conjunto	A.
Segue	das	regras	de	derivação	que	para	todo	x	em	A,	tem-se

	
EXEMPLO	7.	Seja	y	=	u2	em	que	u	=	u	(x)	é	uma	função	derivável.	Verifique	que

	
Solução

Assim,

EXEMPLO	8.	Calcule	 	em	que	y	=	(x2	+	3x)2.

Solução

Façamos	u	=	x2	+	3x.	Assim,
y	=	u2,	em	que	u	=	x2	+	3x.
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Pelo	exemplo	anterior,

Como	 	segue	que

Observação.	Vimos,	no	Exemplo	7,	que	sendo	y	=	u2	com	u	=	u	(x)	derivável,	resulta	

Por	outro	lado,	 	Assim,

em	que	 	deve	ser	calculado	em	u	=	u	(x).	Provaremos	mais	adiante	que	esta	regra

①,	conhecida	como	regra	da	cadeia,	é	válida	sempre	que	y	=	y	(u)	e	u	=	u	(x)	 forem
deriváveis.

A	seguir,	provaremos	①	num	caso	particular.					■

EXEMPLO	 9.	 (Regra	 da	 cadeia:	 um	 caso	 particular).	 Sejam	 y	 =	 f(u)	 e	 u	 =	 g(x)
funções	deriváveis	e	tais	que,	para	todo	x	no	domínio	de	g,	g(x)	pertença	ao	domínio
de	f.	Suponhamos,	ainda,	que

Δu	=	g(x	+	Δx)	−	g(x)	≠	0

para	todo	x	e	x	+	Δx	no	domínio	de	g,	com	Δx	≠	0.	Nestas	condições,	a	composta	y	=
f(g(x))	é	derivável	e	vale	a	regra	da	cadeia

em	que	 	deve	ser	calculada	em	u	=	g(x).

	
Solução
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Temos

Fazendo	Δu	=	g(x	+	Δx)	−	g(x)	resulta

em	que	 	deve	ser	calculada	em	u	=	g(x).	Assim

Observação.	De	 	temos,	também,

ou	seja,

[	f(g(x))]′	=	f′(g(x))	g′(x).

Seja	y	=	f	(x).	A	notação	 	será	usada	para	indicar	a	derivada	de

segunda	 ordem	 de	 f,	 em	 x,	 isto	 é,	 	 A	 derivada	 de	 3.ª	 ordem	 será,

também,	indicada	por	 	e	assim	por	diante.

EXEMPLO	10.	Seja	y	=	3x3	−	6x	+	2.	Calcule
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Solução

Assim,

	que	é	o	valor	da	derivada	segunda	em	x	=	0.					■

	
EXEMPLO	11.	Seja	y	=	t3x	em	que	x	=	x	(t)	é	uma	função	derivável	até	a	2.ª	ordem.
Verifique	que

Solução

a)	Observe	que	x	é	uma	função	derivável	de	t.	Pela	regra	do	produto,

ou	seja,

b)	Temos:

ou	seja,
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1.

2.

3.

4.

5.

6.

Exercícios	7.9	

Calcule	a	derivada.

Seja	 	Calcule.

Seja	 y	 =	 t2x,	 em	 que	 x	 =	 x	 (t)	 é	 uma	 função	 derivável.	 Calcule	

	2	e	x	=	3	para	t	=	1	(isto	é,	x	(1)	=	3).

Considere	a	função	y	=	xt3,	na	qual	x	=	x(t)	é	uma	função	derivável.	Calcule	

	sabendo	que	 	e	que	x	(2)	=	1	(isto	é,	x	=	1	para	t	=	2).

Considere	 a	 função	 	 na	 qual	 t	 =	 t	 (x)	 é	 uma	 função	 derivável.

Calcule	 	sabendo	que	 	e	que	t	=	2	para	x	=	1.	(Observe

que	t	está	sendo	olhado	como	função	de	x.)

Seja	 	Verifique	que	
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7.

8.

a)
b)

d)
e)

9.

10.

11.

12.

13.

14.

15.

16.

Seja	 	k	constante.	Verifique	que	

Calcule	a	derivada	segunda.

y	=	x3	+	2x	−	3
x	=	t	sen	t

y	=	t	ln	t
x	=	et	cos	t

Seja	y	=	x2	−	3x.	Verifique	que	

Seja	 	Verifique	que	

Seja	x	=	cos	t.	Verifique	que	

Seja	y	=	ex	cos	x.	Verifique	que	

Seja	y	=	tet.	Verifique	que	

Suponha	que	y	=	y	(r)	seja	derivável	até	a	2.ª	ordem.	Verifique	que

Seja	y	=	x2,	em	que	x	=	x	(t)	é	uma	função	derivável	até	a	2.ª	ordem.	Verifique
que

Suponha	que	x	=	x	(t)	seja	derivável	até	a	2.ª	ordem.	Verifique	que
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7.10. REGRA	DA	CADEIA	PARA	DERIVAÇÃO	DE	FUNÇÃO	COMPOSTA

Sejam	y	=	f	(x)	e	x	=	g	(t)	duas	funções	deriváveis,	com	Img	⊂	Df.	Nosso	objetivo,
a	 seguir,	 é	 provar	 que	 a	 composta	 h	 (t)	 =	 f(g(t))	 é	 derivável	 e	 que	 vale	 a	 regra	 da
cadeia

Antes	de	passarmos	à	demonstração	de	①,	vejamos	como	fica	a	regra	da	cadeia	na
notação	de	Leibniz.	Temos

Sendo	a	composta	dada	por	y	=	f(g(t)),	segue	de	①	que

ou

Assim,

em	que	 	deve	ser	calculado	em	x	=	g(t).

Suponhamos	y	=	f	(x)	derivável	em	p,	x	=	g(t)	derivável	em	t0,	com	p	=	g(t0),	e	Img
⊂	Df.	Seja	h	(t)	=	f(g(t)).	Vamos	provar	que

h′(t0)	=	f′(g(t0))	g′(t0).

Para	isto,	consideremos	a	função	T	dada	por
T(x)	=	f(p)	+	f′(p)	(x	−	p).
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Observe	que	o	gráfico	de	T	é	a	reta	tangente	ao	gráfico	de	f,	em	(p,	f(p)).	Temos

f	(x)	=	T	(x)	+	E(x)

	
ou

em	que	E	(x)	é	o	erro	que	se	comete	ao	aproximar	f	(x)	por	T	(x).	Conforme	vimos	no
Exemplo	8	da	Seção	7.2,	E	(x)	=	ρ	(x)	(x	−	p),	x	∈	Df,	onde	
Fazendo	em	②	x	=	g(t)	e	p	=	g(t0)e,	em	seguida,	dividindo	ambos	os	membros	por	t	−
t0,	(t	≠	t0),	obtemos

Temos

Por	outro	lado,	de	E	(x)	=	ρ	(x)	(x	−	p)	segue	E	(g(t))	=	ρ(g(t))	(g(t)	−	g(t0)).	Temos

Daí

Portanto
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7.11. APLICAÇÕES	DA	REGRA	DA	CADEIA

Pelo	que	vimos	na	seção	anterior,	sendo	y	=	f(u)	e	u	=	g(x)	deriváveis,	com	Img	⊂
Df,	então	a	derivada	da	composta	y	=	f(g(x))	é	dada	por

ou

ou

em	que	 	deve	ser	calculada	em	u	=	g(x).

EXEMPLO	1.	Calcule	a	derivada.

a)	y	=	e3x.
b)	y	=	sen	t2.
	
Solução

a)	y	=	eu,	em	que	u	=	3x.	Pela	regra	da	cadeia
	

Como	 	resulta

b)	y	=	sen	x,	em	que	x	=	t2.	Pela	regra	da	cadeia
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Como	 	resulta

ou	seja

Poderíamos,	também,	ter	obtido	 	aplicando	diretamente	a	fórmula	[f(g(t))]′	=	f′

(g(t))	g′(t).	Veja:

EXEMPLO	2.	Calcule	f′(x),	sendo

a)	f	(x)	=	(3x2	+	1)3.
b)	f	(x)	=	cos	3x.
	
Solução

a)	f	(x)	=	u3,	em	que	u	=	3x2	+	1.	Temos

ou	seja,

f′(x)	=	18x	(3x2	+	1)2.

b)	f′(x)	=	[cos	3x]′	=	cos′	3x	·	(3x)′	=	−3	sen	3x.					■

	

EXEMPLO	3.	Calcule	 	sendo	y	=	ln	(x2	+	3).

Solução

y	=	ln	u,	u	=	x2	+	3.
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ou	seja,

	
EXEMPLO	4.	Seja	 f	 :	ℝ	→	ℝ	uma	função	derivável	e	seja	g(x)	=	f(cos	x).	Calcule	

	supondo	

Solução

Pela	regra	da	cadeia
g′(x)	=	f′(cos	x)	(cos	x)′

ou	seja,

g′(x)	=	−sen	x	f′(cos	x).

Então

EXEMPLO	5.	Suponha	g	derivável.	Verifique	que

Solução

a)	y	=	eu,	u	=	g(x).

Assim,

ou	seja,

[eg	(x)]′	=	eg	(x)	g′(x).
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b)	y	=	ln	u,	u	=	g(x)

(c)	e	(d)	ficam	a	seu	cargo.					■
	
EXEMPLO	6.	Seja	y	=	x2	e3x.	Calcule	a	derivada.

Solução

Pela	regra	do	produto,

Como	(x2)′	=	2x	e	(e3x)′	=	e3x	(3x)′	=	3e3x	resulta

ou	seja,

EXEMPLO	7.	Seja	y	=	xe−2x.	Verifique	que

	
Solução

Então
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EXEMPLO	8.	Calcule	 	sendo	y	=	cos	5x.

Solução

	

EXEMPLO	9.	Calcule	

	

	
Solução

Como

resulta

Assim,
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EXEMPLO	10.	Seja	g	derivável	e	n	≠	0	inteiro.	Verifique	que

	
Solução

a)	y	=	un,	u	=	g(x).

ou	seja,

b)	Fica	a	seu	cargo.					■

EXEMPLO	11.	Seja	f	 :	ℝ	→	ℝ	uma	função	derivável	até	a	2.ª	ordem	e	seja	g	dada
por	g(x)	=	f	(x2).	Calcule	g″	(2),	supondo	f′(4)	=	2	e	f″	(4)	=	3.

Solução

g′(x)	=	f′(x2)	(x2)′	=	2x	f′(x2).

g″(x)	=	[2x	f′	(x2)]′	=	(2x)′	f′(x2)	+	2x	[f′(x2)]′.

Como	[f′(x2)]′	=	f″(x2)	(x2)′	=	f″(x2)	2x,	resulta

g″(x)	=	2	f′(x2)	+	4x2	f″(x2).

Então,

g″(2)	=	2	f′(4)	+	16	f″(4)

ou	seja,

g″(2)	=	52.					■
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EXEMPLO	12.	A	função	diferenciável	y	=	f	(x)	é	tal	que,	para	todo	x	∈	Df,

xf(x)	+	sen	f	(x)	=	4.

Mostre	que

para	todo	x	∈	Df,	com	x	+	cos	f	(x)	≠	0.

	
Solução

[xf	(x)	+	senf	(x)]′	=	4′.

[xf	(x)]′	+	[senf	(x)]′	=	0.

f	(x)	+	xf′	(x)	+	[cosf	(x)]	·	f′(x)	=	0

daí

f′(x)	[x	+	cos	f	(x)]	=	−f	(x),

ou	seja,

em	todo	x	∈	Df	com	x	+	cos	f	(x)	≠	0.					■

	
EXEMPLO	13.	Seja	y	=	x3,	em	que	x	=	x(t)	é	uma	função	derivável	até	a	2.ª	ordem.
Verifique	que

Solução

ou	seja,
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1.

2.

3.

4.

Como

resulta

ou	seja,

Exercícios	7.11	

Determine	a	derivada.

Seja	f	:	ℝ	→	ℝ	derivável	e	seja	g(t)	=	f(t2	+	1).	Supondo	f′(2)	=	5,	calcule	g
′(1).

Seja	f	 :	ℝ	→	ℝ	derivável	e	seja	g	dada	por	g(x)	=	f(e2x).	Supondo	 f′(1)	=	2,
calcule	g′(0).

Derive.
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5.

6.

7.

Calcule	a	derivada	segunda.

Seja	g	 :	ℝ	→	ℝ	uma	função	diferenciável	e	seja	 f	dada	por	 f	 (x)	=	x	g	 (x2).
Verifique	que

f′(x)	=	g(x2)	+	2x2	g′(x2).

Seja	g	 :	ℝ	→	ℝ	uma	função	diferenciável	e	seja	 f	dada	por	 f	 (x)	=	x	g	 (x2).
Calcule	f′(1)	supondo	g(1)	=	4	e	g′(1)	=	2.
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8.

9.

10.

11.

12.

13.

14.

15.

a)
b)
c)
d)

16.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)

Seja	g	:	ℝ	→	ℝ	diferenciável	tal	que	g(1)	=	2	e	g′(1)	=	3.	Calcule	f′(0),	sendo
f	dada	por	f	(x)	=	ex	g	(3x	+	1).

Seja	 f	 :	ℝ	→	ℝ	 derivável	 até	 a	 2.ª	 ordem	 e	 seja	 g	 dada	 por	 g(x)	 =	 f(e2x).
Verifique	que

g″(x)	=	4e2x	[f′(e2x)	+	e2xf″(e2x)].

Seja	y	=	e2x.	Verifique	que	

Seja	y	=	xe2x.	Verifique	que	

Determine	α	de	modo	que	y	=	eαx	verifique	a	equação	

Determine	α	de	modo	que	y	=	eαx	verifique	a	equação	

Seja	y	=	eαx,	 em	que	α	 é	 uma	 raiz	 da	 equação	 λ2	 +	aλ	 +	b	 =	 0,	 com	a	 e	b
constantes.	Verifique	que

Seja	g	uma	função	derivável.	Verifique	que

[tg	g(x)]′	=	sec2	g(x)	·	g′(x)
[sec	g(x)]′	=	sec	g(x)	tg	g(x)	·	g′(x)
[cotg	g(x)]′	=	−cosec2	g(x)	·	g′(x)
[cosec	g(x)]′	=	−cosec	g(x)	cotg	g(x)	·	g′(x)

	
Derive.

y	=	tg	3x
y	=	sec	4x
y	=	cotg	x2

y	=	sec	(tg	x)
y	=	sec	x3

y	=	etg	x2

y	=	cosec	2x
y	=	x3	tg	4x
y	=	ln	(sec	3x	+	tg	3x)
y	=	e−x	sec	x2
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l)
m)

17.

18.

19.

20.

21.

22.

23.

a)
b)
c)

y	=	(x2	+	cotg	x2)3

y	=	x2	tg	2x
	

Seja	y	=	cos	ωt,	ω	constante.	Verifique	que

Seja	y	=	e−t	cos	2t.	Verifique	que

Seja	 	Verifique	que

Seja	y	=	f	(x)	derivável	até	a	2.ª	ordem.	Verifique	que

Seja	 	Verifique	que

Seja	y	=	y	(x)	definida	no	intervalo	aberto	I	e	tal	que,	para	todo	x	em	I,

Verifique	que,	para	todo	x	em	I,

Seja	 y	 =	 f	 (x)	 uma	 função	 derivável	 num	 intervalo	 aberto	 I,	 com	 1	 ∈	 I.
Suponha	f(1)	=	1	e	que,	para	todo	x	em	I,	f′(x)	=	x	+	[f	(x)]3.

Mostre	que	f″(x)	existe	para	todo	x	em	I.
Calcule	f″(1).
Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	1.

	

228



24.

25.

26.

27.

28.

29.

a)
b)

30.

7.12.

Seja	y	=	y	(r)	derivável	até	a	2.ª	ordem.	Verifique	que

Seja	 	em	que	x	=	x	(t)	é	uma	função	definida	e	derivável	em	ℝ.

Verifique	que,	para	todo	t	real,

Seja	 	em	que	x	=	x	(t)	é	uma	função	derivável	num	intervalo	aberto	I.

Suponha	que,	para	todo	t	em	I,	 	β	constante.	Verifique	que	

Seja	f	uma	função	diferenciável	e	suponha	que,	para	todo	x	∈	Df,	3x2	+	x	sen	f

(x)	=	2.	Mostre	que	 	para	todo	x	∈	Df,	com	x	cos	f

(x)	≠	0.

A	função	diferenciável	y	=	f	(x)	é	tal	que,	para	todo	x	∈	Df,	o	ponto	(x,	f	(x))	é
solução	da	equação	xy3	+	2xy2	+	x	=	4.	Sabe-se	que	f(1)	=	1.	Calcule	f′(1).

Seja	f	:	]−r,	r[	→	ℝ	uma	função	derivável.	Prove

Se	f	for	uma	função	ímpar,	então	f′	será	par.
Se	f	for	função	par,	então	f′	será	ímpar.

	
Seja	g	:	ℝ	→	ℝ	uma	função	diferenciável	tal	que	g(2)	=	2	e	g′(2)	=	2.	Calcule
H′(2),	sendo	H	dada	por	H	(x)	=	g(g(g(x))).

DERIVADA	DE	f	(x)g(x)

Sejam	 f	 e	g	duas	 funções	deriváveis	num	mesmo	conjunto	A,	 com	 f	 (x)	 >	 0	 para
todo	x	∈	A.	Consideremos	a	função	definida	em	A	e	dada	por

y	=	f	(x)g(x).

Aplicando	ln	aos	dois	membros	obtemos

ln	y	=	g(x)	ln	f	(x)

e,	assim,
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y	=	eg	(x)	ln	f	(x),

ou	seja,

f	(x)g(x)	=	eg	(x)	ln	f	(x).

Então,

e,	portanto,

	
EXEMPLO	1.	Calcule	a	derivada.

a)	y	=	xx.
b)	y	=	3x.

Solução

a)	xx	=	ex	ln	x.

(xx)′	=	ex	ln	x	(x	ln	x)′	=	xx	(ln	x	+	1),

ou	seja,

(xx)′	=	xx	(1	+	ln	x).

b)	3x	=	ex	ln	3.

(3x)′	=	ex	ln	3	(x	ln	3)′.

Como	ln	3	é	constante,	(x	ln	3)′	=	x	′	ln	3	=	ln	3.	Assim,

(3x)′	=	3x	ln	3.					■

	
EXEMPLO	2.	Seja	a	>	0,	a	≠	1,	constante.	Mostre	que,	para	todo	x,

(ax)′	=	ax	ln	a.

	
Solução
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1.

ax	=	ex	ln	a

(ax)′	=	ex	ln	a	(x	ln	a)′.

Como	(x	ln	a)′	=	x′	ln	a	=	ln	a,	resulta
ax	=	ax	ln	a.					■

	
EXEMPLO	3.	Seja	α	uma	constante	real	qualquer.	Mostre	que,	para	todo	x	>	0,

(xα)′	=	α	xα	−	1.

	
Solução

xα	=	eα	ln	x

(xα)′	=	eα	ln	x	(α	ln	x)′.

Sendo	α	constante	 	Assim,

	
EXEMPLO	4.	Calcule	a	derivada.

b)	y	=	8x	+	log2	x.

Solução

b)	Pela	fórmula	de	mudança	de	base,

Então,

Exercícios	7.12	

Calcule	a	derivada.
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2.

3.

7.13.

Sejam	f	e	g	deriváveis	em	A,	com	f	(x)	>	0	em	A.	Verifique	que,	para	todo	x
em	A,

Observe:	①	é	a	derivada	de	f	(x)g(x),	supondo	f	constante;	②	é	a	derivada	de	 f	 (x)g(x),
supondo	g	constante.

Utilizando	o	resultado	obtido	no	Exercício	2,	calcule	a	derivada.

DERIVAÇÃO	DE	FUNÇÃO	DADA	IMPLICITAMENTE

Consideremos	uma	equação	nas	variáveis	x	e	y.	Dizemos	que	uma	função	y	=	f	(x)	é
dada	implicitamente	por	tal	equação	se,	para	todo	x	no	domínio	de	f,	o	ponto	(x,	f	(x))
for	solução	da	equação.
	
EXEMPLO	 1.	 Seja	 a	 equação	 x2	 +	 y2	 =	 1.	 A	 função	 	 é	 dada
implicitamente	pela	equação,	pois,	para	todo	x	em	[−1,	1],

Observe	 que	 a	 função	 	 é,	 também,	 dada	 implicitamente	 por	 tal
equação.

					■

EXEMPLO	2.	Determine	uma	função	que	seja	dada	implicitamente	pela	equação	y2	+
xy	−	1	=	0.
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Solução

A	função

é	dada	implicitamente	pela	equação.	É	claro	que

é	outra	função	dada	implicitamente	por	tal	equação.					■

EXEMPLO	3.	Mostre	que	existe	uma	única	função	y	=	f	(x),	definida	em	ℝ,	e	dada
implicitamente	pela	equação	y3	+	y	=	x.	Calcule	f(0),	f(10)	e	f(−2).

Solução

A	função	g(y)	=	y3	+	y	 é	estritamente	crescente	em	ℝ	 (verifique),	 contínua,	com	
	 Segue	 do	 teorema	 do	 valor

intermediário	que	para	cada	x	real	existe	ao	menos	um	número	 	tal	que

Como	g	 é	estritamente	crescente,	 tal	 	 é	o	único	número	 real	 satisfazendo	①.	A
função	f,	definida	em	ℝ,	e	que	a	cada	x	associa	f	(x),	em	que	f	(x)	é	o	único	real	tal	que

[f	(x)]3	+	f	(x)	=	x,

é	a	única	função	definida	em	ℝ	e	dada	implicitamente	pela	equação.

Cálculo	de	f(0)

[f(0)]3	+	f(0)	=	0	⇔	f(0)	[(f(0))2	+	1]	=	0;

assim,

f(0)	=	0.

Cálculo	de	f	(10)

[f(10)]3	+	f(10)	=	10;

233



deste	modo,	f(10)	é	 raiz	da	equação	y3	+	y	=	10.	Como	y	=	2	é	a	única	 raiz,	 resulta
f(10)	=	2.

Cálculo	de	f	(−2)

f(−2)	é	a	única	raiz	da	equação	y3	+	y	=	−2.	Assim,
f(−2)	=	−1.					■

EXEMPLO	4.	Seja	y	=	f	(x),	x	∈	ℝ,	a	função	dada	implicitamente	pela	equação	y3	+	y
=	x.	Suponha	que	f	seja	derivável.

a)	Mostre	que	

b)	Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	(10,	f(10)).

Solução

a)	Como	y	=	f	(x)	é	dada	implicitamente	pela	equação	y3	+	y	=	x,	segue	que,	para	todo
x,

[f	(x)]3	+	f	(x)	=	x

daí

Assim,
3	[f	(x)]2	f′(x)	+	f′(x)	=	1

e,	portanto,

Poderíamos,	 também,	 ter	chegado	a	este	resultado	trabalhando	diretamente	com	a
equação	y3	+	y	=	x:

ou
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Como	 	vem

e,	portanto,

b)	A	equação	da	reta	tangente	ao	gráfico	de	f	em	(10,	f(10))	é:

y	−	f(10)	=	f′(10)	(x	−	10)

Substituindo	na	equação	acima,	obtemos

	
EXEMPLO	5.	A	função	y	=	f	(x),	y	>	0,	é	dada	implicitamente	pela	equação	x2	+	y2	=
4.

a)	Determine	f	(x).

b)	Mostre	que	 	para	todo	x	no	domínio	de	f.

c)	Calcule	

Solução

Como	y	>	0,	resulta	

b)	Para	todo	x	no	domínio	de	f
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Como	 	vem

ou	seja,

c)	De	 	obtemos	 	Assim,

Consideremos	 a	 equação	 sen	 y	 =	 x.	 No	 intervalo	 	 a	 função	 sen	 y	 é

estritamente	 crescente	 e	 contínua.	 Assim,	 para	 cada	 x	∈	 [−1,	 1]	 existe	 um	 único	
	tal	que	sen	y	=	x.	Pois	bem,	a	função	y	=	y	(x)	definida	implicitamente

por	 essa	 equação	 e	 que	 a	 cada	 x	∈	 [−1,	 1]	 associa	 	 é	 denominada

função	arco-seno	e	é	indicada	por	y	=	arcsen	x.	Assim,	para	

sen	y	=	x	⇔	y	=	arcsen	x.

Observe	 que	 o	 domínio	 da	 função	 arcsen	 é	 o	 intervalo	 [−1,	 1]	 e	 a	 imagem	 o

intervalo	 	No	próximo	exemplo,	vamos	calcular	a	derivada	de	y	=	arcsen	x

supondo	 que	 tal	 derivada	 exista.	 (Veremos	mais	 adiante	 que	 y	 =	 arcsen	 x	 é	 de	 fato
derivável	em	]−1,	1[.)
	

EXEMPLO	6.	Supondo	que	y	=	arcsen	x	seja	derivável	em	]−1,	1[,	calcule	

Solução

y	=	arcsen	x	⇔	sen	y	=	x	

Temos
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daí

e,	 portanto,	 	 De	

	segue	 	Lembrando	que

sen	y	=	x,	resulta

Assim,

	

Consideremos,	agora,	a	equação	tg	y	=	x.	No	intervalo	 	a	função	tg	y	é

estritamente	 crescente	 e	 contínua.	 Além	 disto,	
	 Segue	 que	 para	 cada	 x	 ∈	ℝ	 existe	 um

único	 	tal	que	tg	y	=	x.	A	função	y	=	y	(x)	definida	implicitamente	por

essa	equação	e	que	a	cada	x	∈	associa	 	é	denominada	 função	arco-

tangente	e	é	indicada	por	y	=	arctg	x.	Assim,	para	

tg	y	=	x	⇔	y	=	arctg	x.					■

No	próximo	 exemplo,	 vamos	 calcular	 a	 derivada	 de	y	 =	 arctg	x	 supondo	que	 tal
derivada	exista.	(Veremos	mais	adiante	que	y	=	arctg	x	é	derivável	em	ℝ.)
	

EXEMPLO	7.	Supondo	y	=	arctg	x	derivável	em	ℝ,	calcule	

Solução

y	=	arctg	x	⇔	tg	y	=	x	
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a)

a)

Temos

daí

e,	portanto,	 	Lembrando	que	sec2y	=	1	+	tg2	y	e	tg	y	=	x,	resulta

Assim

EXEMPLO	8.	Calcule	a	derivada

y	=	xx
3

Solução

Você	 aprendeu	 na	 seção	 anterior	 como	 derivar	 tal	 função.	Vejamos,	 agora,	 outro
processo	para	derivá-la.

	
y	=	xx

3
	⇔	ln	y	=	x3	ln	x	(x	>	0)

o	que	significa	que	y	=	xx
3
	é	dada	implicitamente	por	ln	y	=	x3	ln	x.	Temos

	

daí

ou	seja,

238



b)

1.

2.

3.

4.

	
y′	=	y	[3x2	ln	x	+	x2].

Portanto,

	 Assim,	 a	 função	 	 é	 dada
implicitamente	por	y3	=	arcsen	x.	Temos

	

daí

	

ou	 seja,	

	
Exercícios	7.13	

Suponha	que	y	=	f	(x)	seja	uma	função	derivável	e	dada	implicitamente	pela
equação

	
xy2	+	y	+	x	=	1.

Mostre	que	 	em	todo	x	∈	Df	com	2x	f(x)	+	1	≠	0.

Determine	uma	 função	y	=	 f	 (x)	 que	 seja	 dada	 implicitamente	 pela	 equação
xy2	+	y	+	x	=	1.

A	função	y	=	f	(x)	é	dada	implicitamente	pela	equação	xy	+	3	=	2x.	Mostre	que

	Calcule	

Expresse	 	 em	 termos	 de	 x	 e	 de	 y,	 em	 que	 y	 =	 f	 (x)	 é	 uma	 função

diferenciável	dada	implicitamente	pela	equação
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a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
l)
m)

5.

6.

7.

8.

a)
b)

9.

10.

11.

x2	−	y2	=	4
y3	+	x2y	=	x	+	4
xy2	+	2y	=	3
y5	+	y	=	x
x2	+	4y2	=	3
xy	+	y3	=	x
x2	+	y2	+	2y	=	0
x2y3	+	xy	=	2
xey	+	xy	=	3
y	+	ln	(x2	+	y2)	=	4
5y	+	cos	y	=	xy
2y	+	sen	y	=	x

A	função	y	=	f	(x),	y	>	0,	é	dada	implicitamente	por	x2	+	4y2	=	2.	Determine	a
equação	da	reta	tangente	ao	gráfico	de	f,	no	ponto	de	abscissa	1.

Determine	 a	 equação	 da	 reta	 tangente	 à	 elipse	 	 no	 ponto	 (x0,

y0),	y0	≠	0.

Verifique	que	y0x	+x0y	 =	 2	 é	 a	 equação	 da	 reta	 tangente	 à	 curva	 xy	 =	 1	 no
ponto	(x0,	y0),	x0	>	0.	Conclua	que	(x0,	y0)	é	o	ponto	médio	do	segmento	AB,
em	que	A	e	B	 são	as	 interseções	da	 reta	 tangente,	em	(x0,	y0),	 com	os	eixos
coordenados.

Suponha	 que	 y	 =	 f	 (x)	 seja	 uma	 função	 derivável	 dada	 implicitamente	 pela
equação	y3	+	2xy2	+	x	=	4.	Suponha,	ainda,	que	1	∈	Df.

Calcule	f(1).
Determine	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	1.

	

A	 reta	 tangente	 à	 curva	 	 no	 ponto	 (x0,	 y0),	 x0	 >	 0	 e	 y0	 >	 0,
intercepta	 os	 eixos	 x	 e	 y	 nos	 pontos	A	 e	B,	 respectivamente.	Mostre	 que	 a
distância	de	A	e	B	não	depende	de	(x0,	y0).

A	reta	tangente	à	curva	xy	−	x2	=	1	no	ponto	(x0,	y0),	x0	>	0,	intercepta	o	eixo	y
no	ponto	B.	Mostre	que	a	área	do	triângulo	de	vértices	(0,	0),	(x0,	y0)	e	B	não
depende	de	(x0,	y0).

A	 função	y	=	 f	 (x)	 é	 dada	 implicitamente	 pela	 equação	 3y2	+	2xy	 −	 x2	 =	 3.
Sabe-se	que,	para	todo	x	∈	Df,	f	(x)	>	0	e	que	 f	 admite	uma	 reta	 tangente	T
paralela	à	reta	5y	−	x	=	2.	Determine	T.
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7.14. INTERPRETAÇÃO	DE	 	COMO	UM	QUOCIENTE.	DIFERENCIAL

Até	aqui,	 	tem	sido	visto	como	uma	simples	notação	para	a	derivada	de	y	=	f	(x).

O	que	 faremos	 a	 seguir	 é	 interpretar	 	 como	um	quociente	 entre	 dois	 acréscimos.

Inicialmente,	 vamos	 olhar	 para	 dx	 como	 um	 acréscimo	 em	 x	 e,	 em	 seguida,
procuraremos	uma	interpretação	para	o	acréscimo	dy.

Sabemos	que	f′(x)	é	o	coeficiente	angular	da	reta	tangente	T,	no	ponto	(x,	f	 (x)),	 e

que	 	Se	olharmos,	então,	para	dy	como	o	acréscimo	na	ordenada	da	reta

tangente	T,	correspondente	ao	acréscimo	dx	em	x,	teremos	

ou

dy	=	f′(x)	dx

Observe	que

Δy	=	f	(x	+	dx)	−	f	(x)

é	o	acréscimo	que	a	função	sofre	quando	se	passa	de	x	a	x	+	dx.	O	acréscimo	dy	pode
então	ser	olhado	como	um	valor	aproximado	para	Δy;	evidentemente,	o	erro	“Δy	−	dy”
que	se	comete	na	aproximação	de	Δy	por	dy	será	tanto	menor	quanto	menor	for	dx.

Fixado	x,	podemos	olhar	para	a	função	linear	que	a	cada	dx	∈	ℝ,	associa	dy	∈	ℝ,
em	que	dy	=	f′(x)dx.	Tal	função	denomina-se	diferencial	de	f	em	x,	ou,	simplesmente,
diferencial	de	y	=	f	(x).
	
EXEMPLO	1.	Seja	y	=	x2.	Relacione	Δy	com	dy.
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Solução

Assim,	a	diferencial	de	y	=	x2	é	dada	por

dy	=	2x	dx.

Por	outro	lado

Δy	=	(x	+	dx)2	−	x2

ou	seja,

Δy	=	2x	dx	+	(dx)2

e,	portanto,	Δy	−	dy	=	(dx)2.	Observe	que,	quanto	menor	for	dx,	mais	próximo	estará	dy
de	Δy.					■

	
EXEMPLO	2.	Seja	A	=	πr2.	Calcule	a	diferencial	de	A	=	A	(r).	Interprete.

	
Solução

A	diferencial	de	A	=	πr2	é	dada	por

dA	=	2πr	dr.
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Interpretação

A	=	πr2	é	a	fórmula	que	nos	fornece	a	área	de	um	círculo	em	função	do	raio	r;	dA	=
2πr	dr	é	então	um	valor	aproximado	para	o	acréscimo	ΔA	na	área	A	correspondente	ao
acréscimo	dr	em	r.

Observe	que	ΔA	 é	a	área	da	 região	hachurada	e	que	dA	=	2πr	dr	 é	a	área	de	um
retângulo	 de	 comprimento	 2πr	 (2πr	 é	 o	 comprimento	 da	 circunferência	 de	 raio	 r)	 e
altura	dr.	Vamos	calcular	o	erro	que	se	comete	na	aproximação

Temos

ΔA	=	π(r	+	dr)2	−	πr2	=	2πr	dr	+	π	(dr)2

daí

ΔA	−	dA	=	π	(dr)2.

Deste	modo,	o	erro	que	se	comete	na	aproximação	①	é	igual	a	π	(dr)2,	que	é	a	área
de	um	círculo	de	raio	dr.					■

EXEMPLO	 3.	 Utilizando	 a	 diferencial,	 calcule	 um	 valor	 aproximado	 para	 o
acréscimo	Δy	que	a	função	y	=	x2	 sofre	quando	se	passa	de	x	=	1	a	1	+	dx	=	1,001.
Calcule	o	erro.

	
Solução

A	diferencial	de	y	=	x2,	em	x,	é:

dy	=	2x	dx.
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Em	x	=	1

dy	=	2dx.

Como	dx	=	0,001,	resulta	que

dy	=	0,002

é	um	valor	aproximado	para	o	acréscimo

Δy	=	(1,001)2	−	12.

O	erro	que	se	comete	na	aproximação	Δy	≅	dy	é	igual	a	0,000001.	Observe	que	1
+	dy	=	1,002	é	um	valor	aproximado	para	(1,001)2,	com	erro	igual	a	10−6.					■
	
EXEMPLO	 4.	 Utilizando	 a	 diferencial,	 calcule	 um	 valor	 aproximado	 para	
Avalie	o	erro.

Solução

Consideremos	 a	 função	 	 Primeiro	 vamos	 calcular	dy	 para	 x	 =	 1	 e	dx	 =
0,01.

Temos:
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1.

a)
b)
c)

d)
2.

a)
b)

3.

a)
b)

4.

a)
b)

7.15.

Em	x	=	1,

Portanto,	 	 para	 dx	 =	 0,01.	 Assim,	 1	 +	 dy	 =	 1,005	 é	 um	 valor

aproximado	 (por	 excesso)	 de	 	 Como	 1,004	 é	 um	 valor	 aproximado	 por	 falta
((1,004)2	<	1,01)	segue	que

com	erro,	em	módulo,	inferior	a	0,001.					■

Exercícios	7.14	

Calcule	a	diferencial.

y	=	x3

y	=	x2	−	2x

Seja	A	=	l2,	l	>	0.

Calcule	a	diferencial.
Interprete	geometricamente	o	erro	que	se	comete	na	aproximação	de	ΔA	por
dA.	(Olhe	para	A	=	l2	como	a	fórmula	para	o	cálculo	da	área	do	quadrado	de
lado	l.)

Seja	

Calcule	a	diferencial.
Interprete	geometricamente	dV.	(Lembre-se	de	que	V	é	o	volume	da	esfera
de	raio	r	e	que	4πr2	é	a	área	da	superfície	esférica	de	raio	r.)

Seja	y	=	x2	+	3x.

Calcule	a	diferencial.
Calcule	 o	 erro	 que	 se	 comete	 na	 aproximação	 de	 Δy	 por	 dy.	 Interprete
graficamente.

VELOCIDADE	E	ACELERAÇÃO.	TAXA	DE	VARIAÇÃO

Suponhamos	que	uma	partícula	se	desloca	sobre	o	eixo	x	com	função	de	posição	x
=	f(t).	Isto	significa	dizer	que	a	função	f	fornece	a	cada	instante	a	posição	ocupada	pela
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a)

b)

c)

d)

b)

partícula	 na	 reta.	 A	 velocidade	 média	 da	 partícula	 entre	 os	 instantes	 t	 e	 t	 +	 Δt	 é
definida	 pelo	 quociente	 	 em	 que	 Δx	 =	 f(t	 +	 Δt)	 −	 f(t)	 é	 o

deslocamento	da	partícula	entre	os	 instantes	 t	e	 t	+	Δt.	A	velocidade	da	partícula	no
instante	t	é	definida	como	em	que	a	derivada	(caso	exista)	de	f	em	t,	isto	é:

Assim,	pela	definição	de	derivada,

A	aceleração	no	instante	t	é	definida	como	em	que	a	derivada	em	t	da	função	v	=	v	(t):

Pela	definição	de	derivada,

O	quociente	 	é	a	aceleração	média	entre	os	instantes	t	e	t	+	Δt.

	
EXEMPLO	1.	Uma	 partícula	move-se	 sobre	 o	 eixo	 x	 de	modo	 que	 no	 instante	 t	 a
posição	x	é	dada	por	x	=	t2,	t	≥	0,	em	que	x	é	dado	em	metros	e	t	em	segundos.

Determine	as	posições	ocupadas	pela	partícula	nos	instantes	t	=	0,	t	=	1	e	t	=	2.

Qual	a	velocidade	no	instante	t?

Qual	a	aceleração	no	instante	t?

Esboce	o	gráfico	da	função	de	posição.

	
Solução

	

	A	velocidade	no	instante	t	é	v	(t)	=	2t	(m/s).
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c)

a)

b)

c)

d)

b)

c)

	

	A	aceleração	no	instante	t	é

	
a	(t)	=	2	(m/s2)

A	aceleração	é	constante	e	igual	a	2.

EXEMPLO	2.	Uma	 partícula	move-se	 sobre	 o	 eixo	 x	 de	modo	 que	 no	 instante	 t	 a
posição	x	é	dada	por	x	=	cos	3t,	t	≥	0.	Suponha	x	dado	em	metros	e	t	em	segundos.

Determine	 as	 posições	 ocupadas	 pela	 partícula	 nos	 instantes	 t	 =	 0,	

	

Qual	a	velocidade	no	instante	t?

Qual	a	aceleração	no	instante	t?

Esboce	o	gráfico	da	função	de	posição.

	
Solução

A	partícula	executa	um	movimento	de	“vaivém”	entre	as	posições	−1	e	1.

	sen	3t	ou	v	(t)	=	−3	sen	3t	(m/s).

	cos	3t	ou	a	(t)	=	−9	cos	3t	(m/s2).

Observe	 que	 a	 aceleração	 é	 proporcional	 à	 posição,	 com	 coeficiente	 de
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proporcionalidade	−9,	isto	é,	

	
EXEMPLO	3.	Um	ponto	move-se	ao	longo	do	gráfico	de	y	=	x2	+	1	de	tal	modo	que	a
sua	abscissa	x	 varia	 a	 uma	 velocidade	 constante	 de	 3	 (cm/s).	Qual	 é,	 quando	 x	 =	 4
(cm),	a	velocidade	da	ordenada	y?

Solução

Façamos,	por	um	momento,	x	=	g(t)	e	seja	t0	o	instante	em	que	x	=	4,	isto	é,	g(t0)	=

4.	O	que	se	quer	então	é	a	velocidade	da	abscissa	y	no	instante	t0,	ou	seja,	

Como	y	=	x2	+	1,	pela	regra	da	cadeia,

Como	 	Como	x	=	4	para	t	=	t0,	resulta

Deste	modo,	para	x	=	4,	a	velocidade	da	ordenada	y	será	24	(cm/s).

Seja	a	função	y	=	f	(x).	A	razão	 	é	a	taxa	média	de	variação

de	f	entre	x	e	x	+	Δx.	A	derivada	de	f,	em	x,	é	também	denominada	taxa	de	variação	de

f,	em	x.	Referir-nos-emos	a	 	como	a	taxa	de	variação	de	y	em	relação	a	x.

Seja	Δy	=	f	(x	+	Δx)	−	f	(x);	para	Δx	suficientemente	pequeno

Δy	≅	f′(x)	Δx.

Assim,	para	Δx	suficientemente	pequeno,	a	variação	Δy	em	y	é	aproximadamente	f′
(x)	vezes	a	variação	Δx	em	x.					■
	
EXEMPLO	 4.	 O	 raio	 r	 de	 uma	 esfera	 está	 variando,	 com	 o	 tempo,	 a	 uma	 taxa
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constante	de	5	(m/s).	Com	que	taxa	estará	variando	o	volume	da	esfera	no	instante	em
que	r	=	2	(m)?

Solução

Seja	 t0	 o	 instante	 em	 que	 r	 =	 2.	 Queremos	 calcular	 	 Sabemos	 que	

	Pela	regra	da	cadeia

Como	 	resulta

Para	 t	=	 t0,	r	 =	 2;	 logo,	 	No	 instante	 em	que	 r	 =	 2,	 o

volume	estará	variando	a	uma	taxa	de	80π	(m3/s).					■
	
EXEMPLO	 5.	 Um	 ponto	 P	 move-se	 sobre	 a	 elipse	 4x2	 +	 y2	 =	 1.	 Sabe-se	 que	 as
coordenadas	 x	 (t)	 e	 y(t)	 de	 P	 são	 funções	 definidas	 e	 deriváveis	 num	 intervalo	 I.
Verifique	que

em	todo	t	∈	I,	com	y	(t)	≠	0.

Solução

Como	

resulta

e,	portanto,
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1.

a)
b)
c)
d)

2.

em	todo	t	∈	I,	com	y	(t)	≠	0.					■

EXEMPLO	6.	A	função	x	=	f(t),	t	∈	I,	é	derivável	até	a	2.ª	ordem	no	intervalo	aberto	I
e	seu	gráfico	tem	o	seguinte	aspecto

O	que	é	mais	razoável	esperar	que	ocorra:	f″(t)	<	0	em	I	ou	f″(t)	≥	0	em	I?
	
Solução

Vamos	pensar	 cinematicamente.	À	medida	que	o	 tempo	aumenta,	 a	partícula,	 em
intervalos	de	tempos	iguais,	percorre	espaços	cada	vez	maiores,	o	que	significa	que	a
velocidade	está	aumentando,	logo,	é	razoável	esperar	que	a	aceleração	seja	positiva	em
I,	ou	seja,	f″(t)	≥	0	em	I.

Exercícios	7.15	

Uma	partícula	desloca-se	sobre	o	eixo	x	com	função	de	posição	x	=	3	+	2t	−
t2,	t	≥	0.

Qual	a	velocidade	no	instante	t?
Qual	a	aceleração	no	instante	t?
Estude	a	variação	do	sinal	de	v	(t).
Esboce	o	gráfico	da	função	de	posição.

Uma	 partícula	 desloca-se	 sobre	 o	 eixo	 x	 com	 função	 de	 posição	

250



a)
b)
c)

3.

a)
b)
c)

d)

4.

5.

6.

7.

a)
b)
c)

d)

Determine	a	velocidade	no	instante	t.
Qual	a	aceleração	no	instante	t?
Esboce	o	gráfico	da	função	de	posição.

A	 posição	 de	 uma	 partícula	 que	 se	 desloca	 ao	 longo	 do	 eixo	 x	 depende	 do
tempo	de	acordo	com	a	equação	x	=	−t3	+	3t2,	t	≥	0.

Estude	o	sinal	de	v	(t).
Estude	o	sinal	de	a	(t).

Calcule	

Esboce	o	gráfico	da	função	x	=	−t3	+	3t2,	t	≥	0

Seja	x	=	f(t),	t	≥	0,	tal	que	f(0)	=	1,	 	para	t	≥	0.	Como	você

acha	que	deve	ser	o	gráfico	de	f	?	Por	quê?

A	função	x	=	f(t),	t	∈	I,	é	derivável	até	a	2.ª	ordem	no	intervalo	aberto	I	e	seu
gráfico	tem	o	seguinte	aspecto

O	que	é	mais	razoável	esperar	que	ocorra:	f″(t)	≤	0	ou	f″(t)	>	0	em	I?	Por	quê?

Seja	x	=	f(t),	t	≥	0,	tal	que	f(0)	=	1	e	f(1)	=	2.	Suponha,	ainda,	que	 	para

t	≥	0;	 	Como	você	acha	que	deve

ser	o	gráfico	de	f	Por	quê?

Seja	f(t)	=	t3	+	3t2.

Estude	o	sinal	de	f′(t).
Estude	o	sinal	de	f″(t).

Calcule	

Utilizando	as	informações	acima,	esboce	o	gráfico	de	f.
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8.

a)
b)
c)

d)
9.

a)
b)

c)
d)

e)

f)
10.

a)
b)

c)
d)

11.

12.

13.

Seja	

Estude	o	sinal	de	f′(t).
Estude	o	sinal	de	f″(t).

Calcule	

Utilizando	as	informações	acima,	esboce	o	gráfico	de	f.
A	posição	de	uma	partícula	que	 se	desloca	 ao	 longo	do	 eixo	x	varia	com	o
tempo	 segundo	 a	 equação	 	 em	 que	 v0	 e	 k	 são

constantes	estritamente	positivas.

Qual	a	velocidade	no	instante	t?
Com	 argumentos	 físicos,	 justifique	 a	 afirmação:	 “a	 função	 é	 estritamente
crescente”.
Qual	a	aceleração	no	instante	t?
Com	argumentos	físicos,	justifique	a	afirmação:	“o	gráfico	da	função	tem	a
concavidade	voltada	para	baixo”.

Calcule	

Esboce	o	gráfico	da	função.
A	equação	do	movimento	de	uma	partícula	que	se	desloca	ao	longo	do	eixo	x
é	x	=	e−t	sen	t,	t	≥	0.

Determine	a	velocidade	e	a	aceleração	no	instante	t.

Calcule	

Esboce	o	gráfico	da	função.
Interprete	tal	movimento.

Um	 ponto	 P	 move-se	 sobre	 a	 parábola	 y	 =	 3x2	 −	 2x.	 Suponha	 que	 as

coordenadas	x	(t)	e	y	(t)	de	P	 são	deriváveis	e	que	 	Pergunta-se:	em

que	 ponto	 da	 parábola	 a	 velocidade	 da	 ordenada	 y	 de	 P	 é	 o	 triplo	 da
velocidade	da	abscissa	x	de	P?

Um	ponto	P	move-se	ao	longo	do	gráfico	de	 	de	tal	modo	que	a

sua	abscissa	x	varia	a	uma	velocidade	constante	de	5	(m/s).	Qual	a	velocidade
de	y	no	instante	em	que	x	=	10	m?

Um	ponto	desloca-se	sobre	a	hipérbole	xy	=	4	de	tal	modo	que	a	velocidade

de	 y	 é	 	 β	 constante.	 Mostre	 que	 a	 aceleração	 da	 abscissa	 x	 é	
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14.

15.

16.

17.

18.

19.

Um	ponto	move-se	ao	longo	da	elipse	x2	+	4y2	=	1.	A	abscissa	x	está	variando

a	uma	velocidade	 	Mostre	que

Um	ponto	move-se	sobre	a	semicircunferência	x2	+	y2	=	5,	y	≥	0.	Suponha	

	Determine	o	ponto	da	curva	em	que	a	velocidade	de	y	seja	o	dobro	da

de	x.

Uma	escada	de	8	m	está	encostada	em	uma	parede.	Se	a	extremidade	inferior
da	escada	for	afastada	do	pé	da	parede	a	uma	velocidade	constante	de	2	(m/s),
com	que	velocidade	 a	 extremidade	 superior	 estará	 descendo	no	 instante	 em
que	a	inferior	estiver	a	3	m	da	parede?

Suponha	 que	 os	 comprimentos	 dos	 segmentos	 AB	 e	 0B	 sejam,
respectivamente,	5	cm	e	3	cm.	Suponha,	ainda,	que	θ	esteja	variando	a	uma

taxa	constante	de	 	Determine	a	velocidade	de	A,	quando	

Enche-se	um	reservatório,	cuja	forma	é	a	de	um	cone	circular	reto,	de	água	a
uma	taxa	de	0,1	m3/s.	O	vértice	está	a	15	m	do	topo	e	o	raio	do	topo	é	de	10
m.	Com	que	velocidade	o	nível	h	da	água	está	subindo	no	instante	em	que	h	=
5	m.

O	ponto	P	=	(x,	y)	está	fixo	à	roda	de	raio	1	m,	que	rola,	sem	escorregamento,
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20.

21.

7.16.

sobre	 o	 eixo	 x.	 O	 ângulo	 θ	 está	 variando	 a	 uma	 taxa	 constante	 de	 1	 rad/s.
Expresse	as	velocidades	da	abscissa	e	da	ordenada	de	P	em	função	de	θ.

Um	ponto	P	move-se	sobre	a	parábola	y2	=	x,	x	>	0	e	y	>	0.	A	abscissa	x	está
variando	com	uma	aceleração	que,	em	cada	instante,	é	o	dobro	do	quadrado
da	 velocidade	 da	 ordenada	 y.	 Mostre	 que	 a	 ordenada	 está	 variando	 com
aceleração	nula.

Dois	pontos	P	e	Q	deslocam-se,	respectivamente,	nos	eixos	x	e	y	de	modo	que
a	soma	das	distâncias	de	P	a	R	e	de	R	a	Q	mantém-se	constante	e	 igual	a	e
durante	o	movimento,	 em	que	R	 =	 (0,	h)	 é	 um	ponto	 fixo.	 (Veja	 a	 figura	 a
seguir.)

Relacione	a	velocidade	 	de	Q	com	a	velocidade	 	de	P.

PROBLEMAS	ENVOLVENDO	RETA	TANGENTE	E	RETA	NORMAL	AO	GRÁFICO	DE
UMA	FUNÇÃO

Seja	f	uma	função	derivável	em	p.	Já	vimos	que,	por	definição,	f′(p)	é	o	coeficiente
angular	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	p	e	que

y	−	f(p)	=	f′(p)	(x	−	p)

é	a	equação	da	reta	tangente	em	(p,	f(p)).
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A	 reta	 que	 passa	 por	 (p,	 f(p)),	 e	 que	 é	 perpendicular	 à	 reta	 tangente	 acima,
denomina-se	reta	normal	ao	gráfico	de	 f	em	(p,	f(p)).	Se	 f′(p)	≠	0,	 a	equação	da	 reta
normal	no	ponto	de	abscissa	p	será

Lembrete.	Você	aprendeu	na	geometria	analítica	que,	se	y	=	mx	+	n	e	y	=	m1x	+	n1	são
retas	perpendiculares,	então	os	seus	coeficientes	angulares	satisfazem	a	relação

Assim,	 como	 f′(p)	 é	 o	 coeficiente	 angular	 da	 reta	 tangente	 em	 (p,	 f(p)),	 a	 reta

normal,	neste	ponto,	terá	coeficiente	angular	 	desde	que	f′(p)	≠	0.	Se	f′(p)	=	0,

a	equação	da	reta	normal	em	(p,	f(p))	será	x	=	p.

EXEMPLO	1.	Seja	f	(x)	=	x2	−	x.	Determine	as	equações	das	retas	tangente	e	normal
no	ponto	de	abscissa	0.

Solução

Reta	tangente	no	ponto	de	abscissa	0:

y	−	f(0)	=	f′(0)	(x	−	0)

255



Substituindo	na	equação	acima	vem

y	−	0	=	−1	(x	−	0)	ou	y	=	−x.

Assim,	y	=	−x	é	a	equação	da	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	0.	Reta
normal	no	ponto	de	abscissa	0:

Como	f(0)	=	0	e	f′(0)	=	−1,	resulta

y	=	x

que	é	a	equação	da	reta	normal	no	ponto	de	abscissa	0.	■

EXEMPLO	2.	Seja	f	(x)	=	2x	+	1.	Determine	a	equação	da	reta	tangente	ao	gráfico	de
f	no	ponto	de	abscissa	3.

Solução

A	equação	da	reta	tangente	em	(3,	f(3))	é:

y	−	f(3)	=	f′	(3)	(x	−	3)

Assim,	y	−	7	=	2	(x	−	3)	ou	y	=	2x	+	1,	é	a	equação	da	reta	tangente	em	(3,	f(3)).
Observe	que	a	reta	tangente	ao	gráfico	de	f	em	(3,	f(3))	coincide	com	o	gráfico	de	f	!!

Observação.	A	nossa	definição	de	reta	tangente	não	exige	que	a	reta	tangente	“toque”
a	curva	num	único	ponto.	■

EXEMPLO	3.	r	é	uma	reta	que	passa	por	(1,	−1)	e	é	tangente	ao	gráfico	de	f	(x)	=	x3	−
x.	Determine	r.

Solução

Supondo	que	r	seja	tangente	ao	gráfico	de	f	em	(p,	f(p)),	a	equação	de	r	será

y	−	f(p)	=	f′(p)	(x	−	p)
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e,	portanto,	y	−	p3	+	p	=	(3p2	−	1)	 (x	−	p).	O	problema,	agora,	 consiste	em	achar	p.
Como	r	passa	por	(1,	−1)	(observe:	x	=	1	⇒	y	=	−1)

−1	−	p3	+	p	=	(3p2	−	1)	(1	−	p)

ou

2p3	−	3p2	=	0

e,	assim,	p	=	0	ou	 	Portanto,	a	equação	de	r	será

ou	seja,

Pelo	ponto	(1,	−1)	passam	duas	retas	que	são	tangentes	ao	gráfico	de	f.

EXEMPLO	4.	Determine	a	equação	da	reta	 tangente	ao	gráfico	de	 f	(x)	=	x2	+	3x	 e
paralela	à	reta	y	=	2x	+	3.

Solução

Supondo	que	a	reta	procurada	seja	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	p,
sua	equação	será

y	−	f(p)	=	f′(p)	(x	−	p).

Pela	condição	de	paralelismo,	devemos	ter

f′(p)	=	2	ou	2p	+	3	=	2
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1.

2.

3.

4.

5.

6.

a)
b)

7.

e,	portanto,	 	A	equação	da	reta	pedida	será	então

ou

ou	seja,

Exercícios	7.16	

Determine	as	equações	das	retas	tangente	e	normal	ao	gráfico	da	função	dada,
no	ponto	dado.

Seja	f	(x)	=	x2.	Determine	a	equação	da	reta	que	é	tangente	ao	gráfico	de	f	 e

paralela	à	reta	

Sabe-se	que	r	é	uma	reta	tangente	ao	gráfico	de	f	(x)	=	x3	+	3x	e	paralela	à	reta
y	=	6x	−	1.	Determine	r.

Determine	a	equação	da	reta	que	é	perpendicular	à	reta	2y	+	x	=	3	e	tangente
ao	gráfico	de	f	(x)	=	x2	−	3x.

Sabe-se	que	r	é	uma	reta	perpendicular	à	reta	3x	+	y	=	3	e	tangente	ao	gráfico
de	f	(x)	=	x3.	Determine	r.

A	reta	s	passa	pelo	ponto	(3,	0)	e	é	normal	ao	gráfico	de	f	(x)	=	x2	no	ponto	(a,
b).

Determine	(a,	b).
Determine	a	equação	de	s.

Sabe-se	que	r	é	uma	reta	que	passa	pela	origem	e	que	é	tangente	ao	gráfico	de
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8.

9.

10.

11.

12.

13.

14.

15.

7.17.

1.

2.

f	(x)	=	x3	+	2x2	−	3x.	Determine	r.

Determine	todos	os	pontos	(a,	b)	sobre	a	curva	y	=	x4	+	2x3	−	2x2	+	8x	+	12
tais	que	a	reta	tangente	em	(a,	b)	seja	paralela	à	reta	8x	−	y	+	π	=	0.

Determine	todos	os	pontos	(a,	b)	sobre	o	gráfico	da	função	dada	por	y	=	4x3	+
x2	−	4x	−	1	tais	que	a	reta	tangente	em	(a,	b)	seja	paralela	ao	eixo	x.

Sabe-se	 que	 r	 é	 uma	 reta	 que	 passa	 pelo	 ponto	 (0,	 2)	 e	 que	 é	 tangente	 ao
gráfico	de	f	(x)	=	x3.	Determine	r.

Determine	a	equação	de	uma	reta,	não	vertical,	que	passa	pelo	ponto	 	e

que	seja	normal	ao	gráfico	de	y	=	x3.

Determine	todos	os	pontos	(a,	b)	de	ℝ2	tais	que	por	(a,	b)	passem	duas	retas
tangentes	ao	gráfico	de	f	(x)	=	x2.

Sejam	A	e	B	os	pontos	em	que	o	gráfico	de	f	(x)	=	x2	−	αx,	α	real,	intercepta	o
eixo	x.	Determine	α	para	que	as	retas	tangentes	ao	gráfico	de	f,	em	A	e	em	B,
sejam	perpendiculares.

Determine	β	para	que	y	=	βx	−	2	seja	tangente	ao	gráfico	de	f	(x)	=	x3	−	4x.

Sabe-se	 que	 r	 é	 uma	 reta	 tangente	 aos	 gráficos	 de	 f	 (x)	 =	 −x2	 e	 de	

	Determine	r.

EXERCÍCIOS	DO	CAPÍTULO

Calcule,	pela	definição,	a	derivada	da	função	dada,	no	ponto	dado.

Calcule	a	derivada
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3.

a)
b)
c)
d)

4.

5.

6.

Expresse	 	em	termos	de	x	e	de	y,	em	que	y	=	y	(x)	é	uma	função	derivável,

dada	implicitamente	pela	equação	dada.

y3	+	sen	xy	=	1
ey	+	xy	=	x
yx	+	x	=	y2

x	cos	y	+	y	cos	x	=	2

Seja	y	=	f	(x)	definida	e	derivável	num	intervalo	contendo	1	e	suponha	que	f
seja	dada	implicitamente	pela	equação	y3	+	x2y	=	130.	Determine	as	equações
das	retas	tangente	e	normal	ao	gráfico	de	f,	no	ponto	de	abscissa	1.

Determine	uma	reta	que	seja	paralela	a	x	+	y	=	1	e	que	seja	tangente	à	curva	x2

+	xy	+	y2	=	3.

Determine	uma	reta	que	seja	tangente	à	elipse	x2	+	2y2	=	9	e	que	intercepta	o

eixo	y	no	ponto	de	ordenada	
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7.

8.

9.

10.

11.

12.

13.

14.

15.

Mostre	que	a	reta	 	é	tangente	à	curva	 	no

ponto	(x0,	y0).

Determine	uma	reta	paralela	a	x	+	y	=	1	e	tangente	à	curva	y3	+	xy	+	x3	=	0	em
um	ponto	(x0,	y0),	com	x0	<	0	e	y0	<	0.

Os	lados	x	e	y	de	um	retângulo	estão	variando	a	taxas	constantes	de	0,2	m/s	e
0,1	m/s,	respectivamente.	A	que	taxa	estará	variando	a	área	do	retângulo	no
instante	em	que	x	=	1	m	e	y	=	2	m?

A	altura	h	e	o	raio	r	da	base	de	um	cone	circular	reto	estão	variando	a	taxas
constantes	de	0,1	m/s	e	0,3	m/s,	respectivamente.	A	que	taxa	estará	variando	o
volume	do	cone	no	instante	em	que	h	=	0,5	m	e	r	=	0,2	m?

O	volume	V	e	o	raio	r	da	base	de	um	cone	circular	reto	estão	variando	a	taxas

constantes	de	0,1	π	m3/s	e	0,2	m/s,	respectivamente.	Expresse	 	em	termos

de	r	e	h,	em	que	h	é	a	altura	do	cone.

Num	determinado	instante,	as	arestas	de	um	paralelepípedo	medem	a,	b,	c	(m)
e,	 neste	 instante,	 estão	 variando	 com	 velocidades	 va,	 vb	 e	 vc	 (m/s),
respectivamente.	Mostre	que	neste	instante	o	volume	do	paralelepípedo	estará
variando	a	uma	taxa	de	va	bc	+	avbc	+	abvc	(m3/s).

O	 raio	r	 e	a	altura	h	 de	um	cilindro	circular	 reto	estão	variando	de	modo	a
manter	constante	o	volume	V.	Num	determinado	instante	h	=	3	cm	e	r	=	1	cm
e,	neste	 instante,	 a	 altura	está	variando	a	uma	 taxa	de	0,2	cm/s.	A	que	 taxa
estará	variando	o	raio	neste	instante?

Uma	 piscina	 tem	 10	 m	 de	 largura,	 20	 m	 de	 comprimento,	 1	 m	 de
profundidade	 nas	 extremidades	 e	 3	m	 no	meio,	 de	modo	 que	 o	 fundo	 seja
formado	por	dois	planos	inclinados.	Despeja-se	água	na	piscina	a	uma	taxa	de
0,3	m3/min.	Seja	h	a	altura	da	água	em	relação	à	parte	mais	profunda.	Com
que	velocidade	h	estará	variando	no	instante	em	que	h	=	1	m?

Num	determinado	instante	 	e	está	variando,	neste	instante,	a	uma	taxa

de	 0,01	 radiano	 por	 segundo	 (veja	 figura).	 A	 que	 taxa	 estará	 variando	 o
ângulo	α	neste	instante?
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16.

17.

18.

19.

20.

a)

b)

21.

a)
b)

22.

a)

c)

23.

24.

Com	 relação	 ao	 exercício	 anterior,	 supondo	 	 expresse	 	 em

termos	de	θ	e	

Considere	as	funções	dadas	por	y	=	ax2	e	y	=	−x2	+	1.	Determine	a	para	que	os
gráficos	 se	 interceptem	 ortogonalmente.	 (Os	 gráficos	 se	 interceptam
ortogonalmente	 em	 (x0,	 y0)	 se	 as	 retas	 tangentes	 aos	 gráficos,	 neste	 ponto,
forem	perpendiculares.)

Determine	α	 para	 que	 as	 circunferências	 x2	 +	 y2	 =	 1	 e	 (x	 −	a)2	 +	 y2=	 1	 se
interceptem	ortogonalmente.

Mostre	 que,	 para	 todo	 a,	 as	 curvas	 y	 =	 ax2	 e	 x2	 +	 2y2	 =	 1	 se	 interceptam
ortogonalmente.

Suponha	f	:	ℝ	→	ℝ	derivável	e	considere	a	função	dada	por	y	=	x2	f	(x2	+	1).

Verifique	que	

Expresse	 	em	termos	de	f(2)	e	f′(2)

Seja	ϕ	a	função	dada	por	ϕ	(x)	=	x2	+	1.	Calcule.

ϕ′(ϕ(x))
(ϕ	(ϕ	(x)))′

Calcule	ϕ′(ϕ	(x))	sendo	ϕ	dada	por

ϕ	(x)	=	sen	x

ϕ	(x)	=	ln	(x2	+	1)

Para	cada	ϕ	do	exercício	anterior,	calcule	(ϕ	(ϕ	(x)))′.

Dê	exemplos	de	funções	ϕ	que	satisfazem	a	condição	ϕ′	(ϕ	(x))	=	(ϕ	(ϕ	(x)))
′,	para	todo	x	no	domínio	de	ϕ.
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25.

a)
b)

26.

a)
b)

27.

a)

28.

a)

b)

29.

a)

b)

30.

Considere	uma	partícula	que	se	desloca	sobre	o	eixo	x	com	função	de	posição
x	=	cos	3t.

Verifique	que	a	aceleração	é	proporcional	à	posição.
Calcule	a	aceleração	no	instante	em	que	a	partícula	se	encontra	na	posição	

Considere	uma	partícula	que	se	desloca	sobre	o	eixo	x	com	função	de	posição	

Verifique	que	a	aceleração	é	proporcional	ao	cubo	da	posição.
Qual	 a	 aceleração	 no	 instante	 em	 que	 a	 partícula	 se	 encontra	 na	 posição	

Seja	f	:	ℝ	→	ℝ	derivável	até	a	2.ª	ordem	e	seja	h	dada	por	h	(t)	=	f(cos	3t).

Expresse	h″(t)	em	termos	de	t,	f′(cos	3t)	e	de	f″(cos	3t).

Suponha	que	y	=	y	 (t)	 seja	uma	 função	derivável	 tal	que	para	 todo	 t	no	 seu

domínio	

Expresse	 	em	termos	de	t	e	de	y.

Calcule	 	supondo	que	y	(1)	=	1.

Seja	y	=	y	(x)	definida	e	derivável	num	intervalo	I	e	tal	que,	para	todo	x	em	I,	

Expresse	 	em	termos	de	x	e	de	y.

Calcule	 	admitindo	que	

Seja	f	:	ℝ	→	ℝ	derivável	até	a	2.ª	ordem	e	tal	que,	para	todo	x,

f″	(x)	+	4	f	(x)	=	0.

Mostre	que,	para	todo	x,
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31.

32.

33.

a)

b)

34.

35.

36.

a)
b)

37.

38.

Sejam	 f	 :	ℝ	→	ℝ	 derivável	 até	 a	 2.ª	 ordem	 e	 h	 dada	 por	 h	 (x)	 =	 f(f	 (x)).
Verifique	que,	para	todo	x,	h″(x)	=	f″(f	(x))	(f′(x))2	+	f′(f	(x))	f″(x).

Considere	o	polinômio

P	(x)	=	A0	+	A1	(x	−	x0)	+	A2	(x	−	x0)2	+	A3	(x	−	x0)3

em	que	A0,	A1,	A2,	A3	e	x0	são	números	reais	fixos.	Mostre	que

Considere	o	polinômio	P	(x)	=	a0	+	a1x	+	a2x2	+	a3x3	em	que	a0,	a1,	a2	e	a3	são
reais	fixos.	Seja	x0	um	real	dado.

Mostre	que	existem	constantes	A0,	A1,	A2	e	A3	tais	que
P	(x)	=	A0	+	A1	(x	−	x0)	+	A2	(x	−	x0)2	+	A3	(x	−	x0)3.

(Sugestão:	Faça	x	=	(x	−	x0)	+	x0.)

Conclua	que

(Dizemos	 que	①	 é	 o	 desenvolvimento	 de	 Taylor	 do	 polinômio	 P	 (x)	 em
potências	de	x	−	x0.)

Determine	o	desenvolvimento	de	Taylor	de	P	(x)	=	x3	+	2x	+	3,	em	potências
de	(x	−	1).

Generalize	o	resultado	do	Exercício	33.

Determine	 o	 desenvolvimento	 de	 Taylor	 de	 P	 (x)	 =	 x4	 −	 3x2	 +	 x	 +	 1	 em
potências	de

x	−	2
x	+	1

Sejam	P	(x)	e	Q	(x)	polinômios	 tais	que	P	(x0)	=	0,	Q	(x0)	=	0	e	Q′(x0)	≠	0.
Mostre	que

(Sugestão:	Desenvolva	P	(x)	e	Q	(x)	em	potências	de	x	−	x0	e	simplifique.)

Sejam	P	(x)	e	Q	(x)	polinômios	tais	que	P	(x0)	=	P′	(x0)	=	0,	Q	(x0)	=	Q	′(x0)	=
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39.

40.

41.

42.

43.

44.

45.

0	e	Q	″	(x0)	≠	0.	Mostre	que	 	Generalize.

Utilizando	os	Exercícios	37	e	38,	calcule.

Sejam	 f	 e	g	 deriváveis	 em	p	 e	 tais	 que	 f(p)	=	g(p)	 =	 0.	 Supondo	g′(p)	 ≠	 0,
mostre	que

Utilizando	o	Exercício	40,	calcule.

Seja	f	definida	em	ℝ	e	derivável	em	p.	Suponha	f′(p)	>	0.	Prove	que	existe	r	>
0	tal	que

f	(x)	>	f	(p)	em	]p,	p	+	r[
e

f	(x)	<	f	(p)	em	]p	−	r,	p[.

(Sugestão:	 Lembre-se	 da	 definição	 de	 derivada	 e	 utilize	 a	 conservação	 do
sinal.)

Seja	 f	 definida	 e	 derivável	 em	ℝ	 e	 sejam	 a	 e	 b	 raízes	 consecutivas	 de	 f.
Mostre	que

f′(a)	·	f′(b)	≤	0.

Suponha	f	derivável	no	intervalo	I.	Prove	que	se	 f	 for	estritamente	crescente
em	I,	então	f′(x)	≥	0	em	I.

Suponha	f	derivável	em	[a,	b]	e	tal	que	f′(a)	·	f′(b)	<	0.	Prove	que	existe	p	em
]a,	b[	tal	que	f	(x)	≤	f(p)	para	todo	x	em	[a,	b]	ou	f	(x)	≥	f(p)	para	todo	x	em	[a,
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46.

47.

48.

49.

b].	Interprete	geometricamente.

Suponha	f	derivável	em	[a,	b]	tal	que	f′(a)	·	f′(b)	>	0	e	f(a)	=	f(b).	Prove	que
existem	x1,	x2	∈	]a,	b[	 tais	que,	para	 todo	x	em	[a,	b],	f	 (x1)	≤	 f	 (x)	≤	 f	 (x2).
Interprete	geometricamente.

Seja	f	:	ℝ	→	ℝ	uma	função	tal	que	quaisquer	que	sejam	x	e	t

|	f	(x)	−	f(t)	|	≤	|	x	−	t	|2.

Calcule	f′(x).

Sejam	f	e	g	definidas	em	ℝ,	com	g	contínua	em	0,	e	tais	que,	para	todo	x,	f	(x)
=	x	g(x).	Mostre	que	f	é	derivável	em	0.

Suponha	 f	 definida	 em	ℝ,	 derivável	 em	 0	 e	 f(0)	 =	 0.	 Prove	 que	 existe	 g
definida	em	ℝ,	contínua	em	0,	tal	que	f	(x)	=	x	g(x)	para	todo	x.
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8.1.

8

FUNÇÕES	INVERSAS

FUNÇÃO	INVERSA

Dizemos	que	uma	função	f	é	injetora	se,	quaisquer	que	sejam	s	e	t	no	seu	domínio,
	

s	≠	t	⇒	f	(s)	≠	f	(t).

Observamos	que	se	f	for	estritamente	crescente	ou	estritamente	decrescente,	então	f
será	injetora.

Suponhamos,	 agora,	 que	 f	 seja	 injetora	 e	que	B	 =	 Im	 f.	Assim,	 para	 cada	 x	∈	B
existe	um	único	y	∈	Df	tal	que	f(y)	=	x.
	

Podemos,	então,	considerar	a	função	g,	definida	em	B,	e	dada	por
	

g	(x)	=	y	⇔	f	(y)	=	x.

Tal	função	g	denomina-se	função	inversa	de	f.
Observe	que	a	função	inversa	y	=	g	(x)	é	dada	implicitamente	pela	equação	f	(y)	=

x.
Se	f	for	uma	função	que	admite	função	inversa,	então	diremos	que	f	é	uma	função

inversível.	Observe	que	se	f	for	uma	função	inversível,	com	inversa	g,	então	g	também
será	inversível,	e	sua	inversa	será	f.

EXEMPLO	1.	A	função	f	(x)	=	x2,	x	≥	0,	é	estritamente	crescente	em	[0,	+∞	[,	logo,	f
é	inversível.	A	sua	inversa	é	a	função	g,	definida	em	[0,	+∞	[=	Im	f,	e	dada	por
	

g	(x)	=	y	⇔	f	(y)	=	x.

Para	expressar	y	em	função	de	x	procedemos	assim:
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A	inversa	de	f	(x)	=	x2,	x	≥	0,	é	a	função	
	

Os	gráficos	de	f	e	de	g	são	simétricos	em	relação	à	reta	y	=	x.					■

Observação.	Suponhamos	que	f	admita	inversa	g.	Temos
	

(a,	b)	∈	Gf	⇔	b	=	f	(a)	⇔	a	=	g	(b)	⇔	(b,	a)	∈	Gg

ou	seja,
	

(a,	b)	∈	Gf	⇔	(b,	a)	∈	Gg.

Quando	(a,	b)	descreve	o	gráfico	de	f,	(b,	a)	descreve	o	gráfico	de	g.	Como	(a,	b)	e
(b,	a)	 são	simétricos	em	relação	à	 reta	y	=	x,	 resulta	que	os	gráficos	de	 f	 e	de	g	 são
simétricos	em	relação	à	reta	y	=	x.
	

EXEMPLO	2.	A	função	 f	(x)	=	ex,	x	∈	ℝ,	 é	estritamente	crescente,	 logo	 inversível.
Sua	inversa	é	a	função	g	(x)	=	ln	x,	x	>	0,	pois
	

ln	x	=	y	⇔	ey	=	x	(x	e	y	reais,	com	x	>	0).
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EXEMPLO	 3.	 (Função	 arco-seno).	 A	 função	 f	 (x)	 =	 sen	 x,	 	 é

estritamente	crescente,	portanto	inversível,	e	sua	imagem	é	o	intervalo	fechado	[−1,	1].
A	inversa	de	f	é	a	função	g	(x)	=	arc	sen	x	(leia:	arco-seno	x),	x	∈	[−1,	1],	dada	por
	

arc	sen	x	=	y	⇔	sen	y	=	x

	

EXEMPLO	 4.	 (Função	 arco-tangente).	 A	 função	 f	 (x)	 =	 tg	 x,	 	 é

estritamente	crescente,	portanto	inversível,	e	sua	imagem	é	ℝ.	Sua	inversa	é	a	função	g
(x)	=	arc	tg	x,	x	∈	ℝ,	dada	por
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1.

2.

3.

arc	tg	x	=	y	⇔	tg	y	=	x

	

Exercícios	8.1	

Calcule.

Verifique	que

Calcule.
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4.

a)
b)

5.

6.

7.

a)
b)

8.

9.

10.

a)
b)

11.

12.

Seja	f	uma	função	inversível	com	inversa	g.	Mostre	que

f	(g	(x))	=	x	para	todo	x	∈	Dg
g	(f	(x))	=	x	para	todo	x	∈	Df

	
Prove	que	a	função	f	(x)	=	arc	sen	x,	x	∈	[−1,	1],	é	contínua.	(Veja	Exercício
12.)

Prove	que	a	função	f	(x)	=	arc	tg	x,	x	∈	ℝ,	é	contínua.	(Veja	Exercício	12.)

Seja	f	dada	por	f	(x)	=	x3.

Mostre	que	f	é	inversível	e	determine	sua	inversa	g
Esboce	os	gráficos	de	f	e	de	g

	

Qual	a	função	inversa	de	

Qual	a	função	inversa	de	

Seja	

Mostre	que	f	é	inversível	e	determine	sua	inversa	g
Esboce	os	gráficos	de	f	e	de	g

	
Seja	f	(x)	=	x	+	ex.	Mostre	que	f	é	inversível	e	esboce	os	gráficos	de	f	e	de	sua
inversa.

Seja	f	uma	função	cujo	domínio	e	imagem	são	intervalos.	Prove	que	se	f	for
estritamente	crescente	(ou	estritamente	decrescente),	então	f	será	contínua.
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13.

a)
b)
c)

14.

8.2.

Seja	f	(x)	=	x	+	ex	e	seja	g	sua	inversa.

Prove	que	o	domínio	e	a	imagem	de	g	são	intervalos.
Prove	que	g	é	estritamente	crescente.
Prove	que	g	é	contínua.	(Sugestão:	Utilize	o	Exercício	12.)

	
Prove	 que,	 se	 f	 for	 definida,	 contínua	 e	 injetora	 no	 intervalo	 I,	 então	 f	 será
estritamente	crescente	ou	estritamente	decrescente.

DERIVADA	DE	FUNÇÃO	INVERSA

Seja	f	uma	função	inversível,	com	inversa	g;	assim,
	

f	(g	(x))	=	x	para	todo	x	∈	Dg.

Segue	que	para	todo	x	∈	Dg
	

[	f	(g	(x))]′	=	x′

ou
	

[	f	(g	(x))]′	=	1.

Se	 supusermos	 f	 e	 g	 diferenciáveis,	 podemos	 aplicar	 a	 regra	 da	 cadeia	 ao	 1.º
membro	da	equação	acima:
	

f′	(g	(x))	g′	(x)	=	1

ou
	

que	é	a	fórmula	que	nos	permite	calcular	a	derivada	de	g	conhecendo-se	a	derivada	de
f.

Observação.	Observe	atentamente	as	notações
	

f′	(g	(x))	e	[f	(g	(x))]′	:

f′	(g	(x))	é	o	valor	que	a	derivada	de	f	assume	em	g	(x),	enquanto	[f	(g	(x))]′	=	f′	(g	(x))
g′	(x).

O	próximo	teorema	conta-nos	que,	se	f	for	inversível	e	derivável	e	se	sua	inversa	g
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for	contínua,	então	g	será	derivável	em	todo	p	de	seu	domínio	em	que	f′	(g	(p))	≠	0.
	

Teorema.	 Seja	 f	 uma	 função	 inversível,	 com	 função	 inversa	 g.	 Se	 f	 for
derivável	 em	q	 =	g	 (p),	 com	 f′	 (q)	 ≠	 0,	 e	 se	g	 for	 contínua	 em	p,	 então	g	 será
derivável	em	p.

Demonstração
	

Fazendo	u	=	g	(x),	pela	continuidade	de	g	em	p,	u	→	q	para	x	→	p.	Então,
	

Como	 	resulta

	

Portanto,	g	é	derivável	em	 					■

EXEMPLO	1.	(Derivada	do	arco-seno).	A	função	arc	sen	é	contínua	e	é	a	inversa	de	

	Temos

	

	

	

segue
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[	cos	(arc	sen	x)	]2	=	1	−	x2

e,	 portanto,	 	 uma	 vez	 que	 arc	 sen	

Substituindo	em	①	resulta
	

Outro	processo	para	se	obter	a	derivada	de	y	=	arc	sen	x.	Esta	função,	como	sabemos,
é	dada	implicitamente	pela	equação	sen	 	Temos,	então,

	

Daí,	 	e,	portanto,

	

ou	seja
	

(Veja	Exemplo	6	da	Seção	7.13.)					■
Vejamos	 como	 fica	 a	 fórmula	 de	 derivação	 de	 função	 inversa	 na	 notação	 de

Leibniz.	Seja	y	=	g	(x)	a	inversa	da	função	dada	por	x	=	f	(y)	(observe	que	sendo	g	 a
inversa	de	f,	temos:	y	=	g	(x)	⇔	x	=	f	(y)).	Então,
	

ou
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b)

em	que	 	deve	ser	calculado	em	y	=	g	(x).

Como	exemplo,	calculemos	a	derivada	de	arc	tg	na	notação	de	Leibniz:
	

y	=	arc	tg	x	⇔	x	=	tg	y,	com	

Então,
	

EXEMPLO	2.	Determine	a	derivada.

a)	y	=	arc	sen	x2

b)	f	(x)	=	x	arc	tg	3x.

Solução

	

Poderíamos,	também,	ter	calculado	 	da	seguinte	forma:

	
y	=	arc	sen	u	no	qual	u	=	x2

	

ou	seja,
	

Como	f	(x)	=	x	arc	tg	3x	vem:
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1.

a)
b)
c)
d)
e)
f)
g)

i)

l)

2.

	
f′(x)	=	1	·	arc	tg	3x	+	x	[arc	tg	3x]′.

	
Assim,

	

					■

Observação.	A	derivada	de	arc	tg	3x	poderia,	também,	ter	sido	calculada	da	seguinte
forma:
	

assim
	

Exercícios	8.2	

Determine	a	derivada.

y	=	x	arc	tg	x
f	(x)	=	arc	sen	3x
g	(x)	=	arc	sen	x3

y	=	arc	tg	x2

y	=	3	arc	tg	(2x	+	3)
y	=	arc	sen	ex

y	=	e3x	arc	sen	2x

y	=	x2	earc	tg	2x

y	=	e−3x	+	ln	(arc	tg	x)

Seja	 f	 (x)	=	x	+	ex	 e	 seja	g	 a	 inversa	de	 f.	Mostre	 que	g	 é	 derivável	 e	 que	
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3.

4.

a)

b)
c)

5.

a)
b)
c)

6.

a)
b)

7.

8.

	(Sugestão:	Veja	Exercício	13-8.1.)

Seja	f	(x)	=	x	+	ex	e	seja	g	a	função	inversa	de	f.	Calcule	g′	(1)	e	g″(1).

Seja	f	(x)	=	x	+	ln	x,	x	>	0.

Mostre	 que	 f	 admite	 função	 inversa	 g,	 que	 g	 é	 derivável	 e	 que	

Esboce	os	gráficos	de	f	e	de	g
Calcule	g	(1),	g′	(1)	e	g″	(1)

	
Seja	f	(x)	=	x	+	x3.

Mostre	que	f	admite	função	inversa	g
Expresse	g′	(x)	em	termos	de	g	(x)
Calcule	g′	(0)

	
(Função	arco-cosseno).	A	função	f	(x)	=	cos	x,	0	≤	x	≤	π,	 é	 inversível	e	 sua
inversa	é	a	função	g	(x)	=	arc	cos	x,	−1	<	x	<	1.

Calcule	arc	cos′	x
Esboce	o	gráfico	de	g

	

(Função	arco-secante).	A	função	 f	 (x)	=	 sec	x,	 	 é	 inversível	e	 sua

inversa	é	a	função	g	(x)	=	arc	sec	x,	x	≥	1.	Calcule	arc	sec′	x.

Verifique	que.

277



278



9.1.

9

ESTUDO	DA	VARIAÇÃO	DAS	FUNÇÕES

TEOREMA	DO	VALOR	MÉDIO	(TVM)

O	 objetivo	 desta	 seção	 é	 apresentar	 o	 enunciado	 de	 um	 dos	 teoremas	 mais
importantes	do	cálculo:	o	teorema	do	valor	médio	(TVM).	A	demonstração	é	deixada
para	o	Cap.	15.
	

Teorema	do	valor	médio	(TVM).	Se	f	for	contínua	em	[a,	b]	e	derivável	em	]a,
b[,	então	existirá	pelo	menos	um	c	em	]a,	b[	tal	que
	

Geometricamente,	 este	 teorema	 conta-nos	 que	 se	 s	 é	 uma	 reta	 passando	 pelos
pontos	(a,	f	(a))	e	(b,	f	(b)),	então	existirá	pelo	menos	um	ponto	(c,	f	(c)),	com	a	<	c	<
b,	 tal	 que	 a	 reta	 tangente	 ao	 gráfico	 de	 f,	 neste	 ponto,	 é	 paralela	 à	 reta	 s.	 Como	

	é	o	coeficiente	angular	de	s	e	f′	(c)	o	de	T,	

	

Vejamos,	agora,	uma	interpretação	cinemática	para	o	TVM.	Suponhamos	que	x	=	f
(t)	seja	a	função	de	posição	do	movimento	de	uma	partícula	sobre	o	eixo	0x.	Assim,	

	 será	 a	velocidade	média	 entre	os	 instantes	 t	=	a	 e	 t	=	b.	 Pois	 bem,	 o

TVM	 conta-nos	 que	 se	 f	 for	 contínua	 em	 [a,	 b]	 e	 derivável	 em	 ]a,	 b[,	 então	 tal
velocidade	média	será	igual	à	velocidade	(instantânea)	da	partícula	em	algum	instante
c	entre	a	e	b.

As	situações	que	apresentamos	a	seguir	mostram-nos	que	as	hipóteses	“f	contínua
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9.2.

em	[a,	b]	e	f	derivável	em	]a,	b[”	são	indispensáveis.
	

Antes	 de	 passarmos	 à	 próxima	 seção	 vamos	 relembrar	 as	 seguintes	 definições.
Sejam	 f	 uma	 função	 e	 A	 um	 subconjunto	 do	 domínio	 de	 f.	 Dizemos	 que	 f	 é
estritamente	crescente	(estritamente	decrescente)	 em	A	 se,	quaisquer	que	 sejam	s	 e	 t
em	A,
	

s	<	t	⇒	f	(s)	<	f	(t)							(f	(s)	>	f	(t)).

Por	outro	lado,	dizemos	que	f	é	crescente	(decrescente)	em	A	se,	quaisquer	que	sejam	s
e	t	em	A,
	

s	<	t	⇒	f	(s)	≤	f	(t)							(f	(s)	≥	f	(t)).

INTERVALOS	DE	CRESCIMENTO	E	DE	DECRESCIMENTO

Como	consequência	do	TVM	temos	o	seguinte	teorema.
	

Teorema.	Seja	f	contínua	no	intervalo	I.
	
a)	Se	f′(x)	>	0	para	todo	x	interior	a	I,	então	f	será	estritamente	crescente	em	I.
b)	Se	f′(x)	<	0	para	todo	x	interior	a	I,	então	f	será	estritamente	decrescente	em	I.

Demonstração
	

a)	Precisamos	provar	que	quaisquer	que	sejam	s	e	t	em	I,	s	<	t	⇒	f	(s)	<	f	(t).	Sejam,
então,	s	e	t	em	I,	com	s	<	t.
	

Da	hipótese,	segue	que	f	é	contínua	em	[s,	t]	e	derivável	em	]s,	t[;	pelo	TVM	existe	
	t[	tal	que
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De	 	pois	 	está	no	interior	de	I,	e	de	t	−	s	>	0	segue
	

f	(t)	−	f	(s)	>	0				ou				f	(s)	<	f	(t).

Portanto,
	s,	t	∈	I,	s	<	t	⇒	f(s)	<	f(t).

b)	Fica	como	exercício.					■
(Observação:	x	interior	a	I	significa	que	x	∈	I,	mas	x	não	é	extremidade	de	I.)

EXEMPLO	1.	Determine	os	intervalos	de	crescimento	e	de	decrescimento	de	f	(x)	=
x3	−	2x2	+	x	+	2.	Esboce	o	gráfico.

Solução
	

f′(x)	=	3x2	−	4x	+	1

	

Então,

	

Como	f	é	contínua,	segue	do	teorema	anterior	que
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Antes	de	esboçar	o	gráfico	de	f	vamos	calcular	os	limites	de	f	para	x	→	+∞	e	x	→	−∞.
	

EXEMPLO	 2.	 Seja	 	 Estude	 f	 com	 relação	 a	 crescimento	 e

decrescimento.	Esboce	o	gráfico.

Solução
	

Como	(1	+	3x2)2	>	0	para	todo	x,	o	sinal	de	f′	é	o	mesmo	que	o	do	numerador.
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f	é	estritamente	crescente	em	]−∞,	−1]	e	em	

f	é	estritamente	decrescente	em	

	
Temos
	

	

EXEMPLO	 3.	 Determine	 os	 intervalos	 de	 crescimento	 e	 de	 decrescimento	 de	

	Esboce	o	gráfico.

Solução
	

Df	=	{x	∈	ℝ	|	x	≠	±1}	=	ℝ	−	{−1,	1}.
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Então,
	

	

Segue	que
	

	

Cuidado:	f	não	é	estritamente	crescente	em	]−∞,	0]!!!

Temos

Os	 limites	 laterais	 de	 f	 em	 1	 e	 −1	 fornecem-nos	 informações	 sobre	 o
comportamento	de	f	nas	proximidades	de	1	e	−1.	Vamos	então	calculá-los.
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EXEMPLO	4.	Suponha	f″	(x)	>	0	em	]a,	b[	e	que	existe	c	em	]a,	b[	tal	que	f′	(c)	=	0.
Prove	que	f	é	estritamente	decrescente	em	]a,	c[	e	estritamente	crescente	em	]c,	b[.

Solução

f′	é	estritamente	crescente	em	]a,	b[,	pois,	f″	(x)	>	0	em	]a,	b[.	Assim,
	

Segue	que
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EXEMPLO	5.	Prove	que	g	(x)	=	8x3	+	30x2	+	24x	+	10	admite	uma	única	raiz	real	a,
com	−3	<	a	<	−2.

Solução

Vamos	estudar	g	com	relação	a	crescimento	e	decrescimento.
	

g′	(x)	=	24x2	+	60x	+	24

	

	

Como	 	 g	 estritamente	 decrescente	 em	 	 e

estritamente	crescente	em	 	segue	que	g	(x)	>	0	para	todo	x	≥	−2.	Por	outro

lado,	como	 	estritamente	crescente	em	]−∞,	−2],	resulta	que	g
admite	uma	única	raiz	neste	intervalo.	Tendo	em	vista	que	g	 (−3)	=	−8	e	g	(−2)	>	0,
segue	que	a	única	raiz	está	contida	no	intervalo	[−3,	−2].
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a)

b)

c)

a)

b)

EXEMPLO	6.

Mostre	que,	para	todo	x	≥	0,	ex	>	x.

Mostre	que,	para	todo	x	≥	0,	

Conclua	de	(b)	que	

	
Solução

Consideremos	a	função	f	(x)	=	ex	−	x.	Temos

	
f	(0)	=	1.

Se	provarmos	que	f	é	estritamente	crescente	em	[0,	+∞[,	seguirá	que,	para	x	≥	0,
	

ex	−	x	≥	1	>	0	ou	ex	>	x.

Como	f′(x)	=	ex	−	1,	para	x	>	0
	

f′(x)	>	0

e,	portanto,	f	é	estritamente	crescente	em	[0,	+∞[.

Seja	 	Temos

	
g′	(x)	=	ex	−	x.

Pelo	item	(a)	g′	(x)	>	0	para	todo	x	≥	0.	Assim,	g	(x)	é	estritamente	crescente	em	[0,
+∞[;	como	g	(0)	=	1,	segue	que	para	todo	x	≥	0
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c)

	

Pelo	item	(b),	para	todo	x	>	0

	

Como	 	resulta

	

Para	x	→	+∞,	ex	tende	a	+∞	mais	rapidamente	que	x.					■

Vamos	mostrar,	a	seguir,	que,	para	x	→	+∞,	ex	tende	a	+∞	mais	rapidamente	que
qualquer	potência	de	x.

Seja	α	>	0	um	real	dado.	Observamos	que
	

Temos,	agora,
	

Assim,
	

Para	x	→	+∞,	ex	tende	a	+∞	mais	rapidamente	que	qualquer	potência	de	x.

EXEMPLO	7.	Suponha	g	derivável	no	intervalo	aberto	I	=	]p,	q[,	com	g′	(x)	>	0	em	I,
e	tal	que	 	Nestas	condições,	prove	que,	para	todo	x	em	I,	tem-se	g	(x)

>	0.
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Solução

Consideremos	a	função	G,	definida	em	[p,	q[	e	dada	por
	

Como	g	 é	 derivável	 no	 intervalo	 aberto	 I,	g	 é	 contínua	 neste	 intervalo.	 Logo,	G	 é,
também,	contínua	em	I.	Por	outro	lado
	

ou	seja,	G	é	contínua	em	p	=	0.	Logo,	G	é	contínua	em	[p,	q[.	Para	x	∈	I,	G′(x)	=	g′(x)
>	0.	De	G	(p)	=	0,	segue	G	(x)	>	0	para	todo	x	∈	I,	ou	seja,	g	(x)	>	0	para	 todo	x	∈
I.					■

Na	 Seção	 9.4,	 vamos	 estabelecer	 as	 regras	 de	 L’Hospital,	 que	 são	 ferramentas
poderosas	e	que	se	aplicam	ao	cálculo	de	limites	que	apresentam	indeterminações	dos

tipos	 	 Para	 demonstrar	 tais	 regras,	 vamos	 precisar	 dos	 dois	 exemplos	 que

apresentaremos	a	seguir.

EXEMPLO	8.	Sejam	f	e	g	duas	funções	deriváveis	no	intervalo	aberto	I	=	]p,	q[,	com
g′(x)	>	0	em	I,	e	tais	que
	

Suponha,	 ainda,	 que	 existam	 constantes	 α	 e	 β	 tais	 que,	 para	 todo	 x	 ∈	 I,	
	Nestas	condições,	mostre	que,	para	todo	x	em	I,	tem-se,	também,

	

Solução

Pelo	exemplo	anterior,	temos,	para	todo	x	∈	I,	g	(x)	>	0.	Por	outro	lado,	para	todo	x
em	I,
	

Segue	que,	para	todo	x	em	I,
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e

De	 	e	de	①	e	②	segue

	
α	g	(x)	−	f	(x)	<	0			e			β	g	(x)	−	f	(x)	>	0

para	todo	x	em	I.	Logo,	para	todo	x	em	I,

EXEMPLO	9.	Sejam	f	e	g	deriváveis	no	intervalo	aberto	I	=	]m,	p[,	com	g′	(x)	>	0	em
I,	e	tais	que
	

Suponha,	 ainda,	 que	 existam	 constantes	 α	 e	 β	 tais	 que,	 para	 todo	 x	 em	 I,	

	Nestas	condições,	mostre	que	existem	constantes	M,	N	e	s,	com	s	∈

]m,	p[,	tais	que,	para	todo	x	∈	]s,	p[,
	

Solução

De	 	 segue	que	existe	s	∈	 ]m,	p[	 tal	que,	para	 todo	x	∈	 ]s,	p[,
tem-se	g	(x)	>	0.	Por	outro	lado,	para	todo	x	∈	I,	tem-se
	

α	g′	(x)	−	f′(x)	<	0

e
	

β	g′	(x)	−	f′(x)	>	0.

Segue	que,	para	todo	x	∈	]s,	p[,	tem-se
	

α	g	(x)	−	f	(x)	<	α	g	(s)	−	f	(s)

e
	

β	g	(x)	−	f	(x)	>	β	g	(s)	−	f	(s)
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1.

2.

3.

4.

Fazendo	M	=	f	(s)	−	α	g	(s),	N	=	f	(s)	−	β	g	(s)	e	lembrando	que	g	(x)	>	0	em	I,	resulta,
para	todo	x	∈	]s,	p[,
	

Exercícios	9.2	

Determine	os	intervalos	de	crescimento	e	de	decrescimento	e	esboce	o	gráfico
(calcule	para	isto	todos	os	limites	necessários).

Prove	que	a	equação	x3	−	3x2	+	6	=	0	admite	uma	única	raiz	real.	Determine
um	intervalo	de	amplitude	1	que	contenha	tal	raiz.

Prove	que	a	equação	x3	+	x2	−	5x	+	1	=	0	admite	 três	 raízes	 reais	distintas.
Localize	tais	raízes.

Determine	a,	para	que	a	equação

	
x3	+	3x2	−	9x	+	a	=	0

admita	uma	única	raiz	real.
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5.

6.

b)

d)

7.

a)
b)
c)

8.

9.

a)

Calcule.

	
Determine	os	intervalos	de	crescimento	e	de	decrescimento	e	esboce	o	gráfico
(para	isto,	calcule	todos	os	limites	necessários).

f	(x)	=	x	ln	x

g(x)	=	xx,	x	>	0
	

Seja

	

Calcule	f′	(0),	pela	definição
Determine	f′
Esboce	o	gráfico,	calculando,	para	isto,	todos	os	limites	necessários

Seja	n	≥	2	um	natural	dado.	Prove	que	xn	−	1	≥	n	(x	−	1)	para	todo	x	≥	1.

(Sugestão:	Verifique	que	f	(x)	=	[xn	−	1]	−	n	(x	−	1)	é	estritamente	crescente	em
[1,	+∞[.)

Prove	que,	para	todo	x	>	0,	tem-se

ex	>	x	+	1
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10.

11.

12.

b)

13.

14.

a)
b)
c)

15.

16.

Mostre	que,	para	todo	x	>	0,	tem-se

Mostre	que,	para	todo	x	>	0,	tem-se

(Sugestão:	Utilize	o	item	(b)	do	Exercício	10	e	o	item	(a)	acima.)

a)	Mostre	que,	para	todo	x	>	0,

	

Mostre	que,	para	todo	x	≠	0,
	

Generalize	tal	resultado.

Suponha	que	f	tenha	derivada	contínua	no	intervalo	I	e	que	f′	nunca	se	anula
em	I.	Prove	que	 f	 é	estritamente	crescente	em	 I	ou	estritamente	decrescente
em	I.

Seja	 	x	∈	ℝ.

Verifique	que	f′	é	contínua	em	ℝ
Verifique	que	f′(x)	≠	0	em	ℝ
Tendo	em	vista	que	f′	(0)	>	0,	conclua	que	f	é	estritamente	crescente

	
(Sugestão:	Veja	Exercício	13.)

Seja	f	uma	função	tal	que	f″′	(x)	>	0	para	todo	x	em	]a,	b[.	Suponha	que	existe
c	em	]a,	b[	tal	que	f″	(c)	=	f′	(c)	=	0.	Prove	que	f	é	estritamente	crescente	em
]a,	b[.

Suponha	 f	 derivável	 no	 intervalo	 aberto	 I.	 Prove	 que,	 se	 f	 for	 estritamente
crescente	em	I,	então	f′(x)	≥	0	para	todo	x	em	I.
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17.

18.

19.

9.3.

Suponha	 f	derivável	no	 intervalo	 I.	A	afirmação:	“f	 é	estritamente	crescente
em	I	se,	e	somente	se,	f′(x)	>	0	em	I”	é	falsa	ou	verdadeira?	Justifique.

Suponha	f	derivável	no	intervalo	I.	Prove:	f	crescente	em	I	⇔	f′(x)	≥	0	em	I.

(Lembrete:	f	se	diz	crescente	em	I	se	quaisquer	que	sejam	s	e	t	em	I,	s	<	t	⇒	f
(s)	≤	f	(t).)

Sejam	f,	g	duas	funções	deriváveis	em	]a,	b[,	tais	que	f′(x)	<	g′	(x)	∀	x	em	]a,
b[.	Suponha	que	exista	c	em	]a,	b[,	com	f	(c)	=	g	(c).	Prove	que	f	(x)	<	g	 (x)
para	x	>	c	e	f	(x)	>	g	(x)	para	x	<	c.

CONCAVIDADE	E	PONTOS	DE	INFLEXÃO

Seja	f	derivável	no	intervalo	aberto	I	e	seja	p	um	ponto	de	I.	A	reta	tangente	em	(p,
f	(p))	ao	gráfico	de	f	é
	

y	−	f	(p)	=	f′	(p)	(x	−	p)			ou			y	=	f	(p)	+	f′	(p)	(x	−	p).

Deste	modo,	a	reta	tangente	em	(p,	f	(p))	é	o	gráfico	da	função	T	dada	por
	

T	(x)	=	f	(p)	+	f′	(p)	(x	−	p).

	

Definição	1.	Dizemos	que	f	tem	a	concavidade	para	cima	no	intervalo	aberto	I	se
	

f	(x)	>	T	(x)

quaisquer	que	sejam	x	e	p	em	I,	com	x	≠	p.
	

	

Definição	2.	Dizemos	que	f	tem	a	concavidade	para	baixo	no	intervalo	aberto	I	se
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a)

b)

a)

	
f	(x)	<	T	(x)

quaisquer	que	sejam	x	e	p	em	I,	com	x	≠	p.

Definição	3.	Sejam	f	uma	função	e	p	∈	Df,	com	f	contínua	em	p.	Dizemos	que	p	é
ponto	de	inflexão	de	f	se	existirem	números	reais	a	e	b,	com	p	∈	]a,	b[	⊂	Df,	 tal
que	f	tenha	concavidades	de	nomes	contrários	em	]a,	p[	e	em	]p,	b[.

	

	

Teorema.	 Seja	 f	 uma	 função	 que	 admite	 derivada	 até	 a	 2.ª	 ordem	 no	 intervalo
aberto	I.
	

Se	f″	(x)	>	0	em	I,	então	f	terá	a	concavidade	para	cima	em	I.

Se	f″	(x)	<	0	em	I,	então	f	terá	a	concavidade	para	baixo	em	I.

Demonstração
	

Seja	p	um	real	qualquer	em	I.	Precisamos	provar	que,	para	todo	x	em	I,	x	≠	p,
	

f	(x)	>	T	(x)

em	que	T	(x)	=	f	(p)	+	f′	(p)	(x	−	p).
Consideremos	a	função	g	(x)	=	f	(x)	−	T	(x),	x	∈	I;	vamos	provar	que	g	(x)	>	0	para

todo	x	em	I,	x	≠	p.
Temos
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b)

	

	

daí
	

g′	(x)	=	f′(x)	−	f′	(p),	x	∈	I.

Como	f″	(x)	>	0	em	I,	segue	que	f′	é	estritamente	crescente	em	I.	Então,
	

Segue	que	g	é	estritamente	decrescente	em	{x	∈	I	|	x	<	p}	e	estritamente	crescente
em	{x	∈	I	|	x	>	p}.	Como	g	(p)	=	0,	resultado
	

g	(x)	>	0

para	todo	x	em	I,	x	≠	p.

Fica	a	seu	cargo.					■

EXEMPLO	1.	Seja	 	Estude	 f	com	relação	à	concavidade	e	determine
os	pontos	de	inflexão.

Solução

Come	 	para	todo	x,	o	sinal	de	f″	(x)	é	o	mesmo	que	o	de	x2	−	1.
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então,

Pontos	de	inflexão:	−1	e	1.					■

EXEMPLO	2.	Esboce	o	gráfico	de	
Solução

Pontos	de	inflexão:	−1	e	1.
	

297



EXEMPLO	3.	 Seja	 f	 derivável	 até	 a	 3.ª	 ordem	 no	 intervalo	 aberto	 I	 e	 seja	 p	∈	 I.
Suponha	que	f″	(p)	=	0,	f′″	(p)	≠	0	e	que	f′″	seja	contínua	em	p.	Prove	que	p	é	ponto	de
inflexão.

Solução

Para	 fixar	 o	 raciocínio,	 suponhamos	 f″′	 (p)	 >	 0.	Como	 f′″	 é	 contínua	 em	 p,	 pela
conservação	do	sinal,	existe	r	>	0	(que	pode	ser	 tomado	de	modo	que	]p	−	r,	p	+	r[
esteja	contido	em	I)	tal	que:
	

f″′	(x)	>	0	em	]p	−	r,	p	+	r[.

Segue	que	f″	é	estritamente	crescente	em	]p	−	r,	p	+	r[.	Então,

implica

logo,	p	é	ponto	de	inflexão.
	

EXEMPLO	4.	 Seja	 f	 derivável	 até	 a	 2.ª	 ordem	 no	 intervalo	 aberto	 I	 e	 seja	 p	∈	 I.
Suponha	 f″	 contínua	 em	 p.	 Prove	 que	 f″	 (p)	 =	 0	 é	 condição	 necessária	 (mas	 não
suficiente)	para	p	ser	ponto	de	inflexão	de	f.

Solução

Se	f″	(p)	≠	0,	pela	conservação	do	sinal,	existe	r	>	0	 tal	que	 f″	 (x)	 tem	o	mesmo
sinal	 que	 f″	 (p)	 em	 ]p	 −	 r,	 p	 +	 r[,	 logo	 p	 não	 poderá	 ser	 ponto	 de	 inflexão.	 Fica
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1.

2.

3.

4.

5.

6.

7.

provado,	assim,	que,	se	p	for	ponto	de	inflexão,	deveremos	ter	necessariamente	f″	(p)
=	0.	Para	verificar	que	a	condição	não	é	suficiente,	basta	olhar	para	a	função	f	(x)	=	x4	:
f″	(0)	=	0,	mas	0	não	é	ponto	de	inflexão.						■
	
Exercícios	9.3	

Estude	a	função	dada	com	relação	à	concavidade	e	pontos	de	inflexão.

Esboce	o	gráfico	de	cada	uma	das	funções	do	exercício	anterior.

Seja	f	(x)	=	ax3	+	bx2	+	cx	+	d,	a	≠	0.	Prove	que	f	admite	um	único	ponto	de
inflexão.

Se	p	for	ponto	de	inflexão	de	f	e	se	f′	(p)	=	0,	então	diremos	que	p	é	ponto	de
inflexão	horizontal	de	f.	Cite	uma	condição	suficiente	para	que	p	seja	ponto
de	inflexão	horizontal	de	f.

Se	p	for	ponto	de	inflexão	de	f	e	se	f′	(p)	≠	0,	então	diremos	que	p	é	ponto	de
inflexão	oblíquo	de	f.	Cite	uma	condição	suficiente	para	que	p	seja	ponto	de
inflexão	oblíquo	de	f.

Sejam	f	uma	função	derivável	até	a	5.ª	ordem	no	intervalo	aberto	I	 e	p	∈	 I.
Suponha	f(5)	contínua	em	p.	Prove	que

	
f″	(p)	=	f″′	(p)	=	f(4)	(p)	=	0	e	f(5)	(p)	≠	0

é	 uma	 condição	 suficiente	 para	 p	 ser	 ponto	 de	 inflexão	 de	 f.	 Generalize	 tal
resultado.

Seja	f	derivável	até	a	2.ª	ordem	em	ℝ	e	tal	que,	para	todo	x,	x	f″	(x)	+	f′(x)	=	4.
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a)
b)

8.

a)

b)

9.

10.

a)
b)
c)

11.

a)
b)
c)
d)

e)

9.4.

Mostre	que	f″	é	contínua	em	todo	x	≠	0
Mostre	que	f	não	admite	ponto	de	inflexão	horizontal

	
Seja	f	(x)	=	x5	+	bx4	+	cx3	−	2x	+	1.

Que	condições	b	e	c	devem	satisfazer	para	que	1	seja	ponto	de	inflexão	de	f?
Justifique.
Existem	 b	 e	 c	 que	 tornam	 1	 ponto	 de	 inflexão	 horizontal?	 Em	 caso
afirmativo,	determine-os.

	
Suponha	que	f″	(x)	>	0	em	]a,	+∞[	e	que	existe	x0	>	a	tal	que	f′(x0)	>	0.	Prove
que	

Seja	f	definida	e	derivável	no	intervalo	aberto	I,	com	1	∈	I,	tal	que

Mostre	que,	para	todo	x	em	I,	f″	(x)	existe	e	que	f″	é	contínua	em	I
Mostre	que	existe	r	>	0	tal	que	f′(x)	>	0	e	f″	(x)	>	0	em	]1	−	r,	1	+	r[
Esboce	o	gráfico	de	y	=	f	(x),	x	∈	]1	−	r,	1	+	r[

	
Seja	f	definida	e	derivável	no	intervalo	]−r,	r	[(r	>	0).	Suponha	que

Mostre	que	0	é	ponto	de	inflexão	horizontal
Mostre	que	f′(x)	>	0	para	x	≠	0
Estude	f	com	relação	à	concavidade

Mostre	que	 	para	0	<	x	<	r

Faça	um	esboço	do	gráfico	de	f

REGRAS	DE	L’HOSPITAL

As	 regras	de	L’Hospital,	que	vamos	enunciar	 a	 seguir	 e	 cujas	demonstrações	 são
deixadas	 para	 o	 final	 da	 seção,	 aplicam-se	 a	 cálculos	 de	 limites	 que	 apresentam

indeterminações	dos	tipos	

1.ª	REGRA	DE	L’HOSPITAL.	Sejam	f	e	g	deriváveis	em	]p	−	r,	p	[e	em]	p,	p	+	r[(r
>	0),	com	g′	(x)	≠	0	para	0	<	|	x	−	p	|	<	r.	Nestas	condições,	se
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e	se	 	existir	(finito	ou	infinito),	então	 	existirá	e

	

Observamos	que	a	1.ª	regra	de	L’Hospital	continua	válida	se	substituirmos	“x	→	p”
por	“x	→	p+”	ou	por	“x	→	p−”	ou	por	“x	→	±∞”.

2.ª	REGRA	DE	L’HOSPITAL.	Sejam	f	e	g	deriváveis	em	]m,	p[,	com	g′	(x)	≠	0	em
]m,	p[.	Nestas	condições,	se
	

e	se	 	existir	(finito	ou	infinito)	então	 	existirá	e

	

Observamos	que	a	2.ª	 regra	continua	válida	 se	 substituirmos	“x	→	p−”	por	“x	→
p+”	ou	por	“x	→	p”	ou	por	“x	→	±∞”.	A	regra	permanece	válida	se	substituirmos	um
dos	símbolos	+∞,	ou	ambos,	por	−∞.

EXEMPLO	1.	Calcule
	

Solução
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Pela	1.ª	regra	de	L’Hospital
	

ou	seja,
	

	

Pela	2.ª	regra	de	L’Hospital,
	

Assim,
	

c)	 	 que	 é	 uma	 indeterminação	 que	 poderá	 ser	 colocada	 na

forma	 	ou	 	É	mais	interessante	aqui	passá-la	para	a	forma	 	que	nos	permitirá

eliminar	o	ln	x.
	

Ou	seja,
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Como	vimos,	as	regras	de	L’Hospital	aplicam-se	às	indeterminações	da	forma	 	e	

	Os	próximos	exemplos	mostram	como	as	outras	formas	de	indeterminação	(0	·	∞,

∞−∞,	 00,	 ∞0	 e	 1∞)	 podem	 ser	 reduzidas	 a	 estas.	 (Observamos	 que	 00,	 ∞0	 e	 1∞	 são
indeterminações	do	tipo	0	·	∞.	Veja:	00	=	e0	ln	0	=	e0	·	(−∞);	∞0	=	e0	ln	∞	=	e0	·	∞	e	1∞	=	e∞	ln	1

=	e∞	·	0.)

EXEMPLO	2.	Calcule

Solução

Fazendo	 	somos	levados	a	uma	indeterminação	da	forma	 	Então

	

e	o	último	limite	é	igual	a
	

Bonito!	Em	vez	de	simplificar,	complicou!!	Vamos,	então,	mudar	a	nossa	estratégia.

Façamos	 a	 mudança	 de	 variável	 	 está	 pedindo	 a	 mudança	 de

variável	 	Temos,	então
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Pela	2.ª	regra	de	L’Hospital,
	

desde	que	o	último	limite	exista.	Ainda,	pela	2.ª	regra	de	L’Hospital,
	

Segue	que	 	e,	portanto,	 	Assim,

	

(Observação.	 Se	

	 e	

	existir	(finito	ou	infinito),	então

	

Verifique	e	generalize.)
	

	Temos

e
	

Segue	que
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ou	seja,
	

(Observação.	Se	 	proceda

como	acima	no	cálculo	de	

c)	 	Temos

	

	Pela	1.ª	regra	de	L’Hospital,

	

Portanto,
	

EXEMPLO	3.	Calcule	

Solução
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regra	de	L’Hospital	resulta
	

Para	facilitar	as	coisas,	observamos:

como	 	 basta	 então	 calcular	

	Este	último	limite	é	igual	a
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De	 	segue

	

pois,	como	já	sabemos,	 	(Ou	por	L’Hospital:

	

	Portanto

	

EXEMPLO	4.	Calcule

Solução

Então
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O	último	limite	é	igual	a
	

Logo,
	

(Observação.	Outro	modo	para	calcular	este	limite	é:

EXEMPLO	5.	Calcule

Solução
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O	último	limite	é	igual	a
	

Assim
	

(Este	limite	poderia,	também,	ter	sido	calculado	da	seguinte	forma:	fazendo	a	mudança

de	variável	 	resulta	

	

Assim
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EXEMPLO	6.	Calcule	

Solução
	

que	não	é	indeterminação.	Veja
	

e
	

Assim
	

Vimos	anteriormente	(Exemplo	8	da	Seção	7.2)	que	se	f	for	derivável	em	p	então
	

ou	seja,	o	erro	E	(x)	=	f	(x)	−	T	(x),	em	que	T	(x)	=	f	(p)	+	f′	(p)	(x	−	p),	 tende	a	zero
mais	rapidamente	do	que	x	−	p,	quando	x	tende	a	p,	o	que	significa
	

com	 	Assim,	T	(x)	é	um	valor	aproximado	para	f	(x)	 e	o	erro	que	 se
comete	 nesta	 aproximação	 tende	 a	 zero	 mais	 rapidamente	 do	 que	 x	 −	 p,	 quando	 x
tende	a	p.	A	seguir,	estamos	interessados	em	determinar	a	de	modo	que
	

P2	(x)	=	f	(p)	+	f′	(p)	(x	−	p)	+	a	(x	−	p)2
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seja	um	valor	aproximado	para	f	(x)	com	erro	tendendo	a	zero	mais	rapidamente	que	(x
−	p)2,	quando	x	tende	a	p.

EXEMPLO	7.	Suponha	f	derivável	no	intervalo	]p	−	r,	p	+	r[,	r	>	0,	e	que	a	derivada
de	2.ª	ordem	de	f	exista	em	p.	Mostre	que	se
	

então	

Solução

Vamos,	então,	calcular	o	limite
	

Pela	1.ª	regra	de	L’Hospital,	tal	limite	é	igual	a
	

pois,	 	 Segue	 da	 hipótese	 que	

Observação.	Seja
	

Do	que	vimos	acima	resulta
	

com	 	Ou	seja,	o	polinômio	P2	(x)	é	um	valor	aproximado	de	f	(x)	com
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erro	E	(x)	=	φ	(x)	(x	−	p)2	tendendo	a	zero	mais	rapidamente	do	que	(x	−	p)2,	quando	x
tende	a	p.	O	polinômio	P2	(x)	é	denominado	polinômio	de	Taylor	de	ordem	2	de	f	em	x
=	p.

EXEMPLO	8.	Suponha	f	derivável	até	a	2.ª	ordem	no	intervalo	]p	−	r,	p	+	r[,	r	>	0,	e
que	a	derivada	de	3.ª	ordem	de	f	exista	em	p.	Mostre	que	se
	

então,	

Solução

Pela	1.ª	regra	de	L’Hospital,	o	limite	acima	é	igual	a
	

Da	hipótese,	segue
	

O	polinômio
	

denomina-se	polinômio	 de	 Taylor	 de	 ordem	 3	 de	 f	 em	 x	 =	p.	 Segue,	 do	 que	 vimos
acima,	 que	P3	 (x)	é	 um	 valor	 aproximado	 de	 f	 (x)	 com	 erro	 E	 (x)	 =	 f	 (x)	 −	P3	 (x)
tendendo	a	zero	mais	rapidamente	do	que	(x	−	p)3,	para	x	tendendo	a	p.	Generalize.	O
polinômio	 de	 Taylor	 de	 uma	 função	 é	 uma	 das	 ferramentas	 poderosas	 do	 cálculo
numérico.	No	Cap.	15,	voltaremos	ao	polinômio	de	Taylor.

Para	 encerrar	 a	 seção,	 vamos	 provar	 as	 regras	 de	 L’Hospital.	 Para	 provar	 tais
regras,	vamos	substituir	a	hipótese	g′	(x)	≠	0	em	]p,	p	+	r[,	na	1.ª	regra,	e	g′	(x)	≠	0	em
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]m,	p[,	na	2.ª	regra,	por	g′	(x)	>	0	nestes	intervalos.	(Este	fato	não	restringe	em	nada	as
nossas	 regras,	 pois	 o	 teorema	 de	 Darboux	 (veja	 Exercício	 8	 da	 Seção	 9.7)	 nos	 diz
exatamente	o	seguinte:	g′	(x)	≠	0	no	intervalo	aberto	I	⇒	g′(x)	mantém	o	mesmo	sinal
neste	intervalo.)

Demonstração	da	1.ª	regra	de	L’Hospital

Suponhamos
	

Segue	que,	dado	∊	>	0	existe	δ	>	0,	δ	<	r,	tal	que,	para	p	<	x	<	p	+	δ,	tem-se
	

Do	Exemplo	8	da	Seção	9.2,	segue	que,	para	p	<	x	<	p	+	δ,	tem-se,	também,
	

Logo,
	

Fica	para	o	aluno	provar,	como	exercício,	a	1.ª	regra	nos	casos:
	

De	modo	análogo,	demonstra-se	que
	

Demonstração	da	2.ª	regra	de	L’Hospital

Suponhamos
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Pela	definição	de	limite,	dado	∊	>	0	existe	δ1	>	0,	com	p	−	δ1	>	m,	tal	que,	para	p	−	δ1	<
x	<	p,
	

Do	Exemplo	9	da	Seção	9.2,	segue	que	existem	constantes	M,	N	e	s,	com	s	∈	]p	−	δ1,
p[,	tal	que,	para	s	<	x	<	p,

Por	outro	lado,	de
	

existe	δ	>	0,	com	p	−	δ	>	s,	tal	que
	

para	p	−	δ	<	x	<	p.	Daí	e	de	①	resulta,	para	p	−	δ	<	x	<	p,
	

Ou	seja,
	

Fica	para	o	aluno	provar,	como	exercício,	a	2.ª	regra	no	caso	

De	modo	análogo,	demonstra-se	que
	

Observação.	As	regras	de	L’Hospital	contam-nos	que,	se	 	ou	

	 existir,	 então	 	 também
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1.

2.

existirá	e	 	 Entretanto,	 	 poderá	 existir,	 sem

que	 	exista	(veja	Exercício	4).

Exercícios	9.4	

Calcule

Sejam	f	e	g	deriváveis	até	a	2.ª	ordem	em	]p,	b[,	 com	g″	 (x)	≠	0	em	]p,	b[.
Suponha	que

	

ou
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3.

4.

9.5.

a)

b)

c)

d)

e)

f)

a)

b)

(i)

(ii)

	

Prove	 que,	 se	 	 existir	 (finito	 ou	 infinito)	 então	

existirá	e	 	Generalize	tal	resultado.

Calcule

Sejam	 	 Verifique	 que	

	e	que	 	 não	 existe.	Há

alguma	contradição	com	a	1.ª	regra	de	L’Hospital?

GRÁFICOS

Para	o	esboço	do	gráfico	de	uma	função	f,	sugerimos	o	roteiro:

explicitar	o	domínio;

determinar	os	intervalos	de	crescimento	e	de	decrescimento;

estudar	a	concavidade	e	destacar	os	pontos	de	inflexão;

calcular	os	limites	laterais	de	f,	em	p,	nos	casos:

p	∉	Df,	mas	p	é	extremo	de	um	dos	intervalos	que	compõem	Df.
p	∈	Df,	mas	f	não	é	contínua	em	p.

calcular	os	limites	para	x	→	+∞	e	x	→	−∞.

determinar	ou	localizar	as	raízes	de	f.

EXEMPLO	1.	Esboce	o	gráfico	de	f	(x)	=	x3	−	x2	−	x	+	1.

Solução

Df	=	ℝ.

Intervalos	de	crescimento	e	de	decrescimento.
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c)

d)

	

f′(x)	=	3x2	−	2x	−	1

	

	

Concavidade	e	pontos	de	inflexão.

	

f″	(x)	=	6x	−	2

	

Ponto	de	inflexão:	

Como	f	é	contínua	em	ℝ,	precisamos,	apenas,	calcular	os	limites	para	x	→	+∞	e	x
→	−∞.
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e)

a)

b)

As	raízes	de	f	são:	−1	e	1	(1	é	raiz	dupla).

	

EXEMPLO	2.	Esboce	o	gráfico	de	

Solução

Df	=	ℝ	−	{0}.

Intervalos	de	crescimento	e	de	decrescimento.

Para	calcular	f′(x)	é	conveniente	escrever	f	na	forma	

	

	

Observação.	 O	 sinal	 de	 f′(x)	 é	 o	 mesmo	 que	 o	 de	 	 já	 que	
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c)

d)

e)

f)

	

Concavidade	e	pontos	de	inflexão.

	

f″	(x)	=	2	+	6x−4

	

Não	há	ponto	de	inflexão.

Limites	laterais	de	f	em	0.

	

Limites	para	x	→	+∞	e	x	→	−∞.

	

f	não	admite	raiz.
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a)

b)

c)

Observe	que,	quando	x	tende	a	+∞	ou	−∞,	o	gráfico	de	f	vai	“encostando”	por	cima
no	gráfico	de	y	=	x2.					■

EXEMPLO	3.	Esboce	o	gráfico	de	

Solução

Df	=	{x	∈	ℝ	|	x	≠	±1}.
Intervalos	de	crescimento	e	de	decrescimento.

	

	

Concavidade	e	pontos	de	inflexão.
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d)

f)

Vimos,	no	Exemplo	5-9.2,	que	g	(x)	=	8x3	+	30x2	+	24x	+	10	admite	uma	única	raiz
real	a,	com	−3	<	a	<	−2,	e	que
	

g	(x)	<	0	para	x	<	a	e	g	(x)	>	0	para	x	>	a.

Combinando	o	sinal	de	g	(x)	com	o	de	x2	−	1,	resulta
	

Ponto	de	inflexão:	a	é	o	único	ponto	de	inflexão.

Limites	laterais	em	−1	e	1.

	

A	única	raiz	de	f	é	
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Seja	 f	 uma	 função.	 Se	 existir	 uma	 reta	 y	 =	 mx	 +	 n	 tal	 que	
	então	diremos	que	y	=	mx	+	n	é	uma	assíntota	para	f;

se	m	=	0,	teremos	uma	assíntota	horizontal,	e	se	m	≠	0,	uma	assíntota	oblíqua.
	

O	que	dissemos	para	x	→	+∞	vale	para	x	→	−∞.

Se	 f	 for	 da	 forma	 	 com	p	 e	q	 polinômios,	 f	 admitirá	 assíntota	 se

“grau	de	p	−	grau	de	q”	for	menor	ou	igual	a	1.	Se	“grau	de	p	−	grau	de	q”	for	1	ou	0,
para	determinar	a	assíntota	basta	“extrair	os	inteiros”.	Se	“grau	de	p	−	grau	de	q”	for
estritamente	menor	que	zero,	ou	seja,	se	grau	de	q	for	estritamente	maior	que	grau	de
p,	então	y	=	0	é	uma	assíntota.

EXEMPLO	4.	Determine	a	assíntota	e	esboce	o	gráfico	de	

Solução

f	é	uma	função	racional	e	a	diferença	entre	o	grau	do	numerador	e	do	denominador
é	1,	logo,	f	admite	assíntota.	Temos
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a)

b)

c)

e)

f)

Como	 	 quando	 x	 tende	 a	 +∞	 ou	 −∞,	 o

gráfico	de	f	vai	encostando	na	assíntota	y	=	x.	Temos,	agora,
	
Df	=	ℝ.

Intervalos	de	crescimento	e	de	decrescimento.

	

f	é	contínua	em	ℝ	e	f′(x)	>	0,	para	x	≠	0,	logo,	f	é	estritamente	crescente	em	ℝ.

Concavidade	e	pontos	de	inflexão.

	

0	é	a	única	raiz	de	f.

y	=	x	é	assíntota.

	

323



Observação.	Como	f′	(0)	=	0,	y	=	0	é	a	reta	tangente	ao	gráfico	de	f	em	(0,	0).

Muitas	vezes,	por	inspeção,	é	possível	prever	a	existência	ou	não	de	assíntota.	Um
bom	 indicador	 para	 a	 existência	 de	 assíntota	 oblíqua	 é	 o	 seguinte:	 se	 para	 x
suficientemente	 grande,	 f	 (x)	≅	 mx,	 para	 algum	 m,	 então	 será	 razoável	 esperar	 a
existência	de	assíntota.	Por	exemplo,	para	x	suficientemente	grande,	temos:
	

Então,	é	razoável	esperar	que	tais	funções	admitam	assíntotas.

Observe:
	

Para	 determinar	 assíntota,	 procedemos	 assim:	 primeiro	 determinamos	 m	 (caso
exista)	para	que
	

seja	finito;	em	seguida,	tomamos	para	n	o	valor	deste	limite.
Observamos	que	se	 	for	finito,	então
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ou	seja,
	

(Cuidado.	 	 poderá	 ser	 finito	 sem	 que	 	 o	 seja.

Verifique.)	 De	 modo	 análogo,	 se	 	 for	 finito,	 deveremos	 ter

obrigatoriamente	 	 A	 seguir,	 sugerimos	 um	 processo	 para	 se

determinar	assíntota.
	

Primeiro	determine	m,	caso	exista,	através	do	limite
	

Em	seguida,	calcule
	

Se	n	for	finito,	y	=	mx	+	n	será	assíntota	(para	x	→	+∞).	Proceda	de	modo	análogo
para	x	→	−∞.

Observação.	 Se	 	 e	 se	 	 existe,	 pela	 2.ª	 regra	 de

L’Hospital	 	(Interprete.)

EXEMPLO	5.	Determine	as	assíntotas	de
	

Solução

Temos
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Segue	que
	

e
	

Assim,	m	=	1,	para	x	→	+∞,	e	m	=	−1	para	x	→	−∞.	Vamos,	agora,	deteminar	n.	Para	x
→	+∞,
	

	

Assim,	para	x	→	+∞,	y	=	x	é	assíntota.	Para	x	→	−∞,	temos
	

Logo,	para	x	→	−∞,	y	=	−x	é	assíntota.
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EXEMPLO	6.	Determine	as	assíntotas	e	esboce	o	gráfico	de	

Solução

Temos
	

Daí
	

e
	

Assim,	para	x	→	+∞,	m	=	2,	e,	para	x	→	−∞,	m	=	−2.	Vamos,	agora,	determinar	n.	Para
x	→	+∞,	temos
	

Para	x	>	0,
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a)

b)

Segue	que	 	Logo,	para	x	→	+∞,	 	é	assíntota.	Para	x	→	−∞,

	

Assim,	para	x	→	−∞,	 	é	assíntota.	Temos,	então,	as	assíntotas

	

e
	

Temos,	agora,

Df	=	ℝ,	pois,	4x2	+	x	+	1	>	0	para	todo	x.

Intervalos	de	crescimento	e	de	decrescimento
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c) Concavidade	e	pontos	de	inflexão

	

f″	(x)	>	0	para	todo	x,	logo,	concavidade	para	cima	em	ℝ.

	

EXEMPLO	7.	Determine	as	assíntotas	e	esboce	o	gráfico	de	

Solução

Temos
	

Segue	que
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a)

b)

e
	

Assim,	m	=	1.	Vamos,	agora,	determinar	n.
	

Para	x	→	+∞,
	

Pela	1.ª	regra	de	L’Hospital,
	

Para	x	→	−∞,
	

Logo,	 	é	assíntota	para	x	→	+∞	e	para	x	→	−∞.

Temos,	agora,

Df	=	ℝ.

Intervalos	de	crescimento	e	de	decrescimento
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c)

e)

Concavidade	e	pontos	de	inflexão

	

Ponto	de	inflexão:	1	é	o	único	ponto	de	inflexão.

Em	 0	 e	 1	 a	 função	 é	 contínua	 mas	 não	 é	 derivável.	 Vamos	 então	 estudar	 o
comportamento	do	gráfico	de	f	nos	pontos	de	abscissas	0	e	1.

	

(0,	f	(0))

Seja	sx	a	reta	secante	ao	gráfico	de	f	passando	pelos	pontos	(0,	f	(0))	e	(x,	f	(x)).	O
coeficiente	angular	de	sx	é
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(1,	f(1))

O	coeficiente	angular	da	reta	secante	sx,	que	passa	pelos	pontos	(1,	f	(1))	e	(x,	f	(x))	é
	

	

No	ponto	(1,	f	(1))	o	gráfico	de	f	admite	uma	reta	tangente	vertical.

Gráfico	de	f
	

Interprete	graficamente	os	limites
	

Exercícios	9.5	

Esboce	o	gráfico.
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9.6.

		

MÁXIMOS	E	MÍNIMOS

	

Definição	1.	Sejam	f	uma	função,	A	⊂	Df	e	p	∈	A.	Dizemos	que	 f	(p)	 é	o	valor
máximo	de	f	em	A	ou	que	p	um	ponto	de	máximo	de	f	em	A	se	 f	(x)	≤	f	 (p)	para
todo	x	em	A.	Se	f	(x)	≥	f	(p)	para	todo	x	em	A,	dizemos	então	que	f	(p)	é	o	valor
mínimo	de	f	em	A	ou	que	p	é	um	ponto	de	mínimo	de	f	em	A.

	

333



Definição	2.	Sejam	f	uma	função	e	p	∈	Df.	Dizemos	que	f	(p)	é	o	valor	máximo
global	de	f	ou	que	p	é	um	ponto	de	máximo	global	de	f	se,	para	todo	x	em	Df,	f	(x)
≤	 f	 (p).	 Se,	 para	 todo	 x	 em	Df,	 f	 (x)	 ≥	 f	 (p),	 diremos	 então	 que	 f	 (p)	 é	 o	 valor
mínimo	global	de	f	ou	que	p	é	um	ponto	de	mínimo	global	de	f.

Definição	3.	Sejam	 f	uma	 função	e	p	∈	Df.	Dizemos	que	p	 é	ponto	 de	máximo
local	de	f	se	existir	r	>	0	tal	que
	

f	(x)	≤	f	(p)

para	 todo	 x	 em	 ]p	 −	 r,	 p	 +	 r[∩	Df.	 Por	 outro	 lado,	 dizemos	 que	 p	 é	 ponto	 de
mínimo	local	de	f	se	existir	r	>	0	tal	que
	

f	(x)	≥	f	(p)

para	todo	x	em	]p	−	r,	p	+	r[∩	Df.
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Uma	 boa	 maneira	 de	 se	 determinar	 os	 pontos	 de	 máximo	 e	 de	 mínimo	 de	 uma
função	f	é	estudá-la	com	relação	a	crescimento	e	decrescimento.	Sejam	a	<	c	<	b;	se	f
for	crescente	em	]a,	c]	e	decrescente	em	[c,	b[,	então	c	será	um	ponto	de	máximo	local
de	 f;	 se	 f	 for	 decrescente	 em	 ]a,	c]	e	 crescente	 em	 [c,	b[	então	 c	 será	 um	 ponto	 de
mínimo	local	de	f.

EXEMPLO	1.	Seja	f	(x)	=	x3	−	3x2	+	3.

a)	Estude	f	com	relação	a	máximos	e	mínimos.
b)	 Determine	 os	 valores	 máximo	 e	 mínimo	 de	 f	 em	 [−2,	 3].	 Em	 que	 pontos	 estes
valores	são	atingidos?

Solução

ponto	de	máximo	local:	0
ponto	de	mínimo	local:	2

Como	 	 segue

que	f	não	assume	nem	valor	máximo	global,	nem	valor	mínimo	global.
	

f(−2)	=	−17	é	o	valor	mínimo	de	f	em	[−2,	3].
f(0)	=	f(3)	=	3	é	o	valor	máximo	de	f	em	[−2,	3].
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EXEMPLO	2.	Determine	dois	números	positivos	cuja	soma	seja	4	e	tal	que	a	soma	do
cubo	do	menor	com	o	quadrado	do	maior	seja	mínima.

Solução

Indiquemos	por	x	o	número	menor	(0	≤	x	≤	2);	assim	o	maior	é	4	−	x.	Seja
	

S	(x)	=	x3	+	(4	−	x)2,	0	≤	x	≤	2.

Devemos	determinar	x	que	torna	mínimo	o	valor	de	S.	Temos

S′	(x)	=	3x2	+	2x	−	8

	

Assim,	 	torna	mínimo	o	valor	de	S.

Conclusão.	 Os	 números	 procurados	 são	
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EXEMPLO	3.	Pede-se	construir	um	cilindro	circular	reto	de	área	total	S	dada	e	cujo
volume	seja	máximo.

Solução

Precisamos	determinar	r	(raio	da	base)	e	h	(altura).
Temos

	

Assim,
	

S	=	2πr2	+	2πrh

	

daí	

Podemos,	então,	exprimir	o	volume	V	em	função	de	r.
	

ou
	

Devemos	determinar	r	que	torna	V	máximo.
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1.

a)

b)
c)
d)
e)
f)
g)
h)

2.

3.

4.

5.

Assim,	 	torna	V	máximo.

Conclusão.	 	 são,	 respectivamente,	 o	 raio	 e	 a	 altura	 do

cilindro	de	volume	máximo.

Exercícios	9.6	

Estude	a	função	dada	com	relação	a	máximos	e	mínimos	locais	e	globais.

f	(x)	=	x	e−2x

f	(x)	=	ex	−	e−3x

f	(x)	=	2x3	−	9x2	+	12x	+	3
f	(x)	=	x2	+	3x	+	2
x	(t)	=	t	e−t

f	(x)	=	x4	−	4x3	+	4x2	+	2
f	(x)	=	sen	x	+	cos	x,	x	∈	[0,	π	]

Determine	as	dimensões	do	retângulo	de	área	máxima	e	cujo	perímetro	2p	 é
dado.

Determine	o	número	real	positivo	cuja	diferença	entre	ele	e	seu	quadrado	seja
máxima.

Determine	o	número	real	positivo	cuja	soma	com	o	inverso	de	seu	quadrado
seja	mínima.

Determine	a	altura	do	cilindro	circular	 reto,	de	volume	máximo,	 inscrito	na
esfera	de	raio	R	dado.
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6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Determine	 a	 altura	 do	 cone	 circular	 reto,	 de	 volume	 máximo,	 inscrito	 na
esfera	de	raio	R	dado.

Determine	a	altura	do	cone	circular	reto,	de	volume	máximo,	e	com	geratriz	a
dada.

Considere	a	curva	y	=	1	−	x2,	0	≤	x	≤	1.	Traçar	uma	tangente	à	curva	tal	que	a
área	do	triângulo	que	ela	forma	com	os	eixos	coordenados	seja	mínima.

Determine	 o	 retângulo	 de	 área	 máxima	 e	 lados	 paralelos	 aos	 eixos
coordenados,	inscrito	na	elipse	4x2	+	y2	=	1.

Deseja-se	construir	uma	caixa,	de	forma	cilíndrica,	de	1	m3	de	volume.	Nas
laterais	e	no	fundo	será	utilizado	material	que	custa	R$	10	o	metro	quadrado	e
na	 tampa	material	 de	R$	20	o	metro	quadrado.	Determine	 as	 dimensões	da
caixa	que	minimizem	o	custo	do	material	empregado.

r	é	uma	reta	que	passa	pelo	ponto	(1,	2)	e	intercepta	os	eixos	nos	pontos	A	=
(a,	0)	e	B	=	(0,	b),	com	a	>	0	e	b	>	0.	Determine	r	de	modo	que	a	distância	de
A	a	B	seja	a	menor	possível.

Certa	pessoa	que	se	encontra	em	A,	para	atingir	C,	utilizará	na	travessia	do	rio
(de	100	m	de	largura)	um	barco	com	velocidade	máxima	de	10	km/h;	de	B	a
C	utilizará	uma	bicicleta	com	velocidade	máxima	de	15	km/h.	Determine	B
para	que	o	tempo	gasto	no	percurso	seja	o	menor	possível.

	

Qual	o	ponto	P	da	curva	y	=	x2	que	se	encontra	mais	próximo	de	(3,	0)?	Seja
P	=	(a,	b)	tal	ponto;	mostre	que	a	reta	que	passa	por	(3,	0)	e	(a,	b)	é	normal	à
curva	em	(a,	b).

Encontre	o	ponto	da	curva	 	x	>	0,	que	está	mais	próximo	da	origem.

Duas	partículas	P	e	Q	movem-se,	respectivamente,	sobre	os	eixos	0x	e	0y.	A

função	de	posição	de	P	 é	 	 e	a	de	Q,	 	 t	 ≥	 0.	Determine	o

instante	em	que	a	distância	entre	P	e	Q	seja	a	menor	possível.

Seja	g	definida	e	positiva	no	 intervalo	 I.	Seja	p	∈	 I.	Prove:	p	 será	ponto	de
máximo	(ou	de	mínimo)	de	 	em	I,	se,	e	somente	se,	p	for	ponto
de	máximo	(ou	de	mínimo)	de	g	em	I.
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17.

18.

19.

20.

21.

Um	sólido	será	construído	acoplando-se	a	um	cilindro	circular	reto,	de	altura
h	 e	 raio	 r,	 uma	 semiesfera	 de	 raio	 r.	Deseja-se	 que	 a	 área	 da	 superfície	 do
sólido	seja	5π.	Determine	r	e	h	para	que	o	volume	seja	máximo.

	

A	Cia.	α	Ltda.	produz	determinado	produto	e	vende-o	a	um	preço	unitário	de
R$	13.	Estimase	que	o	custo	total	c	para	produzir	e	vender	q	unidades	é	dado
por	c	=	q3	−	3q2	+	4q	+	2.	Supondo	que	toda	a	produção	seja	absorvida	pelo
mercado	consumidor,	que	quantidade	deverá	 ser	produzida	para	 se	 ter	 lucro
máximo?

Determinado	produto	é	produzido	e	vendido	a	um	preço	unitário	p.	O	preço
de	venda	não	é	constante,	mas	varia	em	função	da	quantidade	q	demandada
pelo	mercado,	de	acordo	com	a	equação	 	0	≤	q	≤	20.	Admita
que,	 para	 produzir	 e	 vender	 uma	 unidade	 do	 produto,	 a	 empresa	 gasta	 em
média	R$	3,50.	Que	quantidade	 deverá	 ser	 produzida	 para	 que	 o	 lucro	 seja
máximo?

Do	ponto	A,	situado	numa	das	margens	de	um	rio,	de	100	m	de	largura,	deve-
se	levar	energia	elétrica	ao	ponto	C	situado	na	outra	margem	do	rio.	O	fio	a
ser	utilizado	na	água	custa	R$	5	o	metro,	e	o	que	será	utilizado	fora,	R$	3	o
metro.	Como	deverá	 ser	 feita	a	 ligação	para	que	o	gasto	com	os	 fios	 seja	o
menor	possível?	(Suponha	as	margens	retilíneas	e	paralelas.)

	

Sejam	P	 =	 (0,	a)	 e	Q	 =	 (b,	c),	 em	que	a,	b	 e	 c	 são	 números	 reais	 dados	 e
estritamente	positivos.	Seja	M	=	(x,	0),	com	0	≤	x	≤	b.
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a)
b)

22.

23.

24.

25.

26.

a)

b)

27.

28.

	

Determine	x	para	que	o	perímetro	do	triângulo	PMQ	seja	mínimo.
Conclua	que	o	perímetro	será	mínimo	para	α	=	β.

Determine	M	no	gráfico	de	y	=	x3,	0	≤	x	≤	1,	de	modo	que	a	área	do	triângulo
de	vértices	(0,	0),	(1,	1)	e	M	seja	máxima.

A	Cia.	γ	Ltda.	produz	um	determinado	produto	e	vende-o	com	um	lucro	total
dado	por	L	 (q)	=	−q3	 +	 12q2	 +	 60q	 −	 4,	 em	que	q	 representa	 a	 quantidade
produzida.	Determine	 o	 lucro	máximo	 e	 a	 produção	 que	maximiza	 o	 lucro.
Esboce	o	gráfico	desta	função.

Determine	uma	reta	tangente	ao	gráfico	de	y	=	1	−	x2,	de	modo	que	a	distância
da	origem	a	ela	seja	a	menor	possível.

Determine	o	ponto	da	parábola	y	=	1	−	x2	que	se	encontra	mais	próximo	da
origem.

Seja	(x0,	y0),	x0	>	0	e	y0	>	0,	um	ponto	da	elipse	x2	+	4y2	=	1.	Seja	T	 a	 reta
tangente	à	elipse	no	ponto	(x0,	y0).

Verifique	que	T	tem	por	equação
	

x0	x	+	4	y0	y	=	1.

Determine	x0	 de	modo	que	a	 área	do	 triângulo	determinado	por	T	 e	pelos
eixos	coordenados	seja	mínima.

	
Uma	partícula	P	desloca-se	sobre	o	eixo	x	com	velocidade	constante	e	igual	a
1.	Outra	partícula	Q	desloca-se	sobre	a	parábola	y	=	1	−	x2	de	modo	que	sua
projeção	sobre	o	eixo	x	descreve	um	movimento	com	velocidade	constante	e
igual	 a	 2.	 No	 instante	 t	 =	 0,	 as	 partículas	 P	 e	 Q	 encontram-se,
respectivamente,	nas	posições	(0,	0)	e	(0,	1).	Determine	o	instante	em	que	as
partículas	encontram-se	mais	próximas.

Dado	o	triângulo	retângulo	de	catetos	3	e	4,	determine	o	retângulo	de	maior
área	nele	inscrito,	de	modo	que	um	dos	lados	esteja	contido	na	hipotenusa.
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29.

30.

31.

32.

33.

Determine	o	ponto	da	parábola	y	=	x2	que	se	encontra	mais	próximo	da	reta	y
=	x	−	2.

Dois	vértices	de	um	retângulo	R	estão	sobre	o	eixo	x	e	os	outros	dois	sobre	o
gráfico	de	 	Considere	 o	 cilindro	 que	 se	 obtém	 girando	 o

retângulo	R	 em	 torno	 do	 eixo	 x.	 Determine	 o	 retângulo	R	 de	 modo	 que	 o
volume	do	cilindro	seja	o	maior	possível.

Considere	duas	retas	paralelas	r	e	s.	Sejam	A	e	C	dois	pontos	distintos	de	r	e
B	um	ponto	de	s.

	

Determine	Q	 na	 reta	 s	 de	modo	 que	 a	 soma	das	 áreas	 dos	 triângulos	APC	 e
QPB	seja	mínima.

Considere	o	triângulo	isósceles	ABC,	com	AB	=	BC.	Seja	H	o	ponto	médio	de
AC.	Determine	P	no	segmento	HB	de	modo	que	a	soma	das	distâncias	de	P
aos	pontos	A,	B	e	C	seja	a	menor	possível.

(Lei	 de	 refração	 de	 Snellius).	 Considere	 uma	 reta	 r	 e	 dois	 pontos	 P	 e	 Q
localizados	em	semiplanos	opostos.

	

Uma	partícula	vai	de	P	a	M	com	velocidade	constante	u	e	movimento	retilíneo;
em	 seguida,	 vai	 de	 M	 a	 Q	 com	 velocidade	 constante	 v,	 também,	 com
movimento	retilíneo.	Mostre	que	o	tempo	de	percurso	será	mínimo	se
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9.7.

	

CONDIÇÃO	NECESSÁRIA	E	CONDIÇÕES	SUFICIENTES	PARA	MÁXIMOS	E
MÍNIMOS	LOCAIS

Sejam	 f	 uma	 função	 e	 p	 um	 ponto	 interior	 a	 Df	 (p	 interior	 a	 Df	⇔	 existe	 um
intervalo	aberto	I,	com	I	⊂	Dfe	p	∈	I).	Suponhamos	f	derivável	em	p.	O	nosso	próximo
teorema	conta-nos	que	uma	condição	necessária,	mas	não	suficiente,	para	que	p	 seja
ponto	de	máximo	ou	de	mínimo	 local	 é	 que	 f′	 (p)	=	 0.	A	 figura	 abaixo	dá-nos	 uma
ideia	geométrica	do	que	falamos	acima.
	

	

Teorema	1.	Seja	f	uma	função	derivável	em	p,	em	que	p	é	um	ponto	interior	a
Df.	Uma	 condição	necessária	 para	 que	p	 seja	 ponto	 de	máximo	 ou	 de	mínimo
local	é	que	f′	(p)	=	0.

Demonstração

Suponhamos	que	p	seja	ponto	de	máximo	local	(a	demonstração	será	análoga	se	p
for	ponto	de	mínimo	local).	Assim,	existe	r	>	0	tal	que
	

f	(x)	≤	f	(p)	em	]p	−	r,	p	+	r[∩	Df.

Como,	por	hipótese,	p	é	interior	a	Df,	podemos	escolher	r	de	modo	que	]p	−	r,	p	+
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a)
b)

r[⊂	Df.	Assim
	

f	(x)	≤	f	(p)	para	todo	x	em	]p	−	r,	p	+	r[.

Como	f	é	derivável	em	p,	os	limites	laterais
	

existem	e	são	iguais	a	f′	(p):
	

Para	p	<	x	<	p	+	r,	 	pela	conservação	do	sinal

	

logo,	f′	(p)	≤	0.

Para	p	−	r	<	x	<	p,	 	daí

	

logo,	f′	(p)	≥	0.	Como	f′	(p)	≥	0	e	f′	(p)	≤	0	resulta	f′	(p)	=	0.					■

Um	ponto	p	∈	Df	se	diz	ponto	crítico	ou	ponto	estacionário	de	 f	 se	 f′	 (p)	=	0.	O
teorema	anterior	conta-nos,	então,	que	se	p	for	interior	a	Df	e	f	derivável	em	p,	 então
uma	condição	necessária	para	que	p	seja	ponto	de	máximo	ou	de	mínimo	local	de	f	é
que	p	seja	ponto	crítico	de	f.

Vamos,	agora,	estabelecer	uma	condição	suficiente	para	que	um	ponto	p	seja	ponto
de	máximo	ou	de	mínimo	local.
	

Teorema	2.	Sejam	f	uma	função	que	admite	derivada	de	2.ª	ordem	contínua	no
intervalo	aberto	I	e	p	∈	I.

f′	(p)	=	0	e	f″	(p)	>	0	⇒	p	é	ponto	de	mínimo	local.
f′	(p)	=	0	e	f″	(p)	<	0	⇒	p	é	ponto	de	máximo	local.
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b)

1.

a)

b)

c)
d)

e)
f)

2.

Demonstração

a)	Como	 f″	 é	 contínua	 em	 I	 e	 f″	 (p)	 >	 0,	 pelo	 teorema	 da	 conservação	 do	 sinal,
existe	r	>	0	(tal	r	pode	ser	tomado	de	modo	que	]p	−	r,	p	+	r[	esteja	contido	em	I,	pois
estamos	supondo	I	intervalo	aberto	e	p	∈	I)	tal	que
	

f″	(x)	>	0	em	]p	−	r,	p	+	r[.

Segue	que	f′	é	estritamente	crescente	neste	intervalo;	como	f′	(p)	=	0,	resulta:
	

Logo,	f	é	estritamente	decrescente	em	]p	−	r,	p]	e	estritamente	crescente	em	[p,	p	+	r	[.
Portanto,	p	é	ponto	de	mínimo	local.

Faça	você.					■
	
Exercícios	9.7	

Determine	os	pontos	críticos	da	função	dada	e	classifique-os	(a	classificação
refere-se	 a	 ponto	 de	 máximo	 local,	 ponto	 de	 mínimo	 local	 ou	 ponto	 de
inflexão).

h(x)	=	x3	−	3x2	+	3x	−	1

f	(x)	=	x4	−	4x3	+	6x2	−	4x	+1
g(x)	=	x2	e−5x

	
Suponha	que	f	admite	derivada	de	3.ª	ordem	contínua	no	intervalo	aberto	I	e
seja	p	∈	 I.	Prove	que	se	 f′	 (p)	=	 f″	 (p)	=	0	e	 f″′	 (p)	≠	0	então	p	 é	ponto	de
inflexão	horizontal.
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3.

4.

5.

a)
b)

6.

a)
b)

c)

7.

a)
b)
c)

8.

9.

Suponha	que	f	admite	derivada	até	a	4.ª	ordem	contínua	no	intervalo	aberto	I
e	seja	p	∈	I.	Prove	que	se	f′	(p)	=	f″	(p)	=	f″′	(p)	=	0	e	f(4)	(p)	≠	0,	então	p	será
ponto	de	máximo	local	se	f(4)	(p)	<	0	e	será	ponto	de	mínimo	local	se	f(4)	(p)	>
0.

Generalize	os	resultados	obtidos	nos	Exercícios	2	e	3.

Seja	f	derivável	em	ℝ	e	seja	g	dada	por	 	x	≠	0.	Suponha	que	p	é

ponto	de	máximo	local	de	g.

Prove	que	p	f′	(p)	−	f	(p)	=	0.
Prove	que	a	reta	tangente	ao	gráfico	de	f	no	ponto	de	abscissa	p	passa	pela
origem.

	
Suponha	que	f	seja	derivável	até	a	2.ª	ordem	em	ℝ	e	tal	que	para	todo	x

	
f″	(x)	+	x	f′	(x)	=	1.

Prove	que	f	não	admite	ponto	de	máximo	local.
Prove	que,	se	f	admitir	um	ponto	crítico	x0,	então	x0	será	ponto	de	mínimo
local.
Prove	que	f	poderá	admitir	no	máximo	um	ponto	crítico.

	
Suponha	que	f	seja	derivável	até	a	2.ª	ordem	em	ℝ	e	tal	que	para	todo	x

x	f″	(x)	+	f′(x)	=	2.

Prove	que,	se	x0	for	ponto	de	máximo	local,	então	x0	<	0.
Prove	que,	se	x0	for	ponto	de	mínimo	local,	então	x0	>	0.
Prove	que	f′(x)	>	0	para	todo	x.

(Sugestão:	Observe	que	f′	(0)	=	2.)

(Teorema	de	Darboux.)	Suponha	g	derivável	em	[a,	b],	com	g′	(a)	<	0	e	g′	(b)
>	 0.	 Prove	 que	 existe	 c	 em	 ]a,	 b[	 tal	 que	 g′	 (c)	 =	 0.	 Interprete
geometricamente.

(Sugestão:	Verifique	que	o	valor	mínimo	g	(c)	de	g	em	[a,	b]	é	tal	que	g	(c)	<	g
(a)	e	g	(c)	<	g	(b).)

Suponha	g	derivável	no	intervalo	I	e	tal	que	g′	(x)	≠	0	em	todo	x	de	I.	Prove
que

g′	(x)	>	0	em	todo	x	∈	I
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10.

11.

a)
b)

12.

a)
b)
c)

9.8.

ou

g′	(x)	<	0	em	todo	x	∈	I.

Suponha	g	derivável	em	[a,	b]	e	seja	m	tal	que	g′	(a)	<	m	<	g′	(b).	Prove	que
existe	c	em	]a,	b[	tal	g′	(c)	=	m.

(Sugestão:	Aplique	o	Exercício	8	à	função	f	(x)	=	g	(x)	−	mx.)

Seja	y	=	f	(x)	uma	função	derivável	até	a	2.ª	ordem	no	intervalo	aberto	I,	 tal
que	para	todo	x	∈	I.

f″	(x)	+	x	f′	(x)	−	[f	(x)	]2	=	0

f	(x)	≠	0.

Verifique	que	f″	é	contínua	em	I.
Prove	que	f	não	admite	ponto	de	máximo	local	em	I.

Seja	y	=	f	(x)	derivável	até	a	2.ª	ordem	em	]−r,	r	[,	r	>	0,	tal	que,	para	todo	x	∈
]−r,	r[,

f″	(x)	+	f′(x)	−	x	[f	(x)]2	=	0.

Suponha,	ainda,	que	f	(0)	=	0	e	f′	(0)	=	1.

Prove	que	f	não	admite	ponto	de	máximo	local	em	]0,	r].
Prove	que	f	não	admite	ponto	de	mínimo	local	em	]−r,	0].
Prove	que	f	é	estritamente	crescente	em	]−r,	r].

MÁXIMO	E	MÍNIMO	DE	FUNÇÃO	CONTÍNUA	EM	INTERVALO	FECHADO

Seja	f	uma	função	contínua	no	intervalo	fechado	[a,	b].	O	teorema	de	Weierstrass
(veja	Cap.	5)	garante-nos	que	f	assume	em	[a,	b]	valor	máximo	e	valor	mínimo.	Vamos
descrever,	 a	 seguir,	 um	 processo	 bastante	 interessante	 para	 determinar	 os	 valores
máximos	 e	mínimos	de	 f	 em	 [a,	b].	Suponhamos	 f	 derivável	 em	 ]a,	b[.	 Seja	 f	 (p)	 o
valor	máximo	de	f	em	[a,	b];	deste	modo,	p	ou	é	extremidade	de	[a,	b]	ou	p	∈	]a,	b[;	se
p	∈	 ]a,	b[,	 pelo	 teorema	1	da	 seção	anterior,	 f′	 (p)	=	0.	Segue	que,	para	 se	 obter	 o
valor	 máximo	 de	 f	 em	 [a,	 b],	 é	 suficiente	 comparar	 os	 valores	 que	 f	 assume	 nas
extremidades	de	[a,	b]	com	os	assumidos	nos	pontos	críticos	que	pertencem	a	]a,	b[.	O
valor	máximo	de	f	em	[a,	b]	será	então	o	maior	desses	valores.	Evidentemente,	o	valor
mínimo	de	f	em	[a,	b]	será	o	menor	daqueles	valores.

Deixamos	 a	 seu	 cargo	 descrever	 um	 processo	 para	 se	 determinar	 os	 valores
máximos	e	mínimos	de	f	em	[a,	b],	no	caso	em	que	f	é	contínua	no	intervalo	fechado
[a,	b]	e	não	derivável	em	apenas	um	número	finito	de	pontos	de	[a,	b].

Exercícios	9.8	
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Determine	 os	 valores	 máximos	 e	 mínimos	 (caso	 existam)	 da	 função	 dada,	 no
intervalo	dado.
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10.1.

10

PRIMITIVAS

RELAÇÃO	ENTRE	FUNÇÕES	COM	DERIVADAS	IGUAIS

Já	sabemos	que	a	derivada	de	uma	função	constante	é	zero.	Entretanto,	uma	função
pode	 ter	 derivada	 zero	 em	 todos	os	 pontos	 de	 seu	domínio	 e	não	 ser	constante;	por
exemplo
	

é	 tal	 que	 f′(x)	 =	 0	 em	 todo	 x	 no	 seu	 domínio,	 mas	 f	 não	 é	 constante.	 O	 próximo
teorema,	que	é	uma	consequência	do	TVM,	conta-nos	que	se	f	tiver	derivada	zero	em
todos	os	pontos	de	um	intervalo,	então	f	será	constante	neste	intervalo.
	

Teorema.	 Seja	 f	 contínua	 no	 intervalo	 I.	 Se	 f′(x)	 =	 0	 em	 todo	 x	 interior	 a	 I,
então	existirá	uma	constante	k	tal	que	f	(x)	=	k	para	todo	x	em	I.

Demonstração

Seja	x0	um	ponto	fixo	em	I.	Vamos	provar	que,	para	todo	x	em	I,	f	(x)	=	f	(x0),	o	que
significará	que	f	é	constante	em	I.	Para	todo	x	em	I,	x	≠	x0,	 existe,	pelo	TVM,	um	
pertencente	ao	intervalo	aberto	de	extremos	x	e	x0	tal	que
	

f	(x)	−	f	(x0)	=	f′	( )	(x	−	x0).

(Observe	que	de	acordo	com	a	hipótese,	f	é	contínua	no	intervalo	fechado	de	extremos
x	e	x0	e	derivável	no	intervalo	aberto	de	mesmos	extremos.)

Como	 	é	interior	a	I,	pela	hipótese	f′	( )	=	0,	logo
	

f	(x)	−	f	(x0)	=	0	ou	f	(x)	=	f	(x0)

para	todo	x	em	I.	Tomando-se	k	=	f	(x0),	resulta	o	teorema.					■

Como	 consequência	 deste	 teorema,	 provaremos	 que	 se	 duas	 funções	 tiverem
derivadas	 iguais	 num	 intervalo,	 então,	 neste	 intervalo,	 elas	 diferirão	 por	 uma
constante.
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Corolário.	Sejam	f	e	g	contínuas	no	intervalo	I.	Se	f′(x)	=	g′	(x)	em	todo	x	interior
a	I,	então	existirá	uma	constante	k	tal	que
	

g	(x)	=	f	(x)	+	k

para	todo	x	em	I.

Demonstração

A	função	h	(x)	=	g	(x)	−	f	(x)	é	contínua	em	I	e	para	todo	x	interior	a	I,	h	′	(x)	=	g	′
(x)	−	f′(x)	=	0.	Pelo	teorema	anterior,	existe	uma	constante	k	tal	que
	

g	(x)	−	f	(x)	=	k				ou				g	(x)	=	f	(x)	+	k

para	todo	x	em	I.					■

Observamos	que	se	f	e	g	satisfizerem	as	hipóteses	do	corolário	e	se	f	(x0)	=	g	 (x0)
para	algum	x0	∈	I,	então	f	(x)	=	g	(x)	para	todo	x	∈	I.	De	fato,	pelo	corolário,	existe	k
tal	que
	

g	(x)	=	f	(x)	+	k

para	todo	x	em	I.	Em	particular,	g	(x0)	=	f	(x0)	+	k,	logo	k	=	0.	Portanto,	g	(x)	=	f	(x)	em
I.

Já	vimos	que	se	f	(x)	=	ex,	x	∈	ℝ,	então,	f′(x)	=	ex,	ou	seja,	a	função	f	(x)	=	ex	goza
da	seguinte	propriedade:	a	sua	derivada	é	ela	própria.	O	próximo	exemplo	nos	mostra
que	as	únicas	 funções	que	gozam	desta	propriedade	são	as	 funções	da	 forma	 f	 (x)	=
kex,	em	que	k	é	uma	constante.

EXEMPLO	1.	Seja	f	definida	e	derivável	em	e	tal	que,	para	todo	x,	f′(x)	=	f	(x).	Prove
que	existe	uma	constante	k	tal	que,	para	todo	x,	tem-se	f	(x)	=	k	ex.

Solução

A	ideia	para	a	prova	é	considerar	o	quociente	 	e	mostrar	que	a	sua	derivada	é

zero.	Temos
	

Da	hipótese	f′(x)	=	f	(x)	segue
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para	todo	x	em	ℝ.	Pelo	teorema	1,	existe	uma	constante	k	tal	que,	para	todo	x,
	

ou	seja,
	

f	(x)	=	kex.

O	exemplo	acima	nos	diz	que	as	soluções	da	equação	diferencial	 	 são	as

funções	da	forma	y	=	k	ex,	k	constante,	isto	é,
	

k	constante.

■

Observe:	 y	 =	 f	 (x)	 é	 solução	 da	 equação	 diferencial	 	 se,	 e	 somente	 se,	 a

derivada	de	f	for	ela	própria.

EXEMPLO	2.	Determine	y	=	f	(x),	x	∈	ℝ,	tal	que
	

Solução
	

Assim,	a	f	procurada	é	da	forma	f	(x)	=	k	ex,	com	k	constante.	A	condição	f	(0)	=	2	nos
permite	determinar	a	constante	k.	De	fato,	de	f	(x)	=	kex	segue	f	(0)	=	k	e,	portanto,	k	=
2.	A	função	que	satisfaz	o	problema	dado	é,	então,	f	(x)	=	2	ex.	Ou	seja,	y	=	2	ex.					■

Consideremos,	agora,	a	função	f	(x)	=	eαx,	α	constante.	Temos	f′(x)	=	α	eαx,	ou	seja,	f
′(x)	=	α	f	 (x).	Raciocinando	como	no	Exemplo	1,	prova-se	 (veja	Exercício	1)	que	as
únicas	 funções	que	satisfazem	a	equação	 f′(x)	=	α	f	 (x),	x	∈	ℝ	 e	α	 constante,	 são	as
funções	da	forma	f	(x)	=	k	eαx,	k	constante.	Ou	seja,	sendo	α	constante,	tem-se
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ou
	

f′(x)	=	α	f	(x)	⇔	f	(x)	=	k	eαx,	k	constante

EXEMPLO	3.	Determine	a	função	y	=	y	(x),	x	∈	ℝ,	que	satisfaz	as	condições
	

Solução
	

Da	condição	y	(0)	=	−1,	resulta	k	=	−1.	A	função	procurada	é	y	=	−e3x,	x	∈	ℝ.					■

EXEMPLO	4.	Determine	uma	função	y	=	f	(x),	definida	num	intervalo	aberto	I,	com	1
∈	I,	tal	que	f	(1)	=	1	e,	para	todo	x	em	I,
	

Solução

Devemos	ter,	para	todo	x	em	I,
	

f′(x)	=	x	f	(x).

Como	a	função	f	deve	ser	derivável	em	I,	resulta	que	f	deve	ser,	também,	contínua	em
I.	Então,	a	condição	f	(1)	=	1	e	o	teorema	da	conservação	do	sinal	garantem-nos	que,
para	x	 próximo	de	1,	 devemos	 ter	 f	 (x)	>	0.	Vamos,	 então,	 procurar	 f,	definida	num
intervalo	aberto	I,	e	que,	neste	intervalo,	satisfaça	a	condição	f	(x)	>	0.	Temos,	então,
	

Lembrando	que	 	resulta
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para	 todo	x	 em	 I.	Como	as	derivadas	das	 funções	 ln	 f	 (x)	 e	 	 são	 iguais	em	 I,	do

corolário	acima	resulta	que	existe	uma	constante	k	tal	que,	para	todo	x	em	I,
	

Da	condição	f	(1)	=	1,	segue
	

e,	portanto,	 	Assim,	a	função

	

satisfaz	as	condições	dadas.	(Observe	que	esta	é	uma	função	satisfazendo	as	condições
dadas.	 Será	 que	 existe	 outra?	 Como	 veremos	 no	 Cap.	 13,	 esta	 é	 a	 única	 função
definida	em	ℝ	e	satisfazendo	as	condições	dadas.)					■

EXEMPLO	5.	Determine	uma	função	y	=	f	(x),	definida	num	intervalo	aberto	I,	com	1
∈	I,	tal	que	f	(1)	=	−1	e,	para	todo	x	em	I,
	

Solução

Devemos	ter,	para	todo	x	em	I,
	

f′(x)	=	2	[f	(x)]2.

A	condição	f	(1)	=	−1	permite-nos	supor	f	(x)	<	0	em	I.	Temos,	então,
	

[	f	(x)]−2	f′(x)	=	2,	x	∈	I.

Lembrando	que	{−[	f	(x)]−1}′	=	[f	(x)]−2	f′(x)	e	que	(2x)′	=	2,	resulta
	

{−	[f	(x)]−1}′	=	(2x)′,	x	∈	I.

Pelo	corolário,	existe	uma	constante	k	tal	que,	para	todo	x	∈	I,
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1.

2.

3.

4.

5.

6.

7.

−	[f	(x)]−1	=	2x	+	k.

Da	condição	f	(1)	=	−1,	segue	k	=	−1.	A	função
	

satisfaz	 as	 condições	 dadas.	 (A	 condição	 	 é	 para	 garantir	 que	 1	 pertença	 ao

domínio	de	f.)					■

Exercícios	10.1	

Seja	f	:	ℝ	→	ℝ,	derivável	e	tal	que	para	todo	x,	f′(x)	=	α	f	(x),	α	constante	não
nula.	Prove	que	existe	uma	constante	k,	tal	que,	para	todo	x,	f	(x)	=	k	eαx.

Determine	y	=	f	(x),	x	∈	ℝ,	tal	que

	
f′(x)	=	2	f	(x)	e	f	(0)	=	1.

(Sugestão:	Utilize	o	Exercício	1.)

Uma	partícula	desloca-se	sobre	o	eixo	0x,	de	modo	que	em	cada	instante	t	a
velocidade	é	o	dobro	da	posição	x	=	x	(t).	Sabe-se	que	x	(0)	=	1.	Determine	a
posição	da	partícula	no	instante	t.

A	função	y	=	f	(x),	x	∈	ℝ,	 é	 tal	que	 f	 (0)	=	1	e	 f′(x)	=	−2	 f	 (x)	para	 todo	x.
Esboce	o	gráfico	de	f.

Seja	y	=	f	(x),	x	∈	ℝ,	derivável	até	a	2.ª	ordem	e	tal	que,	para	todo	x,	f″	(x)	+	f
(x)	 =	 0.	 Seja	 g	 dada	 por	 g	 (x)	 =	 f′(x)	 sen	 x	 −	 f	 (x)	 cos	 x.	 Prove	 que	 g	 é
constante.

Seja	f	:	ℝ	→	ℝ	derivável	até	a	2.ª	ordem	e	tal	que,	para	todo	x,	f″	(x)	+	f	(x)	=
0.	Prove	que	existe	uma	constante	A	tal	que

	

para	todo	x	em	]0,	π[.	Conclua	que	exista	outra	constante	B	tal	que,	para	todo	x
em	]0,	π[,	f	(x)	=	A	cos	x	+	B	sen	x.

(Sugestão:	Utilize	o	Exercício	6.)

Seja	f	:	ℝ	→	ℝ	derivável	até	a	2.ª	ordem	e	tal	que,	para	todo	x,	f″	(x)	−	f	(x)	=
0.
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a)
b)

c)

8.

a)

b)

9.

10.

11.

12.

a)

Prove	que	g	(x)	=	ex	[f′(x)	−	f	(x)],	x	∈	ℝ,	é	constante.
Prove	 que	 existe	 uma	 constante	 A	 tal	 que,	 para	 todo	 x,	

Conclua	de	(b)	que	existe	uma	outra	constante	B	tal	que	f	(x)	=	A	e−x	+	B	ex,
para	todo	x.

	
Sejam	f	e	g	duas	funções	definidas	e	deriváveis	em	ℝ.	Suponha	que	f	(0)	=	0,
g	(0)	=	1	e	que	para	todo	x

	
f′(x)	=	g	(x)			e			g′	(x)	=	−f	(x).

Mostre	que,	para	todo	x,
	

(f	(x)	−	sen	x)2	+	(g	(x)	−	cos	x)2	=	0.

Conclua	de	(a)	que	f	(x)	=	sen	x	e	g	(x)	=	cos	x.
	

Utilizando	 o	 Exercício	 1,	 determine	 a	 única	 função	 y	 =	 y	 (x),	 x	∈	ℝ,	 que
satisfaça	as	condições	dadas.

Determine	 a	 função	 cujo	 gráfico	 passe	 pelo	 ponto	 (0,	 1)	 e	 tal	 que	 a	 reta
tangente	no	ponto	de	abscissa	x	intercepte	o	eixo	0x	no	ponto	de	abscissa	x	+
1.

Determine	uma	função	y	=	f	(x),	definida	num	intervalo	aberto,	satisfazendo
as	condições	dadas

Seja	f	:	ℝ	→	ℝ	derivável	até	a	2.ª	ordem	e	tal	que,	para	todo	x,

f″	(x)	=	−f	(x).

Mostre	que,	para	todo	x,
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b)

13.

14.

10.2.

	

Conclua	que	existe	uma	constante	E	tal	que,	para	todo	x,
	

[	f′(x)]2	+	[f	(x)]2	=	E.

Sejam	f	(t),	g	(t)	e	h	(t)	funções	deriváveis	em	ℝ	e	tais	que,	para	todo	t,

	

Suponha	que	f	(0)	=	g	(0)	=	h	(0)	=	1.	Prove	que,	para	todo	t,

[	f	(t)]2	+	[g	(t)]2	+	[h	(t)]2	=	3

Sejam	f	(t)	e	g	(t)	funções	deriváveis	em	ℝ	e	tais	que,	para	todo	t,

Suponha,	ainda,	que	f	(0)	=	0	e	g	(0)	=	1.	Prove	que,	para	todo	t,	o	ponto	(f	(t),

g	(t))	pertence	à	elipse	

PRIMITIVA	DE	UMA	FUNÇÃO

Seja	f	uma	função	definida	num	intervalo	I.	Uma	primitiva	de	f	em	I	é	uma	função
F	definida	em	I,	tal	que
	

f′(x)	=	f	(x)

para	todo	x	em	I.

EXEMPLO	1.	 	é	uma	primitiva	de	f	(x)	=	x2	em	ℝ,	pois,	para	todo	x	em

ℝ,
	

Observe	que,	para	toda	constante	k,	 	também,	primitiva	de	f	(x)
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b)

=	x2.					■

EXEMPLO	2.	Para	toda	constante	k,	F	(x)	=	2x	+	k	é	primitiva,	em	ℝ,	de	f	(x)	=	2,
pois,
	

f′(x)	=	(2x	+	k)′	=	2

para	todo	x.					■
Sendo	F	uma	primitiva	de	f	em	I,	então,	para	toda	constante	k,	F	(x)	+	k	é,	também,

primitiva	 de	 f.	 Por	 outro	 lado,	 como	 vimos	 na	 seção	 anterior,	 se	 duas	 funções	 têm
derivadas	 iguais	 num	 intervalo,	 elas	 diferem,	 neste	 intervalo,	 por	 uma	 constante.
Segue	que	as	primitivas	de	f	em	I	são	as	funções	da	forma	f	(x)	+	k,	com	k	constante.
Diremos,	então,	que
	

y	=	f	(x)	+	k,							k	constante,

é	a	família	das	primitivas	de	f	em	I.	A	notação	 	será	usada	para	representar	a

família	das	primitivas	de	f:
	

	=	f	(x)	+	k.

Na	notação	 ,	a	função	f	denomina-se	integrando.	Uma	primitiva	de	f	será,

também,	 denominada	 uma	 integral	 indefinida	 de	 f.	 É	 comum	 referir-se	 a	

como	a	integral	indefinida	de	f.

Observação.	O	domínio	da	função	 f	que	ocorre	em	 	deverá	 ser	 sempre	um

intervalo;	 nos	 casos	 em	que	 o	 domínio	 não	 for	mencionado,	 ficará	 implícito	 que	 se
trata	de	um	intervalo.

EXEMPLO	3.	Calcule.

Solução

O	integrando	é	a	função	constante	f	(x)	=	1.	Então

	
∫	dx	=	∫	1	·	dx	=	x	+	k
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pois,	(x)′	=	1.					■

EXEMPLO	4.	Calcule	∫	xα	dx,	em	que	α	≠	−1	é	um	real	fixo.

Solução
	

EXEMPLO	5.	Calcule

Solução

ou	seja,
	

e,	portanto,
	

EXEMPLO	6.	Calcule	

Solução
	

ou	seja,
	

358



EXEMPLO	7.	Calcule	

Solução
	

ou	seja,
	

e,	portanto,
	

EXEMPLO	8.	Calcule	

Solução
	

pois	

Seja	α	um	real	fixo.	Dos	Exemplos	4	e	8	resulta
	

EXEMPLO	9.	Calcule	

Solução
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ou	seja,
	

EXEMPLO	10.	Seja	α	um	real	fixo,	α	≠	0.	Calcule	

Solução
	

	

EXEMPLO	11.	Calcule.

Solução

EXEMPLO	12.	Determine	y	=	y	(x),	x	∈	ℝ,	tal	que
	

Solução
	

Assim,
	

Vimos,	ao	final	da	seção	anterior,	que	se	f′(x)	=	G′	(x)	para	todo	x	no	intervalo	I	 e
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se,	para	algum	x0	em	I,	F	(x0)	=	G	(x0),	então,	f	(x)	=	G	(x)	em	I.	Segue	deste	resultado
que	se	f	admitir	uma	primitiva	em	I	e	se	x0,	y0	forem	dois	reais	quaisquer,	com	x0	∈	I,
então	existirá	uma	única	função	y	=	y	(x),	x	∈	I,	tal	que
	

EXEMPLO	13.	Determine	a	única	função	y	=	y	(x),	definida	em	ℝ,	tal	que
	

Solução
	

A	condição	y	(0)	=	2	significa	que,	para	x	=	0,	devemos	ter	y	=	2.	Vamos	determinar
k	para	que	esta	condição	esteja	satisfeita.

Substituindo,	então,	em	 	x	por	0	e	y	por	2,	resulta	k	=	2.	Assim,

	

EXEMPLO	14.	Determine	a	função	y	=	y	(x),	x	∈	ℝ,	tal	que
	

Solução
	

Assim,
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1.

Para	se	ter	 	é	preciso	que	k1	=	0.	Assim,

	

daí
	

Para	k2	=	1,	a	condição	inicial	y	(0)	=	1	se	verifica.	Assim,
	

EXEMPLO	15.	Uma	partícula	desloca-se	sobre	o	eixo	x	e	sabe-se	que	no	instante	t,	t
≥	0,	 a	 velocidade	 é	 v	 (t)	=	2t	 +	 1.	 Sabe-se,	 ainda,	 que	 no	 instante	 t	 =	 0	 a	 partícula
encontra-se	na	posição	x	=	1.	Determine	a	posição	x	=	x	(t)	da	partícula	no	instante	t.

Solução
	

Temos:
	

Para	k	=	1,	teremos	x	=	1	para	t	=	0.	Assim,
	

x	(t)	=	t2	+	t	+	1.					■

Exercícios	10.2	

Calcule.
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2.

3.

Seja	α	≠	0	um	real	fixo.	Verifique	que

Calcule.
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4.

5.

Verifique	que

Determine	a	função	y	=	y	(x),	x	∈	ℝ,	tal	que
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6.

7.

a)
b)
c)

8.

9.

10.

Determine	a	função	y	=	y	(x),	x	>	0,	tal	que

Uma	partícula	desloca-se	sobre	o	eixo	x	com	velocidade	v	(t)	=	t	+	3,	 t	≥	0.
Sabe-se	que,	no	instante	t	=	0,	a	partícula	encontra-se	na	posição	x	=	2.

Qual	a	posição	da	partícula	no	instante	t?
Determine	a	posição	da	partícula	no	instante	t	=	2.
Determine	a	aceleração.

Uma	partícula	desloca-se	sobre	o	eixo	x	com	velocidade	v	(t)	=	2t	−	3,	t	≥	0.
Sabe-se	 que	 no	 instante	 t	 =	 0	 a	 partícula	 encontra-se	 na	 posição	 x	 =	 5.
Determine	o	instante	em	que	a	partícula	estará	mais	próxima	da	origem.

Uma	partícula	desloca-se	sobre	o	eixo	x	com	velocidade	v	(t)	=	at	+	v0,	t	≥	0
(a	e	v0	constantes).	Sabe-se	que,	no	instante	t	=	0,	a	partícula	encontra-se	na
posição	x	=	x0.	Determine	a	posição	x	=	x	(t)	da	partícula	no	instante	t.

Uma	partícula	desloca-se	sobre	o	eixo	x	com	função	de	posição	x	=	x	(t),	t	≥
0.	Determine	x	=	x	(t),	sabendo	que
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11. Esboce	o	gráfico	da	função	y	=	y	(x),	x	∈	ℝ,	sabendo	que
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11.1.

11.2.

11

INTEGRAL	DE	RIEMANN

Neste	 capítulo	 introduziremos	 o	 conceito	 de	 integral	 de	 Riemann	 e	 estudaremos
algumas	 de	 suas	 propriedades.	A	 integral	 tem	muitas	 aplicações	 tanto	 na	 geometria
(cálculo	de	áreas,	comprimento	de	arco	etc.)	como	na	 física	 (cálculo	de	 trabalho,	de
massa	etc.),	como	veremos.

PARTIÇÃO	DE	UM	INTERVALO

Uma	partição	P	de	um	intervalo	[a,	b]	é	um	conjunto	finito	P	=	{x0,	x1,	x2,	…,	xn}
em	que	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b.

Uma	partição	P	de	[a,	b]	divide	[a,	b]	em	n	intervalos	[xi	−	1,	xi],	i	=	1,	2,	…,	n.
	

A	amplitude	do	intervalo	[xi	−	1,	xi]	será	indicada	por	Δxi	=	xi	−	xi	−	1.	Assim:
	

Δx1	=	x1	−	x0,	Δx2	=	x2	−	x1	etc.

Os	 números	 Δx1,	 Δx2,	 …,	 Δxn	 não	 são	 necessariamente	 iguais;	 o	 maior	 deles
denominase	amplitude	da	partição	P	e	indica-se	por	máx	Δxi.

Uma	partição	P	=	{x0,	x1,	x2,	…,	xn}	de	[a,	b]	será	indicada	simplesmente	por
	

P	:	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b.

SOMA	DE	RIEMANN

Sejam	f	uma	função	definida	em	[a,	b]	e	P	 :	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	uma
partição	de	[a,	b	].	Para	cada	índice	i	(i	=	1,	2,	3,	…,	n)	seja	ci	um	número	em	[xi	−	1,	xi]
escolhido	arbitrariamente.
	

Pois	bem,	o	número
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denomina-se	soma	de	Riemann	de	f,	relativa	à	partição	P	e	aos	números	ci.
Observe	que,	se	f	(ci)	>	0,	f	(ci)	Δxi	será	então	a	área	do	retângulo	Ri	determinado

pelas	retas	x	=	xi	−	1,	x	=	xi,	y	=	0	e	y	=	f	(ci);	se	f	(ci)	<	0,	a	área	de	tal	retângulo	será	−f
(ci)	Δxi.
	

Geometricamente,	podemos	então	interpretar	a	soma	de	Riemann
	

como	a	diferença	entre	a	soma	das	áreas	dos	retângulos	Ri	que	estão	acima	do	eixo	x	e
a	soma	das	áreas	dos	que	estão	abaixo	do	eixo	x.
	

Seja	F	uma	função	definida	em	[a,	b]	e	seja	P	:	a	=	x0	<	x1	<	x2	<	x3	<	x4	=	b	uma
partição	de	[a,	b].	O	acréscimo	F	(b)	−	F	(a)	que	a	F	sofre	quando	se	passa	de	x	=	a
para	x	=	b	é	igual	à	soma	dos	acréscimos	F	(xi)	−	F	(xi	−	1)	para	i	variando	de	1	a	4:
	
F	(b)	−	F	(a)	=	F	(x4)	−	F	(x0)	=	[F	(x4)	−	F	(x3)]	+	[F	(x3)	−	F	(x2)]	+	[F	(x2)	−	F	(x1)]

+	[F	(x1)	−	F	(x0)	].

Isto	é:
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De	modo	geral,	se	P:	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	for	uma	partição	de	[a,	b],	então
	

EXEMPLO.	Sejam	F	e	f	definidas	em	[a,	b]	e	tais	que	F′	=	f	em	[a,	b];	assim	F	é	uma
primitiva	de	f	em	[a,	b].	Seja	a	partição	P	 :	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	de	[a,	b].
Prove	que	escolhendo	convenientemente	 	em	[xi	−	1,	xi]	tem-se
	

Solução

Pelo	que	vimos	acima
	

Pelo	TVM,	existe	 	em	[xi	−	1,	xi]	tal	que
	

e	como	F′	=	f	em	[a,	b]	e	Δxi	=	xi	−	xi	−	1	resulta
	

Suponhamos,	no	exemplo	anterior,	que	f	seja	contínua	em	[a,	b]	e	que	os	Δxi	sejam
suficientemente	pequenos;	assim,	para	qualquer	escolha	de	ci	em	[xi	−	1,	xi],	f	(ci)	deve

diferir	muito	pouco	de	f	( ).	É	razoável,	então,	que	nestas	condições	 	seja

uma	boa	avaliação	para	o	acréscimo	F	(b)	−	F	(a),	isto	é:
	

É	 razoável,	 ainda,	 esperar	 que	 a	 aproximação	 acima	 será	 tanto	 melhor	 quanto
menores	forem	os	Δxi.	Veremos	mais	adiante	que,	no	caso	de	f	ser	contínua	em	[a,	b	],
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11.3.

em	que	máx	Δxi	indica	o	maior	número	do	conjunto	{Δxi	|	i	=	1,	2,	…,	n}

O	 sentido	 em	 que	 tal	 limite	 deve	 ser	 considerado	 será	 esclarecido	 na	 próxima
seção.	Observe	que	máx	Δxi	→	0	implica	que	todos	os	Δxi	tendem	também	a	zero.

Vejamos	 uma	 versão	 cinemática	 do	 que	 dissemos	 anteriormente.	 Consideremos
uma	partícula	deslocando-se	sobre	o	eixo	0x	com	função	de	posição	x	=	x	 (t)	 e	com
velocidade	v	=	v	(t)	contínua	em	[a,	b].	Observe	que	x	=	x	(t)	é	uma	primitiva	de	v	=	v
(t).	Seja	a	=	t0	<	t1	<	t2	<	…	<	 tn	=	b	uma	partição	de	 [a,	b]	 e	 suponhamos	máx	Δti
suficientemente	 pequeno	 (o	 que	 implica	 que	 todos	 os	 Δti	 são	 suficientemente
pequenos).	Sendo	ci	um	instante	qualquer	entre	ti	−	1	e	ti,	a	velocidade	v	(ci)	é	um	valor
aproximado	para	a	velocidade	média	entre	os	instantes	ti	−	1	e	ti:
	

(observe	que,	pelo	TVM,	existe	um	instante	 	entre	ti	 −	 1	e	ti	tal	que	Δxi	=	v	( )	Δti),
onde	Δxi	é	o	deslocamento	da	partícula	entre	os	instantes	ti	−	1	e	ti.	Como	a	soma	dos
deslocamentos	Δxi,	para	 i	 variando	de	1	 a	n,	 é	 igual	 ao	deslocamento	x	 (b)	 −	 x	 (a),
resulta
	

É	 razoável	 esperar	 que,	 à	medida	 que	 as	 amplitudes	 Δti	 tendam	 a	 zero,	 a	 soma	

	tenda	a	x	(b)	−	x	(a):

	

INTEGRAL	DE	RIEMANN:	DEFINIÇÃO

Sejam	 f	 uma	 função	 definida	 em	 [a,	 b]	 e	 L	 um	 número	 real.	 Dizemos	 que	

	tende	a	L,	quando	máx	Δxi	→	0,	e	escrevemos

	

se,	para	todo	∊	>	0	dado,	existir	um	δ	>	0	que	só	dependa	de	∊	mas	não	da	particular
escolha	dos	ci,	tal	que
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11.4.

a)

b)

c)

d)

	

para	toda	partição	P	de	[a,	b],	com	máx	Δxi	<	δ.
Tal	 número	 L,	 que	 quando	 existe	 é	 único	 (verifique),	 denomina-se	 integral	 (de

Riemann)	de	f	em	[a,	b]	e	indica-se	por	 	Então,	por	definição,

	

Se	 	existe,	então	diremos	que	f	é	integrável	 (segundo	Riemann)	em	[a,

b].	É	comum	referirmo-nos	a	 	como	integral	definida	de	f	em	[a,	b].

Observação.	Pomos,	ainda,	por	definição:
	

PROPRIEDADES	DA	INTEGRAL

	

Teorema.	Sejam	f,	g	integráveis	em	[a,	b]	e	k	uma	constante.	Então

f	 +	 g	 é	 integrável	 em	 [a,	 b]	 e	

kf	é	integrável	em	[a,	b]	e	

Se	f	(x)	≥	0	em	[a,	b],	então	

Se	c	∈	]a,	b[	e	f	é	integrável	em	[a,	c]	e	em	[c,	b]	então
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a)

Demonstração

Para	toda	partição	P	de	[a,	b]	e	qualquer	que	seja	a	escolha	de	ci	em	[xi	−	1,	xi	]

	

Da	integrabilidade	de	f	e	g	segue	que	dado	∊	>	0	existe	δ	>	0	tal	que
	

e
	

para	toda	partição	P	de	[a,	b]	com	máx	Δxi	<	δ.	Logo,
	

para	toda	partição	P	de	[a,	b]	com	máx	Δxi	<	δ.	Assim,
	

ou	seja,	f	+	g	é	integrável	e
	

b)	Fica	como	exercício.

c)	Como	f	(x)	≥	0	em	[a,	b],	para	 toda	partição	P	de	 [a,	b]	 e	qualquer	que	 seja	a
escolha	dos	ci
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Se	 tivéssemos	 	 tomando-se	 ∊	 >	 0	 tal	 que	

existiria	um	δ	>	0	tal	que
	

para	 toda	 partição	 P	 de	 [a,	 b]	 com	 máx	 Δxi	 <	 δ.	 Assim,	 para	 alguma	 partição	 P
teríamos
	

que	é	uma	contradição.

d)	Para	toda	partição	P	de	[a,	b],	com	c	∈	P,
	

temos
	

Como,	por	hipótese,	f	é	integrável	em	[a,	c]	e	em	[c,	b],	dado	∊	>	0,	existe	δ	>	0	tal
que,	para	toda	partição	P	de	[a,	b],	com	c	∈	P,	e	máx	Δxi	<	δ
	

e
	

e,	portanto,
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11.5.

	

Segue,	 então,	 da	 integrabilidade	 de	 f	 em	 [a,	 b]	 que	

	(Por	quê?)					■

1.º	TEOREMA	FUNDAMENTAL	DO	CÁLCULO

De	 acordo	 com	 a	 definição	 de	 integral,	 se	 f	 for	 integrável	 em	 [a,	b],	 o	 valor	 do
limite
	

será	 sempre	 o	 mesmo,	 independentemente	 da	 escolha	 dos	 ci,	 e	 igual	 a	

Assim,	se,	para	uma	particular	escolha	dos	ci,	tivermos
	

então	teremos	

Suponhamos,	agora,	que	f	seja	integrável	em	[a,	b]	e	que	admita	uma	primitiva	f	(x)
em	[a,	b],	isto	é,	F′(x)	=	f	(x)	em	[a,	b].	Seja	P	 :	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	uma
partição	qualquer	de	[a,	b].	Já	vimos	que	(veja	exemplo	da	Seção	11.2)
	

Segue,	 então,	 do	 TVM,	 que,	 para	 uma	 conveniente	 escolha	 de	 	 em	 [xi	 −1,	 xi],
teremos
	

ou

Se,	para	cada	partição	P	de	[a,	b],	os	 	forem	escolhidos	como	em	①,	teremos
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e,	portanto,
	

Fica	provado	assim	o
	

1.º	teorema	fundamental	do	cálculo

Se	f	for	integrável	em	[a,	b]	e	se	F	for	uma	primitiva	de	f	em	[a,	b],	então
	

Provaremos	mais	adiante	(veja	Apêndice	4)	que	toda	função	contínua	em	[a,	b]	 é
integrável	em	[a,	b];	por	ora,	vamos	admitir	e	utilizar	 tal	resultado.	Segue,	então,	do
1.º	teorema	fundamental	do	cálculo	que	se	f	for	contínua	em	[a,	b]	e	F	uma	primitiva
de	f	em	[a,	b],	então
	

A	diferença	F	(b)	−	F	(a)	será	indicada	por	 	assim
	

EXEMPLO	1.	Calcule	

Solução

	é	uma	primitiva	de	f	(x)	=	x2	e	f	é	contínua	em	[1,	2],	assim
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ou	seja,
	

EXEMPLO	2.	Calcule	

Solução
	

ou	seja,
	

EXEMPLO	3.	Calcule	

Solução
	

ou	seja,
	

EXEMPLO	4.	Calcule	

Solução
	

Assim,
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EXEMPLO	5.	Calcule	

Solução
	

ou	seja,
	

EXEMPLO	6.	Calcule	

Solução
	

ou	seja,
	

EXEMPLO	7.	Calcule	

Solução
	

Exercícios	11.5	

Calcule.
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11.6. CÁLCULO	DE	ÁREAS

Seja	f	contínua	em	[a,	b],	com	f	(x)	≥	0	em	[a,	b].	Estamos	interessados	em	definir	a
área	do	conjunto	A	do	plano	limitado	pelas	retas	x	=	a,	x	=	b,	y	=	0	e	pelo	gráfico	de	y
=	f	(x).
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Seja,	então,	P	:	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	uma	partição	de	[a,	b]	e	sejam	 	e	
em	[xi	−	1,	xi]	tais	que	f	( )	é	o	valor	mínimo	e	f	( )	o	valor	máximo	de	f	em	[xi	−	1,	xi	].
Uma	 boa	 definição	 para	 área	 de	 A	 deverá	 implicar	 que	 a	 soma	 de	 Riemann	

	seja	uma	aproximação	por	 falta	da	área	de	A	 e	que	 	 seja

uma	aproximação	por	excesso,	isto	é
	

Como	as	 somas	de	Riemann	mencionadas	 tendem	a	 	quando	máx	Δxi

→	0,	nada	mais	natural	do	que	definir	a	área	de	A	por
	

Da	mesma	 forma	define-se	 área	de	A	 no	 caso	 em	que	 f	 é	 uma	 função	 integrável
qualquer,	com	f	(x)	≥	0	em	[a,	b].

EXEMPLO	1.	Calcule	a	área	do	conjunto	do	plano	limitado	pelas	retas	x	=	0,	x	=	1,	y
=	0	e	pelo	gráfico	de	f	(x)	=	x2.
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Solução

área	

	

EXEMPLO	 2.	 Calcule	 a	 área	 do	 conjunto	

Solução

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	1,	x	=	2,	y	=	0	e	pelo	gráfico	de	

	

As	situações	que	apresentamos	a	seguir	sugerem	como	estender	o	conceito	de	área
para	uma	classe	mais	ampla	de	subconjuntos	do	ℝ2.
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Seja	A	o	conjunto	hachurado.
	

Observe:
	

	 =	 soma	 das	 áreas	 dos

conjuntos	acima	do	eixo	0x	menos	soma	das	áreas	dos	conjuntos	abaixo	do	eixo
0x.
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a)

b)

a)

[f	(ci)	−	g	(ci)]	Δxi	=	área	retângulo	hachurado.
	

em	que	A	é	o	conjunto	limitado	pelas	retas	x	=	a,	x	=	b	e	pelos	gráficos	de	y	=	f	(x)
e	y	=	g	(x),	com	f	(x)	≥	g	(x)	em	[a,	b].

■

EXEMPLO	3.

Calcule	a	área	da	região	limitada	pelo	gráfico	de	f	(x)	=	x3,	pelo	eixo	x	e	pelas	retas
x	=	−1	e	x	=	1.

	

Calcule	

	
Solução

	

EXEMPLO	4.	Calcule	a	área	da	região	limitada	pelas	retas	x	=	0,	x	=	1,	y	=	2	e	pelo
gráfico	de	y	=	x2.

Solução
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EXEMPLO	 5.	 Calcule	 a	 área	 do	 conjunto	 de	 todos	 os	 pontos	 (x,	 y)	 tais	 que	

Solução
	

Observe:	 para	 cada	 x	 em	 [0,	 1],	 (x,	 y)	 pertence	 ao	 conjunto	 se,	 e	 somente	 se,	

	

EXEMPLO	6.	Calcule	a	área	da	região	compreendida	entre	os	gráficos	de	y	=	x	e	y	=
x2,	com	0	≤	x	≤	2.

Solução

385



As	curvas	y	=	x	e	y	=	x2	interceptam-se	nos	pontos	de	abscissas	0	e	1.	Então,
	

Observação.	Os	pontos	em	que	as	curvas	y	=	x	e	y	=	x2	se	interceptam	são	as	soluções
do	sistema
	

Consideremos,	agora,	uma	partícula	que	se	desloca	sobre	o	eixo	x	com	equação	x	=
x	 (t)	 e	 com	 velocidade	 v	 =	 v	 (t)	 contínua	 em	 [a,	 b].	 A	 diferença	 x	 (b)	 −	 x	 (a)	 é	 o
deslocamento	da	partícula	entre	os	instantes	a	e	b.	Como	x	(t)	é	uma	primitiva	de	v	(t),
segue	do	1.º	teorema	fundamental	do	cálculo	que
	

Por	outro	lado,	definimos	o	espaço	percorrido	pela	partícula	entre	os	instantes	a	e	b

por	

Se	v	(t)	≥	0	em	[a,	b],	o	deslocamento	entre	os	instantes	a	e	b	será	igual	ao	espaço
percorrido	entre	estes	instantes,	que,	por	sua	vez,	será	numericamente	igual	à	área	do
conjunto	A	limitado	pelas	retas	t	=	a,	t	=	b,	pelo	eixo	0t	e	pelo	gráfico	de	v	=	v	(t).
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a)

b)

Suponhamos,	agora,	por	exemplo,	que	v	(t)	≥	0	em	[a,	c]	e	v	(t)	≤	0	em	[c,	b	].
	

Neste	caso,	o	deslocamento	entre	os	instantes	a	e	b	será
	

enquanto	o	espaço	percorrido	entre	estes	instantes	será
	

EXEMPLO	7.	Uma	partícula	desloca-se	sobre	o	eixo	x	com	velocidade	v	(t)	=	2	−	t.

Calcule	 o	 deslocamento	 entre	 os	 instantes	 t	 =	 1	 e	 t	 =	 3.	 Discuta	 o	 resultado
encontrado.

Calcule	o	espaço	percorrido	entre	os	instantes	1	e	3.

Solução
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b)

1.

2.

3.

Em	[1,	2	[,	v	(t)	>	0,	o	que	significa	que	no	 intervalo	de	 tempo	[1,	2]	a	partícula
avança	no	sentido	positivo;	em	]2,	3],	v	(t)	<	0,	o	que	significa	que	neste	intervalo	de
tempo	a	partícula	recua,	de	tal	modo	que	no	instante	t	=	3	ela	volta	a	ocupar	a	mesma
posição	por	ela	ocupada	no	instante	t	=	1.
	

O	espaço	percorrido	entre	os	instantes	t	=	1	e	t	=	3	é

	

Observe	que	o	espaço	percorrido	entre	os	instantes	1	e	2	é
	

e	que	o	espaço	percorrido	entre	os	instantes	2	e	3	é
	

Exercícios	11.6	

Nos	Exercícios	de	1	a	22,	desenhe	o	conjunto	A	dado	e	calcule	a	área.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	1,	x	=	3,	pelo	eixo	0x	e	pelo
gráfico	de	y	=	x3.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	1,	x	=	4,	y	=	0	e	pelo	gráfico
de	

A	é	o	conjunto	de	todos	(x,	y)	tais	que	x2	−	1	≤	y	≤	0.
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4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A	é	o	conjunto	de	todos	(x,	y)	tais	que	0	≤	y	≤	4	−	x2.

A	é	o	conjunto	de	todos	(x,	y)	tais	que	0	≤	y	≤	|	sen	x	|,	com	0	≤	x	≤	2π.

A	é	a	região	do	plano	compreendida	entre	o	eixo	0x	e	o	gráfico	de	y	=	x2	−	x,
com	0	≤	x	≤	2.

A	é	o	conjunto	do	plano	limitado	pela	reta	y	=	0	e	pelo	gráfico	de	y	=	3	−	2x	−
x2,	com	−1	≤	x	≤	2.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	−1,	x	=	2,	y	=	0	e	pelo	gráfico
de	y	=	x2	+	2x	+	5.

A	é	o	conjunto	do	plano	limitado	pelo	eixo	0x,	pelo	gráfico	de	y	=	x3	−	x,	−1	≤
x	≤	1.

A	é	o	conjunto	do	plano	limitado	pela	reta	y	=	0	e	pelo	gráfico	de	y	=	x3	−	x,
com	0	≤	x	≤	2.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	0,	x	=	π,	y	=	0	e	pelo	gráfico
de	y	=	cos	x.

A	é	o	conjunto	de	todos	(x,	y)	tais	que	x	≥	0	e	x3	≤	y	≤	x.

A	é	o	conjunto	do	plano	limitado	pela	reta	y	=	x,	pelo	gráfico	de	y	=	x3,	 com
−1	≤	x	≤	1.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	0,	 	e	pelos	gráficos	de

y	=	sen	x	e	y	=	cos	x.

A	é	o	conjunto	de	todos	os	pontos	(x,	y)	tais	que	x2	+	1	≤	y	≤	x	+	1.

A	é	o	conjunto	de	todos	os	pontos	(x,	y)	tais	que	x2	−	1	≤	y	≤	x	+	1.

A	é	o	conjunto	do	plano	limitado	pelas	retas	x	=	0,	 	e	pelos	gráficos	de
y	=	cos	x	e	y	=	1	−	cos	x.

A	=	{	(x,	y)	∈	ℝ2	|	x	≥	0	e	x3	−	x	≤	y	≤	−x2	+	5x	}.

A	é	o	conjunto	do	plano	limitado	pelos	gráficos	de	y	=	x3	−	x,	y	=	sen	πx,	com
−1	≤	x	≤	1.

A	é	o	conjunto	de	todos	os	pontos	(x,	y)	tais	que	x	≥	0	e	−x	≤	y	≤	x	≤	x2

A	é	o	conjunto	de	todos	(x,	y)	tais	que	x	>	0	e	
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23.

a)
b)
c)

24.

25.

26.

11.7.

Uma	partícula	desloca-se	sobre	o	eixo	x	com	velocidade	v	(t)	=	2t	−	3,	t	≥	0.

Calcule	o	deslocamento	entre	os	instantes	t	=	1	e	t	=	3.
Qual	o	espaço	percorrido	entre	os	instantes	t	=	1	e	t	=	3?
Descreva	o	movimento	realizado	pela	partícula	entre	os	instantes	t	=	1	e	t	=
3

Uma	partícula	desloca-se	sobre	o	eixo	0x	com	velocidade	v	(t)	=	sen	2t,	t	≥	0.
Calcule	o	espaço	percorrido	entre	os	instantes	t	=	0	e	t	=	π.
Uma	partícula	desloca-se	sobre	o	eixo	0x	com	velocidade	v	(t)	=	−t2	+	t,	t	≥	0.
Calcule	o	espaço	percorrido	entre	os	instantes	t	=	0	e	t	=	2.
Uma	partícula	desloca-se	sobre	o	eixo	0x	com	velocidade	v	(t)	=	t2	−	2t	−	3,	t	≥
0.	Calcule	o	espaço	percorrido	entre	os	instantes	t	=	0	e	t	=	4.

MUDANÇA	DE	VARIÁVEL	NA	INTEGRAL

Veremos,	 no	 Vol.	 2,	 que	 toda	 função	 contínua	 num	 intervalo	 I	 admite,	 neste
intervalo,	 uma	 primitiva.	 Por	 ora,	 vamos	 admitir	 tal	 resultado	 e	 usá-lo	 na
demonstração	do	próximo	teorema.
	

Teorema.	Seja	f	contínua	num	intervalo	I	e	sejam	a	e	b	dois	reais	quaisquer	em
I.	Seja	g	 :	 [c,	d]	→	 I,	 com	g′	 contínua	em	[c,	d],	 tal	que	g	 (c)	=	a	 e	g	 (d)	 =	 b.
Nestas	condições
	

Demonstração

Como	f	é	contínua	em	I,	segue	que	f	admite	uma	primitiva	F	em	I.	Assim,

A	função	H	(u)	=	F	(g	(u)),	u	∈	[c,	d],	é	uma	primitiva	de	f	(g	(u))	g′	(u);	de	fato,
	

H′(u)	=	[F	(g	(u))]′	=	F′	(g	(u))	g′(u)

ou	seja,
	

H′(u)	=	f	(g	(u))	g′(u)
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pois,	F′	=	f.	Segue	que
	

Por	hipótese,	g	(d)	=	b	e	g	(c)	=	a.	Tendo	em	vista	①,	resulta
	

EXEMPLO	1.	Calcule	

Solução

Façamos	x	−	1	=	u,	ou	seja,	x	=	u	+	1.
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EXEMPLO	2.	Calcule	

Solução

Façamos	u	=	2x	−	1	ou	

	

	

Assim,
	

Observação.	 Poderíamos,	 também,	 ter	 feito	 a	mudança	 de	 variável	 2x	 −	 1	=	u2	 ou	

	

	

Como	u	está	variando	em	[0,	1],	|	u	|	=	u,	daí
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Se	em	vez	de	u	=	1	tivéssemos	tomado	u	=	−1,	teríamos
	

Como	u	está	variando,	agora,	no	intervalo	[−1,	0],	|	u	|	=	−u;	assim,
	

Observe	que	tanto	 	u	∈	[0,	1],	quanto	 	u	∈
[−1,	0],	satisfazem	as	condições	do	teorema	de	mudança	de	variável.

Às	 vezes,	 com	pequenos	 ajustes,	 a	 integral	 a	 ser	 calculada	 pode	 ser	 colocada	 na

forma	 	Neste	caso,	a	mudança	de	variável	u	=	g	 (x),	x	∈	 [c,	d],

transforma	a	integral	 	du	na	anterior.

	

EXEMPLO	3.	Calcule	

Solução

Multiplicando	o	integrando	por	3	e	dividindo	a	integral	por	3,	nada	muda:
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EXEMPLO	4.	Calcule	

Solução

Fazendo	u	 =	 x2	 +	 1,	 du	 =	 2x	 dx.	 Vamos	 então	multiplicar	 o	 integrando	 por	 2	 e
dividir	a	integral	por	2.
	

	

	

ou	seja,
	

EXEMPLO	5.	Calcule	

Solução
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Antes	de	passarmos	ao	próximo	exemplo,	observamos	que	o	valor	da	integral	de	f
em	[a,	b]	não	depende	do	símbolo	que	se	usa	para	representar	a	variável	independente:
	

EXEMPLO	6.	Seja	f	uma	função	ímpar	e	contínua	em	[−r,	r],	r	>	0.	Mostre	que
	

Solução
	

f	ímpar	⇔	f	(−x)	=	−f	(x)	em	[−r,	r	].

Façamos	a	mudança	de	variável	u	=	−x
	

	

Como	f	(−u)	=	−f	(u),	resulta
	

mas,	 	(veja	observação	acima),	logo

	

ou	seja,
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e,	portanto,
	

EXEMPLO	7.	Calcule	

Solução

	é	uma	função	ímpar,	pois,
	

Pelo	exemplo	anterior,
	

EXEMPLO	8.	Calcule	

Solução

Aqui	é	conveniente	a	mudança	u	=	x	+	1
	

De	u	=	x	+	1,	segue	x	=	u	−	1.	Então,
	

Assim,
	

396



1.

2.

3.

Exercícios	11.7	

Calcule.

Suponha	 f	 contínua	 em	 [−2,	 0	 ].	 Calcule	 	 sabendo	 que	

Suponha	 f	 contínua	 em	 [−1,	 1	 ].	 Calcule	 	 sabendo	 que	
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4.

5.

6.

7.

Suponha	f	contínua	em	[0,	4].	Calcule	

Calcule	

Calcule	a	área	do	conjunto	dado.

c)	A	é	o	conjunto	do	plano	limitado	pela	reta	x	=	1	e	pelos	gráficos	de	y	=	e−2x

e	y	=	e−x,	com	x	≥	0

Calcule.
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8.

9.

a)

b)

10.

a)

Um	aluno	(precipitado),	ao	calcular	a	integral	 	raciocinou	da

seguinte	forma:	fazendo	a	mudança	de	variável	u	=	1	+	x2,	os	novos	extremos
de	integração	seriam	iguais	a	2	(x	=	−1	→	u	=	2;	x	=	1	→	u	=	2)	e	assim	a
integral	 obtida	 após	 a	 mudança	 de	 variável	 seria	 igual	 a	 zero	 e,	 portanto,	

	Onde	está	o	erro?

Seja	f	uma	função	par	e	contínua	em	[−r,	r],	r	>	0.	(Lembre-se:	f	par	⇔	f	(−x)
=	f	(x).)

Mostre	que	

Conclua	de	(a)	que	 	Interprete	graficamente

	
Suponha	f	contínua	em	[a,	b].	Seja	g:	[c,	d]	→	ℝ	com	g′	contínua	em	[c,	d],	g
(c)	=	a	e	g	(d)	=	b.	Suponha,	ainda,	que	g′	(u)	>	0	em	]c,	d[.	Seja	c	=	u0	<	u1	<
u2	<	…	<	un	=	d	uma	partição	de	[c,	d]	e	seja	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b
partição	de	[a,	b],	em	que	xi	=	g	(ui),	para	i	variando	de	0	a	n.

Mostre	que,	para	todo	i,	i	=	1,	2,	…,	n,	existe	 	em	[ui	−	1,	ui]	tal	que
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b)

c)

d)

11.8.

Conclua	de	(a)	que
	

em	que	
Mostre	que	existe	M	>	0	tal	que

	
Δxi	≤	M	Δui

para	i	variando	de	0	a	n
Conclua	que

	

ou	seja,
	

TRABALHO

Nesta	 seção,	 admitiremos	 que	 o	 leitor	 já	 saiba	 o	 que	 é	 um	 vetor.	 Consideremos,
então,	um	eixo	0s
	

e	 indiquemos	 por	 	 o	 vetor,	 de	 comprimento	 unitário,	 determinado	 pelo	 segmento
orientado	de	origem	0	e	extremidade	1.

Seja	 α	 um	 número	 real;	 	 =	 α	 	 é	 um	 vetor	 paralelo	 a	 .	 O	 número	 a	 é	 a
componente	de	 	na	direção	 .	Se	α	>	0,	α	 	tem	o	mesmo	sentido	que	 ;	se	α	<	0,	α	
	tem	sentido	contrário	ao	de	 .
Suponhamos,	agora,	que	uma	 força	constante	 	=	α	 	 atua	 sobre	uma	partícula,

que	se	desloca	sobre	o	eixo	0s,	entre	as	posições	s	=	s1	e	s	=	s2,	com	s1	e	s2	quaisquer.
Definimos	o	trabalho	τ	realizado	por	 ,	de	s1	a	s2,	por
	

τ	=	α	(s2	−	s1).
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Assim,	 o	 trabalho	 realizado	 pela	 força	 constante	 	 =	 α	 ,	 de	 s1	 a	 s2,	 é,	 por
definição,	 o	 produto	 da	 componente	 de	 ,	 na	 direção	 do	 deslocamento	 (isto	 é,	 na
direção	 ),	pelo	deslocamento.	Temos	os	seguintes	casos:

1)	α	>	0	e	s2	>	s1	⇒	τ	>	0.
	

2)	α	<	0	e	s2	>	s1	⇒	τ	<	0.
	

Neste	caso,	 	atua	contra	o	movimento;	 	é	uma	força	de	resistência	ao	movimento.

3)	α	>	0	e	s2	<	s1	⇒	τ	<	0.
	

	
	realiza	um	trabalho	de	resistência	ao	movimento:	τ	<	0.

4)	α	<	0	e	s2	<	s1	⇒	τ	>	0.
	

	
	atua	a	favor	do	movimento:	τ	>	0.
Suponhamos,	agora,	que	sobre	uma	partícula	que	se	desloca	sobre	o	eixo	0s	 atua

uma	força	constante	 ,	de	intensidade	F,	mas	não	paralela	ao	deslocamento
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em	que	θ	é	contado	no	sentido	anti-horário	de	0s	para	 .	O	trabalho	τ	realizado	por	 ,
de	s1	a	s2,	é,	então,	por	definição,
	

τ	=	(F	cos	θ)	(s2	−	s1)

em	que	F	cos	θ	é	a	componente	de	 	na	direção	do	deslocamento.

Observação.	No	Sistema	Internacional	de	Unidades	(SI)	a	unidade	de	comprimento	é
o	metro	 (m),	a	de	 tempo	o	 segundo	 (s),	 a	de	massa	o	quilograma	 (kg),	 a	de	 força	o
Newton	 (N)	 e	 a	 de	 trabalho	 o	 Joule	 (J).	 Sempre	 que	 deixarmos	 de	 mencionar	 as
unidades	adotadas,	ficará	implícito	que	se	trata	do	sistema	SI.

EXEMPLO	1.	Sobre	um	bloco	em	movimento	atua	uma	força	constante,	paralela	ao
deslocamento	e	a	favor	do	movimento.	Supondo	que	a	força	tenha	intensidade	de	10
N,	calcule	o	trabalho	por	ela	realizado	quando	o	bloco	se	desloca	de	x	=	2	m	a	x	=	10
m.

Solução
	

O	trabalho	τ	realizado	por	 	é
	

τ	=	10	(10	−	2)	=	80	J.					■

EXEMPLO	2.	Um	bloco	de	massa	10	kg	desliza	sobre	um	plano	inclinado,	da	altura
de	5	m	até	o	solo.	O	plano	inclinado	forma	com	o	solo	um	ângulo	de	30º.	Calcule	o
trabalho	 realizado	 pela	 força	 gravitacional.	 (Suponha	 a	 aceleração	 gravitacional
constante	e	igual	a	10	m/s2.)

Solução
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Pela	lei	de	Newton,	a	intensidade	de	 	é	Mg,	em	que	M	é	a	massa	do	bloco	e	g	a
aceleração	gravitacional.	A	componente	de	 	na	direção	do	deslocamento	é	Mg	 cos
60º.	O	trabalho	τ	realizado	por	 	é:
	

τ	=	(Mg	cos	60º)	(s2	−	s1).

s2	é	o	comprimento	da	hipotenusa	do	triângulo	retângulo	ABC:
	

s2	sen	30º	=	5	ou	s2	=	10.

Como	cos	 	M	=	10	e	g	=	10,	resulta

	
τ	=	500	J.					■

EXEMPLO	3.	Sobre	uma	partícula	que	se	desloca	sobre	o	eixo	x	agem	duas	forças:	
	e	 	Calcule	os	trabalhos	realizados	por	elas	no	deslocamento	de

x	 =	 1	 a	x	 =	 5.	 Supondo	 que	 	e	 	 são	 as	 únicas	 forças	 agindo	 sobre	 a	 partícula,
calcule	o	trabalho	realizado,	no	deslocamento	mencionado,	pela	resultante	

Solução
	

As	forças	são	paralelas	ao	deslocamento.
Trabalho	realizado	por	 :

	
τ1	=	10	(5	−	1)	=	40	J.

Trabalho	realizado	por	 :
	

τ2	=	−3	(5	−	1)	=	−12	J.
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Trabalho	realizado	pela	resultante	 	ou	seja,	
	

τ	=	7	(5	−	1)	=	28	J.					■

EXEMPLO	 4.	 Uma	 partícula	 de	 massa	 5	 kg	 é	 lançada	 verticalmente.	 Calcule	 o
trabalho	realizado	pela	força	gravitacional	quando	a	partícula	se	desloca	da	altura	y	=	1
m	a	y	=	5	m.

Solução

Pela	lei	de	Newton,	a	força	gravitacional	 	é	dada	por
	

em	 que	M	 é	 a	 massa	 da	 partícula	 e	 g	 a	 aceleração	 da	 gravidade	 que	 suporemos
constante	e	igual	a	10	m/s2.	Observe	que	 	é	paralela	ao	deslocamento.	O	trabalho	τ
realizado	por	 	é	então
	

τ	=	−Mg	(5	−	1)

ou
	

τ	=	−200	J.					■

Nosso	objetivo	a	seguir	é	definir	trabalho	realizado	por	uma	força	variável	com	a
posição.	Suponhamos,	 então,	que	 sobre	uma	partícula	que	 se	desloca	 sobre	o	eixo	x
atua	uma	força	paralela	ao	deslocamento	e	variável	com	a	posição	x,	
	

Observe	que	f	(x)	é	a	componente	de	 	na	direção	do	deslocamento.	Vejamos,
então,	 como	 definir	 o	 trabalho	 realizado	 por	 	 no	 deslocamento	 de	 x	 =	a	 a	 x	 =	 b.
Suponhamos,	por	um	momento,	a	<	b	e	f	(x)	contínua	em	[a,	b	].

Seja	P	:	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	uma	partição	de	[a,	b].
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Supondo	máx	Δxi	suficientemente	pequeno	e	tendo	em	conta	a	continuidade	de	f,	o
trabalho	realizado	de	xi	−1	a	xi	(i	=	1,	2,	…,	n)	deverá	ser	aproximadamente	
por	outro	lado,	é	razoável	esperar	que	a	soma	de	Riemann
	

deva	ser	um	valor	aproximado	para	o	trabalho	realizado	por	 	no	deslocamento	de	x	=
a	a	x	=	b	e	que	esta	aproximação	seja	tanto	melhor	quanto	menor	for	máx	Δxi.	Nada
mais	 natural,	 então,	 do	 que	 definir	 o	 trabalho	 τ	 realizado	 por	 	 no
deslocamento	de	x	=	a	a	x	=	b,	por
	

Na	definição	acima,	a	e	b	podem	ser	quaisquer	e	f	(x)	integrável	no	intervalo	fechado
de	extremidades	a	e	b.

Observe	 que,	 se	 a	 <	 b	 e	 f	 (x)	 ≥	 0	 em	 [a,	 b],	 o	 trabalho	 realizado	 por	
	de	x	=	a	a	x	=	b,	é	numericamente	igual	à	área	do	conjunto	do	plano

limitado	pelas	retas	x	=	a,	x	=	b,	y	=	0	e	pelo	gráfico	de	y	=	f	(x).

EXEMPLO	5.	 Sobre	 uma	 partícula	 que	 se	 desloca	 sobre	 o	 eixo	 0x	 atua	 uma	 força
paralela	ao	deslocamento	e	de	componente	 	Calcule	o	trabalho	realizado

pela	força	no	deslocamento	de	x	=	1	a	x	=	2.

Solução
	

O	trabalho	realizado	por	 	de	x	=	1	a	x	=	2	é
	

EXEMPLO	6.	Considere	uma	mola	com	uma	das	extremidades	fixa
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a)

b)

e	suponha	que	a	origem,	x	=	0,	coincida	com	a	extremidade	livre	da	mola,	quando	esta
se	 encontra	 em	 seu	 estado	 normal	 (não	 distendida).	 Se	 a	 mola	 for	 distendida	 ou
comprimida	 até	que	 sua	 extremidade	 livre	 se	desloque	 à	posição	x,	 a	mola	 exercerá
sobre	o	agente	que	a	deforme	uma	força	cujo	valor,	em	boa	aproximação,	será
	

no	qual	k	é	uma	constante	denominada	constante	elástica	da	mola.
Suponha,	agora,	que	a	mola	seja	distendida	e	presa	na	sua	extremidade	livre	uma

partícula.	Supondo	k	=	5,	calcule	o	trabalho	realizado	pela	mola	quando	a	partícula	se
desloca	da	posição

x	=	0,2	a	x	=	0.

x	=	0,2	a	x	=	−0,2.

	
Solução
	

EXEMPLO	7	(Relação	entre	trabalho	e	energia	cinética).	Uma	partícula	de	massa	m
desloca-se	 sobre	 o	 eixo	 x	 com	 função	 de	 posição	 x	 =	 x	 (t)	 em	 que	 x	 (t)	 é	 suposta
derivável	 até	 a	 2.ª	 ordem	 em	 [t0,	 t1	 ].	 Suponha	 que	 a	 componente,	 na	 direção	 do
deslocamento,	da	força	resultante	que	atua	sobre	a	partícula	seja	f	(x),	com	f	contínua
em	[x0,	x1],	 em	que	x0	=	x	 (t0)	 e	x1	 =	 x	 (t1).	Verifique	 que	 o	 trabalho	 realizado	 pela
resultante,	de	x0	a	x1,	é	igual	à	variação	na	energia	cinética,	isto	é,
	

em	que	v0	e	v1	são,	respectivamente,	as	velocidades	nos	instantes	t0	e	t1.

Solução
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1.

a)
b)
c)

d)

2.

a)

	

Pela	Lei	de	Newton	(força	=	massa	×	aceleração)
	

f	(x	(t))	=	ma	(t)

em	que	a	(t)	é	a	aceleração	no	instante	t.	Assim
	

Fazendo	na	última	integral	a	mudança	de	variável	v	=	v	(t)
	

	

Observação.	 Se	 v	 é	 a	 velocidade	 no	 instante	 	 é,	 por	 definição,	 a	 energia

cinética	da	partícula	no	instante	t.

Exercícios	11.8	

Sobre	 uma	 partícula	 que	 se	 desloca	 sobre	 o	 eixo	 x	 atua	 uma	 força	 cuja
componente	na	direção	do	deslocamento	é	f	(x).	Calcule	o	trabalho	realizado
pela	força	quando	a	partícula	se	desloca	de	x	=	a	a	x	=	b,	sendo	dados

f	(x)	=	3,	a	=	0	e	b	=	2
f	(x)	=	x,	a	=	−1	e	b	=	3

f	(x)	=	−3x,	a	=	−1	e	b	=	1

Uma	partícula	de	massa	m	=	2	desloca-se	sobre	o	eixo	0x	sob	a	ação	da	força
resultante	 	Sabe-se	que	x	(0)	=	1	e	v	(0)	=	0.

Verifique	que,	para	todo	t	≥	0,
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b)

c)
d)
e)

3.

a)

b)
c)
d)

4.

a)
b)
c)
d)

5.

6.

	

em	que	x	=	x	(t)	e	v	=	v	(t).

Calcule	 o	módulo	 da	 velocidade	 da	 partícula	 quando	 esta	 se	 encontrar	 na
posição	x	=	0.
Qual	o	máximo	valor	de	x?	Qual	o	mínimo	valor	de	x?
Em	que	posição	|	v	|	é	mínimo?
Como	você	acha	que	deve	ser	o	movimento	descrito	pela	partícula?

Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	sob	a	ação	da	força
resultante	 	Sabe-se	que	no	instante	t	=	0	a	partícula	encontra-se
na	posição	x	=	1	e	que,	neste	instante,	a	velocidade	é	v	=	2.

Verifique	que,	para	todo	t	≥	0,
	

x2	+	v2	=	5

em	que	x	=	x	(t)	e	v	=	v	(t)
	

Qual	o	máximo	valor	de	x?	Qual	o	mínimo	valor	de	x?
Em	que	posição	|	v	|	é	máximo?
Em	que	posição	|	v	|	é	mínimo?

Uma	partícula	de	massa	m	=	5	desloca-se	sobre	o	eixo	0x	sob	a	ação	da	força
resultante	 	Sabe-se	que	no	instante	t	=	2	a	posição	é	x	=	0	e	a
velocidade	v	=	4.

Expresse	o	módulo	de	v	em	função	de	x.
Qual	o	máximo	valor	de	|	v	|?
Qual	o	máximo	valor	de	|	x	|?
Em	que	posições	a	velocidade	é	zero?

Uma	partícula	de	massa	m	=	2	desloca-se	sobre	o	eixo	0x	sob	a	ação	da	força

resultante	 	 Sabe-se	 que	x	 (0)	=	1	 e	v	 (0)	 =	 0.	Expresse	 v	 em

função	de	x.

Uma	 partícula	 de	 massa	 m	 desloca-se	 sobre	 o	 eixo	 0x	 com	 aceleração
constante	a,	 de	 sorte	 que	 a	 força	 resultante	 sobre	 a	 partícula	 é,	 pela	Lei	 de
Newton,	ma	 	 Sejam	 x0	 e	 v0	 a	 posição	 e	 a	 velocidade	 no	 instante	 t	 =	 0.
Mostre	que,	para	todo	t	≥	0,
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7.

a)
b)

8.

a)
b)

9.

10.

em	que	x	=	x	(t)	e	v	=	v	(t).

Um	 corpo	 de	massa	m	 é	 lançado	 verticalmente.	 Seja	 y	 =	 y	 (t)	 a	 altura	 no
instante	t	(considere	o	eixo	vertical	0y	orientado	do	solo	para	cima).	Suponha
y	(0)	=	0	e	v	(0)	=	v0.	Suponha,	ainda,	que	a	única	força	agindo	sobre	o	corpo
seja	 a	 gravitacional	 −mg	 	 em	 que	 g	 é	 a	 aceleração	 gravitacional	 suposta
constante.

Verifique	que	
Qual	a	altura	máxima	atingida	pelo	corpo?

Uma	partícula	de	massa	m	=	2	desloca-se	sobre	o	eixo	0x	sob	a	ação	da	força

resultante	 	Suponha	x(0)	=	1	e	v	(0)	=	v0	>	0.

Relacione	v	com	x.
Determine	o	menor	valor	de	v0	para	que	a	partícula	não	 retorne	à	posição
inicial	x	=	1.

De	acordo	com	a	lei	da	gravitação	de	Newton,	a	Terra	(massa	M)	 atrai	uma
partícula	 de	 massa	 m	 com	 uma	 força	 de	 intensidade	 (G	 é	 a	 constante
gravitacional)

	

em	que	r	é	a	distância	da	partícula	ao	centro	da	Terra.	Suponha,	agora,	que	a
partícula	seja	lançada	da	superfície	da	Terra	com	uma	velocidade	inicial	v0	>	0
e	que	a	única	força	atuando	sobre	ela	seja	a	gravitacional.	Mostre	que	o	menor

valor	de	v0	para	que	a	partícula	não	retorne	à	Terra	é	 	em	que	M	 e	R

são,	respectivamente,	a	massa	e	o	raio	da	Terra.	(Despreze	a	rotação	da	Terra.)

Sobre	 uma	 partícula	 que	 se	 desloca	 sobre	 o	 eixo	 0x	 atua	 uma	 força	 	 de
intensidade	3x	e	que	forma	com	o	eixo	0x	um	ângulo	constante	de	30º.

	

Calcule	o	trabalho	realizado	por	 	quando	a	partícula	se	desloca	de	x	=	0	a	x	=
3.
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11.

a)

b)

12.

13.

Sobre	 uma	 partícula	 que	 se	 desloca	 sobre	 o	 eixo	 x	 atua	 uma	 força	 	 de
intensidade	constante	e	igual	a	3	N	e	que	forma	com	o	eixo	0x	um	ângulo	de	x
radianos.

	

Calcule	o	trabalho	realizado	por	 	quando	a	partícula	se	desloca

de	x	=	0	a	

de	x	=	0	a	x	=	π.	Interprete	o	resultado.

Sobre	uma	partícula	que	se	desloca	sobre	o	eixo	0x	atua	uma	força	 ,	sempre
dirigida	para	o	ponto	P	(veja	figura),	e	cuja	intensidade	é	igual	ao	inverso	do
quadrado	da	distância	da	partícula	a	P.

	

Calcule	o	trabalho	realizado	por	 	quando	a	partícula	se	desloca	de	x	=	−2	a	x
=	−1.

Uma	mola	AB	de	constante	k	está	presa	ao	suporte	A	e	a	um	corpo	B	de	massa
m.	O	comprimento	normal	da	mola	é	l.	Desprezando	o	atrito	entre	o	corpo	B	e
a	barra	horizontal,	mostre	que	a	aceleração	a	do	corpo	B	é	dada	por
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em	todo	instante	t	em	que	v	≠	0.
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12.1.

12

TÉCNICAS	DE	PRIMITIVAÇÃO

PRIMITIVAS	IMEDIATAS

Sejam	α	≠	0	e	c	 constantes	 reais.	Das	 fórmulas	de	derivação	 já	vistas	 seguem	as
seguintes	de	primitivação:

	
EXEMPLO	1.	Calcule.

Solução

Antes	de	passarmos	ao	próximo	exemplo,	lembramos	que	o	domínio	da	função	que
ocorre	 no	 integrando	 de	 ∫	 f	 (x)	 dx	 deve	 ser	 sempre	 um	 intervalo;	 quando	 nada	 for
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d)

mencionado	a	respeito	do	domínio	de	f,	ficará	implícito	que	se	trata	de	um	intervalo.

EXEMPLO	2.	Calcule.

Solução

Para	x	>	0,	

Para	x	>	0,	

Portanto,	para	todo	x	≠	0
	

Aqui	o	domínio	não	foi	explicitado:	tanto	pode	ser	um	intervalo	contido	em	]0,	+∞
[como	em]	−∞,	0[.	Em	qualquer	caso

	

EXEMPLO	3.	Seja	α	≠	0	uma	constante.	Calcule
	

Solução

Se	α	≠	−1,	
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Se	α	≠	−1,	

Assim:
	

EXEMPLO	4.	Calcule.

Solução

ou	seja:

	

EXEMPLO	5.	Calcule.
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Solução

EXEMPLO	6.	Verifique	que
	

Solução

Pela	observação	que	fizemos	anteriormente,	o	domínio	de	f	(x)	=	tg	x	deve	ser	um
intervalo	 I,	 pois,	 neste	 problema,	 tg	 x	 aparece	 como	um	 integrando.	Neste	 intervalo
temos:	cos	x	>	0	para	todo	x	em	I	ou	cos	x	<	0	para	todo	x	∈	I	(por	quê?).

Se	cos	x	>	0,	

Se	cos	x	<	0,	

Em	qualquer	caso,
	

EXEMPLO	7.	Seja	α	≠	0	uma	constante.	Verifique	que

Solução

Assim,
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1.

EXEMPLO	8.	Calcule.

Solução

EXEMPLO	9.	Calcule	

Solução
	

cos	2x	=	cos2	x	−	sen2	x	=	2	cos2	x	−	1

	

Então:
	

ou	seja,
	

Exercícios	12.1	

Calcule	e	verifique	sua	resposta	por	derivação.
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2.

3.

Calcule.

Calcule	e	verifique	sua	resposta	por	derivação.
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4.

5.

b)

6.

7.

Calcule.

a)	Verifique	que	sen2	

Calcule	

Calcule.

Calcule.
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8.

9.

b)

10.

11.

b)

12.

Calcule	

a)	Verifique	que

	

Mostre	que

Calcule.

a)	Determine	α	e	β	de	modo	que

Calcule	

Calcule.
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13.

b)

14.

15.

16.

17.

12.2.

a)	Determine	α	e	β	de	modo	que

Calcule	

Calcule	

Calcule.

Calcule.

Sejam	m	e	n	naturais.	Calcule.

TÉCNICA	PARA	CÁLCULO	DE	INTEGRAL	INDEFINIDA	DA	FORMA	

Sejam	 f	 e	g	 tais	 que	 Im	 g	⊂	Df	 com	 g	 derivável.	 Suponhamos	 que	F	 seja	 uma
primitiva	de	f,	isto	é,	F′	=	f.	Segue	que	F	(g	(x))	é	uma	primitiva	de	f	(g	(x))	g′(x),	de
fato,
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(F	(g	(x)))′	=	F′(g	(x))	g′(x)	=	f	(g	(x))	g′(x).

Deste	modo,	de
	

segue
	

	

Antes	de	passarmos	aos	exemplos,	observamos	que,	tendo	em	vista
	

resulta	para	α	≠	0
	

o	que	 significa	que,	multiplicando	o	 integrando	por	uma	constante	α	 e,	 em	seguida,
dividindo	tudo	por	α,	nada	muda.

EXEMPLO	1.	Calcule	

Solução

Fazendo
	

u	=	x2,	du	=	2x	dx.

Então,
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Como
	

resulta
	

EXEMPLO	2.	Calcule	

Solução
	

u	=	3x,	du	=	3dx

	

ou	seja,
	

EXEMPLO	3.	Calcule	

Solução
	

u	=	2x	+	1,	du	=	2dx

	

Como
	

resulta
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EXEMPLO	4.	Calcule	

Solução
	

u	=	1	+	x2,	du	=	2x	dx

	

Como
	

resulta
	

EXEMPLO	5.	Calcule	

Solução

Fazendo	u	=	3x	+	2,	du	=	3dx.	Assim,
	

Segue	que
	

EXEMPLO	6.	Calcule	

Solução

Se	fizermos	u	=	1	+	x4,	teremos	du	=	4x3	dx.	Como	4x2	não	é	constante,
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Isto	nos	mostra	que	a	mudança	u	=	1	+	x4	não	resolve	o	problema.	Entretanto,	se
fizermos	u	=	x2,	teremos	du	=	2x	dx;	assim,
	

Como
	

resulta
	

Observação.	Note	que	x	dx	“dentro	da	integral”	já	nos	sugere	u	=	x2.

EXEMPLO	7.	Calcule	

Solução
	

Fazendo	u	=	1	+	x2,	du	=	2x	dx.	Assim,
	

ou	seja,
	

EXEMPLO	8.	Calcule	

Solução
	

Fazendo	u	=	1	+	x2,	teremos	du	=	2x	dx	e	x2	=	u	−	1.	Assim,

424



	

Como

resulta
	

EXEMPLO	9.	Calcule	

Solução
	

A	mudança	u	=	sen	x	implica	du	=	cos	x	dx.
	

ou	seja,
	

EXEMPLO	10.	Calcule	

Solução
	

u	=	cos	x,	du	=	−sen	x	dx

	

ou	seja,
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EXEMPLO	11.	Calcule	

Solução
	

sen4	x	cos3	x	=	sen4	x	cos2	x	cos	x	=	sen4	x	(1	−	sen2	x)	cos	x.

Fazendo	u	=	sen	x,	du	=	cos	x	dx.	Então,
	

Assim,
	

EXEMPLO	12.	Calcule.

Solução

Fazendo	u	=	1	+	x3,	du	=	3x2	dx;	assim,
	

ou	seja,
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Fazendo	u	=	1	+	x3,	du	=	3x2	dx;	assim,
	

ou	seja,
	

EXEMPLO	13.	Calcule.

Solução

Fazendo	

Assim,
	

Como
	

resulta
	

Assim,
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Fazendo
	

Assim,
	

logo,
	

ou	seja,
	

EXEMPLO	14.	Verifique	que
	

Solução
	

	
u	=	sec	x	+	tg	x;	du	=	(sec	x	tg	x	+	sec2	x)	dx.

Assim,
	

ou	seja,
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1.

2.

	

Exercícios	12.2	

Calcule.

Calcule	(veja	a	Seção	11.7).

429



3.

4.

Calcule.

Calcule.
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5.

6.

7.

8.

Suponha	α,	β,	m	e	n	constantes,	com	a	≠	β.	Mostre	que	existem	constantes	A	e
B	tais	que

Utilizando	o	Exercício	5,	calcule.

Seja	a	≠	0	uma	constante.	Verifique	que

Calcule.
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9.

10.

Sejam	α	≠	0	e	β	constantes.	Verifique	que

Calcule.
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12.3. INTEGRAÇÃO	POR	PARTES

Suponhamos	f	e	g	definidas	e	deriváveis	num	mesmo	intervalo	I.	Temos:
	

[	f	(x)	g	(x)	]′	=	f′(x)	g	(x)	+	f	(x)	g′(x)

ou
	

f	(x)	g′(x)	=	[f	(x)	g	(x)	]′	−	f′(x)	g	(x).

Supondo,	então,	que	f′(x)	g	(x)	admita	primitiva	em	I	e	observando	que	f	(x)	g	(x)	é
uma	primitiva	de	[f	(x)	g	(x)	]′,	então	f	(x)	g′(x)	também	admitirá	primitiva	em	I	e
	

que	é	a	regra	de	integração	por	partes.
Fazendo	u	=	f	(x)	e	v	=	g	(x)	teremos	du	=	f′(x)	dx	e	dv	=	g′(x)	dx,	o	que	nos	permite

escrever	a	regra	①	na	seguinte	forma	usual:
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Suponha,	agora,	que	se	 tenha	que	calcular	 ∫	α	(x)	β	 (x)	dx.	Se	você	perceber	que,
multiplicando	 a	 derivada	 de	 uma	 das	 funções	 do	 integrando	 por	 uma	 primitiva	 da
outra,	chegase	a	uma	função	que	possui	primitiva	 imediata,	então	aplique	a	regra	de
integração	por	partes.

EXEMPLO	1.	Calcule	

Solução

A	derivada	de	x	é	1;	sen	x	é	uma	primitiva	de	cos	x.	Como	1	·	sen	x	tem	primitiva
imediata,	a	regra	de	integração	por	partes	resolve	o	problema.
	

Assim:
	

ou	seja,
	

EXEMPLO	2.	Calcule	

Solução
	

O	 truque	 aqui	 é	 acabar	 com	 arc	 tg	 x;	 vamos	 então	 derivar	 arc	 tg	 x	 e	 achar	 uma
primitiva	de	1.
	

Assim
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ou	seja,
	

EXEMPLO	3.	Calcule	

Solução
	

Assim,

Calculemos,	novamente,	por	partes	

	

ou	seja,

Substituindo	③	em	②,	vem
	

EXEMPLO	4.	Calcule	

Solução

Fazendo	f	(x)	=	ex	e	g′(x)	=	cos	x,	obtemos
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cujo	cálculo	apresenta	as	mesmas	dificuldades	que	∫	ex	cos	x	dx.	Se	fizermos	f	(x)	=	cos
x	e	g′(x)	=	ex,	o	problema	é	o	mesmo.	Aparentemente,	não	vale	a	pena	aplicar	a	regra
de	integração	por	partes.

Mas	veja:

Por	outro	lado,
	

ou

Substituindo	⑤	em	④
	

e,	portanto,
	

ou	seja,
	

O	 truque	 foi	 ter	 percebido	 que,	 aplicando	 novamente	 a	 regra	 de	 integração	 por
partes	a	

Muito	bem!

EXEMPLO	5.	Calcule	

Solução
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Assim,
	

ou
	

e,	portanto,
	

Como	sen	x	cos	 	resulta

	

EXEMPLO	6.	Calcule	

Solução
	

Assim,
	

Como	tg2	x	=	sec2	x	−	1,	resulta
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ou
	

e,	portanto,
	

e	como
	

resulta
	

Vejamos,	 agora,	 como	 fica	 a	 regra	 de	 integração	 por	 partes	 na	 integral	 definida
(integral	de	Riemann).	Sejam,	então,	f	e	g	duas	funções	com	derivadas	contínuas	em
[a,	b	];	vamos	provar	que
	

De	fato,	de
	

f	(x)	g′	(x)	=	[f	(x)	g	(x)	]′	−	f′(x)	g	(x)	em	[a,	b]

segue
	

ou	seja,
	

EXEMPLO	7.	Calcule	
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Solução
	

Assim,
	

ou	seja,
	

EXEMPLO	8.	Calcule	

Solução
	

Assim,
	

ou	seja,
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1.

2.

b)

3.

4.

5.

6.

Exercícios	12.3	

Calcule.

a)	Verifique	que

	

em	que	n	>	1	é	um	natural.

Calcule	

Verifique	que,	para	todo	natural	n	≠	0,	tem-se

Utilizando	o	item	(a)	do	Exercício	3,	calcule.

Calcule	 	constante.

Verifique	que	para	todo	natural	n	≥	1	e	todo	real	s	>	0
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7.

8.

9.

10.

11.

12.

13.

Calcule.

Sejam	m	e	n	dois	naturais	diferentes	de	zero.	Verifique	que

Verifique	que,	para	todo	natural	n	≥	2,

	

Verifique	que,	para	todo	natural	n	≥	1,	tem-se

Suponha	que	g	tenha	derivada	contínua	em	[0,	+∞	[e	que	g	(0)	=	0.	Verifique
que

	

Suponha	f″	contínua	em	[a,	b].	Verifique	que

	

Suponha	f″′	contínua	em	[a,	b].	Conclua	do	Exercício	12	que
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12.4. MUDANÇA	DE	VARIÁVEL

Seja	 f	 definida	 num	 intervalo	 I.	 Suponhamos	 que	 x	 =	φ	 (u)	 seja	 inversível,	 com
inversa	u	=	θ	(x),	x	∊	I,	sendo	φ	e	θ	deriváveis.

então,
	

De	fato,	de	①
	

F′(u)	=	f	(φ	(u))	φ′(u)

então,
	

pois,	φ	(θ	(x))	=	x	e	φ′(θ	(x))	θ′	(x)	=	(φ	(θ	(x)))′	=	1.
	

	
x	=	φ	(u)				;				dx	=	φ′	(u)	du

	

observando	que,	após	calcular	a	integral	indefinida	do	2.º	membro,	deve-se	voltar
à	variável	x	através	da	inversa	de	φ.

EXEMPLO	1.	Calcule	

Solução
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ou	seja,
	

Observação.	 A	 mudança	 x	 +	 1	 =	 u2,	 u	 >	 0,	 também	 é	 interessante;	 veja	 que	 esta
mudança	elimina	a	raiz	do	integrando.	Faça	os	cálculos	adotando	esta	mudança.

EXEMPLO	2.	Calcule	

Solução
	

Como	1	−	sen2	u	=	cos2	u,	a	mudança	x	=	sen	u	elimina	a	raiz	do	integrando.
	

Então,
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Assim,
	

De	x	=	sen	u,	 	segue	u	=	arc	sen	x	e	 	logo

	

Antes	de	passarmos	ao	próximo	exemplo,	faremos	a	seguinte	observação:	supondo
f	integrável	em	[a,	b]	e	F′	=	f	em	[a,	b],	pelo	1.º	Teorema	Fundamental	do	Cálculo

Observamos	 que	Ⓐ	 continua	 válida	 se	 supusermos	 f	 integrável	 em	 [a,	 b],	 F
contínua	em	[a,	b]	e	F′	=	f	em	]a,	b[	(verifique).					■

EXEMPLO	3.	Calcule	

Solução

Pelo	 exemplo	 anterior,	 	 arc	 	 é	 uma	 primitiva	 de	

	em	[0,	1	[.	Como	F	é	contínua	em	[0,	1]	e	 	integrável	neste
intervalo,	segue	da	observação	acima	que
	

Observação.	 	 arc	 	 é	 uma	 primitiva	 de	 	 1
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[(verifique).	Cuidado,	arc	sen	x	e	 	não	são	deriváveis	em	1	e	−1.

No	 próximo	 exemplo,	 vamos	 calcular	 novamente	 	 utilizando	 a

fórmula	de	mudança	de	variável	na	integral	definida.					■

EXEMPLO	4.	Calcule	

Solução
	

Observe	que	x	=	g	(u)	=	sen	u	tem	derivada	contínua	em	 	g	(0)	=	sen	0	=	0

e	 	 Pelo	 teorema	 de	 mudança	 de	 variável	 na	 integral	 de

Riemann
	

logo,
	

Como	 	cos	u	≥	0;	daí	|	cos	u	|	=	cos	u.

Assim,
	

ou	seja,
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Observe	que	não	houve	necessidade	de	se	retornar	à	variável	x!

Observação	importante.	Na	mudança	da	variável	na	integral	definida
	

a	 mudança	 x	 =	 g	 (u),	 u	 ∊	 [c,	 d]	 não	 precisa	 ser	 inversível,	 o	 que	 precisa	 é	 g′	 ser
contínua,	g	(c)	=	a	e	g	(d)	=	b.

A	 ocorrência	 de	 raiz	 no	 integrando	 é	 algo	muito	 desagradável;	 se	 perceber	 uma
mudança	de	variável	que	a	elimine,	não	vacile.

EXEMPLO	5.	Indique,	em	cada	caso,	qual	a	mudança	de	variável	que	elimina	a	raiz
do	integrando.

Solução

Como	1	+	tg2	θ	=	sec2	θ,	a	mudança	x	=	tg	θ	elimina	a	raiz	do	integrando.

A	mudança	2x	=	sen	t	ou	 	sen	t	elimina	a	raiz	do	integrando.
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	ou	 	elimina	a	raiz	do	integrando.

	

Então,
	

e,	portanto,	nenhuma	mudança	de	variável	é	necessária.

x	−	1	=	sen	u	ou	x	=	1	+	sen	u

resolve	o	problema.

Primeiro	vamos	expressar	o	radicando	como	uma	soma	de	quadrados:
	

2x	−	x2	=	−(x2	−	2x)	=	−(x2	−	2x	+	1)	+	1

ou	seja,
	

2x	−	x2	=	1	−	(x	−	1)2.

Assim,
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A	mudança	x	−	1	=	sen	u	resolve	o	problema.

−x2	+	4x	−	3	=	−(x2	−	4x	+	3)	=	−(x2	−	4x	+	4)	+	1

ou	seja,
	

−x2	+	4x	−	3	=	1	−	(x	−	2)2

A	mudança	de	variável	x	−	2	=	sen	u	resolve	o	problema.

x	+	1	=	tg	u

resolve	o	problema.

resolve	o	problema.					■

EXEMPLO	6.	Calcule	

Solução
	

assim,
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Pelo	Exemplo	6	da	seção	anterior,
	

Voltemos	à	variável	x:
	

x	=	tg	u;	1	+	x2	=	sec2	u

como	sec	u	>	0,	sec	

Então,
	

EXEMPLO	7.	Calcule	

Solução
	

	

assim,
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EXEMPLO	8.	Calcule	a	área	do	círculo	de	raio	r.

Solução
	

Temos
	

	

ou	seja,
	

Portanto,
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1.

2.

3.

4.

Exercícios	12.4	

Calcule.

Calcule	a	área	do	conjunto	de	todos	os	(x,	y)	tais	que	4x2	+	y2	≤	1.

Calcule	a	área	do	conjunto	de	todos	os	(x,	y)	tais	que	 	(a	>	0	e

b	>	0.)

Calcule.
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5.

6.

7.

8.

9.

Sejam	m	e	n	constantes	não	nulas	dadas.	Verifique	que

	

Com	uma	conveniente	mudança	de	variável,	transforme	a	integral	dada	numa
do	tipo	 	(m	e	n	constantes)	e	calcule.

Calcule	a	área	do	conjunto	de	todos	(x,	y)	tais	que	x2	+	2y2	≤	3	e	y	≥	x2.

Calcule	a	área	do	conjunto	de	todos	(x,	y)	tais	que	

Indique	uma	mudança	de	variável	que	elimine	a	raiz	do	integrando.
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12.5.
INTEGRAIS	INDEFINIDAS	DO	TIPO	

Para	calcular	 	vamos	precisar	do	seguinte	teorema.

	

Teorema.	Sejam	α,	β,	m	e	n	reais	dados,	com	α	≠	β.	Então	existem	constantes	A

Demonstração

Basta	então	mostrar	que	existem	A	e	B	tais	que

Este	sistema	admite	solução	única	dada	por
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Tomando-se,	então,	A	=	m	e	B	=	mα	+	n
	

Observe	que	em	cada	fração	que	ocorre	no	teorema	acima	o	grau	do	numerador	é
estritamente	menor	que	o	grau	do	denominador.

Vejamos,	agora,	como	calcular
	

em	que	P	(x)	é	um	polinômio.	Se	o	grau	de	P	 for	estritamente	menor	que	o	grau	do
denominador	(grau	de	P	<	2)	pelo	item	(a)	do	teorema
	

e,	assim,
	

Se	o	grau	de	P	for	maior	ou	igual	ao	do	denominador,	precisamos	antes	“extrair	os
inteiros”.
	

em	que	Q	(x)	e	R	(x)	são,	respectivamente,	o	quociente	e	o	resto	da	divisão	de	P	(x)	por
(x	−	α)	(x	−	β).

Observe	que	o	grau	de	R	é	estritamente	menor	que	o	grau	do	denominador.

Não	se	esqueça:	você	só	pode	aplicar	os	resultados	do	teorema	anterior	quando	o	grau
do	numerador	for	estritamente	menor	que	o	do	denominador.	Se	o	grau	do	numerador
for	maior	ou	igual	ao	do	denominador,	primeiro	“extraia	os	inteiros”.

EXEMPLO	1.	Calcule	
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Solução

	
x2	−	3x	+	2	=	(x	−	1)	(x	−	2).

O	grau	do	numerador	é	menor	que	o	do	denominador.	Pelo	 item	 (a)	do	 teorema,
existem	constantes	A	e	B	tais	que
	

Já	sabemos	que	A	e	B	existem;	o	problema	é	calculá-los.	Para	todo	x,	devemos	ter
	

x	+	3	=	A	(x	−	2)	+	B	(x	−	1).

Fazendo	x	=	1
	

4	=	A	(1	−	2)	ou	A	=	−4.

Fazendo	x	=	2
	

5	=	B	(2	−	1)	ou	B	=	5.

Assim,
	

ou	seja,
	

EXEMPLO	2.	Calcule	

Solução

O	grau	do	numerador	é	 igual	ao	do	denominador.	Primeiro	precisamos	extrair	os
inteiros.
	

assim,
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Vamos,	agora,	determinar	A	e	B	tais	que
	

3x	=	A	(x	−	2)	+	B	(x	−	1).

Fazendo	x	=	1,	obtemos	A	=	−3.	Fazendo	x	=	2,	obtemos	B	=	6.	Assim,
	

Portanto,
	

Para	calcular	 	é	mais	interessante	fazer	a	mudança	de	variável	u	=

x	−	α	do	que	utilizar	o	item	(b)	do	teorema.

EXEMPLO	3.	Calcule	

Solução
	

u	=	x	−	1	⇔	x	=	u	+	1;	dx	=	du

Assim,
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ou
	

EXEMPLO	4.	Calcule	

Solução
	

u	=	sen	x;	du	=	cos	x	dx.

Então
	

De
	

resulta
	

e,	portanto,
	

Por	outro	lado
	

então
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12.6.

Ou	seja,
	

Exercícios	12.5	

Calcule.

PRIMITIVAS	DE	FUNÇÕES	RACIONAIS	COM	DENOMINADORES	DO	TIPO	(x	−	α)	(x
−	β)	(x	−	γ)

A	demonstração	do	próximo	teorema	é	deixada	para	o	final	da	seção.
	

Teorema.	Sejam	α,	β,	γ,	m,	n,	p	reais	dados	com	α,	β,	γ	distintos	entre	si.	Então
existem	constantes	A,	B,	C	tais	que
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Observe	que,	em	cada	fração	que	ocorre	no	teorema	acima,	o	grau	do	numerador	é
estritamente	menor	que	o	do	denominador.

EXEMPLO	1.	Calcule	

Solução

O	grau	do	numerador	é	maior	que	o	do	denominador.	Primeiro	devemos	“extrair	os
inteiros”.
	

assim,
	

Temos

x3	−	x2	−	2x	=	x	(x2	−	x	−	2)	=	x	(x	+	1)	(x	−	2).

3x2	+	4x	+	1	=	A	(x	+	1)	(x	−	2)	+	Bx(x	−	2)	+	Cx(x	+	1).

Fazendo	x	=	0,	x	=	−1	e	x	=	2,	obtemos	 	B	=	0	e	 	Assim,

ou	seja,
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EXEMPLO	2.	Calcule	

Solução

1	é	raiz	de	x3	−	x2	−	x	+	1.	Então,
	

x3	−	x2	−	x	+	1	=	(x	−	1)	(x2	−	1)	=	(x	−	1)2	(x	+	1).

2x	+	1	=	A	(x	−	1)2	+	B	(x	+	1)	(x	−	1)	+	C	(x	+	1).

Fazendo	x	=	1,	3	=	2C	ou	

Fazendo	x	=	−1,	−1	=	4A	ou	

Fazendo	x	=	0,	

Assim,

ou	seja,
	

Antes	de	provar	o	teorema	enunciado	no	início	da	seção,	vamos	mostrar	que	se	m,
n,	p	e	α	são	reais	dados,	então	existem	reais	m1,	n1	e	p1	tais	que
	

mx2	+	nx	+	p	=	m1	(x	−	α)2	+	n1	(x	−	α)	+	p1.

De	fato,	fazendo	x	=	(x	−	α)	+α	vem
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a)

em	que	m1	=	m,	n1	=	2αm	+	n	e	p1	=	mα1	+	nα	+	p.
A	seguir,	faremos	a	demonstração	do	teorema	mencionado	acima.

Pelo	que	vimos	na	seção	anterior,	existem	constantes	A1	e	B1	tais	que

Segue	que	existem	constantes	A2,	B2,	A3,	B3	tais	que
	

Assim,
	

em	que	A4	=	A2,	B4	=	A3	e	C4	=	B2	+	B3.	Temos,	agora,
	

Segue	que	existem	constantes	A,	B,	C	(por	quê?)	tais	que
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1.

2.

b)

3.

12.7.

Assim,	existem	constantes	A2,	B2,	C2	tais	que

Deixamos	a	seu	cargo	terminar	a	demonstração	deste	item.

Exercícios	12.6	

Calcule.

a)	Determine	A,	B,	C,	D	tais	que

Calcule	

Calcule.

PRIMITIVAS	DE	FUNÇÕES	RACIONAIS	CUJOS	DENOMINADORES	APRESENTAM
FATORES	IRREDUTÍVEIS	DO	2.º	GRAU
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Vamos	mostrar,	através	de	exemplos,	como	calcular	 	quando	Δ	=

b2	−	4ac	<	0.

EXEMPLO	1.	Calcule	

Solução

Primeiro	vamos	escrever	o	denominador	como	soma	de	quadrados:

	
x2	+	2x	+	2	=	(x2	+	2x	+	1)	+	1	=	(x	+	1)2	+	1.

Assim,
	

Façamos,	agora,	a	mudança	de	variável
	

u	=	x	+	1,	du	=	dx.

Então,
	

ou	seja,
	

EXEMPLO	2.	Calcule	

Solução

Como	o	grau	do	numerador	é	igual	ao	do	denominador,	primeiro	vamos	extrair	os
inteiros.
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assim,
	

ou
	

De	x2	+	4x	+	13	=	x2	+	4x	+	4	+	9	=	(x	+	2)2	+	32,	segue
	

Fazendo	x	+	2	=	3u,	dx	=	3du,
	

ou	seja,
	

Assim,
	

Vejamos,	agora,	como	calcular	integrais	indefinidas	do	tipo
	

em	que	P	é	um	polinômio	Δ	=	b2	−	4ac	<	0.
Para	tal,	vamos	precisar	do

	

Teorema.	Sejam	m,	n,	p,	a,	b,	c	e	α	números	reais	dados	tais	que	Δ	=	b2	−	4ac	<
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0.	Então	existem	constantes	A,	B,	D	tais	que
	

Demonstração
	

Basta,	então,	mostrar	que	existem	A,	B,	D	tais	que

O	determinante	do	sistema	é

ax2	 +	 bx	 +	 c	 não	 admite	 raiz	 real.	 O	 sistema	 acima	 admite,	 então,	 uma	 única
solução.					■

EXEMPLO	3.	Calcule	

Solução

O	 grau	 do	 numerador	 é	 maior	 que	 o	 do	 denominador;	 vamos	 então	 extrair	 os
inteiros:
	

Assim,
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Pelo	teorema	existem	A,	B,	C	tais	que
	

8x2	+	x	+	1	=	A	(x2	+	2x	+	4)	+	(Bx	+	C)	(x	−	2).

Fazendo	x	=	2,	35	=	12A	ou	

Fazendo	x	=	0,	1	=	4A	−	2C	ou	

Fazendo	x	=	1,	10	=	7A	−	B	−	C	ou	

Assim,
	

Precisamos,	agora,	calcular
	

Temos
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12.8.

Conclusão

	
Exercícios	12.7	

Calcule.

INTEGRAIS	DE	PRODUTOS	DE	SENO	E	COSSENO

Nesta	seção	serão	utilizadas	as	fórmulas	a	seguir,	cuja	verificação	deixamos	a	seu
cargo.
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sen	a	cos	 	[sen(a	+	b)	+	sen(a	−	b)]

cos	a	cos	 	[cos(a	+	b)	+	cos(a	−	b)]

sen	a	sen	 	[cos(a	−	b)	−	cos(a	+	b)]

EXEMPLO	1.	Calcule	

Solução

Pela	primeira	fórmula	acima	(a	=	3x	e	b	=	2x),
	

Daí
	

EXEMPLO	2.	Calcule	

Solução

cos2	x	=	cos	x	cos	x.	Pela	segunda	fórmula	acima	(a	=	x	e	b	=	x),
	

Daí,
	

EXEMPLO	3.	Calcule	

Solução
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Como	cos(−2x)	=	cos	2x,	pois	o	cosseno	é	função	par,	resulta

EXEMPLO	4.	Calcule	

Solução

De
	

segue
	

Como	o	seno	é	função	ímpar,	sen(−x)	=	−sen	x,	e,	portanto,
	

Logo,
	

EXEMPLO	5.	Calcule	 	cos	nx	cos	mxdx,	sendo	m	 e	n	naturais

não	nulos.

Solução

1.º	CASO:	n	=	m

	

2.º	CASO:n	≠	m
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1.

2.

3.

12.9.

Conclusão:
	

Exercícios	12.8	

Calcule.

Calcule	 	sendo	m	e	n	naturais	não	nulos.

Calcule	 	sendo	m	e	n	naturais	não	nulos.

INTEGRAIS	DE	POTÊNCIAS	DE	SENO	E	COSSENO.	FÓRMULAS	DE	RECORRÊNCIA

Inicialmente,	vamos	recordar	as	fórmulas
	

	

EXEMPLO	1.	Calcule	

Solução
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Fazendo	u	=	sen	x	e,	portanto,	du	=	cos	xdx,	resulta
	

Logo,

EXEMPLO	2.	Calcule	

Solução
	

A	mudança	de	variável	u	=	cos	3x	implica	du	=	−3	sen	3xdx.	Temos,	então,
	

EXEMPLO	3.	Calcule	

	

De	cos2	 	resulta

	

Portanto,
	

Para	 o	 cálculo	 das	 integrais	 	 recomendamos
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utilizar	as	fórmulas	de	recorrência	que	serão	estabelecidas	no	próximo	exemplo.

EXEMPLO	4.	Seja	n	um	número	natural,	com	n	≥	2.	Mostre	que

Solução

a)	Vamos	integrar	por	partes.
	

ou	seja,
	

Passando	para	o	primeiro	membro	o	último	termo	e	somando,	obtemos
	

e,	portanto,
	

b)	Deixamos	a	cargo	do	leitor.					■

EXEMPLO	5.	Calcule	

Solução

Pela	fórmula	de	recorrência,	temos
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Como	 	resulta

	

Vejamos,	 agora,	 como	 calcular	 integrais	 de	 produtos	 de	 potências	 de	 seno	 e
cosseno.	Sejam	m	e	n	números	naturais.
	

Se	n	for	ímpar,	faça	u	=	cos	x.
Se	m	for	ímpar,	faça	u	=	sen	x.
Se	m	e	n	forem	pares	não	nulos,	faça	sen2	x	=	1	−	cos2	x
ou	cos2	x	=	1	−	sen2	x	e	utilize	as	fórmulas	de	recorrência	acima.

Ou	então,	faça	

EXEMPLO	6.	Calcule	

Solução

Inicialmente,	vamos	fazer	a	mudança	de	variável	z	=	3x	e,	portanto,	

Segue	que
	

Vamos,	 então,	 ao	 cálculo	 de	 	 Como	 ambos	 os	 expoentes	 são

ímpares,	 podemos	 escolher	 a	 mudança	 de	 variável	 u	 =	 cos	 z	 ou	 u	 =	 sen	 z.	 Vamos
escolher	a	segunda.
	

Escolhendo	u	=	sen	z,	du	=	cos	zdz.	Lembrando	que	cos2	z	=	1	−	sen2	z,	vem
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Portanto,
	

EXEMPLO	7.	Calcule	

Solução

1.º	PROCESSO
	

daí
	

e,	portanto,
	

2.º	PROCESSO

Lembrando	que	sen	2x	=	2	sen	x	cos	x	e,	portanto,	 	temos

	

3.º	PROCESSO

Fazendo	sen2	x	=	1	−	cos2	x,	vem
	

Pela	fórmula	de	recorrência,
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1.

2.

a)

b)

Subtraindo	membro	a	membro	as	duas	últimas	igualdades,	resulta
	

EXEMPLO	8.	Calcule	

Solução

Aqui	a	melhor	alternativa	é	proceder	como	na	seção	anterior.	Temos
	

De	sen	x	cos	 	segue

	

Exercícios	12.9	

Calcule.

Seja	f	(x)	uma	função	contínua.

Mostre	que	a	mudança	de	variável	u	=	sen	x	transforma	a	integral

Mostre	que	a	mudança	de	variável	u	=	cos	x	transforma
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3.

12.10.

Utilizando	o	Exercício	2,	calcule.

INTEGRAIS	DE	POTÊNCIAS	DE	TANGENTE	E	SECANTE.	FÓRMULAS	DE
RECORRÊNCIA

Inicialmente	vamos	relembrar	as	seguintes	fórmulas:
	

Para	 o	 cálculo	 de	 integrais	 de	 potências	 de	 tangente	 e	 de	 secante,	 com	 expoente
natural	n,	n	≥	2,	utilizam-se	as	seguintes	fórmulas	de	recorrência:
	

EXEMPLO	1.	Calcule	
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Solução
1.º	PROCESSO
	

portanto,
	

2.º	PROCESSO
	

Fazendo	u	=	cos	x	e,	portanto,	du	=	−sen	xdx,	vem
	

Portanto,
	

(Observe	que	 	difere	de	 	por	uma	constante!)					■

EXEMPLO	2.	Calcule	

Solução
	

Segue	do	formulário	acima
	

No	próximo	exemplo,	estabeleceremos	a	fórmula	de	recorrência	para	o	cálculo	de
integrais	de	potências	de	tangente.

EXEMPLO	3.	Sendo	n	um	número	natural,	n	≥	2,	mostre	que
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Solução
	

Portanto,
	

EXEMPLO	4.	Calcule	

Solução

Pela	fórmula	de	recorrência,
	

Portanto,
	

EXEMPLO	5.	Calcule	

Solução

1.º	PROCESSO
Vamos	utilizar	a	fórmula	6	do	formulário	dado	no	início	da	seção.	Temos
	

Daí,
	

e,	portanto,	pela	fórmula	mencionada,	resulta
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2.º	PROCESSO	(Expressando	o	integrando	em	termos	de	sen	x	e	cos	x.)
	

Fazendo	u	=	cos	x	e,	portanto,	du	=−sen	xdx,	resulta
	

e,	portanto,
	

EXEMPLO	6.	Calcule	

Solução
	

Para	o	cálculo	de	 	vamos	utilizar	integração	por	partes.	Temos

	

Segue	que
	

Temos,	então,
	

e,	portanto,
	

479



Conclusão:
	

No	próximo	exemplo	será	estabelecida	a	fórmula	de	recorrência	para	o	cálculo	de
integrais	de	potências	de	secantes.

EXEMPLO	7.	Sendo	n	um	número	natural,	n	≥	2,	mostre	que
	

Solução

Vamos	 proceder	 exatamente	 como	 no	 cálculo	 da	 integral	 de	 sec3	 x	 efetuado	 no
Exemplo	6.	Temos
	

daí
	

e,	portanto,
	

Segue	que
	

Logo,
	

Para	finalizar	a	seção,	sugerimos	a	seguir	como	proceder	no	cálculo	de	produto	de
potências	de	tangente	e	secante.
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1.

2.

3.

Se	m	for	ímpar,	proceda	como	no	Exemplo	5.
Se	m	for	par,	expresse	o	integrando	em	potências	de	sec	x,	como	no	Exemplo	6,	e
utilize	a	fórmula	de	recorrência	para	o	cálculo	de	integrais	de	potências	de	sec	x.

Exercícios	12.10	

Calcule.

Verifique	que

Calcule.
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12.11. A	MUDANÇA	DE	VARIÁVEL	

A	mudança	de	variável	 	é	recomendável	sempre	que	o	integrando	for	da

forma	Q	 (sen	 x,	 cos	 x),	 em	que	Q	 (u,	v)	 é	 um	 quociente	 entre	 dois	 polinômios	 nas
variáveis	u	e	v.	Se	o	integrando	for	da	forma	Q	(sen	αx,	cos	αx),	α	constante,	sugere-se
a	mudança	

Antes	 de	 passarmos	 aos	 exemplos,	 vamos	 relembrar	 duas	 identidades
trigonométricas	importantes.
	

Assim,
	

Por	outro	lado,
	

ou	seja,
	

Observe	que
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EXEMPLO	1.	Calcule	

Solução
	

Assim,
	

Como
	

resulta
	

Assim,
	

Por	outro	lado,
	

Portanto,
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EXEMPLO	2.	Calcule	

Solução
	

Fazendo	a	mudança	de	variável
	

Como
	

resulta
	

ou	seja,
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Como
	

resulta
	

Exercícios	12.11	

Calcule.
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13.1.

13

MAIS	ALGUMAS	APLICAÇÕES	DA	INTEGRAL.
COORDENADAS	POLARES

VOLUME	DE	SÓLIDO	OBTIDO	PELA	ROTAÇÃO,	EM	TORNO	DO	EIXO	x,	DE	UM
CONJUNTO	A

Seja	f	contínua	em	[a,	b],	 com	 f	 (x)	≥	0	em	[a,	b];	 seja	B	o	conjunto	obtido	pela
rotação,	em	torno	do	eixo	x,	do	conjunto	A	do	plano	limitado	pelas	retas	x	=	a	e	x	=	b,
pelo	eixo	x	e	pelo	gráfico	de	y	=	f	(x).	Estamos	interessados	em	definir	o	volume	V	de
B.
	

Seja	P:a	 =	 x0	 <	 x1	 <	 x2	 <	…	<	 xi	 −	 1	 <	 xi,	 <	…	 <	 xn	 =	b	 uma	 partição	 de	 [a,	 b]	 e,
respectivamente,	 	pontos	de	mínimo	e	de	máximo	de	f	em	[xi	−	1,	xi].	Na	 figura
da	página	anterior,	 	Temos:

	 =	 volume	 do	 cilindro	 de	 altura	 Δxi	 e	 base	 de	 raio	 	 (cilindro	 de
“dentro”)

	 =	 volume	 do	 cilindro	 de	 altura	Δxi	 e	 base	 de	 raio	 	 (cilindro	 de
“fora”).

486



Uma	boa	definição	para	o	volume	de	V	deverá	implicar
	

para	 toda	 partição	 P	 de	 [a,	 b].	 Para	 máx	 Δxi	 →	 0,	 as	 somas	 de	 Riemann	 que

comparecem	nas	desigualdades	tendem	a	 	nada	mais	natural,	então,	do

que	definir	o	volume	V	de	B	por
	

ou
	

EXEMPLO	1.	Calcule	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	x,	do
conjunto	de	todos	os	pares	(x,	y)	tais	que	x2	+	y2	≤	r2,	y	≥	0	(r	>	0).

Solução

x2	+	y2	≤	r2,	y	≥	0,	é	um	semicírculo	de	raio	r.	Pela	rotação	deste	semicírculo	em
torno	do	eixo	x,	obtemos	uma	esfera	de	raio	r.	Temos:
	

Segue	que	o	volume	pedido	é
	

EXEMPLO	2.	Calcule	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	x,	do
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conjunto	de	todos	os	pares	(x,	y)	tais	que	 	1	≤	x	≤	2.

Solução
	

O	 que	 queremos	 é	 o	 volume	 do	 sólido	 obtido	 pela	 rotação,	 em	 torno	 do	 eixo	 x,	 do
conjunto	 hachurado.	 O	 volume	 V	 pedido	 é	 igual	 a	 V2	 −	 V1	 em	 que	 V2	 e	 V1	 são,
respectivamente,	os	volumes	obtidos	pela	rotação,	em	torno	do	eixo	x,	dos	conjuntos
A2	e	A1	hachurados.
	

Deste	modo,	o	volume	V	pedido	é:	
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O	 próximo	 exemplo	 é	 um	 caso	 particular	 do	 teorema	 de	 Papus	 (Papus	 de
Alexandria,	 IV	século	d.C.)	para	volume	de	 sólido	obtido	pela	 rotação,	 em	 torno	de
um	eixo,	de	uma	figura	plana	que	não	intercepta	o	eixo.	Tal	teorema	nos	diz	que,	sob
determinadas	condições,	o	volume	do	sólido	obtido	pela	rotação,	em	torno	de	um	eixo,
de	uma	figura	plana	que	não	intercepta	tal	eixo	é	igual	ao	produto	da	área	da	figura
pelo	 comprimento	 da	 circunferência	 gerada,	 na	 rotação,	 pelo	 baricentro	 (ou
centro	de	massa)	da	figura.	(Veja	Exercício	3,	Seção	13.9.)

EXEMPLO	3.	Considere	 um	 retângulo	 situado	no	 semiplano	y	≥	0	 e	 com	um	 lado
paralelo	ao	eixo	x.	Seja	P	a	interseção	das	diagonais.	Mostre	que	o	volume	do	sólido
obtido	pela	rotação	em	torno	do	eixo	x	é	igual	ao	produto	da	área	do	retângulo	pelo
comprimento	da	circunferência	gerada,	na	rotação,	pelo	ponto	P.

Solução

Consideremos	o	retângulo
	

a	≤	x	≤	b				e				0	≤	c	≤	y	≤	d

	

O	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	x,	deste	retângulo	é
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ou	seja,
	

V	=	π	(d2	−	c2)(b	−	a)

e,	portanto,
	

em	que	 	é	o	comprimento	da	circunferência	gerada	pelo	ponto	P	e	(d	−	c)(b

−	a)	é	a	área	do	retângulo.	(Observe	que	o	resultado	expresso	neste	exemplo	continua
válido	se	as	expressões	“semiplano	y	≥	0”	e	“em	torno	do	eixo	x”	forem	substituídas,
respectivamente,	por	“semiplano	x	≥	0”	e	“em	torno	do	eixo	y”.)					■

Antes	 de	 prosseguirmos,	 vamos	 destacar	 o	 2.º	 Teorema	 Fundamental	 do	Cálculo
(ou	simplesmente	Teorema	Fundamental	do	Cálculo)	cuja	prova	é	deixada	para	o	Vol.
2.	Seja	g	uma	função	contínua	em	um	intervalo	I	e	a	um	ponto	de	I,	a	 fixo.	Assim,
para	cada	x	em	I,	 	existe.	Podemos	então	considerar	a	função	que	a	cada	x

em	I	associa	o	número	 	Pois	bem,	o	2.º	Teorema	Fundamental	do	Cálculo

nos	 diz	 que	 	 é	 uma	 primitiva	 de	 g(x)	 em	 I.	 Vejamos	 como	 podemos	 nos

convencer	desse	fato.	Conforme	veremos	no	Vol.	2,	sendo	g	contínua	em	I,	existirá	G
tal	 que,	 para	 todo	x	 em	 I,	G′(x)	 =	g(x).	 Pelo	 1.º	 Teorema	Fundamental	 do	Cálculo,	

	daí,	e	lembrando	que	G(a)	é	constante,	resulta,	para	todo	x

em	I,
	

e,	portanto,
	

Agora,	podemos	prosseguir.
Seja	f	(x)	≥	0	e	contínua	em	[a,	b];	para	cada	x	em	[a,	b],

	

é	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	x,	do	conjunto	hachurado.
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1.

a)

b)

c)

d)

e)

f)

g)

h)

i)

Sendo	f	contínua	em	[a,	b],	π	[f	(x)]2	também	será	contínua	neste	intervalo.	Daí,	pelo
2.º	Teorema	Fundamental	do	Cálculo,
	

Assim,	dV	=	π	 [f	 (x)]2	dx,	 ou	 seja	π	 [f	 (x)]2	dx	 nada	mais	 é	 do	 que	 a	diferencial	do
volume	V(x).	 Observe	 que	 a	 diferencial	 dV	 =	 π[f	 (x)]2	 dx	 é	 o	 volume	 do	 cilindro
gerado,	na	rotação	em	torno	do	eixo	x,	pelo	retângulo	de	base	dx	e	altura	f	(x);	dV	é	um
valor	aproximado	para	a	variação	ΔV	em	V	correspondente	à	variação	dx	em	x.	Então,
o	volume	do	sólido	de	revolução,	em	torno	do	eixo	x,	do	conjunto	{(x,	y)|a	≤	x	≤	b,	0	≤
y	≤	f	(x)}	é	obtido	calculandose	a	integral	da	diferencial	do	volume	para	x	variando	de
a	a	b.

Exercícios	13.1	

Calcule	 o	 volume	 do	 sólido	 obtido	 pela	 rotação,	 em	 torno	 do	 eixo	 x,	 do
conjunto	de	todos	os	pares	(x,	y)	tais	que

1	≤	x	≤	3	e	0	≤	y	≤	x.

2x2	+	y2	≤	1	e	y	≥	0.

y	≥	0,	1	≤	x	≤	2	e	x2	−	y2	≥	1.

x2	≤	y	≤	x.

0	≤	y	≤	x	e	x2	+	y2	≤	2.

y	≥	x2	e	x2	+	y2	≤	2.
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j)

l)

m)

2.

3.

13.2.

1	≤	x2	+	y2	≤	4	e	y	≥	0.

x2	+	(y	−	2)2	≤	1.

(Teorema	de	Papus	para	a	elipse.)	Considere	o	conjunto	A	de	todos	os	pontos
(x,	y)	tais	que

	

e	 situado	 no	 semiplano	 y	 ≥	 0.	 Mostre	 que	 o	 volume	 do	 sólido	 obtido	 pela
rotação,	em	torno	do	eixo	x,	do	conjunto	A	é	igual	ao	produto	da	área	da	elipse
pelo	comprimento	da	circunferência	gerada,	na	rotação,	pelo	centro	(α,	β)	desta
elipse.

Considere	 um	 triângulo	 isósceles	 situado	 no	 semiplano	 y	 ≥	 0	 e	 com	 base
paralela	ao	eixo	x.	Mostre	que	o	volume	do	sólido	obtido	pela	rotação	deste
triângulo,	em	torno	do	eixo	x,	é	igual	ao	produto	da	área	deste	triângulo	pelo
comprimento	 da	 circunferência	 gerada,	 na	 rotação,	 pelo	 baricentro	 do
triângulo.

VOLUME	DE	SÓLIDO	OBTIDO	PELA	ROTAÇÃO,	EM	TORNO	DO	EIXO	y,	DE	UM
CONJUNTO	A

Suponha	f	(x)	≥	0	e	contínua	em	[a,	b],	com	a	>	0.	Seja	A	o	conjunto	do	plano	de
todos	os	pares	(x,	y)	tais	que	a	≤	x	≤	b	e	0	≤	y	≤	f	(x).	Seja	B	o	conjunto	obtido	pela
rotação,	em	torno	do	eixo	y,	do	conjunto	A.	Nosso	objetivo,	a	seguir,	é	mostrar	que	é
razoável	tomar	para	volume	de	B	o	número

ou
	

Seja	P:	a	=	x0	<	x1	<	x2	<	…	<	xi	−	1	<	xi	<	…	<	xn	=	b	uma	partição	de	[a,	b]	e	seja	ci	o
ponto	médio	de	[xi	−	1,	xi].
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Seja	Ri	o	retângulo	xi	−	1	≤	x	≤	xi	e	0	≤	y	≤	f(ci).	Pelo	teorema	de	Papus	para	retângulo,	o
volume	do	sólido	gerado	pela	rotação	do	retângulo	Ri,	em	torno	do	eixo	y,	é
	

Deste	modo,	a	soma	de	Riemann
	

é	um	valor	aproximado	para	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo
y,	do	conjunto	A.	Por	outro	lado,	pelo	fato	de	f	ser	contínua,	tem-se
	

Logo,	é	razoável	tomar	①	para	volume	de	B.	Veremos	no	Vol.	3	que	esta	nossa	atitude
é	correta.	(Para	uma	prova	de	①,	num	caso	particular,	veja	Exercício	3	desta	seção.)

EXEMPLO	1.	Calcule	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	y,	do
conjunto	de	todos	(x,	y)	tais	que
	

0	≤	x	≤	1	e	0	≤	y	≤	x	−	x3.

Solução
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Já	 sabemos	que	dV	=	2π	xf(x)dx	 é	 a	 diferencial	 de	 	Agora,

observe	 que	 f	 (x)dx	 é	 a	 área	 do	 retângulo	 de	 altura	 f	 (x)	 e	 base	 dx	 e,	 para	 dx
suficientemente	 pequeno,	 2πx	 é	 aproximadamente	 o	 comprimento	 da	 circunferência
gerada	 pelo	 baricentro	 do	 retângulo	mencionado	 e	 daí,	 pelo	 teorema	 de	 Papus	 para
retângulos,	2π	xf(x)dx	 é	 aproximadamente	 o	 volume	 do	 invólucro	 cilíndrico	 obtido
pela	rotação,	em	torno	do	eixo	y,	de	tal	retângulo.
	

O	volume	obtido	pela	rotação,	em	torno	do	eixo	y,	do	conjunto	A	é	então	a	integral

dessa	diferencial,	para	x	variando	de	a	até	b,	ou	seja,	

Este	 método	 de	 determinar	 volume	 é	 às	 vezes	 denominado	método	 dos	 invólucros
cilíndricos	ou	método	das	cascas.

Vejamos,	agora,	uma	outra	fórmula,	que	é	do	mesmo	tipo	daquela	da	seção	anterior,
para	 calcular	 volume	 de	 sólido	 obtido	 pela	 rotação,	 em	 torno	 do	 eixo	 y,	 de	 um
conjunto	que	não	intercepta	tal	eixo.	Seja	então	B	o	conjunto:	B	=	{(x,	y)	|	0	≤	x	≤	b,	c
≤	 y	 ≤	 d	 e	 y	 ≥	 f	 (x)},	 em	 que	 f	 é	 suposta	 contínua	 e	 estritamente	 crescente	 (ou
estritamente	decrescente)	em	[a,	b],	com	a	≥	0,	f(a)	=	c	e	f(b)	=	d.
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Como	y	=	f	(x)	é	contínua	e	estritamente	crescente	em	[a,	b],	então	é	inversível,	com
inversa	x	=	g(y)	contínua	em	[c,	d],	em	que	c	=	f(a),	d	=	f	(b)	e	y	=	f	(x)	⇔	x	=	g	 (y).
Raciocinando	 como	 na	 seção	 anterior,	 o	 volume	 do	 sólido	 obtido	 pela	 rotação,	 em
torno	do	eixo	y,	do	conjunto	B	é
	

Observe	que	π	x2dy	é	o	volume	do	cilindro	obtido	pela	rotação,	em	torno	do	eixo	y,	do
retângulo	de	base	x	e	altura	dy.	(Veja	figura	acima.)

EXEMPLO	2.	Calcule	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	y,	do
conjunto	de	todos	os	pares	(x,	y)	tais	que	x2	≤	y	≤	4,	x	≥	0.

Solução

Temos:	
Segue	que

Volume	=	

E,	portanto,

Volume	=	
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Observação.	Este	volume	poderia,	também,	ter	sido	calculado	utilizando-se	a	fórmula
anterior.	Neste	 caso,	 o	 volume	 pedido	 seria	 a	diferença	 entre	 o	 volume	 gerado	 pela
rotação,	em	torno	do	eixo	y,	do	retângulo	0	≤	x	≤	2,	0	≤	y	≤	4	e	o	volume	gerado	pela
rotação,	em	torno	do	eixo	y,	do	conjunto	0	≤	x	≤	2	e	0	≤	y	≤	f	(x),	em	que	f	(x)	=	x2.	Ou
seja,
	

EXEMPLO	3.	Calcule	o	volume	do	sólido	gerado	pela	rotação,	em	torno	do	eixo	y,
do	 conjunto	 de	 todos	 os	 pares	 (x,	 y)	 tais	 que	 0	 ≤	 x	 ≤	 2,	 0	 ≤	 y	 ≤	

Solução
	

1.º	PROCESSO	(Utilizando	a	primeira	fórmula.)
	

E,	portanto,	
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I)

II)

III)

IV)

2.º	PROCESSO	(Utilizando	a	segunda	fórmula.)
	

Então
	

Para	encerrar	a	seção,	vamos	resumir	num	quadro	o	que	aprendemos	nesta	seção	e
na	anterior.
	

	

A	=	{(x,	y)|a	≤	x	≤	b,	0	≤	y	≤	f	(x)}	e	B	=	{(x,	y)|0	≤	x	≤	b,	c	≤	y	≤	d,	y	≤	f	(x)}

			 	=	volume	gerado	por	A	na	rotação	em	torno	do	eixo	x.(y	=	f	(x))

		 	=	volume	gerado	por	B	na	rotação	em	torno	do	eixo	y.(x	=	g(y))

	=	volume	gerado	por	A	na	rotação	em	torno	do	eixo	y.(y	=	f	(x))

	=	volume	gerado	por	B	na	rotação	em	torno	do	eixo	x.(x	=	g(y))

Exercícios	13.2	
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1.

a)
b)
c)
d)
e)
f)
g)
h)

2.

a)

b)
c)
d)
e)

3.

a)

b)

c)

13.3.

Calcule	 o	 volume	 do	 sólido	 obtido	 pela	 rotação,	 em	 torno	 do	 eixo	 y,	 do
conjunto	de	todos	os	(x,	y)	tais	que

1	≤	x	≤	e	e	0	≤	y	≤	ln	x.

1	≤	x	≤	2	e	0	≤	y	≤	x2	−	1.
0	≤	x	≤	π	e	0	≤	y	≤	sen	x.
0	≤	x	≤	1	e	0	≤	y	≤	arc	tg	x.

y2	≤	2x	−	x2,	y	≥	0.

Calcule	 o	 volume	 do	 sólido	 obtido	 pela	 rotação,	 em	 torno	 do	 eixo	 y,	 do
conjunto	de	todos	os	(x,	y)	tais	que

0	≤	x	≤	e,	0	≤	y	≤	2	e	y	≥	ln	x.

0	≤	x	≤	1,	x	≤	y	≤	x2	+	1.

(Volume	de	sólido	de	revolução	em	torno	do	eixo	y.)	Suponha	f	 estritamente
crescente	e	com	derivada	contínua	em	[a,	b],	a	≥	0	e	f(a)	=	0.	Seja	g:[0,	f(b)]
→	[a,	b]	a	função	inversa	de	f.

Verifique	que	o	volume	do	sólido	obtido	pela	rotação,	em	torno	do	eixo	y,
do	conjunto

Mostre	que
	

(Sugestão:	Faça	a	mudança	de	variável	y	=	f	(x)	e	depois	integre	por	partes.)
Conclua	que	o	volume	mencionado	em	a	é

	

VOLUME	DE	UM	SÓLIDO	QUALQUER
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Vimos	 no	 parágrafo	 anterior	 que	 	dx	 é	 a	 fórmula	 que	 nos	 fornece	 o

volume	do	sólido	de	revolução	obtido	pela	rotação,	em	torno	do	eixo	x,	do	conjunto	A
=	{(x,	y)	∈	ℝ2	|	a	≤	x	≤	b,	0	≤	y	≤	f	(x)}.	Observe	que
	

A(x)	=	π[f	(x)]2

	

é	a	área	da	interseção	do	sólido	com	o	plano	perpendicular	ao	eixo	x	e	passando	pelo
ponto	de	abscissa	x.	Assim,	o	volume	mencionado	anteriormente	pode	ser	colocado	na
forma
	

Seja,	agora,	B	um	sólido	qualquer,	não	necessariamente	de	revolução	e	seja	x	um
eixo	 escolhido	 arbitrariamente.	Suponhamos	que	o	 sólido	 esteja	 compreendido	 entre
dois	planos	perpendiculares	a	x,	que	interceptam	o	eixo	x	em	x	=	a	e	em	x	=	b.	Seja	A
(x)	a	área	da	interseção	do	sólido	com	o	plano	perpendicular	a	x	no	ponto	de	abscissa
x.	 Suponhamos	 que	 a	 função	 A	 (x)	 seja	 integrável	 em	 [a,	 b].	 Definimos,	 então,	 o
volume	do	sólido	por
	

EXEMPLO.	Calcule	o	volume	do	sólido	cuja	base	é	o	semicírculo	x2	+	y2	≤	r2,	y	≥	0,
e	cujas	secções	perpendiculares	ao	eixo	x	são	quadrados.

Solução
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1.

2.

3.

4.

13.4.

ou	seja
	

	
Exercícios	13.3	

Calcule	o	volume	do	sólido	cuja	base	é	o	semicírculo	x2	+	y2	≤	r2,	y	≥	0,	 e
cujas	secções	perpendiculares	ao	eixo	x	são	triângulos	equiláteros.

Calcule	o	volume	do	sólido	cuja	base	é	a	região	4x2	+	y2	≤	1	e	cujas	secções
perpendiculares	ao	eixo	x	são	semicírculos.

Calcule	o	volume	do	sólido	cuja	base	é	o	quadrado	de	vértices	(0,	0),	(1,	1),
(0,	 1)	 e	 (1,	 0)	 e	 cujas	 secções	 perpendiculares	 ao	 eixo	 x	 são	 triângulos
isósceles	de	altura	x	−	x2.

Calcule	o	volume	do	 sólido	 cuja	base	 é	um	 triângulo	 equilátero	de	 lado	 l	 e
cujas	secções	perpendiculares	a	um	dos	lados	são	quadrados.

ÁREA	DE	SUPERFÍCIE	DE	REVOLUÇÃO

Sabe-se	 da	 geometria	 que	 a	 área	 lateral	 de	 um	 tronco	 de	 cone	 circular	 reto,	 de
geratriz	g,	raio	da	base	maior	R	e	raio	da	base	menor	r,	é	 igual	à	área	do	trapézio	de
altura	g,	base	maior	2πR	e	base	menor	2πr:
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área	lateral	do	tronco	=	π	(R	+	r)	g

Sendo	S	o	ponto	médio	do	segmento	PQ.
	

área	lateral	do	tronco	de	cone	=	2πsg

Observe	que	a	área	da	superfície	gerada	pela	rotação	da	geratriz,	em	torno	do	eixo	PQ,
é	 igual	 ao	 produto	 do	 comprimento	 g	 desta	 geratriz	 pelo	 comprimento	 2πs	 da
circunferência	gerada	pelo	ponto	médio	da	geratriz.	Este	resultado	é	um	caso	particular
do	Teorema	de	Papus	para	superfícies	de	revolução.	(Veja	Exercício	9,	Seção	13.9.)

Vamos,	agora,	estender	o	conceito	de	área	para	superfície	obtida	pela	rotação,	em
torno	do	eixo	x,	do	gráfico	de	uma	função	f,	com	derivada	contínua	e	f	(x)	≥	0	em	[a,
b].

Seja,	 então,	 P	 :	 a	 =	 x0	 <	 x1	 <	 x2	 <	 …	 <	 xn	 =	 b	 uma	 partição	 de	 [a,	 b]	 e	

	o	ponto	médio	do	intervalo	[xi−1,	xi].

	

Na	figura,	f′	(ci)	=	tg	αi;	o	segmento	Mi	−1	Mi	é	 tangente	ao	gráfico	de	 f	no	ponto	(ci,
f(ci)).	Então
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A	área	da	 superfície	gerada	pela	 rotação,	 em	 torno	do	 eixo	x,	do	 segmento	Mi	 −	 1Mi
(observe	 que	 tal	 superfície	 nada	mais	 é	 do	 que	 a	 superfície	 lateral	 de	 um	 tronco	 de
cone	de	geratriz	 	é:
	

e	se	Δxi	for	suficientemente	pequeno	esta	área	será	uma	boa	aproximação	para	a	“área”
da	 superfície	gerada	pela	 rotação,	 em	 torno	do	eixo	x,	do	 trecho	do	gráfico	entre	as
retas	 x	 =	 xi	 −	 1	 e	 x	 =	 xi.	 Observe	 que	 trocando	 f(ci)	 por	 ci	 na	 igualdade	 acima,	

	será	uma	boa	aproximação	para	a	“área”	da	superfície	gerada
pela	rotação,	em	torno	do	eixo	y,	do	trecho	do	gráfico	acima	mencionado.

Como	a	função	 	é	contínua	em	[a,	b],	teremos
	

Definimos	a	área	Ax	da	superfície	obtida	pela	rotação	do	gráfico	de	f,	em	torno	do
eixo	x,	por
	

De	forma	análoga,	a	área	Ay	da	superfície	obtida	pela	rotação,	em	torno	do	eixo	y,
do	gráfico	de	f	será
	

EXEMPLO	1.	Calcule	a	área	da	superfície	gerada	pela	rotação,	em	torno	do	eixo	x,
do	gráfico	de	f	(x)	=	sen	x,	0	≤	x	≤	π.

Solução
	

u	=	cos	x;	du	=	−	sen	x	dx
x	=	0;	u	=	1
x	=	π;	u	=	−1.
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u	=	tg	θ;	du	=	sec2	θ	dθ

Integrando	por	partes:
	

Daí
	

ou	seja,
	

Portanto,	área	=	 					■

EXEMPLO	2.	Determine	a	área	da	superfície	obtida	pela	rotação,	em	torno	do	eixo	y,

do	gráfico	de	 	0	≤	x	≤	1.

Solução

De	 	vem
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1.

13.5.

Exercício	13.4	

Calcule	 a	 área	 da	 superfície	 gerada	 pela	 rotação,	 em	 torno	 do	 eixo	 x,	 do
gráfico	da	função	dada.

COMPRIMENTO	DE	GRÁFICO	DE	FUNÇÃO

Seja	y	=	f	(x)	com	derivada	contínua	em	[a,	b]	e	seja	P	:	a	=	x0	<	x1	<	x2	<	…	<	xn	=
b	uma	partição	de	[a,	b].	Indicando	por	L(P)	o	comprimento	da	poligonal	de	vértices
Pi	=	(xi,	f	(xi)),	i	=	1,	2,	…	n,	temos
	

em	que	 	é	o	comprimento	do	lado	de	vértices	Pi
−1	e	Pi.	Pelo	teorema	do	valor	médio,	para	cada	i,	i	=	1,	2,	…	n,	existe	ci,	xi	−1	<	ci	<	xi,
tal	que
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f(xi)	−	f	(xi	−1)	=	f′(ci)Δxi,	em	que	Δxi	=	xi	−	xi	−1.

Segue	que
	

Daí,	para	máx	Δxi	tendendo	a	zero,	L(P)	tenderá	para	 	Nada	mais

natural,	então,	do	que	definir	o	comprimento	do	gráfico	de	f,	ou	da	curva	y=	f	(x),	por
	

Nosso	objetivo	a	seguir	é	interpretar	geometricamente	a	diferencial	

Seja,	então,	s	=	s(x),	x	∈	[a,	b],	o	comprimento	do	trecho	do	gráfico	de	extremidades
(a,	f(a))	e	(x,	f	(x)).	Sejam	Δs	e	Δy	as	variações	em	s	e	y	correspondentes	à	variação	dx
em	x,	com	dx	>	0.	Para	dx	suficientemente	pequeno,	Δy	≈	dy	e
	
Δ2s	≈	d2x	+	Δ2y,	ou	seja,

EXEMPLO.	Calcule	o	comprimento	da	curva	 	0	≤	x	≤	1.

Solução
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1.

2.

13.6.

De	 	 segue	 que	 o	 comprimento	 é:	 	 Fazendo	 a	mudança	 de

variável	x	=	tg	u,	vem
	

De	 	(verifique),	resulta

	

Exercícios	13.5	

Calcule	o	comprimento	do	gráfico	da	função	dada.

Quantos	metros	de	chapa	de	ferro	são	necessários	para	construir	um	arco	AB,
de	forma	parabólica,	sendo	A	e	B	simétricos	com	relação	ao	eixo	de	simetria
da	parábola	e	com	as	seguintes	dimensões:	2	m	a	distância	de	A	a	B	e	1	m	a
do	vértice	ao	segmento	AB.

COMPRIMENTO	DE	CURVA	DADA	EM	FORMA	PARAMÉTRICA

Por	 uma	 curva	 em	ℝ2	 entendemos	 uma	 função	 que	 a	 cada	 t	 pertencente	 a	 um
intervalo	I	associa	um	ponto	(x(t),	y(t))	em	ℝ2,	em	que	x(t)	e	y(t)	são	funções	definidas
em	I.	Dizemos	que
	

são	as	equações	paramétricas	da	curva.	Por	abuso	de	linguagem,	vamos	nos	referir	ao
lugar	geométrico	descrito	pelo	ponto	(x(t),	y(t)),	quando	t	percorre	o	intervalo	I,	como
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a	curva	de	equações	paramétricas	x	=	x(t)	e	y	=	y(t).

EXEMPLO	1.	Desenhe	a	curva	dada	em	forma	paramétrica	por	x	=	t,	y	=	3t,	t	∈	ℝ.

Solução

x	=	t,	y	=	3t	⇒	y	=	3x.	Quando	t	percorre	ℝ,	o	ponto	(t,	3t)	descreve	a	reta	y	=	3x.
	

EXEMPLO	2.	Seja	a	curva	de	equações	paramétricas	x	=	t,	y	=	t2,	t	em	ℝ.	Quando	t
varia	em	ℝ,	o	ponto	(t,	t2)	descreve	a	parábola	y	=	x2.
	

EXEMPLO	3.	Seja	a	curva	de	equações	paramétricas	x	=	cos	t,	y	=	sen	t,	t	∈	[0,	2π].
Quando	t	varia	em	[0,	2π],	o	ponto	(cos	t,	sen	t)	descreve	a	circunferência	x2	+	y2	=	1.
	

EXEMPLO	4.	Desenhe	a	curva	dada	em	forma	paramétrica	por	x	=	2	cos	t	e	y	=	sen	t,
com	t	∈	[0,	2π].
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Solução
	

Assim,	para	cada	 t	∈	 [0,	2π]	o	ponto	(2	cos	 t,	sen	t)	pertence	à	elipse	

Por	outro	lado,	para	cada	(x,	y)	na	elipse,	existe	t	∈	[0,	2π]	tal	que
	

Assim,	 quando	 t	 percorre	 o	 intervalo	 [0,2	 π],	 o	 ponto	 (2	 cos	 t,	 sen	 t)	 descreve	 a
elipse.					■

Nosso	objetivo	a	seguir	é	estabelecer	a	fórmula	para	o	cálculo	do	comprimento	de
uma	 curva	 dada	 em	 forma	 paramétrica.	 A	 fórmula	 será	 estabelecida	 a	 partir	 de
considerações	geométricas,	e	deixamos	o	tratamento	rigoroso	do	assunto	para	o	Vol.	2.

Suponhamos	 que	 s	 =	 s(t),	 t	∈	 [a,	b],	 seja	 o	 comprimento	 do	 trecho	 da	 curva	 de
extremidades	A	=	(x(a),	y(a))	e	P(t)	=	(x(t)	y(t)),	em	que	x	=	x(t)	e	y	=	y(t)	são	supostas
de	classe	C1.	Sejam	Δx,	Δy	e	Δs	as	variações	em	x,	y	e	s	correspondentes	à	variação	Δt
em	t,	com	Δt	>	0.	Para	Δt	suficientemente	pequeno,	vemos,	pela	figura,	que

Δ2s	≈	Δ2x	+	Δ2y	e,	portanto,
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É	razoável,	então,	esperar	que	a	diferencial	da	função	s	=	s(t)	seja
	

Definimos	então	o	comprimento	da	curva	x	=	x(t),	y	=	y(t),	t	∈	[a,	b],	com	x	=	x(t)	e	y
=	y(t)	de	classe	C1	em	[a,	b],	por
	

Observação.	 O	 gráfico	 da	 função	 y	 =	 f	 (x),	 x	∈	 [a,	 b],	 pode	 ser	 dado	 em	 forma
paramétrica	por	x	=	t,	y	=	f	(t),	t	∈	[a,	b].	Segue	que	a	fórmula	para	o	comprimento	do
gráfico	de	uma	função	é	um	caso	particular	desta.

EXEMPLO	5.	Calcule	o	comprimento	da	circunferência	de	raio	R	>	0.

Solução

Uma	parametrização	para	a	circunferência	de	raio	R	e	com	centro	na	origem	é:	x	=

R	cos	t	e	y	=	R	sen	t,	com	t	∈	[0,	2π].	De	 	segue

	

Portanto,	comprimento	=	 					■

EXEMPLO	6.	As	 equações	 paramétricas	 do	movimento	 de	 uma	partícula	 no	 plano
são
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a)

b)

c)

a)

b)

c)

	

Quais	as	posições	da	partícula	nos	instantes	t	=	0,	

Qual	a	trajetória	descrita	pela	partícula?

Qual	a	distância	percorrida	pela	partícula	entre	os	instantes	t	=	0	e	t	=	π?

	
Solução

No	instante	t	=	0	a	partícula	encontra-se	na	posição	(0,	0),	em	 	na	posição	(1,

1)	e,	no	instante	t	=	π,	novamente	na	posição	(0,	0).

x	=	sen	t	e	y	=	sen2	t	⇒	y	=	x2.	Segue	que	a	partícula,	de	t	=	0	a	 	descreve	o

arco	da	parábola	de	extremidades	(0,	0)	e	(1,	1)	e	no	sentido	de	(0,	0)	para	(1,	1).
De	 	a	t	=	π	descreve	o	mesmo	arco	só	que	em	sentido	contrário.

A	distância	d	percorrida	entre	os	instantes	t	=	0	e	t	=	π	é	dada	por

	

ou	seja

	

Observe	que	as	distâncias	percorridas	entre	os	instantes	t	=	0	e	 	é	a	mesma	que

de	 	 a	 t	 =	 π.	 Observe	 ainda	 que	 |cos	 t|	 =	 cos	 t,	 para	 	 Fazendo	 a

mudança	de	variável	u	=	2	sen	t	teremos	du	=	2	cos	t	dt,	u	=	0	para	t	=	0	u	=	2	para	

	Assim,	 	Fazendo,	agora,	u	=	tg	θ,	teremos

	

Como	 θ	 =	 arc	 tg	 2	⇒	 tg	 θ	 =	 2	 e	 	 resulta	 que	 a	 distância
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1.

a)
b)

c)
d)

e)
2.

13.7.

percorrida	pela	partícula	é	 					■

Exercícios	13.6	

Calcule	o	comprimento	da	curva	dada	em	forma	paramétrica.

x	=	2t	+	1	e	y	=	t	−	1,	1	≤	t	≤	2

x	=	1	−	cos	t	e	y	=	t	−	sen	t,	0	≤	t	≤	π

x	=	et	cos	t	e	y	=	et	sen	t,	0	≤	t	≤	π.
Uma	partícula	desloca	no	plano	com	equações	paramétricas	x	=	x(t)	e	y	=	y(t).
Sabe-se	 que,	 para	 todo	

	Sabe-se,	ainda,

que	no	 instante	 t	=	0	a	partícula	encontra-se	na	posição	 (0,	0).	Determine	a
distância	percorrida	pela	partícula	entre	os	instantes	t	=	0	e	t	=	T,	em	que	T	é	o
instante	em	que	a	partícula	volta	a	tocar	o	eixo	x.	Como	é	a	trajetória	descrita
pela	partícula?

ÁREA	EM	COORDENADAS	POLARES

Fixado	no	plano	um	semieixo	Ox	(tal	semieixo	denomina-se	eixo	polar,	e	o	ponto
O,	polo),
	

cada	ponto	P	do	plano	fica	determinado	por	suas	coordenadas	polares	(θ,	ρ),	em	que	θ
é	 a	medida	 em	 radianos	 do	 ângulo	 entre	 o	 segmento	OP	 e	 o	 eixo	 polar	 (tal	 ângulo
sendo	contado	a	partir	do	eixo	polar	e	no	sentido	anti-horário)	e	ρ	o	comprimento	de
OP;	assim	ρ	≥	0.

Se	 considerarmos	 no	 plano	 um	 sistema	 ortogonal	 de	 coordenadas	 cartesianas	 (o
habitual)	em	que	a	origem	coincide	com	o	polo	e	o	semieixo	Ox	com	o	eixo	polar	e	se
(θ,	ρ)	forem	as	coordenadas	polares	de	P,	então	as	suas	coordenadas	cartesianas	serão
dadas	por
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Observe	que	se	P	não	coincide	com	o	polo
	

Até	agora,	destacamos	ρ	como	um	número	positivo.	Entretanto,	para	as	aplicações
é	 importante	 que	 ρ	 possa	 assumir,	 também,	 valores	 negativos.	 Vejamos	 como
interpretar	(θ,	ρ)	no	caso	ρ	<	0:
	

Se	ρ	<	0,	(θ,	ρ)	é	o	simétrico,	em	relação	ao	polo,	do	ponto	(θ,	−ρ).
Para	podermos	trabalhar	com	ρ	<	0,	será	melhor	olharmos	para	o	eixo	polar	como

uma	 reta	 com	um	 sistema	de	 abscissas:	 sobre	 tal	 reta	marcam-se	 dois	 pontos,	 um	o
polo	0	representando	o	zero	e	outro	representando	o	1.	O	sentido	positivo	será	o	de	0
para	 1	 e	 a	 unidade	 de	 comprimento	 será	 o	 segmento	 de	 extremidades	 0	 e	 1.	 Para
representar	 no	 plano	 um	 ponto	 de	 coordenadas	 polares	 (θ,	 ρ)	 proceda	 da	 seguinte
forma:	primeiro	gire	o	eixo	polar,	no	sentido	anti-horário,	de	um	ângulo	θ;	em	seguida,
sobre	este	novo	eixo,	marque	o	ponto	que	tenha	abscissa	ρ.
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a)

b)

c)

d)

EXEMPLO	1.	Represente	no	plano	o	ponto	(θ,	ρ)	em	que

θ	=	0	e	ρ	=	1

θ	=	0	e	ρ	=	−1

Solução
	

EXEMPLO	2.	 Um	 ponto	P	 desloca-se	 no	 plano	 de	modo	 que	 a	 relação	 entre	 suas
coordenadas	polares	é	dada	por	ρ	=	θ,	0	≤	θ	≤	2π.	Desenhe	o	lugar	geométrico	descrito
por	P.
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Sempre	que	formos	esboçar	o	gráfico	de	uma	curva	dada	em	coordenadas	polares,	é
bom	antes	fazer	um	esboço	da	curva	supondo	θ	e	ρ	 coordenadas	cartesianas	e	olhar,
por	meio	deste	gráfico,	a	variação	de	ρ	em	função	de	θ.
	

EXEMPLO	3.	Desenhe	a	curva	cuja	equação,	em	coordenadas	polares,	é	ρ	=	sen	θ,	0
≤	θ	≤	π.
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Observe	que	para	ρ	≠	0
	

ρ	=	sen	θ	⇔	ρ2	=	ρ	sen	θ	⇔	x2	+	y2	=	y.

x2	+	y2	−	y	=	0	é	a	equação	de	uma	circunferência	de	centro	 	Deste

modo,	 ρ	 =	 sen	 θ,	 0	 ≤	 θ	 ≤	 π,	 é,	 em	 coordenadas	 polares,	 a	 equação	 de	 tal
circunferência.					■

EXEMPLO	4.	Desenhe	o	lugar	geométrico	da	equação	(em	coordenadas	polares)	ρ	=
1	−	cos	θ.

Esta	curva	denomina-se	cardioide.					■

EXEMPLO	5.	Desenhe	a	curva	cuja	equação,	em	coordenadas	polares,	é	ρ	=	cos	2θ.
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Veja	como	fica	o	trecho	da	curva	acima	para	θ	variando	de	0	a	

	

Quando	θ	varia	de	 	ρ	permanece	negativo.					■

EXEMPLO	6.	Desenhe	o	lugar	geométrico	descrito	por	um	ponto	P	que	se	desloca	no
plano,	 sabendo	 que	 a	 relação	 entre	 suas	 coordenadas	 polares	 é	 ρ	 =	 |	 tg	 θ	 |,	

Solução

Vejamos,	primeiro,	o	que	acontece	para	θ	variando	de	0	a	 	Quando	 	ρ

→	+	∞.	A	projeção	de	P	sobre	o	eixo	polar	tem	abscissa
	

x	=	ρ	cos	θ	=	tg	θ	cos	θ	=	sen	θ.
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Assim,	 quando	 	 a	 projeção	 de	P	 sobre	 o	 eixo	 polar	 tende	 para	 o	 ponto	 de

abscissa	1.	O	trecho	da	curva	correspondente	a	θ	em	 	é	simétrico,	em	relação

ao	eixo	polar,	ao	trecho	correspondente	a	θ	em	

	

Nosso	 objetivo,	 a	 seguir,	 é	 estabelecer	 uma	 fórmula	 para	 o	 cálculo	 de	 área	 de
região	limitada	por	curvas	dadas	em	coordenadas	polares.

Inicialmente,	 observamos	 que	 a	 área	 de	 um	 setor	 circular	 de	 raio	 R	 e	 abertura	

	Esta	área	se	determina	por	uma	regra	de	três	simples:

2π	rd	—	área	πR2

Δθ	rd	—	?
	

Consideremos,	agora,	 a	 função	ρ	=	ρ	 (θ)	 contínua	 e	≥	0	 em	 [θi	 −	 1,	θi].	 Seja	Ai	 o
conjunto	de	todos	os	pontos	(θ,	ρ),	com	θi	−	1	≤	θ	≤	0i	e	0	≤	ρ	≤	ρ	(θ).
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Seja	 	o	maior	valor	de	ρ	em	[θi	−	1,	θi]	e	 	o	menor	valor.	A	área	do
conjunto	Ai	está,	então,	compreendida	entre	as	áreas	dos	setores	circulares	de	abertura
Δθi	e	raios	
	

Suponhamos,	agora,	ρ	=	ρ	(θ)	contínua	e	≥	0	em	[α,	β],	com	β	−	α	≤	2π.	Seja	A	o
conjunto	 de	 todos	 os	 pontos	 do	plano	de	 coordenadas	 polares	 (θ,	ρ)	 satisfazendo	 as
condições:	α	≤	θ	≤	β	e	0	≤	ρ	≤	ρ	(θ).
	

Seja	P	:	α	=	θ0	<	θ1	<	…	<	θi	−	1	<	θi	<	…	<	θn	=	β	uma	partição	de	[α,	β].	Sejam	
	 os	 valores	 mínimo	 e	 máximo	 de	 ρ	 em	 [θi	 −	 1,	 θi].	 Pelo	 que	 vimos

anteriormente,	a	área	da	parte	do	conjunto	A	compreendida	entre	as	retas	θ	=	θi	−	1	e	θ
=	θi	 está	 compreendida	 entre	 as	 áreas	 dos	 setores	 circulares	 de	 abertura	Δθi	 e	 raios	

	Uma	definição	razoável	para	a	área	de	A	deverá	implicar,	para	partição	P
de	[α,	β],
	

Para	máx	Δθi	→	0,	as	somas	de	Riemann	acima	tendem	para	a	integral	

Nada	mais	natural,	então,	do	que	definir	a	área	de	A	por
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EXEMPLO	7.	Calcule	a	área	da	região	limitada	pelo	cardioide	ρ	=	1	−	cos	θ.

Solução

Para	cobrir	todo	o	conjunto,	θ	deverá	variar	de	0	a	2π.
	

Temos
	

Assim,	a	área	do	conjunto	é	 					■

EXEMPLO	 8.	 Calcule	 a	 área	 da	 interseção	 das	 regiões	 limitadas	 pelas	 curvas
(coordenadas	polares)	ρ	=	3	cos	θ	e	ρ	=	1	+	cos	θ.

Solução

Primeiro	devemos	determinar	as	interseções	das	curvas.
	

3	cos	θ	=	1	+	cos	θ

ou	seja,
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Assim,	 	 resolvem	 o	 problema.	 Seja	A1	 o	 conjunto	 de	 todos	 (θ,	 ρ)

com	 	 e	 seja	 A2	 o	 conjunto	 de	 todos	 (θ,	 ρ)	 com	

	e	0	≤	ρ	≤	3	cos	θ.	Temos,	então:

	
área	pedida	=	2	(área	A1	+	área	A2).

	

Conclusão:	área	pedida	=	 	Veja	figuras	a	seguir.

	

EXEMPLO	 9.	 Calcule	 a	 área	 da	 região	 limitada	 pela	 curva	 dada	 em	 coordenadas
polares	por	ρ	=	tg	θ,	 	pela	reta	x	=	1	(coordenadas	cartesianas)	e	pelo	eixo

polar.

Solução

Indiquemos	por	A	(θ)	a	área	da	região	hachurada.	A	área	que	queremos	é:
	

Temos
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1.

	

	

Vamos	calcular	 	Temos

	

Assim
	

Portanto,
	

Observação.	No	triângulo	OPM	temos:
	

Assim,	área	

Exercícios	13.7	

Desenhe	a	curva	dada	(coordenadas	polares).
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2.

a)
b)

c)

d)

3.

a)
b)
c)
d)

4.

a)
b)
c)
d)
e)
f)

5.

6.

Passe	a	curva	dada	para	coordenadas	polares	e	desenhe-a.

x4	−	y4	=	2xy

(x2	+	y2)2	=	x2	−	y2

Calcule	a	área	da	região	limitada	pela	curva	dada	(coordenadas	polares).

ρ	=	2	−	cos	θ
ρ2	=	cos	θ	(ρ	≥	0)
ρ	=	cos	2θ
ρ	=	cos	3θ

Calcule	 a	 área	 da	 interseção	 das	 regiões	 limitadas	 pelas	 curvas	 dadas	 em
coordenadas	polares.

ρ	=	2	−	cos	θ	e	ρ	=	1	+	cos	θ
ρ	=	sen	θ	e	ρ	=	1	−	cos	θ
ρ	=	3	e	ρ	=	2	(1	−	cos	θ)
ρ2	=	cos	θ	e	ρ2	=	sen	θ	(ρ	≥	0)
ρ	=	cos	θ	e	ρ	=	sen	θ
ρ	=	1	e	ρ	=	2	(1	−	cos	θ)

Calcule	 a	 área	 do	 conjunto	 de	 todos	 os	 pontos	 (θ,	 ρ)	 tais	 que	 θ2	 ≤	 ρ	 ≤	 θ
(coordenadas	polares).

Calcule	a	área	da	região	situada	no	1.º	quadrante,	limitada	acima	pela	curva	x4

−	y4	=	2xy	(coordenadas	cartesianas)	e	abaixo	por	p2	=	2	sen	2θ	(coordenadas
polares),	com	ρ	≥	0.
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7.

b)

8.

a)

b)

13.8.

a)	 Escreva,	 em	 coordenadas	 polares,	 a	 equação	 da	 elipse	

tomando	como	polo	a	origem	e	como	eixo	polar	o	semieixo	Ox.

Escreva,	em	coordenadas	polares,	a	equação	da	elipse	 	tomando

como	polo	o	foco	F	=	(c,	0),	c	>	0,	e	como	eixo	polar	a	semirreta	FA	onde	A
=	(a,	0),	a	>	0.	(Faça	

Sejam	F1	e	F2	dois	pontos	distintos	do	plano	e	seja	k	a	metade	da	distância	de
F1	 a	F2.	O	 lugar	 geométrico	 dos	 ponto	P	 do	 plano	 tais	 que	
denomina-se	lemniscata	de	focos	F1	e	F2.

Tomando-se	F1	=	(−k,	0)	e	F2	=	(k,	0),	determine	a	equação,	em	coordenadas
cartesianas,	da	lemniscata.
Passe	para	coordenadas	polares	a	equação	obtida	no	item	a)	tomando	para
polo	a	origem	e	x	como	eixo	polar.	Desenhe	a	curva.

COMPRIMENTO	DE	CURVA	EM	COORDENADAS	POLARES

Consideremos	a	curva	dada	em	coordenadas	polares	por
	

ρ	=	ρ	(θ),	α	≤	θ	≤	β,

sendo	a	função	suposta	de	classe	C1	no	intervalo	[α,	β].	Em	coordenadas	paramétricas,
esta	curva	se	escreve	da	seguinte	forma
	

x	=	ρ	(θ)	cos	θ				e				y	=	ρ	(θ)	sen	θ,	α	≤	θ	≤	β.

Utilizando	a	fórmula	de	comprimento	de	curva	em	forma	paramétrica	(observe	que
aqui	o	parâmetro	t	está	sendo	substituído	pelo	parâmetro	θ),	temos
	

De	 	resulta

	

	onde	ρ	=	ρ(θ).	(Verifique.)

Assim,	o	comprimento	da	curva	ρ	=	ρ(θ),	α	≤	θ	≤	β,	em	coordenadas	polares,	é
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Nosso	 objetivo	 a	 seguir	 é	 interpretar	 geometricamente	 a	 diferencial	

	Seja,	então,	s	=	s(θ),	θ	∈[α,	β],	o	comprimento	do	trecho	da	curva

de	 extremidades	 (α,	 ρ	 (α))	 e	P	 =	 (θ,	 ρ	 (θ)).	 Sejam	 Δs	 e	 Δρ	 as	 variações	 em	 s	 e	 ρ
correspondentes	 à	 variação	 dθ,	 em	 θ,	 com	 dθ	 >	 0.	 O	 comprimento	 do	 arco	 (de
circunferência)	 PM	 de	 abertura	 dθ	 e	 raio	 ρ	 =	 ρ(θ)	 é	 ρ	 dθ;	 por	 outro	 lado,	 o
comprimento	do	segmento	MN	é	Δρ.	Para	dθ	suficientemente	pequeno,	Δρ	≈	dρ,	PMN
é	quase	um	triângulo	retângulo	e

Δ2s	≈	(ρ	dθ)2	+	(Δρ)2,

ou	seja,	

	

EXEMPLO.	Calcule	o	comprimento	da	curva	ρ	=	sen	θ,	0	≤	θ	≤	π,	em	coordenadas
polares.

Solução

De	ρ	=	sen	θ,	segue	 	Daí

	

O	comprimento	da	curva	é	π	(unidades	de	comprimento).	(Observe	que	ρ	=	sen	θ	é	a

equação	de	uma	circunferência	de	centro	 	Confira.)					■

Exercícios	13.8	

Calcule	o	comprimento	da	curva	dada	em	coordenadas	polares.
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1.

2.

3.

4.

5.

6.

13.9.

ρ	=	θ,	0	≤	θ	≤	π

ρ	=	e−θ,	0	≤	θ	≤	2π

ρ	=	1	+	cos	θ,	0	≤	θ	≤	π

ρ	=	θ2,	0	≤	θ	≤	1

CENTRO	DE	MASSA

Consideremos	 um	 sistema	 de	 “massas	 pontuais”	m1,	m2,	 ...,	mn	 localizadas	 nos
pontos	(x1,	y1),	(x2,	y2),	 ...,	(xn,	yn).	O	centro	de	massa	do	 sistema	é,	por	definição,	o
ponto	(xc,	yc)	onde
	

EXEMPLO	1.	Determine	o	centro	de	massa	do	sistema	constituído	pelas	massas	m1,
m2	localizadas	nos	pontos	(x1,	y1)	e	(x2,	y2),	supondo	m	=	m1	=	m2.

Solução
	

Deste	 modo,	 (xc,	 yc)	 é	 o	 ponto	 médio	 do	 segmento	 de	 extremidades	 (x1,	 y1)	 e	 (x2,
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y2).					■

EXEMPLO	2.	Considere	o	sistema	de	massas	m1,	m2,	m3	localizadas	em	(x1,	y1),	(x2,
y2)	e	(x3,	y3).	Seja	M1	=	m1	+	m2	e	considere	o	sistema	M1	e	m3,	com	M1	localizada	no
centro	de	massa	de	m1,	m2.	Verifique	que	o	centro	de	massa	de	M1,	m3	é	o	mesmo	que
o	de	m1,	m2,	m3.
Solução

Seja	 	o	centro	de	massa	de	m1	e	m2:

Seja	 	o	centro	de	massa	de	M1,	m3:

Assim,	

Deixamos	a	seu	cargo	generalizar	o	resultado	do	Exemplo	2.

Vejamos,	agora,	como	determinar	o	centro	de	massa	de	uma	região	A	do	plano	que
será	 imaginada	 como	 uma	 lâmina	 delgada,	 homogênea,	 de	 modo	 que	 a	 densidade
superficial	ρ	é	constante	(ρ	é	massa	por	unidade	de	área).	Suponhamos,	inicialmente,
que	 A	 possa	 ser	 decomposta	 em	 n	 retângulos	 R1,	 R2,	 ...,	 Rn.	 Seja	 mi	 a	 massa	 do
retângulo	Ri:	mi	é	o	produto	de	ρ	pela	área	de	Ri.	Neste	caso,	definimos	o	centro	de
massa	de	A	como	o	centro	de	massa	do	sistema	m1,	m2,	 ...,	mn,	com	mi	 localizada	no
centro	de	Ri.

Suponhamos,	agora,	A	da	forma
	

A	=	{(x,	y)	∈	ℝ2	|	a	≤	x	≤	b,	f	(x)	≤	y	≤	g	(x)}

em	que	f	e	g	são	supostas	contínuas	em	[a,	b],	e	f	(x)	≤	g	(x)	em	[a,	b].	Seja
P	:	a	=	x0	<	x1	<	x2	<	...	<	xn	=	b	uma	partição	qualquer	de	[a,	b]	e	seja	ci	o	ponto	médio
de	[xi	−	1,	xi]	(i	=	1,	2,	...,	n).
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A	massa	mi	de	Ri	é:	mi	=	ρ	[g	(ci)	−	f	(ci)]	Δxi.	O	centro	de	massa	da	 figura	 formada
pelos	retângulos	R1,	R2,	...,	Rn	é:
	

Nada	mais	natural,	então,	do	que	 tomar	como	centro	de	massa	de	A	o	ponto	 (xc,	yc)
onde
	

e
	

Ou	seja,
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Suponha,	finalmente,	que	A	possa	ser	decomposta	em	n	regiões	A1,	A2,	...,	An,	onde
	

Ai	=	{(x,	y)	∈	ℝ2	|	ai	≤	x	≤	bi,	fi	(x)	≤	y	≤	gi	(x)}

com	fi,	gi	contínuas	em	[ai,	bi]	e	fi	(x)	≤	gi	(x)	em	[ai,	bi].	Como	você	calcularia	o	centro
de	massa	de	A?

EXEMPLO	3.	Determine	o	centro	de	massa	da	figura	A	limitada	pela	reta	y	=	1	e	pela
parábola	y	=	x2.

Solução
	

O	 centro	 de	 massa	 de	 A	 é	 o	 ponto	

EXEMPLO	4.	Calcule	o	centro	de	massa	do	conjunto	A	=	{(x,	y)	∈	ℝ2	|	1	≤	x2	+	y2	≤
4,	x	≥	0	e	y	≥	0}.

Solução

Vamos	 imaginar	 A	 como	 uma	 lâmina	 delgada,	 homogênea,	 com	 densidade
superficial	ρ	=	1.	Sendo	m1	e	m2	as	massas	de	A1	e	A2,	respectivamente,	teremos,	por
ser	ρ	=	1,
	

m1	=	área	A1	e	m2	=	área	A2.
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Sejam	(x1,	y1)	e	(x2,	y2)	os	centros	de	massas	de	A1	e	A2,	respectivamente.	O	centro	de
massa	 de	 A	 será,	 então,	 o	 centro	 de	 massa	 do	 sistema	 m1,	 m2	 com	 as	 massas
localizadas,	respectivamente,	em	(x1,	y1)	 e	 (x2,	y2).	Sendo,	então,	 (xc,	yc)	o	centro	de
massa	de	A	teremos
	

Como
	

resulta
	

e
	

Temos:
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Segue	que
	

Vejamos,	a	seguir,	como	determinar	o	centro	de	massa	do	gráfico	de	uma	função,
que	 será	 imaginado	como	 fio	 fino,	homogêneo,	de	modo	que	a	densidade	 linear	ρ	 é
constante	(densidade	linear	é	massa	por	unidade	de	comprimento).	Seja	f	uma	função
definida	e	com	derivada	contínua	em	[a,	b].	Seja	P	:	a	=	x0	<	x1	<	x2	<	...	<	xn	=	b	uma
partição	de	[a,	b]	e	seja	ci	(i	=	1,	2,	...,	n)	o	ponto	médio	de	[xi	−	1,	xi]
	

O	 segmento	Pi	 −	 1Pi	 é	 tangente	 em	 (ci,	 f	 (ci))	 ao	 gráfico	 de	 f:	 o	 comprimento	 deste
segmento	 é	 	 Δxi	 (veja	 Seção	 3.4);	 logo,	 sua	 massa	 mi	 é:	

	Δxi.	O	centro	de	massa	do	sistema	formado	pelos	segmentos	Pi
−	1	Pi	(i	=	1,	2,	...,	n)	é	o	ponto
	

Nada	mais	natural,	então,	do	que	tomar	para	centro	de	massa	do	gráfico	de	f	o	ponto
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1.

a)
b)
c)
d)

2.

3.

(xc,	yc)	em	que
	

Observe	que	 	é	o	comprimento	do	gráfico	de	f.

Observação	 importante.	 O	 centro	 de	 massa	 de	 um	 conjunto	 do	 plano	 não	 tem
obrigação	alguma	de	pertencer	a	este	conjunto.

Exercícios	13.9	

Determine	o	centro	de	massa	da	região	A	dada.

A	=	{(x,	y)	∈	ℝ2	|	0	≤	x	≤	1,	0	≤	y	≤	x3}
A	=	{(x,	y)	∈	ℝ2	|	x2	+	4y2	≤	1,	x	≥	0	e	y	≥	0}
A	=	{(x,	y)	∈	ℝ2	|	x2	+	4y2	≤	1,	y	≥	0}
A	=	{(x,	y)	∈	ℝ2	|	x2	≤	y	≤	x}

	
Determine	o	centro	de	massa	do	gráfico	da	função	dada.

(Teorema	de	Papus.)	Considere	o	conjunto

	
A	=	{(x,	y)	∈	ℝ2	|	a	≤	x	≤	b,	f	(x)	≤	y	≤	g	(x)}

em	que	 f	 e	g	 são	 supostas	 contínuas	 em	 [a,	b]	 e	 0	≤	 f	 (x)	≤	g	 (x)	 em	 [a,	 b].
Mostre	 que	 o	 volume	 do	 sólido,	 obtido	 pela	 rotação	 em	 torno	 do	 eixo	 x	 do
conjunto	 A,	 é	 igual	 ao	 produto	 da	 área	 de	 A	 pelo	 comprimento	 da
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4.

5.

a)
b)

6.

7.

a)
b)

8.

9.

10.

circunferência	descrita	pelo	centro	de	massa	de	A.

Sejam	f	e	g	contínuas	em	[a,	b],	com	α	≤	f	(x)	≤	g	(x)	em	[a,	b]	em	que	α	é	um
real	dado.	Seja	o	conjunto

	
A	=	{(x,	y)	∈	ℝ2	|	a	≤	x	≤	b,	f	(x)	≤	y	≤	g	(x)}

Mostre	que	o	volume	do	sólido,	obtido	pela	rotação	em	torno	da	reta	y	=	α	do
conjunto	 A,	 é	 igual	 ao	 produto	 da	 área	 de	 A	 pelo	 comprimento	 da
circunferência	descrita	pelo	centro	de	massa	de	A.

Calcule	o	volume	do	sólido	obtido	pela	rotação	do	círculo	x2	+	(y	−	2)2	≤	1	em
torno

do	eixo	x
da	reta	y	=	1.

Calcule	o	volume	do	 sólido	obtido	pela	 rotação	da	 região	x2	+	4y2	 ≤	 1,	 em
torno	da	reta	y	=	1.

Seja	A	=	{(x,	y)	∈	ℝ2	|	x4	≤	y	≤	1}.

Calcule	o	centro	de	massa	de	A.
Calcule	o	volume	do	sólido	obtido	pela	rotação	de	A	em	torno	da	reta	y	=	2.

Calcule	 o	 volume	 do	 sólido	 obtido	 pela	 rotação	 do	 círculo	 x2	 +	 y2	 ≤	 1	 em
torno	da	reta	x	+	y	=	2.

(Teorema	de	Papus	para	área	de	superfície	de	revolução).	Suponha	f	(x)	≥	0	e
com	derivada	contínua	em	[a,	b].	Mostre	que	a	área	da	superfície,	obtida	pela
rotação	em	torno	do	eixo	x	do	gráfico	de	f,	é	igual	ao	produto	do	comprimento
do	gráfico	 de	 f	 pelo	 comprimento	 da	 circunferência	 descrita	 pelo	 centro	 de
massa	do	gráfico	de	f.

Seja	A	o	conjunto	do	plano	de	todos	os	(x,	y)	tais	que	0	≤	a	≤	x	≤	b,	0	≤	f	(x)	≤
y	≤	g(x),	em	que	f	e	g	são	supostas	contínuas	em	[a,	b].	Imagine	A	como	uma
lâmina	 delgada,	 homogênea,	 de	 modo	 que	 a	 densidade	 superficial	 ρ	 é
constante	(ρ	é	massa	por	unidade	de	área).	Seja	(xc,	yc)	o	centro	de	massa	de
A.	Sejam	Vx	o	volume	do	sólido	obtido	pela	rotação	de	A	em	torno	do	eixo	x	e
Vy	o	volume	obtido	pela	 rotação	de	A	 em	 torno	do	 eixo	y.	 Pelo	 teorema	de
Papus	 (Exercício	 3	 acima),	 Vx	 é	 igual	 ao	 produto	 da	 área	 de	 A	 pelo
comprimento	da	circunferência	gerada,	na	rotação	em	torno	do	eixo	x,	pelo
centro	de	massa	de	A.	Do	mesmo	modo,	Vy	é	igual	ao	produto	da	área	de	A
pelo	comprimento	da	circunferência	gerada,	na	rotação	em	torno	do	eixo	y,
pelo	centro	de	massa	de	A.	Pois	bem,	destas	informações	conclua	que
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11.

12.

13.

14.

15.

16.

17.

Determine	o	centro	de	massa	da	região	A	dada	por	1	≤	x2	+	y2	≤	4,	x	≥	0	e	y	≥
0.	(Sugestão:	Com	as	funções	 f	e	g	dadas	por	 	0	≤	x	≤	2	e	

	se	0	≤	x	≤	1	ou	g(x)	=	0	se	1	<	x	≤	2	o	teorema	de	Papus	se
aplica.	Calcule	então	Vy,	Vx	e	a	área	de	A	e	utilize	o	Exercício	10.	Compare	a
sua	solução	com	a	do	Exemplo	4.)

Determine	 o	 centro	 de	 massa	 da	 região	 A	 dada	 por	 4x2	 +	 y2	 ≤	 4,	 y	 ≥	 0.
(Sugestão:	Para	o	cálculo	de	xc	aproveite	a	simetria	da	figura.)

Calcule	o	centro	de	massa	do	setor	circular	A	dado	por	x2	+	y2	≤	R2,	0	≤	y	≤	α
x	e	0	≤	x	≤	R,	com	R	>	0	e	0	<	α.

Suponha	 que	 a	 região	 A	 do	 plano,	 situada	 no	 semiplano	 y	 ≥	 0,	 possa	 ser
dividida	em	duas	partes	A1	 e	A2	 às	 quais	 se	 aplica,	 em	 relação	 ao	 eixo	x,	o
teorema	de	Papus.	Suponha,	ainda,	que	a	área	de	A	seja	igual	à	soma	das	áreas
de	A1	e	A2	e	Vx	=	V1x	+	V2x	em	que	V1x,	V2x	e	Vx	 são	os	volumes	respectivos
dos	sólidos	obtidos,	pela	 rotação	em	 torno	do	eixo	x,	de	A1,	A2	 e	A.	Mostre
que,	 em	 relação	 ao	 eixo	 x,	 o	 teorema	 de	 Papus	 aplica-se,	 também,	 a	 A.
(Estabeleça	 resultado	 análogo	 em	 relação	 ao	 eixo	 y,	 supondo	A	 situada	 no
semiplano	x	≥	0.)

Sejam	A1	=	{(x,	y)	|	1	≤	x	≤	3,	1	≤	y	≤	2},	A2	=	{(x,	y)	|	2	≤	x	≤	4,	2	≤	y	≤	3}	e
A	a	reunião	de	A1	e	A2.	Determine	o	centro	de	massa	de	A.

Determine	 o	 centro	 de	massa	 do	 conjunto	 −1	 ≤	 x	 ≤	 3	 e	 0	 ≤	 y	 ≤	 (x	 +	 1)2.
(Sugestão:	Resolva	o	problema	no	plano	(u,	y),	com	u	=	x	+	1.)

Utilizando	 o	 Exercício	 9,	 estabeleça,	 para	 gráfico	 de	 função,	 resultado
análogo	ao	do	Exercício	10.
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14.1.

14

EQUAÇÕES	DIFERENCIAIS	DE	1.a	ORDEM	DE	VARIÁVEIS
SEPARÁVEIS	E	LINEARES

EQUAÇÕES	DIFERENCIAIS:	ALGUNS	EXEMPLOS

As	soluções	de	muitos	problemas	que	ocorrem	tanto	na	física	como	na	geometria
dependem	de	resoluções	de	equações	diferenciais.	Vejamos	alguns	exemplos.
	
EXEMPLO	1.	Uma	partícula	desloca-se	sobre	o	eixo	x	de	modo	que,	em	cada	instante
t,	 a	 velocidade	 é	 o	 dobro	 da	 posição.	 Qual	 a	 equação	 diferencial	 que	 rege	 o
movimento?

Solução

Neste	problema,	o	que	nos	interessa	determinar	é	a	função	de	posição	x	=	x	(t).	De
acordo	com	o	enunciado	do	problema,	o	movimento	é	regido	pela	equação	diferencial
de	1.ª	ordem
	

Conforme	o	Exercício	2	da	Seção	10.1,	as	funções	que	satisfazem	tal	equação	são
da	forma	x	=	ke2t,	k	constante.	Assim,	a	função	de	posição	do	movimento	é	da	forma	x
=	ke2t.					■
	
EXEMPLO	2.	Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	sob	a	ação	de
uma	 única	 força,	 paralela	 ao	 deslocamento,	 com	 componente	 f	 (x)	 =	 −x.	 Qual	 a
equação	diferencial	que	rege	o	movimento?

Solução

Pela	lei	de	Newton

	

Assim,	o	movimento	é	regido	pela	equação	diferencial	de	2.ª	ordem
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14.2.

Uma	solução	 desta	 equação	 é	 uma	 função	 que	 é	 igual	 à	 oposta	 de	 sua	 derivada
segunda.	Por	exemplo,	 (sen	 t)″	=	−sen	 t,	assim	x	=	sen	 t	 é	uma	solução	da	equação.
Veja,	sendo	x	=	sen	t,	para	todo	t,
	

A	função	x	=	cos	 t	 é	 também	solução	 (verifique).	Veremos	posteriormente	que	as
funções	que	a	satisfazem	são	da	forma	x	=	A	cos	t	+	B	sen	t,	com	A	e	B	constantes.					■
	
EXEMPLO	 3.	 Determine	 uma	 função	 y	 =	 f	 (x)	 que	 satisfaça	 a	 propriedade:	 o
coeficiente	 angular	 da	 reta	 tangente	 no	 ponto	 de	 abscissa	 x	 é	 igual	 ao	 produto	 das
coordenadas	do	ponto	de	tangência.

Solução

Se	f	é	uma	tal	função,	para	todo	x	no	seu	domínio

f′(x)	=	x	f	(x).

Assim,	a	função	y	=	f	(x)	procurada	é	solução	da	equação	diferencial	de	1.ª	ordem
	

Veremos	mais	adiante	como	determinar	as	funções	que	satisfazem	tal	equação.					■

EQUAÇÕES	DIFERENCIAIS	DE	1.ª	ORDEM	DE	VARIÁVEIS	SEPARÁVEIS

Por	uma	equação	diferencial	de	1.ª	ordem	de	variáveis	separáveis	entendemos	uma
equação	da	forma

em	que	g	e	h	são	funções	definidas	em	intervalos	abertos	I1	e	I2,	respectivamente.
Uma	solução	de	①	é	uma	função	x	=	x	(t)	definida	num	intervalo	aberto	I,	I	⊂	I1,

tal	que,	para	todo	t	em	I,

x′(t)	=	g	(t)	h	(x	(t)).

EXEMPLO	 1.	 	 é	 uma	 equação	 diferencial	 de	 1.ª	 ordem	 de	 variáveis

separáveis.	Aqui	g	(t)	=	t	e	h	(x)	=	x2.					■
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1.

	

EXEMPLO	2.	 	 é	 uma	 equação	 diferencial	 de	 1.ª	 ordem,	mas	 não	 de

variáveis	separáveis.					■

	

EXEMPLO	 3.	 Verifique	 que	 	 −1	 <	 t	 <	 1,	 é	 solução	 da	 equação	

Solução

Precisamos	mostrar	que,	para	todo	t	em	]−1,	1[,

x′	(t)	=	t	[x	(t)]2.

Temos
	

e
	

Logo,	para	todo	t	em	]−1,	1[,

x′	(t)	=	t	[x	(t)]2

ou	seja,	 	−1	<	t	<	1,	é	solução	da	equação.					■

Na	equação	①,	x	 está	 sendo	olhado	como	variável	dependente	e	 t	 como	variável
independente.	A	equação	①	pode	também	ser	escrita	na	forma
	

em	que,	agora,	y	é	a	variável	dependente	e	x	a	independente.

Exercícios	14.2	

Assinale	as	equações	diferenciais	de	variáveis	separáveis.
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2.

3.

14.3.

Verifique	que	a	função	dada	é	solução	da	equação	dada.

Determine	 as	 funções	 constantes,	 caso	 existam,	 que	 sejam	 soluções	 da
equação	dada.

SOLUÇÕES	CONSTANTES

Consideremos	a	equação	de	variáveis	separáveis

com	 g	 e	 h	 definidas	 em	 intervalos	 abertos	 I1	 e	 I2,	 respectivamente,	 e	 g	 não
identicamente	nula	em	I1.

Consideremos	a	função	constante
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14.4.

Se	h	(a)	=	0,	então	x	(t)	=	a,	t	∈	I1,	será	solução	de	①	(por	quê?).	Reciprocamente,
se	②	for	solução	de	①,	devemos	ter	para	todo	t	em	I1

0	=	g	(t)	h	(a)

e	como	g	(t)	não	é	identicamente	nula	em	I1,	resulta	h	(a)	=	0.	Assim,
	

x	 (t)	 =	 a,	 t	∈	 I1	 (a	 constante)	 é	 solução	 de	①	 se,	 e	 somente	 se,	 a	 for	 raiz	 da
equação	h	(x)	=	0.

	

EXEMPLO	1.	Determine	as	soluções	constantes	de	

Solução

h	(x)	=	1	−	x2;	h	(x)	=	0	⇔	1	−	x2	=	0.	Como

1	−	x2	=	0	⇔	x	=	1	ou	x	=	−1

resulta	que

x	(t)	=	1	e	x	(t)	=	−1

são	as	soluções	constantes	da	equação.					■
	

EXEMPLO	2.	A	equação	 	não	admite	solução	constante,	pois	h	(x)	=	4

+	x2	não	admite	raiz	real.					■

Exercícios	14.3	

Determine,	caso	existam,	as	soluções	constantes.

SOLUÇÕES	NÃO	CONSTANTES
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O	 teorema	 que	 enunciamos	 a	 seguir	 e	 cuja	 demonstração	 é	 deixada	 para	 o
Apêndice	4	nos	será	útil	na	determinação	das	soluções	não	constantes.
	

Teorema.	Seja	a	equação

em	que	g	e	h	são	definidas	em	intervalos	abertos	I1	e	I2,	respectivamente,	com	g
contínua	 em	 I1	 e	 h′	 contínua	 em	 I2.	 Nestas	 condições,	 se	 x	 =	 x	 (t),	 t	∈	 I,	 for
solução	não	constante	de	①,	então,	para	todo	t	em	I,	h	(x	(t))	≠	0.

Vejamos,	então,	como	determinar	as	soluções	não	constantes	de	①,	supondo	que	g
e	h	satisfaçam	as	condições	do	teorema	anterior.

Suponhamos	que	x	=	x	(t),	t	∈	I,	seja	uma	solução	não	constante	de	①;	assim,	para
todo	t	em	I,

x′(t)	=	g	(t)	h	(x	(t))

ou

Seja	J	=	{x	(t)	|	t	∈	I};	J	é	um	intervalo,	pois	x	=	x	(t)	é	contínua.	Observe	que	para
todo	x	em	J,	h	(x)	≠	0.	A	função	 	sendo	contínua	em	J	admite	uma	primitiva	H

(x),	neste	intervalo:	 	x	∈	J.	Segue	que,	para	todo	t	em	I,

Resulta	de	②	e	③	que,	para	todo	t	em	I,

Sendo	G	(t)	uma	primitiva	de	g	em	I,	 segue	de	①	que	existe	uma	constante	k	 tal
que,	para	todo	t	em	I,

Como	h	 (x)	≠	0	 em	J	 e	 pelo	 fato	 de	h	 ser	 contínua,	 segue	 que	 	mantém	 o
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14.5.

mesmo	sinal	em	J,	logo,	H	é	estritamente	crescente	ou	estritamente	decrescente	em	J
e,	portanto,	inversível.	Sendo	ℋ	a	função	inversa	de	H	em	J,	resulta	de	⑤	que

x	(t)	=	ℋ	(G	(t)	+	k),	t	∈	I.

Por	outro	lado,	deixamos	a	seu	cargo	verificar	que	toda	função	do	tipo

x	(t)	=	ℋ	(G	(t)	+	k)

é	solução	de	①,	onde	ℋ	é	a	inversa	de	uma	primitiva	de	 	num	intervalo	em	que

h	(x)	≠	0,	G	(t)	uma	primitiva	de	g	(t)	num	intervalo	I	⊂	I1	e	k	uma	constante.

MÉTODO	PRÁTICO	PARA	DETERMINAR	AS	SOLUÇÕES	NÃO	CONSTANTES

Seja	a	equação

com	g	e	h	nas	condições	do	teorema	da	seção	anterior.	O	quadro	que	apresentamos	a
seguir	 fornece-nos	um	 roteiro	prático	para	determinar	 as	 soluções	não	constantes	de
①.
	

	
EXEMPLO	1.	Resolva	a	equação

Solução

Inicialmente,	vamos	determinar	as	soluções	constantes.

h	(x)	=	x2;	x2	=	0	⇔	x	=	0.
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Assim,	x	(t)	=	0	é	a	única	solução	constante.
Vamos,	agora,	determinar	as	soluções	não	constantes.

	

Como	g	(t)	=	t	e	h′	(x)	=	2x	são	contínuas	resulta
	

x(t)	=	0

e

é	a	família	das	soluções	da	equação.
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a)

b)

c)

a)

b)

	
EXEMPLO	2.	Com	relação	à	equação	do	exemplo	anterior,	determine	a	solução	que
satisfaça	a	condição	inicial	dada.

x	(1)	=	0

x	(0)	=	1

x	(0)	=	−1

Solução

A	solução	constante	x	(t)	=	0	satisfaz	a	condição	inicial	x	(1)	=	0.

Assim,
	

Segue	que
	

satisfaz	a	condição	inicial	dada.	(Lembre-se:	o	domínio	de	uma	solução	é	sempre	um
intervalo;	no	caso	em	questão,	tomamos	 	pois	o	domínio	deve	conter
t	=	0.)

Segue	que
	

satisfaz	a	condição	inicial	dada.					■
	

EXEMPLO	3.	Resolva	

Solução
x	(t)	=	0	é	a	única	solução	constante.
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Determinemos,	agora,	as	soluções	não	constantes.
	

daí
	

ou
	

Se	x	>	0,	 	segue	que	 	k	≠	0	real
qualquer.	Para	k	=	0,	temos	a	solução	constante	x	(t)	=	0.	Assim
	

é	a	família	das	soluções	da	equação.					■

EXEMPLO	 4.	 Determine	 a	 função	 y	 =	 f	 (x)	 tal	 que	 f	 (1)	 =	 1	 e	 que	 goza	 da
propriedade:	o	coeficiente	angular	da	reta	tangente	no	ponto	de	abscissa	x	é	 igual	ao
produto	das	coordenadas	do	ponto	de	tangência.

Solução

Para	todo	x	no	domínio	de	f	devemos	ter
f′(x)	=	x	f	(x).

Assim,	a	função	procurada	é	solução	da	equação
	

Temos
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Para	 	 a	 condição	 y	 =	 1	 para	 x	 =	 1	 estará	 satisfeita.	 Assim,	 a	 função

procurada	é
	

EXEMPLO	5.	Determine	o	tempo	necessário	para	se	esvaziar	um	tanque	cilíndrico	de
raio	2	m	e	altura	5	m,	cheio	de	água,	 admitindo	que	a	água	 se	escoe	através	de	um
orifício,	 situado	 na	 base	 do	 tanque,	 de	 raio	 0,1	 m,	 com	 uma	 velocidade	

	 sendo	 h	 a	 altura	 da	 água	 no	 tanque	 e	 g	 =	 10	 m/s2	 a	 aceleração
gravitacional.

Solução

Seja	h	=	h	(t)	a	altura	da	água	no	instante	t.	O	volume	V	=	V	(t)	de	água	no	tanque
no	instante	t	será

V	(t)	=	4π	h	(t)

e	assim

Por	outro	lado,	supondo	Δt	suficientemente	pequeno,	o	volume	de	água	que	passa
pelo	orifício	entre	os	instantes	 t	e	t	+	Δt	é	aproximadamente	 igual	ao	volume	de	um
cilindro	de	base	πr2	 (r	 raio	do	orifício)	e	altura	υ	 (t)	Δt	 (observe	que	a	água	que	no
instante	t	está	saindo	pelo	orifício,	no	instante	t	+	Δt	se	encontrará,	aproximadamente,
a	uma	distância	υ	(t)	Δt	do	orifício,	onde	υ	(t)	é	a	velocidade,	no	instante	t,	com	que	a
água	 está	 deixando	 o	 tanque).	 Então,	 na	 variação	 de	 tempo	 Δt,	 a	 variação	 ΔV	 no
volume	de	água	será

ΔV	≅	−υ	(t)	πr2	Δt.

É	razoável,	então,	admitir	que	a	diferencial	de	V	=	V	(t)	seja	dada	por

dV	=	−υ	(t)	πr2	dt
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a)

b)

a)

ou	que

De	①	e	②	resulta
	

Sendo	 	 resulta	 que	 a	 altura	 h	 =	 h	 (t)	 da	 água	 no	 tanque	 é
regida	pela	equação
	

Temos
	

De	h	(0)	=	5,	resulta	k	=	400.	Assim
	

O	tempo	necessário	para	esvaziar	o	tanque	será	então	de	400	segundos	ou	6	min	40
s.					■
	
EXEMPLO	6.	Uma	partícula	move-se	sobre	o	eixo	x	com	aceleração	proporcional	ao
quadrado	da	velocidade.	Sabe-se	que	no	instante	 t	=	0	a	velocidade	é	de	2	m/s	e,	no
instante	t	=	1,	1	m/s.

Determine	υ	=	υ	(t),	t	≥	0.

Determine	a	função	de	posição	supondo	x	(0)	=	0.

Solução

O	movimento	é	regido	pela	equação
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1.

em	que	α	é	a	constante	de	proporcionalidade.
	

ou
	

Para	t	=	0,	υ	=	2,	assim
	

Para	t	=	1,	υ	=	1,	assim
	

Portanto,
	

x	=	2	ln	(1	+	t)	+	k.

Tomando-se	k	=	0,	a	condição	inicial	x	(0)	=	0	estará	satisfeita.	Assim,

x	(t)	=	2	ln	(1	+	t).					■

Exercícios	14.5	

Resolva
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2.

3.

4.

5.

6.

Determine	y	=	y	(x)	que	satisfaça	as	condições	dadas.

Suponha	que	V	=	V	(p),	p	>	0,	satisfaça	a	equação	 	(γ	constante).

Admitindo	que	V	=	V1,	V1	>	0,	para	p	=	p1,	mostre	que	Vγp	=	V1γp1,	para	todo
p	>	0.

O	coeficiente	angular	da	reta	tangente,	no	ponto	de	abscissa	x,	ao	gráfico	de	y
=	f	(x),	é	proporcional	ao	cubo	da	ordenada	do	ponto	de	tangência.	Sabendo

que	f(0)	=	1	e	 	determine	f.

Um	corpo	de	massa	10	kg	é	abandonado	a	uma	certa	altura.	Sabe-se	que	as
únicas	 forças	 atuando	 sobre	 ele	 são	 o	 seu	 peso	 e	 uma	 força	 de	 resistência
proporcional	 à	 velocidade.	 Admitindo-se	 que	 1	 segundo	 após	 ter	 sido
abandonado	a	sua	velocidade	é	de	8	m/s,	determine	a	velocidade	no	instante	t
(suponha	a	aceleração	da	gravidade	igual	a	10	m/s2).

A	reta	tangente	ao	gráfico	de	y	=	f	(x),	no	ponto	(x,	y),	intercepta	o	eixo	y	no
ponto	de	ordenada	xy.	Determine	f	sabendo	que	f	(1)	=	1.
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7.

8.

9.

10.

11.

12.

13.

14.

14.6.

Determine	 a	 curva	 que	 passa	 por	 (1,	 2)	 e	 cuja	 reta	 tangente	 em	 (x,	 y)
intercepta	o	eixo	x	no	ponto	de	abscissa	

Um	corpo	de	massa	70	kg	cai	do	repouso	e	as	únicas	forças	atuando	sobre	ele
são	 o	 seu	 peso	 e	 uma	 força	 de	 resistência	 proporcional	 ao	 quadrado	 da
velocidade.	 Admitindo-se	 que	 1	 segundo	 após	 o	 início	 da	 queda	 a	 sua
velocidade	 é	 de	 8	 m/s,	 determine	 a	 velocidade	 no	 instante	 t.	 (Suponha	 a
aceleração	da	gravidade	igual	a	10	m/s2.)

Para	todo	a	>	0,	o	gráfico	de	y	=	f	(x)	intercepta	ortogonalmente	a	curva	x2	+
2y2	=	a.	Determine	f	sabendo	que	f	(1)	=	2.

Para	todo	a	>	0,	o	gráfico	de	y	=	f	(x)	intercepta	ortogonalmente	a	curva	xy	=
a,	x	>	0.	Determine	f	supondo	f	(2)	=	3.

Determine	uma	curva	que	passa	pelo	ponto	(0,	2)	e	que	goza	da	propriedade:
a	reta	tangente	no	ponto	(x,	y)	encontra	o	eixo	x	no	ponto	A,	de	abscissa	>	0,
de	tal	modo	que	a	distância	de	(x,	y)	a	A	é	sempre	2.

Verifique	 que	 a	 mudança	 de	 variável	 	 transforma	 a	 equação	

	na	de	variáveis	separáveis	 	Determine,	então,

soluções	(na	forma	implícita)	da	equação	

Determine	 soluções	 da	 equação	 	 (Sugestão:	 Olhe	 para	 o

Exercício	12.)

Verifique	 que	 a	 mudança	 de	 variável	 u	 =	 y	 −	 x	 transforma	 a	 equação	

	 na	 de	 variáveis	 separáveis	 	 Determine,	 então,

soluções	da	primeira	equação.

EQUAÇÕES	DIFERENCIAIS	LINEARES	DE	1.ª	ORDEM

Por	uma	equação	diferencial	linear	de	1.ª	ordem	entendemos	uma	equação	do	tipo

em	que	g	e	f	são	funções	dadas,	contínuas	e	definidas	num	mesmo	intervalo	I.
	

EXEMPLO	1.	 	é	linear	de	1.ª	ordem;	aqui	g	(t)	=	t	e	f	(t)	=	1.					■
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EXEMPLO	2.	 	 é	 linear	de	1.ª	 ordem	 (é	 também	de	variáveis	 separáveis);

aqui	g	(t)	=	t2	e	f	(t)	=	0.					■

	

EXEMPLO	 3.	 	 não	 é	 linear	 (também	 não	 é	 de	 variáveis

separáveis).

Observe	 que	 na	 equação	 linear,	 tanto	 a	 variável	 dependente	 como	 sua	 derivada
ocorrem	com	grau	1.

Se	f	(t)	=	0	em	I,	a	equação	①	é	de	variáveis	separáveis	e	a	solução	geral	será

x	=	keG(t)	(k	∈	ℝ)

em	que	G	é	uma	primitiva	de	g	em	I.	Por	simplicidade,	escreveremos
	

em	que	 	estará	representando,	então,	uma	particular	primitiva	de	g.					■

EXEMPLO	4.	Resolva	a	equação	

Solução

Trata-se	de	uma	equação	de	1.ª	ordem,	linear	e	de	variáveis	separáveis.	A	solução
geral	é
	

ou
	

Vamos,	 agora,	 resolver	①	 no	 caso	 em	 que	 f	 (t)	 não	 é	 identicamente	 nula	 em	 I.
Observamos,	inicialmente,	que
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Isto	é,
	

A	igualdade	acima	nos	indica	um	caminho	para	obtermos	a	solução	geral	de	①	no
caso	em	que	f	(t)	não	é	identicamente	nula	em	I.	Temos	que	①	é	equivalente	a
	

Multiplicando	os	dois	membros	pelo	fator	integrante	 	obtemos
	

ou
	

Daí
	

ou
	

que	é	a	família	das	soluções	da	equação	①.					■

Na	fórmula	acima,	 	indicam	particulares	primitivas

de	 	respectivamente.

	

EXEMPLO	5.	Resolva	a	equação	

Solução

Aqui	g	(t)	=	3	e	f	(t)	=	4.	O	fator	integrante	é	 	Então
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1.

2.

3.

	

ou
	

É	 claro	 que	 você	 poderia	 ter	 aplicado	 diretamente	 a	 fórmula	 obtida
anteriormente.					■

Exercícios	14.6	

Resolva.

Suponha	E,	R	e	C	constantes	não	nulas.	Resolva	a	equação.

Suponha	E,	R	 e	 L	 constantes	 não	 nulas.	 Determine	 a	 solução	 i	 =	 i	 (t)	 do
problema

551



4.

5.

a)

b)

6.

7.

8.

9.

Um	 objeto	 aquecido	 a	 100ºC	 é	 colocado	 em	 um	 quarto	 a	 uma	 temperatura
ambiente	 de	 20ºC;	 um	minuto	 após	 a	 temperatura	 do	 objeto	 passa	 a	 90ºC.
Admitindo	 (lei	 de	 resfriamento	 de	Newton)	 que	 a	 temperatura	T	 =	T	 (t)	 do
objeto	esteja	variando	a	uma	taxa	proporcional	à	diferença	entre	a	temperatura
do	objeto	e	a	do	quarto,	isto	é,

determine	 a	 temperatura	 do	 objeto	 no	 instante	 t.	 (Suponha	 t	 dado	 em
minutos.)

Um	 investidor	 aplica	 seu	 dinheiro	 em	 uma	 instituição	 financeira	 que

remunera	o	capital	investido	de	acordo	com	a	equação	

Supondo	que	o	capital	investido	no	instante	t	=	0	seja	C0,	determine	o	valor
do	capital	aplicado	no	instante	t.
Qual	o	rendimento	mensal	que	o	investidor	está	auferindo?	(Suponha	t	dado
em	meses.)

	

Um	capital	C	=	C	(t)	está	crescendo	a	uma	taxa	 	proporcional	a	C.	Sabe-se

que	o	valor	do	capital	no	 instante	 t	=	0	era	de	R$	20.000	e	1	ano	após,	R$
60.000.	Determine	o	valor	do	capital	no	instante	t.	(Suponha	t	dado	em	anos.)

Um	material	radioativo	se	desintegra	a	uma	taxa	 	proporcional	a	m,	em	que

m	=	m	(t)	é	a	quantidade	de	matéria	no	 instante	 t.	Supondo	que	a	quantidade
inicial	 (em	 t	 =	 0)	 de	 matéria	 seja	 m0	 e	 que	 10	 anos	 após	 já	 tenha	 se
desintegrado	 	 da	 quantidade	 inicial,	 pede-se	 o	 tempo	 necessário	 para	 que
metade	da	quantidade	inicial	se	desintegre.
Uma	 partícula	 desloca-se	 sobre	 o	 eixo	 x	 com	 aceleração	 proporcional	 à
velocidade.	Admitindo-se	 que	 υ	 (0)	 =	 3,	 υ	 (1)	 =	 2	 e	 x	 (0)	 =	 0,	 determine	 a
posição	da	partícula	no	instante	t.
Determine	a	função	y	=	f	(x),	x	>	0,	cujo	gráfico	passa	pelo	ponto	(1,	2)	e	que
goza	da	propriedade:	a	área	do	triângulo	de	vértices	(0,	0),	(x,	y)	e	(0,	m),	m	>	0
é	igual	a	1,	para	todo	(x,	y)	no	gráfico	de	f,	em	que	(0,	m)	é	a	interseção	da	reta
tangente	em	(x,	y)	com	o	eixo	y.
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15.1.

1.

2.

3.

15

TEOREMAS	DE	ROLLE,	DO	VALOR	MÉDIO	E	DE	CAUCHY

TEOREMA	DE	ROLLE

	

Teorema	(de	Rolle).	Se	f	for	contínua	em	[a,	b],	derivável	em	]a,	b[	e	f	(a)	=	f
(b),	então	existirá	pelo	menos	um	c	em	]a,	b[	tal	que	f′	(c)	=	0.

	

Demonstração

Se	f	for	constante	em	[a,	b],	então	f′(x)	=	0	em	]a,	b[;	logo,	existirá	c	em	]a,	b[	tal
que	 f′	 (c)	 =	 0.	 Suponhamos,	 então,	 que	 f	 não	 seja	 constante	 em	 [a,	 b].	 Como	 f	 é
contínua	no	intervalo	fechado	[a,	b],	pelo	teorema	de	Weierstrass,	existem	x1	e	x2	 em
[a,	b],	tais	que	f	(x1)	e	f	(x2)	são,	respectivamente,	os	valores	máximo	e	mínimo	de	f	em
[a,	b].	Como	f	(x1)	≠	f	(x2),	pois	estamos	supondo	f	não	constante	em	[a,	b],	segue	que
x1	ou	x2	pertence	a	]a,	b[	(estamos	usando	aqui	a	hipótese	f	(a)	=	f	(b)),	daí	f′(x1)	=	0	ou
f′(x2)	=	0.	Portanto,	existe	c	em	]a,	b[	tal	que	f′	(c)	=	0.					■

Exercícios	15.1	

Prove	que	entre	duas	 raízes	consecutivas	de	uma	função	polinomial	 f	 existe
pelo	menos	uma	raiz	de	f′.

Suponha	f	derivável	em	ℝ.	Prove	que	entre	duas	raízes	consecutivas	de	f′	há,
no	máximo,	uma	raiz	de	f.

Sejam	f	e	g	contínuas	em	[a,	b]	e	deriváveis	em	]a,	b[,	com	g	(x)	≠	0	em	[a,
b].	Suponha,	ainda,	que	f	(a)	=	g	(a)	e	f	(b)	=	g	(b).	Prove	que	existe	c	em	]a,
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4.

5.

6.

7.

8.

9.

10.

b[	tal	que	f′	(c)	g	(c)	=	f	(c)	g′	(c).

Suponha	f	contínua	em	[a,	b],	derivável	em	]a,	b[	e	tal	que	f	(a)	=	f	(b)	=	0.
Suponha,	 ainda,	 que	 0	 <	 a.	 Prove	 que	 existe	 c	 em	 ]a,	 b[	 tal	 que	

	Interprete	geometricamente.

Prove	que	se	 	então	a0	+	a1x	+	…	+	anxn	=	0	tem

pelo	menos	uma	raiz	em	]0,	1[.

Suponha	f	derivável	até	a	2.ª	ordem	em	ℝ	e	tal	que

	

Prove	que	f	(x)	=	0	em	[a,	b].

Suponha	f	contínua	em	[a,	b]	e	derivável	até	a	2.ª	ordem	em	]a,	b[.	Sejam	x0,
x1	e	x2	pontos	de	[a,	b],	com	x0	<	x1	<	x2,	e	tais	que	f	(x0)	=	f	(x1)	=	f	(x2)	=	0.
Prove	que	existe	pelo	menos	um	c	em	]a,	b[	tal	que	f″	(c)	=	0.

Suponha	f	contínua	em	[a,	b]	e	derivável	até	a	3.ª	ordem	em	]a,	b[.	Sejam	x0,
x1,	x2	e	x3	pontos	de	[a,	b],	com	x0	<	x1	<	x2	<	x3,	e	tais	que	f	(x0)	=	f	(x1)	=	f
(x2)	=	f	(x3)	=	0.	Prove	que	existe	pelo	menos	um	c	em	]a,	b[	tal	que	f‴	(c)	=	0.
Generalize.

Suponha	f	contínua	em	[a,	b]	e	derivável	até	a	3.ª	ordem	em	]a,	b[.	Sejam	x0,
x1	 e	x2	 pontos	 de	 [a,	b],	 com	x0	 <	 x1	 <	 x2,	 e	P	 (x)	 o	 polinômio	 de	 grau	 no
máximo	2	e,	portanto,	da	forma	P	(x)	=	a0	x2	+	a1	x	+	a2,	tais	que

P	(x0)	=	f	(x0),	P	(x1)	=	f	(x1)	e	P	(x2)	=	f	(x2).

Seja	z	um	ponto	de	[a,	b],	com	z	∉	{x0,	x1,	x2}	e	seja	α	o	número	real	tal	que

f	(z)	=	P	(z)	+	(z	−	x0)	(z	−	x1)	(z	−	x2)	α.

Prove	que	existe	pelo	menos	um	c	em	]a,	b[	tal	que	

(Sugestão:	Considere	a	função

f	(x)	=	f	(x)	−	P	(x)	−	(x	−	x0)	(x	−	x1)	(x	−	x2)	α

e	aplique	o	exercício	anterior.)

Nas	condições	do	exercício	anterior,	prove	que,	para	cada	x	em	[a,	b],	 existe
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15.2.

pelo	menos	um	c	em	]a,	b[	tal	que

	

Generalize.	 (Observação.	 O	 polinômio	P	 (x)	 acima	 denomina-se	 polinômio
interpolador	 de	 f	 (x)	 relativo	 aos	 pontos	 x0,	 x1	 e	 x2	 e	 pode	 ser	 obtido
rapidamente	pela	fórmula

	

devida	ao	matemático	italiano	J.	L.	Lagrange	(1736-1813).)

TEOREMA	DO	VALOR	MÉDIO

Seja	f	uma	função	definida	em	[a,	b].	Consideremos	a	função	S	dada	por
	

O	gráfico	de	S	é	a	reta	passando	pelos	pontos	(a,	f	(a))	e	(b,	f	(b)).	Na	demonstração
do	TVM	iremos	utilizar	a	função	dada	por

g	(x)	=	f	(x)	−	S	(x),	x	em	[a,	b].

Observe	que	g	(a)	=	g	(b)	=	0.
	

Teorema	(do	valor	médio	—	TVM).	Se	f	for	contínua	em	[a,	b]	e	derivável	em
]a,	b[,	então	existirá	pelo	menos	um	c	em	]a,	b[	tal	que

f	(b)	−	f	(a)	=	f′	(c)	(b	−	a).
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2.

3.

4.

Demonstração

Seja	g	função	dada	por
g	(x)	=	f	(x)	−	S	(x),	x	em	[a,	b]

Como	g	é	contínua	em	[a,	b],	derivável	em	]a,	b[	e	g	(a)	=	g	(b),	pelo	 teorema	de
Rolle	existe	c	em	]a,	b[	tal	que	g′	(c)	=	0.	Temos
	

Assim,
	

Daí
	

Portanto,
f	(b)	−	f	(a)	=	f′	(c)	(b	−	a).					■

Exercícios	15.2	

Sejam	I	um	intervalo,	f	uma	função	contínua	em	I	e	tal	que	|	f′(x)	 |	≤	M	para
todo	x	no	interior	de	I,	em	que	M	>	0	é	um	real	fixo.	Prove	que	quaisquer	que
sejam	x	e	y	em	I

|	f	(x)	−	f	(y)	|	≤	M	|	x	−	y	|.

Prove	que	quaisquer	que	sejam	s	e	t	em	[1,	+∞[

|	ln	s	−	ln	t	|	≥	|	s	−	t	|.

Sejam	a	<	b	dois	reais	dados.	Prove	que

	

Prove	que	quaisquer	que	sejam	a	e	b,	a	<	b,

arctg	b	−	arctg	a	<	b	−	a.

Conclua	que	para	todo	x	>	0
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5.

a)
b)
c)

6.

7.

8.

15.3.

arctg	x	<	x.

Seja	f	:	ℝ	→	ℝ	uma	função.	Dizemos	que	x0	é	um	ponto	fixo	de	f	se	f	(x0)	=
x0.

Determine	os	pontos	fixos	de	f	(x)	=	x2	−	3x.
f	(x)	=	x2	+	1	admite	ponto	fixo?
Mostre	que	f	terá	ponto	fixo	se	o	gráfico	de	f	interceptar	a	reta	y	=	x.

Seja	f	:	ℝ	→	ℝ	e	suponha	que	f′(x)	≠	1	para	todo	x.	Prove	que	f	admitirá	no
máximo	um	ponto	fixo.

Suponha	que	g	(t)	seja	uma	primitiva	de	f	(t)	em	[0,	1],	isto	é,	para	todo	t	em
[0,	1],	g′	(t)	=	f	(t).	Suponha,	ainda,	que	f	(t)	<	1	em	]0,	1[.	Prove	que

g	(t)	−	g	(0)	<	t	em	]0,	1].

Uma	 partícula	 desloca-se	 sobre	 o	 eixo	 x	 com	 função	 de	 posição	 x	 =	 φ(t).
Sabe-se	 que	 φ(0)	 =	 0	 e	 φ	 (1)	 =	 1,	 isto	 é,	 nos	 instantes	 0	 e	 1	 a	 partícula
encontra-se,	respectivamente,	nas	posições	x	=	0	e	x	=	1.	Prove	que	em	algum
instante	c,	0	<	c	<	1,	ν	(c)	≥	1.	(Sugestão:	Observe	que	φ′	(t)	=	ν	(t)	em	[0,	1]	e
utilize	o	exercício	anterior.)

TEOREMA	DE	CAUCHY

Para	motivar	geometricamente	o	 teorema	de	Cauchy,	vamos,	 inicialmente,	definir
reta	tangente	a	uma	curva	em	ℝ2.

Por	 uma	 curva	 em	ℝ2	 entendemos	 uma	 função	 que	 a	 cada	 t	 pertencente	 a	 um
intervalo	 I	 associa	 um	 ponto	 (g	 (t),	 f	 (t))	 em	ℝ2,	 em	 que	 f	 e	 g	 são	 funções	 reais
definidas	em	I.	Dizemos	que,
	

são	as	equações	paramétricas	da	curva.
	
EXEMPLO	1.	Seja	a	curva	de	equações	paramétricas	x	=	t,	y	=	t2,	t	em	ℝ.	Quando	t
varia	em	ℝ,	o	ponto	(t,	t2)	descreve	a	parábola	y	=	x2.
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EXEMPLO	2.	Seja	a	curva	de	equações	paramétricas	x	=	cos	t,	y	=	sen	t	com	t	∈	[0,
2π].	Quando	t	varia	em	[0,	2π],	o	ponto	(cos	t,	sen	t)	descreve	a	circunferência	x2	+	y2
=	1.

Suponhamos,	agora,	f	e	g	deriváveis	em	I,	t0	∈	I	 e	g′	 (t0)	≠	0.	Vamos	definir	 reta
tangente	à	curva	no	ponto	(g	(t0),	f	(t0)).
	

O	coeficiente	angular	da	reta	secante	st	é
	

Nada	mais	natural	do	que	definir	o	coeficiente	angular	da	reta	tangente	à	curva	no

559



ponto	(g	(t0),	f	(t0))	igual	a
	

Temos:
	

Definimos,	então,	a	reta	tangente	à	curva	em	(g	(t0),	f	(t0))	como	a	reta	que	passa

por	esse	ponto	e	que	 tem	coeficiente	angular	 	A	equação	da	 reta	 tangente	à

curva	em	(g	(t0)	(t0),	f	(t0))	é	então
	

Suponhamos,	agora,	f	e	g	contínuas	em	[a,	b],	deriváveis	em	]a,	b[	e	g′(t)	≠	0	em	]a,
b[.	Observe	que	as	condições	apresentadas	anteriormente	implicam	g	(a)	≠	g	(b).
	

O	coeficiente	angular	da	reta	S	é	

Vemos,	geometricamente,	que	existe	um	ponto	(g	(c),	f	(c))	tal	que	a	tangente	neste

ponto	é	paralela	à	reta	S.	O	coeficiente	angular	de	T	é	 	Então,	para	este	c,
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Teorema	(de	Cauchy).	Se	f	e	g	forem	contínuas	em	[a,	b]	e	deriváveis	em	]a,
b[,	então	existirá	pelo	menos	um	c	em	]a,	b[	tal	que

[f	(b)	−	f	(a)]	g′(c)	=	[g	(b)	−	g	(a)]	f′(c)

ou

	se	g(b)	≠	g(a)	e	g′	(c)	≠	0.

Demonstração

Seja	h	(x)	=	[f	(b)	−	f	(a)]	g	(x)	−	[g	(b)	−	g	(a)]	f	(x),	x	∈	[a,	b].
	

Pelo	teorema	de	Rolle,	existe	c	em	]a,	b[	tal	que	h′	(c)	=	0,	daí

[	f	(b)	−	f	(a)]	g′(c)	−	[g	(b)	−	g	(a)]	f′(c)	=	0

ou	seja,
[f	(b)	−	f	(a)]	g′(c)	=	[g	(b)	−	g	(a)]	f′(c).					■

Observação.	Fazendo,	no	teorema	acima,	g	(x)	=	x,	obtemos	o	TVM.
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16.1.

16

FÓRMULA	DE	TAYLOR

APROXIMAÇÃO	LOCAL	DE	UMA	FUNÇÃO	DIFERENCIÁVEL	POR	UMA	FUNÇÃO
AFIM

Seja	f	uma	função	derivável	em	x0	e	seja	T	dada	por

T	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0).

O	gráfico	de	T	é	a	reta	tangente	ao	gráfico	de	f	em	(x0,	f	(x0)).
	

Para	cada	x	∈	Df,	seja	E	(x)	o	erro	que	se	comete	na	aproximação	de	f	(x)	por	T	(x):

Observe	que,	para	x	≠	x0.
	

daí,
	

ou	seja:	quando	x	→	x0,	o	erro	E	(x)	tende	a	zero	mais	rapidamente	que	(x	−	x0).
A	função

T	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0)
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é	 a	única	 função	 afim	 que	 goza	 da	 propriedade	 de	 o	 erro	E	 (x)	 tender	 a	 zero	mais
rapidamente	que	(x	−	x0).	De	fato,	se	S	(x)	=	f	(x0)	+	m	(x	−	x0)	 for	uma	 função	afim
passando	por	(x0,	f	(x0))	tal	que

f	(x)	=	f	(x0)	+	m	(x	−	x0)	+	E1	(x),	x	∈	Df

em	que	 	então	necessariamente	m	=	f′(x0).	(Verifique.)

Segue	que,	se	f	for	derivável	em	x0,

T	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0)

é	a	função	afim	que	melhor	aproxima	localmente	a	f	em	volta	de	x0.
A	função	T	acima	é	uma	função	polinomial	de	grau	no	máximo	1;	será	do	grau	1	se

f′(x0)	 ≠	 0.	 Assim,	 T	 é	 o	 polinômio	 de	 grau	 no	 máximo	 1	 que	 melhor	 aproxima
localmente	a	f	em	volta	de	x0.

Observe	que	os	valores	de	f	e	T	em	x0	são	iguais,	bem	como	os	de	suas	derivadas:

f	(x0)	=	T	(x0)	e	f′(x0)	=	T′(x0).

O	polinômio

P	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0)

denomina-se	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	x0.
O	próximo	teorema	fornece-nos	uma	expressão	para	o	erro	E	(x),	que	aparece	em

①	em	termos	da	derivada	2.ª	de	f.
	

Teorema.	 Seja	 f	 derivável	 até	 a	 2.ª	 ordem	 no	 intervalo	 I	 e	 sejam	 x,	 x0	∈	 I.
Então,	existe	pelo	menos	um	 	no	intervalo	aberto	de	extremos	x	e	x0	tal	que
	

Demonstração

E	(x)	=	f	(x)	−	[f	(x0)	+	f′(x0)	(x	−	x0)].

Assim,
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E	(x0)	=	0	e	E′(x0)	=	0.

(Observe	que	E′(x)	=	f′(x)	−	f′(x0),	pois	f	(x0)	e	f′(x0)	são	constantes.)
Seja	h	(x)	=	(x	−	x0)2;	segue	que

h	(x0)	=	0	e	h′(x0)	=	0.

Temos
	

Pelo	teorema	de	Cauchy,	existe	 	no	intervalo	de	extremos	x0	e	x	tal	que
	

Tendo	em	vista	E′(x0)	=	h′(x0)	=	0
	

Novamente,	pelo	teorema	de	Cauchy,	existe	 	no	intervalo	aberto	de	extremos	x0	e
x	tal	que
	

Como	E″(x)	=	f″(x)	e	h″(x)	=	2
	

Portanto,
	

para	algum	 	no	intervalo	aberto	de	extremos	x	e	x0.					■

EXEMPLO	1.	Seja	f	derivável	até	a	2.ª	ordem	no	intervalo	I	e	seja	x0	∈	I.	Suponha
que	existe	M	>	0	tal	que	|	f″(x)	|	≤	M	para	todo	x	∈	I.	Prove	que	para	todo	x	em	I
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em	que	P	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0).

Solução

De	acordo	com	o	teorema,	existe	 	entre	x	e	x0	tal	que
	

ou
	

daí
	

	
EXEMPLO	2.	Avalie	ln	1,003.

Solução

Seja	f	(x)	=	ln	x.	O	polinômio	de	Taylor,	de	ordem	1,	de	f	em	volta	de	x0	=	1	é:

P	(x)	=	f	(1)	+	f′(1)	(x	−	1)

e	como,	f	(1)	=	0	e	f′(1)	=	1,	resulta

P	(x)	=	x	−	1.

Assim,

f	(1,003)	≅	P	(1,003)

ou

ln	1,003	≅	0,003.

Interprete	graficamente	este	resultado.

Avaliação	do	erro
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c)
d)
e)
f)

16.2.

Segue:

|f″(x)	|	≤	1	para	x	≥	1.

Pelo	exemplo	anterior,
	

Para	x	=	1,003

|f	(1,003)	−	P	(1,003)	|	≤	0,0000045.

Assim,	o	módulo	do	erro	cometido	na	aproximação

ln	1,003	≅	0,003

é	 inferior	 a	 10−5.	 Observe	 que	 0,003	 é	 um	 valor	 aproximado	 por	 excesso	 (faça	 os
gráficos	de	f	e	de	P	e	confira).					■

Exercícios	16.1	

Calcule	 o	 polinômio	 de	Taylor	 de	 ordem	1	 da	 função	 dada,	 em	volta	 de	 x0
dado.

Calcule	um	valor	aproximado	e	avalie	o	erro.

sen	0,02
e0,001

cos	0,01
ln	0,99

POLINÔMIO	DE	TAYLOR	DE	ORDEM	2

Vimos	que	o	polinômio	de	Taylor,	de	ordem	1,	de	f	em	volta	de	x0,	tem	em	comum
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com	f	o	valor	em	x0	e	o	valor	da	derivada	em	x0.
Suponhamos	 que	 f	 tenha	 derivadas	 até	 a	 2.ª	 ordem	 no	 intervalo	 I	 e	 seja	 x0	∈	 I.

Vamos	procurar	o	polinômio	P,	de	grau	no	máximo	2,	que	tenha	em	comum	com	f	o
valor	em	x0,	o	valor	da	derivada	1.ª	em	x0	e	o	valor	da	derivada	2.ª	em	x0.	Queremos,
então,	determinar	P,	de	grau	no	máximo	2,	tal	que

f	(x0)	=	P	(x0),	f′(x0)	=	P′(x0)	e	f″(x0)	=	P″(x0).

Podemos	procurar	P	da	forma

P	(x)	=	A0	+	A1	(x	−	x0)	+	A2	(x	−	x0)2.

Como	P	(x0)	=	A0,	devemos	ter	A0	=	f	(x0).

P′(x)	=	A1	+	2A2	(x	−	x0)

e

P″(x)	=	2A2.

Daí,	P′(x0)	=	A1	e	P″(x0)	=	2A2.	Segue	que	devemos	ter

A1	=	f′(x0)

e
	

O	polinômio	procurado	é	então

O	polinômio	①	denomina-se	polinômio	de	Taylor,	de	ordem	2,	de	f	em	volta	de	x0.
Observe	que	f	e	P	admitem	a	mesma	reta	tangente	em	(x0,	f	(x0)).	Como	P″(x0)	=	f″

(x0),	segue	que	se	f″(x0)	≠	0	e	f″	contínua	em	x0,	para	x	próximo	de	x0,	os	gráficos	de	f	e
P	apresentam	concavidades	com	mesmo	sentido.	É	razoável	esperar,	então,	que,	para	x
suficientemente	próximo	de	x0,	o	polinômio	de	Taylor	de	ordem	2	aproxime	melhor	f
do	que	o	polinômio	de	Taylor	de	ordem	1.
	
EXEMPLO	1.	Seja	f	(x)	=	ex.	Determine	os	polinômios	de	Taylor,	de	ordens	1	e	2,	de
f	em	volta	de	x0	=	0.	Esboce	os	gráficos	de	f	e	dos	polinômios.

Solução
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Indiquemos	por	P1	e	P2	os	polinômios	pedidos.
Temos

P1	(x)	=	f	(0)	+	f′(0)	(x	−	0)

e
	

De	f′(x)	=	f″(x)	=	ex,	segue	f′	(0)	=	f″(0)	=	1.
Assim,

P1	(x)	=	1	+	x

e
	

Seja	P	o	polinômio	de	Taylor,	de	ordem	2,	de	f	em	volta	de	x0.	Para	cada	x	em	Df,
seja	E	(x)	o	erro	que	se	comete	na	aproximação	de	f	(x)	por	P	(x).	Assim,	para	todo	x
em	Df,

ou

Temos:
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Assim,

E	(x0)	=	E′(x0)	=	E″(x0)	=	0.

O	 próximo	 teorema	 fornece-nos	 uma	 expressão	 para	 o	 erro	E	 (x)	 em	 termos	 da
derivada	de	3.ª	ordem	de	f.

Teorema.	Seja	 f	 derivável	 até	 a	 3.ª	 ordem	no	 intervalo	 I	 e	 sejam	x0,	x	 em	 I.
Então,	existe	pelo	menos	um	 	entre	x	e	x0	tal	que

Demonstração

E	(x0)	=	E′(x0)	=	E″(x0)	=	0	e	E‴(x)	=	f‴(x).

Sendo	h	(x)	=	(x	−	x0)3,

h	(x0)	=	h	′(x0)	=	h	″(x0)	=	0	e	h	‴(x)	=	6	=	3!

Temos

Pelo	teorema	de	Cauchy	existe	 	entre	x	e	x0	tal	que

Temos

Pelo	teorema	de	Cauchy,	existe	 	entre	x0	e	 	tal	que
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De	E	″	(x0)	=	0	=	h	″	(x0)	segue

Novamente,	pelo	teorema	de	Cauchy,	existe	 	entre	 	e	x0	tal	que

Como

E	‴( )	=	f	‴( )	e	h	‴( )	=	3!

EXEMPLO	2.	Seja	f	derivável	até	a	3.ª	ordem	no	intervalo	I	e	seja	x0	∈	I.	Suponha
que	existe	M	>	0	tal	que	|	f	‴(x)	|	≤	M	para	todo	x	em	I.	Prove	que,	para	todo	x	em	I,

onde

Solução

De	acordo	com	o	teorema	anterior

Daí,	para	todo	x	em	I,

EXEMPLO	3.	Calcule	um	valor	aproximado	para	ln	1,03	e	avalie	o	erro.

Solução

Seja	f	(x)	=	ln	x.	Vamos	utilizar	o	polinômio	de	Taylor	de	ordem	2	em	volta	de	x0	=
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1.

De	 	Assim,

ou

Temos

ln	1,03	≅	P	(1,03)

mas,

P	(1,03)	=	0,02955,

logo

ln	1,03	≅	0,02955.

Avaliação	do	erro

	assim,	|	f	‴	(x)	|	≤	2	para	x	≥	1.	Pelo	exemplo	anterior,

Segue	que

ou

|	f	(1,03)	−	P	(1,03)	|	≤	0,000009.

Assim,	o	módulo	do	erro	cometido	na	aproximação

ln	1,03	≅	0,02955

é	inferior	a	10−5.	(Observe:	0,000009	=	9	·	10−6	<	10−5.)
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Como,	 para	 x	 >	 1,	 	 segue	 que	 0,02955	 é	 uma

aproximação	por	falta	de	ln	1,03.					■

EXEMPLO	4.	Calcule	um	valor	aproximado	para	 	e	avalie	o	erro.

Solução

Seja	 	Vamos	utilizar	o	polinômio	de	Taylor	de	ordem	2	em	volta	de	x0
=	8.

De

segue	que

Daí

logo,

Assim,

Avaliação	do	erro

Neste	problema,	interessa-nos	o	intervalo	de	extremos	7,9	e	8.	Como	1,83	=	5,832	<
7,9,	segue	que,	para	todo	x,	7,9	≤	x	≤	8.
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e,	portanto,

Daí

e,	portanto,	para	7,9	≤	x	≤	8,

e	daí

(Observe:	 	 Deste	 modo,	 o	 módulo	 do

erro	cometido	na	aproximação

é	inferior	a	10−5.					■

Observação.	A	 escolha	 de	 1,8	 foi	 feita	 por	 inspeção.	 Poderíamos	 ter	 escolhido	 1,9,

pois,	(1,9)3	<	7,9.	Com	a	escolha	de	1,8	conseguimos	um	

tal	 que	 	 o	 que	 nos	 permitiu	 utilizar	 o

Exemplo	2.	Evidentemente,	quanto	menor	o	M,	menor	será	a	majoração	para	o	erro.
Neste	 problema,	 a	 escolha	 de	 1,9	 seria	 preferível.	 Se	 tivéssemos	 escolhido	 1,9,
chegaríamos	 à	 conclusão	 de	 que	 o	 erro	 cometido	 na	 aproximação	 é,	 em	 realidade,

inferior	a	10−6.	Observe,	ainda,	que,	para	7,9	≤	x	<	8,	

o	que	mostra	que	1,9916319	é	aproximação	por	excesso.
Seja	f	derivável	até	a	2.ª	ordem	no	intervalo	I	e	seja	x0	∈	I.	Seja	E	(x)	o	erro	que	se

comete	na	aproximação	de	 f	(x)	por	P	(x),	 em	que	P	 (x)	 é	o	polinômio	de	Taylor	de
ordem	2	de	f	em	volta	de	x0:
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Vamos	 mostrar	 a	 seguir	 que,	 para	 x	 →	 x0,	 o	 erro	 E	 (x)	 tende	 a	 zero	 mais
rapidamente	que	(x	−	x0)2.	De	fato,

Pela	1.ª	regra	de	L’Hospital

Assim,

Provaremos	a	seguir	que

é	o	único	polinômio	de	grau	no	máximo	2	 que	goza	da	propriedade	de	o	 erro	E	 (x)
tender	a	zero	mais	rapidamente	que	(x	−	x0)2,	quando	x	→	x0.

Seja	então

f	(x)	=	f	(x0)	+	A	(x	−	x0)	+	B	(x	−	x0)2	+	E1	(x)

em	que

Vamos	provar	que

De	fato,	de
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segue

e,	portanto,

uma	vez	que

Segue	que

daí

o	 que	 implica	A	 =	 f′(x0)	 (observe	 que,	 se	 tivéssemos	A	 ≠	 f′(x0),	 o	 limite	 acima	 não
poderia	ser	zero).	Assim

e,	portanto,	

EXEMPLO	5.	Seja	 	Mostre	que	P	(x)	=	1	+	x	+	x2	é	o	polinômio	de

Taylor,	de	ordem	2,	de	f	em	volta	de	x0	=	0.

Solução

Basta	 mostrar	 que	E	 (x)	 =	 f	 (x)	 −	P	 (x)	 tende	 a	 zero	 mais	 rapidamente	 que	 x2,
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(i)

(ii)

1.

quando	x	→	0.

Outro	processo.	Calcular	f	(0),	f′(0)	e	f″(0)	e	verificar	que

Dizemos	que	φ	(x)	é	um	infinitésimo,	para	x	→	x0,	se	 	Sejam	φ	(x)

e	φ1	(x)	dois	infinitésimos,	para	x	→	x0.	Dizemos	que	φ	(x)	é	um	infinitésimo	de	ordem
superior	à	de	φ1	(x)	se,	para	x	→	x0,	φ	(x)	tende	a	zero	mais	rapidamente	que	φ1	(x),	ou

seja,	se	 	É	usual	a	notação

φ	(x)	=	o	(φ1	(x))	para	x	→	x0

para	indicar	que	φ	(x)	é	um	infinitésimo	de	ordem	superior	à	de	φ1	(x),	para	x	→	x0.
Assim,	sendo	φ	(x)	e	φ1	(x)	infinitésimos	para	x	→	x0,

Observe	que	x	−	x0	só	é	infinitésimo	para	x	→	x0;	assim,

E	(x)	=	o	(x	−	x0)

significa	que	E	(x)	é	um	infinitésimo	de	ordem	superior	à	de	x	−	x0,	para	x	→	x0.
Do	que	vimos	anteriormente,	segue	que

f	(x)	=	f	(x0)	+	f′(x0)	(x	−	x0)	+	o	(x	−	x0)

Exercícios	16.2	

Determine	o	polinômio	de	Taylor,	de	ordem	2,	de	f	em	volta	de	x0	dado.
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2.

a)

b)

c)

d)

e)

f)

g)

h)

3.

4.

5.

Utilizando	polinômio	de	Taylor	de	ordem	2,	calcule	um	valor	aproximado	e
avalie	o	erro.

ln	1,3

e0,03

sen	0,1

cos	0,2

Mostre	que,	para	todo	x,

Mostre	que,	para	0	≤	x	≤	1

Utilizando	a	relação	sen	x	=	x	+	o	(x2),	calcule

(Sugestão	:	o	(x2)	é	um	infinitésimo	de	ordem	superior	a	x2,	para	x	→	0,	isto
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6.

a)

7.

a)
b)

8.

9.

16.3.

é,	 )

Verifique	que

Seja	

Determine	o	polinômio	de	Taylor	de	ordem	2	de	f	em	volta	de	x0	=	0.
Seja	a	>	0	um	número	real	dado.	Mostre	que	não	existe	M	>	0	tal	que	para
todo	x	em	[0,	a],	|	f	‴	(x)	|	≤	M.

Seja	f	derivável	até	a	2.ª	ordem	no	intervalo	I	e	seja	x0	∈	I.	Mostre	que	existe
uma	função	φ	(x)	definida	em	I	tal	que,	para	todo	x	em	I,

Seja	f	derivável	até	a	2.ª	ordem	no	intervalo	fechado	[a,	b]	e	seja	x0	∈	[a,	b].
Mostre	que	existe	M	>	0	tal	que	para	todo	x	em	[a,	b].

|	f	(x)	−	P	(x)	|	≤	M	|	x	−	x0	|2

em	que	

(Sugestão:	 verifique	 que	 a	 função	φ	 (x)	 do	 Exercício	 8,	 com	 φ	 (x0)	 =	 0,	 é
contínua	em	[a,	b].)

POLINÔMIO	DE	TAYLOR	DE	ORDEM	n

Seja	f	derivável	até	a	ordem	n	no	intervalo	I	e	seja	x0	∈	I.	O	polinômio
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denomina-se	polinômio	de	Taylor,	de	ordem	n,	de	f	em	volta	de	x0.
O	polinômio	de	Taylor,	 de	ordem	n,	de	 f	 em	volta	 de	x0	 é	 o	único	 polinômio	 de

grau	no	máximo	n	que	aproxima	localmente	f	em	volta	de	x0	de	modo	que	o	erro	E	(x)
tenda	a	zero	mais	rapidamente	que	(x	−	x0)n,	quando	x	→	x0.	(Verifique.)

O	polinômio	de	Taylor,	de	ordem	n,	de	f	em	volta	de	x0	=	0	denomina-se	também
polinômio	de	Mac-Laurin,	de	ordem	n,	de	f.

EXEMPLO	1.	Determine	o	polinômio	de	Taylor,	de	ordem	4,	de	f	(x)	=	ex	em	volta	de
x0	=	0.

Solução

Assim,

EXEMPLO	2.	Determine	o	polinômio	de	Taylor,	de	ordem	3,	de	f	(x)	=	ln	x,	em	volta
de	x0	=	1.

Solução

Assim,
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a)

Teorema.	 (Fórmula	de	Taylor	 com	 resto	de	Lagrange.)	Seja	 f	derivável	até	a
ordem	n	+	1	no	 intervalo	 I	e	sejam	x,	x0	∈	 I.	Então	existe	pelo	menos	um	 	no
intervalo	aberto	de	extremos	x0	e	x	tal	que

onde

Demonstração.	Fica	a	seu	cargo.					■

EXEMPLO	3.	Seja	f	derivável	até	a	ordem	n	+	1	no	intervalo	I	e	seja	x0	∈	I.	Suponha
que	existe	M	>	0	tal	que,	para	todo	x	em	I,

|	f	(n	+	1)	(x)	|	≤	M.

Prove	que,	para	todo	x	em	I,

em	que	P	(x)	é	o	polinômio	de	Taylor,	de	ordem	n,	de	f	em	volta	de	x0.

Solução

Segue	do	teorema	anterior	que,	para	todo	x	em	I,	existe	 	entre	x	e	x0	tal	que

Como	para	todo	x	em	I,	|	f	(n	+	1)	(x)	|	≤	M,	resulta

EXEMPLO	4.

Mostre	que,	para	todo	x	em	[0,	1],
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b)

a)

b)

Avalie	e	com	erro,	em	módulo,	inferior	a	10−5.

Solução

Seja	f	(x)	=	ex.	De	f	(x)	=	f′(x)	=	f″	(x)	=	…	=	f	(n	+	1)	(x)	segue	que	o	polinômio	de
Taylor,	de	ordem	n,	de	f	(x)	=	ex	em	volta	de	x0	=	0	é

Para	x	em	[0,	1],	0	≤	ex	=	f	(n	+	1)	(x)	≤	e	<	3.
De	acordo	com	o	teorema	anterior,	para	todo	x	em	[0,	1],	existe	 	entre	0	e	x	tal	que

Assim,	para	todo	x	em	[0,	1]	(tendo	em	vista	a	desigualdade	na	página	anterior)

Para	x	=	1

Precisamos	determinar	n	de	modo	que

Por	tentativas,	chega-se	a	

Assim,

com	erro	inferior	a	10−5.					■

Observação.	Como	 	segue	do	teorema	do	confronto,	que
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Mostraremos,	no	próximo	exemplo,	que	e	é	um	número	irracional.

EXEMPLO	5.	O	número	e	é	irracional.

Solução

Suponhamos	que	e	fosse	racional;	assim	existiriam	inteiros	positivos	a	e	b	tais	que

Para	todo	natural	n,

e,	pelo	exemplo	anterior,

Daí,	para	todo	natural	n,

Para	n	>	b	e	n	≥	3,	temos

	é	inteiro	pois	n	>	b	e	b	é	natural.

	é	inteiro	(por	quê?).

Assim,	A	−	B	é	um	inteiro	estritamente	positivo	e	menor	que	 	que	é	impossível.

Conclusão.	O	número	e	é	irracional.					■

No	próximo	exemplo	mostraremos	que
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em	 que	 a	 >	 0	 é	 um	 real	 fixo.	 Este	 resultado	 será	 útil	 na	 resolução	 de	 alguns	 dos
exercícios	que	serão	propostos	no	final	da	seção.

EXEMPLO	6.	Mostre	que	 	em	que	a	>	0	é	um	real	fixo.

Solução

Tomemos	um	natural	N	tal	que	

Temos,	então:

e,	assim,	para	todo	natural	p	≥	1,

Multiplicando	ambos	os	membros	por	 	vem:

Fazendo	n	=	N	+	p

De	 	segue	que
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EXEMPLO	7.	Mostre	que,	para	todo	x.

Solução

Para	todo	x,	existe	 	entre	0	e	x	tal	que

Se	x	>	0,	 	<	ex,	pois	 	∈	]0,	x	[,	logo

Como	 	pelo	confronto,

Se	x	<	0,	 	<	e0	=	1,	pois	 	∈	]x,	0[;	logo

De	 	segue

Fica	provado,	assim,	que,	para	todo	x,

Esta	igualdade	é	usualmente	escrita	na	forma
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EXEMPLO	8.	Mostre	que,	para	todo	x,

Solução

Pelo	exemplo	anterior,	para	todo	x	≥	0,

Como,	para	todo	x,	x2	≥	0,	resulta,	substituindo	na	desigualdade	acima	x	por	x2,

Para	 discutir	 o	 próximo	 exemplo,	 vamos	 precisar	 antes	 estabelecer	 uma
desigualdade	para	integrais.	Já	vimos	que,	se	f	for	contínua	em	[a,	b]	e	f	(x)	≥	0	em	[a,

b],	então	 	Segue	desta	desigualdade	que,	se	 f	e	g	 forem	contínuas	em

[a,	b]	e	f	(x)	≤	g	(x)	em	[a,	b],	então

Suponhamos,	então,	f	contínua	em	[a,	b];	assim,	|	f	|	também	é	contínua	em	[a,	b]	e
temos	para	todo	x	em	[a,	b],

−	|	f	(x)	|	≤	f	(x)	≤	|	f	(x)	|

daí,

logo

EXEMPLO	9.	Calcule	 	com	erro,	em	módulo,	inferior	a	10−5.

Solução

Para	x	em	[0,	1],	ex2	≤	e	<	3.	Segue	então	do	exemplo	anterior	que,	para	todo	x	em
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1.

2.

[0,	1],

Temos:

Como

resulta

Por	tentativas,	chega-se	que,	para	n	=	7,

Assim,

com	erro,	em	módulo,	inferior	a	10−5.					■

Exercícios	16.3	

Determine	o	polinômio	de	Taylor	de	ordem	5	em	volta	de	x0	dado.

Sejam	n	um	natural	ímpar	e	f	(x)	=	sen	x.	Mostre	que,	para	todo	x,
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3.

4.

5.

6.

7.

b)

Avalie	 sen	 1	 com	 erro,	 em	 módulo,	 inferior	 a	 10−5.	 (Sugestão:	 utilize	 o
Exercício	2.)

Mostre	que,	para	todo	x,

ou

Calcule	um	valor	aproximado	com	erro,	em	módulo,	inferior	a	10−3.

Mostre	que,	para	todo	x,

ou

a)	Verifique	que	 	Conclua	que,	se	|	t

|	<	1,

ou	seja,

Verifique	que	1	−	 t	+	 t2	−	 t3	 +	…	+	 (−1)n	 tn	 é	 o	 polinômio	 de	 Taylor,	 de

ordem	n,	de	 	em	volta	de	0.
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c)

d)

e)

8.

9.

a)

b)

c)

10.

Mostre	que	a	função	E	(t)	dada	por

é	contínua	em	]−1,	+	∞[.
Mostre	que,	para	todo	x	>	−1,

Verifique	 que	 	 é	 o	 polinômio	 de

Taylor,	de	ordem	n	+	1,	de	ln	(x	+	1)	em	volta	de	0.

Determine	o	polinômio	de	Taylor,	de	ordem	5,	de	g	(x)	=	arc	tg	x	em	volta	de
0.

Seja	

Mostre	que	P	(x)	=	1	−	x2	+	x4	−	x6	+	x8	−	x10	é	o	polinômio	de	Taylor,	de
ordem	10,	de	f	em	volta	de	x0	=	0.	(Não	é	necessário	calcular	as	derivadas
de	f	!!)
Mostre	que	a	função	E	(x)	dada	por

é	contínua	em	 .

Olhando	para	o	polinômio	do	item	(a),	calcule	f′	(0),	f	″	(0),	f	‴	(0)	etc.

Determine	o	polinômio	de	Taylor,	de	ordem	11,	de	g	(x)	=	arc	tg	x	em	volta	de
x0	=	0.
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11. Seja	f	(x)	=	(1	+	x)
α,	em	que	α	≠	0	é	um	real	dado.	Determine	o	polinômio	de

Taylor,	 de	 ordem	n,	 de	 f	 em	 volta	 de	 x0	 =	 0	 e	 dê	 a	 expressão	 do	 erro	 em
termos	da	derivada	de	ordem	n	+	1.
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17.1.

17

ARQUIMEDES,	PASCAL,	FERMAT
E	O	CÁLCULO	DE	ÁREAS

QUADRATURA	DA	PARÁBOLA:	MÉTODO	DE	ARQUIMEDES

Um	dos	criadores	do	Cálculo	Diferencial	e	Integral	foi	o	grande	matemático	grego
Arquimedes,	 que	 viveu	 no	 século	 3	 a.C.	 em	 Siracusa.	 Uma	 de	 suas	 inúmeras
descobertas	foi	a	fórmula	para	o	cálculo	da	área	de	um	segmento	de	parábola.	Nosso
objetivo	 aqui	 é	 obter	 tal	 fórmula	 seguindo	 o	 raciocínio	 rigoroso	 de	 Arquimedes.
Vamos	então	considerar	o	segmento	de	parábola	limitado	pela	parábola	y	=	x2	 e	pela
corda	AB.

Fig.	17.1

Lembrando	que	em	um	trapézio	o	segmento	que	 liga	os	pontos	médios	dos	 lados

não	paralelos	é	a	semissoma	das	bases,	resulta	que	a	ordenada	de	

Pela	Fig.	17.1,

Ou	seja,

MN	=	m2

(OK?)

A	altura	do	triângulo	AMN	em	relação	à	base	MN	é	m.	Também,	a	altura	do	triângulo
BMN	em	relação	à	base	MN	é	m.	Como
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MN	=	m2

e

altura	em	relação	à	base	MN	=	m

segue-se	que	a	soma	das	áreas	dos	triângulos	AMN	e	BMN	é:

Portanto,	a	área	do	triângulo	ANB	é	m3.	Vamos	destacar	este	resultado

Área	do	triângulo	ANB	=	m3.

Vamos	 então	 ao	 cálculo	 da	 área	 do	 segmento	 parabólico.	A	 seguir,	 suporemos	A
coincidindo	com	a	origem	do	sistema	de	coordenadas.

Fig.	17.2

Na	Fig.	17.2,	o	valor	de	m	é	b/2.	Assim,	a	área	T	do	triângulo	ANB	é	(b/2)3	=	b3/8.

Área	do	triângulo	

A	 área	 do	 triângulo	ANB	 é	 uma	 primeira	 aproximação	 para	 a	 área	 do	 segmento
parabólico	ANB.	Vamos	melhorar	esta	aproximação.	Vamos	somar	a	esta	área	as	áreas
dos	triângulos	AN1N	e	NN2B	(Fig.	17.3).

Área	AN1N	=	Área	NN2B	=	(b/4)3	=	b3/64

Segue-se	que
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Área	AN1N	+	Área	NN2B	=	b3/32	=	T/4.

Observe	 que	 a	 soma	 das	 áreas	 dos	 triângulos	 AN1N	 e	 NN2B	 é	 exatamente	 um
quarto	da	área	T	do	triângulo	ANB.

Assim,

é	uma	segunda	aproximação,	e	melhor,	para	o	nosso	segmento	parabólico.

Fig.	17.3

Dividindo,	agora,	o	intervalo	[0,	b]	em	8	partes	 iguais	e	somando-se	as	áreas	dos
novos	 triângulos	 obtidos,	 verifica-se	que	 a	 soma	dessas	novas	 áreas	 é	b3/128,	que	é
exatamente	um	quarto	da	área	anteriormente	acrescentada,	que	era	de	b3/32.

Assim,

é	uma	terceira	aproximação,	e	melhor,	para	o	nosso	segmento	parabólico.

Continuando	o	raciocínio	acima,	é	razoável	esperar	que	a	fórmula	para	o	cálculo	de
tal	área	seja:

Área	do	segmento	parabólico	
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Então,	para	chegar	à	 fórmula	para	a	área	do	segmento	parabólico,	é	só	calcular	a
soma	da	progressão	geométrica	infinita	de	primeiro	termo	1	e	razão	 	que	sabemos	ser

	(De	acordo?)	Só	que	Arquimedes	não	trabalhava	com	limites	infinitos.	Para	chegar

à	fórmula

Área	do	segmento	parabólico	

Arquimedes	 primeiramente	 utilizou	 o	 seu	MÉTODO	 de	 descoberta:	 verificou	 “por
meio	de	uma	balança”	que	o	peso	do	 segmento	de	parábola	era	exatamente	quatro
terços	 do	 triângulo	 ANB	 (veja	 referência	 bibliográfica	 1	 no	 final	 do	 capítulo).	 Em
seguida,	 admitiu	 que	 o	 valor	 da	 área	 era	 	 por	 uma	 dupla	 redução	 ao	 absurdo,

provou	a	sua	veracidade.	É	o	que	faremos	a	seguir.	Temos

Continuando	o	raciocínio	acima,	obtém-se

Somando	3	aos	dois	membros,	em	seguida	dividindo	por	3	e	por	último	multiplicando
os	dois	membros	por	T,	resulta

O	objetivo	é	então	provar	que	a	área	do	segmento	parabólico	ANB	é	 	A	prova	será

feita	 em	 duas	 etapas:	 na	 primeira,	 prova-se	 que	 a	 área	 do	 segmento	 parabólico	 não
pode	ser	menor	que	 	e	na	segunda,	que	a	área	do	segmento	parabólico	não	pode

ser	maior	que	 	Indicando	por	S	a	área	do	segmento	parabólico,	será	provado	então

que	

Para	 a	 prova	 da	 primeira	 etapa	 Arquimedes	 utilizou	 o	 seguinte	 postulado:	 “A
diferença	pela	qual	a	maior	de	duas	áreas	excede	a	menor	pode,	sendo	somada	a	si
mesma	repetidas	vezes,	exceder	qualquer	área	finita	dada”,	cujo	enunciado	moderno
é:	“Dados	os	números	reais	x	e	y,	com	x	>	0,	existe	um	natural	m	tal	que	mx	>	y”,	que
nada	mais	é	do	que	a	nossa	conhecida	propriedade	de	Arquimedes.

Para	 a	 prova	 da	 segunda	 etapa,	 Arquimedes	 utilizou	 as	 duas	 seguintes
propriedades:
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I.

II.

“Dadas	duas	grandezas	distintas,	se	da	maior	subtrai-se	mais	que	sua	metade,	do
restante	mais	que	sua	metade,	e	assim	por	diante,	acabará	restando	uma	grandeza
menor	que	a	menor	das	grandezas	dadas.”
“A	reta	tangente	à	parábola	y	=	x2	no	ponto	de	abscissa	a	+	m	é	paralela	à	corda	de
extremidades	(a,	a2)	e	(a	+	2m,	(a	+	2m)2).”	(Verifique.)

Fig.	17.4

Observe	que	a	área	do	triângulo	XYZ	é	maior	que	a	metade	do	segmento	parabólico
XYZ.	(Você	concorda?)

PROVA	DA	PRIMEIRA	ETAPA.	

Suponhamos	 por	 absurdo	 que	 	 Assim,	 	 Pela	 propriedade	 de

Arquimedes,	existe	um	natural	n	tal	que

e,	portanto,

Daí,

Ou	seja,

que	é	contradição,	pois	para	todo	n
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17.2.

PROVA	DA	SEGUNDA	ETAPA.	

Suponhamos,	agora,	 	Das	 propriedades	 I	 e	 II	 acima,	 existe	 um	natural	n	 tal

que

e,	portanto,

Segue	que

que	é	uma	contradição.

Se	a	área	do	segmento	parabólico	não	pode	ser	maior	e	tampouco	menor	que	

resulta	que	tal	área	é	exatamente	 	Em	consequência,	a	área	da	região	limitada	pela

parábola	y	=	x2,	0	≤	x	≤	b,	pelo	eixo	x	e	pela	reta	

PASCAL	E	O	CÁLCULO	DE	ÁREAS

Pela	fórmula	de	Arquimedes	para	a	área	de	um	segmento	de	parábola,	segue,	como
vimos	na	seção	anterior,	que	a	área	da	região	limitada	pela	curva	y	=	x2,	0	≤	x	≤	b,	pelo
eixo	 x	 e	 pela	 reta	 	 Passados	 quase	 dois	 mil	 anos	 dessa	 descoberta	 de

Arquimedes,	Bonaventura	Cavalieri	(1598-1647)	interessou-se	pelo	cálculo	da	área	da
região	limitada	pela	curva	y	=	xk,	0	≤	x	≤	b,	pelo	eixo	x	e	pela	reta	x	=	b,	com	k	≥	3	e
natural.	Utilizando	o	seu	método	dos	indivisíveis,	Cavalieri	provou,	para	k	de	3	até	9,	a

fórmula	 	para	área	de	tal	região	e	afirmou	que	a	fórmula	era	válida	para	todo	k.

Nesta	seção,	utilizando	as	 ideias	de	Blaise	Pascal	(1623-1662),	vamos	mostrar	como
chegar	 rapidamente	 e	 de	 forma	 maravilhosa	 a	 esta	 fórmula,	 e	 na	 próxima	 seção
veremos	como	Fermat	brincou	com	esse	problema.

Para	 se	 chegar	 à	 fórmula,	 divide-se	 o	 intervalo	 [0,	 b]	 em	 n	 partes	 iguais	 e

considera-se	a	soma	S(n)	das	áreas	dos	retângulos	de	base	 	e	altura	 	para	i	=	1,
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2,	…,	n	(Fig.	17.5).

Fig.	17.5

E,	portanto,

Indicando	por	Sk	a	soma	1k	+	2k	+	3k	+	…	+	nk,	resulta

Para	resolver	o	problema,	basta	determinar	o	limite	de	 	para	n	tendendo	a	+∞.	E

isto	 se	 faz	 utilizando	 a	 identidade	 de	 Pascal,	 que	 estabelece	 uma	 relação	 entre	 as
somas	S1,	S2,	…,	Sk	e	que	será	obtida	a	seguir	(veja	p.	266	da	referência	bibliográfica	2
deste	capítulo).

Primeiro,	 vamos	 relembrar	 a	 fórmula	 para	 o	 desenvolvimento	 do	 binômio	 de
Newton.	Chamamos	de	binômio	de	Newton	a	expressão	(A	+	B)k.	Observamos	que,	no
tempo	de	Pascal,	 tal	expressão	não	era,	ainda,	conhecida	como	binômio	de	Newton;
aliás,	 na	 época	 em	que	Pascal	 estava	 pensando	nesse	 assunto,	Newton	deveria	 estar
com	mais	ou	menos	12	anos	de	idade.	Temos

e,	de	modo	geral,
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em	que	 	é	o	coeficiente	binominal	de	ordem	(k,	p)	e	é	dado	por

Observamos	que	 	nada	mais	 é	do	que	o	número	de	combinações	 de	 k	 elementos

tomados	 p	 a	 p.	No	 final	 da	 seção,	 utilizando	 o	princípio	 de	 indução	 finita,	 que	 foi
praticamente	estabelecido	por	Pascal	 (veja	p.	265	da	 referência	bibliográfica	2	deste
capítulo),	provaremos	a	fórmula	para	o	desenvolvimento	do	binômio	de	Newton.

Para	obter	a	identidade	de	Pascal,	vamos	trocar	k	por	k	+	1,	fazer	B	=	1,	substituir	A
sucessivamente	 por	 1,	 2,	 3,	 …,	 n	 e,	 em	 seguida,	 somar	 membro	 a	 membro	 as
igualdades	obtidas.

Somando	membro	 a	membro	 as	 igualdades	 acima	 e	 observando	 que	 (1	 +	 1)k	 +	 1	 na
primeira	linha	e	2k	+	1,	(2	+	1)k	+	1	(ambos	na	segunda	linha)	e	3k	+	1	na	terceira	linha,	…,
((n	 −	 1)	+	1)k	 +	 1	 na	 penúltima	 linha	 e	nk	 +	 1	 na	 última	 linha	 podem	 ser	 cancelados,
resulta

que	é	a	identidade	obtida	por	Pascal.
Da	identidade	acima	segue	que,	para	k	=	1,

e,	portanto	(lembrando	que	

Para	k	=	2,
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E	assim	por	diante.
Logo,	S1	é	um	polinômio	de	grau	2	na	variável	n.	Observe	que	S1	nada	mais	é	do

que	 a	 soma	 da	 progressão	 aritmética	 1,	 2,	 3,	 …,	 n.	 Como	 S1	 é	 do	 grau	 2,	 pela
identidade	acima,	S2	será	do	grau	3	na	variável	n.	Fica	a	seu	cargo	verificar	que	S3	 é
um	polinômio	de	grau	4	na	variável	n	e,	de	modo	geral,	Sk	é	um	polinômio	de	grau	k
+	1	na	variável	n.	Esta	observação	sobre	o	grau	de	Sk	será	fundamental	no	cálculo	do
limite	de	 	para	n	 tendendo	a	 infinito,	e	é	esta	observação	que,	para	mim,	 torna

lindo	 o	 método	 de	 Pascal.	 Espero	 que	 você	 concorde	 comigo!	 Vamos,	 então,	 ao
cálculo	do	limite	mencionado	acima.

Primeiro,	vamos	dividir	os	dois	membros	da	identidade	de	Pascal	por	nk	+	1.	Temos

De

segue	que

Como	os	graus	de	Sk	−	1,	Sk	−	2,	…,	S2	e	S1	são,	respectivamente,	k,	k	−	1,	…,	3	e	2,	e	o
grau	de	nk	+	1	é	k	+	1,	segue	que	o	limite,	para	n	tendendo	para	infinito,	de

é	zero.	(Você	concorda?)	Como	 	resulta

Conclusão:

Observamos	que	S(n)	 é	uma	aproximação	por	excesso	da	área	da	 região	 limitada

598



pela	curva	y	=	xk,	0	≤	x	≤	b,	pelo	eixo	x	e	pela	reta	x	=	b.	Por	outro	lado,

(veja	Fig.	17.6)	é	uma	aproximação	por	 falta	da	área	em	questão.	Procedendo-se	de
forma	análoga,	prova-se	que

Fig.	17.6

Fica	assim	estabelecida,	pelo	método	de	Pascal,	a	 fórmula	para	o	cálculo	da	área
acima	mencionada.

A	seguir,	utilizando	o	princípio	de	 indução	finita,	vamos	provar	a	 fórmula	para	o
desenvolvimento	do	binômio	de	Newton.	Antes	porém	vamos	estabelecer	tal	princípio.
No	 que	 se	 segue,	P(k)	 indicará	 uma	 proposição	 (que	 pode	 ser	 falsa	 ou	 verdadeira)
associada	ao	natural	k.	Por	exemplo,

2k	>	k
k	+	1	=	k

são	proposições	associadas	ao	natural	k.	Qual	o	menor	número	possível	de	condições
que	devemos	 impor	 a	P(k)	para	que	P(k)	 seja	 verdadeira	 para	 todo	natural	k	 ≥	a	 (a
natural)?	Evidentemente,	a	primeira	condição	a	impor	é	que	P(k)	seja	verdadeira	para
k	=	a.	Suponhamos,	além	disso,	que	para	todo	k	≥	a

P(k)	⇒	P(k	+	1).

Sendo	então	P(a)	verdadeira	e	como

599



(i)

(ii)

P(a)	⇒	P(a	+	1),

resulta	que	P(a	+	1)	será	também	verdadeira.

P(a	+	1)	⇒	P(a	+	2)

logo,	P(a	+	2)	também	será	verdadeira.	Prosseguindo	com	este	raciocínio,	é	razoável
que	se	conclua	que	P(k)	seja	verdadeira	para	 todo	k	≥	a.	Quem	nos	garante	que	 isto
realmente	acontece	é	o	princípio	de	indução	finita,	cujo	enunciado	é	o	seguinte:

Princípio	de	indução	finita	(PIF).	Sejam	a	um	número	natural	dado	e	P(k)	uma
proposição	associada	a	cada	natural	k,	k	≥	a.	Suponhamos	que

P(k)	seja	verdadeira	para	k	=	a;

para	todo	natural	k	≥	a

P(k)	⇒	P(k	+	1).

Nestas	condições,	P(k)	será	verdadeira	para	todo	natural	k	≥	a.

Para	 a	 prova	 da	 fórmula	 do	 desenvolvimento	 do	 binômio	 de	 Newton,	 vamos
precisar,	ainda,	da	seguinte	propriedade	dos	coeficientes	binomiais

e	cuja	verificação	deixamos	a	seu	cargo.	Vamos	então	à	prova	de	que	para	todo	natural
k,	k	≥	2,	P(k)	é	verdadeira	em	que	P(k)	é	a	proposição

Para	k	=	2	a	fórmula	é	verdadeira,	pois,

Provemos	então	que	P(k)	⇒	P(k	+	1).	Para	isto,	basta	multiplicar	os	dois	membros	de
P(k)	por	A	+	B.	Multiplicando	o	 segundo	por	A	 e,	 em	 seguida,	 por	B	 e	 utilizando	 a
propriedade	 dos	 coeficientes	 binomiais	 acima	 (e	 lembrando	 que	

resulta:
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17.3.

cuja	 soma	 é	 exatamente	 o	 desenvolvimento	 do	 binômio	 de	 Newton	 (A	 +	 B)k	 +	 1.
Portanto,	 para	 todo	 k	 ≥	 2,	 P(k)	⇒	 P(k	 +	 1).	 Fica,	 assim,	 provada	 a	 fórmula	 do
desenvolvimento	do	binômio	de	Newton	para	todo	natural	k,	k	≥	2.

FERMAT	E	O	CÁLCULO	DE	ÁREAS

Vejamos	 como	 Pierre	 de	 Fermat	 (1601-1665)	 obteve	 a	 fórmula	 	 para	 o

cálculo	da	área	limitada	pela	curva	y	=	xk,	0	≤	x	≤	b,	pelo	eixo	x	e	pela	reta	x	=	b,	k
natural.	Fermat	procedeu	da	seguinte	forma:	considerou	um	número	E,	como	0	<	E	<
1,	e	dividiu	o	intervalo	]0,	b]	em	infinitos	subintervalos	da	forma

…,	[bE	i,	bE	i	−	1],	…,	[bE3,	bE2],	[bE2,	bE],	[bE,	b].

Observe	que	b,	bE,	bE2,	bE3,	…,	bEi	−	1,	bE	i,	…	é	uma	progressão	geométrica	de	razão
E	e	que	Ei	tende	a	zero	para	i	tendendo	a	infinito,	pois	0	<	E	<	1.

Fig.	17.7

A	área	do	retângulo	R	i	dado	por	bE	i	≤	x	≤	bE	i	−	1,	0	≤	y	≤	(bE	i	−	1)	k	é

área	Ri	=	bE	i	−	1(1	−	E)bkEk(i	−	1)	=	bk	+	1(1	−	E)(Ek	+	1)i	−	1,	i	=	1,	2,	3,	…
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Segue	que	as	áreas	dos	retângulos	Ri	formam	uma	progressão	geométrica	de	primeiro
termo	bk	 +	 1(1	−	E)	 e	 razão	Ek	 +	 1.	Antes	de	prosseguir,	vamos	 relembrar	as	 fórmulas
para	 as	 somas	 dos	 termos	 da	 progressão	 geométrica	 finita	 e	 infinita	 de	 razão	 q	 e
primeiro	termo	1:

(verifique	por	indução	finita)	e	para	0	<	q	<	1

Fazendo	q	=	E	k	+	1,	a	soma	das	áreas	dos	retângulos	Ri	é

De

resulta

soma	das	áreas	dos	retângulos	

Observamos	que	a	soma	das	áreas	dos	retângulos	é	uma	aproximação	por	excesso	da
área	da	 região	 em	questão	 e	que	quanto	mais	próximo	de	1	 estiver	E	melhor	 será	 a
aproximação.	Para	E	tendendo	a	1	(em	verdade,	Fermat	simplesmente	substituiu	E	por

1	 na	 soma	 acima),	 a	 soma	 acima	 tenderá	 a	 	 Nada	 mudaria	 se	 em	 vez	 de

considerarmos	aproximação	por	excesso	considerássemos	aproximação	por	falta.
Você	gostou?	Se	gostou	mesmo,	verifique	que	o	método	de	Fermat	continua	válido

mesmo	quando	k	é	um	número	racional!	Mas	se	você	gostou	muito	mesmo,	utilizando
a	progressão	geométrica	1,	E,	E2,	E3,	…,	com	E	>	1,	e	supondo	k	natural,	k	≥	2,	mostre
que	a	área	da	região	limitada	pelo	gráfico	de	 	pelo	eixo	x	e	pela	reta	x	=

1	é	dada	pela	fórmula	

Bem,	por	volta	de	1670,	Sir	Isaac	Newton	(1642-1727)	já	estava	calculando	a	área
sob	a	curva	y	=	axm/n,	para	x	 de	 0	 a	x,	 utilizando	 a	primitiva	 	 da

função.	 O	 Teorema	 Fundamental	 do	 Cálculo	 estava	 nascendo,	 e	 o	 Cálculo
Diferencial	 e	 Integral,	 nas	 mãos	 de	 Newton,	 se	 consolidando.	 (Veja	 referência
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2.

bibliográfica	2,	abaixo,	p.	290.)
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A1.1.

a)

b)

c)

a)

b)

c)

Apêndice
1

PROPRIEDADE	DO	SUPREMO

MÁXIMO,	MÍNIMO,	SUPREMO	E	ÍNFIMO	DE	UM	CONJUNTO

O	 objetivo	 desta	 seção	 é	 introduzir	 os	 conceitos	 de	 que	 necessitaremos	 para
enunciar	a	propriedade	do	supremo.	Como	veremos,	é	esta	propriedade	que	diferencia
ℝ	de	ℚ;	é,	ainda,	esta	propriedade	que	torna	o	sistema	dos	números	reais	uma	cópia
perfeita	da	reta.	O	enunciado	de	tal	propriedade	será	objeto	da	próxima	seção.

Seja	A	 um	 conjunto	 de	 números	 reais.	 O	 maior	 elemento	 de	 A,	 quando	 existe,
denomina-se	máximo	de	A	 e	 indica-se	 por	máx	A.	O	menor	 elemento	 de	A,	 quando
existe,	denomina-se	mínimo	de	A	e	indica-se	por	mín	A.

Dizemos	que	um	número	m	é	uma	cota	superior	de	A	se	m	for	máximo	de	A	ou	se
m	for	estritamente	maior	que	todo	número	de	A.	Diremos	que	m	é	uma	cota	inferior	de
A	se	m	for	mínimo	de	A	ou	se	m	for	estritamente	menor	que	todo	número	de	A.

EXEMPLO	1.	Seja	A	=	{1,	2,	3}.	Temos:

1	é	o	mínimo	de	A,	1	=	mín	A;	3	é	o	máximo	de	A,	3	=	máx	A.

3,	 	100	são	cotas	superiores	de	A.

1,	0,	 	são	cotas	inferiores	de	A.					■

EXEMPLO	2.	Seja	A	=	{x	∈	ℝ	|	1	≤	x	<	2}.	Temos:

1	=	mín	A.

Para	todo	t	∈	A,	 	também	pertence	a	A	e	 	(verifique).

Assim,	para	 todo	 t	em	A,	existe	um	outro	número	em	A	que	é	estritamente	maior
que	t;	logo,	A	não	admite	máximo.

Todo	número	m	≤	1	é	uma	cota	inferior	de	A.
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d)

1.

a)
b)
c)
d)
e)

f)
g)
h)

2.

3.

A1.2.

Todo	número	m	≥	2	é	uma	cota	superior	de	A.					■

Um	conjunto	A	pode	não	admitir	máximo;	entretanto,	poderá	admitir	uma	menor
cota	superior.	Por	exemplo,	o	conjunto

A	=	{x	∈	ℝ	|	1	≤	x	<	2}

não	admite	máximo,	mas	admite	uma	menor	cota	superior	que	é	2.

A	menor	cota	superior	de	um	conjunto	A,	quando	existe,	denomina-se	supremo	de
A	e	indica-se	por	sup	A.

É	 claro	 que	 se	 A	 admitir	 máximo	m,	 então,	m	 será,	 também,	 o	 supremo	 de	 A.
Entretanto,	 A	 poderá	 não	 admitir	 máximo,	 mas	 admitir	 supremo;	 por	 exemplo,	 o
conjunto	A	acima	não	admite	máximo,	mas	admite	supremo	2	:	2	=	sup	A.

A	maior	cota	inferior	de	um	conjunto	A,	quando	existe,	denomina-se	ínfimo	de	A	e
indica-se	por	inf	A.

Se	A	admitir	uma	cota	superior,	então	diremos	que	A	é	limitado	superiormente.
Se	A	admitir	uma	cota	inferior,	diremos	que	A	é	limitado	inferiormente.

Exercícios	A1.1	

Determine,	caso	existam,	o	máximo,	mínimo,	supremo	e	ínfimo.

A	=	{x	∈	ℝ	|	−3	≤	x	≤	4}
A	=	{x	∈	ℝ	|	−3	<	x	<	4}
A	=	{x	∈	ℝ	|	x	<	5}
A	=	{x	∈	ℝ	|	x	≥	2}

A	=	{x	∈	ℝ	|	|	3x	−	1	|	>	1}
A	=	{−3,	−1,	0,	2,	1}

Assinale	os	conjuntos	do	Exercício	1	que	são	limitados	superiormente.

	é	limitado	superiormente?	Por	quê?

PROPRIEDADE	DO	SUPREMO

Admitiremos	a	seguinte	importante	propriedade	dos	números	reais.

Propriedade	do	supremo.	Todo	conjunto	de	números	reais,	não	vazio	e	limitado
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a)

b)

superiormente,	admite	supremo.

Pelo	 fato	 de	ℝ	 satisfazer	 a	 propriedade	 do	 supremo,	 diremos	 que	ℝ	 é	 um	corpo
ordenado	completo.	Os	 teoremas	centrais	do	cálculo	dependem	desta	propriedade	de
ℝ.

Uma	 consequência	 importante	 da	 propriedade	 do	 supremo	 é	 a	 propriedade	 de
Arquimedes.

Propriedade	de	Arquimedes.	Se	x	>	0	e	y	são	dois	reais	quaisquer,	então	existe
pelo	menos	um	número	natural	n	tal	que

nx	>	y.

Demonstração

Suponhamos,	por	absurdo,	que	para	 todo	natural	n,	nx	≤	y;	 consideremos	então	o
conjunto

A	=	{nx	|	n	∈	ℕ}.

A	é	não	vazio	(1	·	x	=	x	∈	A)	e	limitado	superiormente	por	y,	logo	admite	supremo.
Seja	s	o	supremo	de	A.	Como	x	>	0,	s	−	x	<	s;	assim	s	−	x	não	é	cota	superior	de	A	(por
quê?);	logo	existe	um	natural	m	tal	que

s	−	x	<	mx

e	daí

s	<	(m	+	1)	x

que	é	uma	contradição,	pois	s	é	o	supremo	de	A	e	(m	+	1)	x	∈	A.	Deste	modo,	supor	nx
≤	y	para	 todo	natural	n	 leva-nos	a	uma	contradição,	 logo,	nx	>	y	para	algum	natural
n.					■

O	próximo	exemplo	exibe-nos	duas	consequências	 importantes	da	propriedade	de
Arquimedes.

EXEMPLO

Para	todo	x	>	0,	existe	pelo	menos	um	natural	n	tal	que	

Para	todo	real	x	existe	pelo	menos	um	natural	n	tal	que	n	>	x.

Solução
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a)

b)

A1.3.

(i)

(ii)

Como	x	>	0,	por	Arquimedes,	existe	um	natural	n	tal	que	nx	>	1	e,	portanto,	

(Observe:	nx	>	1	⇒	n	≠	0).
Como	1	>	0,	por	Arquimedes,	existe	um	natural	n	tal	que	n	>	x.					■

A	 propriedade	 que	 apresentaremos	 na	 próxima	 seção	 é	 uma	 outra	 consequência
importante	da	propriedade	do	supremo	e	será	utilizada	várias	vezes	no	texto.

Exercício	A1.2	

Prove	que	se	A	for	não	vazio	e	limitado	inferiormente,	então	A	admite	ínfimo.

DEMONSTRAÇÃO	DA	PROPRIEDADE	DOS	INTERVALOS	ENCAIXANTES

Seja	[	a0,	b0	 ],	 [	a1,	b1	 ],	 [	a2,	b2	 ],	…,	 [	an,	bn	 ],	…	uma	sequência	de	 intervalos
satisfazendo	as	condições:

[	a0,	b0	]	⊃	[	a1,	b1	]	⊃	[	a2,	b2	]	⊃	…	⊃	[	an,	bn	]	⊃	…	(ou	seja,	cada	intervalo
da	sequência	contém	o	seguinte);

para	todo	r	>	0,	existe	um	natural	n	tal	que

bn	−	an	<	r

(ou	seja,	à	medida	que	n	cresce,	o	comprimento	do	intervalo	[	an,	bn	]	vai
tendendo	a	zero).

Nestas	 condições,	 existe	 um	 único	 real	 α	 que	 pertence	 a	 todos	 os	 intervalos	 da
sequência,	isto	é,	existe	um	único	real	α	tal	que,	para	todo	natural	n,	an	≤	α	≤	bn.

Demonstração

A	=	{a0,	a1,	a2,	…,	an,	…}	é	não	vazio	e	limitado	superiormente,	pois	todo	bn	é	cota
superior	de	A.	Assim,	A	admite	supremo;	seja	α	tal	supremo.	Como	α	é	a	menor	cota
superior	de	A,	para	todo	natural	n	temos

an	≤	α	≤	bn.

Se	β	for	outro	real	tal	que,	para	todo	n,

an	≤	β	≤	bn

teremos,	para	todo	n,
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A1.4.

a)

b)

|	α	−	β	|	≤	bn	−	an.

Tendo	em	vista	a	propriedade	(ii),	para	todo	r	>	0,

|	α	−	β	|	<	r.

Logo,	α	=	β	(por	quê?).					■

LIMITE	DE	FUNÇÃO	CRESCENTE	(OU	DECRESCENTE)

Sejam	f	uma	função	e	A	um	subconjunto	do	domínio	de	f.	Dizemos	que	f	é	limitada
superiormente	em	A	se	existir	um	número	real	M	tal	que,	para	todo	x	∈	A,	f	(x)	≤	M.

Por	outro	lado,	dizemos	que	f	é	limitada	inferiormente	em	A	se	existir	um	número
real	m	tal	que,	para	todo	x	∈	A,	f	(x)	≥	m.

Teorema	Seja	f	uma	função	definida	e	crescente	em	]	a,	b	[.

Se	f	for	limitada	superiormente	em	]	a,	b[,	então

com	L	=	sup	{	f	(x)	|	x	∈	]	a,	b	[	}.

Se	f	não	for	limitada	superiormente	em	]	a,	b	[,	então

Demonstração

a)	O	conjunto	{	 f	(x)	 |	x	∈	 ]	a,	b	 [	}	é	não	vazio	e	 limitado	superiormente,	 logo,
admite	um	supremo	L.	Dado,	então	∊	>	0,	existe	um	x1	∈	]	a,	b	[,	tal	que,	L	−	∊	<	f	(x1)
≤	L.	Daí,	para	todo	x	em	]	x1,	b	[,	tem-se

L	−	∊	<	f	(x1)	≤	f	(x)	≤	L	<	L	+	∊

ou	seja,

L	−	∊	<	f	(x)	<	L	+	∊.

Logo,

b)	Como	f	não	é	limitada	superiormente,	para	todo	M	>	0	dado,	existe	x1	∈	]	a,	b	[,
tal	que	f	(x1)	>	M.	Pelo	fato	de	f	ser	crescente,	tem-se,	para	todo	x	∈	]	x1,	b	[,
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f	(x)	>	M

ou	seja,

Fica	 para	 o	 leitor	 enunciar	 e	 provar	 teorema	 análogo	 para	 o	 caso	 de	 f	 ser
decrescente	em	]	a,	b	[.

Conforme	 as	 palavras	 seguintes	 de	 Richard	 Dedekind	 (1813-1916)	 em	 seu	 livro
Essays	on	the	theory	of	numbers,	a	razão	que	o	levou	à	definição	de	número	real	(veja
Apêndice	6)	foi	exatamente	o	teorema	anterior.

“Minha	 atenção	voltou-se	primeiramente	para	 as	 considerações	que	 constituem	o
assunto	deste	 folheto	no	outono	de	1858.	Como	professor	 na	Escola	Politécnica	 em
Zurique,	vime	pela	primeira	vez	obrigado	a	dar	aulas	 sobre	os	elementos	do	cálculo
diferencial	e	senti	mais	agudamente	do	que	nunca	a	falta	de	um	fundamento	realmente
científico	para	a	aritmética.	Ao	discutir	a	noção	de	limite	e	especialmente	ao	provar	o
teorema	segundo	o	qual	toda	magnitude	que	cresce	continuamente,	mas	não	além	de
todos	os	limites,	deve	certamente	se	aproximar	de	um	valor	finito,	tive	que	recorrer	a
evidências	 geométricas.	 Mesmo	 agora,	 esse	 recurso	 à	 intuição	 geométrica	 numa
primeira	 apresentação	 do	 cálculo	 diferencial,	 eu	 o	 vejo	 como	 extremamente	 útil,	 do
ponto	de	vista	didático,	e	até	mesmo	indispensável	se	não	se	quer	perder	muito	tempo.
Mas	 ninguém	 pode	 negar	 que	 essa	 forma	 de	 introdução	 ao	 cálculo	 diferencial	 não
pode	 se	 pretender	 científica.	 Para	 mim,	 esse	 sentimento	 de	 insatisfação	 foi	 tão
esmagador	que	mantive	a	 firme	 intenção	de	continuar	 refletindo	 sobre	a	questão	até
encontrar	 um	 fundamento	 puramente	 aritmético	 e	 perfeitamente	 rigoroso	 para	 os
princípios	da	análise	infinitesimal.”	(Dover	Publications,	Inc.,	Nova	York.)
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A2.1.

Apêndice
2

DEMONSTRAÇÕES	DOS	TEOREMAS	DO	CAP.	5

DEMONSTRAÇÃO	DO	TEOREMA	DO	ANULAMENTO

Teorema	(do	anulamento).	Se	f	for	contínua	em	[	a,	b	]	e	se	f	(a)	e	f	(b)	tiverem
sinais	contrários,	então	existirá	pelo	menos	um	c	em	[	a,	b	]	tal	que	f	(c)	=	0.

Demonstração

Para	fixar	o	raciocínio,	suponhamos	f	(a)	<	0	e	f	(b)	>	0.	Façamos	a	=	a0	e	b	=	b0;
seja	c0	o	ponto	médio	do	segmento	[	a0,	b0	].	Temos

Suponhamos	f	(c0)	<	0	e	façamos	c0	=	a1	e	b0	=	b1.	Temos	f	(a1)	<	0	e	 f	 (b1)	>	0.
Seja	c1	o	ponto	médio	do	segmento	[	a1,	b1	].	Temos

Suponhamos	f	(c1)	≥	0	e	façamos	a1	=	a2	e	c1	=	b2.	Assim,	f	(a2)	<	0	e	f	(b2)	≥	0.
Prosseguindo	com	este	raciocínio,	construiremos	uma	sequência	de	intervalos

[	a0,	b0	]	⊃	[	a1,	b1	]	⊃	[	a2,	b2	]	⊃	·	·	·	⊃	[	an,	bn	]	⊃	·	·	·

que	 satisfaz	 as	 condições	 da	 propriedade	 dos	 intervalos	 encaixantes	 e	 tal	 que,	 para
todo	n,

Seja	c	o	único	real	tal	que,	para	todo	n,

an	≤	c	≤	bn.

As	sequências	de	termos	gerais	an	e	bn	convergem	para	c	(verifique).	Segue,	então,
da	continuidade	de	f,	que
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A2.2.

A2.3.

Segue	de	①	e	de	②	que

f	(c)	≤	0	e	f	(c)	≥	0

e,	portanto,	f	(c)	=	0.					■

DEMONSTRAÇÃO	DO	TEOREMA	DO	VALOR	INTERMEDIÁRIO

Teorema	(do	valor	intermediário).	Se	for	contínua	no	intervalo	fechado	[a,	b	]
e	se	γ	for	um	real	compreendido	entre	f	(a)	e	f	(b),	então	existirá	pelo	menos	um	c
em	[	a,	b	]	tal	que	f	(c)	=	γ.

Demonstração

Para	fixar	o	raciocínio,	suponhamos	f	(a)	<	γ	<	f	(b).	Consideremos	a	função

g	(x)	=	f	(x)	−	γ,	x	em	[	a,	b	].

Como	f	é	contínua	em	[	a,	b],	g	também	o	é;	temos,	ainda

g	(a)	=	f	(a)	−	γ	<	0	e	g	(b)	=	f	(b)	−	γ	>	0.

Pelo	teorema	do	anulamento,	existe	c	em	[a,	b	]	 tal	que	g	(c)	=	0,	ou	seja,	 f	 (c)	=
γ.					■

TEOREMA	DA	LIMITAÇÃO

Para	 a	 demonstração	 do	 teorema	 de	 Weierstrass,	 necessitaremos	 do	 teorema	 da
limitação,	cujos	enunciado	e	demonstração	serão	objeto	desta	seção.

Dizemos	que	f	é	limitada	em	A	∈	Df	se	existir	M	>	0	tal	que,	para	todo	x	em	A

|	f	(x)	|	≤	M.

Da	definição	acima,	segue	que,	se	f	não	for	limitada	em	B	⊂	Df,	para	todo	natural
n,	existe	xn	∈	B,	com	|	f	(xn)	|	>	n.

Teorema	(da	limitação).	Se	f	for	contínua	no	intervalo	fechado	[a,	b],	 então	 f
será	limitada	em	[a,	b].

Demonstração

Suponhamos,	por	absurdo,	que	f	não	seja	limitada	em	[	a,	b].	Façamos	a	=	a1	e	b	=
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A2.4.

b1;	existe,	então,	x1	em	[a1,	b1	]	tal	que	|	f	(x1)	|	>	1.	Seja	c1	o	ponto	médio	de	[a1,	b1];	f
não	será	limitada	em	um	dos	intervalos	[	a1,	c1	]	ou	[	c1,	b1	];	suponhamos	que	não	seja
limitada	em	[c1,	b1	 ]	e	 façamos	a2	=	c1	e	b2	=	b1.	Não	sendo	 f	 limitada	em	[a2,	b2	 ],
existirá	 x2	 ∈	 [a2,	 b2	 ]	 tal	 que	 |	 f	 (x2)	 |	 >	 2.	 Prosseguindo	 com	 este	 raciocínio,
construiremos	uma	sequência	de	intervalos

[	a1,	b1	]	⊃	[	a2,	b2	]	⊃	[	a3,	b3	]	⊃	·	·	·	⊃	[	an,	bn	]	⊃	·	·	·

satisfazendo	 as	 condições	 da	 propriedade	 dos	 intervalos	 encaixantes	 e	 tal	 que,	 para
todo	natural	n	>	0,	existe	xn	∈	[	an,	bn	]	com

Segue	de	①	 que	 	 Seja,	 agora,	c	 o	 único	 real	 tal	 que,	 para
todo	n	>	0,

c	∈	[	an,	bn	].

Como	a	sequência	xn	converge	para	c	(verifique)	e	f	é	contínua	em	c,	 resulta	que	
	 que	 está	 em	 contradição	 com	 	 Fica

provado	que	a	suposição	de	f	não	ser	limitada	em	[	a,	b	]	nos	leva	a	uma	contradição.
Portanto,	f	é	limitada	em	[	a,	b].					■

DEMONSTRAÇÃO	DO	TEOREMA	DE	WEIERSTRASS

Teorema	(de	Weierstrass).	Se	f	for	contínua	em	[a,	b	],	então	existirão	x1	e	x2
em	[	a,	b	]	tais	que	f	(x1)	≤	f	(x)	≤	f	(x2)	para	todo	x	em	[	a,	b	].

Demonstração

Sendo	f	contínua	em	[a,	b	],	f	será	limitada	em	[	a,	b],	daí	o	conjunto

A	=	{	f	(x)	|	x	∈	[	a,	b	]}

admitirá	supremo	e	ínfimo.	Sejam

M	=	sup	{	f	(x)	|	x	∈	[a,	b	]}

e

m	=	inf	{	f	(x)	|	x	∈	[	a,	b]}.

Assim,	para	todo	x	em	[	a,	b],	m	≤	f	(x)	≤	M.
Provaremos,	a	seguir,	que	M	=	f	(x2)	para	algum	x2	em	[	a,	b	].	Se	tivéssemos	f	(x)	<

M	para	todo	x	em	[	a,	b	],	a	função
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seria	contínua	em	[	a,	b	],	mas	não	limitada	em	[	a,	b	],	que	é	uma	contradição	(se	g
fosse	limitada	em	[	a,	b],	então	existiria	um	β	>	0	tal	que	para	todo	x	em	[a,	b	]

e,	portanto,	para	todo	x	em	[	a,	b	],

e	assim	M	não	seria	supremo	de	A).
Segue	que	f	(x)	<	M	para	todo	x	em	[	a,	b	]	não	pode	ocorrer,	logo	devemos	ter	M	=

f	(x2)	para	algum	x2	em	[a,	b].	Com	raciocínio	análogo,	prova-se	que	 f	 (x1)	=	m	para
algum	x1,	em	[	a,	b].					■

Observação.	A	ideia	que	nos	levou	a	construir	tal	função	g	foi	a	seguinte:	sendo	M	o
supremo	dos	f	(x),	por	menor	que	seja	r	>	0,	existirá	x	tal	que	M	−	r	<	f	(x)	<	M;	assim,
a	diferença	M	−	f	(x)	poderá	se	tornar	tão	pequena	quanto	se	queira	e,	portanto,	g	(x)
poderá	se	tornar	tão	grande	quanto	se	queira.

613



A3.1.

Apêndice
3

DEMONSTRAÇÕES	DO	TEOREMA	DA	SEÇÃO	6.1	E	DA
PROPRIEDADE	(7)	DA	SEÇÃO	2.2

DEMONSTRAÇÃO	DO	TEOREMA	DA	SEÇÃO	6.1

Lema	1.	Seja	a	>	1	um	real	dado.	Então	para	todo	∊	>	0,	existe	um	natural	n	 tal
que

Demonstração

Pelo	binômio	de	Newton	(veja	Seção	17.2),	para	todo	natural	n	≥	1

(1	+	∊)n	≥	1	+	n∊.

Tomando-se	n	tal	que	 	resulta

(1	+	∊)n	>	a

ou

e,	 portanto,	

Lema	 2.	 Sejam	 a	 >	 1	 e	 x	 dois	 reais	 dados.	 Então,	 para	 todo	 ∊	 >	 0,	 existem
racionais	r	e	s,	com	r	<	x	<	s,	tais	que

as	−	ar	<	∊.
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Demonstração

Inicialmente,	tomemos	um	t	>	x,	t	racional;	assim,	para	todo	racional	r	<	x,	ar	<	at,
pois,	estamos	supondo	a	>	1.	Temos

as	−	ar	=	ar	(as	−	r	−	1).

Pelo	lema	1,	existe	um	natural	n	tal	que

ou

Escolhamos,	 agora,	 racionais	 r	 e	 s,	 r	 <	 x	 <	 s,	 tais	 que	 	 Para	 estes

racionais

Lema	3.	Seja	a	>	1	um	real	dado.	Então,	para	todo	x	real	dado,	existe	um	único
real	γ	tal	que

ar	<	γ	<	as

quaisquer	que	sejam	os	racionais	r	e	s,	com	r	<	x	<	s.

Demonstração

Primeiro	vamos	provar	que	existe	 tal	γ.	O	conjunto	{ar	 |	r	 racional,	r	<	x}	é	não
vazio	 e	 limitado	 superiormente	 por	 todo	as,	s	 racional	 e	 s	 >	 x;	 tal	 conjunto	 admite,
então,	supremo	que	indicaremos	por	γ.	Segue	que

ar	≤	γ	≤	as

para	todo	racional	r	<	x	e	todo	racional	s	>	x.
Fica	a	seu	cargo	verificar	que	em	realidade	temos

ar	<	γ	<	as

quaisquer	que	sejam	os	racionais	r	e	s,	com	r	<	x	<	s.
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Vamos,	agora,	provar	que	tal	γ	é	único.	Se	γ1	for	tal	que	ar	<	γ1	<	as,	quaisquer	que
sejam	os	racionais	r	e	s,	com	r	<	x	<	s,	teremos

|	γ	−	γ1	|	<	as	−	ar

para	todo	racional	r	<	x	e	todo	racional	s	>	x.	Segue,	então,	do	lema	2	que

|	γ	−	γ1	|	<	∊

para	todo	∊	>	0,	logo	γ	=	γ1.					■
Com	relação	ao	lema	anterior,	observe	que,	se	x	for	racional,	então	γ	=	ax.	O	único	γ

(a	que	se	refere	o	 lema	anterior)	será	 indicado	por	 f	(x).	Fica	construída,	assim,	uma
função	 f,	definida	em	ℝ,	 e	 tal	que	 f	 (r)	=	ar	para	 todo	 racional	r.	Antes	de	provar	a
continuidade	de	f,	provaremos	que	f	é	estritamente	crescente.	De	fato,	se	x1	<	x2	(x1	e
x2	reais	quaisquer),	teremos

quaisquer	que	sejam	os	racionais	r1,	s1,	r2	e	s2	tais	que	r1	<	x1	<	s1	e	r2	<	x2	<	s2.	Sendo
s	um	racional,	x1	<	s	<	x2,	teremos

f	(x1)	<	as	<	f	(x2)

o	que	prova	que	f	é	estritamente	crescente.
Vamos	provar,	 agora,	 a	 continuidade	de	 f.	Seja	p	 um	 real	 qualquer.	 Pelo	 lema	 2,

dado	∊	>	0,	existem	racionais	r	e	s,	com	r	<	p	<	s,	tais	que

as	−	ar	<	∊.

Para	todo	x	∈	]r,	s[,	teremos

|	f	(x)	−	f	(p)	|	<	as	−	ar	<	∊

o	que	prova	a	continuidade	de	f	em	p.	Como	p	foi	tomado	de	modo	arbitrário,	segue

que	 f	 é	 contínua	 em	ℝ.	 Se	 0	<	a	 <	 1,	 a	 função	 	 é	 contínua	 em	ℝ	 e

coincide	com	ar	 nos	 racionais.	Completamos,	 assim,	 a	 demonstração	 do	 teorema	 da
Seção	6.1.

Vamos	provar,	agora,	a	propriedade	(1)	da	Seção	6.1.	Sejam	rn	e	sn	duas	sequências
de	números	racionais	que	convergem,	respectivamente,	para	x	e	y;	 segue	que	rn	+	sn
converge	para	x	+	y.	Da	continuidade	da	função	f	(x)	=	ax,	segue

daí
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(Observe	que	 	pois	rn	e	sn	são	racionais.)
As	demonstrações	das	demais	propriedades	ficam	a	seu	cargo.

DEMONSTRAÇÃO	DA	PROPRIEDADE	(7)	DA	SEÇÃO	2.2

Teorema.	Existe	a	>	0	tal	que	cos	a	=	0.

Demonstração

Suponhamos,	por	absurdo,	que	não	exista	um	tal	número	a.	Como	cos	0	=	1	e	cos	x
é	uma	função	contínua,	segue	do	 teorema	do	valor	 intermediário	que	cos	x	>	0	para
todo	x	≥	0;	como	sen′	=	cos,	teríamos	que	a	função	sen	x	seria	estritamente	crescente
em	[0,	+∞[	e	como	sen	0	=	0,	teríamos	sen	x	>	0	em	]0,	+∞[.	De	cos′	=	−sen,	seguiria,
então,	que	cos	x	seria	estritamente	decrescente	em	[0,	+∞[.	Como	cos	x	≥	0	e	sen	x	≤	1
em	[0,	+∞[,	existiriam,	então,	reais	α	e	β,	com	α	∈	]0,	1]	e	β	∈	[0,	1[,	tais	que

Teríamos,	também,

Como	sen	2x	=	2	sen	x	cos	x	e	cos	2x	=	2	cos2x	−	1,	passando	ao	limite,	para	x	→
+∞,	resulta

α	=	2	α	β	e	β	=	2	β2	−	1

que	admite	 como	única	 solução	o	par	 (α,	β)	 em	que	α	 =	 0	 e	β	=	1,	 que	 contradiz	 a
condição	α	∈	]0,	1]	e	β	∈	[0,	1[.	Tal	contradição	é	consequência	de	termos	admitido	a
não	existência	de	um	a	>	0,	com	cos	a	=	0.	Fica	provado	assim	que	existe	a	>	0	com
cos	a	=	0.					■

Propriedade	(7).	Existe	um	menor	número	a	>	0	tal	que	cos	a	=	0.

Demonstração

O	conjunto	A	 =	 {x	 >	 0	 |	 cos	 x	 =	 0}	 é	 não	 vazio	 e	 limitado	 inferiormente;	 logo,
admite	ínfimo	a.	Provemos	que	a	∈	A.	Se	cos	a	≠	0,	pela	conservação	do	sinal,	existe	r
>	0	tal	que	cos	x	≠	0	para	a	<	x	<	a	+	r,	que	contradiz	o	fato	de	a	ser	o	ínfimo	de	A.
Segue	que	a	é	o	mínimo	de	A,	ou	seja,	a	é	o	menor	real	>	0	tal	que	cos	a	=	0.					■

617



618



A4.1.

Apêndice
4

FUNÇÕES	INTEGRÁVEIS	SEGUNDO	RIEMANN

UMA	CONDIÇÃO	NECESSÁRIA	PARA	INTEGRABILIDADE

Vamos	 provar	 que	 uma	 condição	 necessária,	 mas	 não	 suficiente,	 para	 f	 ser
integrável,	segundo	Riemann,	em	[a,	b]	 é	que	 f	 seja	 limitada	 em	 [a,	b].	Lembramos
que	dizer	que	f	é	limitada	em	[a,	b]	significa	que	existe	M	>	0	tal	que,	para	todo	x	em
[a,	b],	|	f	(x)	|	≤	M.

Teorema.	Se	f	for	integrável,	segundo	Riemann,	em	[a,	b],	então	f	será	limitada
em	[a,	b].

Demonstração

Como	f	é	integrável	em	[a,	b],	tomando-se	∊	=	1	existe	uma	partição	P	de	[a,	b]	tal
que

qualquer	que	seja	a	escolha	de	ci	em	[xi	−	1,	xi],	i	=	1,	2,	…,	n.	Sejam	xj	−	 1	 e	xj	dois
pontos	 consecutivos	 da	 partição	 P;	 vamos	 provar	 que	 f	 é	 limitada	 em	 [xj	 −	 1,	 xj].
Seguirá	daí	que	f	será	limitada	em	[a,	b]	(por	quê?).	Temos

ou

Segue	que	(lembre:	|	X	+	Y	|	≥	|	X	|	−	|	Y	|)
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ou

Fixemos	ci,	 i	 ≠	 j,	 em	 [xi	−	 1,	xi];	 como	①	 se	 verifica	 para	 todo	 cj	 em	 [xj	−	 1,	 xj],
resulta	que	f	é	limitada	em	[xj	−	1,	xj],	j	=	1,	2,	…,	n;	logo	f	é	limitada	em	[a,	b].	■

EXEMPLO	1	(de	função	limitada	e	não	integrável).	A	função

não	é	integrável	em	[0,	1].

Solução

Para	toda	partição	P	de	[0,	1]

logo	 	não	existe	(por	quê?)	e,	portanto,	f	não	é	integrável	em

[0,	1].					■

EXEMPLO	2.	A	função

não	 é	 integrável,	 segundo	 Riemann,	 em	 [0,	 1],	 pois,	 f	 não	 é	 limitada	 neste
intervalo.					■

SOMAS	SUPERIOR	E	INFERIOR	DE	FUNÇÃO	CONTÍNUA

Sejam	f	uma	função	contínua	em	[a,	b]	e	P	:	a	=	x0	<	x1	<	x2	<	…	<	xi	−	1	<	xi	<	…	<
xn	=	b	uma	partição	de	[a,	b].	Como	f	é	contínua,	f	assume	em	[xi	−	1,	xi]	(i	=	1,	2,	…,	n)
valor	máximo	Mi	e	valor	mínimo	mi.	As	somas
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e

denominam-se,	 respectivamente,	 soma	 superior	 e	 soma	 inferior	 de	 f,	 relativa	 à
partição	P.

Como	mi	≤	Mi,	segue	que,	para	toda	partição	P	de	[a,	b],

Sejam	P	e	P′	duas	partições	de	[a,	b];	dizemos	que	P′	é	um	refinamento	de	P	se	P′
⊃	 P.	 O	 próximo	 teorema	 conta-nos	 que	 quando	 se	 refina	 uma	 partição,	 a	 soma
superior	decresce	e	a	inferior	cresce.

Teorema.	Seja	f	contínua	em	[a,	b]	e	sejam	P	e	P′	duas	partições	quaisquer	de
[a,	b],	com	P	⊂	P	′.	Então,

Demonstração

a)	Suponhamos	que	P′	tenha	um	ponto	a	mais	que	P,	isto	é,	 	com	
	Assim,

P	:	a	=	x0	<	x1	<	…	<	xj	−	1	<	xj	<	…	<	xn	=	b

e

Sejam	 m	 j1	 e	 m	 j2	 os	 valores	 mínimos	 de	 f	 em	 	 e	
respectivamente.	Observe	que

em	que	mj	é	o	valor	mínimo	de	f	em	[xj	−	1,	xj].
Temos

e
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Segue	de	②

ou	seja,

Portanto,

Deixamos	para	o	 aluno	demonstrar,	 por	 indução	 finita,	 que	 se	P′	 tem	n	 pontos	 a
mais	que	P,	então

b)	Fica	a	cargo	do	aluno.					■

Corolário.	 Quaisquer	 que	 sejam	 as	 partições	 P1	 e	 P2	 de	 [	 a,	 b	 ],	
	(Isto	é,	toda	soma	inferior	é	menor	ou	igual	a	toda	soma

superior.)

Demonstração

Seja	P	=	P1	∪	P2;	assim	P	é	um	refinamento	de	P1,	bem	como	de	P2.	Por	①

e,	pelo	teorema,

Assim,

ou	seja,

Seja	f	contínua	em	[a,	b].	Pelo	corolário	acima,	toda	soma	inferior	 	é	cota
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inferior	do	conjunto

Segue	 que	 tal	 conjunto	 admite	 ínfimo.	 Seja	 L	 o	 ínfimo	 de	A.	 Como	 toda	 soma
inferior	é	cota	inferior	de	A	resulta,	para	toda	partição	P	de	[a,	b],

Por	outro	lado,	para	toda	partição	P	de	[a,	b]	e	qualquer	que	seja	a	escolha	de	ci	em
[xi	−	1,	xi],

De	③	e	④	resulta

para	toda	partição	P	de	[a,	b]	e	qualquer	que	seja	a	escolha	de	ci	em	[xi	−	1,	xi].
Provaremos,	na	próxima	seção	que,	se	f	for	contínua	em	[a,	b],	dado	∊	>	0,	existirá

δ	>	0	tal	que

para	toda	partição	P	de	[a,	b],	com	máx	Δxi	<	δ.
Seguirá,	então,	de	⑤	que	toda	função	contínua	em	[a,	b]	é	integrável	em	[a,	b].

INTEGRABILIDADE	DAS	FUNÇÕES	CONTÍNUAS

Antes	 de	 passarmos	 à	 demonstração	 do	 próximo	 lema,	 observamos	 que,	 se	 f	 for
contínua	em	p,	dado	∊	>	0,	existirá	δ	>	0	tal	que,	para	todo	s	e	t	no	domínio	de	f,

s,	t	∈	]p	−	δ,	p	+	δ[	⇒	|	f	(s)	−	f	(t)	|	<	∊.

De	fato,	sendo	f	contínua	em	p,	dado	∊	>	0	existirá	δ	>	0	tal	que,	para	todo	x	∈	Df,

De	①	e	de

|	f	(s)	−	f	(t)	|	=	|	f	(s)	−	f	(p)	+	f	(p)	−	f	(t)	|	≤	|	f	(s)	−	f	(p)	|	+	|	f	(p)	−	f	(t)	|

segue	que	quaisquer	que	sejam	s,	t	∈	Df

s,	t	∈	]p	−	δ,	p	+	δ[	⇒	|	f	(s)	−	f	(t)	|	<	∊.
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Lema.	Seja	f	contínua	em	[a,	b].	Então,	dado	∊	>	0,	existe	uma	partição
P	:	a	=	x0	<	x1	<	x2	<	…	<	xn	=	b	de	[a,	b]	tal	que

Mi	−	mi	<	∊	(i	=	1,	2,	…,	n)

em	que	Mi	e	mi	são,	respectivamente,	os	valores	máximos	e	mínimos	de	f	em	[xi	−
1,	xi].

Demonstração

Suponhamos,	por	absurdo,	que,	para	um	dado	∊	>	0,	não	exista	partição	P	de	[a,	b]
para	a	qual	se	tenha	Mi	−	mi	<	∊	para	i	=	1,	2,	…,	n.	Façamos,	então,	a	=	a1,	b	=	b1	 e
seja	c1	o	ponto	médio	de	[a1,	b1];	segue	que	[a1,	c1]	ou	[c1,	b1]	não	admitirá	partição
que	satisfaça	a	condição	Mi	−	mi	<	∊	 em	 todo	subintervalo	da	partição.	Seja	 [a2,	b2]
aquele	 dos	 dois	 intervalos	 acima	 que	 não	 admite	 partição	 satisfazendo	 a	 condição
citada.	 Seja	 c2	 o	 ponto	médio	 de	 [a2,	 b2];	 [a2,	 c2]	 ou	 [c2,	 b2]	 não	 admitirá	 partição
satisfazendo	a	condição	citada;	seja	[a3,	b3]	aquele	dos	dois	intervalos	acima	que	não
admite	 tal	 partição.	Prosseguindo	 com	este	 raciocínio,	 construiremos	uma	 sequência
de	intervalos

[a1,	b1]	⊃	[a2,	b2]	⊃	…	⊃	[ak,	bk]	⊃	…

satisfazendo	a	propriedade	dos	intervalos	encaixantes	e	tal	que	para	todo	natural	k	≥	1,
[ak,	bk]	não	admitirá	partição	satisfazendo	a	condição	Mi	−	mi	<	∊	em	todo	subintervalo
de	tal	partição.	Seja	p	o	único	real	de	[a,	b]	tal	que	para	todo	k	≥	1,	p	∈	[ak,	bk].	Como
f	é	contínua	em	p,	para	o	∊	>	0	acima	existe	δ	>	0	tal	que	quaisquer	que	sejam	s,	t	em
[a,	b]

s,	t	∈	]p	−	δ,	p	+	δ[	⇒	|	f	(s)	−	f	(t)	|	<	∊.

Por	outro	lado,	existe	k	tal	que

[ak,	bk]	⊂	]p	−	δ,	p	+	δ[

e,	assim,	para	toda	partição	de	[ak,	bk],	teríamos

Mi	−	mi	<	∊

em	 todo	 subintervalo	 de	 tal	 partição,	 que	 é	 uma	 contradição.	 Fica	 provado,	 deste
modo,	que,	para	todo	∊	>	0,	existe	uma	partição	P	de	[a,	b]	tal	que

Mi	−	mi	<	∊

em	todo	subintervalo	[xi	−	1,	xi]	determinado	por	tal	partição.					■
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Teorema.	 Se	 f	 for	 contínua	 em	 [a,	 b],	 dado	 ∊	 >	 0,	 existirá	 δ	 >	 0,	 tal	 que
quaisquer	que	sejam	s,	t	∈	[a,	b]

|	s	−	t	|	<	δ	⇒	|	f	(s)	−	f	(t)	|	<	∊.

Demonstração

Pelo	lema,	dado	∊	>	0,	existe	uma	partição	P	de	[a,	b]	tal	que

em	todo	subintervalo	[xi	−	1,	xi]	determinado	pela	partição.	Seja	δ	o	menor	dos	números
Δx1,	Δx2,	…,	Δxn,	em	que	Δxi	=	xi	−	xi	−	1.

Sejam	 s	 e	 t	 dois	 reais	 quaisquer	 em	 [a,	 b],	 com	 |s	 −	 t|	 <	 δ.	 Dois	 casos	 podem
ocorrer:	 s	 e	 t	 pertencem	 a	 um	 mesmo	 intervalo	 [xi	 −	 1,	 xi]	 ou	 s	 ou	 t	 pertencem,
respectivamente,	a	intervalos	consecutivos	[xj−1,	xj]	e	[xj,	xj	 +	 1	].	No	1.º	caso	teremos	

	No	2.º	caso,	teremos

Fica	provado,	assim,	que	quaisquer	que	sejam	s	e	t	em	[a,	b]

|	s	−	t	|	<	δ	⇒	|	f	(s)	−	f	(t)	|	<	∊.					■

Teorema.	(Integrabilidade	das	funções	contínuas).	Se	f	for	contínua	em	[a,	b],
então	f	será	integrável	em	[a,	b].

Demonstração

Segue	do	teorema	anterior	que,	para	todo	∊	>	0,	existe	δ	>	0,	tal	que	quaisquer	que
sejam	s,	t	em	[a,	b]

Assim,	para	toda	partição	P	de	[a,	b],	com	máx	Δxi	<	δ,	teremos

e,	portanto,
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(Veja	⑤	de	A4.2.)

ou	seja,	f	é	integrável	em	[a,	b],	com	integral	 	em	que	L	 é	o	 ínfimo

das	somas	superiores	de	f	em	[a,	b].					■

INTEGRABILIDADE	DE	FUNÇÃO	LIMITADA	COM	NÚMERO	FINITO	DE
DESCONTINUIDADES

Lema.	Se	F	for	crescente	em	[a,	b[	e	se	existir	M	tal	que,	para	todo	x	em	[a,	b[,	f
(x)	≤	M,	então	existirá	um	real	L	tal	que

Demonstração

O	conjunto	{f	(x)	 |	x	∈	[a,	b	[}	é	não	vazio	e	limitado	superiormente	por	M,	 logo
admite	supremo	L.	Dado	∊	>	0,	existe	x0	em	[a,	b[	tal	que

L	−	∊	<	F	(x0)	≤	L

e,	portanto,	pelo	fato	de	F	ser	crescente

x0	<	x	<	b	⇒	L	−	∊	<	f	(x)	≤	L

logo,	

Teorema.	 Se	 f	 for	 limitada	 em	 [a,	 b]	 e	 contínua	 em	 [a,	 b[,	 então	 f	 será
integrável	em	[a,	b].

Demonstração

Vamos	supor,	inicialmente,	f	(x)	≥	0	em	[a,	b].	Como	f	é	contínua	em	[a,	b[,	para

todo	t	em	[a,	b[,	 	existe.	Seja

Como	 f	 (x)	 ≥	 0	 em	 [a,	b]	 e	 limitada	 neste	 intervalo,	 resulta	 que	F	 é	 crescente	 e
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limitada	em	[a,	b[;	pelo	lema,	existe	L	tal	que

Vamos	 provar	 que	 f	 é	 integrável	 em	 [a,	 b]	 e	 que	 	 Como	 f	 é

limitada,	existe	M	>	0	tal	que	para	todo	x	em	[a,	b],	0	≤	f	(x)	≤	M.	Tendo	em	vista	①,
dado	∊	>	0,	existe	b1,	a	<	b1	<	b,	tal	que

Podemos	escolher	b1	de	modo	que	 	Por	outro	lado,	existe	δ	>	0

(que	pode	ser	 tomado	de	modo	 	 tal	que,	para	 toda	partição	P1	de	 [a,	b1],

com	máx	Δxi	<	δ,

Temos,	também,	para	toda	partição	P2	de	[b1,	b],

Seja,	agora,	uma	partição	P	qualquer	de	[a,	b],	com	máx	Δxi	<	δ,	e	suponhamos	que
b1	∈	[xj	−	1,	xj	]

temos
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Portanto,	f	é	integrável	em	[a,	b]	e

Deste	modo,	o	teorema	fica	provado	no	caso	f	(x)	≥	0	em	[a,	b].	Se	f	não	verifica
esta	condição,	pelo	fato	de	f	ser	limitada	em	[a,	b],	existirá	α	>	0	tal	que	f	(x)	+	α	≥	0
em	[a,	b].	Pelo	que	vimos	acima,	f	(x)	+	α	será	então	integrável	em	[a,	b].	Para	todo	x
em	[a,	b]

f	(x)	=	[f	(x)	+	α]	−	α

logo,	f	é	integrável	em	[a,	b],	por	ser	soma	de	duas	integráveis	em	[a,	b].					■

Observação.	Do	mesmo	modo,	prova-se	que,	se	f	for	limitada	em	[a,	b]	e	contínua	em
]a,	b],	então	f	será	integrável	em	[a,	b].

Deixamos	a	seu	cargo	a	demonstração	da	propriedade:	se	f	for	integrável	em	[a,	c]
e	em	[c,	b],	então	f	será	integrável	em	[a,	b]	e

Como	consequência	do	 teorema	anterior	 e	da	propriedade	acima,	vem	o	 seguinte
corolário,	cuja	demonstração	é	deixada	para	o	leitor.

Corolário.	Se	f	for	limitada	em	[a,	b]	e	descontínua	em	apenas	um	número	finito
de	pontos,	então	f	será	integrável	em	[a,	b].

INTEGRABILIDADE	DAS	FUNÇÕES	CRESCENTES	OU	DECRESCENTES
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Se	f	for	crescente	em	[a,	b],	f	assumirá	em	[a,	b]	valor	máximo	f	(b)	e	valor	mínimo
f	 (a).	 Seja	P	 uma	 partição	 qualquer	 de	 [a,	b];	 podemos,	 então,	 considerar	 as	 somas
superior	e	inferior	de	f	relativa	à	partição	P:

e

As	 propriedades	 demonstradas	 no	 caso	 de	 f	 se	 contínuas	permanecem	válidas	no
caso	de	f	ser	crescente.	Temos

e,	portanto,

Se	f	(b)	=	f	(a),	f	será	constante,	logo	integrável.	Podemos	supor,	então,	f	(b)	>	f	(a).

Então,	dado	∊	>	0	e	tomando-se	 	para	 toda	partição	P	de	[a,	b],

com	máx	Δxi	<	δ,

e,	portanto,

em	que	L	é	o	ínfimo	das	somas	superiores	 	Fica	provado	assim	o

Teorema.	Se	f	for	crescente	em	[a,	b],	então	f	será	integrável	em	[a,	b].

Observação.	 Se	 f	 for	 decrescente	 em	 [a,	 b],	 então	 −	 f	 será	 crescente	 e,	 portanto,
integrável;	como	f	=	−	(−f),	segue	que	f	será,	também,	integrável	em	[a,	b].

O	próximo	exemplo	nos	mostra	uma	função	integrável	cujo	conjunto	dos	pontos	de
descontinuidade	é	infinito.

EXEMPLO.	Seja	f	:	[0,	1]	→	ℝ	dada	por
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A4.6.

Como	 f	 é	 crescente,	 resulta	 que	 f	 é	 integrável	 em	 [0,	 1].	 Observe	 que	 f	 é
descontínua	em	todos	os	pontos	do	conjunto	infinito

CRITÉRIO	DE	INTEGRABILIDADE	DE	LEBESGUE

Henri	 Lebesgue	 (1875-1941)	 estabeleceu	 um	 critério	 de	 integrabilidade	 que	 nos
permite	reconhecer	se	uma	função	f	é	ou	não	integrável	em	[a,	b],	olhando	apenas	para
o	conjunto	dos	pontos	de	[a,	b]	em	que	 f	é	descontínua.	Para	estabelecer	 tal	critério,
precisamos	primeiro	definir	conjunto	de	medida	nula.

Seja	A	um	subconjunto	de	ℝ	e	seja	I1,	I2,	…,	In,	…	uma	sequência	de	 intervalos;
dizemos	que	tal	sequência	cobre	A	se

isto	é,	se	A	estiver	contido	na	reunião	de	tais	intervalos.

EXEMPLO	 1.	 Seja	 	 a	 sequência	 dada	 por	

	n	=	1,	2,	…,	cobre	A,	pois

A	⊂	I1	∪	I2	∪	I3	∪	…

Observe:	

No	que	segue,	m	(I)	indicará	a	amplitude	do	intervalo	I;	assim,	se	I	=	[0,	2],	então

m	(I)	=	2	−	0	=	2;	se	

Seja	A	⊂	ℝ;	dizemos	que	A	tem	medida	nula	se,	para	todo	∊	>	0	dado,	existir	uma
sequência	de	intervalos	I1,	I2,	I3,	…,	In,	…	que	cobre	A	e	tal	que
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Observação:	

Antes	de	passarmos	aos	exemplos,	lembramos	que,	se	0	<	q	<	1,	então

Se	tomarmos	 	teremos

EXEMPLO	2.	Mostre	que	 	tem	medida	nula.

Solução

Dado	∊	>	0,	tomemos	q	tal	que	

Consideremos	a	sequência	de	intervalos

Tal	sequência	cobre	A	e,	como	m	(In)	=	qn,	resulta

portanto,	A	tem	medida	nula.
Seja	A	⊂	ℝ;	dizemos	que	A	é	enumerável	se	existir	uma	sequência	a1,	a2,	…,	an,	…

tal	que

A	=	{an	|	n	∈	ℕ*}.					■

EXEMPLO	3.	ℕ	é	enumerável,	pois,

ℕ	=	{an	|	n	∈	ℕ*	}

em	que	an	=	n	−	1.					■

EXEMPLO	4.	O	conjunto	A	dos	racionais	estritamente	positivos	é	enumerável.

Solução
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A	=	{an	|	n	∈	ℕ*}

em	 que	

EXEMPLO	5.	O	intervalo	[0,	1]	não	é	enumerável.

Solução

Suponhamos,	 por	 absurdo,	 que	 fosse	 enumerável;	 existiria,	 então,	 uma	 sequência
a1,	a2,	…	tal	que

[0,	1]	=	{an	|	n	∈	ℕ}.

Seja,	agora,	c1	∈	]0,	1[,	com	c1	≠	a1;	a1	não	pode	pertencer	a

Seja	[α1,	β1]	o	intervalo	em	①	que	não	contém	a1.
Seja,	agora,	c2	∈	]α1,	β1[,	com	c2	≠	a2;	a2	não	pode	pertencer	a

Seja	[α2,	β2]	o	intervalo	em	②	que	não	contém	a2.
Prosseguindo	com	este	raciocínio,	construiremos	uma	sequência	de	intervalos

[α1,	β1]	⊃	[α2,	β2]	⊃	…	⊃	[αn,	βn]	⊃	…

tal	que,	para	todo	natural	n	≥	1,
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an	∉	[αn,	βn]

Por	outro	lado,	existe	pelo	menos	um	real	p	∈	[0,	1]	tal	que

p	∈	[αn,	βn]

para	todo	n	≥	1.	Segue	que

p	≠	an

para	todo	n	≥	1,	que	é	uma	contradição.					■

EXEMPLO	6.	Todo	conjunto	A	enumerável	tem	medida	nula.

Solução

Dado	∊	>	0,	consideremos	a	sequência

como	 	Tal	sequência	cobre	A	e

EXEMPLO	7.	Prove	que	A	=	{1,	2,	3}	tem	medida	nula.

Solução

A	=	{an	 |	n	∈	ℕ*},	em	que	a1	=	1,	a2	=	2,	a3	=	3	e	an	=	3	para	n	≥	3;	 logo	A	 é
enumerável	e,	portanto,	tem	medida	nula.					■

EXEMPLO	8.	Seja	A	⊂	ℝ;	se	A	for	finito,	então	A	terá	medida	nula.

Solução

Suponhamos	que	A	tem	p	elementos;	batizando	os	elementos	de	A	por	x1,	x2,	…,	xp,
resulta	A	=	{x1,	x2,	…	xp}	=	{an	|	n	∈	ℕ*}	em	que	a1	=	x1,	a2	=	x2,	…,	ap	=	xp	e	an	=	xp
para	n	>	p.	Assim,	A	é	enumerável;	logo,	tem	medida	nula.					■

Vamos,	agora,	enunciar,	sem	demonstração	(para	a	demonstração,	veja	Elon	Lages
Lima,	Curso	de	Análise	—	Volume	1),	o	seguinte

Critério	de	Lebesgue

Seja	 f	 limitada	 em	 [a,	b]	 e	 seja	A	 o	 conjunto	 dos	 pontos	 de	 [a,	 b]	 em	 que	 f	 é
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

descontínua:	A	=	{x	∈	[a,	b]	|	f	é	descontínua	em	x}.	Então,

f	integrável	em	[a,	b]	⇔	A	tem	medida	nula.

Exercícios	

Prove	que	se	A	estiver	contido	em	B	e	se	B	 tiver	medida	nula,	então	A	 terá,
também,	medida	nula.

Prove	que	o	conjunto	vazio	tem	medida	nula.

Prove	que	se	A	e	B	 tiverem	medida	nula,	então	A	∪	B	 também	 terá	medida
nula.

Já	 foi	 visto	 que	 a	 função	 	 não	 é	 integrável	 em	 [0,	 1].

Utilizando	o	critério	de	Lebesgue,	conclua	que	[0,	1]	não	tem	medida	nula.

Utilizando	 o	 critério	 de	 Lebesgue,	 prove	 que	 se	 f	 for	 integrável	 em	 [a,	 b],
então	f	será	contínua	em	pelo	menos	um	ponto	p	∈	[a,	b].

Suponha	f	integrável	em	[a,	b]	e	f	(x)	>	0	em	[a,	b].	Prove	que	

Utilizando	 o	 critério	 de	 Lebesgue,	 prove	 que	 se	 f	 for	 integrável	 em	 [a,	 b],
então	|	f	|	e	f2	também	serão.

Seja	A	 o	 conjunto	 dos	 números	 irracionais	 pertencentes	 ao	 intervalo	 [0,	 1].
Prove	que	A	não	tem	medida	nula.

Dê	 exemplo	 de	 um	 conjunto	 não	 enumerável	 que	 tenha	 medida	 nula.
(Pesquise!)

Utilizando	 o	 critério	 de	 Lebesgue,	 decida	 se	 a	 função	 dada	 é	 ou	 não
integrável.
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Apêndice
5

DEMONSTRAÇÃO	DO	TEOREMA	DA	SEÇÃO	13.4

Seja	a	equação

em	que	g	e	h′	 são	 supostas	contínuas	nos	 intervalos	abertos	 I1	 e	 I2,	 respectivamente.
Consideremos	os	números	reais	t0	e	x0,	com	t0	∈	I1	e	x0	∈	I2.

Tomemos	r1	>	0	e	r2	>	0	tais	que

[t0	−	r1,	t0	+	r1]	⊂	I1	e	[x0	−	r2,	x0	+	r2]	⊂	I2.

Da	continuidade	de	g	e	h′,	segue	que	existem	α	>	0	e	β	>	0	tais	que

e

Observamos,	ainda,	que,	quaisquer	que	sejam	u	e	v	em	[x0	−	r2,	x0	+	r2	],

De	fato,	pelo	TVM	existe	 	entre	u	e	v	tal	que

e	tendo	em	vista	②	segue	③.
Suponhamos,	agora,	que	x	=	x	(t),	t	∈	I,	onde	I	é	um	intervalo	aberto	contido	em	I1,

seja	solução	do	problema

Então,	para	todo	t	em	I,

x′	(t)	=	g	(t)	h	(x	(t))
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e,	portanto,	para	todo	t	em	I

ou	seja,

Sendo	x	=	x	 (t),	 t	∈	 I,	 solução	de	④,	 tal	 função	será	contínua,	 logo,	existe	r	>	0
(com	[t0	−	r,	t0	+	r]	⊂	I)	tal	que

Podemos	escolher	r	de	modo	que

Lema	1.	Se	x	=	x	(t),	t	∈	I,	for	solução	de	④	e	se	h	(x0)	=	0,	então

x	(t)	=	x0	em	[t0	−	r,	t0	+	r].

Demonstração

De	⑤	e	da	hipótese	segue

Segue	de	③	e	de	⑥	que,	para	todo	s	em	[t0	−	r,	t0	+	r	],

|	h	(x	(s))	−	h	(x0)	|	≤	β	|	x	(s)	−	x0	|.

Então,	para	todo	t	em	[t0	−	r,	t0	+	r	]

Sendo	M	o	máximo	de	|	x	(t)	−	x0	|	em	[t0	−	r,	t0	+	r],	resulta

ou
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|	x	(t)	−	x0	|	≤	αβM	|	t	−	t0	|

e,	assim,	para	todo	t	em	[t0	−	r,	t0	+	r	]

|	x	(t)	−	x0	|	≤	αβM	r

e,	portanto,

M	≤	αβMr	(por	quê?).

Se	 tivéssemos	M	 >	 0	 (observe	 que	M	 ≥	 0),	 teríamos	 1	 ≤	 αβr	 ou	 	 que

contradiz	⑦;	segue	então	que	M	=	0.	Logo

x	(t)	=	x0	em	[t0	−	r,	t0	+	r	].					■

Lema	2.	Se	x	=	x	(t),	t	∈	I,	for	solução	de	④	e	se	h	(x0)	=	0,	então

x	(t)	=	x0	em	I.

Demonstração

Pelo	lema	1,	existe	r	>	0	tal	que

x	(t)	=	x0	em	[t0	−	r,	t0	+	r	].

Seja	B	=	{b	∈	I	 |	x	(t)	=	x0	em	[t0	−	r,	b	 [}.	Se	B	não	for	 limitado	superiormente,
teremos	x	(t)	=	x0	em	[t0	−	r,	+∞	[e	+∞	será,	então,	a	extremidade	superior	de	I.	Se	B
for	limitado	superiormente,	admitirá	supremo	 	e,	assim,

Se	 	pertencer	a	 I,	 pela	 continuidade	de	x	=	x	 (t),	 resultará	 	 seguirá,
então,	pelo	lema	1	que	existirá	 	tal	que

contradição.	Assim	 	é	a	extremidade	superior	de	 I.	Deixamos	 a	 seu	 cargo	 concluir
que

x	(t)	=	x0	em	I.					■

Teorema.	Seja	a	equação
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em	que	g	e	h	são	definidas	em	intervalos	abertos	I1	e	I2,	respectivamente,	com	g
contínua	em	I1	e	h′	contínua	em	I2.	Nestas	condições,	se	x	=	x	(t),	t	∈	I,	for	solução
não	constante	da	equação,	então,	para	todo	t	em	I,

h	(x	(t))	≠	0.

Demonstração

Se,	para	algum	t0	em	I	tivéssemos	h	(x	(t0))	=	0,	pelo	lema	2,	teríamos,	para	todo	t
em	I,

x	(t)	=	x	(t0).					■
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A6.1.

(R1)

(R2)

(R3)

Apêndice
6

CONSTRUÇÃO	DO	CORPO	ORDENADO	DOS	NÚMEROS
REAIS

DEFINIÇÃO	DE	NÚMERO	REAL

Definição.	 Seja	α	 um	 subconjunto	 de	ℚ.	 Dizemos	 que	 α	 é	 um	 número	 real	 se
satisfaz	as	condições:

(R1)	α	≠	ϕ	e	α	≠	ℚ.
(R2)	∀	p,	q	∈	ℚ,	se	p	∈	α	e	q	<	p;	então	q	∈	α.
(R3)	α	não	tem	máximo.

A	ideia	que	está	por	trás	de	tal	definição	é	a	de	caracterizar	um	número	real	pelo
conjunto	 de	 todos	 os	 números	 racionais	 que	 o	 precedem.	 Pela	 definição	 acima,
estamos	representando	um	número	real	α	pelo	conjunto	dos	racionais	que	o	precedem.

EXEMPLO	1.	α	=	{p	∈	ℚ	|	p	<	2	}	é	um	número	real.	De	fato:

α	≠	ϕ,	pois,	0	∈	α.
α	≠	ℚ,	pois,	5	∈	ℚ	e	5	∉	α.

Sejam	p,	q	racionais	quaisquer,	com	p	∈	α	e	q	<	p.	Temos:

p	∈	α	⇔	p	<	2.

De	p	<	2	e	q	<	p,	segue	q	<	2,	logo,	q	∈	α.

α	não	tem	máximo	(verifique).

Assim,	o	conjunto	α	=	{	p	∈	ℚ	 |	p	<	2}	 satisfaz	as	condições	 (R1),	 (R2)	e	 (R3),
logo,	é	número	real.

Seja	r	 um	número	 racional	 qualquer.	Deixamos	 a	 seu	 cargo	 a	 tarefa	 de	 verificar
que	o	conjunto	{	p	∈	ℚ	|	p	<	r	}	é	um	número	real.	Tal	número	real	será	indicado	por
r*:

r*	=	{p	∈	ℚ	|	p	<	r	}	(r	racional).					■
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(R1)

(R2)

(R3)

1.

EXEMPLO	2.	α	=	ℚ−	∪	{	p	∈	ℚ+	|	p2	<	2	}	é	um	número	real	(quem	é	α?).
De	fato:

α	≠	ϕ,	pois,	ℚ−	⊂	α	(ℚ−	=	{x	∈	ℚ	|	x	≤	0})
α	≠	ℚ,	pois,	5	∈	ℚ	e	5	∉	α.
Sejam	p,	q	dois	racionais	quaisquer,	com	p	∈	α	e	q	<	p.	Temos:
(i)	se	p	∈	ℚ−,	então	q	∈	ℚ−,	logo,	q	∈	α.
(ii)	se	p	>	0	e	q	≤	0,	então	q	∈	α.
(iii)	se	p	>	0	e	q	>	0

De	p2	<	2,	segue	q2	<	2,	logo,	q	∈	α.
Seja	p	∈	α,	com	p	>	0.	Temos,	para	todo	n	∈	ℕ*,

ou

Por	outro	lado,

Tomando-se,	então,	 	resulta

o	que	mostra	que	a	não	tem	máximo.					■

Exercícios	

É	número	real?	Justifique	a	resposta.

a)	α	=	{	p	∈	ℚ	|	3	p	+	1	<	2p	−	5	}
b)	α	=	{	p	∈	ℚ	|	(p	+	1)2	(p	−	3)	<	0	}
c)	α	=	{	p	∈	ℚ	|	p3	−	2p2	+	3p	−	6	<	0	}
d)	α	=	{	p	∈	ℚ	|	p20	+	2p10	+	5	<	0	}
e)	α	=	{	p	∈	ℚ	|	p3	<	3	}
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2.

3.

4.

5.

6.

7.

A6.2.

a)

b)

Seja	α	 um	 número	 real	 e	 indique	 por	Mα	 o	 conjunto	 dos	 racionais	 que	 são
cotas	superiores	de	α.	Prove	que

β	=	{	p	∈	ℚ	|	−	p	∈	Mα	e	−	p	≠	mín	Mα	}

é	número	real.
Sejam	α	e	β	números	reais.	Prove	que	α	∪	β	e	α	∩	β	são,	 também,	números
reais.

Sejam	os	números	reais	α	=	{p	∈	ℚ	|	p3	<	5}	e	β	=	{p	∈	ℚ	|	p	<	2}.	Determine
α	∩	β	e	α	∪	β.

Para	cada	n	∈	N,	seja	o	número	real	 	Complete:

a)	α0	=	…

b)	α1	=	…

c)	α2	=	…

d)	

Para	 cada	 n	 ∈	 ℕ,	 seja	 o	 número	 real	 	 Prove	 que	

	 onde	 	 indica	 a	 reunião	 de	 todos	 os

números	reais	α0,	α1,	…,	αn,	….

Seja	A	=	{	r*	|	r	∈	ℚ,	r	>	0	e	r2	<	2	}.	Determine	a	reunião	de	todos	os	reais	α,
com	α	∈	A.	Verifique	que	tal	reunião	é	um	número	real.

RELAÇÃO	DE	ORDEM	EM	ℝ

O	símbolo	ℝ	 será	usado	para	 indicar	o	conjunto	dos	números	reais:	ℝ	=	{α	 |	α	 é
número	real}.

Definição.	Sejam	α	e	β	dois	números	reais.	Definimos

α	≤	β	⇔	α	⊂	β.
α	<	β	⇔	α	⊂	β	e	α	≠	β.

Deixamos	a	seu	cargo	verificar	que,	“≤”	é	uma	relação	de	ordem	sobre	ℝ,	 isto	é,
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A6.3.

(R1)

“≤”	satisfaz	as	propriedades:

01)	∀	α	∈	ℝ,	α	≤	α.
02)	∀	α,	β	∈	ℝ,	α	≤	β	e	β	≤	α	⇒	α	=	β.
03)	∀	α,	β,	γ	∈	ℝ,	α	≤	β	e	β	≤	γ	⇒	α	≤	γ.

Para	provar	(04),	vamos	precisar	do

Lema.	Se	α	é	um	número	real	e	se	x	é	um	racional,	com	x	∉	α,	então,	p	<	x,	para
todo	p	∈	α.

Demonstração

Suponhamos,	por	absurdo,	que	exista	p	∈	α,	com	p	≥	x.	Pela	(R2),	teríamos,	então,
que	x	∈	α,	contradição.	Portanto,	se	x	∉	α,	então	p	<	x	para	todo	p	∈	α.					■

Este	 lema	 nos	 diz	 que	 todo	 racional	 x	 que	 não	 pertence	 ao	 real	 α,	 é	 uma	 cota
superior	de	α.

Vamos,	agora,	demonstrar	a	seguinte	propriedade.

Propriedade	(04).	Quaisquer	que	sejam	α	e	β	em	ℝ,	α	≤	β	ou	β	≤	α.

Demonstração

Quaisquer	que	sejam	os	reais	α	e	β,	α	⊂	β	ou	α	⊄	β.
Se	α	⊂	β,	então,	α	≤	β.
Se	α	não	está	contido	em	β	(α	⊄	β),	então	existe	um	racional	x,	com	x	∈	α	e	x	∉	β.
Como	x	∉	β,	segue	do	lema	que	p	<	x,	para	todo	p	∈	β.	Como	x	∈	α	e,	para	todo	p

∈	β,	p	<	x,	segue	de	(R2)	que	p	∈	α,	para	todo	p	∈	β,	isto	é,	β	⊂	α,	ou	seja,	β	≤	α.					■

ADIÇÃO	EM	ℝ

Teorema	1.	Se	α	e	β	são	números	reais,	então

γ	=	{	a	+	b	|	a	∈	α,	b	∈	β	}

também	é	número	real.

Demonstração

Precisamos	provar	que	γ	satisfaz	as	condições	(R1),	(R2)	e	(R3).
Como	α	e	β	não	são	vazios,	existem	a	∈	α,	b	∈	β;	assim	a	+	b	∈	γ,	logo,	γ	≠	ϕ.

Por	outro	lado,	como	α	≠	ℚ	e	β	≠	ℚ,	existem	racionais	s	e	t,	com	s	∉	α	e	t	∉	β;	pelo
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(R2)

(R3)

lema	da	seção	anterior,	tem-se:

∀	a	∈	α,	a	<	s	e	∀	b	∈	β,	b	<	t

daí

∀	a	∈	α,	∀	b	∈	β,	a	+	b	<	s	+	t.

Logo,	s	+	t	∉	γ	e,	portanto,	γ	≠	ℚ.
Precisamos	provar	que,	se	x	∈	γ	e	y	<	x,	então	y	∈	γ.	Para	provar	que	y	∈	γ,
precisamos	fabricar	um	s	∈	α	e	um	t	∈	β,	de	modo	que	y	=	s	+	t.

Temos:

x	∈	γ	⇔	x	=	a	+	b	para	algum	a	∈	α	e	algum	b	∈	β.

De	y	<	x	segue	y	<	a	+	b,	daí	y	−	a	<	b;	como	b	∈	β,	segue	que	y	−	a	∈	β.	Então,

y	=	a	+	(y	−	a),	com	a	∈	α	e	(y	−	a)	∈	β.

Logo,	y	∈	γ.
Para	provar	que	γ	não	tem	máximo,	precisamos	provar	que,	se	x	∈	γ,	então	existe
y	∈	γ	com	x	<	y.	Temos:

x	∈	γ	⇔	x	=	a	+	b	para	algum	a	∈	α	e	algum	b	∈	β.

Como	α	e	β	não	têm	máximo,	existem	racionais	s	∈	α	e	t	∈	β	com	a	<	s	e	b	<	t;	daí,
a	 +	b	 <	 s	 +	 t.	 Tomando-se	 y	 =	 s	 +	 t,	 tem-se	 x	 <	 y,	 com	 y	∈	 γ.	 Assim,	 γ	 não	 têm
máximo.

Como	(R1),	(R2)	e	(R3)	estão	verificadas,	segue	que	γ	∈	ℝ.					■

Definição.	Sejam	α	e	β	dois	números	reais;	o	número	real	γ	=	{	a	+	b	|	a	∈	α,	b	∈
β}	denomina-se	soma	de	α	e	β	e	é	indicado	por	α	+	β.	Assim,	α	+	β	=	{a	+	b	|	a	∈
α,	b	∈	β	}.

A	 operação	 que	 a	 cada	 par	 (α,	 β)	 de	 números	 reais	 associa	 a	 sua	 soma	 α	 +	 β
denominase	adição	e	é	indicada	por	+.

EXEMPLO.	Sejam	r	e	s	dois	racionais;	prove:

r*	+	s*	=	(r	+	s)*.

Solução

Precisamos	provar	que	r*	+	s*	⊂	(r	+	s)*	e	que	r*	+	s*	⊃	(r	+	s)*.

Lembramos,	inicialmente,	que
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r*	=	{x	∈	ℚ	|	x	<	r	};	s*	=	{x	∈	ℚ	|	x	<	s}

e

(r	+	s)*	=	{x	∈	ℚ	|	x	<	r	+	s}.

r*	+	s*	⊂	(r	+	s)*

x	∈	r*	+	s*	⇔	x	=	a	+	b	para	algum	a	<	r	e	algum	b	<	s,	com	a	e	b	racionais.

Provamos,	assim,	que

x	∈	r*	+	s*	⇒	x	∈	(r	+	s)*;

logo,	r*	+	s*	⊂	(r	+	s)*.

(r	+	s)*	⊂	r*	+	s*

x	∈	(r	+	s)*	⇒	x	<	r	+	s	⇒	x	−	r	<	s.

Tomemos	um	racional	u,	com	x	−	r	<	u	<	s.

u	<	s	⇒	u	∈	s*
x	−	r	<	u	⇒	x	−	u	<	r	⇒	x	−	u	∈	r*.

Segue	que

x	=	(x	−	u)	+	u,	com	x	−	u	∈	r*	e	u	∈	s*;

logo,	x	∈	r*	+	s*.
Provamos	assim,	que

x	∈	(r	+	s)*	⇒	x	∈	r*	+	s*

logo

(r	+	s)*	⊂	r*	+	s*.					■

PROPRIEDADES	DA	ADIÇÃO

Nosso	objetivo,	nesta	 seção,	é	provar	que	a	adição	satisfaz	as	propriedades	 (A1),
(A2),	(A3),	(A4)	e	(0A).
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Para	provar	(A4),	vamos	precisar	do

Lema.	Sejam	a	 um	 número	 real,	u	 <	 0	 um	 racional	 e	Mα	 o	 conjunto	 das	 cotas
superiores	de	α.	Nestas	condições,	existem	p	∈	α,	q	∈	Mα,	q	≠	mín	Mα	(caso	mín
Mα	exista),	tais	que	p	−	q	=	u.

Demonstração

Estamos	interessados	em	determinar	p	∈	α,	q	∈	Mα,	q	≠	mín	Mα,	com	p	−	q	=	u.
Para	 isto	 tomemos	 um	 racional	 s	∉	 α,	 com	 s	 ≠	 mín	Mα,	 e,	 para	 cada	 n	 ∈	 ℕ,

consideremos	o	racional	qn	=	nu	+	s.

Seja,	agora,	 	o	máximo	dos	naturais	n	para	os	quais	qn	∈	Mα	e	qn	≠	mín	Mα.
Dois	casos	podem	ocorrer:

1.º	CASO.	

Tomando-se	 	p	−	q	=	u.

2.º	CASO.	 	(que	só	poderá	ocorrer	se	mín	Mα	existir).

Tomando-se	 	com	p	∈	α	e	q	∈
Mα,	q	≠	mín	Mα.
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Teorema.	A	adição	satisfaz	as	propriedades:

A1)	Associativa:	∀	α,	β,	γ	∈	ℝ,	α	+	(β	+	γ)	=	(α	+	β)	+	γ.
A2)	Comutativa:	∀	α,	β	∈	ℝ,	α	+	β	=	β	+	α.
A3)	Existência	de	elemento	neutro:	∀	α	∈	ℝ,	α	+	0*	=	α.
A4)	Existência	de	oposto:	Para	todo	α	∈	ℝ,	existe	β	∈	ℝ	com	α	+	β	=	0*.
0A)	Compatibilidade	da	adição	com	a	ordem:	∀	α,	β,	γ	∈	ℝ,	α	≤	β	⇒	α	+	γ	≤	β	+
γ.

Demonstração

A1)	e	(A2)	ficam	a	seu	cargo.
A3)	Precisamos	provar	que	α	+	0*	⊂	α	e	α	⊂	α	+	0*.

α	+	0*	⊂	α

Lembramos	que	0*	=	{u	∈	ℚ	|	u	<	0	}.	Temos:

x	∈	α	+	0*	⇔	x	=	a	+	u	para	algum	a	∈	α	e	algum	u	<	0,	u	∈	ℚ.
u	<	0	⇒	a	+	u	<	a	⇒	x	<	a	⇒	x	∈	α

portanto,

x	∈	α	+	0*	⇒	x	∈	α

Logo,	α	+	0*	⊂	α.

α	⊂	α	+	0*

Precisamos	provar	que,	se	x	∈	α,	então	é	possível	fabricar	um	a	∈	α	e	um	u	<	0	tal
que	x	=	a	+	u.

Então,

x	∈	α	⇒	∃a	∈	α,	com	x	<	a,	pois	α	não	tem	máximo.

x	<	a	⇒	x	−	a	<	0.
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Assim,

x	=	a	+	(x	−	a),	com	a	∈	α	e	x	−	a	<	0,

logo,	x	∈	α	+	0*.	Portanto,

α	⊂	α	+	0*.

A4)	Seja	α	um	número	real;	de	acordo	com	o	Exercício	2-A6.1,
β	=	{p	∈	ℚ	|	−p	∈	Mα	e	−p	≠	mín	Mα}	é	um	número	real.	Vamos	provar	que	α	+	β	=

0*.

α	+	β	⊂	0*

x	∈	α	+	β	⇒	x	=	a	+	b	para	algum	a	∈	α	e	algum	b	∈	β.
b	∈	β	⇒	−b	>	a	⇒	a	+	b	<	0.

Assim,

x	∈	α	+	β	⇒	x	∈	0*,	ou	seja,	α	+	β	⊂	0*.

0*	⊂	α	+	β

Precisamos	provar	que,	se	x	∈	0*,	então	x	=	a	+	b	para	algum	a	∈	α	e	algum	b	∈	β.
Como	x	<	0,	segue,	do	lema	anterior,	que	existem	a	∈	α	e	−b	∈	Mα,	com	−b	≠	mín

Mα,	tais	que	x	=	α	−	(−b);	assim	x	=	a	+	b	com	a	∈	α	e	b	∈	β.
Portanto,	0*	⊂	α	+	β.
Provamos,	 assim,	 que,	 dado	 um	 real	 α,	 existe	 um	 real	 β	 tal	 que	 α	 +	 β	 =	 0*;

provaremos	mais	adiante	que	 tal	β	 é	único	e	 será,	 então,	denominado	oposto	de	α	 e
indicado	por	−α.

(0A)	Sejam	α,	β,	γ	∈	ℝ,	com	α	≤	β;	vamos	provar	que	α	+	γ	≤	β	+	γ.	Temos:

x	∈	α	+	γ	⇒	x	=	a	+	c	para	algum	a	∈	α	e	algum	c	∈	γ.

Da	hipótese,	segue	que	a	∈	α	⇒	a	∈	β.	(Lembre-se:	α	≤	β	⇔	α	⊂	β.)
Assim	x	=	a	+	c	para	algum	a	∈	β	e	algum	c	∈	γ.	Logo,	x	∈	β	+	γ.
Provamos,	assim,	que

α	≤	β	⇒	α	+	γ	⊂	β	+	γ	⇒	α	+	γ	≤	β	+	γ.					■

Teorema.	(Unicidade	do	oposto)
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2.
3.
4.
5.

A6.5.

Se	α	+	β	=	0*	e	α	+	γ	=	0*,	então	β	=	γ.

Demonstração

β	=	0*	+	β	=	(γ	+	α)	+	β	=	γ	+	(α	+	β)	=	γ	+	0*	=	γ.					■

Teorema	(Unicidade	do	elemento	neutro)

Se	α	+	γ	=	α	para	todo	α	∈	ℝ,	então	γ	=	0*.

Demonstração

Da	hipótese,	segue	que	0*	+	γ	=	0*;	daí	γ	=	0*.					■

Exercícios	

Prove:	∀	α,	β,	γ	∈	ℝ,	α	=	β	⇒	α	+	γ	=	β	+	γ.
Prove:	∀	α,	β,	γ	∈	ℝ,	α	+	γ	=	β	+	γ	⇒	α	=	β	(lei	do	cancelamento).
Prove:	∀	α	∈	ℝ,	−	(−α)	=	α.
Prove:	∀	α	∈	ℝ,	α	≤	0*	⇔	0*	≤	−	α.
Prove:	∀	α,	β,	γ,	δ	∈	ℝ,	α	≤	β	e	γ	≤	δ	⇒	α	+	γ	≤	β	+	δ.

MULTIPLICAÇÃO	EM	ℝ

Teorema.	Sejam	α,	β	∈	ℝ,	com	α	>	0*	e	β	>	0*.	Então

γ	=	ℚ−	∪	{ab	|	a	∈	α,	b	∈	β,	a	>	0,	b	>	0	}

é	um	número	real.

Demonstração

(R1)	γ	≠	ϕ,	pois	ℚ−	⊂	γ.
Para	provar	que	γ	≠	ℚ,	procedemos	assim:	como	α	e	β	são	números	reais,	existem

racionais	m	e	n	com	m	∉	α	e	n	∉	β,	daí:

∀	a	∈	α,	com	a	>	0,	a	<	m
∀	b	∈	β,	com	b	>	0,	b	<	n

logo,

ab	<	mn	para	todo	a	∈	α,	a	>	0,	para	todo	b	∈	β,	b	>	0,	portanto,	mn	∉	γ.	(Por	quê?)
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(R2) Sejam	p,	q	racionais	com	p	∈	γ	e	q	<	p;	precisamos	provar	que	q	∈	γ.	Então:
(a)	Se	p	≤	0,	então	q	<	0,	logo	q	∈	γ.
(b)	Se	p	>	0	e	q	≤	0,	q	∈	γ.
(c)	Se	p	>	0	e	q	>	0,	vem:

p	∈	γ	e	p	>	0	⇒	p	=	ab	para	algum	a	∈	α,	a	>	0,	e	para	algum	b	∈	β,	b	>	0.

De	0	<	q	<	p	=	ab,	vem	 	assim	 	e	 	logo,

Portanto,	q	∈	γ.

(R3)	Para	provarmos	que	γ	não	tem	máximo,	basta	provarmos	que,	se	p	∈	γ	e	p	>	0,
então	existe	q	∈	γ	com	q	>	p.

Temos:

p	∈	γ,	p	>	0	⇒	p	=	ab	para	algum	a	∈	α,	a	>	0	e	algum	b	∈	β,	b	>	0.

Como	α	e	β	são	números	reais,	existem	a′	>	a,	com	a′	∈	α,	b′	>	b,	com	b′	∈	β;	daí	a
′b′	>	ab	=	p,	com	a′b′	∈	γ.					■

A	seguir	daremos	a	definição	de	produto	de	dois	números	reais.

Definição.	Sejam	α,	β	∈	ℝ.	Definimos	o	produto	de	α	por	β	por:

EXEMPLO.	Seja	α	=	ℚ−	∪	{p	∈	ℚ+	|	p2	<	2};	prove	que	α	·	α	=	2*.

Solução

α	·	α	=	ℚ−	∪	{ab	|	a	>	0	e	a2	<	2,	b	>	0	e	b2	<	2}.

Precisamos	provar	que	α	·	α	⊂	2*	e	que	2*	⊂	α	·	α.

α	·	α	⊂	2*
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x	∈	α	·	α	e	x	≤	0	⇒	x	∈	2*.
x	∈	α	·	α	e	x	>	0	⇒	x	=	ab,	com	a	>	0	e	a2	<	2,	b	>	0	e	b2	<	2.

x	=	ab	⇒	x2	=	a2	·	b2	<	4.
x	>	0	e	x2	<	4	⇒	x	<	2.	Portanto,
x	∈	α	·	α	e	x	>	0	⇒	x	∈	2*.

Segue	que	α	·	α	⊂	2*.

2*	⊂	α	·	α

x	∈	2*	e	x	≤	0	⇒	x	∈	α	·	α.

Existe	a	racional,	a	>	0,	tal	que

Daí	 	como	 	e	 	resulta	que	 	Assim,

como	a	>	0,	 	logo,

x	∈	α	·	α.

Assim,

x	∈	2*	e	x	>	0	⇒	x	∈	α	·	α.

Portanto,	2*	⊂	α	·	α.
Provamos,	assim,	que	α	·	α	=	2*,	ou	seja,	2*	admite	raiz	quadrada	em	ℝ.

Vamos	 provar	 a	 seguir	 que,	 se	 	 então	 existe	 a	 >	 0,	 racional,	 tal	 que	

	 De	 fato,	 como	 x	 é	 racional,	 	 ou	 	 Se	 	 basta

tomar	 	Se	 	tomemos	um	natural	n	tal	que
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	tomando-se	n	tal	que

em	que	

Seja	 	 em	que	n	 é	um	dos	naturais	que	verifica	①.	Um	dos	 termos	da

progressão	geométrica

u2,	u4,	u6,	…,	u2k,	…

está	compreendido	entre	 	e	2	(por	quê?).

Seja	k	o	natural	para	o	qual	se	tem

Basta,	então,	tomar	a	=	uk.					■

Exercício	

Prove	que,	se	α	e	b	são	dois	racionais	quaisquer,	então	a*b*	=	(ab)*.

PROPRIEDADES	DA	MULTIPLICAÇÃO

Nesta	seção,	vamos	provar	as	propriedades	(M1),	(M2),	(M3),	(M4),	(D)	e	(OM).
Para	provar	(M4),	precisamos	do

Lema.	Sejam	α	>	0*	um	número	real	e	u,	racional,	com	0	<	u	<	1.	Então,	existem
racionais	p	∈	α,	q	∈	Mα,	 com	q	≠	mín	Mα,	 (caso	Mα	 admita	mínimo),	 tais	 que	

	(Mα	é	o	conjunto	das	cotas	superiores	de	α.)

Demonstração.	Fica	a	cargo	do	leitor.	(Sugestão:	Tome	um	s	∉	α	e,	para	cada	natural
n,	 considere	 o	 racional	qn	 =	 sun;	 agora,	 proceda	 como	 na	 demonstração	 do	 lema	 da
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Seção	A6.4.)					■

Teorema.	Sejam	α,	β	e	γ	reais	quaisquer.	A	multiplicação	verifica	as	seguintes
propriedades:

M1)	(αβ)	γ	=	α	(βγ).
M2)	αβ	=	βα.
M3)	α	·1*	=	α.
M4)	Se	α	≠	0*,	existe	β	∈	ℝ	tal	que	α	·	β	=	1*.
D)	α	(β	+	γ)	=	αβ	+	αγ.
OM)	α	≤	β	e	0*	≤	γ	⇒	αγ	≤	βγ.

Demonstração

(M1)	e	(M2)	ficam	a	seu	cargo.
(M3)	Suponhamos,	inicialmente	α	>	0*.	Precisamos	provar	que	α	·	1*	⊂	α	e	α	⊂	α

·	1*.

α	·	1*	⊂	α

Lembramos,	inicialmente,	que	α	·	1*	=	ℚ−	∪	{ab	|	a	∈	α,	a	>	0,	0	<	b	<	1}.

x	∈	α	·	1*	e	x	≤	0	⇒	x	∈	α.
x	∈	α	·	1*	e	x	>	0	⇒	x	=	au,	com	a	∈	α,	α	>	0,	e	0	<	u	<	1.

De	u	<	1	e	a	>	0,	segue	au	<	a	e,	portanto,	x	=	au	∈	α.	Fica	provado,	deste	modo,
que	α	·	1*	⊂	α.

α	⊂	α	·	1*

x	∈	α	e	x	≤	0	⇒	x	∈	α	·	1*.
x	∈	α	e	x	>	0	⇒	∃a	∈	α,	com	x	<	a.

Assim,	 	pois,	a	∈	α,	a	>	0,	e	 	com	 	Portanto,	α	⊂
α	·	1*.

Provamos,	assim,	que	se	α	>	0*,	então	α	·	1*	=	α.
Se	α	=	0*,	pela	definição	de	produto,	α	·	1*	=	0*	·	1*	=	0*	=	α.
Se	α	<	0*,	α	·	1*	=	−[(−	α)	·	1*]	=	−	[−	α]	=	α.

Segue	que,	para	todo	α	∈	ℝ,	α	·	1*	=	α.
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(M4)	Fica	a	cargo	do	 leitor.	 (Sugestão:	Suponha,	 inicialmente,	α	>	0*	e	considere	o
número	real

Proceda,	então,	como	na	demonstração	de	(A4)	e	conclua	que	α	·	β	=	1*.
Se	α	<	0*,	−α	>	0*,	logo,	existe	β	tal	que	(−α)	·	β	=	1*,	mas,	(−α)	β	=	α	·	(−β);	logo,

α	(−β)	=	1*.)

(D)	Precisamos	provar	que

α	(β	+	γ)	⊂	αβ	+	αγ	e	α	(β	+	γ)	⊃	αβ	+	αγ.

1.º	CASO:	α	>	0*,	β	>	0*	e	γ	>	0*.

α	(β	+	γ)	⊂	αβ	+	αγ

x	∈	α	(β	+	γ)	e	x	≤	0	⇒	x	∈	αβ	+	αγ.
x	∈	α	(β	+	γ)	e	x	>	0	⇒	x	=	ad	para	algum	a	>	0,	a	∈	α,	e	para	algum	d	∈	β	+	γ,	d	>	0.
d	∈	β	+	γ	⇒	d	=	b	+	c,	com	b	∈	β	e	c	∈	γ.

Assim,	x	=	ab	+	ac	∈	αβ	+	αγ,	pois,	ab	∈	α	·	β	e	ac	∈	αγ.	Portanto,	α	(β	+	γ)	⊂	αβ	+
αγ.

αβ	+	αγ	⊂	α	(β	+	γ)

x	∈	αβ	+	αγ	e	x	≤	0	⇒	x	∈	α	(β	+	γ).
Suponhamos,	então,	x	>	0	e	x	∈	αβ	+	αγ.	Como	αβ	>	0*	e	αγ	>	0*,	existem	u	∈	αβ,

u	>	0,	e	v	∈	αγ,	v	>	0,	tais	que	x	=	u	+	v.	(Verifique.)
Segue	que	existem	a,	a′	∈	α,	com	a	>	0	e	a′	>	0,	b	∈	β,	com	b	>	0,	c	∈	γ,	com	c	>

0,	tais	que	x	=	ab	+	a′c.
Supondo	a′	≤	a,	resulta

x	=	ab	+	a′c	≤	ab	+	ac	=	a	(b	+	c)	∈	α	(β	+	γ);

logo,	pela	(R2),	x	∈	α	(β	+	γ).	Fica	provado	que

αβ	+	αγ	⊂	α	(β	+	γ).

2.º	CASO:	α	>	0*	e	β	+	γ	>	0*.
Suponhamos	β	>	0*.	Temos:

αγ	=	α	[(β	+	γ)	+	(−β)]	=	α	(β	+	γ)	+	α	(−β)	(1.º	caso);
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A6.7.

daí

α	(β	+	γ)	=	αβ	+	αγ.

3.º	CASO:	α	>	0*	e	β	+	γ	<	0*.

α	(β	+	γ)	=	−	[α	(−β	−	γ)]	=	−	[α	(−β)	+	α	(−γ)]

ou	seja,

α	(β	+	γ)	=	αβ	+	αγ.

Deixamos	a	seu	cargo	verificar	os	demais	casos.
(OM)	Deixamos	a	seu	cargo.					■

TEOREMA	DO	SUPREMO

Um	subconjunto	A	de	ℝ	se	diz	limitado	superiormente	se	existe	um	número	real	m
tal	que,	para	todo	α	∈	A,	α	≤	m.

Para	demonstrar	o	teorema	do	supremo,	vamos	precisar	do	seguinte

Lema.	Seja	A	um	subconjunto	de	ℝ,	não	vazio	e	limitado	superiormente.	Então,

é	um	número	real.	(γ	é	a	reunião	de	todos	α	pertencentes	a	A.)

Demonstração

(R1)	Sendo	A	≠	ϕ,	existe	α	∈	A	e,	como	α	≠	ϕ,	resulta	γ	≠	ϕ.
Sendo	A	limitado	superiormente,	existe	um	número	real	m	tal	que	α	≤	m,	para	todo

α	∈	A.	Como	m	é	número	real,	existe	x	racional,	com	x	∉	m;	daí	para	todo	α	∈	A,	x	∉
α,	logo,	x	∉	γ	e,	portanto,	γ	≠	ℚ.
(R2)	Sejam	p	e	q	dois	racionais	quaisquer,	com	p	∈	γ	e	q	<	p.	Temos:

p	∈	γ	⇒	p	∈	α	para	algum	α	∈	A
p	∈	α	e	q	<	p	⇒	q	∈	α
q	∈	α	⇒	q	∈	γ.

(R3)	p	∈	γ	⇒	p	∈	α	para	algum	α	∈	A.	Como	a	não	tem	máximo,	existe	 	com	
	 Assim,	 para	 todo	 p	 ∈	 γ,	 existe	 	 com	

Portanto,	γ	não	tem	máximo.

Como	(R1),	(R2)	e	(R3)	estão	verificadas,	segue	que	γ	é	um	número	real.					■
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A6.8.

(i)

(ii)

Teorema	(do	supremo).	Se	A	 for	um	subconjunto	de	ℝ,	não	vazio	e	 limitado
superiormente,	então	A	admitirá	supremo.

Demonstração

Seja	 	Pelo	lema,	γ	é	número	real.	Vamos	mostrar	que	γ	é	o	supremo	de	A,
isto	é,	γ	=	sup	A.	De	fato,	como	γ	é	a	reunião	dos	α	pertencentes	a	A,	segue	que,	para
todo	α	∈	A,

γ	⊃	α,	ou	seja,	γ	≥	α.

Logo,	γ	é	cota	superior	de	A.	Por	outro	lado,	se	γ′	é	uma	cota	superior	qualquer	de	A,	γ′
≥	α,	para	todo	α	∈	A,	e,	portanto,	para	todo	α	∈	A,

γ′	⊃	α;

logo,	 	ou	seja,	γ′	≥	γ.	Assim,	γ	é	a	menor	cota	superior	de	A,	isto	é,

γ	=	sup	A.					■

IDENTIFICAÇÃO	DE	ℚ	COM	

Inicialmente,	 vamos	 definir	 aplicação	 bijetora	 (aplicação	 e	 função	 são	 palavras
sinônimas).	Sejam	A	e	B	dois	conjuntos	não	vazios	e	φ	uma	aplicação	de	A	e	B.

Dizemos	que	φ	é	bijetora	se
Im	φ	=	B

∀	s,	t	∈	A,	s	≠	t	⇒	φ(s)	≠	φ(t).
A	 condição	 (i)	 significa	 que	 φ	 é	 sobrejetora	 e	 a	 (ii),	 injetora.	 Deste	 modo,	 φ	 é

bijetora	se,	e	somente	se,	φ	for	injetora	e	sobrejetora.
Seja	α	 um	número	 real.	Dizemos	que	α	 é	um	número	real	 racional	 se	 existe	 um

racional	r	tal	que	α	=	r*.
O	conjunto	dos	números	reais	racionais	será	indicado	por	
Seja	α	um	número	real.	Se	α	não	pertencer	a	 	diremos	que	α	é	um	número	real

irracional.	Verifique	que

α	=	ℚ−	∪	{	x	∈	ℚ+	|	x2	<	2	}

é	um	número	real	irracional.
Olhemos,	 agora,	 para	 a	 aplicação	 	 dada	 por	 φ(r)	 =	 r*,	 que	 a	 cada

racional	r	associa	o	real	racional	r*.	Tal	aplicação	é	bijetora	(verifique).	Além	disso,
temos:

(i)	φ(r	+	s)	=	(r	+	s)*	=	r*	+	s*	=	φ(r)	+	φ(s).
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(ii)	φ(r	·	s)	=	(rs)*	=	r*	·	s*	=	φ(r)	·	φ(s).
(iii)	r	≤s	⇔	r*	≤	s*.

Tal	aplicação	φ	nos	permite,	então,	identificar	o	racional	r	com	o	real	racional	r*.
Neste	sentido,	podemos	olhar	para	ℚ	como	subconjunto	de	ℝ.
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RESPOSTAS,	SUGESTÕES	OU	SOLUÇÕES

CAPÍTULO	1

1.2
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7.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

10.				a)

b)

c)

d)

e)

f)

g)

h)

i)

x	<	−2	ou	x	>	2

−1	≤	x	≤	1

x	<	−2	ou	x	>	2

x	<	−1	ou	x	>	1

x	<	−3	ou	−1	<	x	<	3

x	<	−2	ou	x	>	2

x	≤	−2	ou	 	≤	x	≤	2

x	≤	−4	ou	x	≥	4

−r	<	x	<	r

x	≤	−r	ou	x	≥	r

(x	−	1)	(x	−	2)

(x	+	1)	(x	−	2)

(x	−	1)2

(x	−	3)2

x	(2x	−	3)

(x	−	1)	(2x	−	1)

(x	−	5)	(x	+	5)

(x	+	1)	(3x	−	2)

(2x	−	3)	(2x	+	3)
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j)

11.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

13.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

17.				a)

b)

c)

d)

x	(2x	−	5)

1	<	x	<	2

x	≤	2	ou	x	≥	3

x	<	0	ou	x	>	3

−3	<	x	<	3

x	≤	−1	ou	x	≥	2

x	<	−1	ou	x	>	

x	≠	2

0	≤	x	≤	

Não	admite	solução

x	=	

Qualquer	x

Qualquer	x

Não	admite	solução

Não	admite	solução

x	>	3

x	≤	−	

x	≥	0

x	>	1

x	>	

x	≥	0

1

−2

−1,	1	e	2

1
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e)

f)

19.				a)

b)

c)

d)

e)

f)

20.				a)

b)

c)

d)

1.				a)

b)

c)

d)

e)

f)

2.				a)

b)

c)

d)

e)

f)

3.				a)

2

−3,	−2,	2

(x	−	1)	(x	+	1)	(x	+	2)

(x	−	1)2	(x	+	1)	(x	−	2)

x	(x	+	3)	(x	−	1)

(x	−	2)	(x	+	2)	(x	+	3)

(x	+	1)	(x	+	2)	(x	+	3)

(x	−	1)	(x2	+	x	+	1)

x	>	1

x	<	−3	ou	−2	<	x	<	−1

−3	≤	x	≤	−2	ou	x	≥	2

x	<	−3	ou	0	<	x	<	1

1.3

7

3

a

−a

a	se	a	≥	0;	−a	se	a	<	0

−a	se	a	≥	0;	a	se	a	<	0

x	=	2	ou	x	=	−2

x	=	2	ou	x	=	−4

x	=	1	ou	x	=	0

Não	admite	solução

x	=	−	

x	=	−	

−1	≤	x	≤	1

662



b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

o)

5.				a)

b)

c)

d)

1.

2.

3.

4.

−1	<	x	<	2

Não	admite	solução

	<	x	<	

−1	<	x	<	1,	x	≠	0

−1	<	x	<	7

x	<	−3	ou	x	>	3

x	<	−4	ou	x	>	−2

x	<	0	ou	x	>	3

	<	x	<	1

x	<	0	ou	x	>	2

x	<	−	

x	>	1

x	<	1	ou	x	>	2

−2x	−	1	se	x	≤	−1;	1	se	−1	<	x	<	0;	2x	+	1	se	x	≥	0

3	se	x	≤	−1;	−2x	+	1	se	−1	<	x	<	2;	−3	se	x	≥	2

−3x	+	3	se	x	≤	 ;	x	+	1	se	 	<	x	<	2;	3x	−	3	se	x	≥	2

−3x	+	3	se	x	≤	0;	−x	+	3	se	0	<	x	≤	1;	x	+	1	se	1	<	x	≤	2;	3x	−	3	se	x	≥	2

1.4

0	<	r	≤	1

0	<	r	≤	s,	em	que	s	é	o	menor	dos	números	b	−	p	e	p	−	a.

CAPÍTULO	2
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3.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

2.1

2

3

−2

2x	+	h

2x	+	3	+	h

−2x	−	h

2x	−	2	+	h

2x	−	2	+	h

−4x	−	2h

4x	+	1	+	2h

3x2	+	3xh	+	h2

3x2	+	2	+	3xh	+	h2

664



665



666



667



668



669



670



671



14.				a)

b)

c)

d)

e)

f)

g)

j)

f	(x)	≥	0	se	x	≤	−1	ou	x	≥	1;	f	(x)	<	0	se	−1	<	x	<	1

f	(x)	≥	0	se	x	≤	2	ou	x	≥	3;	f	(x)	<	0	se	2	<	x	<	3

f	(x)	>	0	para	todo	x

f	(x)	≥	0	se	0	≤	x	≤	3;	f	(x)	<	0	se	x	<	0	ou	x	>	3

f	(x)	<	0	para	x	≠	−1;	f	(x)	=	0	para	x	=	−1

f	(x)	>	0	para	x	≠	−3;	f	(x)	=	0	para	x	=	−3

f	(x)	≥	0	para	−3	≤	x	≤	3;	f	(x)	<	0	para	x	<	−3	ou	x	>	3

f	(x)	<	0	para	todo	x
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674



675



676



677



678



679



2.2

680



2.4

681



682



1.				a)

b)

c)

d)

e)

f)

CAPÍTULO	3

3.1

Em	todo	p	real

Em	todo	p	real

Em	todo	p	real

Em	todo	p	≠	1

Em	todo	p	≠	±1

Em	todo	p	real

683



2.				a)

b)

c)

d)

e)

f)

g)

h)

4.				a)

b)

d)

e)

f)

3

3

1

5

1

0

4

1

0

−2

0

3.2
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5.

8.

9.				a)

b)

c)

d)

11.				a)

Não.	 Para	 	 não	 existe	 δ	 >	 0	 que	 torna	 verdadeira	 a	 afirmação	

Seja	p	racional,	então	f	(p)	=	1;	se	f	fosse	contínua	em	p,	pela	conservação
do	sinal,	 existiria	δ	>	0	 tal	 que	 f	 (x)	>	0	para	p	−	δ	<	x	<	p	 +	δ,	 que	 é
impossível,	pois	em	]	p	−	δ,	p	+	δ	[	existem	infinitos	irracionais

{x	∈	ℝ	|	x	∉	ℤ}

{x	∈	ℝ	|	x	∉	ℤ}

{0}	(só	é	contínua	em	0)

{−1,	1}

L	=	4;	com	L	=	4,	f	(x)	=	x	+	2	para	todo	x,	que	é	contínua	em	p	=	2
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b)

12.				a)

b)

c)

d)

e)

f)

13.

15.

17.

18.

20.

21.

23.				a)

b)

c)

25.

L	=	−1

4

−1

Não	existe

6

1

Não	existe

Como	f	é	contínua	em	2,	para	todo	∊	>	0	dado,	existe	δ	>	0	tal	que	 	x	∈
Df

2	−	δ	<	x	<	2	+	δ	⇒	8	−	∊	<	f	(x)	<	8	+	∊.

Em	particular,	para	∊	=	1	existirá	δ	>	0	tal	que	2	−	δ	<	x	<	2	+	δ	⇒	7	<	f	(x)

Para	se	ter	|	f	(x)	−	f	(p)	|	<	∊	basta	que	se	tenha	M	|	x	−	p	|	<	∊.	Tomando-
se	

Para	se	ter	|	f	(x)	−	f	(0)	 |	<	∊	(observe	que	f	(0)	=	0)	basta	que	se	tenha	
	 Tomando-se	 	

Observe	que	|	f	(x)	|	≤	|	x	|

Suponha	que	exista	p,	com	f	(p)	≠	0,	e	aplique	a	conservação	do	sinal

Aplique	o	Exercício	20	à	função	h	(x)	=	g	(x)	−	f	(x)

Observe	que	

Dado	∊	>	0	e	tomando-se	

|	x	−	1	|	<	δ	⇒	|	f	(x)	−	f	(1)	|	<	∊

Verifique	 |	 f	 (x)	 −	 f	 (1)	 |	 ≤	 7	 |	 x	 −	 1	 |	 para	 	 e	 proceda	 como	 no

Exercício	23(c)
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27.				b)

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

o)

p)

q)

r)

s)

t)

u)

Dado	∊	>	0	e	tomando-se	

|	x	−	p	|	<	δ	⇒	|	x3	−	p3	|	<	∊

3.3

4

4

−7

5

50

4

2

6

0

2

2

−2
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2.				a)

b)

c)

3.

4.				a)

b)

c)

d)

e)

f)

6.

8.

10.

1.				a)

12

Não	é	contínua	em	−1.	Em	0	é.

2x

4x	+	1

0

−3x2	+	2

3

Como	 	tomando-se	

Tomando-se	 ∊	 =	 1,	 existe	

logo	…

Sugestão:	|	f	(x)	−	L	|	<	1	⇒	|	f	(x)	|	−	|	L	|	<	1	(Por	quê?)

3.4

1
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b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

2.

3.

1.				a)

b)

c)

d)

2.				a)

b)

c)

d)

3.				a)

b)

c)

d)

−1

1

0

Não	existe

Não	existe

1

1

2

2

1

Não	existe

É	falsa

Não,	pois	f	não	está	definida	em	1

3.5

3

0

2

L

3L

2L

−L
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1.

2.

3.

4.				b)

5.				a)

b)

6.				a)

b)

7.				b)

12.

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

3.6

2

3

0

0

Não	existe

0.	(Observe	que	

0

0

Sugestão:	Para	(⇒):	

3.8

1

1

3

−1

0

3

0

0

0

2p

0
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o)

p)

q)

2.				b)

3.				a)

b)

c)

d)

1.				a)

b)

c)

d)

e)

f)

g)

h)

j)

l)

m)

n)

o)

−2

0

−π

0

cos	p

−sen	p

sec2	p

sec	p	tg	p

CAPÍTULO	4

4.1

0

0

5

2

2

2

0

0

1
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p)

q)

r)

s)

2.

3.				a)

b)

4.				a)

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

0

0

0

Aplique	a	definição	de	limite	com	

0

4.2

+∞

−∞

−∞

+∞

+∞

0

2

−	

0

0
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2.

3.				a)

b)

c)

d)

e)

f)

g)

h)

4.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

o)

p)

q)

r)

Dado	∊	>	0	e	tomando-se	

0

+∞

−∞

0

+∞

−∞

−∞

−∞

+∞

−∞

+∞

−∞

−∞

+∞

+∞

−∞

+∞

+∞

+∞

+∞

−∞

+∞

−∞
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s)

9.

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

3.

4.				a)

b)

5.

6.				a)

b)

7.				a)

1.				a)

2.

−∞

Aplique	a	definição	com	∊	=	1

4.3

2

+∞

1

0

2

0

+∞

+∞

4.4

0	(Observe:	−	|	x	|	≤	f	(x)	≤	|	x	|.)
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4.

5.

6.

1.

2.

3.

5.

7.

9.

2

2

Seja	 	 e	 considere	 as	 sequências	

	 Verifique	 que	

CAPÍTULO	5

f	(−1)	=	−1,	f	(0)	=	1	e	f	é	contínua	em	[−1,	0]

Verifique	que	f	(x)	=	x3	−	4x	+	2	tem	uma	raiz	real	em	cada	intervalo	[−3,
−2],	[0,	1]	e	[1,	2]

a)	 	 é	 contínua	 em	 [−2,	 2];	 pelo	 teorema	 de	Weierstrass

existem	x1,	x2	em	[−2,	2]	tais	que	f	(x1)	≤	f	(x)	≤	f	(x2)	em	[−2,	2].	Assim,	f
(x1)	 é	 o	 valor	 mínimo	 e	 f	 (x2)	 o	 valor	 máximo	 do	 conjunto	

a)	 Seja	 f	 (x)	 =	 ax3	 +	 bx2	 +	 cx	 +	 d	 e	 suponhamos	
	 e	 	 logo,	 existem	 x1	 e	 x2,

com	x1	<	x2,	tais	que	f	(x1)	<	0	e	f	(x2)	>	0.	Como	f	é	contínua	em	[x1,	x2]
…

Seja	J	=	{f	(x)	|	x	∈	I}

1.º	Caso.	J	não	é	limitado	nem	superiormente	nem	inferiormente.
Para	todo	m	real,	existem	x1	e	x2	em	I	com	f	(x1)	<	m	<	f	(x2).

Tendo	 em	 vista	 a	 continuidade	 de	 f,	 pelo	 teorema	 do	 valor
intermediário	existe	c	entre	x1	e	x2	com	f	(c)	=	m.	Segue	que	J	=	ℝ	=	]−∞,
+∞[.

2.º	Caso.	J	é	limitado	superiormente,	mas	não	inferiormente.
Seja	M	=	sup	J.	Seja	m	um	real	qualquer	em	]−∞,	M[.	Existem	x1,	x2	em	I,
com	f	(x1)	<	m	<	f	(x2)	(por	quê?).

Pelo	teorema	do	valor	intermediário	existe	c	entre	x1	e	x2	tal	que	f	(c)	=
m.	Segue	que	]−∞,	M[	⊂	J.	Por	outro	lado,	para	 todo	x	em	I,	 f	 (x)	≤	M.
Logo,	se,	M	não	for	máximo	de	J,	J	=	]	−∞,	M	[;	se	M	for	máximo	de	J,	J
=	]−∞,	M].
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11.

12.

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Analise	os	demais	casos.

Se	f	(0)	=	0	ou	f	(1)	=	1	nada	há	o	que	provar.	Suponha	que	nenhuma	das
situações	anteriores	ocorra;	aplique	o	 teorema	do	anulamento	a	g	 (x)	=	 f
(x)	−	x

Suponha,	por	absurdo,	que	existam	u,	v	em	[	a,	b	],	com	u	<	v,	e	tais	que	f
(u)	>	 f	(v).	Se	f	(a)	<	 f	(v),	pelo	 teorema	do	valor	 intermediário,	existe	c
em	]	a,	u	[,	tal	que	f	(c)	=	f	(v),	contradição.	Se	f	(v)	<	f	(a)	<	f	(u)	…

CAPÍTULO	6

6.1

+∞

0

0

0

−∞

0

0

+∞

+∞

+∞
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1.				a)

b)

c)

d)

e)

f)

g)

h)

2.				a)

b)

c)

d)

e)

f)

6.2

2

−4

−	

0

Não	existe

0

5

x	>	−1

x	<	−1	ou	x	>	1

x	<	0

x	≠	0

x	<	−1	(ou	x	>	1)

x	>	0	e	x	≠	1
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4.				a)

b)

c)

d)

e)

f)

g)

1.				a)

b)

c)

d)

+∞

+∞

−∞

0

ln	2

ln	2

−∞

6.3

e2

e

e2
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e)

f)

g)

h)

2.

3.				a)

b)

c)

d)

1.				a)

c)

2.

3.				a)

b)

c)

4.				a)

b)

c)

d)

e)

f)

g)

h)

e

1

e2

e2

Sugestão:	ah	=	eh	ln	a

2

0

ln	5

+∞

CAPÍTULO	7

7.2

2

2x

2

3

3

3

3

5

−1

−

4
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5.				a)

b)

c)

d)

15.				a)

16.				b)

17.				b)

1.				a)

b)

c)

y	=	4x	−	4

x	−	6y	+	9	=	0

y	=	x	−	1

2

0

Não

7.3

5x4

0

80
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7.

9.

1.

2.

4.				a)

b)

c)

d)

1.				a)

b)

2.

3.				a)

b)

c)

d)

4.				a)

b)

5.

6.				a)

y	=	4x	−	4

7.4

y	=	x	+	1

y	=	x	−	1

2x	ln	2

5x	ln	5

πx	ln	π

ex

7.5

cos	x

y	=	x

−sen	x

0

−	

sec2	x

sec	x	tg	x

y	=	x

−cosec2	x
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b)

7.				a)

b)

2.

−2

−cosec	x	cotg	x

−	

7.7

y	=	2x

702
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10.				a)

b)

c)

d)

(2x	−	1)	sen	x	+	x2	cos	x

0

(6a	−	1)	sen	(3a)	+	9a2	cos	(3a)

(2x2	−	1)	sen	x2	+	x4	cos	x2
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7.8

7.9

705



3.

4.

8.				a)

b)

c)

d)

e)

f)

1.				a)

b)

c)

8

36

6x

2	cos	t	−	t	sen	t

−2et	sen	t

7.11

4	cos	4x

−5	sen	5x

3e3x
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d)

e)

f)

g)

h)

i)

2.

3.

−8	sen	8x

3t2	cos	t3

esen	t	cos	t

−ex	sen	ex

3	(sen	x	+	cos	x)2	(cos	x	−	sen	x)

10

4
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7.

8.

8

11

708



12.

13.

16.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

23.				b)

c)

28.

30.

±2

1	ou	2

3	sec2	3x

4	sec	4x	tg	4x

−2x	cosec2	x2

sec2	x	sec	(tg	x)	tg	(tg	x)

3x2	sec	x3	tg	x3

2x	sec2	x2	etg	x2

−2	cosec	2x	cotg	2x

x2	[3	tg	4x	+	4x	sec2	4x]

3	sec	3x

−e−x	sec	x2	[1	−	2x	tg	x2]

6x	(x2	+	cotg	x2)2	(1	−	cosec2	x2)

2x	[tg	2x	+	x	sec2	2x]

7

y	=	2x	−	1

−	

8

7.12

709



7.13

710



2.				a)

3.				a)

4.				a)

b)

1.				a)

b)

c)

7.14

dA	=	2l	dl

dV	=	4πr2	dr

dy	=	(2x	+	3)	dx

(dx)2

7.15

2	−	2t

−2

v	(t)	>	0	em	[0,	1[
v	(t)	<	0	em	]1,	+∞[

711



2.				a)

b)

3.				a)

b)

c)

7.				a)

b)

c)

d)

0

v	(t)	>	0	em	]0,	2[
v	(t)	<	0	em	]2,	+∞[

a	(t)	>	0	em	[0,	1[
a	(t)	<	0	em	]1,	+∞[

−∞

f′(t)	>	0	em	]−∞,	−2[	e	em	]0,	+∞[
f′(t)	<	0	em	]−2,	0[

f	″(t)	<	0	em	]−∞,	−1[
f	″(t)	>	0	em	]−1,	+∞[

+∞	e	−∞
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7.16

713



7.17

714



5.

6.

8.

9.

14.

17.

21.				a)

b)

22.				a)

b)

c)

d)

23.				a)

b)

x	+	y	=	2	ou	x	+	y	=	−2

x	+	4y	=	9	ou	−x	+	4y	=	9

x	+	y	=	−1

0,5	m2/s

0,003	m/min

a	=	

2x2	+	2

4x3	+	4x

cos	(sen	x)

−x2

cos	(sen	x)	cos	x

1

715



27.				a)

28.				a)

b)

29.				a)

h	″(t)	=	−9	cos	3t	f	′(cos	3t)	+	9	sen2	3t	f	″(cos	3t)

y2	+	2t2	y3

3

cos	y	+	(x	+	sen	y)	(cos	2y	−	x	sen	y)

CAPÍTULO	8

8.1

716



8.2

717



1.				a)

CAPÍTULO	9

9.2

Est.	cresc.	em	]−∞,	0]	e	[2,	+∞[

Est.	decresc.	em	[0,	2]

718



c) Est.	cresc.	em	]−∞,	−1]	e	[1,	+∞[

Est.	decresc.	em	[−1,	0[	e	]0,	1]

719



f)

g)

h)

i)

Est.	cresc.	em	]−∞,	−1]	e	[1,	+∞[
Est.	decresc.	em	[−1,	1]

Observe	que	f′	(0)	=	0.

Est.	decresc.	em	]−∞,	−1]	e	[1,	+∞[
Est.	cresc.	em	[−1,	1]

Est.	decresc.	em	]−∞,	0]
Est.	cresc.	em	[0,	+∞[

Est.	cresc.	em	ℝ

720



j)

l)

m)

n)

Est.	cresc.	em	]−∞,	0]
Est.	decresc.	em	[0,	+∞[

Est.	cresc.	em	[−ln	2,	+∞[
Est.	decresc.	em	]−∞,	−ln	2]

Est.	decresc.	em	]−∞,	0[	e	em	]0,	+∞	[

Est.	cresc.	em	[1,	+∞[

Est.	decresc.	em	]−∞,	0[	e	]0,	1]

721



p)

q)

r)

Est.	cresc.	em	[−1,	+∞[
Est.	decresc.	em	]−∞,	−1]

Est.	cresc.	em	]−∞,	0]	e	[1,	2]
Est.	decresc.	em	[0,	1]	e	[2,	+∞[

Est.	cresc.	em	[1,	+∞[

722



s)

t)

u)

2.

3.

Est.	decresc.	em	]−∞,	0[	e	]0,	1]

Est.	cresc.	em	]−∞,	0]	e	[2,	+∞[
Est.	decresc.	em	[0,	1[	e	]1,	2]

Est.	cresc.	em	]0,	e]
Est.	decresc.	em	[e,	+∞[

Est.	cresc.	em	]−∞,	0]
Est.	decresc.	em	[0,	+∞[

[−2,	−1]

Cada	um	dos	intervalos	[−3,	−2],	[0,	1]	e	[1,	2]	contém	uma	raiz.
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4.

5.				a)

b)

c)

d)

e)

f)

6.				a)

b)

c)

d)

a	<	−27	ou	a	>	5

+∞

0

+∞

0

0

+∞

Est.	cresc.	em	]−∞,	0[	e	[2,	+∞[
Est.	decresc.	em	]0,	2]

Est.	cresc.	em	[e−1,	+∞[
Est.	decresc.	em	]0,	e−1]

Est.	decresc.	em	]0,	1[	e	]1,	e]
Est.	cresc.	em	[e,	+∞[

Est.	cresc.	em	[e−1,	+∞[
Est.	decresc.	em	]0,	e−1].
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1.				a)

b)

c)

d)

e)

f)

g)

9.3

Conc.	para	cima	em	]1,	+∞[

Conc.	para	baixo	em	]−∞,	1[

Ponto	de	inflexão:	1

Conc.	p/cima	em	

Conc.	p/baixo	em	

Ponto	de	inflexão:	

Conc.	p/cima	em	]1,	+∞[
Conc.	p/baixo	em	]−∞,	1[
Ponto	de	inflexão:	1

Conc.	p/cima	em	]−∞,	−1[	e	]0,	+∞[
Conc.	p/baixo	em	]−1,	0[
Ponto	de	inflexão:	−1

Conc.	p/cima	em	]ln	4,	+∞[
Conc.	p/baixo	em	]−∞,	ln	4[
Ponto	de	inflexão:	ln	4

Conc.	para	cima	 	
Conc.	p/baixo	em	
Ponto	de	inflexão:	não	há

Conc.	p/baixo	em	 	
Conc.	p/cima	em	 	
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h)

i)

j)

l)

m)

n)

o)

Pontos	de	inflexão:	±	 	e	0

Conc.	para	baixo	em	ℝ.	Não	há	ponto	de	inflexão

Conc.	p/cima	em	]e2,	+∞[
Conc.	p/baixo	em	]0,	e2[
Ponto	de	inflexão:	e2

Conc.	p/cima	em	]−∞,	0[	e	]1,	+∞[
Conc.	p/baixo	em	]0,	1[
Pontos	de	inflexão:	0	e	1

Conc.	p/baixo	em]−∞,	0[	e	em	]0,	1[
Conc.	p/cima	em	]1,	+∞[
Ponto	de	inflexão:	1

Conc.	p/cima	em	]−∞,	−	 	[	e	em	]0,	3	[	 	[
Conc.	p/baixo	em	]−	 ,	0[	e	em	]	 ,	+∞[
Pontos	de	inflexão:	±	 	e	0

Conc.	p/baixo	em	]−∞,	0[
Conc.	p/cima	em	]0,	+∞[
Ponto	de	inflexão:	não	há

Conc.	p/cima	em	]0,	+∞[
Ponto	de	inflexão:	não	há

726



8.				a)

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

10	+	6b	+	3c	=	0	e
10	+	4b	+	c	≠	0

9.4

2

+∞

+∞

0

0

0

e2

+∞

+∞

+∞

+∞

0

727



o)

p)

q)

r)

s)

3.				a)

b)

c)

d)

0

0

0

1

1

0

+∞

+∞

−	

9.5

728



729



730



1.				a)

b)

c)

d)

e)

f)

g)

9.6

1	é	ponto	máx.	global

−1	é	ponto	de	mín.	global

	é	ponto	de	máx.	global

Não	há	ponto	de	máx.	local	nem	de	mín.	local

1	é	ponto	de	máx.	local
2	é	ponto	de	mín.	local

−	 	é	ponto	de	mín.	global

1	é	ponto	de	máx.	global

0	e	2	ponto	de	mín.	globais
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h)

i)

j)

l)

m)

n)

o)

2.

3.

4.

5.

6.

7.

8.

9.

10.

1	ponto	de	máx.	local

	ponto	de	máx.	global

π	ponto	de	mín.	global

−1	e	2	ponto	de	máx.	globais
0	e	3	ponto	de	mín.	globais

α	é	ponto	de	máx.	global	onde	α	é	a	raiz	da	equação	1	−	x2	sec2	x	=	0.

−1	e	1	ponto	de	máx.	locais
0	e	2	ponto	de	mín.	locais

2	é	ponto	de	máx.	global

0	é	ponto	de	máx.	local

	é	ponto	de	mín.	local

	é	ponto	de	máx.	local

	é	ponto	de	mín.	local

Quadrado	de	lado	

Tangente	no	ponto	de	abscissa	

Base	 	e	altura	

Raio	da	base	 	e	altura	

732



11.

12.

13.

14.

15.

17.

18.

19.

20.

22.

23.

24.

28.

29.

30.

(1,	1).	O	coef.	angular	da	reta	que	passa	por	(1,	1)	e	(3,	0)	é	−	 	e	o	da

reta	tangente	em	(1,	1)	é	2.

( ,	 )

t	=	0

r	=	1	e	h	=	1

q	=	3.

q	=	4

q	=	10	e	Lmáx	=	L	(10)

y	=	−2px	+	1	+	p2	em	que	 	ou	

É	o	retângulo	em	que	 	é	um	dos	vértices.

É	o	retângulo	de	vértices	(p,	0),	

733



1.				a)

b)

c)

d)

e)

f)

1.

2.

3.

4.

5.

6.

onde	

9.7

−1	e	4	pontos	de	mín.	local

0	ponto	de	máx.	local

−	 	ponto	de	máx.	local

	ponto	de	mín.	local

1	ponto	de	inflexão	horizontal

−1	e	0	ponto	de	máx.	local

−	 	ponto	de	mín.	local

1	ponto	de	mín.	local

0	ponto	de	mín.	local

	ponto	de	máx.	local

9.8

f	(−2)	=	7	valor	máx.

	valor	mín.

f	(−2)	=	−27	valor	mín.

f	(1)	=	0	valor	máx.

f	(−3)	valor	mín.;	f	(−2)	valor	máx

	valor	máx.;	f(0)	valor	mín.

f	(−1)	valor	mín.;	f	(0)	=	f	(2)	valor	máx.

	valor	máx.

Não	possui	valor	mínimo.

734



2.

3.

9.				a)

b)

c)

d)

10.				

11.				a)

b)

CAPÍTULO	10

10.1

y	=	e2x

x	(t)	=	e2t

y	=	e2x

y	=	−e−x

y	=	e−x

y	=	e(1	−	cos	x)

10.2

735



7.

b)

c)

x	(2)	=	10

a	(t)	=	1

736



c)

d)

1.

2.

3.

4.

5.

6.

7.

8.

9.

y	=	e−x	−	1

y	=	arc	tg	x

CAPÍTULO	11

11.5

7/2

2

2

0

2

12

4/9

10

8/3

737



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

3/4

0

−4

−1

16/3

2

12

15/4

8/9

45/8

13/10

32/3

0

0

15/8

253/6

−21/8

7/8

7/3

20/3

19/3

20/3

19/24

11/8

9

47/6

0
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37. 2	+	ln	3

11.6

739



740
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23.				a)

b)

24.

25.

26.

2

2

1

11.7

742



2.

3.

4.

5.

1.				a)

b)

c)

d)

b)

c)

d)

e)

3

0

0

11.8

6	J

4	J

−1	J

0

1	e	−1

|	x	|	=	1

Oscilatório
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b)

b)

v0	=	1

0

CAPÍTULO	12

12.1

744



10.				a)

b)

c)

d)

−ln	|	cos	x	|	+	k

tg	x	+	k

tg	x	−	x	+	k

ln	|	sec	x	+	tg	x	|	+	k

745



e)

16.				a)

b)

17.				a)

b)

0

0	se	m	≠	n;	π	se	m	=	n

0

12.2

746



4.				a)

b)

2	ln	|	x	−	3	|	+	k

5	ln	|	x	−	1	|	+	2	ln	|	x	|	+	k
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c)

d)

e)

f)

g)

h)

e)

f)

g)

h)

	ln	|2x	+	3|	+	k

x	−	ln	|	x	+	1	|	+	k

x	+	3	ln	|	x	−	1	|	+	k

2x	+	ln	|	x	+	1	|	+	k

−8	ln	|	x	−	1	|	+	13	ln	|	x	−	2	|	+	k

ln	|	x	−	2	|	+	k

−2	ln	|	x	−	2	|	+	2	ln	|	x	−	3	|	+	k

−4	ln	|	x	+	1	|	+	5	ln	|	x	+	2	|	+	k
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1.				a)

b)

c)

d)

e)

f)

12.3

(x	−	1)	ex	+	k

−x	cos	x	+	sen	x	+	k

ex	(x2	−	2x	+	2)	+	k

x	(ln	x	−	1)	+	k
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7.				a)

b)

c)

d)

1

2	ln	2	−	1

12.4
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2.

3. πab
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9.				a)

b)

c)

d)

l)

m)

n)

o)

x	=	3	sen	t

x	=	3	sec	t

x	=	3	tg	t

x	=	sen	t

x	−	1	=	u2,	u	>	0

1	+	ex	=	u2,	u	>	0

12.5
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i)

j)

12.6

e

Verifique	o	resultado	encontrado	por	derivação.
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12.7

12.8
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2.

3.

0	(observe	que	o	integrando	é	uma	função	ímpar)

0	se	n	≠	m;	π	se	n	=	m

12.9

12.10
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3.

4.

12.11

2	[	ln	(1	+	cos	x)	−	cos	x	]	+	k

ln	|	2	sec	x	+	3	|	+	k

CAPÍTULO	13

13.1
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13.2

13.3

13.4

13.5

13.6
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13.7
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5.				a)

b)

6.

11.

13.8

13.9

4π2

2π2

π2

Os	 volumes	 em	 torno	 dos	 eixos	 x	 e	 y	 são	 iguais:	

	

Portanto,	 	(Compare	esta	solução	com	a	do	Exemplo	4.)
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12.

13.

14.

15.

16.

1.

3.				a)

b)

c)

d)

e)

f)

1.

2.

3.

4.

5.

Pela	 simetria	 da	 figura,	 xc	 =	 0;	 	 Como	 área	 =	 π	 e	

	resulta,	

	em	que	θ	=	arctg	α.

Sejam	 y1c,	 y2c	 e	 yc	 as	 ordenadas	 dos	 centros	 de	 massa	 de	 A1,	 A2	 e	 A,

respectivamente.	 Então,	 	 Segue

que	

Fazendo	u	=	1	+	x,	resulta	0	≤	u	≤	4	e	0	≤	y	≤	u2.	Área	=	64/3;	 	e

Vy	=	128π.	Portanto,	uc	=	3	e	 	Segue	que	xc	=	2	e	

CAPÍTULO	14

14.2

a),	b),	c),	f)

x	(t)	=	1	ou	x	(t)	=	−1

x	(t)	=	0

y	(x)	=	−1

Não	há

x	(t)	=	1

x	(t)	=	0,	t	>	0

14.3

x	(t)	=	0

x	(t)	=	0	ou	x	(t)	=	1

Não	há

Não	há

Não	há
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6.

r)

t)

x	(t)	=	1	ou	x	(t)	=	−1

14.5

tg	y	=	x	+	k,	 	<	y	<	 	de	tg	y	=	tg	

resulta:	tg	(y	−	π)	=	x	+	k	ou	y	=	π	+	arc	tg	(x	+	k)

w	=	c	ln	|	v	|
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5.

6.

7.

8.

9.

10.

11.

12.

A	 queda	 do	 corpo	 é	 regida	 pela	 equação	 	 ou	 10	

	 −αv	 e	 sabe-se	 que	 v	 (0)	 =	 0	 e	 v	 (1)	 =	 8.	 Tem-se:	

	 em	 que	 α	 é	 a	 raiz	 da	 equação	

y	 =	 xe1	 −	 x	 (veja:	 a	 reta	 tangente	 em	 (x,	 y)	 tem	 equação	

	 para	 X	 =	 0,	 Y	 =	 xy,	 daí	

y	=	2x2

	sendo	α	a	raiz	da	equação

y	=	2x2	(veja:	o	coeficiente	angular	da	reta	tangente	à	curva	no	ponto	(x,	y)

é	 	 a	 equação	 diferencial	 associada	 ao	 problema	 é,	 então,	

)

	observe	que	y	(x)	=	0,	x	>	0,	e	y	(x)	=	0,	x	<	0	são	também

soluções
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13.

1.				a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

2.				a)

b)

3.

4.

5.				a)

b)

6.

7.

Sugestão:	Faça	

14.6

x	=	ke−t	+	2

x	=	ke−cos	t

x	=	kt	+	t2

y	=	ke−x	+	x	−	1

T	=	ke−2t	+	3

y	=	kex	(ln	x	−	1)

8,3287%	a.m.

C	(t)	=	20.000	·	3t
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8.

9.

3.

6.

1.

5.				a)

b)

6.

1.				a)

b)

c)

d)

e)

f)

2.				a)

CAPÍTULO	15

15.1

Aplique	o	teorema	de	Rolle	a	

Verifique	que	o	valor	máximo	de	f	não	pode	ser	estritamente	positivo	e	o
valor	mínimo	estritamente	negativo.	(Veja:	se	o	valor	máximo	f	(x1)	fosse
estritamente	 positivo	 teríamos	 x1	 em	 ]a,	 b[,	 logo,	 f′(x1)	 =	 0;	 seguiria,
então,	f	″	(x1)	=	f′(x1)	…)

15.2

Quaisquer	que	sejam	x	e	y	em	I,	com	x	≠	y,	 f	 será	contínua	no	 intervalo
fechado	 de	 extremo	 x	 e	 y	 é	 derivável	 no	 intervalo	 aberto	 de	 mesmos
extremos,	então,	pelo	TVM,	existe	 	no	intervalo	aberto	de	extremo	x	e	y
tal	que	 	Da	hipótese	|	f′(x)	|	≤	m	no	intervalo
de	I,	segue	|	f	(x)	−	f	(y)	|	≤	M	|	x	−	y|

0	e	4

Não

Suponha	que	x1	e	x2,	x1	≠	x2	sejam	pontos	fixos	e	aplique	o	TVM

CAPÍTULO	16

16.1

x

1	+	x

1

1	−	x
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b)

c)

d)

e)

f)

2.				a)

b)

c)

d)

f)

5.				a)

b)

0,02;	|	sen	0,02	−	0,02	|	≤	10−3

1,001;	|	e0,001	−	1,001	|	≤	10−5

1;	|	cos	0,01	−	1	|	≤	10−4

−0,01;	|	ln	0,99	−	(−0,01)	|	≤	10−4

16.2

0,255;	|	ln	1,3	−	0,255	|	<	10−2	(Utilizamos	o	polinômio	de	Taylor	de
ordem	2	de	ln	x	em	volta	de	x0	=	1.)

	(Utilizamos	o	polinômio	de
Taylor	de	ordem	2	em	volta	de	x0	=	4	de	 .)

Utilize	o	polinômio	de	Taylor	de	 	de	ordem	2,	em	volta	de	x0	=	8.

0,1;	|	sen	0,1	−	0,1	|	≤	10−3.

0

+	∞

16.3
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2.

3.

4.

6.

O	polinômio	de	Taylor	de	ordem	n	+	1,	de	sen	x	em	volta	de	x0	=	0,	é	(n
ímpar)

Como	 	(por	quê?),	segue	a	desigualdade.

Pelo	exercício	anterior

	 Basta

determinar	n,	por	tentativas,	de	modo	que	

No	Exercício	2,	substitua	x	por	x2,	assim

Como	 	 basta	 determinar	 n,	 por

tentativas,	de	modo	que	

Verifique	que

Para	x	fixo,	faça	n	tender	a	+∞.
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1.
2.
3.

4.
5.

6.
7.
8.
9.
10.
11.
12.
13.

14.
15.
16.

17.

18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.
33.
34.
35.
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em	torno	do	eixo	y,	406,	408,	410

Volume	de	sólido	qualquer,	411

772



Índice

Frontispício 2
GEN 3
Página	de	rosto 4
Créditos 5
Dedicatória 7
Prefácio 8
Sumário 11
1	Números	reais 19
1.1	Os	números	racionais 19
1.2	Os	números	reais 23
1.3	Módulo	de	um	número	real 35
1.4	Intervalos 40
1.5	Propriedade	dos	intervalos	encaixantes	e	propriedade	de
Arquimedes 41

1.6	Existência	de	raízes 42
1.7	Potência	com	expoente	racional 48

2	Funções 49
2.1	Funções	de	uma	variável	real	a	valores	reais 49
2.2	Funções	trigonométricas:	seno	e	cosseno 71
2.3	As	funções	tangente,	cotangente,	secante	e	cossecante 77
2.4	Operações	com	funções 79

3	Limite	e	continuidade 83
3.1	Introdução 83
3.2	Definição	de	função	contínua 89
3.3	Definição	de	limite 101
3.4	Limites	laterais 113
3.5	Limite	de	função	composta 117
3.6	Teorema	do	confronto 122
3.7	Continuidade	das	funções	trigonométricas 125
3.8	O	limite	fundamental 127
3.9	Propriedades	operatórias.	Demonstração	do	Teorema	do
Confronto 130

773



4	Extensões	do	conceito	de	limite 132
4.1	Limites	no	infinito 132
4.2	Limites	infinitos 136
4.3	Sequência	e	limite	de	sequência 146
4.4	Limite	de	função	e	sequências 154
4.5	O	número	e 156

5	Teoremas	do	anulamento,	do	valor	intermediário	e	de
Weierstrass 159

6	Funções	exponencial	e	logarítmica 163
6.1	Potência	com	expoente	real 163
6.2	Logaritmo 167
6.3	O	limite 173

7	Derivadas 176
7.1	Introdução 176
7.2	Derivada	de	uma	função 177
7.3	Derivadas	de	xn	e 185
7.4	Derivadas	de	ex	e	ln	x 190
7.5	Derivadas	das	funções	trigonométricas 192
7.6	Derivabilidade	e	continuidade 194
7.7	Regras	de	derivação 197
7.8	Função	derivada	e	derivadas	de	ordem	superior 205
7.9	Notações	para	a	derivada 207
7.10	Regra	da	cadeia	para	derivação	de	função	composta 216
7.11	Aplicações	da	regra	da	cadeia 218
7.12	Derivada	de	f(x)g(x) 229
7.13	Derivação	de	função	dada	implicitamente 232
7.14	Interpretação	de	como	um	quociente.	Diferencial 241
7.15	Velocidade	e	aceleração.	Taxa	de	variação 245
7.16	Problemas	envolvendo	reta	tangente	e	reta	normal	ao	gráfico	de
uma	função 254

7.17	Exercícios	do	capítulo 259
8	Funções	inversas 267
8.1	Função	inversa 267
8.2	Derivada	de	função	inversa 272

9	Estudo	da	variação	das	funções 279

774



9.1	Teorema	do	valor	médio	(TVM) 279
9.2	Intervalos	de	crescimento	e	de	decrescimento 280
9.3	Concavidade	e	pontos	de	inflexão 294
9.4	Regras	de	L’Hospital 300
9.5	Gráficos 316
9.6	Máximos	e	mínimos 333
9.7	Condição	necessária	e	condições	suficientes	para	máximos	e
mínimos	locais 343

9.8	Máximo	e	mínimo	de	função	contínua	em	intervalo	fechado 347
10	Primitivas 349
10.1	Relação	entre	funções	com	derivadas	iguais 349
10.2	Primitiva	de	uma	função 356

11	Integral	de	Riemann 367
11.1	Partição	de	um	intervalo 367
11.2	Soma	de	Riemann 367
11.3	Integral	de	Riemann:	definição 370
11.4	Propriedades	da	integral 371
11.5	1.º	teorema	fundamental	do	cálculo 374
11.6	Cálculo	de	áreas 380
11.7	Mudança	de	variável	na	integral 390
11.8	Trabalho 400

12	Técnicas	de	primitivação 412
12.1	Primitivas	imediatas 412
12.2	Técnica	para	cálculo	de	integral	indefinida	da	forma 420
12.3	Integração	por	partes 433
12.4	Mudança	de	variável 442
12.5	Integrais	indefinidas	do	tipo 453
12.6	Primitivas	de	funções	racionais	com	denominadores	do	tipo	(x	−
α)	(x	−	β)	(x	−	γ) 458

12.7	Primitivas	de	funções	racionais	cujos	denominadores	apresentam
fatores	irredutíveis	do	2.º	grau 462

12.8	Integrais	de	produtos	de	seno	e	cosseno 467
12.9	Integrais	de	potências	de	seno	e	cosseno.	Fórmulas	de
recorrência 470

12.10	Integrais	de	potências	de	tangente	e	secante.	Fórmulas	de
recorrência 476

775



12.11	A	mudança	de	variável 482
13	Mais	algumas	aplicações	da	integral.	Coordenadas
polares 486

13.1	Volume	de	sólido	obtido	pela	rotação,	em	torno	do	eixo	x,	de	um
conjunto	A 486

13.2	Volume	de	sólido	obtido	pela	rotação,	em	torno	do	eixo	y,	de	um
conjunto	A 492

13.3	Volume	de	um	sólido	qualquer 498
13.4	Área	de	superfície	de	revolução 500
13.5	Comprimento	de	gráfico	de	função 504
13.6	Comprimento	de	curva	dada	em	forma	paramétrica 506
13.7	Área	em	coordenadas	polares 511
13.8	Comprimento	de	curva	em	coordenadas	polares 523
13.9	Centro	de	massa 525

14	Equações	diferenciais	de	1a	ordem	de	variáveis
separáveis	e	lineares 534

14.1	Equações	diferenciais:	alguns	exemplos 534
14.2	Equações	diferenciais	de	1.ª	ordem	de	variáveis	separáveis 535
14.3	Soluções	constantes 537
14.4	Soluções	não	constantes 538
14.5	Método	prático	para	determinar	as	soluções	não	constantes 540
14.6	Equações	diferenciais	lineares	de	1.ª	ordem 548

15	Teoremas	de	Rolle,	do	valor	médio	e	de	Cauchy 554
15.1	Teorema	de	Rolle 554
15.2	Teorema	do	valor	médio 556
15.3	Teorema	de	Cauchy 558

16	Fórmula	de	Taylor 562
16.1	Aproximação	local	de	uma	função	diferenciável	por	uma	função
afim 562

16.2	Polinômio	de	Taylor	de	ordem	2 566
16.3	Polinômio	de	Taylor	de	ordem	n 578

17	Arquimedes,	Pascal,	Fermat	e	o	cálculo	de	áreas 590
17.1	Quadratura	da	parábola:	método	de	Arquimedes 590
17.2	Pascal	e	o	cálculo	de	áreas 595
17.3	Fermat	e	o	cálculo	de	áreas 601

776



Apêndice	1	Propriedade	do	supremo 604
A1.1	Máximo,	mínimo,	supremo	e	ínfimo	de	um	conjunto 604
A1.2	Propriedade	do	supremo 605
A1.3	Demonstração	da	propriedade	dos	intervalos	encaixantes 607
A1.4	Limite	de	função	crescente	(ou	decrescente) 608

Apêndice	2	Demonstrações	dos	teoremas	do	Cap.	5 610
A2.1	Demonstração	do	teorema	do	anulamento 610
A2.2	Demonstração	do	teorema	do	valor	intermediário 611
A2.3	Teorema	da	limitação 611
A2.4	Demonstração	do	teorema	de	Weierstrass 612

Apêndice	3	Demonstrações	do	teorema	da	Seção	6.1	e	da
Propriedade	(7)	da	Seção	2.2 614

A3.1	Demonstração	do	teorema	da	Seção	6.1 614
A3.2	Demonstração	da	Propriedade	(7)	da	Seção	2.2 617

Apêndice	4	Funções	integráveis	segundo	Riemann 619
A4.1	Uma	condição	necessária	para	integrabilidade 619
A4.2	Somas	superior	e	inferior	de	função	contínua 620
A4.3	Integrabilidade	das	funções	contínuas 623
A4.4	Integrabilidade	de	função	limitada	com	número	finito	de
descontinuidades 626

A4.5	Integrabilidade	das	funções	crescentes	ou	decrescentes 628
A4.6	Critério	de	integrabilidade	de	Lebesgue 630

Apêndice	5	Demonstração	do	teorema	da	Seção	13.4 636
Apêndice	6	Construção	do	corpo	ordenado	dos	números
reais 640

A6.1	Definição	de	número	real 640
A6.2	Relação	de	ordem	em	ℝ 642
A6.3	Adição	em	ℝ 643
A6.4	Propriedades	da	adição 645
A6.5	Multiplicação	em	ℝ 649
A6.6	Propriedades	da	multiplicação 652
A6.7	Teorema	do	supremo 655
A6.8	Identificação	de	ℚ	com 656

Respostas,	Sugestões	ou	Soluções 658

777



Bibliografia 768
Índice 769

778


	Frontispício
	GEN
	Página de rosto
	Créditos
	Dedicatória
	Prefácio
	Sumário
	1 Números reais
	1.1 Os números racionais
	1.2 Os números reais
	1.3 Módulo de um número real
	1.4 Intervalos
	1.5 Propriedade dos intervalos encaixantes e propriedade de Arquimedes
	1.6 Existência de raízes
	1.7 Potência com expoente racional

	2 Funções
	2.1 Funções de uma variável real a valores reais
	2.2 Funções trigonométricas: seno e cosseno
	2.3 As funções tangente, cotangente, secante e cossecante
	2.4 Operações com funções

	3 Limite e continuidade
	3.1 Introdução
	3.2 Definição de função contínua
	3.3 Definição de limite
	3.4 Limites laterais
	3.5 Limite de função composta
	3.6 Teorema do confronto
	3.7 Continuidade das funções trigonométricas
	3.8 O limite fundamental
	3.9 Propriedades operatórias. Demonstração do Teorema do Confronto

	4 Extensões do conceito de limite
	4.1 Limites no infinito
	4.2 Limites infinitos
	4.3 Sequência e limite de sequência
	4.4 Limite de função e sequências
	4.5 O número e

	5 Teoremas do anulamento, do valor intermediário e de Weierstrass
	6 Funções exponencial e logarítmica
	6.1 Potência com expoente real
	6.2 Logaritmo
	6.3 O limite

	7 Derivadas
	7.1 Introdução
	7.2 Derivada de uma função
	7.3 Derivadas de xn e
	7.4 Derivadas de ex e ln x
	7.5 Derivadas das funções trigonométricas
	7.6 Derivabilidade e continuidade
	7.7 Regras de derivação
	7.8 Função derivada e derivadas de ordem superior
	7.9 Notações para a derivada
	7.10 Regra da cadeia para derivação de função composta
	7.11 Aplicações da regra da cadeia
	7.12 Derivada de f(x)g(x)
	7.13 Derivação de função dada implicitamente
	7.14 Interpretação de como um quociente. Diferencial
	7.15 Velocidade e aceleração. Taxa de variação
	7.16 Problemas envolvendo reta tangente e reta normal ao gráfico de uma função
	7.17 Exercícios do capítulo

	8 Funções inversas
	8.1 Função inversa
	8.2 Derivada de função inversa

	9 Estudo da variação das funções
	9.1 Teorema do valor médio (TVM)
	9.2 Intervalos de crescimento e de decrescimento
	9.3 Concavidade e pontos de inflexão
	9.4 Regras de L’Hospital
	9.5 Gráficos
	9.6 Máximos e mínimos
	9.7 Condição necessária e condições suficientes para máximos e mínimos locais
	9.8 Máximo e mínimo de função contínua em intervalo fechado

	10 Primitivas
	10.1 Relação entre funções com derivadas iguais
	10.2 Primitiva de uma função

	11 Integral de Riemann
	11.1 Partição de um intervalo
	11.2 Soma de Riemann
	11.3 Integral de Riemann: definição
	11.4 Propriedades da integral
	11.5 1.º teorema fundamental do cálculo
	11.6 Cálculo de áreas
	11.7 Mudança de variável na integral
	11.8 Trabalho

	12 Técnicas de primitivação
	12.1 Primitivas imediatas
	12.2 Técnica para cálculo de integral indefinida da forma
	12.3 Integração por partes
	12.4 Mudança de variável
	12.5 Integrais indefinidas do tipo
	12.6 Primitivas de funções racionais com denominadores do tipo (x − α) (x − β) (x − γ)
	12.7 Primitivas de funções racionais cujos denominadores apresentam fatores irredutíveis do 2.º grau
	12.8 Integrais de produtos de seno e cosseno
	12.9 Integrais de potências de seno e cosseno. Fórmulas de recorrência
	12.10 Integrais de potências de tangente e secante. Fórmulas de recorrência
	12.11 A mudança de variável

	13 Mais algumas aplicações da integral. Coordenadas polares
	13.1 Volume de sólido obtido pela rotação, em torno do eixo x, de um conjunto A
	13.2 Volume de sólido obtido pela rotação, em torno do eixo y, de um conjunto A
	13.3 Volume de um sólido qualquer
	13.4 Área de superfície de revolução
	13.5 Comprimento de gráfico de função
	13.6 Comprimento de curva dada em forma paramétrica
	13.7 Área em coordenadas polares
	13.8 Comprimento de curva em coordenadas polares
	13.9 Centro de massa

	14 Equações diferenciais de 1a ordem de variáveis separáveis e lineares
	14.1 Equações diferenciais: alguns exemplos
	14.2 Equações diferenciais de 1.ª ordem de variáveis separáveis
	14.3 Soluções constantes
	14.4 Soluções não constantes
	14.5 Método prático para determinar as soluções não constantes
	14.6 Equações diferenciais lineares de 1.ª ordem

	15 Teoremas de Rolle, do valor médio e de Cauchy
	15.1 Teorema de Rolle
	15.2 Teorema do valor médio
	15.3 Teorema de Cauchy

	16 Fórmula de Taylor
	16.1 Aproximação local de uma função diferenciável por uma função afim
	16.2 Polinômio de Taylor de ordem 2
	16.3 Polinômio de Taylor de ordem n

	17 Arquimedes, Pascal, Fermat e o cálculo de áreas
	17.1 Quadratura da parábola: método de Arquimedes
	17.2 Pascal e o cálculo de áreas
	17.3 Fermat e o cálculo de áreas

	Apêndice 1 Propriedade do supremo
	A1.1 Máximo, mínimo, supremo e ínfimo de um conjunto
	A1.2 Propriedade do supremo
	A1.3 Demonstração da propriedade dos intervalos encaixantes
	A1.4 Limite de função crescente (ou decrescente)

	Apêndice 2 Demonstrações dos teoremas do Cap. 5
	A2.1 Demonstração do teorema do anulamento
	A2.2 Demonstração do teorema do valor intermediário
	A2.3 Teorema da limitação
	A2.4 Demonstração do teorema de Weierstrass

	Apêndice 3 Demonstrações do teorema da Seção 6.1 e da Propriedade (7) da Seção 2.2
	A3.1 Demonstração do teorema da Seção 6.1
	A3.2 Demonstração da Propriedade (7) da Seção 2.2

	Apêndice 4 Funções integráveis segundo Riemann
	A4.1 Uma condição necessária para integrabilidade
	A4.2 Somas superior e inferior de função contínua
	A4.3 Integrabilidade das funções contínuas
	A4.4 Integrabilidade de função limitada com número finito de descontinuidades
	A4.5 Integrabilidade das funções crescentes ou decrescentes
	A4.6 Critério de integrabilidade de Lebesgue

	Apêndice 5 Demonstração do teorema da Seção 13.4
	Apêndice 6 Construção do corpo ordenado dos números reais
	A6.1 Definição de número real
	A6.2 Relação de ordem em ℝ
	A6.3 Adição em ℝ
	A6.4 Propriedades da adição
	A6.5 Multiplicação em ℝ
	A6.6 Propriedades da multiplicação
	A6.7 Teorema do supremo
	A6.8 Identificação de ℚ com

	Respostas, Sugestões ou Soluções
	Bibliografia
	Índice

