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PREFÁCIO

Este	volume	é	continuação	do	Volume	1.	No	Capítulo	1,	destacamos	as	funções	integráveis	(de	uma
variável)	que	aparecem	com	mais	frequência	nas	aplicações.	Este	capítulo	poderá	ser	omitido	pelo	leitor
que	já	tenha	estudado	o	Apêndice	4	do	Volume	1.	No	Capítulo	2,	estudamos,	com	relação	a	continuidade
e	 derivabilidade,	 as	 funções	 dadas	 por	 integral,	 e,	 no	 atual	 Capítulo	 3,	 as	 integrais	 impróprias.	 No
Capítulo	4,	que	é	novo,	são	feitas	várias	aplicações	das	integrais	impróprias	à	Estatística.	No	Capítulo	5,
estudamos	as	equações	diferenciais	lineares	de	2.ª	ordem	e	com	coeficientes	constantes,	e	no	Capítulo	7,
as	 funções	 de	 uma	 variável	 real	 com	 valores	 em	 n	 com	 relação	 a	 continuidade,	 derivabilidade	 e
integrabilidade.	 Os	 Capítulos	 8	 a	 16	 são	 destinados	 ao	 estudo,	 com	 relação	 a	 continuidade	 e
diferenciabilidade,	 das	 funções	 de	 várias	 variáveis	 reais	 a	 valores	 reais.	 No	 Capítulo	 17,	 novo,
introduzimos	o	conceito	de	solução	LSQ	(ou	solução	dos	mínimos	quadrados)	de	um	sistema	 linear,	e
são	feitas	algumas	aplicações	desse	conceito	à	geometria,	bem	como	ao	ajuste,	por	uma	função	linear	ou
polinomial,	a	um	diagrama	de	dispersão.

Nesta	 5.ª	 Edição,	 além	 dos	 capítulos	 novos	 (4	 e	 17)	 e	 do	 novo	 visual	 das	 figuras,	 foi	 incluído,
também,	 o	Apêndice	 2,	 que	 trata	 do	 uso	 da	 calculadora	HP-48G,	 do	Excel	 e	 do	Mathcad	 em	 tópicos
tratados	 neste	 volume.	 Observamos	 que,	 por	 sugestão	 de	 vários	 colegas,	 o	 antigo	 Capítulo	 3	 (Mais
algumas	aplicações	da	integral.	Coordenadas	polares)	foi	deslocado	para	o	Volume	1	(4.ª	Edição).	Todas
essas	modificações	têm	sido	feitas	com	um	único	objetivo:	tornar	o	texto	mais	dinâmico,	mais	prático	e
mais	atual.	É	claro	que	muitas	outras	modificações	ainda	terão	que	ser	feitas,	e	para	isso	contamos	com
sugestões,	 ideias	 e	 críticas	 construtivas	 de	 professores,	 colegas	 e	 alunos,	 aos	 quais	 ficaremos	 muito
gratos.

Quanto	aos	exemplos	e	exercícios,	pensamos	tê-los	colocado	em	número	suficiente	para	compreensão
da	matéria.	Como	 no	Volume	 1,	 procuramos	 dispor	 os	 exercícios	 em	 ordem	 crescente	 de	 dificuldade.
Com	relação	aos	exercícios	mais	difíceis,	vale	aqui	a	mesma	recomendação	que	fizemos	no	prefácio	do
Volume	1:	não	se	aborreça	caso	não	consiga	resolver	alguns	deles;	tudo	que	você	terá	que	fazer	nessas
horas	é	seguir	em	frente	e	retornar	a	eles	quando	se	sentir	mais	senhor	de	si.

Mais	uma	vez	agradecemos,	pela	leitura	cuidadosa	do	manuscrito,	às	colegas	Élvia	Mureb	Sallum	e
Zara	Issa	Abud.	Agradecemos	também	à	colega	Lisbeth	Kaiserliam	Cordani,	pela	leitura	e	pelas	várias
sugestões	do	novo	Capítulo	4,	e	a	Marcelo	Pereira	da	Cunha	pela	revisão	cuidadosa	do	texto.	É,	ainda,
com	grande	satisfação	que	agradecemos	à	colega	Elza	Furtado	Gomide	pela	leitura,	pelos	comentários	e
sugestões	de	manuscritos	que	deram	origem	às	primeiras	apostilas	precursoras	deste	 livro.	Finalmente
agradecemos	à	colega	Myriam	Sertã	Costa	pela	revisão	cuidadosa	do	texto	e	pela	inestimável	ajuda	na
elaboração	do	Manual	do	Professor.

Hamilton	Luiz	Guidorizzi



Material
Suplementar

Este	livro	conta	com	o	seguinte	material	suplementar:

■	Manual	de	Soluções	(restrito	a	docentes)

O	 acesso	 ao	 material	 suplementar	 é	 gratuito,	 bastando	 que	 o	 leitor	 se	 cadastre	 em:	 http://gen-
io.grupogen.com.br.

	

	

http://gen-io.grupogen.com.br


1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

5.5

1

2

3

4

5

SUMÁRIO

Funções	integráveis
Alguns	exemplos	de	funções	integráveis	e	de	funções	não	integráveis
Funções	integráveis

Função	dada	por	integral
Cálculo	de	integral	de	função	limitada	e	descontínua	em	um	número	finito	de	pontos
Função	dada	por	uma	integral
Teorema	do	valor	médio	para	integral
Teorema	fundamental	do	cálculo.	Existência	de	primitivas
Função	dada	por	uma	integral:	continuidade	e	derivabilidade

Extensões	do	conceito	de	integral
Integrais	impróprias
Função	dada	por	uma	integral	imprópria
Integrais	impróprias:	continuação
Convergência	e	divergência	de	integrais	impróprias:	critério	de	comparação

Aplicações	à	estatística
Função	densidade	de	probabilidade.	Probabilidade	de	variável	aleatória	contínua
Função	de	distribuição
Valor	esperado	e	variância	de	variável	aleatória
Distribuição	normal
Função	de	variável	aleatória
A	função	gama
Algumas	distribuições	importantes

Equações	diferenciais	lineares	de	1ª	e	2ª	ordens,	com	coeficientes	constantes
Equação	diferencial	linear,	de	1.ª	ordem,	com	coeficiente	constante
Equações	diferenciais	lineares,	homogêneas,	de	2.ª	ordem,	com	coeficientes	constantes
Números	complexos
Solução	geral	da	equação	homogênea	no	caso	em	que	as	raízes	da	equação	característica	são
números	complexos
Equações	diferenciais	lineares,	não	homogêneas,	de	2.ª	ordem,	com	coeficientes	constantes



6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

9.1
9.2

10
10.1
10.2

11
11.1
11.2
11.3
11.4
11.5

12
12.1

6

7

8

9

Os	espaços	 n

Introdução
O	espaço	vetorial	 2

Produto	escalar.	Perpendicularismo
Norma	de	um	vetor.	Propriedades
Conjunto	aberto.	Ponto	de	acumulação

Função	de	uma	variável	real	a	valores	em	 n.	Curvas
Função	de	uma	variável	real	a	valores	em	 2

Função	de	uma	variável	real	a	valores	em	 3

Operações	com	funções	de	uma	variável	real	a	valores	em	 n

Limite	e	continuidade
Derivada
Integral
Comprimento	de	curva

Funções	de	várias	variáveis	reais	a	valores	reais
Funções	de	duas	variáveis	reais	a	valores	reais
Gráfico	e	curvas	de	nível
Funções	de	três	variáveis	reais	a	valores	reais.	Superfícies	de	nível

Limite	e	continuidade
Limite
Continuidade

Derivadas	parciais
Derivadas	parciais
Derivadas	parciais	de	funções	de	três	ou	mais	variáveis	reais

Funções	diferenciáveis
Função	diferenciável:	definição
Uma	condição	suficiente	para	diferenciabilidade
Plano	tangente	e	reta	normal
Diferencial
O	vetor	gradiente

Regra	da	cadeia
Regra	da	cadeia



12.2

13
13.1
13.2
13.3
13.4

14
14.1
14.2

15
15.1
15.2
15.3
15.4
15.5
15.6

16
16.1
16.2

16.3
16.4
16.5

16.6

17

17.1
17.2
17.3
17.4
17.5
17.6

Derivação	de	funções	definidas	implicitamente.	Teorema	das	funções	implícitas

Gradiente	e	derivada	direcional
Gradiente	de	uma	função	de	duas	variáveis:	interpretação	geométrica
Gradiente	de	função	de	três	variáveis:	interpretação	geométrica
Derivada	direcional
Derivada	direcional	e	gradiente

Derivadas	parciais	de	ordens	superiores
Derivadas	parciais	de	ordens	superiores
Aplicações	da	regra	da	cadeia	envolvendo	derivadas	parciais	de	ordens	superiores

Teorema	do	valor	médio.	Fórmula	de	Taylor	com	resto	de	Lagrange
Teorema	do	valor	médio
Funções	com	gradiente	nulo
Relação	entre	funções	com	mesmo	gradiente
Polinômio	de	Taylor	de	ordem	1
Polinômio	de	Taylor	de	ordem	2
Fórmula	de	Taylor	com	resto	de	Lagrange

Máximos	e	mínimos
Pontos	de	máximo	e	pontos	de	mínimo
Condições	necessárias	para	que	um	ponto	interior	ao	domínio	de	f	seja	um	extremante	local
de	f
Uma	condição	suficiente	para	um	ponto	crítico	ser	extremante	local
Máximos	e	mínimos	sobre	conjunto	compacto
O	método	dos	multiplicadores	de	Lagrange	para	determinação	de	candidatos	a	extremantes
locais	condicionados
Exemplos	complementares

Mínimos	quadrados:	solução	LSQ	de	um	sistema	linear.	Aplicações	ao	ajuste	de
curvas

Teorema	de	Pitágoras
Solução	LSQ	de	um	sistema	linear	com	uma	incógnita
Solução	LSQ	de	um	sistema	linear	com	duas	ou	mais	incógnitas
Ajuste	de	curva:	a	reta	dos	mínimos	quadrados
Coeficiente	de	determinação.	Correlação
Plano	dos	mínimos	quadrados.	Ajuste	polinomial



A1.1
A1.2
A1.3
A1.4

A2.1
A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
A2.8
A2.9

A2.10
A2.11

A2.13
A2.14
A2.15
A2.16
A2.17

A2.12

Apêndice	1	Funções	de	uma	variável	real	a	valores	complexos
Funções	de	uma	variável	real	a	valores	complexos
Definição	de	eλt,	com	λ	complexo
Equações	diferenciais	lineares,	homogêneas,	de	2.ª	ordem,	com	coeficientes	constantes
Equações	diferenciais	lineares,	de	3.ª	ordem,	com	coeficientes	constantes

Apêndice	2	Uso	da	HP-48G,	do	Excel	e	do	Mathcad
As	funções	UTPN,	NMVX	e	NMVA
As	funções	UTPC,	C2NX	e	C2NA
As	funções	UTPT,	TNX	e	TNA
As	funções	UTPF,	FNNX	e	FNNA
Menu	personalizado
Resolvendo	sistema	linear	no	Solve	System
Resolvendo	sistema	linear	no	ambiente	Home.	As	funções	LSQ,	RREF	e	COL+
Programa	para	construir	matriz:	a	variável	MATR
Utilizando	o	aplicativo	FIT	DATA	para	ajuste	de	curva	pelo	método	dos	mínimos
quadrados.	As	funções	PREDX	e	PREDY
Ajuste	linear	com	duas	ou	mais	variáveis	independentes.	Ajuste	polinomial
A	função	RSD.	Distância	de	ponto	a	plano.	Distância	de	ponto	a	reta
Cálculo	do	coeficiente	de	determinação	R2

Programa	que	retorna	os	coeficientes	do	ajuste	e	o	R2

Definindo	função	na	HP-48G
Ajuste	de	curva,	pelo	método	dos	mínimos	quadrados,	no	Excel	97
Máximos	e	mínimos	no	Excel
Brincando	no	Mathcad

Respostas,	Sugestões	ou	Soluções

Bibliografia

Índice



CAPÍTULO	 1

APÊNDICE	3

CAPÍTULO	 2
CAPÍTULO	 3
CAPÍTULO	 4
CAPÍTULO	 5
CAPÍTULO	 6
CAPÍTULO	 7
CAPÍTULO	 8
CAPÍTULO	 9
CAPÍTULO	10
CAPÍTULO	11
CAPÍTULO	12
CAPÍTULO	13
CAPÍTULO	14
CAPÍTULO	15
CAPÍTULO	16
CAPÍTULO	17
APÊNDICE	1
APÊNDICE	2

APÊNDICE	4
APÊNDICE	5
APÊNDICE	6

Assuntos	abordados	nos	demais	volumes

Volume	1

Números
reais
Funções
Limite	e	continuidade
Extensões	do	conceito	de	limite
Teoremas	do	anulamento,	do	valor	intermediário	e	de	Weierstrass
Funções	exponencial	e	logarítmica
Derivadas
Funções	inversas
Estudo	da	variação	das	funções
Primitivas
Integral	de	Riemann
Técnicas	de	primitivação
Mais	algumas	aplicações	da	integral.	Coordenadas	polares
Equações	diferenciais	de	1ª	ordem	de	variáveis	separáveis	e	lineares
Teoremas	de	Rolle,	do	valor	médio	e	de	Cauchy
Fórmula	de	Taylor
Arquimedes,	Pascal,	Fermat	e	o	cálculo	de	áreas
Propriedade	do	supremo
Demonstrações	dos	teoremas	do	Capítulo	5
Demonstrações	do	teorema	da	Seção	6.1	e	da	Propriedade	(7)	da
Seção	2.2
Funções	integráveis	segundo	Riemann
Demonstração	do	teorema	da	Seção	13.4
Construção	do	corpo	ordenado	dos	números	reais



CAPÍTULO	 1
CAPÍTULO	 2
CAPÍTULO	 3
CAPÍTULO	 4
CAPÍTULO	 5
CAPÍTULO	 6
CAPÍTULO	 7
CAPÍTULO	 8
CAPÍTULO	 9
CAPÍTULO	10
CAPÍTULO	11
APÊNDICE	1
APÊNDICE	2
APÊNDICE	3
APÊNDICE	4
APÊNDICE	5

Volume	3

Funções	de	várias	variáveis	reais	a	valores	vetoriais
Integrais	duplas
Cálculo	de	integral	dupla.	Teorema	de	Fubini
Mudança	de	variáveis	na	integral	dupla
Integrais	triplas
Integrais	de	linha
Campos	conservativos
Teorema	de	Green
Área	e	integral	de	superfície
Fluxo	de	um	campo	vetorial.	Teorema	da	divergência	ou	de	Gauss
Teorema	de	Stokes	no	espaço
Teorema	de	Fubini
Existência	de	integral	dupla
Equação	da	continuidade
Teoremas	da	função	inversa	e	da	função	implícita
Brincando	no	Mathcad



CAPÍTULO	 3

CAPÍTULO	 4

CAPÍTULO	11

CAPÍTULO	12

CAPÍTULO	14

APÊNDICE	1

CAPÍTULO	 1
CAPÍTULO	 2

CAPÍTULO	 5
CAPÍTULO	 6
CAPÍTULO	 7
CAPÍTULO	 8
CAPÍTULO	 9
CAPÍTULO	10

CAPÍTULO	13

CAPÍTULO	15

APÊNDICE	2
APÊNDICE	3

Volume	4

Sequências	numéricas
Séries	numéricas
Critérios	de	convergência	e	divergência	para	séries	de	termos
positivos
Séries	absolutamente	convergentes.	Critério	da	razão	para	séries	de
termos	quaisquer
Critérios	de	Cauchy	e	de	Dirichlet
Sequências	de	funções
Série	de	funções
Série	de	potências
Introdução	às	séries	de	Fourier
Equações	diferenciais	de	1ª	ordem
Equações	diferenciais	lineares	de	ordem	n,	com	coeficientes
constantes
Sistemas	de	duas	e	três	equações	diferenciais	lineares	de	1ª	ordem	e
com	coeficientes	constantes
Equações	diferenciais	lineares	de	2ª	ordem,	com	coeficientes	variáveis
Teoremas	de	existência	e	unicidade	de	soluções	para	equações
diferenciais	de	1ª	e	2ª	ordens
Tipos	especiais	de	equações
Teorema	de	existência	e	unicidade	para	equação	diferencial	de	1ª
ordem	do	tipo	y‘	=	f	(x,	y)
Sobre	séries	de	Fourier
O	incrível	critério	de	Kummer



1.1.

1

FUNÇÕES	INTEGRÁVEIS

O	objetivo	deste	capítulo	é	destacar	as	funções	integráveis	que	vão	interessar	ao	curso.	Este	capítulo
poderá	ser	omitido	pelo	leitor	que	já	tenha	estudado	o	Apêndice	4	do	Vol.	1.

ALGUNS	EXEMPLOS	DE	FUNÇÕES	INTEGRÁVEIS	E	DE	FUNÇÕES
NÃO	INTEGRÁVEIS

Nesta	 seção,	 apresentaremos	 alguns	 exemplos	 de	 funções	 integráveis	 e	 de	 funções	 não	 integráveis,
trabalhando	diretamente	com	a	definição	de	integral	de	Riemann.

Antes	 de	 começar	 a	 estudar	 os	 exemplos	 que	 apresentaremos	 a	 seguir,	 sugerimos	 ao	 leitor	 rever	 a
definição	de	integral	de	Riemann	apresentada	na	Seção	11.3	do	Vol.	1.

EXEMPLO	1.	Prove,	pela	definição,	que	a	função	constante	f(x)	=	k,	x	∈	[a,	b],	é	integrável	em	[a,	b]	e
que	 .

Solução

Para	toda	partição	P	:	a	=	x0	<	x1	<	x2	<	...	<	xi	−	1	<	xi	<	...	<	xn	=	b	de	[a,	b]	temse,	independentemente
da	escolha	de	ci	em	[xi	−	1,	xi],	i	variando	de	1	a	n,

Segue	que	dado	 	>	0	e	tomando-se	um	δ	>	0	qualquer	tem-se,	independentemente	da	escolha	dos	ci,

para	toda	partição	de	[a,	b],	com	máx	Δxi	<	δ.	Logo,

ou	seja,	f	é	integrável	em	[a,	b]	e



Antes	de	passarmos	ao	próximo	exemplo	faremos	a	seguinte	observação.

Observação.	De	acordo	com	a	definição	de	integral,	sendo	f	integrável	em	[a,	b],	dado	 	>	0	existirá	δ	>
0	que	só	depende	de	 ,	mas	não	da	escolha	dos	ci,	tal	que

para	toda	partição	P	de	[a,	b],	com	máx	Δxi	<	δ.	Segue	que	se	P	for	uma	partição	de	[a,	b],	com	máx	Δxi
<	δ,	e	se	ci	e	 	(i	=	1,	2,	…,	n)	forem	escolhidos	arbitrariamente	em	[xi	−	1,	xi],	teremos

e

e,	portanto,

para	toda	partição	P	de	[a,	b],	com	máx	Δxi	<	δ,	independentemente	da	escolha	de	ci	e	 .	Deste	modo,	se
f	for	integrável	em	[a,	b],	duas	somas	de	Riemann	quaisquer	relativas	a	uma	mesma	partição	P,	com	máx
Δxi	suficientemente	pequeno,	devem	diferir	muito	pouco	uma	da	outra,	e	o	módulo	da	diferença	entre	elas
deverá	ser	tanto	menor	quanto	menor	for	máx	Δxi.

EXEMPLO	2.	(Exemplo	de	função	não	integrável.)	Prove	que

não	é	integrável	em	[0,	1].

Solução

Seja	P	:	0	x0	<	x1	<	x2	<	…	<	xi	−	1	<	xi	<	…	<	xn	=	1	uma	partição	qualquer	de	[0,	1].	Se	c1,	c2,	…,	cn
forem	racionais



Se	 	forem	irracionais

De	 	e	 	e	da	observação	anterior	segue	que	f	não	é	integrável	em	[0,	1].
■

EXEMPLO	3.	Seja	f	:	[0,	2]	→	 	dada	por

Prove	que	f	é	integrável	em	[0,	2]	e	que	 .

Solução

Seja	P	uma	partição	qualquer	de	[0,	2]	e	suponhamos	que	1	∈	[xj	−	1,	xj].

Se	1	∈	]xj	−	1,	xj[,

Se	1	=	xj
	−	1

	e	cj
	−	1

	=	cj	=	1,	

Fica	a	seu	cargo	concluir	que,	em	qualquer	caso

independentemente	da	escolha	dos	ci.	Portanto,



Observe	que	a	função	do	exemplo	anterior	não	é	contínua	em	[0,	2],	entretanto,	é	integrável	em	[0,
2].

EXEMPLO	4.	Seja

Prove	que	f	é	integrável	em	[0,	2]	e	que	 .

Solução

Consideremos	a	partição	0	=	x0	<	x1	<	…	<	xj	−	1	<	xj	<	…	<	xn	=	2	e	suponhamos	que	1	∈	[xj	−	1,	xj].

Temos:

Segue	que

(Interprete	geometricamente.)	Logo,

independentemente	da	escolha	dos	ci.	Portanto,



1.

EXEMPLO	5.	Prove	que

não	é	integrável	em	[0,	1].

Solução

Seja	P	uma	partição	qualquer	de	 [0,	1]	e	 	 f	 (c
i
)	Δx

i
	 uma	 soma	de	Riemann	de	 f	 relativa	a	 esta

partição.	Tomemos	c1	em	]0,	x1[.	Se	mantivermos	fixos	c2,	c3,	…,	cn,	teremos

Logo,	não	existe	número	L	tal	que

ou	seja,	f	não	é	integrável	em	[0,	1].
■

Observe	que	a	função	do	exemplo	anterior	não	é	limitada	em	[0,	1].	(Lembramos	que	f	limitada	em
[a,	b]	significa	que	existem	reais	α	e	β	tais	que,	para	todo	x	∈	[a,	b],	α	≤	f	(x)	≤	β.)

O	 próximo	 teorema,	 cuja	 demonstração	 encontra-se	 no	 Apêndice	 4	 do	 Vol.	 1,	 conta-nos	 que	 uma
condição	necessária	para	f	ser	integrável	em	[a,	b]	é	que	 f	seja	limitada	neste	 intervalo.	Tal	condição
não	é	suficiente,	pois,

é	limitada	em	[0,	1],	mas	não	é	integrável	neste	intervalo.

Teorema.	Se	f	for	integrável	em	[a,	b],	então	f	será	limitada	em	[a,	b].

Exercícios	1.1	

Seja	f	:	[0,	1]	→	 	dada	por



2.

a)

b)

3.

1.2.

Prove	que	f	é	integrável	em	[0,	1]	e	que

Seja	f	:	[0,	1]	→	 	dada	por	

Verifique	que	se	os	c
i
	forem	racionais	 	f	(c

i
)	Δx

i
	tende	a	 ,	quando	máx	Δx

i
	→	0.

Prove	que	f	não	é	integrável	em	[0,	1].

Calcule,	caso	exista,	e	justifique	sua	resposta.

	
FUNÇÕES	INTEGRÁVEIS

Os	teoremas	que	enunciaremos	a	seguir,	e	cujas	demonstrações	encontram-se	no	Apêndice	4	do	Vol.	1,
destacam	as	funções	integráveis	que	vão	interessar	ao	curso.

O	teorema	1	conta-nos	que	toda	função	contínua	em	[a,	b]	é	integrável	em	[a,	b]	e,	o	teorema	2,	que
toda	 função	 limitada	 em	 [a,	 b]	 e	 descontínua	 em	 apenas	 um	 número	 finito	 de	 pontos	 de	 [a,	 b]	 é
integrável	em	[a,	b].

Teorema	1.	Se	f	for	contínua	em	[a,	b],	então	f	será	integrável	em	[a,	b].

Teorema	2.	Se	f	for	limitada	em	[a,	b]	e	descontínua	em	apenas	um	número	finito	de	pontos	de	[a,	b],	então	f	será	integrável	em
[a,	b].



1.

EXEMPLO	1.	f	(x)	=	cos	3x	é	contínua	em	[−1,	5],	logo	integrável	neste	intervalo.
■

EXEMPLO	2.	Verifique	se

é	integrável	em	[−1,	3].

Solução

f	é	limitada	em	[−1,	3],	pois,	para	todo	x	em	[−1,	3],	0	≤	f	(x)	≤	2;	além	disso,	f	é	descontínua	apenas
em	x	=	1.	Pelo	teorema	2,	f	é	integrável	em	[−1,	3].

■

EXEMPLO	3.	Verifique	se

é	integrável	em	[−1,	3].

Solução

Não,	pois	f	não	é	limitada	em	[−1,	3].
■

Exercícios	1.2	

A	função	dada	é	integrável?	Justifique.



	



2.1.

2

FUNÇÃO	DADA	POR	INTEGRAL

CÁLCULO	DE	INTEGRAL	DE	FUNÇÃO	LIMITADA	E	DESCONTÍNUA
EM	UM	NÚMERO	FINITO	DE	PONTOS

O	teorema	que	vamos	enunciar	e	demonstrar	a	seguir	conta-nos	que	se	f	e	g	forem	integráveis	em	[a,
b]	e	se	f	 (x)	 for	diferente	de	g(x)	em	apenas	um	número	 finito	de	pontos,	então	suas	 integrais	serão
iguais.

Teorema.	Sejam	f	e	g	integráveis	em	[a,	b]	e	tais	que	f	(x)	≠	g(x)	em	apenas	um	número	finito	de	pontos.	Então

Demonstração

h(x)	=	g(x)	−	f(x)	é	integrável	em	[a,	b]	e	h(x)	=	0,	exceto	em	um	número	finito	de	pontos.	Como

independe	da	escolha	dos	ci,	resulta	que	tal	limite	é	zero,	pois,	para	cada	partição	P	de	[a,	b],	podemos
escolher	ci	em	[xi	−	1,	xi]	i	=	1,	2,	…,	n	de	modo	que	h(ci)	=	0.	Assim

ou	seja,

e,	portanto,



EXEMPLO	1.	Calcule	

Solução

f	é	integrável	em	[0,	2],	pois	é	limitada	e	descontínua	em	apenas	x	=	1.	Temos

Em	[0,	1],	f	(x)	=	x2;	logo,

Em	[1,	2],	f	(x)	difere	de	 	em	apenas	x	=	1;	daí

Portanto,

EXEMPLO	2.	Calcule	 	x	≥	0,	onde

Solução



Para	todo	x	≥	0,	f	é	integrável	em	[0,	x],	pois,	neste	intervalo,	f	é	limitada	e	descontínua	no	máximo
em	um	ponto.	Temos

Como

segue	que

ou	seja,

Sejam	x1,	x2,	…,	xp,	p	pontos	do	intervalo	[a,	b]	e	seja	f	uma	função	definida	em	todos	os	pontos	de
[a,	b],	exceto	em	x1,	x2,	…,	xp.	Suponhamos	f	limitada	e	contínua	em	todos	os	pontos	de	seu	domínio.	Pela
definição	de	integral,	não	tem	sentido	falar	na	integral	de	f	em	[a,	b],	pois	f	não	está	definida	em	todos	os



1.

pontos	de	[a,	b].	Entretanto,	a	função	g	definida	em	[a,	b]	e	dada	por

onde	m1,	m2,	…,	mp	são	números	escolhidos	arbitrariamente,	é	integrável	em	[a,	b]	e	o	valor	da	integral
independe	da	escolha	dos	mi.	Nada	mais	natural,	então,	do	que	definir	a	integral	de	f	em	[a,	b]	por

EXEMPLO	3.	Calcule	 	onde

Solução

EXEMPLO	4.	 	não	existe	no	sentido	de	Riemann,	pois	 	não	é	limitada	em	]0,	1].

■

Exercícios	2.1	

Calcule



2.

2.2.

Calcule

	
FUNÇÃO	DADA	POR	UMA	INTEGRAL

Seja	f	uma	função	definida	num	intervalo	I	e	integrável	em	todo	intervalo	[c,	d]	contido	em	I.	Seja	a
um	número	fixo	pertencente	a	I.	Para	todo	x	em	I,	a	integral	 	existe;	podemos,	então,	considerar

a	função	F	definida	em	I	e	dada	por

Nosso	 objetivo	 é	 estudar	 a	 F	 com	 relação	 à	 continuidade	 e	 derivabilidade.	 Na	 Seção	 2.4,
estudaremos	 	supondo	f	contínua	em	I;	provaremos	que,	neste	caso,	F	é	derivável	em	I	e	que	F′	(x)	=	f
(x)	 para	 todo	 x	∈	 I.	 Na	 Seção	 2.5,	 estudaremos	 	 supondo	 apenas	 que	 f	 seja	 integrável	 em	 todo
intervalo	[c,	d]	⊂	I	e,	portanto,	não	necessariamente	contínua	em	I.	Provaremos,	então,	que	mesmo	neste
caso	F	 será	contínua	em	 I;	provaremos,	ainda,	que	F	 será	derivável	em	todos	os	pontos	em	que	 f	 for
contínua	e	se	p	for	um	ponto	de	continuidade	de	f,	então	F′	(p)	=	f	(p).

Observe	 que,	 tendo	 em	 vista	 o	 que	 dissemos	 acima,	 o	 gráfico	 de	 F	 não	 pode	 apresentar	 salto.
Portanto,	 se	você	estiver	esboçando	o	gráfico	de	uma	função	dada	por	uma	 integral	e	 se	o	seu	gráfico
apresentar	salto,	apague	e	comece	de	novo!

EXEMPLO	1.	Esboce	o	gráfico	de	 	onde



Solução

F	está	definida	para	todo	x	≥	0.	Temos

Observe	que	F	é	contínua	e	que	F′	(x)	=	f	(x)	em	todo	x	≠	2.

EXEMPLO	2.	Esboce	o	gráfico	da	função



Solução

O	domínio	de	F	é	o	intervalo	[−1,	+	∞[.	Temos:

EXEMPLO	3.	Considere	a	função	 	onde	 ,	t	≠	0.



1.

2.

a)	Determine	o	domínio	de	F.
b)	Verifique	que	F′	(x)	=	f	(x)	para	todo	x	>	0.

Solução

a)	Se	x	>	0,	f	será	contínua	no	intervalo	de	extremidades	1	e	x;	logo,	 	existe	para	todo	x	>	0.	Se

x	≤	0,	a	integral	 	não	existe,	pois	f	não	é	limitada	em	]0,	1].	O	domínio	de	F	é,	então,	o	intervalo

]0,	+∞[.

b)	 ,	x	>	0;	assim

Segue	que	 ,	x	>	0.

■

Exercícios	2.2	 .

Esboce	o	gráfico	da	função	F	dada	por

Seja	 	onde	



a)

b)

3.

4.

a)

b)

5.

a)

b)

6.

2.3.

Esboce	o	gráfico	de	F.

Calcule	F′	(x).

Determine	o	domínio	da	função	F

Seja	 	onde	

Verifique	que	F′	(x)	=	f	(x)	em	todo	x	em	que	f	for	contínua.

F	é	derivável	em	x	=	1?

Seja	 	onde	

Verifique	que	F′	(x)	=	f	(x)	em	todo	x	em	que	f	for	contínua.

F	é	derivável	em	x	=	1?	Em	caso	afirmativo,	calcule	F′	(1)	e	compare	com	f	(1).

Seja	 	onde	

Verifique	que	F′	(x)	=	f	(x)	para	todo	x.

	
TEOREMA	DO	VALOR	MÉDIO	PARA	INTEGRAL

No	próximo	parágrafo,	vamos	enunciar	e	demonstrar	o	2.º	teorema	fundamental	do	cálculo.	Para	tal,
vamos	precisar	do	teorema	do	valor	médio	ou	teorema	da	média	para	integral.

Teorema	(do	valor	médio	para	integral).	Se	f	for	contínua	em	[a,	b],	então	existirá	pelo	menos	um	c	em	[a,	b]	tal	que

Demonstração

Como	f	é	contínua	em	[a,	b],	pelo	teorema	de	Weierstrass,	f	assume	em	[a,	b]	valor	máximo	e	valor
mínimo.	Sejam	M	o	valor	máximo	e	m	o	valor	mínimo	de	f	em	[a,	b].	Assim,	para	todo	x	em	[a,	b],

m	≤	f	(x)	≤	M



e	daí

ou	seja,

e,	portanto,

Deste	modo,	 	é	um	número	entre	o	menor	e	o	maior	valor	de	f	em	[a,	b];	pelo	teorema	do

valor	intermediário,	existe	c	em	[a,	b]	tal	que

ou	seja,

Interpretação	Geométrica	do	Teorema	do	Valor	Médio	para	Integral

Suponhamos	 f	 contínua	 em	 [a,	b]	 e	 f	 (x)	 ≥	 0	 em	 [a,	 b].	 Assim,	 	 é	 a	 área	 do	 conjunto	A

limitado	pelas	retas	x	=	a,	x	=	b,	pelo	eixo	x	e	pelo	gráfico	de	y	=	f	(x).	O	teorema	do	valor	médio	conta-
nos,	então,	que	existe	c	em	[a,	b]	tal	que	a	área	do	retângulo	de	base	b	−	a	e	altura	f	(c)	é	igual	à	área	de
A.



1.

2.

3.

4.

5.

Antes	de	encerrar	a	seção,	vamos	destacar	outra	propriedade	que	será	utilizada	na	demonstração	do
2.º	teorema	fundamental	do	cálculo.

Seja	f	integrável	em	[a,	b]	e	seja	c	∈	]a,	b[.	Vimos	na	Seção	11.4	(Vol.	1)	que	se	f	for	integrável	em
[a,	c]	e	em	[c,	b],	então

Pois	bem,	na	próxima	seção,	vamos	precisar	da	seguinte	propriedade,	cuja	demonstração	deixamos	a	seu
cargo:	“Se	f	for	integrável	em	todo	intervalo	fechado	contido	em	I,	então

quaisquer	que	sejam	α,	β	e	γ	no	intervalo	I.”

Exercícios	2.3	

Suponha	f	(x)	>	0	e	contínua	em	[a,	b].	Prove	que	 .

Suponha	f	(x)	≥	0	e	contínua	em	[a,	b].	Prove	que	se	 ,	então	f	(x)	=	0,	para	todo	x	∈	[a,	b].

Suponha	f	(x)	≥	0	e	integrável	em	[a,	b].	A	afirmação

é	falsa	ou	verdadeira?	Justifique.

Suponha	f	contínua	em	[a,	b].	Prove

Sejam	f	e	g	contínuas	em	[a,	b],	com	f	(x)	≥	0	em	[a,	b].	Prove	que	existe	θ	∈	[a,	b]	tal	que



2.4.
	

TEOREMA	FUNDAMENTAL	DO	CÁLCULO.	EXISTÊNCIA	DE
PRIMITIVAS

Seja	f	contínua	no	intervalo	I	e	seja	a	um	ponto	em	I.	Como	estamos	supondo	f	contínua	em	I,	para
todo	x	em	I,	a	integral	 	existe;	podemos,	então,	considerar	a	função	F	definida	em	I	e	dada	por

Provaremos	a	seguir	que	a	F	acima	é	uma	primitiva	de	f	em	I,	isto	é,	F′	(x)	=	f	(x)	para	todo	x	em	I.
No	 que	 segue,	 referir-nos-emos	 a	 este	 resultado	 como	 2.º	 teorema	 fundamental	 do	 cálculo	 ou,
simplesmente,	teorema	fundamental	do	cálculo.

Teorema	(fundamental	do	cálculo).	Seja	f	definida	e	contínua	no	intervalo	I	e	seja	a	∈	I.	Nestas	condições,	a	função	F	dada	por

é	uma	primitiva	de	f	em	I,	isto	é,	F′	(x)	=	f	(x)	para	todo	x	em	I.

Demonstração

Precisamos	provar	que,	para	todo	x	em	I,

Temos

Pelo	teorema	do	valor	médio	para	integrais	existe	c	entre	x	e	x	+	h	tal	que

Assim,

Tendo	em	vista	a	continuidade	de	f	em	I	e	observando	que	c	tende	a	x	quando	h	tende	a	zero	resulta



Observe	que	o	teorema	fundamental	do	cálculo	garante-nos	que	toda	função	contínua	em	um	intervalo
admite,	neste	intervalo,	uma	primitiva	e,	além	disso,	exibe-nos,	ainda,	uma	primitiva.

EXEMPLO	1.	Seja	 .	Calcule	F′	(x).

Solução

Observe	que	o	domínio	de	F	é	 ,	pois,	 	é	contínua	em	 .	Pelo	teorema	fundamental	do

cálculo

ou	seja,

Na	notação	de	Leibniz

EXEMPLO	2.	Calcule	 .

Solução

Seja	f	(t)	=	sen	t2.	Temos:

ou	seja,

EXEMPLO	3.	Calcule	G′	(x)	sendo	 .

Solução



De

resulta

Podemos,	também,	calcular	G′	(x)	da	seguinte	forma:

Portanto,

EXEMPLO	4.	Calcule	H′	(x)	sendo	 .

Solução

Como	 	é	contínua	em	 ,	 tomando-se	um	número	real	qualquer,	por	exemplo	1,	 tem-se,

para	todo	x,

ou

daí

ou	seja,



Outra	 forma	 para	 se	 obter	H′	 (x)	 é	 a	 seguinte:	 como	 	 é	 contínua	 em	 ,	 f	 admite	 uma

primitiva	F;	assim

ou	seja,

H	(x)	=	F	(x3)	−	F	(sen	x)

daí

H′	(x)	=	F′(x3)	3x2	−	F′	(sen	x)	cos	x.

Como

segue

EXEMPLO	5.	Suponha	f	(t)	contínua	em	[−	r,	r]	(r	>	0)	e	considere	a	função

Prove	que	se	f	for	uma	função	par,	então	F	será	ímpar.

Solução

A	nossa	hipótese	é	de	que	f	é	contínua	em	[−r,	r]	e	f	(t)	=	f	(−t)	em	[−r,	r].	Queremos	provar	que

F	(−x)	=	F	(x)	em	[−r,	r].

Como	 	e	f	é	contínua	em	[−r,	r],	pelo	teorema	fundamental	do	cálculo

F′	(x)	=	f	(x)	em	[−r,	r].

Temos,	também,

[F	(−x)]′	=	F′	(−x)	(−x)′	=	−	F′	(−x)



1.

2.

3.

4.

ou	seja,

[F	(−x)]′	=	−f	(−x),	pois	F′	=	f.

Segue	que,	para	todo	x	em	[−r,	r],

[F	(x)	+	F	(−x)]′	=	F′	(x)	−	F′	(−x)	=	f	(x)	−	f	(−x)

ou	seja,

[F	(x)	+	F	(−x)]′	=	0.

Logo,	existe	uma	constante	k	tal	que,	para	todo	x	em	[−r,	r],	F	(x)	+	F	(−x)	=	k.	Mas	

e,	assim,	k	=	F	(0)	+	F	(−0)	=	0.	Portanto,	F	(x)	+	F	(−x)	=	0	ou	F	(−x)	=	−F	(x),	para	todo	x	∈	[−r,	r].
■

Exercícios	2.4	

Calcule	F′	(x)	sendo	F	dada	por

Suponha	 f	 (t)	 ≥	 0	 e	 contínua	 em	 .	 Estude	 a	 função	 	 com	 relação	 a

crescimento	e	decrescimento.

Determine	uma	função	:	φ	:	 	→	 ,	contínua,	tal	que	para	todo	x

Suponha	f	contínua	em	[−r,	r]	(r	>	0)	e	considere	a	função



5.

6.

7.

8.

a)

b)

c)

d)

e)

Prove	que	se	f	for	uma	função	ímpar,	então	F	será	uma	função	par.

Suponha	f	contínua	em	 	e	periódica	com	período	p,	isto	é,	f	(x)	=	f	(x	+	p)	para	todo	x.	Prove	que
a	função

é	constante.	Interprete	graficamente.

Calcule	 	onde	 .	(Sugestão:	integre	por	partes.)

Calcule	 	onde	 .

As	funções	cosseno	hiperbólico	e	seno	hiperbólico,	que	se	indicam,	respectivamente,	por	ch	e	sh,
são	dadas	por

Verifique	que	para	todo	t,	(ch	t)′	=	sh	t.

Verifique	que,	para	todo	t,	o	ponto	(ch	t,	sh	t)	pertence	ao	ramo	da	hipérbole	x2	−	y2	=	1	contido
no	semiplano	x	>	0.

Sendo	F	(t)	a	área	da	região	hachurada	mostre	que

Prove	que	 .

Qual	 é,	 então,	 a	 interpretação	 para	 o	 parâmetro	 t	 que	 ocorre	 em	 ch	 t?	 Compare	 com	 o



2.5.

parâmetro	t	que	ocorre	em	cos	t.

	
FUNÇÃO	DADA	POR	UMA	INTEGRAL:	CONTINUIDADE	E
DERIVABILIDADE

Nesta	seção	vamos	estudar,	com	relação	a	continuidade	e	derivabilidade,	a	função

onde	 f	 é	 suposta	 integrável	 em	 todo	 intervalo	 fechado	 contido	 em	 I	 e,	 portanto,	 não	 necessariamente
contínua	em	I.

Teorema	1.	Seja	f	integrável	em	qualquer	intervalo	fechado	contido	no	intervalo	I	e	seja	a	um	ponto	fixo	de	I.	Então	a	função
dada	por

é	contínua	em	I.

Demonstração

Seja	p	∈	I;	existe	um	intervalo	[α,	β]	⊂	I	tal	que	a,	p	∈	[α,	β]	e	se	p	não	for	extremo	de	I,	podemos
tomar	α	e	β	de	modo	que	p	∈	]α,	β[.	Como	f	é	limitada	em	[α,	β],	pois	é	integrável	neste	intervalo,	existe
M	>	0	tal	que	|f	(t)|	≤	M	em	[α,	β].	Para	todo	x	em	[α,	β]	temos

De	−M	≤	f	(t)	≤	M,	para	todo	t	∈	[α,	β],	segue	que,	para	todo	x	∈	[α,	β],

e

Pelo	teorema	do	confronto,

Teorema	 2.	 Sejam	 	 como	 no	 teorema	 1.	 Nestas	 condições,	 se	 f	 for	 contínua	 em	 p	∈	 I,	 então	 F	 será

derivável	em	p	e	F′	(p)	=	f	(p).



Demonstração

Seja	p	∈	I	e	suponhamos	que	p	não	seja	extremo	de	I.	Vamos	provar	que	se	f	for	contínua	em	p	então

que	equivale	a

Temos

Sendo	f	contínua	em	p,	dado	 	>	0	existe	δ	>	0,	com	]p	−	δ,	p	+	δ[	⊂	I,	tal	que

p	−	δ	<	t	<	p	+	δ	⇒	−	 	<	f	(t)	−	f	(p)	<	 ;

daí,	para	todo	x	em	]p	−	δ,	p	+	δ[,

De	 	e	 	resulta

e,	portanto,

Analise	você	o	caso	em	que	p	é	extremo	de	I.
■



3.1.

3

EXTENSÕES	DO	CONCEITO	DE	INTEGRAL

INTEGRAIS	IMPRÓPRIAS

Estamos	interessados,	nesta	seção,	em	dar	um	significado	para	os	símbolos

Definição	1.	Seja	f	integrável	em	[a,	t],	para	todo	t	>	a.	Definimos

desde	que	o	limite	exista	e	seja	finito.	Tal	limite	denomina-se	integral	imprópria	de	f	estendida	ao	intervalo	[a,	+∞[.

Observação.	 Se	 	 for	 +∞	 ou	 −∞	 continuaremos	 a	 nos	 referir	 a	 	 como	 uma

integral	imprópria	e	escreveremos

Se	ocorrer	um	destes	casos	ou	se	o	limite	não	existir,	diremos	que	a	integral	imprópria	é	divergente.	Se	o
limite	for	finito,	diremos	que	a	integral	imprópria	é	convergente.

Suponhamos	f	(x)	≥	0	em	[a,	+∞[	e	que	f	seja	integrável	em	[a,	t]	para	toda	t	>	a.	Seja	A	o	conjunto	de
todos	(x,	y)	tais	que	0	≤	y	≤	f	(x)	e	x	≥	a.	Definimos	a	área	de	A	por

EXEMPLO	1.	Calcule	 .

Solução

Como



resulta

Como	 ,	a	integral	imprópria	é	convergente.

■

EXEMPLO	2.	A	integral	imprópria	 	dx	é	convergente	ou	divergente?	Justifique.

Solução

Assim,

Logo,	a	integral	imprópria	é	divergente.

EXEMPLO	3.	Suponha	s	>	0	e	calcule	 .

Solução



Assim,

Por	outro	lado,

daí

Substituindo	 	em	 	vem

Daí

e,	portanto,

Sendo	sen	u	e	cos	u	limitadas	e	 	(lembre-se	de	que	estamos	supondo	s	>	0)	resulta

e,	portanto,

Assim,



1.

2.

3.

Definição	2.	Seja	f	integrável	em	[t,	a]	para	todo	t	<	a.	Definimos

Definição	3.	Seja	f	integrável	em	[−	t,	t],	para	todo	t	>	0.	Definimos

desde	que	ambas	as	integrais	do	2.º	membro	sejam	convergentes.

Observação.	Com	relação	à	definição	3,	se	as	duas	integrais	que	ocorrem	no	2.º	membro	forem	iguais	a
+	∞	(ou	−	∞),	ou	se	uma	delas	for	convergente	e	a	outra	+	∞	(ou	−	∞),	poremos

Exercícios	3.1	

Calcule:

Calcule	 ,	onde	α	é	um	real	dado.

Calcule



4.

5.

6.

7.

a)

b)

8.

Determine	m	para	que	 ,	sendo

Determine	k 	para	que	se	tenha	 .

Determine	m	para	que	 	onde

Sejam	dados	um	real	s	>	0	e	um	natural	n	≠	0.

Verifique	que

Mostre	que	 .

Sejam	α	e	s,	s	>	0,	reais	dados.	Verifique	que



9.

a)

b)

10.

3.2.

Utilizando	o	Exercício	8,	calcule	 	sendo:

f	(t)	=	sen	t	+	3	cos	2t

f	(t)	=	3t	+	2e3t	+	tet

Suponha	que,	para	todo	t	>	0,	f	seja	integrável	em	[−	t,	t];	suponha,	ainda,	que	f	(x)	≥	0	para	todo	x.	Prove	que

	
FUNÇÃO	DADA	POR	UMA	INTEGRAL	IMPRÓPRIA

Suponhamos	 f	 definida	em	 	 e	 tal	 que,	 para	 todo	x,	 	 seja	 convergente.	 Podemos,	 então,

considerar	a	função	F	definida	em	 	dada	por

Fixado	o	real	a,	para	todo	real	u,

fazendo	u	→	−	∞	resulta

e,	portanto,

onde

Já	vimos	que	H	(x)	é	contínua	e	que	H	é	derivável	em	todo	x	em	que	f	for	contínua;	além	do	mais,	H′	(x)	=
f	(x)	em	todo	x	em	que	f	for	contínua.	Como	 	é	constante,	resulta	que	F	é	contínua	e	que	F′	(x)	=
f	(x)	em	todo	x	em	que	f	for	contínua.

EXEMPLO	1.	Esboce	o	gráfico	de	 	onde	 .

Solução



ou	seja,

Observe:	F	é	contínua	e	 .

■

EXEMPLO	2.	Esboce	o	gráfico	da	função	 	onde	 .



Solução

Assim,

Em	particular,	 .	Então

ou	seja,



3.3.

Como	f	é	contínua,	F	é	derivável	em	todos	os	pontos;	assim,	o	gráfico	de	F	não	apresenta	“bico”.

Exercícios	3.2	

Esboce	o	gráfico	de	 	onde

	
INTEGRAIS	IMPRÓPRIAS:	CONTINUAÇÃO

O	objetivo	deste	parágrafo	é	estender	o	conceito	de	integral	para	função	definida	e	não	limitada	num
intervalo	de	extremos	a	e	b,	com	a	e	b	reais.

Definição	1.	Seja	f	não	limitada	em	]a,	b]	e	integrável	em	[t,	b]	para	todo	t	em	]a,	b[.	Definimos

desde	que	o	limite	exista	e	seja	finito.	O	número	 	denomina-se	integral	imprópria	de	f	em	[a,	b].



1.

Se	 o	 limite	 for	 +∞	 ou	 −∞,	 continuaremos	 a	 nos	 referir	 a	 	 como	 uma	 integral	 imprópria	 e

escreveremos	 ,	conforme	o	caso.	Se	ocorrer	um	destes	casos	ou	se	o

limite	não	existir,	diremos	que	a	 integral	 imprópria	é	divergente.	Se	o	 limite	 for	 finito,	diremos	que	a
integral	imprópria	é	convergente.

Já	 observamos	 que	 uma	 condição	 necessária	 para	 uma	 função	 f	 admitir	 integral	 de	 Riemann	 num
intervalo	[a,	b]	é	que	f	seja	limitada	em	[a,	b].	Deste	modo,	se	f	não	for	limitada	em	[a,	b],	f	não	poderá
admitir,	neste	intervalo,	integral	de	Riemann;	entretanto,	poderá	admitir	integral	imprópria.

EXEMPLO.	Calcule	 .

Solução

	 é	 não	 limitada	 em	 ]0,	 1]	 e	 integrável	 (segundo	Riemann)	 em	 [t,	 1]	 para	 0	 <	 t	 <	 1;	 de

acordo	com	a	definição	anterior,

ou	seja,

Exercícios	3.3	

Calcule



2.

3.

4.

5.

6.

3.4.

Suponha	f	não	limitada	em	[a,	b[	e	integrável	em	[a,	t]	para	a	<	t	<	b.	Defina	 .

Calcule

Suponha	f	não	limitada	e	contínua	nos	intervalos	[a,	c[	e	]c,	b].	Defina	 .

Calcule

Suponha	f	contínua	em	]a,	b[	e	não	limitada	em	]a,	c]	e	em	[c,	b[.	Defina	 .

	
CONVERGÊNCIA	E	DIVERGÊNCIA	DE	INTEGRAIS	IMPRÓPRIAS:
CRITÉRIO	DE	COMPARAÇÃO

Em	muitas	ocasiões	estaremos	interessados	não	em	saber	qual	o	valor	de	uma	integral	imprópria,	mas
sim	em	saber	se	tal	integral	imprópria	é	convergente	ou	divergente.	Para	tal	fim,	vamos	estabelecer,	nesta
seção,	 o	 critério	 de	 comparação	 que	 nos	 permite	 concluir	 a	 convergência	 ou	 a	 divergência	 de	 uma
integral	imprópria	comparando-a	com	outra	que	se	sabe	ser	convergente	ou	divergente.

Observamos,	inicialmente,	que	se	f	for	integrável	em	[a,	t],	para	todo	t	>	a,	e	se	f	(x)	≥	0	em	[a,	+∞[,
então	a	função

será	crescente	em	[a,	+∞[.	De	fato,	se	x1	e	x2	são	dois	reais	quaisquer,	com	a	≤	x1	<	x2,	então

Assim,	quaisquer	que	sejam	x1,	x2	em	[a,	+∞[,

x1	<	x2	⇒	F	(x1)	≤	F	(x2).

Logo,	F	é	crescente	em	[a,	+∞[.	Segue	que	 	ou	será	finito	ou	+∞;	será	finito	se	existir	M

>	0	tal	que	 	para	todo	x	≥	a	(veja	Exercício	9).



a)

b)

Critério	de	comparação.	Sejam	f	e	g	duas	funções	integráveis	em	[a,	t],	para	todo	t	>	a,	e	tais	que,	para	todo	x	≥	a,	0	≤	f	(x)	≤	g	(x).
Então

Demonstração

	é	finito,	pois,	por	hipótese,	 	é	convergente.	De	0	≤	 f	(x)	≤	g(x),	para

todo	x	≥	a,	resulta

Sendo	 	 crescente	 e	 limitada,	 resulta	 que	 	 será	 finito	 e,	 portanto,	

	será	convergente.

Fica	a	seu	cargo.
■

EXEMPLO	1.	Verifique	que	 	é	convergente.

Solução

	é	convergente.	Segue	do	critério	de	comparação	que	 	é	convergente	e,	além



disso,	 .

EXEMPLO	2.	Verifique	que	a	integral	imprópria	 	é	divergente.

Solução

Para	todo	 ,	e,	portanto,

De	 ,	segue,	pelo	critério	de	comparação,	que	 	é	divergente.

■

O	exemplo	que	daremos	a	seguir	será	bastante	útil	no	estudo	de	convergência	de	integrais	impróprias
cujo	integrando	não	seja	sempre	positivo.	Tal	exemplo	conta-nos	que	se	 	 for	convergente,

então	 	também	será	(não	vale	a	recíproca).

EXEMPLO	3.	Suponha	f	integrável	em	[a,	t],	para	todo	t	≥	a.	Prove

Solução

Para	todo	x	≥	a,

0	≤	|	f	(x)|	+	f	(x)	≤	2	|	f	(x)|.

Sendo	 	 convergente,	 resulta,	 do	 critério	 de	 comparação,	 que	 	 é,



também,	convergente.	Temos

Como	 	 são	 convergentes,	 resulta	 que	 	 também	 é

convergente.
■

EXEMPLO	4.	A	integral	imprópria	 	é	convergente	ou	divergente?	Justifique.

Solução

0	≤	|	e−x	sen3	x	|	≤	e−x.

Como	 	é	convergente,	então	 	também	será	convergente;	pelo	Exemplo	3,	

	é	convergente.

■

EXEMPLO	5.	É	convergente	ou	divergente?	Justifique.

Solução

Para	 todo	 .	 Como	 	 é	 convergente,	 	 também	 será,	 e,	 portanto,	

	é	convergente.	Como

resulta



ou	seja,	 	é	convergente.

b)	Para	todo	x,	|sen	x|	≤	1	e,	portanto,

sen2	x	≤	|sen	x|.

Segue	que,	para	todo	x	≥	1,

Temos:

Tendo	em	vista	que	 	é	convergente	(por	quê?),	 	e

,	resulta

ou	seja,

Pelo	critério	de	comparação	(veja	 ),	 	é	divergente.	Tendo	em	vista	o	item	a),	conclui-se

que	a	recíproca	da	afirmação	do	Exemplo	3	não	é	verdadeira.
■

O	 teorema	 seguinte,	 cuja	 demonstração	 é	 deixada	 para	 exercício,	 estabelece	 a	 convergência	 ou
divergência	de	certas	integrais	impróprias	e	que	serão	úteis	no	estudo	de	divergência	e	convergência	de
integrais	impróprias.

Teorema

a)	 	é	convergente	para	α	>	1	e	divergente	para	α	≤	1.

b)	 	é	convergente	para	todo	α	>	0.



1.

2.

a)

b)

3.

4.

5.

6.

Exercícios	3.4	

É	convergente	ou	divergente?	Justifique.

Suponha	f	integrável	em	[a,	t],	para	todo	t	≥	a,	com	f	≥	(x)	0	em	[a,	+	∞[.	Suponha	que	existem	um	α	real	e	uma	função	g	 tais	que,

para	todo	x	≥	a,	 .	Suponha,	além	disso,	que	 	(L	real).	Prove:

	convergente

	convergente

Utilizando	o	Exercício	2,	estude	a	convergência	ou	divergência	de	cada	uma	das	integrais	a	seguir.

Seja	f	contínua	em	[0,	t],	para	todo	t	>	0,	e	suponha	que	existem	constantes	M	>	0	e	γ	>	0	tais	que,	para	todo	t	≥	0,

Prove	que	 	é	convergente	para	s	>	γ.

Observação.	Uma	função	f	se	diz	de	ordem	exponencial	γ	se	existem	constantes	M	>	0	e	γ	>	0	tais	que	 	se	verifica.

Seja	f	uma	função,	com	derivada	contínua,	e	de	ordem	exponencial	γ.	Verifique	que,	para	 	é	convergente	e

que

Suponha	que	f	seja	de	ordem	exponencial	γ	e	que,	para	todo	t	real,



7.

a)

b)

8.

9.

Mostre	que,	para	todo	s	>	γ,

Conclua	que	existem	constantes	A,	B,	C	tais	que

Agora,	utilizando	o	Exercício	8	da	Seção	3.1	e	supondo	f	(0)	=	1,	determine	f	que	verifique	 	e	mostre,	em	seguida,	que	esta	f	satisfaz	
.

Observação.	A	função	g	dada	por

denomina-se	transformada	de	Laplace	de	f.

Procedendo	como	no	exercício	anterior,	determine	f	tal	que

f′	(t)	−	2	f	(t)	=	cos	t	e	f	(0)	=	2.

f′	(t)	+	f	(t)	=	e2t	e	f	(0)	=	−	1.

Suponha	que	f	e	f′	sejam	de	ordens	exponencial	γ1	e	γ2,	respectivamente.	Suponha,	ainda,	que	f″	seja	contínua.	Verifique	que

Suponha	F	(x)	crescente	em	[a,	+	∞[.	Prove	que	 	será	finito	ou	+	∞.	Será	finito	e	igual	a	sup	{F	(x)	|	x	≥	a}	se	existir	M

>	0	tal	que,	para	todo	x	≥	a,	F	(x)	≤	M.

	



4.1.

4

APLICAÇÕES	À	ESTATÍSTICA

FUNÇÃO	DENSIDADE	DE	PROBABILIDADE.	PROBABILIDADE	DE
VARIÁVEL	ALEATÓRIA	CONTÍNUA

Definição.	Seja	f	uma	função	definida	para	todo	x	real	e	integrável	em	todo	intervalo	[a,	b],	com	a	e	b	reais	e	a	<	b.	Dizemos	que	f	é
uma	função	densidade	de	probabilidade	se	as	seguintes	condições	estiverem	satisfeitas:

i)	f	(x)	≥	0	para	todo	x;

ii)	 .

EXEMPLO	1.	Sejam	a	<	b	dois	reais	quaisquer	e	f	a	função	dada	por

Verifique	que	f	é	uma	função	densidade	de	probabilidade.

Solução

De	b	>	a	segue	que	f	(x)	≥	0	para	todo	x.	Por	outro	lado,

Logo,	a	função	dada	é	uma	função	densidade	de	probabilidade.
■

EXEMPLO	2.	Sendo	β	>	0,	verifique	que	a	função	f	dada	por

é	uma	função	densidade	de	probabilidade.



Solução

De	β	>	0	segue	que	f	(x)	≥	0	para	todo	x	real.	Por	outro	lado,

pois

Assim,	a	função	dada	é	uma	função	densidade	de	probabilidade.
■

Consideremos	um	experimento	qualquer,	e	seja	S	o	espaço	amostral	associado	a	tal	experimento,	ou
seja,	S	é	o	conjunto	de	todos	os	possíveis	resultados	de	tal	experimento.	Suponhamos,	agora,	que	a	cada
resultado	possível	de	tal	experimento	seja	associado	um	número	X.	Pois	bem,	a	variável	X	obtida	dessa
forma	denomina-se	variável	aleatória.	Se	o	conjunto	de	todos	os	valores	de	X	for	finito	ou	enumerável,
dizemos	que	X	é	uma	variável	aleatória	discreta.

Quando	a	variável	aleatória	X	é	discreta,	é	possível	associar	a	cada	valor	de	X	uma	probabilidade.
Consideremos,	 por	 exemplo,	 o	 experimento	 que	 consiste	 em	 lançar	 uma	moeda.	Neste	 caso,	 o	 espaço
amostral	 é	o	conjunto	{cara,	coroa};	 se	ao	 resultado	cara	 associarmos	o	número	0	e	ao	coroa	 o	 1,	 a
variável	aleatória	X	poderá	assumir	qualquer	valor	do	conjunto	finito	{0,	1},	e	X	será	então	uma	variável
aleatória	discreta.	Supondo	a	moeda	honesta,	a	probabilidade	p	(x)	de	cada	valor	x	de	X	é	 ,	ou	seja,	

;	 é	 usual	 a	 notação	 P	 (X	 =	 x)	 para	 representar	 a	 probabilidade	 de	 a	 variável

aleatória	X	ser	igual	a	x:	P	(X	=	x)	=	p	(x).	Observe	que	p	(0)	+	p	(1)	=	1.
Consideremos,	agora,	um	experimento	em	que	o	espaço	amostral	consiste	em	n	resultados	possíveis,

s1,	s2,	…,	sn,	e	a	cada	resultado	si	associamos	um	número	xi;	então	{xi	|	i	=	1,	2,	…,	n}	é	o	conjunto	dos
valores	possíveis	da	variável	aleatória	discreta	X;	a	cada	valor	possível	xi	de	X	podemos	atribuir	uma

probabilidade	p	 (x
i

)	=	P	 (X	=	x
i

),	com	p	 (x
i

)	≥	0	e	 .	Se	o	conjunto	dos	possíveis	valores

assumidos	por	X	for	enumerável,	ou	seja,	da	forma	{xi	|	i	natural},	as	duas	condições	acima	deverão	ser

substituídas,	respectivamente,	por	p	(x
i

)	≥	0,	para	todo	i	natural,	e	 ,	onde

A	seguir,	definimos	probabilidade	de	uma	variável	aleatória	que	não	é	discreta	mas	que	admite	uma
função	densidade	de	probabilidade.

Definição.	 Sejam	 X	 uma	 variável	 aleatória	 e	 f	 uma	 função	 densidade	 de	 probabilidade.	 Dizemos	 que	 a	 variável	 aleatória	 X	 tem



densidade	de	probabilidade	f	se	a	probabilidade	de	X	pertencer	ao	intervalo	]a,	b[,	com	a	<	b	quaisquer	(a	=	−	∞	ou	b	=	+	∞),	for	dada
por

respectivamente,

ou

Desse	modo,	a	probabilidade	de	X	estar	entre	a	e	b	nada	mais	é	do	que	a	área	da	região	limitada	pelo
gráfico	de	y	=	 f	 (x),	 pelas	 retas	x	=	a,	x	 =	b	 e	 pelo	 eixo	x.	De	 	 para	 todo	 x,

resulta	que	a	probabilidade	de	a	variável	aleatória	X	pertencer	ao	intervalo	]a,	b[	é	tal	que	0	≤	P	(a	≤	X
≤	b)	≤	1.	Observe	que	 f	 (x)	dx	é	um	valor	aproximado	para	a	probabilidade	de	a	variável	aleatória	X
estar	compreendida	entre	x	e	x	+	dx.

Pelo	que	sabemos	sobre	as	funções	integráveis,	nada	muda	nas	definições	acima	se	um	dos	sinais	<
(ou	ambos)	for	trocado	por	≤;	assim,
P	(a	≤	X	<	b)	=	P	(a	<	X	<	b)	=	P	(a	≤	X	≤	b)	etc.

Dizemos	que	uma	variável	aleatória	X	é	contínua	se,	para	todo	a	real,	a	probabilidade	de	X	=	a	 for
zero.	Pois	bem,	se	X	é	uma	variável	aleatória	que	admite	função	densidade	de	probabilidade	f,	então	X
será	uma	variável	aleatória	contínua,	pois	para	todo	a	real	

EXEMPLO	3.	Suponha	que	o	tempo	de	duração	de	um	determinado	tipo	de	bateria	(digamos,	bateria	de
relógio)	seja	uma	variável	aleatória	X	contínua	com	função	densidade	de	probabilidade	dada	por

sendo	o	tempo	medido	em	anos.



a)
b)
c)
d)

a)

b)

c)

d)

É	razoável	tomar	f	como	função	densidade	de	probabilidade	para	a	variável	aleatória	X?
Qual	a	probabilidade	de	a	bateria	durar	no	máximo	um	ano?
Qual	a	probabilidade	de	o	tempo	de	duração	da	bateria	estar	compreendido	entre	1	e	3	anos?
Qual	a	probabilidade	de	a	bateria	durar	mais	de	3	anos?

Solução

Pelo	Exemplo	2,	tal	f	é	uma	função	densidade	de	probabilidade	(β	=	3).
Inicialmente,	observamos	que	teoricamente	X	poderá	assumir	qualquer	valor	real	positivo.	É	razoável
supor	que	a	probabilidade	de	X	pertencer	ao	intervalo	[x,	x	+	Δx],	com	Δx	>	0	e	constante	e	x	≥	0,
decresce	à	medida	que	x	 cresce,	e,	como	a	probabilidade	de	X	 ser	menor	que	zero	 é	 zero,	 é	 então
razoável	esperar	que	a	f	seja	nula	para	x	menor	que	zero	e	descrescente	no	intervalo	[0,	+∞[.	Como	a
f	 dada	 acima	 satisfaz	 tais	 condições,	 é	 então	 razoável	 tomar	 tal	 função	 como	 função	 densidade	 de
probabilidade	 da	 variável	 aleatória	 X.	 É	 claro	 que	 essa	 f	 não	 é	 a	 única	 função	 que	 satisfaz	 tais
condições.

A	probabilidade	de	que	a	bateria	dure	no	máximo	um	ano	é	a	probabilidade	de	a	variável	aleatória	X
pertencer	ao	intervalo	[0,	1]:

Em	termos	percentuais,	a	probabilidade	de	a	bateria	durar	menos	de	um	ano	é	de	aproximadamente
28%,	ou	seja,	em	cada	100	baterias,	espera-se	que	28	deixem	de	funcionar	com	menos	de	um	ano	de
uso.

.	Assim,	a	probabilidade	de	que	a

bateria	dure	de	um	a	três	anos	é	de	35%.

.	A	probabilidade	de	que	a	bateria	dure	mais

de	3	anos	é	de	37%,	ou	seja,	em	cada	100	baterias,	espera-se	que	37	durem	mais	de	3	anos.
■

EXEMPLO	4.	Seja	f	dada	por



1.

a)

b)

c)

d)

2.

a)

b)

c)

d)

4.2.

Que	valor	da	constante	k	torna	f	uma	função	densidade	de	probabilidade?

Solução

Como	 ,	 precisamos	 determinar	 k	 de	 modo	 que	 .	 De	

	(verifique),	segue	k	=	2.	Assim,	para	k	=	2	a	f	é	uma	função	densidade	de	probabilidade.

■

Exercícios	4.1	

Determine	k	para	que	a	função	dada	seja	uma	função	densidade	de	probabilidade.

f	(x)	=	kxe−x2	para	x	≥	0	e	f	(x)	=	0	para	x	<	0.

f	(x)	=	ke−|x	−	1|	para	todo	x.

f	(x)	=	kx	(x	−	5),	0	≤	x	≤	5	e	f	(x)	=	0	para	x	<	0	ou	x	>	5.

	para	todo	x.

Suponha	que	o	 salário	R$X	 de	 um	 funcionário	 de	 uma	 fábrica	 seja	 uma	 variável	 aleatória	 com
função	densidade	de	probabilidade	f	(x)	=	kx−2	para	x	≥	400	e	f	(x)	=	0	para	x	<	400.

Determine	k	para	que	f	seja	uma	função	densidade	de	probabilidade.

Qual	a	probabilidade	de	o	salário	ser	menor	que	R$1.000,00?

Qual	a	probabilidade	de	o	salário	estar	compreendido	entre	R$2.000,00	e	R$5.000,00?

Se	 a	 fábrica	 tem	 3.200	 funcionários,	 qual	 o	 número	 esperado	 de	 funcionários	 com	 salários
entre	R$2.000,00	e	R$5.000,00?

	
FUNÇÃO	DE	DISTRIBUIÇÃO

Seja	X	uma	variável	aleatória.	A	função	F	dada	por

F	(x)	=	P	(X	≤	x),	com	x	real,

é	denominada	função	de	distribuição	da	variável	aleatória	X.	Se	X	for	uma	variável	aleatória	contínua,
com	densidade	de	probabilidade	f,	teremos



para	todo	x	real.
Observe	 que,	 se	X	 for	 uma	 variável	 aleatória	 contínua	 com	 função	 densidade	 de	 probabilidade	 f,

então	 a	 sua	 função	 de	 distribuição	F	 é	 uma	 função	contínua	 e	F′	 (x)	=	 f	 (x)	 em	 todo	 x	 em	 que	 f	 for
contínua.	Observe,	ainda,	que	a	probabilidade	de	a	variável	aleatória	X	pertencer	ao	intervalo	[a,	b]	é

Observe	 que,	 se	 F	 for	 uma	 função	 de	 distribuição,	 deveremos	 ter	 necessariamente	
.	Você	concorda?

EXEMPLO	1.	Considere	a	função	densidade	de	probabilidade	dada	por	 	e	f	(x)	=	0	se

x	<	1.	Determine	e	esboce	o	gráfico	da	função	de	distribuição	F.

Solução

De	 ,	segue	que	F	(x)	=	0	se	x	≤	1	e	 	se	x	>	1,	ou	seja,

■

EXEMPLO	2.	Seja	X	uma	variável	aleatória	discreta	que	pode	assumir	qualquer	valor	do	conjunto	{0,
1}	e	com	probabilidades	P	(X	=	0)	=	p	(0)	=	 	e	P	(X	=	1)	=	p	(1)	=	 .	Esboce	o	gráfico	da	função	de

distribuição	da	variável	aleatória	X.

Solução

Temos	P	(X	<	0)	0,	pois	X	não	pode	assumir	valor	negativo;	para	0	≤	x	<	1,	P	(X	≤	x)	=	P	(X	=	0)	=	
,	pois	X	=	0	é	o	único	valor	que	X	poderá	assumir	no	intervalo	[0,	1[;	para	x	≥	1,	P	(X	≤	x)	=	P	(X	=	0	ou
X	=	1)	=	P(X	=	0)	+	P	(X	=	1)	1.	Assim,



1.

a)

b)

c)

2.

3.

4.3.

Observe	que	F	é	descontínua	nos	pontos	x	=	0	e	x	=	1.	Observe,	ainda,	que	 .
■

Exercícios	4.2	

Determine	a	função	de	distribuição	da	variável	aleatória	X,	sendo	sua	função	densidade	de	probabilidade	dada	a	seguir.

f	(x)	=	 	para	0	≤	x	≤	5	e	f	(x)	=	0	para	x	<	0	ou	x	>	5.

f	(x)	=	 	e
−
x
/2
	para	x	≥	0	e	f	(x)	=	0	para	x	<	0.

f	(x)	=	 	e
−|
x
|
	para	todo	x	real.

Sabendo	 que	 a	 função	 de	 distribuição	 da	 variável	 aleatória	 X	 é	 dada	 por	 ,	 determine	 sua	 função

densidade	de	probabilidade.

Seja	X	uma	variável	aleatória	discreta	que	pode	assumir	qualquer	valor	do	conjunto	{0,	1,	2}	e	com	probabilidades	P	(X	=	0)	=	 ,	P	(X

=	1)	=	 	e	P	(X	=	2)	=	 .	Esboce	o	gráfico	da	função	de	distribuição	da	variável	aleatória	X.

	
VALOR	ESPERADO	E	VARIÂNCIA	DE	VARIÁVEL	ALEATÓRIA

Consideremos	 uma	 coleção	 de	n	 números	 reais	 em	que	 o	 número	 x1	 aparece	 repetido	n1	 vezes,	 x2

aparece	n
2

	vezes,	…,	x
k

	aparece	n
k

	vezes,	de	tal	modo	que	 ;	pois	bem,	a	média	aritmética	

desses	números	é	dada	por

Sabemos	que	a	distância	do	número	xi	a	 	é	|	xi	−	 	|;	assim,	o	quadrado	da	distância	de	xi	a	 	é	(xi	−	
)2.	A	média	aritmética	dos	quadrados	das	distâncias	de	xi	a	 ,	i	de	1	a	k,	é,	por	definição,	a	variância	de
tais	números:



A	raiz	quadrada	da	variância	denomina-se	desvio	padrão	de	tais	números:

Observe	que,	quanto	maior	o	desvio	padrão,	mais	afastados	estarão	os	números	xi	da	média	 ,	e,	quanto
menor	o	desvio	padrão,	mais	concentrados	em	torno	da	média	 	estarão	os	números	xi.

Consideremos,	 agora,	 uma	 variável	 aleatória	 discreta	X	 com	 possíveis	 valores	 x1,	 x2,	 x3,	…,	 xk	 e
probabilidades	p	(x1),	p	(x2),	…,	p	(xk).	Por	definição,	o	valor	esperado	ou	média	de	X,	que	se	indica	por
E	(X)	ou	simplesmente	por	μ,	é

Por	outro	 lado,	a	variância	de	X,	que	se	 indica	por	Var	 (X)	ou	simplesmente	por	σ2,	σ	 >	 0,	 é,	 por
definição,	dada	por

Observe	que	se	 ,	para	i	de	1	a	k,	o	valor	esperado	E	(X)	nada	mais	é	do	que	a	média	 ,	e	Var
(X)	nada	mais	é	do	que	a	variância	dos	números	x1,	x2,	x3,	…,	xk,	onde	xi	aparece	repetido	ni	 vezes	 e	

.

A	raiz	quadrada	de	Var	(X)	é	o	desvio	padrão	σ	da	variável	aleatória	X:

Observando	 que,	 para	 dx	 suficientemente	 pequeno,	 f	 (x)	 dx	 é	 praticamente	 a	 probabilidade	 de
ocorrência	de	x,	 nada	mais	natural	do	que	as	 seguintes	definições	de	valor	 esperado	e	variância	para
uma	variável	aleatória	contínua.

Definição.	Seja	X	uma	variável	aleatória	contínua	X,	com	função	densidade	de	probabilidade	f.	Definimos	o	valor	esperado	E	(X)	de	X
por

e	a	variância	Var	(X)	de	X	por

desde	que	as	integrais	impróprias	sejam	convergentes.



Lembrando	que	E	(X)	é	um	número,	temos

De	 	resulta

EXEMPLO.	Seja	X	a	variável	aleatória	com	função	densidade	de	probabilidade

Calcule	o	valor	esperado	e	a	variância	de	X.

Solução

Cálculo	do	valor	esperado	E	(X).	Como	f	(x)	=	0	para	x	<	0,	vem

Integrando	por	partes,	temos

e,	portanto,

De	 	(confira)	resulta

Assim,	o	valor	esperado	da	variável	aleatória	X	é	E	(X)	=	β.	Vamos,	agora,	ao	cálculo	de	Var	(X).	Tendo
em	vista	 ,

Integrando	duas	vezes	por	partes,	obtém-se:



1.

a)

b)

c)

4.4.

Lembrando	que	E	(X)	=	β,	resulta:

Var	(X)	=	β2.

Conclusão:

E	(X)	=	β	e	Var	(X)	=	β2.

■

Exercícios	4.3	

Determine	E	(X)	e	Var	(X)	da	variável	aleatória	X	com	a	função	densidade	de	probabilidade	dada	a	seguir.

	para	a	≤	x	≤	b	e	f	(x)	=	0	para	x	<	a	e	x	>	b.

	para	x	≥	0	e	f	(x)	=	0	para	x	<	0.

f	(x)	=	x	e−x	para	x	≥	0	e	f	(x)	=	0	para	x	<	0.

	
DISTRIBUIÇÃO	NORMAL

Inicialmente,	observamos	que	no	Vol.	3	será	provado	o	seguinte	importante	resultado:

Por	e
−
x
2

	ser	uma	função	par,	resulta	 .

EXEMPLO	1.	Seja	f	(x)	=	ke−x2/2,	com	x	real.	Determine	o	valor	da	constante	k	de	modo	que	f	seja	uma
função	densidade	de	probabilidade.

Solução

Como	f	é	uma	função	par,	devemos	ter	 .	Fazendo	a	mudança	de	variável	x	=	u	

,	resulta



Para	s	→	+∞,	resulta

Deveremos	ter	então	 ,	ou	seja,	 .

■

EXEMPLO	2.	Sendo	μ	e	σ,	σ	>	0,	duas	constantes	dadas,	mostre	que

Solução

Como	o	gráfico	de	 	é	simétrico	em	relação	à	reta	x	=	μ,	basta	mostrar

que

Fazendo	 a	mudança	 de	 variável	 ,	 teremos	dx	 =	σ	dz	 e	 z	 =	 0	 para	 x	 =	μ.	 Tendo	 em	 vista	 o
exemplo	anterior,	segue	que

A	 seguir,	 vamos	 destacar	 a	 distribuição	 de	 probabilidades	 mais	 importante	 da	 estatística:	 a
distribuição	normal.

Definição.	Dizemos	que	a	variável	aleatória	contínua	X	tem	distribuição	normal,	com	média	μ	e	variância	σ2,	σ	>	0,	se	a	sua	função
densidade	de	probabilidade	for	dada	por

A	notação	X	:	N	(μ,	σ2)	é	usada	para	indicar	que	a	variável	aleatória	X	tem	distribuição	normal,	com
média	μ	e	variância	σ2	(ou	desvio	padrão	σ).

EXEMPLO	3.	Seja	X	uma	variável	aleatória	contínua,	com	distribuição	normal,	média	μ	e	variância	σ2.



Mostre	que	de	fato	tem-se:

a)	E	(X)	=	μ
b)	Var	(X)	=	σ2.

Solução

a)

Temos

Com	a	mudança	de	variável	s	=	x	−	μ	teremos

pois	o	integrando	da	segunda	integral	é	uma	função	ímpar.	Segue	que

Assim,

pois

Portanto,	E	(X)	=	μ.

b)	Temos

Tendo	em	vista	a	simetria	do	gráfico	do	integrando	em	relação	à	reta	x	=	μ,	resulta



Fazendo	f	(x)	=	x	−	μ,	g′	(x)	=	(x	−	μ)	e−(x	−	μ)2/2σ2	e	integrando	por	partes,	vem

Com	 ,	resulta

Assim,	Var	(X)	=	σ2.
■

EXEMPLO	4.	Seja	X	:	N	(μ,	σ2).	Mostre	que	P	(μ	−	σ	≤	X	≤	μ	+	σ)	independe	de	μ	e	de	σ	e	que	seu	valor
é

Solução

Fazendo	a	mudança	de	variável	 ,	teremos	dx	=	σ	dz,	z	=	0	para	x	=	μ,	z	=	1	para	x	=	μ	+	σ	e,
portanto,

Assim,	a	probabilidade	de	X	pertencer	ao	intervalo	[μ	−	σ,	μ	+	σ]	independe	dos	valores	de	μ	e	σ,	e	seu
valor	é



a)
b)

a)

b)

Observação.	Para	calcular	o	valor	da	integral	que	aparece	no	2.°	membro,	é	só	utilizar	a	desigualdade	(x
<	0)

(veja	 Exemplo	 7	 da	 Seção	 16.3,	 Vol.	 1,	 5.ª	 edição)	 e	 proceder	 como	 no	 Exemplo	 9	 da	 Seção	 16.3
mencionada.	Efetuados	os	cálculos,	chega-se	a:	P	(μ	−	σ	≤	X	≤	μ	+	σ)	≈	0,68.	Isto	é,	a	probabilidade	de	X
pertencer	ao	 intervalo	 [μ	−	σ,	μ	+	σ]	 é	 de	 aproximadamente	0,68.	No	Apêndice	2,	mostraremos	 como
utilizar	a	calculadora	HP-48G	no	cálculo	de	probabilidades	de	algumas	distribuições	contínuas.	Quando
X	tem	distribuição	normal,	existem	tabelas	para	o	cálculo	de	P	(a	≤	X	≤	b).

EXEMPLO	5.	Suponha	que	a	distribuição	das	alturas	dos	850	alunos	de	uma	determinada	escola	seja
aproximadamente	normal,	com	média	1,72	m	e	desvio	padrão	0,10	m.

Qual	o	número	esperado	de	alunos	com	altura	entre	1,62	e	1,82	m?
Qual	o	número	esperado	de	alunos	com	altura	superior	a	1,90	m?

Solução

Aqui	μ	=	1,72	e	σ	=	0,10.
P	(1,62	≤	X	≤	1,82)	=	P	(μ	−	σ	≤	X	≤	μ	+	σ)	≈	0,68,	como	vimos	no	exemplo	anterior.	Assim,	o	número
esperado	de	alunos	com	altura	entre	1,62	e	1,82	m	é	de	aproximadamente	68%	do	total	dos	alunos	da
escola,	ou	seja,	aproximadamente	578	alunos.

	 (o	 cálculo	 foi	 feito	 na	HP-48G).	Assim,	 o

número	esperado	de	alunos	com	altura	superior	(ou	igual)	a	1,92	m	é	de	aproximadamente	3,6%	do



1.

2.

3.
a)

b)

4.

5.

4.5.

total	dos	alunos	da	escola,	ou	seja,	aproximadamente	31	alunos.	(Já	dá	para	montar	um	belo	time	de
basquete	ou	de	vôlei,	não?	Bem,	depende!)

■

Exercícios	4.4	

Seja	X	uma	variável	aleatória	contínua,	com	distribuição	normal,	média	μ	e	variância	σ2,	σ	>	0.	Sendo	r	>	0	um	número	real	qualquer,
mostre	que

e	conclua	que	a	probabilidade	de	X	estar	entre	μ	−	rσ	e	μ	+	rσ,	não	depende	de	μ	e	σ,	só	depende	de	r.
Seja	X	:	N(μ,	σ2).	Mostre	que

onde	a	<	b	são	dois	reais	quaisquer.
Sejam	X	:	N(50,	16)	e	Y	:	N(60,	25).

Resolva	a	equação	P(X	≤	x)	=	P(Y	≤	x).

Resolva	a	inequação	P(X	≤	x)	<	P(Y	≤	x).

Sejam	 .	Discuta	a	equação	P(X	≤	x)	=	P(Y	≤	x).

Considere	a	função	φ	dada	por

sendo	a,	b	e	σ	constantes,	com	a	<	b.
a)	Mostre	que

b)	Calcule	 .

	

FUNÇÃO	DE	VARIÁVEL	ALEATÓRIA

Consideremos	a	função	Y	=	h	(X)	definida	para	todo	X	real.	Se	supusermos	X	uma	variável	aleatória,
a	variável	Y	será	também	aleatória;	desse	modo,	teremos	a	variável	Y	como	função	da	variável	aleatória
X.	Um	problema	que	surge	naturalmente	é	o	seguinte:	conhecida	a	função	densidade	de	probabilidade	de
X,	 como	 se	 determina	 a	 de	 Y?	 Um	 caminho	 para	 resolver	 o	 problema	 é	 determinar	 a	 função	 de
distribuição	de	Y.	Antes,	vamos	relembrar	como	se	deriva	uma	função	dada	por	integral	quando	um	dos
extremos	de	integração	é	uma	função.

Sejam	f	contínua	em	um	intervalo	I	e	g	definida	e	derivável	em	um	intervalo	J	e	tal	que	g	(x)	∈	I,	para	todo	x	em	J.	Nessas	condições,
para	todo	x	em	J,	tem-se



onde	a	∈	I,	com	a	fixo.	Se	I	for	da	forma	]	−∞,	b	[,	poderemos	tomar	a	=	−∞.	(Reveja	os	Capítulos	2	e	3.)

Uma	das	funções	de	variável	aleatória	que	desempenha	papel	fundamental	na	inferência	estatística	é	a
dada	por

onde	X	é	uma	variável	aleatória	com	distribuição	normal	N	(μ,	σ2).	Vamos	mostrar	no	próximo	exemplo
que	Z	é	uma	variável	aleatória	com	distribuição	normal	padrão,	ou	seja,	Z	:	N	(0,	1).

EXEMPLO	1.	Seja	Z	a	variável	aleatória	dada	por

onde	X	é	uma	variável	aleatória	com	distribuição	normal	N	(μ,	σ2).	Mostre	que	Z	tem	distribuição	normal
padrão	Z	:	N	(0,	1).

Solução

Precisamos	mostrar	que	a	função	F	de	distribuição	de	Z	é	dada	por

Temos

De	X	:	N	(μ,	σ2),	segue	que

Então,

F′	(z)	=	f	(σ	z	+	μ)	(σ	z	+	μ)′

onde	 .	Segue	que



a)

e,	portanto,

(Outro	modo	de	resolver	o	problema,	é	mostrando	diretamente	que

Temos

Segue	que

Fazendo	a	mudança	de	variável	 ,	teremos	dx	=	σdz,	z	=	a	para	x	=	aσ	+	μ,	z	=	b	para	x	=	bσ	+	μ
e,	portanto,

Este	resultado	é	tão	importante	que	merece	ser	destacado	em	um	quadro.

Se	X	for	uma	variável	aleatória	com	distribuição	normal,	X	:	N	(μ,	σ2),	e	se	Z	for	dada	por

então	a	variável	aleatória	Z	terá	distribuição	normal	padrão	Z	:	N	(0,	1).

EXEMPLO	 2.	 Seja	 X	 uma	 variável	 aleatória	 com	 função	 densidade	 de	 probabilidade	 f	 definida	 e
contínua	em	todo	x	real.	Seja	Y	=	c	X	+	d,	onde	c	e	d	são	constantes,	com	c	>	0	(c	<	0).

a)	Qual	a	função	densidade	de	probabilidade	da	variável	aleatória	Y?
b)	Mostre	que	E	(Y)	=	c	E	(X)	+	d.
c)	Mostre	que	Var	(Y)	=	c2	Var	(X).

Solução

Suporemos	c	>	0	(você	se	encarrega	de	c	<	0).
Sendo	F	a	função	de	distribuição	de	Y,	temos:



b)

c)

Como	a	f	é	contínua	em	todo	x,	F	é	derivável	e

Segue	que	existe	uma	constante	k	tal	que

Como	 	(de	acordo?)	resulta	k	=	0.

Logo,	 	 é	 a	 função	 densidade	 de	 probabilidade	 da	 variável	 aleatória	 Y.	 (Sugestão:

Sugerimos	ao	leitor	mostrar	diretamente	que

Para	isto	proceda	da	seguinte	forma:

.	Fazendo	a	mudança	de	variável	 ,	dy	=	c	dx	e	daí

(Lembre-se	de	que	 .)

Temos

Com	a	mudança	de	variável	acima,

De	E	(Y)	=	cE	(X)	+	d,	resulta



Observe	 que	 a	 função	 de	 variável	 aleatória	 dada	 por	 	 é	 um	 caso	 particular	 daquela	 do

exemplo	anterior:	Z	=	cX	+	d,	onde	 .	Assim,	 	e	 .	Sendo

X	:	N(μ,	σ2),	teremos	E(Z)	=	0	e	Var(Z)	=	1	que	concorda	com	o	Exemplo	1.
■

EXEMPLO	3.	Seja	Y	=	X2,	onde	X	é	uma	variável	aleatória	com	função	densidade	de	probabilidade	f,
definida	e	contínua	em	todo	x	real.	Qual	a	função	densidade	de	probabilidade	de	Y?

Solução

Vamos	calcular	diretamente	P(a	<	Y	<	b).	Como	Y	≥	0,	podemos	supor	0	≤	a	<	b.	Temos

P(a	<	Y	<	b)	=	P(a	<	X2	<	b).

De

resulta

Segue	que

Fazendo	na	primeira	 integral,	 a	mudança	de	variável	x	=	− 	e	na	 segunda	x	 =	 	 e	 supondo	a	 >	 0,
obtemos

Como,	para	a	→	0,	o	segundo	membro	desta	igualdade	converge	para	P(0	<	Y	<	b),	onde	P(0	<	Y	<	b)	é
calculado	na	igualdade	anterior,	temos

para	quaisquer	a	e	b	 reais,	com	0	≤	a	<	b.	Assim,	a	 função	densidade	de	probabilidade	g	da	variável
aleatória	Y	é	dada	por



1.

2.

4.6.

Exercícios	4.5	

Seja	X	 uma	 variável	 aleatória	 contínua	 com	 função	 densidade	 de	 probabilidade	 f	 definida	 e	 contínua	 em	 todo	 x	 real.	 Considere	 a
variável	aleatória	Y	dada	por	Y	=	X3.	Determine	a	função	densidade	de	probabilidade	g	de	Y.
Seja	X	uma	variável	aleatória	com	distribuição	normal,	X	:	N	(μ,	σ2).	Dizemos	que	a	variável	aleatória	Y	 tem	distribuição	lognormal
com	parâmetros	μ	e	σ2	se	X	=	ln	Y.	Determine	a	função	densidade	de	probabilidade	de	Y.

	
A	FUNÇÃO	GAMA

Uma	função	que	desempenha	um	papel	muito	importante	em	estatística	é	a	função	gama,	que	é	dada
por

Observe	que	a	integral	acima	é	imprópria	em	+∞	e,	também,	em	0	se	0	<	α	<	1.	Veremos	nos	próximos
exemplos	que	a	integral	é	convergente	para	α	>	0	e	divergente	para	α	≤	0.	Primeiro,	analisaremos	o	caso
α	≥	1;	em	seguida,	o	caso	0	<	α	<	1	e,	por	fim,	α	≤	0.

EXEMPLO	1.	Mostre	que,	para	α	≥	1,	a	integral	imprópria	 	é	convergente.

Solução

Para	α	≥	1,	f	(x)	=	e−x	xα	−	1	é	contínua	em	[0,	t],	para	todo	t	>	0.	Logo,	a	integral	é	imprópria	apenas
em	+∞.	Temos:

e−x	xα	−	1	=	e−x/2	(e−x/2	xα	−	1).

De	 	 (verifique),	segue	que	existe	r	>	0,	 tal	que	e
−
x
/2
	xα

	 −	 1
	 <	 1

para	x	≥	r.	Daí,	e
−
x	xα

	 −	 1
	<	e

−
x
/2
	para	x	≥	r.	De	 ,	 segue,	pelo	critério	de	comparação,	a

convergência	da	integral	imprópria	

■

EXEMPLO	2.	Mostre	que,	para	0	<	α	<	1,	a	integral	imprópria	 	é	convergente.



a)

b)

Solução

Raciocinando	 como	 no	 exemplo	 anterior,	 conclui-se	 que	 	 é	 convergente.	 Como	 e
−
x	 é

limitada	 em	 [0,	 1],	 para	 verificar	 a	 convergência	 de	 	 basta	 verificar	 que	 a	 integral

imprópria	 	 é	 convergente.	 Deixamos	 a	 seu	 cargo	 verificar	 que	 .	 Logo,	 a

integral	 	é	convergente	se	0	<	α	<	1.

■

EXEMPLO	3.	Mostre	que,	para	α	≤	0,	a	integral	imprópria	 	é	divergente.

Solução

Para	α	≤	0,	 	(verifique).	Para	0	<	x	≤	1,

e−x	xα	−	1	≥	e−	1	xα	−	1.

Pelo	critério	de	comparação,	 .

■

EXEMPLO	4.

a)	Calcule	Γ	(1).
b)	Mostre	que	Γ	(α	+	1)	=	α	Γ	(α),	α	>	0.
c)	Calcule	Γ	(n),	com	n	natural	e	diferente	de	zero.

Solução

.	Como	α	>	0,	tal	integral	só	é	imprópria	em	+∞.	De	acordo?	Integrando

por	partes,	vem

De	 ,	resulta



c)

1.

2.
3.

4.

e,	portanto,	Γ	(α	+	1)	=	α	Γ	(α).

Γ	(2)	=	1	·	Γ	(1)	=	1;	Γ	(3)	=	2	·	Γ	(2)	=	2	·	1;	Γ	(4)	=	3	·	Γ	(3)	=	3	·	2	·	1.	De	modo	geral,

A	seguir,	vamos	destacar	o	resultado	do	item	c	do	exemplo	acima.

Para	todo	natural	n,	tem-se

n!	=	Γ	(n	+	1).

Assim,	a	função	gama	nada	mais	é	do	que	uma	extensão	do	nosso	já	conhecido	fatorial.

Definição.	Para	todo	real	α	>	−	1	definimos	fatorial	de	α	por

α!	=	Γ	(α	+	1).

Observação.	A	função	fatorial	da	calculadora	HP-48G	é	dada	pela	definição	acima.	A	tabela	a	seguir	foi
construída	com	o	auxílio	dessa	calculadora.	Para	acessar	a	função	fatorial	na	HP-48G,	tecle:	MTH	NXT
(para	virar	a	página	do	menu	do	aplicativo	MTH),	em	seguida	pressione	a	tecla	branca	da	letra	A	para
ativar	PROB	no	menu	do	aplicativo.	Achou	o	fatorial?

α −0,99 −0,9 −0,1 0 0,4 0,45 0,5 0,6 1 2,5 3

α! 99,43 9,51 1,07 1 0,887 0,8856 0,886 0,893 1 3,323 6

Sugerimos	 ao	 leitor	 que,	 olhando	 a	 tabela	 acima,	 faça	 um	 esboço	 dos	 gráficos	 das	 funções	 gama	 e
fatorial.

Exercícios	4.6	

Mostre	que	 	(Sugestão:	Lembre-se	de	que	 .)

Calcule	(−0,5)!

Calcule	 	etc.

Estabeleça	uma	fórmula	para	o	cálculo	de	 ,	com	n	natural.



4.7.

a)
b)
c)

a)

b)

	
ALGUMAS	DISTRIBUIÇÕES	IMPORTANTES

Dizemos	que	a	variável	aleatória	contínua	X	tem	distribuição	uniforme	 se	sua	função	densidade	de
probabilidade	for	dada	por

A	 variável	 aleatória	 contínua	 X	 tem	 distribuição	 exponencial	 se	 a	 sua	 função	 densidade	 de
probabilidade	for	β	>	0,

Já	vimos	que	nesse	caso	E	(X)	=	β	e	Var	(X)	=	β2	(veja	exemplo	da	Seção	4.3).
A	variável	aleatória	contínua	X	tem	distribuição	gama,	com	parâmetros	α	>	0	e	β	>	0,	se	a	sua	função

densidade	de	probabilidade	for

Observe	que	a	distribuição	exponencial	é	uma	distribuição	gama	com	α	=	1.

EXEMPLO	1.	Seja	f	a	função	densidade	de	probabilidade	da	distribuição	gama.

Verifique	que	tal	f	é	realmente	uma	função	densidade	de	probabilidade.
Calcule	E	(X).
Calcule	Var	(X).

Solução

É	claro	que	vamos	ter	que	fazer	uma	mudança	de	variável	de	modo	que	apareça	a	função	gama	(você
concorda?).	Eu	acho	até	que	você	já	sabe	qual	é	a	mudança!	Então,	vamos	lá.	Fazendo	u	=	 ,	teremos

dx	=	βdu.	Assim,

Pronto.	É	realmente	uma	função	densidade	de	probabilidade.



c)

Para	s	tendendo	a	infinito,	a	primeira	parcela	do	último	membro	tende	a	zero	e,	daí,

Conclusão:	E	(X)	=	αβ.

Lembrando	que	Var	 ,	segue	que	precisamos	calcular	apenas	o	valor

da	integral	do	2.°	membro.	Temos

Integrando	por	partes,	resulta:

Sendo	o	valor	da	primeira	parcela	do	segundo	membro	igual	a	0	e	tendo	em	vista	o	item	anterior,	tem-
se

Var	(X)	=	(αβ)2	+	αβ2	−	(αβ)2	=	αβ2.

Conclusão:	Var	(X)	=	αβ2.
■

As	 três	 distribuições	 que	 destacaremos	 a	 seguir	 desempenham	 papéis	 fundamentais	 na	 inferência
estatística.	 São	 elas:	 distribuição	 qui-quadrado	 (χ2),	 distribuição	 t	 de	 Student	 e	 distribuição	 F	 de
Snedecor.

A	variável	aleatória	contínua	X	tem	distribuição	qui-quadrado	(χ2),	com	graus	de	liberdade,	se	a	sua
função	densidade	de	probabilidade	é	dada	por

Uma	distribuição	qui-quadrado,	com	graus	de	liberdade,	é	usualmente	representada	por	χ2	 (ν).	Observe
que	a	distribuição	qui-quadrado	é	uma	distribuição	gama	com	α	=	ν/2	e	β	=	2;	assim,	E	(X)	=	ν	e	Var	(X)
=	2ν.	De	onde	surge	essa	distribuição?	Consideremos	uma	população	com	distribuição	normal	padrão,	ou
seja,	com	distribuição	N	(0,	1).	Retire,	aleatoriamente,	dessa	população	uma	amostra	x1,	x2,	…,	xν	com	ν
elementos	e	some	os	quadrados	desses	números

Retire	outra	amostra	e	calcule	χ2,	e	assim	por	diante.	Este	χ2	é	uma	variável	aleatória,	e,	 teoricamente,
poderá	assumir	qualquer	valor	positivo.	Pois	bem,	prova-se	que,	sob	determinadas	condições,	a	função



1.	a)

b)

2.
3.

densidade	de	probabilidade	dessa	variável	aleatória	é	a	função	f	dada	acima.	Com	essa	função	densidade
de	probabilidade,	P	(a	≤	X	≤	b)	é	a	probabilidade	de	o	valor	χ2	pertencer	ao	intervalo	de	extremos	a	e	b.

Prova-se	que,	se	Z	e	Y	forem	variáveis	aleatórias	independentes	Z	com	distribuição	normal	N	(0,	1)	e
Y	com	distribuição	χ2(ν),	então,	a	variável	aleatória	t	dada	por

tem	a	seguinte	função	densidade	de	probabilidade

Dizemos	que	uma	variável	aleatória	tem	distribuição	 t	de	Student,	com	ν	graus	de	 liberdade,	 se	a	sua
função	densidade	de	probabilidade	é	dada	pela	função	acima.	Observe	que	tal	f	é	uma	função	par.	Faça
você	mesmo	um	esboço	do	gráfico	dessa	função.

Sejam	U	e	V	variáveis	aleatórias	independentes	com	distribuições	χ2	(ν1)	e	χ2	(ν2),	 respectivamente.
Prova-se	que	a	variável	aleatória	 	tem	a	seguinte	função	densidade	de	probabilidade:

Uma	variável	 aleatória	 tem	distribuição	F	de	Snedecor,	 com	graus	de	 liberdade	 ν1	 e	ν2,	 se	 a	 sua
função	densidade	de	probabilidade	é	dada	pela	f	acima.

Para	encerrar	a	seção,	observamos	que	existem	tabelas	para	calcular	probabilidades	que	envolvem	as
distribuições	normal,	qui-quadrado,	t	de	Student	e	F	de	Snedecor.	Entretanto,	como	no	meio	estudantil	o
uso	da	calculadora	HP-48G	é	muito	comum,	mostraremos	no	Apêndice	2	como	utilizá-la	em	problemas
que	envolvem	tais	distribuições,	bem	como	para	outros	cálculos	comuns	em	estatística.

Exercícios	4.7	

Verifique	que	a	função	densidade	de	probabilidade	da	distribuição	t	de	Student	é	realmente	uma	função	densidade	de	probabilidade
no	caso	ν	=	3.

Mostre	que	E	(t)	=	0	e,	para	ν	≥	3,	 .	O	que	acontece	com	Var	(t)	para	ν	≤	2?

Mesmo	exercício	para	a	distribuição	F	de	Snedecor	no	caso	ν1	=	ν2	=	2.
Uma	variável	aleatória	X	tem	distribuição	de	Weibull	se	sua	função	densidade	de	probabilidade	é	dada	por



a)

b)

4.

a)

b)

Verifique	que	tal	f	é	realmente	uma	função	densidade	de	probabilidade.

Determine	E	(X)	e	Var	(X).

Uma	variável	aleatória	X	tem	distribuição	de	Rayleigh	se	sua	função	densidade	de	probabilidade	é	dada	por

Verifique	que	tal	f	é	realmente	uma	função	densidade	de	probabilidade.

Determine	E	(X)	e	Var	(X).

	



5.1.

5

EQUAÇÕES	DIFERENCIAIS	LINEARES	DE	1.ª	E	2.ª	ORDENS,
COM	COEFICIENTES	CONSTANTES

EQUAÇÃO	DIFERENCIAL	LINEAR,	DE	1.ª	ORDEM,	COM
COEFICIENTE	CONSTANTE

Sejam	 dados	 um	 número	 a	 e	 uma	 função	 f	 definida	 e	 contínua	 num	 intervalo	 I.	 Uma	 equação
diferencial	linear,	de	1.ª	ordem,	com	coeficiente	constante,	é	uma	equação	da	forma

Multiplicando	ambos	os	membros	de	 	pelo	fator	integrante	eat	(veja	Cap.	14,	Seção	14.6,	do	Vol.
1)	obtemos

ou

pois,	 .

Como	f	é	contínua	em	I,	eat	f	(t)	admite	primitiva	em	I.	De	 	segue	que	xeat	é	da	forma

ou

com	 k	 constante.	 Por	 outro	 lado,	 é	 fácil	 verificar	 que	 as	 funções	 da	 forma	 	 são	 soluções	 de	 .
Chegamos,	assim,	ao	importante	resultado:

As	soluções	de



a)
b)

a)

b)

são	as	funções	da	forma

com	k 	constante.

Este	resultado	é	um	caso	particular	daquele	que	obtivemos	na	Seção	14.6	do	Vol.	1.	Observamos	que
no	cálculo	de	 	a	constante	de	integração	pode	ser	omitida	(por	quê?).

EXEMPLO.	Considere	a	equação

Ache	a	solução	geral.
Ache	a	solução	x	=	x	(t)	que	satisfaz	a	condição	inicial	x	(0)	=	1.	Esboce	o	gráfico.

Solução

A	solução	geral	é	(a	=	1	e	f	(t)	=	t	+	1)

Como	 	(verifique)	resulta

x	=	ke−t	+	t.

Precisamos	determinar	k	para	se	ter	x	=	1	para	t	=	0.

1	=	ke−0	+	0	⇔	k	=	1.

A	solução	que	satisfaz	a	condição	inicial	dada	é

x	=	e−t	+	t.



1.

2.

3.

4.

Exercícios	5.1	

Ache	a	solução	geral.

Numa	 certa	 cultura	 de	 bactérias,	 a	 taxa	 de	 aumento	 é	 proporcional	 ao	 número	 presente.
Verificando-se	que	o	número	dobra	em	2	horas,	quantas	pode-se	esperar	ao	final	de	6	horas?

De	acordo	com	a	lei	de	resfriamento	de	Newton,	a	taxa	de	resfriamento	de	uma	substância,	numa
corrente	de	ar,	é	proporcional	à	diferença	entre	a	temperatura	T	da	substância	e	a	do	ar.	Sendo	a
temperatura	 do	 ar	 20°	 e	 resfriando	 a	 substância	 de	 110°	 para	 80°	 em	 20	minutos,	 determine	 a
temperatura	T	=	T	(t)	no	instante	t,	(suponha	t	dado	em	minutos).

Uma	das	equações	básicas	dos	circuitos	elétricos	é



a)

b)

5.2.

(i)

(ii)

onde	L	(henry)	é	a	indutância,	R	(ohms)	é	a	resistência,	i	(ampère)	é	a	corrente	e	E	(volt)	a	força
eletromotriz.

Resolva	 	supondo	L	e	R	constantes	não-nulas,	E	(t)	=	E0	para	todo	t	e	i	=	0	para	t	=	0.

Resolva	 	supondo	L	=	2,	R	=	10,	E	(t)	=	110	sen	120πt	e	i	=	0	para	t	=	0.

	
EQUAÇÕES	DIFERENCIAIS	LINEARES,	HOMOGÊNEAS,	DE	2.ª
ORDEM,	COM	COEFICIENTES	CONSTANTES

Uma	equação	diferencial	linear	de	2.ª	ordem,	com	coeficientes	constantes,	é	uma	equação	da	forma

onde	b	e	c	são	números	reais	dados	e	f	:	I	→	 ,	I	intervalo,	é	uma	função	contínua	dada.
Se	f	(t)	=	0	em	I,	a	equação	acima	se	diz	homogênea.
Nosso	objetivo	a	seguir	é	determinar	a	solução	geral	da	equação	homogênea

Para	isto,	vamos	precisar	da	equação	algébrica

denominada	equação	característica	de	 .
Observamos	que	se	λ1	for	raiz	real	de	 ,	então	x	=	eλ1t	será	solução	de	 .	De	fato,	para	todo	t.

O	 teorema	 que	 demonstraremos	 a	 seguir	 mostra-nos	 que,	 conhecendo	 as	 raízes	 da	 equação
característica,	conhecemos,	também,	a	solução	geral	da	equação	homogênea	 .

Teorema.	Suponhamos	que	as	raízes	λ1	e	λ2	da	equação	característica	 	sejam	reais.	Então

se	λ1	≠	λ2,	a	solução	geral	da	equação	homogênea	 	será

se	λ1	=	λ2,	a	solução	geral	será



Demonstração

Como	λ1	e	λ2	são	raízes	de	λ2	+	bλ	+	c	=	0,	temos

Assim,

que	é	equivalente	a

Segue	que	x	=	x	(t)	será	solução	de	 	se	e	somente	se	 	for	solução	da	equação	linear	de	1.
ª

ordem

Como	u	=	k2eλ2t,	segue	que	x	=	x	(t)	será	solução	de	 	se	e	somente	se

Deste	modo,	x	=	x	(t)	será	solução	de	 	se	e	somente	se	for	da	forma

com	k1	e	k2	constantes.
Se	λ1	≠	λ2,

ou

x	=	Aeλ1t	+	Beλ2t

onde	A	=	K
1
	e	

Se	λ1	=	λ2,



ou	seja,

x	=	Aeλ1t	+	Bteλ1t

onde	A	=	k1	e	B	=	k2.
■

EXEMPLO	1.	Resolva	a	equação

Solução

A	equação	característica	é	λ2	+	3λ	+	2	=	0,	cujas	raízes	são	−	1	e	−	2.	A	solução	geral	da	equação	é

EXEMPLO	2.	Ache	a	solução	do	problema

Solução

O	que	queremos	aqui	é	a	solução	da	equação

que	satisfaz	as	condições	iniciais	x	(0)	=	0	e	x′	(0)	=	1.	Pelo	exemplo	anterior,	a	solução	geral	é

x	=	Ae−t	+	Be−2t.

Devemos,	agora,	determinar	A	e	B	para	que	as	condições	iniciais	sejam	satisfeitas.	Temos

x′	=	−	Ae−t	−	2Be−2t.

Então



ou

e,	portanto,	A	=	1	e	B	=	−	1.	A	solução	do	problema	é

x	=	e−t	−	e−2t

cujo	gráfico	é

■

EXEMPLO	3.	Resolva	a	equação

Solução

λ2	−	8λ	+	16	=	0	⇔	λ	=	4.

Como	λ	=	4	é	a	única	raiz	da	equação	característica,	a	solução	geral	será

EXEMPLO	4.	Resolva	a	equação

Solução

λ2	−	9	=	0	⇔	λ	=	±	3.



1.

2.

3.

4.

a)

b)

A	solução	geral	da	equação	é

Na	Seção	5.4,	veremos	como	fica	a	solução	geral	da	equação	homogênea	 ,	no	caso	em	que	as	raízes
da	 equação	 característica	 forem	 complexas.	Antes,	 porém,	 precisamos	 construir	 o	 corpo	 dos	 números
complexos;	é	o	que	faremos	na	próxima	seção.

Exercícios	5.2	

Resolva	as	equações.

Determine	a	solução	do	problema.

Resolva	a	equação.	

Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	sob	a	ação	da	força	elástica	−x	 	e	de
uma	força	de	amortecimento	proporcional	à	velocidade	e	dada	por	−2 	 	Determine	a	posição	x	=
x	(t),	t	≥	0,	da	partícula	no	instante	t	e	discuta	o	movimento,	supondo

x	(0)	=	1	e	 	(0)	=	0

x	(0)	=	1	e	 	(0)	=	−	2



5.

5.3.

Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	sob	a	ação	da	força	elástica	−2x	 	e	de
uma	força	de	amortecimento	proporcional	à	velocidade	e	dada	por	−	3 	 .	Determine	a	posição	x
=	x	(t),	t	≥	0,	da	partícula	no	instante	t	e	discuta	o	movimento,	supondo	x	(0)	=	e	−	1	e	 	(0)	=	−	1.

	
NÚMEROS	COMPLEXOS

Por	um	número	complexo	entendemos	uma	expressão	do	tipo

z	=	a	+	bi

onde	a	e	b	são	números	reais	e	 i	um	símbolo	cujo	significado	aparecerá	 logo	a	seguir.	O	conjunto	dos
números	complexos	é	indicado	por	 .

Sejam	os	números	complexos	z	=	a	+	bi	e	z1	=	a1	+	b1i.	Dizemos	que	z	é	igual	a	z1	se	e	somente	se	a	=
a1	e	b	=	b1,	isto	é,

a	+	bi	=	a1	+	b1i	⇔	a	=	a1	e	b	=	b1.

Definimos	a	soma	de	z	e	z1	por

(a	+	bi)	+	(a1	+	b1i)	=	(a	+	a1)	+	(b	+	b1)	i.

Definimos	o	produto	de	z	por	z1	por

(a	+	bi)	(a1	+	b1i)	=	(aa1	−	bb1)	+	(ab1	+	a1b)	i.

Segue	da	definição	de	produto	de	números	complexos	que

i2	=	i	·	i	=	(0	+	1i)	(0	+	1i)	=	−	1.

Deste	modo,	i	é	um	número	complexo	cujo	quadrado	é	−	1.	Veja,	agora,	como	você	pode	obter	o	produto
de	a	+	bi	por	a1	+	b1i:

(a	+	bi)	(a1	+	b1i)	=	aa1	+	ab1i	+	ba1i	+	bb1i2	=	aa1	+	ab1i	+	ba1i	−	bb1
=	(aa1	−	bb1)	+	(ab1	+	a1b)	i.

Dizemos	que	z	=	a	+	bi	é	um	número	complexo	real	se	b	=	0;	se	a	=	0	e	b	≠	0,	diremos	que	z	é	um
número	complexo	puro.	Por	motivos	óbvios	identificaremos	o	complexo	real	a	+	0i	com	o	número	real	a
:	a	+	0i	=	a.	Deste	modo,	podemos	olhar	 	como	subconjunto	de	 .

Deixamos	como	exercício	verificar	que	a	 terna	( ,	+,	 ·)	é	um	corpo,	 isto	é,	qualquer	que	sejam	os
complexos	z1,	z2,	z3	tem-se:

ADIÇÃO MULTIPLICAÇÃO



A1) M1)

A2) M2)

A3) M3)

A4) M4)

(z1	+	z2)	+	z3	=	z1	+	(z2	+	z3) (z1z2)	z3	=	z1	(z2z3)

z1	+	z2	=	z2	+	z1 z1z2	=	z2z1

∀z	∈	 ,	z	+	0	=	z ∀z	∈	 ,	1	·	z	=	z

Para	todo	z	em	 ,	existe	um	único	w	em	 	tal	z	+	w	=	0.	Tal
w	é	o	oposto	de	z	e	indica-se	por	−z.

Para	todo	z	=	0,	z	∈	 ,	existe	um	único	w	em	 	tal	que	z	·	w

=	1.	Tal	w	é	o	inverso	de	z	e	indica-se	por	z
−	1

	ou	 .

D)	z1	(z2	+	z3)	=	z1z2	+	z1z3

Os	 números	 complexos	 são	 representados	 geometricamente	 pelos	 pontos	 de	 um	 plano:	 o	 número
complexo	z	=	a	+	ib	é	representado	pelo	ponto	(a,	b).

É	comum	referir-se	ao	ponto	(a,	b)	como	o	afixo	do	complexo	z	=	a	+	ib.
Seja	 z	 =	a	 +	 ib.	 O	 número	 complexo	 	 =	a	−	 ib	 denomina-se	 conjugado	 de	 z.	 O	módulo	 de	 z	 é

definido	por



Seja	o	número	complexo	z	=	a	+	ib	e	tomemos	θ	de	modo	que	a	=	|z|	cos	θ	e	b	=	|z|	sen	θ.	Assim	z	=	|z|
(cos	θ	+	i	sen	θ),	que	é	a	expressão	de	z	na	forma	polar.

O	número	θ	denomina-se	um	argumento	de	z.	Observe	que	sendo	θ	um	argumento	de	z,	qualquer	outro
será	da	forma	θ	+	2kπ,	k	∈	 .

EXEMPLO	1.	Determine	o	inverso,	o	conjugado	e	o	módulo	do	complexo	z	=	5	+	3i.

Solução

Assim,

O	conjugado	de	z	é:



O	módulo	de	z	é:

ou	seja,

■

EXEMPLO	2.	Seja	z	um	complexo	qualquer.	Prove

Solução

Seja	z	=	a	+	ib.	Temos

Assim,	se	 	=	z,	então	z	=	a	que	é	real.	Reciprocamente,

EXEMPLO	3.	Suponha	a	>	0,	a	real.	Prove

Solução

Assim,

ou	seja,

Ou	ainda

EXEMPLO	4.	Considere	a	equação	az2	+	bz	+	c	=	0,	onde	a	≠	0,	b	e	c	são	reais	dados.	Suponha	Δ	=	b2	−
4ac	<	0.	Prove



1.

Solução

Somando	 	aos	dois	membros	da	última	equação	vem

ou

ou

daí

ou	seja,

EXEMPLO	5.	Resolva	x2	+	2x	+	2	=	0.

Solução

ou	seja,

Exercícios	5.3	

Calcule	a	e	b.



2.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

l)

3.

b)

c)

5.4.

a)

Resolva	as	equações.

z2	+	1	=	0

λ2	+	λ	+	1	=	0

λ2	+	2λ	+	2	=	0

z2	+	2z	+	3	=	0

λ2	+	w2	=	0,	onde	w	≠	0	é	um	real	dado

λ2	+	4	=	0

λ2	+	λ	+	2	=	0

λ2	+	5	=	0

z2	+	2	=	0

λ2	−	4	=	0

λ2	−	4λ	+	5	=	0

Sejam	z	e	w	dois	complexos	quaisquer.	Verifique	que

	(o	conjugado	de	um	produto	é	igual	ao	produto	dos	conjugados)

	(o	conjugado	de	uma	soma	é	igual	à	soma	dos	conjugados)

	
SOLUÇÃO	GERAL	DA	EQUAÇÃO	HOMOGÊNEA	NO	CASO	EM	QUE	AS
RAÍZES	DA	EQUAÇÃO	CARACTERÍSTICA	SÃO	NÚMEROS
COMPLEXOS

Vamos	estudar	inicialmente	a	equação

onde	ω	≠	0	é	um	real	dado.	A	equação	característica	de	 	é	γ2	+	ω2	=	0,	cujas	raízes	são	os	números



complexos	ωi	e	−	ωi;	deste	modo,	o	que	aprendemos	na	Seção	4.2	não	se	aplica	(no	Apêndice	1	veremos
como	dar	um	tratamento	único	à	equação	homogênea	 ,	quer	as	 raízes	da	equação

característica	sejam	reais	ou	complexas).
Observamos	que	uma	função	x	=	x(t),	t	∈	 ,	será	solução	de	 	se	e	somente	se,	para	todo	t,

Como	as	funções	sen	ωt	e	cos	ωt	satisfazem	 ,	segue	que	x	=	sen	ωt	e	x	=	cos	ωt	são	soluções	de	 .
Deixamos	a	cargo	do	leitor	verificar	que,	quaisquer	que	sejam	os	reais	A	e	B,

será,	também,	solução	de	 .	Nosso	objetivo	a	seguir	é	provar	que	x	=	x(t),	t	∈	 ,	será	solução	de	 	se	e
somente	se	for	da	forma	 .

Para	atingir	nosso	objetivo,	vamos	provar	primeiro	que	se	x	=	x	(t),	t	∈	 ,	 for	solução	de	 	então
existirá	uma	constante	k	tal	que,	para	todo	t,

[x′	(t)]2	+	ω2	[x	(t)]2	=	k.

(Esta	relação	nos	diz	que,	se	o	movimento	de	uma	partícula	na	reta	for	regido	pela	equação	 ,	então	a

soma	 da	 energia	 cinética	 	 com	 a	 energia	 potencial	 	 mantémse	 constante	 durante	 o

movimento.)
De	fato,	sendo	x	=	x	(t)	solução	de	 ,	para	todo	t,	tem-se

x″	(t)	+	ω2	x	(t)	=	0.

Daí,	para	todo	t,

Logo,	[x′	(t)]2	+	ω2	[x	(t)]2	é	constante.
Suponhamos,	agora,	que	x	=	x	(t),	t	∈	 ,	seja	uma	solução	qualquer	de	 .	Façamos	a0	=	x	(0)	e	b0	=	x

′	(0).	A	função	f	dada	por	 	sen	ωt	é	solução	de	 	e,	além	disso,	f	(0)	=	a
0
	e	f′	(0)	=

b0.	 Sendo	 f	 (t)	 e	x	 (t)	 soluções	 de	 ,	 f	 (t)	 −	 x	 (t)	 também	 será.	 Pelo	 que	 vimos	 acima,	 existirá	 uma
constante	k	tal	que,	para	todo	t,

[f′	(t)	−	x′	(t)]2	+	ω2	[f	(t)	−	x	(t)]2	=	k.

De	f	(0)	=	x	(0)	e	f′	(0)	=	x′	(0)	resulta	k	=	0.	Assim,	para	todo	t,



[f′	(t)	−	x′	(t)]2	+	ω2	[f	(t)	−	x	(t)]2	=	0

e,	portanto,	x	(t)	=	f	(t),	ou	seja,

x	(t)	=	A	cos	ωt	+	B	sen	ωt

onde	 .	Fica	provado	assim	que	x	=	x	(t),	t	∈	 ,	será	solução	de	 	se	e	somente	se	for

da	forma	 .

A	solução	geral	de

onde	ω	≠	0	é	um	real	dado,	é

x	=	A	cos	ωt	+	B	sen	ωt						(A,	B	∈	 )

EXEMPLO	1.	Resolva	a	equação

Solução

As	raízes	da	equação	característica

λ2	+	4	=	0

são	2i	e	−	2i.	A	solução	geral	é

x	=	A	cos	2t	+	B	sen	2t.

As	 notações	 	 e	 	 (devidas	 a	 Newton)	 são	 frequentemente	 usadas,	 em	 física,	 para	 indicar,
respectivamente,	as	derivadas	de	1.ª	e	2.ª	ordens	de	x	em	relação	ao	tempo	t:	 .	Nos

próximos	exemplos	utilizaremos	tais	notações.
■

EXEMPLO	2.	O	movimento	de	uma	partícula	sobre	o	eixo	x	é	regido	pela	equação

m 	+	kx	=	0



onde	m	>	0	e	k	>	0	são	constantes	reais	dadas.	Descreva	o	movimento.

Solução

A	equação	é	equivalente	a

	+	ω2x	=	0

onde	 .	A	solução	geral	é

x	=	A	cos	ωt	+	B	sen	ωt.

Tomando-se	φ	tal	que

resulta

ou	seja,

Trata-se,	então,	de	um	movimento	harmônico	simples	de	amplitude	
■

Observação:	 Dizemos	 que	 uma	 partícula	 que	 se	 desloca	 sobre	 o	 eixo	 x	 descreve	 um	 movimento
harmônico	simples	(MHS)	se	a	equação	horária	for	do	tipo	x	=	a	cos	(ωt	+	φ0).	Os	números	a,	ω	e	φ0
denominam-se,	respectivxmente,	amplitude,	pulsação	e	fase	inicial	do	movimento.

Vejamos,	agora,	qual	é	a	solução	geral	de

no	 caso	 em	que	 as	 raízes	 da	 equação	 característica	 são	 números	 complexos.	 Se	 as	 raízes	 da	 equação



característica	fossem	reais	e	distintas,	 ,	a	solução	geral	seria,	como	já	vimos,

ou

Observe	que	 	(Δ	>	0)	é	a	solução	geral	de

Provaremos	 a	 seguir	 que	 se	 as	 raízes	 da	 equação	 característica	 forem	 números	 complexos	 (Δ	 <	 0)	 a
solução	geral	será

Teorema.	Seja	a	equação	(b	e	c	reais	dados)

e	 suponha	 que	 as	 raízes	 da	 equação	 característica	 λ2	 +	 bλ	 +	 c	 =	 0	 sejam	 complexas	

.	Então	a	solução	geral	de	 	será

Demonstração

Sejam	f	e	g	definidas	em	 	e	tais	que,	para	todo	t,

Vamos	mostrar	que	f	será	solução	de	 	se,	e	somente	se,	g	for	solução	de

De	fato,	se	f	for	solução	de	 	teremos,	para	todo	t,



ou

Como

e

substituindo	em	 	e	simplificando	resulta

Como	Δ	=	b2	−	4ac,	segue	que

e,	portanto,	g	é	solução	de	 .	Deixamos	a	seu	cargo	verificar	se	g	for	solução	de	 	então	f	será	solução
de	 .	Sendo	g	solução	de	

g	(t)	=	A	cos	βt	+	B	sen	βt

onde	 .	Segue,	então,	que

e	fazendo	 ,	resulta

EXEMPLO	3.	Considere	a	equação



a)
b)

b)

(I)

(II)

Ache	a	solução	geral.
Esboce	o	gráfico	da	solução	que	satisfaz	as	condições	iniciais	x	(0)	=	0	e	 	(0)	=	1.

Solução

A	solução	geral	é

x	=	e−t	[A	cos	t	+	B	sen	t].

x	(0)	=	0	e	x	=	e−t	(A	cos	t	+	B	sen	t)	⇔	A	=	0.
Assim,	x	=	Be−t	sen	t.	Segue

Daí	 	(0)	=	B,	logo,	B	=	1.	A	solução	que	satisfaz	as	condições	iniciais	dadas	é

x	=	e−t	sen	t.

A	seguir,	vamos	destacar,	num	quadro,	os	resultados	obtidos	nesta	seção	e	na	5.2.

Seja	a	equação

e	sejam	λ1,	λ2	as	raízes	da	equação	característica.

Se	λ1	≠	λ2,	λ1	e	λ2	reais,	a	solução	geral	será

Se	λ1	=	λ2,	a	solução	geral	será



(III) Se	as	raízes	da	equação	característica	forem	complexas,	λ	=	α	±	βi,	a	solução	geral	será

x	=	eαt[A	cos	βt	+	B	sen	βt].

EXEMPLO	4.	Uma	partícula	de	massa	m	desloca-se	sobre	o	eixo	x	sob	a	ação	de	uma	 força	elástica
−kx (k	 >	 0)	 e	 de	 uma	 força	 de	 amortecimento	 proporcional	 à	 velocidade	 e	 dada	 por	 .
Determine	a	equação	que	rege	o	movimento	e	discuta	as	soluções.

Solução

Pela	lei	de	Newton

ou	seja,

que	é	a	equação	que	rege	o	movimento.	Esta	equação	é	equivalente	a

onde	 .	As	raízes	da	equação	característica	são:	 .

1.º	caso.	Movimento	oscilatório	amortecido	ou	subcrítico	(γ2	<	ω2).
Sendo	γ2	<	ω2,	as	raízes	da	equação	característica	serão	complexas,	 ,	onde	 .
A	solução	geral	de	 	será

e,	portanto,

onde	 	e	φ	é	tal	que	A	=	K	cos	φ	e	B	=	K	sen	φ.

2.º	caso.	Amortecimento	crítico	(γ2	=	ω2)

Neste	caso,	a	equação	característica	admitirá	uma	única	raiz	real	λ	=	−	γ.	A	solução	geral	será

x	=	Ae−γt	+	Bte−γt

ou	seja,



1.

2.

x	=	e−γt	[A	+	Bt].

3.º	caso.	Amortecimento	forte	ou	supercrítico	(γ2	>	ω2)

Sendo	 γ2	 >	 ω2	 as	 raízes	 da	 equação	 característica	 serão	 reais	 e	 distintas,	 λ	 =	 −γ	 ±	 Ω,	 onde	
.	A	solução	geral	será

x	=	e−γt	[AeΩt	+	Be−Ωt].

A	figura	a	seguir	mostra	o	gráfico	da	solução	que	satisfaz	as	condições	iniciais	x	(0)	=	x0	(x0	>	0)	e	 	(0)
=	0.

Note	que,	nos	casos	2	e	3,	o	amortecimento	é	suficientemente	grande	de	modo	a	não	permitir	oscilação	da
partícula	em	torno	da	posição	de	equilíbrio	(x	=	0).

■

Exercícios	5.4	

Resolva	as	equações.

Determine	a	solução	do	problema.



3.

4.

5.

6.

7.

a)
b)
c)

5.5.

Uma	partícula	 de	massa	m	 =	 1	 desloca-se	 sobre	 o	 eixo	 x	 sob	 a	 ação	 da	 força	 elástica	 −4x	 .	 Supondo	 x	 (0)	 =	 1	 e	 	 (0)	 =	 −	 1,
determine	a	velocidade	no	instante	t.

Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	sob	a	ação	de	uma	força	elástica	−2x	 	e	de	uma	força	de	amortecimento
proporcional	à	velocidade	dada	por	−2 	 .	Determine	a	equação	horária	do	movimento	supondo	x	(0)	=	0	e	 	(0)	=	1.

f	é	uma	função	definida	em	 	tal	que	sua	derivada	segunda	é	igual	à	diferença	entre	sua	derivada	primeira	e	ela	própria.	Determine	f
sabendo,	ainda,	que	f	(0)	=	0	e	f′	(0)	=	1.

Um	móvel	desloca-se	sobre	o	eixo	x	com	aceleração	proporcional	à	diferença	entre	a	velocidade	e	a	posição.	Determine	a	posição	x	=
x	(t)	do	móvel,	supondo	 	(0)	=	2,	 	(0)	=	1	e	x	(0)	=	0.

Uma	partícula	de	massa	m	=	1	desloca-se	sobre	o	eixo	x	 sob	a	ação	de	uma	força	elástica	−x	 	 e	de	uma	força	de	amortecimento
proporcional	à	velocidade	e	dada	por	−cx	 	(c	>	0).	Determine	c	para	que	o	movimento	seja

fortemente	amortecido.
criticamente	amortecido.
oscilatório	amortecido.

	
EQUAÇÕES	DIFERENCIAIS	LINEARES,	NÃO	HOMOGÊNEAS,	DE	2.ª
ORDEM,	COM	COEFICIENTES	CONSTANTES

Consideremos	a	equação	linear,	de	2.ª	ordem,	com	coeficientes	constantes

onde	f	é	suposta	definida	e	contínua	num	intervalo	I.	Se	f	não	for	identicamente	nula	em	I,	diremos	que	
é	não	homogênea.	Diremos,	ainda,	que

é	a	equação	homogênea	associada	a	 .
Mostraremos,	a	seguir,	que	se	xp	=	xp(t),	 t	∈	 I,	 for	uma	 solução	particular	de	 ,	 então	 a	 solução

geral	de	 	será

x	=	xh	+	xp

onde	xh	é	a	solução	geral	da	homogênea	associada	a	 .	De	fato,	sendo	xp	=	xp	(t),	t	∈	I,	solução	de	 ,
para	todo	t	∈	I,

Supondo	que	x	=	x	(t),	t	∈	I,	seja	outra	solução	qualquer	de	 ,	 resulta	que	x	 (t)	−	xp	 (t)	é	solução	da



homogênea	 ,	pois,	para	todo	t	∈	I,

Por	outro	lado,	se	x	=	x	(t),	t	∈	I,	for	tal	que	x	(t)	−	xp	(t)	é	solução	da	homogênea,	então	x	=	x	(t)	será
solução	de	 	(verifique).	Segue	que	a	solução	geral	de	 	é

x	=	xh	+	xp

onde	xh	é	a	solução	geral	da	homogênea	 	e	xp	uma	solução	particular	de	 .

Conclusão

A	solução	geral	de

é

x	=	xh	+	xp

onde	xp	é	uma	solução	particular	da	equação	dada	e	xh	a	solução	geral	da	homogênea	associada.

Determinar	 a	 solução	 geral	 da	 homogênea	 associada	 já	 sabemos.	 O	 problema,	 agora,	 é	 como
determinar	uma	solução	particular.	Os	exemplos	que	apresentaremos	a	seguir	mostram	como	determinar,
em	alguns	casos,	uma	solução	particular	por	meio	de	uma	“escolha	criteriosa”.	No	final	desta	seção	você
encontrará	uma	tabela	que	o	ajudará	nesta	“escolha	criteriosa”.

EXEMPLO	1.	Determine	a	solução	geral	de

Solução

A	homogênea	associada	é

e	a	solução	geral	xh	=	Ae−2t	+	Be−t	(verifique).	Vamos,	agora,	procurar	uma	solução	particular	da	equação
dada.	Tentaremos	uma	solução	do	tipo

xp	=	m	+	nt



a)
b)

a)

b)

onde	m	 e	n	 são	 coeficientes	 a	 determinar.	Você	 acha	 natural	 tal	 escolha?	 Por	 quê?	O	 que	 precisamos
fazer,	agora,	é	substituir	esta	função	na	equação	e	determinar	m	e	n	para	que	se	tenha	uma	identidade.

(m	+	nt)″	+	3	(m	+	nt)′	+	2	(m	+	nt)	=	t

ou

3n	+	2m	+	2nt	=	t.

Devemos	ter	então

ou	seja,	 .	Deste	modo,

é	uma	solução	particular	da	equação.	A	solução	geral	será

EXEMPLO	2.	Considere	a	equação

Olhando	para	a	equação,	“chute”	uma	solução	particular.
Ache	a	solução	geral.

Solução

A	função	constante	x	(t)	=	 	é	uma	solução	particular	(verifique).

A	solução	geral	da	homogênea	associada	é

xh	=	Ae−2t	+	Be−t.

Segue	que	a	solução	geral	da	equação	dada	é

EXEMPLO	3.	Considere	a	equação



a)
b)

a)

b)

Determine	uma	solução	particular.
Ache	a	solução	geral.

Solução

Nada	mais	natural	do	que	tentar	uma	solução	particular	do	tipo

xp	=	me3t

onde	m	é	um	coeficiente	a	determinar.	Você	acha	que	é	realmente	natural	esta	escolha?	Por	quê?	Devemos
determinar	m	de	modo	que,	para	todo	t,

(me3t)″	+	4	(me3t)′	+	4	(me3t)	=	e3t

ou

(9m	+	12m	+	4m)	e3t	=	e3t

ou

25me3t	=	e3t.

Devemos	ter,	então,	25m	=	1	ou	 .	Assim,

é	uma	solução	particular.
A	solução	geral	da	homogênea	associada	é

xh	=	Ae−2t	+	Bte−2t.

Segue	que	a	solução	geral	da	equação	dada	é

EXEMPLO	4.	Ache	a	solução	geral	de

Solução



1.

2.

3.

1.

Vamos	tentar	uma	solução	particular	do	tipo

xp	=	m	cos	2t	+	n	sen	2t.

Devemos	determinar	m	e	n	de	modo	que,	para	todo	t.

[m	cos	2t	+	n	sen	2t]″	+	4	[m	cos	2t	+	n	sen	2t]′	+	4	[m	cos	2t	+	n	sen	2t]	=	sen	2t

ou

−	8m	sen	2t	+	8n	cos	2t	=	sen	2t.

Devemos	ter,	então,	−	8m	=	1	e	8n	=	0,	ou	seja,	 .

é	uma	solução	particular.	Como

xh	=	Ae−2t	+	Bte−2t

é	a	solução	geral	da	homogênea	associada,	segue	que

é	a	solução	geral	da	equação	dada.
■

O	quadro	que	apresentamos	a	seguir	mostra	como	escolher	a	solução	particular	nos	casos:	f	(t)	=	P
(t),	P	polinômio,	f	(t)	=	a0	eαt	ou	f	(t)	=	a0	cos	αt.

f	(t) Solução	particular

a0	eαt

Se	α	não	é	raiz	da	equação	característica,	xp	=	meαt.

Se	α	é	raiz	simples,	xp	=	mteαt.

Se	α	é	raiz	dupla,	xp	=	mt2eαt.

P	(t)

Se	c	≠	0,	xp	=	P1	(t)	onde	P1	é	um	polinômio	de	mesmo	grau	que	P.



2.

1.

2.

3.

Se	c	=	0	e	b	≠	0,	xp	=	tP1	(t).

a0	cos	αt

Se	b	≠	0,	xp	=	m	cos	αt	+	n	sen	αt.

Se	b	=	0	e	se	cos	αt	não	for	solução	da	homogênea,	xp	=	m	cos	αt.

Se	b	=	0	e	se	cos	αt	for	solução	da	homogênea,	xp	=	mt	cos	αt	+	nt	sen	αt.	(Ressonância.)

Observação:	Se	f	(t)	=	a0	sen	αt,	procede-se	como	no	caso,	f	(t)	=	a0	cos	αt.

EXEMPLO	5.	Resolva	a	equação

Solução

A	solução	geral	da	homogênea	associada	é

xh	=	Ae−t	+	Be−2t.

Como	e−t	é	solução	da	homogênea,	a	escolha	xp	=	me−t	não	resolve	o	problema,	pois,	qualquer	que	seja	m,

(me−t)″	+	3	(me−t)	+	2	(me−t)	=	0.

Como	 −	 1	 é	 raiz	 simples	 da	 equação	 característica	 da	 homogênea,	 a	 equação	 admitirá	 uma	 solução
particular	do	tipo

xp	=	mte−t	(veja	quadro	anterior).

Devemos	determinar	m	de	modo	que,	para	todo	t,

(mte−t)″	+	3	(mte−t)′	+	2	(mte−t)	=	e−t

ou	(após	derivar	e	simplificar)

me−t	=	e−t

logo,	m	=	1.	Segue	que

xp	=	te−t

é	uma	solução	particular.	A	solução	geral	da	equação	dada	é



EXEMPLO	6.	Determine	a	solução	geral	de

Solução

Vamos	tentar	uma	solução	particular	do	tipo

xp	=	m	cos	t.

Esta	escolha	é	motivada	pelo	fato	de	que	derivando-se	duas	vezes	o	cosseno	volta-se	ao	cosseno.

(m	cos	t)″	+	4	m	cos	t	=	cos	t

ou

3	m	cos	t	=	cos	t

logo,	 .	Assim,	 	é	uma	solução	particular.	A	solução	geral	da	equação	dada	é

EXEMPLO	7.	Resolva	a	equação

Solução

A	solução	geral	da	homogênea	 	+	4x	=	0	é

xh	=	A	cos	2t	+	B	sen	2t.

Como	sen	2t	é	uma	solução	da	homogênea	associada,	não	adianta	tentar	solução	particular	do	tipo	xp	=	m
sen	2t,	pois,	substituindo	tal	função	na	equação	dada,	o	1.º	membro	se	anula	e	o	2.º	não.	Tenta-se,	então,
neste	caso,	solução	particular	do	tipo

Temos:



Substituindo	 	e	 	na	equação	dada	e	simplificando,	vem:

4m	cos	2t	−	4n	sen	2t	=	sen	2t

e,	portanto,	m	=	0	e	 .	Assim,	 	é	uma	solução	particular.	A	solução	geral	é,	então,

.	(Suponha	que	o	movimento	de	uma	partícula	que	se	desloca	sobre	o

eixo	x	é	regido	pela	equação	deste	exemplo;	descreva	o	movimento.)

Observação:	Na	determinação	de	uma	solução	particular,	em	geral,	 estão	envolvidos	muitos	cálculos;
por	este	motivo	é	sempre	bom	verificar	se	a	solução	particular	encontrada	é	realmente	solução	particular.
Por	exemplo,	 	é	realmente	uma	solução	particular	de	 	+	4x	=	sen	2t,	pois,

EXEMPLO	8.	(Princípio	de	superposição.)	Considere	a	equação

onde	f1	(t)	e	f2	(t)	são	funções	dadas,	definidas	e	contínuas	num	mesmo	intervalo	I.	Mostre	que	se	x1	=	x1
(t),	t	∈	I,	for	uma	solução	particular	de

e	se	x2	=	x2	(t),	t	∈	I,	uma	solução	particular	de

então	xp	=	x1	(t)	+	x2	(t)	será	uma	solução	particular	de	 .

Solução

Sendo	x1	=	x1	(t)	e	x2	=	x2	(t)	soluções	particulares	de	 	e	 ,	respectivamente,	teremos,	para	todo	t
∈	I,

e

e	daí,	somando	membro	a	membro,	resulta



1.

2.

[x1	(t)	+	x2	(t)]″	+	b	[x1	(t)	+	x2	(t)]′	+	c	[x1	(t)	+	x2	(t)]	=	f1	(t)	+	f2	(t).

Logo,	xp	=	x1	(t)	+	x2	(t)	é	uma	solução	particular	da	Equação	 .
■

EXEMPLO	9.	Resolva	a	equação

Solução
	é	uma	solução	particular	de

Pelo	Exemplo	7,	 	é	uma	solução	particular	de

Pelo	princípio	de	superposição

é	uma	solução	particular	da	equação	dada.	Então,	a	solução	geral	da	equação	dada	é

Exercícios	5.5	

Determine	a	solução	geral.

Resolva	a	equação	 	+	ω2x	=	sen	ωt,	onde	ω	≠	0	é	um	real	dado.	(Ressonância.)



3.

4.

5.

Determine	a	solução	do	problema

Determine	uma	solução	particular	de

onde	γ,	ω0,	b	e	ω	são	constantes	não	nulas	dadas.

Resolva	a	equação

onde	ω0,	b	e	ω	são	constantes	não	nulas	dadas.

	



6.1.

6.2.

a)
b)

6

OS	ESPAÇOS	

INTRODUÇÃO

Nosso	objetivo,	neste	capítulo,	é	introduzir	no	 2	os	conceitos	de	norma	e	de	conjunto	aberto,	que
generalizam	 os	 conceitos	 de	 módulo	 e	 de	 intervalo	 aberto,	 e	 que	 serão	 fundamentais	 em	 tudo	 o	 que
veremos	 a	 seguir.	 O	 símbolo	 2	 está	 sendo	 usado	 aqui	 para	 indicar	 o	 conjunto	 de	 todos	 os	 pares
ordenados	de	números	reais:
2	=	{(x,	y)	|	x,	y	reais}.
Para	as	interpretações	geométricas	e	físicas	será	muito	útil	pensar	um	par	ordenado	(x,	y)	como	um

vetor	 do	 plano.	 Para	 isto,	 fixaremos	 no	 plano	 um	 sistema	 ortogonal	 de	 coordenadas	 cartesianas	 (o
habitual)	e	identificaremos,	então,	o	par	(x,	y)	com	o	vetor	 ,	onde	O	é	a	origem	do	sistema	e	P	o	ponto
de	coordenadas	(x,	y).	Esta	identificação	nos	sugerirá	como	somar	pares	ordenados	e	como	multiplicar
um	par	ordenado	por	um	escalar	a	partir	das	operações	sobre	vetores,	que	suporemos	conhecidas.

O	leitor	não	terá	dificuldade	alguma	em	generalizar	os	conceitos	deste	capítulo	para	o	 n,	n	≥	3,	onde	
n	indica	o	conjunto	de	todas	as	n-uplas	ordenadas	(x1,	x2,	…,	xn)	de	números	reais.

O	ESPAÇO	VETORIAL	 2

Identificando	(x,	y)	com	o	vetor	 	e	indicando	por	 	e	 	os	vetores	associados,	respectivamente,	a
(1,	0)	e	(0,	1)	resulta	da	teoria	dos	vetores	que	

É	 imediato	que	 se	λ	 é	 um	 escalar,	 isto	 é,	 um	número	 real,	 então,	 ,	 onde	P1	 é	 o	 ponto	 de
coordenadas	(λx,	λy).	Por	outro	lado,	se	 	é	o	vetor	associado	a	(s,	t)	e	se	 ,	então	

	é	o	vetor	associado	a	(x	+	s,	y	+	t)	(verifique).	Tudo	isto	sugere-nos	a	seguinte	definição.

Definição.	Sejam	(x,	y)	e	(s,	t)	dois	elementos	quaisquer	do	 2	e	λ	um	real	qualquer.	Definimos:

(x	+	s,	y	+	t)	é	a	soma	de	(x,	y)	com	(s,	t):	(x,	y)	+	(s,	t)	=	(x	+	s,	y	+	t).
(λx,	λy)	é	o	produto	de	(x,	y)	pelo	escalar	λ:	λ	(x,	y)	=	(λx,	λy).



c)
d)

6.3.

(x,	y)	+	(−	1)	(s,	t)	é	a	diferença	entre	(x,	y)	e	(s,	t):
(x,	y)	−	(s,	t)	=	(x,	y)	+	(−	1)	(s,	t).
(x,	y)	=	(s,	t)	⇔	x	=	s	e	y	=	t.

As	seguintes	propriedades	são	de	imediata	verificação:	quaisquer	que	sejam	(x,	y),	(s,	t)	e	(u,	v)	em	
2	e	quaisquer	que	sejam	as	escalares	α	e	β	tem-se:

A1)	[(x,	y)	+	(s,	t)]	+	(u,	v)	=	(x,	y)	+	[(s,	t)	+	(u,	v)]
A2)	(x,	y)	+	(s,	t)	=	(s,	t)	+	(x,	y)
A3)	(x,	y)	+	(0,	0)	=	(x,	y)
A4)	(x,	y)	+	(−	1)	(x,	y)	=	(0,	0)
M1)	α	[β	(x,	y)]	=	αβ	(x,	y)
M2)	α	[(x,	y)	+	(s,	t)]	=	α	(x,	y)	+	α	(s,	t)
M3)	[α	+	β]	(x,	y)	=	α	(x,	y)	+	β	(x,	y)
M4)	1	·	(x,	y)	=	(x,	y).

Observação.	Uma	estrutura	de	espaço	vetorial	sobre	um	conjunto	não	vazio	V	fica	determinada	quando
se	definem	em	V	duas	operações,	uma	de	adição	e	outra	de	multiplicação	de	um	elemento	de	V	por	um
escalar,	 satisfazendo	 as	 oito	 propriedades	 acima	 listadas.	 As	 operações	 anteriormente	 definidas
determinam,	então,	sobre	o	 2	uma	estrutura	de	espaço	vetorial	 real;	 seus	elementos	podem,	então,	 ser
chamados	de	vetores.

PRODUTO	ESCALAR.	PERPENDICULARISMO

Definição	1.	O	número

a1a2	+	b1b2

denomina-se	produto	escalar	dos	vetores	(a1,	b1)	e	(a2,	b2)	e	indica-se	por	(a1,	b1)	·	(a2,	b2).	Assim,

(a1,	b1)	·	(a2,	b2)	=	a1a2	+	b1b2.

EXEMPLO	1.	O	produto	escalar	dos	vetores	(2,	3)	e	(1,	5)	é

(2,	3)	·	(1,	5)	=	2	·	1	+	3	·	5	=	17.

Observe	que	o	produto	escalar	de	dois	vetores	é	um	número.

■

Sejam	 os	 vetores	 	 e	 seja	 λ	 um	 escalar;	 são	 de	 verificação
imediata	as	seguintes	propriedades	do	produto	escalar:



Estamos	interessados,	a	seguir,	em	definir	perpendicularismo	ou	ortogonalismo	entre	vetores	do	 2.
Consideremos	os	vetores	 .	Vamos	olhar	estes	dois	vetores	aplicados	no	ponto
P	=	(x,	y)	do	plano.

A	e	B	são	extremidades	de	 	e	 ,	respectivamente.	Temos

e

Assim,

A	=	(x	+	a1,	y	+	b1)	e	B	=	(x	+	a2,	y	+	b2).

Vamos,	agora,	aplicar	a	lei	dos	cossenos	ao	triângulo	APB	para	determinar	cos	θ.	Temos

onde	 	é	a	distância	de	A	a	B,	 	de	A	a	P	e	 	de	P	a	B.	Como

e



segue	que

ou	seja,

Daí,	os	vetores	 	serão	perpendiculares	 se	e	somente	se	o	produto	escalar	de
(a1,	b1)	com	(a2,	b2)	for	nulo.	Nada	mais	natural,	então,	do	que	a	seguinte	definição.

Definição	2.	Dizemos	que	os	vetores	(a1,	b1)	e	(a2,	b2)	são	perpendiculares	ou	ortogonais	se
(a1,	b1)	·	(a2,	b2)	=	0.

Vejamos	como	fica,	em	notação	de	produto	escalar,	a	equação	da	reta	r	que	passa	pelo	ponto	P0	=	(x0,	y0)
e	que	é	perpendicular	à	direção	do	vetor	 .	Vamos	olhar	 	como	um	vetor	aplicado	no
ponto	P0	=	(x0,	y0).

O	ponto	P	=	(x,	y)	pertence	à	reta	r	se	e	somente	se	o	vetor	P	−	P0	for	perpendicular	a	 	=	(a,	b).	Assim,
a	equação	da	reta	que	passa	pelo	ponto	P0	=	(x0,	y0)	e	é	perpendicular	à	direção	do	vetor	 	=	(a,	b)	é

ou	seja,

(a,	b)	·	[(x,	y)	−	(x0,	y0)]	=	0.

De	(x,	y)	−	(x0,	y0)	=	(x	−	x0,	y	−	y0),	segue	que	a	equação	acima	é	equivalente	a

ax	+	by	=	c

com	c	=	ax0	+	by0.	E	 	=	(a,	b)	é	um	vetor	perpendicular	à	tal	reta.



EXEMPLO	2.	Determine	a	equação	da	reta	que	passa	pelo	ponto	(1,	2)	e	que	é	perpendicular	à	direção
do	vetor	 	=	(−	1,	3).

Solução

A	equação	da	reta	é

onde	 	=	(−	1,	3),	P	=	(x,	y)	e	P0	=	(1,	2).	Assim,	a	equação	da	reta	é

(−	1,	3)	·	[(x,	y)	−	(1,	2)]	=	0

ou

−(x	−	1)	+	3	(y	−	2)	=	0

ou	ainda

Consideremos,	agora,	o	vetor	 	=	(m,	n),	com	(m,	n)	≠	 (0,	0),	aplicado	no	ponto	P0	=	 (x0,	y0).	 Na
figura	seguinte,	representamos	a	reta	r	que	passa	pelo	ponto	P0	=	(x0,	y0)	e	que	tem	a	direção	do	vetor	 	=
(m,	n).

Por	semelhança	de	triângulos,	para	todo	P	=	(x,	y)	na	reta	r,	existe	t	tal	que

Pois	bem,

são	as	equações	paramétricas	da	reta	que	passa	pelo	ponto	P0	=	(x0,	y0)	e	é	paralela	à	direção	do	vetor	



	=	(m,	n).	Em	notação	vetorial,	esta	reta	pode	ser	expressa	na	forma

EXEMPLO	3.	Determine	a	equação,	na	 forma	vetorial,	da	 reta	que	passa	pelo	ponto	 (3,	−	1)	e	que	é
perpendicular	à	reta	2x	−	3y	=	7.

Solução

	=	(2,	−	3)	é	perpendicular	à	reta	2x	−	3y	=	7.

O	que	queremos,	então,	é	a	reta	que	passa	pelo	ponto	(3,	−	1)	e	que	seja	paralela	ao	vetor	(2,	−3).	Assim,
a	equação	da	reta	pedida	é

(x,	y)	=	(3,	−	1)	+	t	(2,	−	3),	t	∈	 .

No	 3,	os	conceitos	de	produto	escalar	e	de	ortogonalismo	são	análogos	aos	do	 2:

(a1,	b1,	c1)	·	(a2,	b2,	c2)	=	a1a2	+	b1b2	+	c1c2.

(a1,	b1,	c1)	⊥	(a2,	b2,	c2)	⇔	(a1,	b1,	c1)	·	(a2,	b2,	c2)	=	0.

No	espaço,	a	equação	vetorial	da	reta	que	passa	pelo	ponto	(x0,	y0,	z0)	e	que	é	paralela	à	direção	do
vetor	 	=	(a,	b,	c)	≠	(0,	0,	0)	é

(x,	y,	z)	=	(x0,	y0,	z0)	+	t	(a,	b,	c),	t	∈	 .

A	equação	do	plano	que	passa	pelo	ponto	P0	=	(x0,	y0,	z0)	e	que	é	perpendicular	à	direção	do	vetor	 	=
(a,	b,	c)	≠	(0,	0,	0)	é

(a,	b,	c)	·	[(x,	y,	z)	−	(x0,	y0,	z0)]	=	0

ou

	·	(P	−	P0)	=	0.

Observe	que	o	plano	de	equação

ax	+	by	+	cz	=	d

é	perpendicular	à	direção	do	vetor	 	=	(a,	b,	c).

■



1.

2.

3.

4.

5.

a)

b)

c)

d)

6.

a)

b)

c)

d)

7.

a)

b)

8.

a)

b)

9.

a)

b)

10.

a)

b)

11.

Exercícios	6.3	

Determine	a	equação	da	reta	que	passa	pelo	ponto	(1,	2)	e	que	seja	paralela	à	direção	do	vetor	 	=	(−1,	1).

Determine	a	equação	vetorial	da	reta	que	passa	pelo	ponto	(1,	−1)	e	que	é	perpendicular	à	reta	2x	+	y	=	1.

Determine	um	vetor	cuja	direção	seja	paralela	à	reta	3x	+	2y	=	2.

Determine	a	equação	vetorial	da	reta	que	passa	pelo	ponto	 	e	que	seja	paralela	à	reta	3x	+	2y	=	2.

Determine	um	vetor	cuja	direção	seja	paralela	à	reta	dada.

x	−	2y	=	3

x	+	y	=	1

2x	−	5y	=	4

x	+	2y	=	3

Determine	um	vetor	cuja	direção	seja	perpendicular	à	reta	dada.

2x	+	y	=	1

3x	−	y	=	3

x	+	3y	=	2

2x	−	3y	=	1.

Determine	a	equação	vetorial	da	reta	que	passa	pelo	ponto	dado	e	que	seja	paralela	à	reta	dada.

(2,	−5)	e	x	−	y	=	1

(1,	−2)	e	2x	+	y	=	3.

Determine	a	equação	vetorial	da	reta	que	passa	pelo	ponto	dado	e	que	seja	perpendicular	à	reta	dada.

(1,	2)	e	2x	+	y	=	3

(2,	−2)	e	x	+	3y	=	1.

Determine	a	equação	do	plano	que	passa	pelo	ponto	dado	e	que	seja	perpendicular	à	direção	do	vetor	 	dado.

(1,	1,	1)	e	 	=	(2,	1,	3)

(2,	1,	−1)	e	 	=	(−	2,	1,	2)

Determine	a	equação	vetorial	da	reta	que	passa	pelo	ponto	dado	e	que	seja	perpendicular	ao	plano	dado.

(0,	1,	−1)	e	x	+	2y	−	z	=	3

(2,	1,	−1)	e	2x	+	y	+	3z	=	1

Sejam	 	=	(a1,	b1,	c1)	e	 	=	(a2,	b2,	c2)	dois	vetores	do	 3.	Definimos	o	produto	vetorial	de	 	por	 ,	que	se	indica	 	∧	 ,	por

onde	 	=	(1,	0,	0),	 	=	(0,	1,	0)	e	 	=	(0,	0,	1).	Verifique	que



12.

13.

14.

15.

6.4.

Determine	 a	 equação	 vetorial	 da	 reta	 que	 passa	 pelo	 ponto	 (1,	 2,	 −1)	 e	 que	 seja	 perpendicular	 às	 direções	 dos	 vetores	
.

Determine	um	vetor	não	nulo	que	seja	ortogonal	aos	vetores	 	e	 	dados.

Determine	a	equação	do	plano	que	passa	pelo	ponto	dado	e	que	seja	paralelo	aos	vetores	 	e	 	dados.

Sejam	dados	 ,	com	 .	Verifique	que

é	a	equação	vetorial	do	plano	que	passa	por	(x0,	y0,	z0)	e	que	é	perpendicular	a	 .

	
NORMA	DE	UM	VETOR.	PROPRIEDADES

Definição.	O	número

denomina-se	norma	do	vetor	(x,	y).

De	(x,	y)	·	(x,	y)	=	x2	+	y2,	segue	 .

Teorema	1.	(Desigualdade	de	Schwarz)	Quaisquer	que	sejam	os	vetores	 ,	 	de	 2,	tem-se



Demonstração

Para	todo	t	real,

Pela	distributividade	do	produto	escalar,

e	como	 	resulta,	para	todo	t,

logo,

e,	portanto,

Segue	do	teorema	acima	que	quaisquer	que	sejam	os	vetores	não	nulos	 	e	 	de	 2	tem-se

Portanto,	existe	um	único	número	real	θ,	0	≤	θ	≤	π,	tal	que

Este	número	real	θ	denomina-se	ângulo	entre	os	vetores	 	e	 .

Teorema	2.	Quaisquer	que	sejam	os	vetores	 	e	 	de	 2	e	qualquer	que	seja	o	escalar	λ	tem-se:



1.

2.

3.

4.

5.

Demonstração

N1)	Imediata.
N2)	Pondo	 	=	(x,	y)	tem-se

Logo,

ou	seja,

N3)	

Pela	desigualdade	de	Schwarz

Então,

logo,

Exercícios	6.4	

Generalize	para	o	 n	(n	≥	3)	os	conceitos	e	resultados	desta	seção.

Calcule	a	norma	do	vetor	dado.

Seja	 	=	(u1,	u2,	u3)	um	vetor	qualquer	de	
3
.	Mostre	que	 .

Seja	 	=	(u1,	u2,	…,	un)	um	vetor	do	 n	(n	≥	2).	Mostre	que	 .

Sejam	 ,	 	dois	vetores	quaisquer	do	 n.	Verifique	que



6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Sejam	 	=	(u1,	u2,	…,	un)	e	 	=	(v1,	v2,	…,	vn)	vetores	quaisquer	do	 n.	Mostre	que

Sejam	 	e	 	vetores	quaisquer	do	 n.	Prove:

Seja	 	um	vetor	qualquer	do	 n.	Prove	que	se	 	·	 	=	0,	para	todo	 	∈	 n,	então	 	=	 .

Sejam	 ,	 ,	 	vetores	do	 n	tais	que	 ,	com	α	e	β	reais.	Suponha	 	e	 	unitários	

ortogonais.	Prove	que	

Sejam	 	 e	 	 vetores	 do	 2.	 Dizemos	 que	 	 e	 	 são	 linearmente	 independentes	 se,	 quaisquer	 que	 sejam	 os	 reais	 α	 e	 β,	 se	

,	 então	 α	 =	 β	 =	 0.	 Prove	 que	 	 =	 (u1,	u2)	 e	 	 =	 (v1,	 v2)	 são	 linearmente	 independentes	 se	 e	 somente	 se	

.

Sejam	 ,	 ,	 	vetores	quaisquer	do	 2.	Prove	que	se	 	e	 	forem	linearmente	independentes,	então	existirão	(e	serão	únicos)	reais

α	e	β	tais	que	 .

Sejam	 	e	 	dois	vetores	unitários	e	ortogonais	do	 2.	Prove	que	 	e	 	são	linearmente	independentes.

Sejam	 	e	 	dois	vetores	unitários	e	ortogonais	do	 2.	Prove	que	para	todo	 	de	 2	temse:	
.

Sejam	 ,	 	e	 	vetores	do	 3.	Dizemos	que	 ,	 	e	 	são	linearmente	independentes	se,	quaisquer	que	sejam	os	reais	α,	β	e	γ,	se

,	 então	 α	 =	 β	 =	 γ	 =	 0.	 Prove	 que	 	 são

linearmente	independentes	se	e	somente	se	 .

Sejam	 ,	 ,	 	e	 	vetores	quaisquer	do	 3,	com,	 ,	 	e	 	linearmente	independentes.	Prove	que	 	é	combinação	linear	de	 ,	

	e	 ,	isto	é,	que	existem	reais	α,	β	e	γ	tais	que	 .

Sejam	 ,	 	e	 	três	vetores	unitários	quaisquer	de	 3,	sendo	dois	a	dois	ortogonais.	Prove	que	para	todo	 	do	 3	tem-se:

Sejam	 	e	 	vetores	não	nulos	do	 3.	Mostre	que	 ,	onde	θ	é	o	ângulo	entre	 	e	 .

Prove	que	quaisquer	que	sejam	 	e	 	em	 3

	



6.5.

a)
b)

CONJUNTO	ABERTO.	PONTO	DE	ACUMULAÇÃO

Sejam	(x0,	y0)	um	ponto	do	 2	e	r	>	0	um	real.	O	conjunto

denomina-se	bola	aberta	de	centro	(x0,	y0)	e	raio	r.

No	 plano,	 a	 bola	 aberta	 de	 centro	 (x0,	y0)	 e	 raio	 r	 é	 o	 conjunto	 de	 todos	 os	 pontos	 “internos”	 ao
círculo	de	centro	(x0,	y0)	e	raio	r.

Seja	A	um	subconjunto	não	vazio	de	 2.	Dizemos	que	(x0,	y0)	∈	A	é	um	ponto	interior	de	A	se	existir
uma	bola	aberta	de	centro	(x0,	y0)	contida	em	A.

EXEMPLO	1.	Seja	A	=	{(x,	y)	∈	 2	|	x	≥	0	e	y	≥	0}.

Todo	(x,	y),	com	x	>	0	e	y	>	0,	é	ponto	interior	de	A.
Todo	(x,	y),	com	x	=	0	ou	y	=	0,	não	é	ponto	interior	de	A.

De	fato,

a)	se	(x,	y)	∈	A,	com	x	>	0	e	y	>	0,	então	a	bola	aberta	de	centro	(x,	y)	e	raio	r	=	mín	{x,	y}	está	contida
em	A;	logo,	(x,	y)	é	ponto	interior	de	A.
b)	se	(x,	y)	∈	A,	com	x	=	0	ou	y	=	0,	então	(x,	y)	não	é	ponto	interior	de	A,	pois	A	não	contém	nenhuma
bola	aberta	de	centro	(x,	y).



Definição.	Seja	A	um	subconjunto	não	vazio	de	 2.	Dizemos	que	A	é	um	conjunto	aberto	se	todo	ponto	de	A	for	ponto	interior.

Observação.	Por	definição,	o	conjunto	vazio	é	um	conjunto	aberto.

EXEMPLO	2.	Toda	bola	aberta	é	um	conjunto	aberto.

Solução

Seja	B	uma	bola	aberta	de	centro	(x0,	y0)	e	raio	r.	Precisamos	mostrar	que	todo	ponto	(x1,	y1)	de	B	é
ponto	interior.	Seja,	então,	a	distância	de	(x1,	y1)	a	(x0,	y0),	isto	é,

α	=	||	(x1,	y1)	−	(x0,	y0)	||.

Vamos	mostrar	que	a	bola	aberta	 	de	centro	(x1,	y1)	e	raio	r1,	com	0	<	r1	<	r	−	α,	está	contida	em	B.

Seja,	então,	(x,	y)	∈	 ;	temos

Logo,	(x,	y)	∈	B.	Portanto,	 	está	contido	em	B.
■

EXEMPLO	3.

a)	 2	é	um	conjunto	aberto.
b)	A	=	{(x,	y)	∈	 2	|	x	≥	0	e	y	≥	0}	não	é	aberto.
c)	A	=	{(x,	y)	∈	 2	|	x	>	0	e	y	>	0}	é	aberto.

Solução

a)	Imediato.
b)	Os	pontos	(x,	y)	∈	A,	com	x	=	0	ou	y	=	0,	não	são	pontos	interiores;	logo,	A	não	é	aberto.



1.

2.

c)	Se	(x,	y)	∈	A,	a	bola	aberta	de	centro	(x,	y)	e	raio	r	=	mín	{x,	y}	está	contida	em	A;	logo,	A	é	aberto.
■

Definição.	Seja	A	 um	 subconjunto	 do	 2	 e	 seja	 (a,	b)	∈	 2	 ((a,	b)	 pode	 pertencer	 ou	 não	 a	A).	 Dizemos	 que	 (a,	b)	 é	ponto	 de
acumulação	de	A	se	toda	bola	aberta	de	centro	(a,	b)	contiver	pelo	menos	um	ponto	(x,	y)	∈	A,	com	(x,	y)	≠	(a,	b).

Grosso	modo,	dizer	que	(a,	b)	é	ponto	de	acumulação	de	A	significa	dizer	que	existem	pontos	de	A,
distintos	de	(a,	b),	tão	próximos	de	(a,	b)	quanto	se	queira.

EXEMPLO	 4.	 Todo	 (x,	 y),	 com	 x	 ≥	 0	 e	 y	 ≥	 0,	 é	 ponto	 de	 acumulação	 do	 conjunto	 A	 sendo	
;	o	ponto	 	não	é	ponto	de	acumulação	de	A,	pois	existe	uma	bola

aberta	de	centro	 	que	não	contém	ponto	de	A.

■

EXEMPLO	5.	O	conjunto	A	=	{(1,	2),	(−1,	0),	(1,	3)}	não	admite	ponto	de	acumulação,	pois	qualquer
que	seja	o	ponto	(a,	b)	de	 2,	existe	uma	bola	aberta	de	centro	(a,	b)	e	raio	r	que	não	contém	ponto	de	A
distinto	de	(a,	b).	 Se	(a,	b)	não	pertence	a	A,	basta	tomar	r	como	a	menor	das	distâncias	de	(a,	b)	aos

pontos	(1,	2),	(−1,	0)	e	(1,	3);	se	(a,	b)	∈	A,	basta	tomar	r	=	 .

■

Exercícios	6.5	

Verifique	quais	dos	conjuntos	a	seguir	são	abertos	em	 2.

Determine	o	conjunto	dos	pontos	de	acumulação	do	conjunto	dado.



3.

4.

5.

6.

7.

8.

9.

Defina	bola	aberta	de	centro	(x0,	y0,	z0)	e	raio	r	>	0	no	 3.	Interprete	geometricamente.

Defina	bola	aberta,	conjunto	aberto	e	ponto	de	acumulação	no	 n.

Sejam	A	e	B	dois	subconjuntos	do	 2.	Prove	que	se	A	e	B	forem	abertos,	então	A	∪	B	e	A	∩	B	também	serão.

Suponha	que,	para	cada	natural	n,	An	é	um	subconjunto	aberto	do	 2.	Seja	B	a	reunião	de	todos	os	An	e	C	a	interseção	de	todos	os	An.
Pergunta-se:	B	é	aberto?	C	é	aberto?	Justifique.

Seja	F	 um	subconjunto	do	 2.	Dizemos	que	F	 é	 um	conjunto	fechado	 se	 o	 conjunto	 de	 todos	 os	 (x,	 y)	 não	 pertencentes	 a	F	 for
aberto.	Verifique	quais	dos	conjuntos	a	seguir	são	fechados.

Suponha	que	o	conjunto	B,	B	⊂	 2,	não	seja	aberto.	Pode-se	concluir	que	B	é	fechado?	Sim	ou	não?	Justifique.

Dizemos	que	A	⊂	 2	é	um	conjunto	 limitado	 se	 existir	um	m	>	0	 tal	que	 ||	 (x,	y)	 ||	<	m	para	 todo	 (x,	y)	∈	A.	 Prove	 que	 se	A	 for
limitado	e	se	A	contiver	um	número	 infinito	de	pontos,	então	A	 admitirá	pelo	menos	um	ponto	de	acumulação.	A	afirmação	continua
verdadeira	se	uma	das	hipóteses	for	omitida?

	



7.1.

a)

b)

7

FUNÇÃO	DE	UMA	VARIÁVEL	REAL	A	VALORES	EM	 .
CURVAS

FUNÇÃO	DE	UMA	VARIÁVEL	REAL	A	VALORES	EM	 2

Uma	função	de	uma	variável	real	a	valores	em	 2	é	uma	função	F	:	A	→	 2,	onde	A	é	um	subconjunto
de	 .	Uma	tal	função	associa	a	cada	real	t	∈	A,	um	único	vetor	F	(t)	∈	 2.	O	conjunto	A	é	o	domínio	de	F
e	 será	 indicada	 por	DF.	 Suporemos	 sempre	 que	A	 ou	 é	 um	 intervalo	 ou	 uma	 reunião	 de	 intervalos.	O
conjunto

Im	F	=	{F	(t)	∈	 2	|	t	∈	DF}

é	a	imagem	ou	trajetória	de	F.	A	imagem	de	F	é	o	lugar	geométrico,	em	 2,	descrito	por	F	(t)	quando	t
varia	em	DF.

EXEMPLO	1.	Seja	F	a	função	dada	por	F	(t)	=	(t,	2t).

a)	Calcule	F	(0)	e	F	(1).
b)	Desenhe	a	imagem	de	F.

Solução

F	(0)	=	(0,	0)	e	F	(1)	=	(1,	2).

A	imagem	de	F	é	a	reta	de	equações	paramétricas	
■

EXEMPLO	2.	Desenhe	a	imagem	da	função	F	dada	por	F	(t)	=	(t,	t2).



Solução

A	imagem	de	F	é	a	curva	de	equações	paramétricas	

A	imagem	de	F	coincide	com	o	gráfico	da	parábola	y	=	x2.
■

EXEMPLO	3.	Seja	F	(t)	=	(cos	t,	sen	t),	t	∈	[0,	2π].	Desenhe	a	imagem	de	F.

Solução

A	imagem	de	F	é	a	circunferência	de	centro	na	origem	e	raio	1.

EXEMPLO	4.	Seja	F	(t)	=	(e−t	cos	t,	e−	t	sen	t),	t	≥	0.	Desenhe	a	imagem	de	F.

Solução

ou	seja,



1.

2.

Quando	t	varia	em	[0,	+∞[,	o	ponto	F	(t)	gira	em	torno	da	origem	e	a	distância	à	origem	tende	a	zero	para
t	 tendendo	 a	 +	 ∞.	 Observe	 que	 a	 imagem	 de	 F	 coincide	 com	 o	 gráfico	 da	 espiral	 ρ	 =	 e−θ,	 θ	 ≥	 0
(coordenadas	polares).

■

EXEMPLO	5.	Desenhe	a	imagem	da	função	F	dada	por	F	(t)	=	(2	cos	t,	sen	t),	t	∈	[0,	2π].

Solução

Assim,	para	cada	t	∈	[0,	2π]	o	ponto	(2	cos	t,	sen	t)	pertence	à	elipse	 	+	y
2
	=	1.	Por	outro	lado,	para

cada	(x,	y)	na	elipse,	existe	t	∈	[0,	2π]	tal	que

Exercícios	7.1	

Desenhe	a	imagem:

F	(t)	=	(1,	t)

F	(t)	=	(t,	t	+	1)



3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

7.2.

F	(t)	=	(2t	−	1,	t	+	2)

F	(t)	=	(t,	t3)

F	(t)	=	(t2,	t)

F	(t)	=	(t2,	t4)

F	(t)	=	(cos	t,	2	sen	t)

F	(t)	=	(sen	t,	sen	t)

F	(t)	=	(sen	t,	sen2	t)

F	(t)	=	( 	cos	t,	2	sen	t)

F	(t)	=	(et	cos	t,	et	sen	t),	t	≥	0

F	(t)	=	(sen	t,	t)

	
FUNÇÃO	DE	UMA	VARIÁVEL	REAL	A	VALORES	EM	 3

Uma	função	de	uma	variável	real	a	valores	em	 3	é	uma	função	F	:	A	→	 3,	onde	A	é	um	subconjunto
de	 .	Uma	tal	função	associa,	a	cada	t	∈	A,	um	único	vetor	F	(t)	∈	 3.	A	imagem	ou	trajetória	de	F	é	o
lugar	geométrico,	em	 3,	descrito	por	F	(t),	quando	t	varia	em	DF.

EXEMPLO	1.	Desenhe	a	imagem	de	F	(t)	=	(t,	t,	t),	t	≥	0.

Solução

A	imagem	de	F	é	a	semirreta	de	equações	paramétricas

EXEMPLO	2.	Desenhe	a	imagem	de	F	(t)	=	(cos	t,	sen	t,	1).

Solução

A	imagem	de	F	é	uma	circunferência	situada	no	plano	z	=	1,	com	centro	no	eixo	z	e	raio	1.



1.

a)

b)

EXEMPLO	3.	Desenhe	a	imagem	de	F	(t)	=	(cos	t,	sen	t,	bt),	t	≥	0,	onde	b	>	0	é	um	real	fixo.

Solução

A	imagem	de	F	é	uma	hélice	circular	reta.	Quando	t	varia	em	[0,	+∞[,	a	projeção	de	F	(t),	 sobre	o
plano	xy,	descreve	a	circunferência	x	=	cos	t,	y	=	sen	t,	ao	passo	que	a	projeção	sobre	o	eixo	z	descreve
um	movimento	uniforme,	com	equação	z	=	bt.

Muitas	 vezes	 será	 necessário	 considerar	 funções	 de	 uma	 variável	 real	 a	 valores	 em	 n,	 n	 >	 3.	 Os
próximos	exemplos	exibem	funções	de	uma	variável	real	a	valores	em	 4	e	em	 5,	respectivamente.

■

EXEMPLO	4.	F	(t)	=	(t,	t2,	1,	t2),	t	∈	 ,	é	uma	função	de	uma	variável	real	a	valores	em	 4.
■

EXEMPLO	5.	F	(t)	=	(cos	t,	sen	t,	t2,	t,	t3),	t	∈	 ,	é	uma	função	de	uma	variável	real	a	valores	em	 5.
■

Exercícios	7.2	

Desenhe	a	imagem:

F	(t)	=	(1,	t,	1),	t	∈	

F	(t)	=	(1,	1,	t),	t	≥	0



c)

d)

e)

f)

g)

h)

i)

j)

l)

m)

n)

o)

2.

a)

b)

3.

7.3.

F	(t)	=	(t,	t,	1),	t	≥	0

F	(t)	=	(1,	0,	t),	t	∈	

F	(t)	=	(t,	t,	1	+	sen	t),	t	≥	0

F	(t)	=	(t,	cos	t,	sen	t),	t	≥	0

F	(t)	=	(cos	t,	sen	t,	2)

F	(t)	=	(cos	t,	sen	t,	e−t),	t	≥	0

F	(t)	=	(t,	t,	t2),	t	≥	0

F	(t)	=	(e−t	cos	t,	e−t	sen	t,	e−t),	t	≥	0

F	(t)	=	(sen	t,	sen	t,	 	cos	t),	0	≤	t	≤	2π

F	(t)	=	(sen	t,	sen	t,	t),	t	≥	0

F	(t)	=	(1	+	sen	t,	1	+	sen	t,	cos	t),	 .

Seja	F	dada	por	F	(t)	=	(ln	t,	t,	 ,	t2).

Determine	o	domínio	de	F.

Calcule	F	 .

Determine	o	domínio.

	
OPERAÇÕES	COM	FUNÇÕES	DE	UMA	VARIÁVEL	REAL	A	VALORES
EM	 n

Seja	F	 :	A	→	 n	 uma	 função	de	uma	variável	 real	 a	valores	em	 n;	 então	existem,	 e	 são	únicas,	n
funções	a	valores	reais	Fi	:	A	→	 ,	i	=	1,	2,	3,	…,	n,	tais	que,	qualquer	que	seja	t	∈	A,

F	(t)	=	(F1	(t),	F2	(t),	…,	Fn	(t)).

Tais	funções	são	denominadas	funções	componentes	de	F.	Escreveremos	F	=	(F1,	F2,	…,	Fn)	para	indicar
a	função	cujas	componentes	são	F1,	F2,	…,	Fn.

EXEMPLO	 1.	 Seja	F	 (t)	 =	 (cos	 t,	 sen	 t,	 t),	 t	∈	 .	 As	 componentes	 de	F	 são	 as	 funções	F1,	F2,	F3

definidas	em	 	e	dadas,	respectivamente,	por	x	=	cos	t,	y	=	sen	t	e	z	=	t.
■



EXEMPLO	2.	Seja	F	(t)	=	(t,	 ,	sen	3t,	arctg	t),	t	≥	0.	As	componentes	de	F	são	as	funções	F1,	F2,	F3,
F4	dadas	por	F1	(t)	=	t,	F2	(t)	=	 ,	F3	(t)	=	sen	3t	e	F4	(t)	arctg	t,	com	t	≥	0.

■

Sejam	F,	G	 :	A	→	 n	duas	 funções	de	uma	variável	 real	a	valores	em	 n,	 f	 :	A	→	 	uma	função	a
valores	reais	e	k	uma	constante.	Definimos:
a)	a	função	F	+	G	:	A	→	 n	dada	por

(F	+	G)	(t)	=	F	(t)	+	G	(t)

denomina-se	soma	de	F	e	G.
b)	a	função	kF	:	A	→	 n	dada	por

(kF)	(t)	=	kF	(t)

é	o	produto	de	F	pela	constante	k.
c)	a	função	f	·	F	:	A	→	 n	dada	por

(f	·	F)	(t)	=	f	(t)	F	(t)

é	o	produto	de	F	pela	função	escalar	f.
d)	a	função	F	·	G	:	A	→	 	dada	por

(F	·	G)	(t)	=	F	(t)	·	G	(t)

onde	F	(t)	·	G	(t)	=	F1	(t)	·	G1	(t)	+	F2	(t)	·	G2	(t)	+	…	+	Fn	(t)	·	Gn	(t),	é	o	produto	escalar	de	F	e	G.
Estamos	supondo	aqui	F	=	(F1,	F2,	…,	Fn)	e	G	=	(G1,	G2,	…,	Gn).

e)	Seja	n	=	3.	A	função	F	∧	G	:	A	→	 3	dada	por

denomina-se	produto	vetorial	de	F	e	G,	onde

(Veja	Exercício	11	da	Seção	6.3.)

EXEMPLO	3.	Sejam	as	funções	F,	G	e	f,	definidas	em	 ,	e	dadas	por	F	(t)	=	(cos	3t,	sen	2t,	t2),	G	(t)	=



a)

b)

c)

(3,	t3,	arctg	t)	e	f	(t)	=	e−	2t.	Temos

o	produto	escalar	de	F	e	G	é	a	função	H	dada	por

H	(t)	=	F	(t)	·	G	(t)	=	3	cos	3	t	+	t3	sen	2t	+	t2	arctg	t.

o	produto	de	F	pela	função	escalar	f	é	a	função	com	valores	em	 3	dada	por

f	(t)	F	(t)	=	e−2t	(cos	3t,	sen	2t,	t2)	=	(e−2t	cos	3t,	e−2t	sen	2t,	e−2t	t2).

o	produto	vetorial	de	F	e	G	é	a	função	a	valores	em	 3	dada	por

Uma	 função	 de	 uma	 variável	 real	 a	 valores	 em	 n	 será	 frequentemente	 indicada	 com	 a	 notação
vetorial	 .

EXEMPLO	4.	Sejam	as	funções	 	e	 	dadas	por	 .	Calcule

Solução

ou	seja,

Exercícios	7.3	



1.

2.

3.

4.

7.4.

Sejam	 .	Calcule

Calcule	 .

Calcule	 .

Sejam	 	três	funções	definidas	em	A	⊂	 	e	a	valores	em	 3.	Verifique	que

	
LIMITE	E	CONTINUIDADE

Antes	 de	 definirmos	 limites	 faremos	 a	 seguinte	 observação:	 sempre	 que	 estivermos	 lidando	 com
função	de	uma	variável	real	 ficará	subentendido	que	o	domínio	ou	é	um	 intervalo	ou	uma	 reunião	de
intervalos.

Definição	1.	Seja	F	uma	função	de	uma	variável	real	a	valores	em	 n	e	seja	t0	um	ponto	do	domínio	de	F	ou	extremidade	de	um	dos

intervalos	que	compõem	o	domínio	de	F.	Dizemos	que	F	(t)	tende	a	L,	L	∈	 n,	quando	t	tende	a	t
0
,	e	escrevemos	 ,

se	para	todo	 	>	0	dado,	existir	δ	>	0	tal	que,	para	todo	t	∈	DF,

0	|	t	−	t0	|	<	δ	⇒	||	F	(t)	−	L	||	<	 .

Observação

||	F	(t)	−	L||	<	 	⇔	F	(t)	∈	B 	(L)

onde	B 	(L)	é	a	bola	aberta	de	centro	L	e	raio	 	:	B 	(L)	=	{Y	∈	 n	|	||	Y	−	L	||	<	 }.
A	figura	seguinte	nos	dá	uma	visão	geométrica	do	significado	de	 ,	no	caso	n	=	2:



dado	 	>	0,	existe	δ	>	0,	tal	que	F	(t)	permanece	na	bola	aberta	B 	(L)	quando	t	percorre	o	intervalo	]	t0	−
δ,	t0	+	δ	[,	t	≠	t0	e	t	∈	DF.

EXEMPLO	1.	Seja	F	uma	função	de	uma	variável	com	valores	em	 n	e	seja	L	∈	 n.	Mostre	que

Solução

O	exemplo	acima	nos	diz	que	se	F	(t)	tende	a	L,	para	t	→	t0,	então	a	distância	de	F	(t)	a	L	(||	F	(t)	−
L	||)	tende	a	zero,	para	t	→	t0,	e	reciprocamente.

Antes	de	demonstrar	o	próximo	teorema,	lembramos	que	se	 	 n,	então,	para	i	=
1,	2,	…,	n,	 ,	ou	seja,	o	comprimento	de	 	é	maior	ou	igual	ao	módulo	de	qualquer	uma	de
suas	componentes	(veja	Exercício	4,	Seção	6.4).

Seja,	agora,	F	=	(F1,	F2,	…,	Fn)	uma	função	de	uma	variável	com	valores	em	 n	e	seja	L	=	(L1,	L2,	…,
Ln)	∈n;	temos

F	(t)	−	L	=	(F1	(t)	−	L1,	F2	(t)	−	L2,	…,	Fn	(t)	−	Ln).

Do	que	vimos	acima,	resulta:

||	F	(t)	−	L	||	≥	|	Fi	(t)	−	Li	|	(i	=	1,	2,	…,	n).

O	próximo	teorema	nos	diz	que	 	existirá	se	e	somente	se	existirem	e	forem	finitos	os	limites

das	 componentes	 Fi	 de	 F.	 Além	 disso,	 se,	 para	 i	 =	 1,	 2,	 …,	 n,	 acontecer	 ,	 então	
.

Teorema.	Sejam	F	=	(F1,	F2,	…,	Fn)	uma	função	de	uma	variável	com	valores	em	 n	e	L	=	(L1,	L2,	…,	Ln)	∈	 n.	Então

Demonstração



Vamos	provar	primeiro	a	implicação

De	 	segue	que	 .	Por	outro	lado,	para	todo	i	=	1,	2,	…,	n,

|	Fi	(t)	−	Li	|	≤	||	F	(t)	−	L	||.

Pelo	teorema	do	confronto,

Reciprocamente,	de	 	para	i	=	1,	2,	…,	n,	segue	que

e,	portanto,	 ;	logo,

EXEMPLO	1.	Seja	 .	Calcule	 .

Solução

EXEMPLO	2.	Seja	 	(t)	=	(cos	t,	sen	t,	t).	Calcule	 .

Solução

De

segue



1.

O	próximo	exemplo	nos	diz	que	o	limite	de	um	produto	escalar	é	igual	ao	produto	escalar	dos	limites,
desde	que	tais	limites	existam.

EXEMPLO	3.	Sejam	 	=	(F1,	F2,	…,	Fn)	 e	 	=	 (G1,	G2,	…,	Gn)	 duas	 funções	 de	 uma	 variável	 com
valores	em	 n.	Suponha	que

onde	 .	Mostre	que

Solução

Então

Definição	2.	Sejam	F	:	A	→	 n	e	t0	∈	A.	Definimos:

Dizemos	que	F	é	contínua	em	B	⊂	A	se	F	for	contínua	em	todo	t	∈	B;	dizemos,	simplesmente,	que	F	é
contínua	se	for	contínua	em	cada	t	de	seu	domínio.

Do	teorema	anterior,	resulta	que	F	será	contínua	em	t0	se	e	somente	se	cada	componente	de	F	o	for.

Exercícios	7.4	

Calcule



2.

3.

4.

5.

6.

7.5.

Sejam	 	duas	funções	de	uma	variável	real	a	valores	em	 n	e	f	uma	função	de	uma

variável	 real	 a	 valores	 reais.	 Suponha	 que	 ,	 ,	 onde	

	L	real.	Prove:

Determine	o	conjunto	dos	pontos	de	continuidade.	Justifique	a	resposta.

Sejam	 	contínuas	em	t
0
	∈	A.	Prove	que	F	 	são	contínuas	em	t

0
.	Se	n	=	3,	

	também	é	contínua	em	t0.

Sejam	 .	Suponha	 	para	 todo	 t	∈	A,	 onde	M	 >	0	 é	 um	 real

fixo.	Prove.

Seja	 	contínua.	Prove	que	existe	M	>	0	tal	que	 	em	[a,	b].

	

DERIVADA

Definição	1.	Sejam	F	:	A	→	 n	e	t0	∈	A.	Definimos	a	derivada	de	F	em	t0	por

desde	que	o	limite	exista.



Se	F	admite	derivada	em	t0,	então	diremos	que	F	é	derivável	ou	diferenciável	em	t0.	Dizemos	que	F	é
derivável	em	B	⊂	DF	se	o	for	em	cada	t	∈	B.	Dizemos,	simplesmente,	que	F	é	derivável	ou	diferenciável
se	o	for	em	cada	ponto	de	seu	domínio.

Teorema	1.	Sejam	F	=	(F1,	F2,	…,	Fn)	e	t0	pertencente	ao	domínio	de	F.	Então,	F	será	derivável	em	t0	se	e	somente	se	cada
componente	de	F	o	for;	além	disso,	se	F	for	derivável	em	t0

Demonstração

Pelo	teorema	da	seção	anterior,	 	existirá	se	e	somente	se	existirem	e	forem	finitos	os

limites	 ,	 i	 =	 1,	 2,	 …,	 n.	 Logo,	 F	 será	 derivável	 em	 t
0
	 se	 e	 somente	 se	 cada

componente	o	for.	Teremos	então:

ou	seja,

EXEMPLO	1.	Seja	 .	Calcule

Solução

ou	seja,



EXEMPLO	2.	Seja	 .	Calcule.

Solução

Seja,	agora,	F	:	A	→	
2
	e	seja	t

0
	∈	A.	Geometricamente,	vemos	 	como	um	“vetor	tangente”	à

trajetória	de	F,	no	ponto	F	(t0).

Quando	 	tende	ao	“vetor	tangente”	 	à	trajetória	de	F	em	F	(t
0
).

Definição	2.	Seja	F	:	A	→	 n	derivável	em	t
0
,	com	 .	Dizemos	que	 	é	um	vetor	tangente	à	trajetória	de	F,

em	F	(t0).	A	reta

denomina-se	reta	tangente	à	trajetória	de	F	no	ponto	F	(t0).

A	reta	tangente	à	trajetória	de	F	no	ponto	F	(t0)	é,	então,	por	definição,	a	reta	passando	pelo	ponto	F



(t
0
)	e	paralela	ao	vetor	tangente	 .

EXEMPLO	3.	Seja	F	(t)	=	(cos	t,	sen	t),	t	∈	 .	Determine	a	equação	da	reta	tangente	à	trajetória	de	F	no
ponto	 .

Solução

A	equação	da	reta	tangente	em	 	é:

ou	seja,

Faça	você	o	desenho	da	trajetória	de	F	e	da	reta	tangente.

EXEMPLO	4.	Seja	F	(t)	=	(t,	t,	t2).	Determine	a	equação	da	reta	tangente	no	ponto	F	(1).

Solução

F	(1)	=	(1,	1,	1);	 ;	assim,	 .	A	equação	da	reta	tangente	em	F	(1)	é:

ou	seja,

Teorema	2.	Sejam	 	deriváveis	em	A.	Então,	f	·	 	e	 	·	 	serão,	também,	deriváveis	em	A	e



Além	disso,	se	n	=	3,	então	 	será,	também,	derivável	em	A	e

Demonstração

Faremos	a	demonstração	no	caso	n	=	3.

a)	 	=	(F1,	F2,	F3);	como	f	é	uma	função	a	valores	reais

f	(t)	 	(t)	=	(f	(t)	F1	(t),	f	(t)	F2	(t),	f	(t)	F3	(t))

para	todo	t	∈	A.

De

resulta:

ou	seja,



Como

e

resulta

ou	seja,

EXEMPLO	5.	Seja	 	:	A	→	 n	derivável	e	tal	que	||	 	(t)	||	=	k,	∀	t	∈	A,	k	constante.	Prove	que

para	todo	t	∈	A.	Interprete	geometricamente	no	caso	n	=	2.

Solução

daí



logo,	para	todo	t	∈	A,

Segue	que,	para	todo	t	em	A,

ou	seja,

e	como	o	produto	escalar	é	comutativo

Portanto,	para	todo	t	∈	A,

Assim,	sendo	||	 	(t)	||	constante,	os	vetores	 	serão	ortogonais.

■

Interpretação	geométrica	no	caso	n	=	2.	Seja	 	(t)	=	(F1	(t),	F2	(t));	sendo	||	 	(t)	||	constante	e	igual	a	k
(k	>	0),	a	trajetória	descrita	por	(F1	(t),	F2	(t))	está	contida	na	circunferência	de	centro	na	origem	e	raio

k;	como	 	é	tangente	à	trajetória,	 	deve	ser	tangente	à	circunferência	e	deve,	portanto,	ser

ortogonal	ao	vetor	de	posição	 	(t).



1.

2.

3.

4.

5.

a)

b)

6.

7.

Exercícios	7.5	

Calcule	

Determine	a	equação	da	reta	tangente	à	trajetória	da	função	dada,	no	ponto	dado.

Seja	F	definida	no	intervalo	I	e	com	valores	em	 n.	Suponha	que	F′	(t)	=	 	para	todo	t	em	I.	Prove
que	existe	uma	constante	k	=	(k1,	k2,	…,	kn)	∈	 n	tal	que	F	(t)	=	k	para	todo	t	em	I.

Seja	 ,	I	 intervalo,	derivável	até	a	2.ª	ordem	em	 I.	Suponha	que	exista	um	real	 tal	que,

para	todo	t	em	I,	 .	Prove	que	 	é	constante	em	I.

Suponha	que	 	seja	derivável	até	a	2.ª	ordem	e	que,	para	todo	t	≥	0,

Prove	que	 	em	[	0,	+∞	[.

Seja	θ	o	ângulo	entre	 .	Conclua	que	 .

Seja	 	 definida	 em	 ,	 com	 valores	 em	 3,	 e	 derivável	 até	 a	 2.ª	 ordem.	 Prove	 que	 se	

	for	constante	em	 ,	então	 	em	 .

Seja	 ,	 I	 intervalo,	derivável	até	a	2.ª	ordem.	Suponha	que	 	 (t)	 forneça	a	posição,	no
instante	t,	de	um	ponto	P	que	se	move	no	espaço.	Definimos	a	velocidade	 	(t)	e	a	aceleração	

(t)	 de	P,	 no	 instante	 t,	 por:	 .	 Determine	 	 (t)	 e	 	 (t)

sendo:



8.

9.

10.

11.

12.

13.

Um	ponto	se	move	no	espaço	de	modo	que	||	 	(t)	||	=	k	para	todo	t,	onde	k	>	0	é	uma	constante.
Prove	que	 	para	todo	t.	Interprete.

Suponha	||	 	(t)	||	≠	0	para	todo	t.	Faça	 	onde	v	(t)	=	|| 	(t)	||.	Prove	que

Seja	 ,	onde	a,	b	e	w	são	constantes	não	nulas.	Mostre	que

Sejam	 	e	 	definidas	e	deriváveis	no	intervalo	I	e	com	valores	em	 n.	Suponha	que	para	todo	

.	Prove	que	existe	um	vetor	 	tal	que	

para	todo	t	∞	I.

Determine	 	sabendo	que

(Regra	da	cadeia.)	Sejam	 ,	 funções	deriváveis,	onde	 I	e	J	 são
intervalos	 em	 .	 Suponha	 que,	 para	 todo	 t	 ∞	 I,	 u	 (t)	 ∞	 J.	 Prove	 que	 a	 função	 	 dada	 por	

,	é	derivável	e	que



14.

15.

7.6.

onde	 	deve	ser	calculado	em	u	=	u	(t).

Suponha	 	
	deriváveis	até	a	2.ª	ordem	num	intervalo	I.

	Verifique	que

Seja	F	 :	 I	→	 n	 derivável	 em	 t0	∈	 I	 e	 seja	E	 (Δt)	 o	 erro	 que	 se	 comete	 na	 aproximação	 do
acréscimo	“F	(t0	+	Δt)	−	F	(t0)”	por	“F′	(t0)	Δt”.	Prove	que	E	(Δt)	tende	a	 	mais	rapidamente	que
Δt,	 quando	Δt	 tende	 a	 zero,	 isto	 é,	 que	 .	 Prove,	 ainda,	 que	 para	 todo	 ,	 com	

.

Observação.	A	função	linear	de	 	em	 n	dada	por	Δt	→	F′	(t0)	Δt	denomina-se	diferencial	de	F
em	t

0
;	F	(t

0
	+	Δt)	−	F	(t

0
)	=	F′	(t

0
)	Δt	+	E	(Δt),	onde	 .

	
INTEGRAL

Sejam	 	uma	função,	P	:	a	=	t0	<	t1	<	t2	…	<	tm	=	b	e,	para	cada	i,	i	=	1,	2,	…,	m,	seja	ci
um	ponto	de	[ti	−	1,	ti].	O	vetor

denomina-se	soma	de	Riemann	de	 	relativa	à	partição	P	e	aos	pontos	ci.

Dizemos	que	 	tende	ao	vetor	 ,	quando	máx	Δti	→	0,	e	escrevemos

se,	para	todo	 	>	0	dado,	existir	δ	>	0	que	só	depende	de	 ,	mas	não	da	particular	escolha	dos	ci,	tal	que



para	toda	partição	P	de	[a,	b]	com	máx	Δti	<	δ.
O	vetor	 ,	que	quando	existe	é	único	(verifique),	denomina-se	integral	(de	Riemann)	de	 	em	[a,	b]

e	indica-se	por	 .	Assim,	por	definição,

Seja	 	 definida	 em	 [a,	 b].	 Deixamos	 a	 cargo	 do	 leitor	 verificar	 que	 	 será
integrável	em	[a,	b]	se	e	somente	se	cada	componente	de	 	o	for;	além	disso,	se	 	for	integrável	em	[a,
b],	então

Se	 	for	integrável	em	[a,	b]	e	 	uma	primitiva	de	 	em	[a,	b]	teremos

De	fato:

então

EXEMPLO	1.	Calcule	 .

Solução



1.

EXEMPLO	2.	Suponha	 	contínua	em	[a,	b].	Prove	que

Solução

Sendo	 	contínua	em	[a,	b],	||	 	||	também	será;	logo,	 	existe.

assim,	de

segue

Temos

Então

ou	seja,

Exercícios	7.6	

Calcule



2.

3.

4.

5.

7.7.

Sejam	 .	Calcule

Seja	 	contínua	e	seja	 .	Prove	que,	para	todo	t	∈	[a,	b],

Seja	 	(t)	uma	força,	dependendo	do	tempo	t,	que	atua	sobre	uma	partícula	entre	os	instantes	t1	e	t2.	Supondo	 	integrável	em	[t1,	t2],
o	vetor

denomina-se	impulso	de	 	no	intervalo	de	tempo	[t1,	t2].	Calcule	o	impulso	de	 	no	intervalo	de	tempo	dado.

Suponha	que	 	(t)	seja	a	força	resultante	que	atua,	no	instante	t,	sobre	uma	partícula	de	massa	m	que	se	move	no	espaço.	Mostre	que

o	impulso	de	 	no	intervalo	de	tempo	[t1,	t2]	é	igual	à	variação	da	quantidade	de	movimento,	isto	é,

onde	 	são,	respectivamente,	as	velocidades	nos	instantes	t
1
	e	t

2
.	(Sugestão:	pela	lei	de	Newton	 .)

	
COMPRIMENTO	DE	CURVA

Seja	I	um	intervalo	em	 .	Uma	curva	γ	em	 n,	definida	em	I,	é	uma	função	γ:	I	→	 n.
Uma	 curva	 em	 n,	 definida	 em	 I,	 nada	 mais	 é,	 então,	 do	 que	 uma	 função	 de	 uma	 variável	 real	 a

valores	em	 n.	Segue	que	tudo	o	que	dissemos	anteriormente	aplica-se	às	curvas.

EXEMPLO	1.	Seja	γ	(t)	=	(t,	arctg	t),	t	∈	 ,	uma	curva	em	 2.

a)	Desenhe	a	imagem	de	γ.
b)	Determine	uma	curva	 	tal	que	γ	≠	δ	e	Im	γ	=	Im	δ.



b)

Solução

A	imagem	de	γ	coincide	com	a	gráfico	de	y	=	arctg	x.

δ	(t)	=	(t3,	arctg	t3),	t	∈	 .
■

Observação.	 Sejam	 A	⊂	 n	 e	 γ	 :	 I	 →	 n	 tais	 que	 Im	 γ	 =	 A;	 é	 comum	 referir-se	 a	 γ	 como	 uma
parametrização	do	conjunto	A.	Assim,	 toda	curva	γ	pode	 ser	olhada	como	uma	parametrização	de	 sua
imagem.	 O	 exemplo	 anterior	 mostra-nos	 que	 um	 mesmo	 conjunto	 pode	 admitir	 parametrizações
diferentes.

Nosso	 objetivo,	 a	 seguir,	 é	 definir	 comprimento	 de	 curva	 em	 n.	 Para	 motivar	 tal	 definição,
trabalharemos	com	uma	curva	em	 2.	Seja,	então,	γ	:	[a,	b]	→	 2	uma	curva	em	 2.	Sendo	P	:	a	=	t0	<	t1	<
t2	<	…	<	tn	=	b	uma	partição	qualquer	de	[a,	b],	indicaremos	por	L	(γ,	P)	o	comprimento	da	poligonal	de
vértices	P0	=	γ	(t0),	P1	=	γ	(t1),	…,	Pn	=	γ	(tn):

Tomando-se,	 por	 exemplo,	P	 :	a	 =	 t0	 <	 t1	 <	 t2	 <	 t3	 <	 t4	 <	 t5	 =	b,	L	 (γ,	P)	 será	 o	 comprimento	 da
poligonal	de	vértices	P0	=	γ	(t0),	P1	=	γ	(t1),	…,	P5	=	γ	(t5).

Suponhamos	γ	=	(γ1,	γ2)	derivável	em	[a,	b]	e	seja	P	:	a	=	t0	<	t1	<	…	<	tn	=	b	uma	partição	qualquer
de	[a,	b].	Temos



Pelo	teorema	do	valor	médio,	existem	 	em	]	ti	−	1,	ti	[	tais	que

ou	seja,

Substituindo	em	 	vem:

Daí

Supondo	γ′	 contínua	 em	 [a,	 b],	 	 será,	 também,	 contínua	 em	 [a,	b]	 e,
portanto,	integrável	neste	intervalo:

Embora	 	não	seja	soma	de	Riemann	da	função	g	(t)	=	||	γ′	(t)	||,	t	∈	[a,	b],	(por	quê?)	é	razoável	esperar
que,	para	máx	Δt

i
	→	0,	L	(γ,	P)	tenda	a	 	(veja	Exercício	12).	Nada	mais	natural,	então,	do	que

a	seguinte	definição.

Definição.	Seja	γ	:	[a,	b]	→	 n	uma	curva	com	derivada	contínua	em	[a,	b].	Definimos	o	comprimento	L	(γ)	da	curva	γ	por

Observação.	 A	 definição	 acima	 estende-se	 para	 uma	 curva	 γ	 :	 [a,	b]	→	 n	 qualquer,	 com	 ||	 γ′	 (t)	 ||
integrável	em	[a,	b].



EXEMPLO	2.	Calcule	o	comprimento	da	curva	γ	(t)	=	(cos	t,	sen	t,	t),	t	∈	[0,	2π].

Solução

O	comprimento	da	curva	é

Seja	γ	uma	curva	em	 2	dada	por

De	 	 segue	 	 e,	 então,	 o	 comprimento	 de	 γ	 é:	

.	Se	γ	for	uma	curva	em	
3

	dada	por

seu	comprimento	será:

Suponhamos	 que	 uma	partícula	 se	 desloca	 no	 espaço	 de	modo	que	 no	 instante	 t,	 t	∈	 [0,	b[,	 a	 sua
posição	seja	dada,	em	forma	paramétrica,	por	x	=	x(t),	y	=	y(t)	e	z	=	z(t),	com	 	 contínuas.

Então,	 o	 espaço	 s	 =	 s(t)	 percorrido	 pela	 partícula	 entre	 os	 instantes	 0	 e	 t	 nada	 mais	 é	 do	 que	 o
comprimento	da	curva	descrita	pela	partícula	entre	esses	instantes,	ou	seja,

EXEMPLO	3.	Uma	partícula	desloca-se	no	espaço	com	equações	paramétricas	x	=	x(t),	y	=	y(t)	e	z	=
z(t).	Sabe-se	que,	para	todo	t,

Sabe-se,	ainda,	que	 	e	que	no	instante	t	=	0	a	partícula	encontra-se	na	origem.



b)

c)
d)

1.

a)

b)

c)

d)

e)

f)

g)

2.

3.

a)	Qual	a	posição	da	partícula	no	instante	t?
b)	Qual	a	velocidade	escalar	da	partícula?
c)	Determine	o	instante	T	em	que	a	partícula	volta	a	tocar	o	plano	xy.
d)	Qual	o	espaço	percorrido	pela	partícula	entre	os	instantes	0	e	T?

Solução

De	forma	análoga,	y	=	 	t.

;	das	condições	z	=	0	para	 ,	resulta	z	=

−t2	+	2t.	Assim,	no	instante	t	a	posição	da	partícula	é

,	ou	seja,	 .

z	=	0	⇔	−t2	+	2t	=	0	⇔	t	=	0	ou	t	=	2.	Portanto,	T	=	2.
;	fazendo	2−t	=	tg	u,	dt	=	−sec2	u	du,	u	=	arctg	2	para	t	=	0	e	u	=	0	para	t	=	2.

Fazendo	θ	=	arctg	2

Integrando	por	partes,	e	levando	em	conta	que	tg	θ	=	2	e	secθ	=	 ,	vem

Exercícios	7.7	

Calcule	o	comprimento	da	curva	dada.

γ	(t)	=	(t	cos	t,	t	sen	t),	t	∈	[0,	2π].

γ	(t)	=	(2t	−	1,	t	+	1),	t	∈	[1,	2].

γ	(t)	=	(cos	t,	sen	t,	e−t),	t	∈	[0,	π].

γ	(t)	=	(e−t,	cos	t,	e−t	sen	t,	e−t),	t	∈	[0,	1].

γ	(t)	=	(t,	ln	t),	t	∈	[1,	e].

γ	:	[0,	π]	→	 2	dada	por	x	=	1	−	cos	t,	y	=	t	−	sen	t.

.	(Observação:	trata-se	da	curva	γ	dada	por	x	=	t,	 .)

Dê	exemplos	de	curvas	γ	e	δ	tais	que	Im	γ	=	Im	δ,	mas	que	seus	comprimentos	sejam	diferentes.

Sejam	γ	:	[a,	b]	→	 n	e	δ	:	[c,	d]	→	 n	duas	curvas	com	derivadas	contínuas.	Suponha	que	exista	g	:	[c,	d]	→	[a,	b],	com	derivada
contínua	e	tal	que	g′	(u)	>	0	em	[c,	d].	Suponha,	ainda,	g	(c)	=	a,	g	(d)	=	b	e,	para	todo	u	∈	[c,	d],	δ	(u)	=	γ	(g	(u)).	Prove:



a)

b)

4.

5.

a)

b)

6.

a)

b)

c)

d)

7.

Im	γ	=	Im	δ

L	(γ)	=	L	(δ)

Observação.	 Se	 as	 curvas	δ	 e	γ	 estiverem	 relacionadas	 do	modo	 acima	 descrito,	 então	 dizemos	 que	 a	 curva	 δ	 é	 obtida	 de	 γ	 pela
mudança	de	parâmetro	t	=	g	(u)	que	conserva	a	orientação.

Dizemos	que	uma	curva	δ	:	[α,	β]	→	 n,	com	derivada	contínua,	está	parametrizada	pelo	comprimento	de	arco	se	||	δ′	(s)	||	=	1,	para
todo	s	∈	[α,	β].	Verifique	que	cada	uma	das	curvas	abaixo	está	parametrizada	pelo	comprimento	de	arco.	Interprete	o	parâmetro	s.

Seja	γ	:	[a,	b]	→	 n,	com	derivada	contínua,	e	tal	que	||	γ′	(t)	||	≠	0	em	[a,	b].	Seja	s	:	[a,	b]	→	 	dada	por	 .

Verifique	que	a	função	s	=	s	(t)	é	inversível	e	seja	t	=	t	(s)	sua	inversa.

Verifique	que	a	curva	δ	:	[0,	L]	→	 n	(L	é	o	comprimento	de	γ)	dada	por

δ	(s)	=	γ	(t	(s))

está	parametrizada	pelo	comprimento	de	arco.	Dizemos	que	δ	é	a	reparametrização	de	γ	pelo	comprimento	de	arco.

Reparametrize	pelo	comprimento	de	arco	a	curva	γ	dada.

γ	(t)	=	(2t	+	1,	3t	−	1),	t	≥	0.

γ	(t)	=	(2	cos	t,	2	sen	t),	t	≥	0.

γ	(t)	=	(cos	t,	sen	t,	t),	t	≥	0.

γ	(t)	=	(et	cos	t,	et	sen	t),	t	≥	0.

Seja	γ	:	I	→	
2
	uma	curva	derivável	até	a	2.ª	ordem,	com	||	γ′	(t)	||	≠	0	no	intervalo	I.	Seja	 ,	t	∈	I,	com	t

0
	fixo	em

I.	Sejam,	ainda,	 	o	versor	de	γ′	(t)	e	 	(s),	dada	por	 	(s)	=	 	(t),	onde	t	=	t	(s).	Mostre	que

Observação.	O	número	 	denomina-se	curvatura	da	curva	γ	no	ponto	γ	(t),	t	=	t	(s).	Se	k 	(s)	≠	0,	o	número	

	é	o	raio	de	curvatura	 de	γ	 em	γ	(t),	t	=	 t	(s).	A	motivação	 geométrica	 para	 tal	 definição	 é	 a	 seguinte:	 para	Δs



8.

9.

a)

b)

10.

a)

b)

11.

a)

suficientemente	pequeno	o	trecho	PQ	(de	comprimento	Δs)	da	curva	γ	pode	ser	olhado	como	um	arco	de	circunferência	de	centro	0
e	raio	ρ	(s)	(aproximadamente).	Sendo	Δθ	 (radianos)	o	ângulo	entre	os	vetores	 	(s)	e	 	(s	+	Δs),	 segue	que	Δθ	 será,	 então,	 a
medida	do	ângulo	POQ.

Temos:

Calcule	a	curvatura	e	o	raio	de	curvatura	da	curva	γ	(t)	=	(R	cos	t,	R	sen	t)	(R	>	0	fixo).

Seja	γ	:	I	→	 2	parametrizada	pelo	comprimento	de	arco	(isto	é:	||	γ′	(s)	||	=	1	para	todo	s	∈	I).
Verifique	que,	para	todo	s	∈	I,	k 	(s)	=	||	γ″	(s)	||,	onde	k 	(s)	é	a	curvatura	em	(s).

Prove	que	se	k 	(s)	=	0,	para	todo	s,	então	γ	é	uma	reta.

Uma	 partícula	 move-se	 no	 plano	 de	 modo	 que	 no	 instante	 t	 sua	 posição	 seja	 γ	 (t).	 Suponha	 que,	 para	 todo	 t,	

	seja	 	onde	 .	Prove	que

	são	ortogonais.

,	onde	 	é	o	versor	de	 	o	raio	de	curvatura	de	γem	γ(t).

Seja	γ	:	[a,	b]	→	 2	uma	curva	com	derivada	contínua	e	com	componentes	γ1	e	γ2	(γ	=	(γ1,	γ2)).	Seja	P	:	a	=	t0	<	t1	<	t2	<	…	<	tn	=	b
uma	partição	qualquer	de	[a,	b].

Prove	que	quaisquer	que	sejam	 	tem-se:

Sugestão:	utilize	a	desigualdade



b)

c)

Sejam	 	os	pontos	de	mínimo	e	de	máximo,	respectivamente,	de	 	em	[ti	−	1,	ti].	Prove	que

Prove	que

	



8.1.

8

FUNÇÕES	DE	VÁRIAS	VARIÁVEIS	REAIS	A	VALORES	REAIS

A	maioria	das	relações	que	ocorrem	na	física,	economia	e,	de	modo	geral,	na	natureza	é	traduzida	por
funções	de	duas,	três	e	mais	variáveis	reais;	daí	a	conveniência	de	um	estudo	detalhado	de	tais	funções.

Neste	capítulo	e	nos	seguintes	daremos	ênfase	ao	estudo	das	funções	reais	de	duas	variáveis	reais,	e	o
leitor	não	terá	dificuldade	em	generalizar	os	resultados	para	funções	de	mais	de	duas	variáveis,	 já	que
não	há	diferenças	importantes.

FUNÇÕES	DE	DUAS	VARIÁVEIS	REAIS	A	VALORES	REAIS

Uma	função	de	duas	variáveis	reais	a	valores	reais	é	uma	função	f	:	A	→	 ,	onde	A	é	um	subconjunto
de	 2.	Uma	tal	função	associa,	a	cada	par	(x,	y)	∈	A,	um	único	número	 f	 (x,	y)	∈	 .	O	conjunto	A	é	o
domínio	de	f	e	será	indicado	por	Df.	O	conjunto

Im	f	=	{f	(x,	y)	∈	 	|	(x,	y)	∈	Df}

é	a	imagem	de	f.	As	palavras	aplicação	e	transformação	são	sinônimas	de	função.

f	transforma	o	par	(x,	y)	no	número	f	(x,	y).
Por	simplificação,	deixaremos,	muitas	vezes,	de	especificar	o	domínio,	ficando	implícito,	então,	que

se	trata	do	“maior”	subconjunto	do	 2	para	o	qual	faz	sentido	a	regra	em	questão.

EXEMPLO	 1.	 Seja	 f	 a	 função	 de	 duas	 variáveis	 reais	 a	 valores	 reais	 dada	 por	 .	 O

domínio	de	f	é	o	conjunto	de	todos	os	pares	(x,	y)	de	números	reais,	com	x	≠	y,	isto	é:	Df	=	{(x,	y)	∈	 2	|	x
≠	y}.	Esta	função	transforma	o	par	(x,	y)	no	número	real	 .



■

EXEMPLO	2.	Seja	f	a	função	do	exemplo	anterior.	Calcule

a)	f	(2,	3)
b)	f	(a	+	b,	a	−	b)

Solução

EXEMPLO	3.	Represente	graficamente	o	domínio	da	função	f	dada	por

Solução

O	domínio	de	f	é	o	conjunto	de	todos	os	pares	(x,	y),	com	y	−	x	≥	0	e	1	−	y	≥	0:	Df	=	{(x,	y)	∈	 2	|	y	≥
x	e	y	≤	1}.

EXEMPLO	4.	Seja	f	a	função	dada	por

(x,	y)	∞	z	onde	z	=	5x2y	−	3x.

O	 valor	 de	 f	 em	 (x,	y)	 é	 z	 =	 f	 (x,	y)	 =	 5x2y	 −	 3x.	 Na	 equação	 acima,	 x	 e	 y	 estão	 sendo	 vistas	 como
variáveis	independentes	e	z	como	variável	dependente.	Observe	que	o	domínio	de	f	é	o	 2.

■

EXEMPLO	5.	Represente	graficamente	o	domínio	da	função	w	=	f	(u,	v)	dada	por



u2	+	v2	+	w2	=	1,	w	≥	0.

Solução

Assim,	f	é	a	função	dada	por	 .	Seu	domínio	é	o	conjunto	de	todos	(u,	v),	com	1	−
u2	−	v2	≥	0.

1	−	u2	−	v2	≥	0	⇔	u2	+	v2	≤	1.

O	domínio	de	f	é	o	círculo	de	raio	1	e	centro	na	origem.

EXEMPLO	6.	Represente	graficamente	o	domínio	da	função	z	=	f	(x,	y)	dada	por	 .

Solução

Df	=	{(x,	y)	∈	 2	|	y	−	x2	≥	0};	y	−	x2	≥	0	⇔	y	≥	x2.

EXEMPLO	7.	(Função	polinomial.)	Uma	função	polinomial	de	duas	variáveis	reais	a	valores	reais	é
uma	função	f	:	 2	→	 	dada	por



a)

onde	p	é	um	natural	fixo	e	os	amn	são	números	reais	dados;	a	soma	é	estendida	a	todas	as	soluções	(m,	n),
m	e	n	naturais,	da	inequação	m	+	n	≤	p.
a)	 	é	uma	função	polinomial.

b)	f	(x,	y)	=	ax	+	by	+	c,	onde	a,	b,	c	são	reais	dados,	é	uma	função	polinomial;	tal	função	denomina-se
função	afim.

■

EXEMPLO	8.	(Função	linear.)	Toda	função	f	:	 2	→	 	dada	por

f	(x,	y)	=	ax	+	by

onde	a,	b	são	reais	dados,	denomina-se	função	linear.	Toda	função	linear	é	uma	função	afim.
■

EXEMPLO	9.	(Função	racional.)	Toda	função	f	dada	por

onde	p	e	q	são	funções	polinomiais,	denomina-se	função	racional.	O	domínio	de	f	é	o	conjunto	Df	=	{(x,
y)	∈	 2	|	q	(x,	y)	≠	0}.

a)	 	é	uma	função	racional.	Seu	domínio	é:	D
f
	=	{(x,	y)	∈	

2
	|	x	≠	y}.

b)	 	é	uma	função	racional;	D
g
	=	

2
.

■

EXEMPLO	10.	(Função	homogênea.)	Uma	função	f	:	A	→	 ,	A	⊂	 2,	denomina-se	função	homogênea
de	grau	λ	se

f	(tx,	ty)	=	tλ	f	(x,	y)

para	todo	t	>	0	e	para	todo	(x,	y)	∈	A	tais	que	(tx,	ty)	∈	A.
f	(x,	y)	=	3x2	+	5xy	+	y2	é	homogênea	de	grau	2.	De	fato,

f	(tx,	ty)	=	3	(tx)2	+	5	(tx)	(ty)	+	(ty)2	=	t2	(3x2	+	5xy	+	y2)

ou	seja,

f	(tx,	ty)	=	t2	f	(x,	y).



b)

c)

1.

2.

a)
b)

3.

4.

5.

6.

a)

b)

c)

7.

	é	homogênea	de	grau	−	1.

De	fato,

f	(x,	y)	=	2x	+	y	+	5	não	é	homogênea.	(Por	quê?)
■

Exercícios	8.1	

Seja	f	(x,	y)	=	3x	+	2y.	Calcule

Seja	 .

Determine	o	domínio.
Calcule	f	(2u	+	v,	v	−	u).

Represente	graficamente	o	domínio	da	função	z	=	f	(x,	y)	dada	por

Seja	f	:	 2	→	 	uma	função	linear.	Sabendo	que	f	(1,	0)	=	2	e	f	(0,	1)	=	3,	calcule	f	(x,	y).

Verifique	se	a	função	é	homogênea.	Em	caso	afirmativo,	determine	o	grau	de	homogeneidade.

Suponha	que	f	:	 2	→	 	seja	homogênea	do	grau	2	e	f	(a,	b)	=	a	para	todo	(a,	b),	com	a2	+	b2	=	1.	Calcule

f	(0,	3)

f	(x,	y),	(x,	y)	≠	(0,	0)

Seja	f	:	 2	→	 	homogênea	e	suponha	que	f	(a,	b)	=	0	para	todo	(a,	b),	com	a2	+	b2	=	1.	Mostre	que	f	(x,	y)	=	0	para	todo	(x,	y)	≠



8.

8.2.

(0,	0).

Seja	g	:	[0,	2π[	→	 	uma	função	dada.	Prove	que	existe	uma	única	função	f	:	 2	→	 ,	homogênea	de	grau	λ	≠	0,	tal	que,	para	todo	α
∈	[0,	2π	[,	f	(cos	α,	sen	α)	=	g	(α).	(Observação:	o	Exercício	8	nos	diz	que	uma	função	homogênea	fica	completamente	determinada
quando	se	conhecem	os	valores	que	ela	assume	sobre	os	pontos	de	uma	circunferência	de	centro	na	origem.)

	

GRÁFICO	E	CURVAS	DE	NÍVEL

Seja	z	=	f	(x,	y),	(x,	y)	∈	A,	uma	função	real	de	duas	variáveis	reais.	O	conjunto

Gf	=	{(x,	y,	z)	∈	 3	|	z	=	f	(x,	y),	(x,	y)	∈	A}

denomina-se	gráfico	de	f.
Munindo-se	o	espaço	de	um	sistema	ortogonal	de	coordenadas	cartesianas,	o	gráfico	de	f	pode	então

ser	pensado	como	o	lugar	geométrico	descrito	pelo	ponto	(x,	y,	f	(x,	y)),	quando	(x,	y)	percorre	o	domínio
de	f.

A	representação	geométrica	do	gráfico	de	uma	função	de	duas	variáveis	não	é	tarefa	fácil.	Em	vista
disso,	quando	se	pretende	ter	uma	visão	geométrica	da	função,	lança-se	mão	de	suas	curvas	de	nível,	cuja
representação	geométrica	é	sempre	mais	fácil	de	ser	obtida	do	que	o	gráfico	da	função.

Sejam	z	=	f	(x,	y)	uma	função	e	c	∈	Im	f.	O	conjunto	de	todos	os	pontos	(x,	y)	de	Df	tais	que	f	(x,	y)	c
denomina-se	curva	de	nível	de	f	correspondente	ao	nível	z	=	c.	Assim,	f	é	constante	sobre	cada	curva	de
nível.

O	gráfico	 de	 f	 é	 um	 subconjunto	 do	 3.	Uma	 curva	 de	 nível	 é	 um	 subconjunto	 do	 domínio	 de	 f,
portanto,	do	 2.

EXEMPLO	1.	O	gráfico	da	função	constante	f	(x,	y)	=	k	é	um	plano	paralelo	ao	plano	xy.



EXEMPLO	2.	O	gráfico	da	função	linear	dada	por	z	=	2x	+	y	é	um	plano	passando	pela	origem	e	normal
ao	vetor	 	=	(2,	1,	1):

z	=	2x	+	y	⇔	2x	+	y	−	z	=	0	⇔	(2,	1,	−	1)	·	[(x,	y,	z)	−	(0,	0,	0)]	=	0.

Tal	plano	é	determinado	pelas	retas

Observe	que	

é	uma	reta	situada	no	plano	yz,	enquanto	 	está	situada	no	plano	xz.

■

EXEMPLO	3.	O	gráfico	da	função	afim	f	dada	por	z	=	ax	+	by	+	c	é	um	plano	normal	ao	vetor	 	=	(a,	b,
−	1).	Tal	plano	é	determinado	pelas	retas



EXEMPLO	4.	Desenhe	as	curvas	de	nível	de	f	(x,	y)	=	x2	+	y2.

Solução

Observamos,	inicialmente,	que	a	imagem	de	f	é	o	conjunto	de	todos	os	reais	z	≥	0.	Seja,	então,	c	≥	0.
A	curva	de	nível	correspondente	a	z	=	c	é

f	(x,	y)	=	c	ou	x2	+	y2	=	c.

Assim,	as	curvas	de	nível	(c	>	0)	são	circunferências	concêntricas	de	centro	na	origem.	Sobre	cada	curva
de	nível	x2	+	y2	=	c	a	função	assume	sempre	o	mesmo	valor	c.	A	curva	de	nível	correspondente	a	c	=	0	é	o
ponto	(0,	0).

EXEMPLO	5.	Esboce	o	gráfico	de	f	(x,	y)	=	x2	+	y2.

Solução

A	interseção	do	gráfico	de	f	com	o	plano	x	=	0	é	a	parábola	 	localizada	no	plano	yz.	Por	outro

lado,	a	interseção	do	gráfico	de	f	com	o	plano	z	=	c	(c	>	0)	é	a	circunferência	 	de	centro	no

eixo	z	e	localizada	no	plano	z	=	c.	Assim,	o	gráfico	de	f	é	obtido	girando,	em	torno	do	eixo	z,	a	parábola	
.	(Por	quê?)



a)
b)

O	gráfico	de	f	é	um	paraboloide	de	rotação.	Observe	que	a	curva	de	nível	f	(x,	y)	=	c	nada	mais	é	que	a
projeção	no	plano	xy	da	interseção	do	gráfico	de	f	com	o	plano	z	=	c.

■

Observação.	O	gráfico	da	função	dada	por	 	(a	>	0	e	b	>	0)	é	uma	superfície	denominada

paraboloide	elíptico.	Se	a	=	b,	temos	o	paraboloide	de	rotação.

EXEMPLO	6.	Seja	f	a	função	dada	por	

a)	Determine	o	domínio	e	a	imagem.
b)	Desenhe	as	curvas	de	nível.
c)	Esboce	o	gráfico.

Solução

Df	=	{(x,	y)	∈	 2	|	(x,	y)	≠	(0,	0)}	e	Im	f	=	{z	∈	 	|z	>	0}.
A	curva	de	nível	correspondente	a	z	=	c	(c	>	0)	é

As	curvas	de	nível	são	então	circunferências	concêntricas	de	centro	na	origem.	Quando	c	tende	a	+∞,	o
raio	tende	a	zero.	Por	outro	lado,	quando	c	tende	a	zero,	o	raio	tende	a	+∞.

c)	O	plano	x	 =	 0	 intercepta	 o	 gráfico	 de	 f	 segundo	 a	 curva	 .	 Para	 cada	 c	 >	 0,	 o	 plano	 z	 =	 c

intercepta	o	gráfico	de	f	segundo	a	circunferência	 .	O	gráfico	de	f	é	obtido,	então,	girando

em	torno	do	eixo	z,	a	curva	 .



EXEMPLO	7.	Considere	a	função	f	dada	por	 .

a)	Determine	o	domínio	e	a	imagem.
b)	Desenhe	as	curvas	de	nível.

Solução

a)	O	domínio	é	o	conjunto	de	todos	(x,	y),	com	x	≠	1.	De	f	(2,	y)	=	y,	para	todo	y,	segue	que	a	imagem	de
f	é	 .	Assim

b)	Para	cada	c	real,	a	curva	de	nível	correspondente	a	z	=	c	é

Cada	curva	de	nível	de	f	é	então	uma	reta	que	passa	pelo	ponto	(1,	0)	e	“furada”	neste	ponto.	Como	é	o
gráfico	de	f?	(Sugestão:	pegue	cada	curva	de	nível	de	f	e	coloque-a	na	altura	z	=	c	respectiva.)

Sejam	z	=	f	(x,	y)	uma	função	e	A	um	subconjunto	de	Df.	Seja	(x0,	y0)	∈	A.	Dizemos	que	f	(x0,	y0)	é	o



valor	máximo	(resp.	valor	mínimo)	de	f	em	A	se	para	todo	(x,	y)	∈	A

f	(x,	y)	≤	f	(x0,	y0)	(resp.	f	(x,	y)	≥	f	(x0,	y0)).

Diremos,	então,	que	(x0,	y0)	é	um	ponto	de	máximo	de	f	em	A	(resp.	ponto	de	mínimo).

EXEMPLO	8.	Sejam	f	(x,	y)	=	2x	+	y	e	A	o	conjunto	de	todos	(x,	y)	tais	que	x2	+	y2	=	1.	Raciocinando
geometricamente,	determine,	caso	existam,	os	valores	máximo	e	mínimo	de	f	em	A.

Solução

Para	cada	c	real,	a	curva	de	nível	de	f	correspondente	a	z	=	c	é	a	reta

Indicando	por	cmáx	o	valor	máximo	de	f	em	A,	a	reta	 	para	z	=	cmáx	deve	ser	tangente	à	circunferência.
(Por	 quê?)	Da	mesma	 forma,	 para	 z	 =	 cmín	 a	 reta	 	 deve	 ser	 tangente	 à	 circunferência.	Vamos	 então
determinar	c	 para	 que	 a	 reta	 	 seja	 tangente	 à	 circunferência.	Devemos	determinar	c	 de	modo	 que	 o
sistema

tenha	solução	única.	Substituindo	y	=	c	−	2x	em	x2	+	y2	=	1	obtemos

x2	+	(c	−	2x)2	=	1	ou	5x2	−	4cx	+	c2	−	1	=	0.

Para	que	o	sistema	tenha	solução	única,	o	discriminante	deve	ser	igual	a	zero:

16c2	−	20	(c2	−	1)	=	0

ou	seja,



Assim,	 	é	o	valor	máximo	de	 f	em	A	e	− 	o	valor	mínimo.	Vamos,	agora,	determinar	os	pontos	de
máximo	e	de	mínimo.	O	ponto	de	máximo	é	o	ponto	em	que	a	reta	2x	+	y	=	 	tangencia	a	circunferência.
Tal	ponto	é	a	solução	do	sistema

onde	x	−	2y	=	0	é	a	reta	que	passa	pela	origem	e	é	perpendicular	a	2x	+	y	=	 .	O	ponto	de	máximo	é:	

.	Deixamos	a	seu	cargo	verificar	que	 	é	o	ponto	de	mínimo.

O	próximo	exemplo	será	utilizado	posteriormente.
■

EXEMPLO	9.	Seja	 .

a)	Desenhe	as	curvas	de	nível	de	f.
b)	Determine	a	imagem	de	f.

Solução

Para	c	≠	0,

Resolvendo	em	x	obtemos

De	passagem,	observamos	que	a	imagem	de	f	é	o	intervalo	[−	1,	1].	(Por	quê?)	O	valor	máximo	de	f	é	1	e
é	 atingido	 em	 todos	 os	 pontos,	 diferentes	 de	 (0,	 0),	 da	 parábola	 x	 =	 y2	 (c	 =	 1).	 A	 curva	 de	 nível
correspondente	a	c	≠	0,	−	1	<	c	<	1,	é	constituída	de	todos	os	pontos	(x,	y)	≠	(0,	0)	que	pertencem	ou	a



ou	a

Observe	que,	à	medida	que	c	vai	se	aproximando	de	zero,	a	parábola	de	“fora”,	 ,	vai

“abrindo”	cada	vez	mais,	enquanto	 	vai	“fechando”	cada	vez	mais.	O	valor	mínimo

de	 f	 é	−	1	e	é	atingido	em	 todos	os	pontos,	diferentes	de	 (0,	0),	da	parábola	x	=	−y2.	 Para	 ajudá-lo	 a
visualizar	o	gráfico,	vamos	estudar,	com	auxílio	das	curvas	de	nível,	a	variação	de	f	sobre	a	reta	x	=	1;	o
que	vamos	fazer,	então,	é	estudar	a	variação	de	f	(1,	y)	quando	y	varia	em	 :	quando	y	varia	de	−	1	a	0,	f
(1,	y)	decresce,	passando	do	valor	1	em	(1,	−	1)	para	o	valor	0	em	(1,	0);	quando	y	varia	de	0	a	1,	f	(1,	y)
cresce,	 passando	do	valor	0	 em	 (1,	 0)	para	o	valor	1	 em	 (1,	 1);	 f	 (1,	y)	 é	 crescente	 em	 ]−	∞,	−	1]	 e
decrescente	em	[1,	+	∞[.	Observe	que	f	(1,	y)	tende	a	zero	para	y	→	+	∞	ou	y	→	−∞.



1.

a)

b)

c)

d)

e)

f)

g)

h)

i)

h)

l)

m)

n)

o)

A	próxima	figura	mostra	a	interseção	do	gráfico	de	f	com	o	plano	x	=	1.	Sugerimos	ao	leitor	desenhar
a	interseção	do	gráfico	de	f	com	o	plano	x	=	x0,	onde	x0	≠	0	é	um	real	qualquer.

Deu	para	ter	uma	ideia	do	gráfico	de	f?	Desafio:	tente	desenhar	ou	fazer	uma	maquete	do	gráfico.

b)	Im	f	=	[−	1,	1].

Para	finalizar,	observamos	que	a	denominação	curva	de	nível	varia	de	acordo	com	o	que	a	função	f
representa.	Por	exemplo:	se	f	é	uma	distribuição	de	temperatura	plana,	(f	(x,	y)	é	a	temperatura	no	ponto
(x,	 y))	 as	 curvas	 de	 nível	 denominam-se	 isotermas	 (pontos	 de	 mesma	 temperatura);	 se	 f	 é	 a	 energia
potencial	 de	 um	 certo	 campo	 de	 forças	 bidimensional,	 as	 curvas	 de	 nível	 denominam-se	 curvas
equipotenciais	etc.

■

Exercícios	8.2	

Desenhe	as	curvas	de	nível	e	esboce	o	gráfico.

f	(x,	y)	=	1	−	x2	−	y2

f	(x,	y)	=	x	+	3y

z	=	4x2	+	y2

f	(x,	y)	=	1	+	x2	+	y2

z	=	x	+	y	+	1

f	(x,	y)	=	x2,	−	1	≤	x	≤	0	e	y	≥	0

f	(x,	y)	=	1	−	x2,	x	≥	0,	y	≥	0	e	x	+	y	≤	1

z	=	(x	−	y)2,	x	≥	0	e	y	≥	0

z	=	f(x,	y),	dada	por	x2	+	4y2	+	z2	=	1,	z	≥	0

z	=	arctg	(x2	+	y2)

f	(x,	y)	=	x,	x	≥	0



p)

q)

r)

2.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

3.

4.

5.

a)

b)

c)

f	(x,	y)	=	sen	x,	0	≤	x	≤	π,	y	≥	0

f	(x,	y)	=	xy,	0	≤	x	≤	1,	0	≤	y	≤	1

Desenhe	as	curvas	de	nível	e	determine	a	imagem:

f	(x,	y)	=	x	−	2y

z	=	xy

f	(x,	y)	=	x2	−	y2

z	=	4x2	+	y2

z	=	3x2	−	4xy	+	y2

Desenhe	as	curvas	de	nível	e	esboce	o	gráfico	da	função

Determine,	caso	existam,	os	valores	máximo	e	mínimo	de	f	em	A;	determine,	também,	os	pontos	em	que	estes	valores	são	atingidos.

Raciocinando	geometricamente,	determine,	caso	existam,	os	valores	máximo	e	mínimo	de	f	em	A,	bem	como	os	pontos	em	que	estes
valores	são	atingidos.

f	(x,	y)	=	2x	+	y	+	3	e	A	o	conjunto	de	todo	(x,	y)	tais	que	x	≥	0,	y	≥	0	e	x	+	y	≤	2.

f	(x,	y)	=	x	+	y	e	A	o	conjunto	de	todos	(x,	y)	tais	que	x	≥	0,	y	≥	0,	x	+	2y	≤	7,	2x	+	y	≤	5	e	y	≥	x	−	1.

	e	A	o	conjunto	de	todos	(x,	y)	tais	que	−	1	≤	x	≤	0	e	1	≤	y	≤	2.



d)

6.

7.

8.

9.

10.

a)

b)

c)

d)

11.

12.

a)
b)

13.

a)
b)

14.

8.3.

	e	A	o	círculo	(x	−	3)2	+	(y	−	1)2	≤	1.

Um	ponto	P	descreve	uma	curva	sobre	a	superfície	z	=	xy	de	modo	que	a	sua	projeção	Q	sobre	o	plano	xy	descreve	a	curva	x	=	5	−	t,
y	=	t2	+	3	e	z	=	0.	Determine	as	alturas	máxima	e	mínima	(em	relação	ao	plano	xy)	quando	t	percorre	o	intervalo	[0,	4].

Um	ponto	P	descreve	uma	curva	sobre	o	gráfico	da	função	f	(x,	y)	=	x2	+	y2	de	modo	que	a	sua	projeção	Q	sobre	o	plano	xy	descreve
a	reta	x	+	y	=	1.	Determine	o	ponto	da	curva	que	se	encontra	mais	próximo	do	plano	xy.	(Desenhe	a	trajetória	descrita	por	P.)

Seja	 .	Desenhe	a	imagem	da	curva	γ	(t)	=	(x	(t),	y	(t),	z	(t))	onde	x	=	R	cos	t,	y	=	R	sen	t	e	z	=	f	(x	(t),	y	(t))	(R

>	0).	Como	é	o	gráfico	de	f?

Mesmo	exercício	que	o	anterior	para	a	função	 .

Sejam	f	(x,	y)	=	xy	e	γ	(t)	=	(at,	bt,	f	(at,	bt)).	Desenhe	a	imagem	de	γ	sendo

a	=	0	e	b	=	1.

a	=	1	e	b	=	1.

a	=	1	e	b	=	0.

a	=	−	1	e	b	=	1.

Como	é	o	gráfico	de	f	(x,	y)	=	xy?

Suponha	que	T	(x,	y)	=	4x2	+	9y2	represente	uma	distribuição	de	temperatura	no	plano	xy:	T	(x,	y)	é	a	temperatura,	que	podemos	supor
em	ºC,	no	ponto	(x,	y).

Desenhe	a	isoterma	correspondente	à	temperatura	de	36ºC.
Determine	o	ponto	de	mais	baixa	temperatura	da	reta	x	+	y	=	1.

Suponha	que	T	(x,	y)	=	2x	+	y	(ºC)	represente	uma	distribuição	de	temperatura	no	plano	xy.

Desenhe	as	isotermas	correspondentes	às	temperaturas:	0ºC,	3ºC	e	−	1ºC.
Raciocinando	geometricamente,	determine	os	pontos	de	mais	alta	e	mais	baixa	temperatura	do	círculo	x2	+	y2	≤	4.

Duas	curvas	de	nível	podem	interceptar-se?	Justifique.

	

FUNÇÕES	DE	TRÊS	VARIÁVEIS	REAIS	A	VALORES	REAIS.
SUPERFÍCIES	DE	NÍVEL

Uma	função	de	três	variáveis	reais	a	valores	reais,	definida	em	A	⊂	 3,	é	uma	função	que	associa,	a
cada	 terna	 ordenada	 (x,	 y,	 z)	∈	A,	 um	 único	 número	 real	w	 =	 f	 (x,	 y,	 z).	 O	 gráfico	 de	 tal	 função	 é	 o
conjunto

O	 gráfico	 de	 f	 é	 então	 um	 subconjunto	 do	 4,	 não	 nos	 sendo	 possível,	 portanto,	 representálo
geometricamente.	Para	se	ter	uma	visão	geométrica	de	tal	função,	podemos	nos	valer	de	suas	superfícies
de	nível.	Seja	c	∈	Im	f	o	conjunto	de	todos	os	pontos	(x,	y,	z)	∈	A	 tais	que	 f	(x,	y,	z)	=	c	denomina-se
superfície	de	nível	correspondente	ao	nível	w	=	c.

EXEMPLO	1.	Seja	 f	 (x,	y,	z)	=	y.	Para	cada	real	c,	a	superfície	de	nível	correspondente	a	w	=	c	é	o



1.

2.

a)

b)

c)

d)

3.

plano	y	=	c.

EXEMPLO	2.	As	superfícies	de	nível	de	f	(x,	y,	z)	=	x2	+	y2	+	z2	são	superfícies	esféricas	de	centro	na
origem

x2	+	y2	+	z2	=	c.

A	superfície	de	nível	correspondente	a	c	0	é	o	ponto	(0,	0,	0).
■

Exercícios	8.3	

Represente	geometricamente	o	domínio	da	função	dada.

Desenhe	a	superfície	de	nível	correspondente	a	c	=	1.

f	(x,	y,	z)	=	x

f	(x,	y,	z)	=	z

f	(x,	y,	z)	=	x2	+	y2

f	(x,	y,	z)	=	x2	+	4y2	+	z2

Duas	superfícies	de	nível	de	uma	função	f	podem	interceptar-se?	Justifique.

	



9.1.

9

LIMITE	E	CONTINUIDADE

LIMITE

Esta	seção	é	quase	uma	reprodução	dos	tópicos	abordados	no	Cap.	3	sobre	limite	de	funções	de	uma
variável	real,	razão	pela	qual	a	maioria	dos	resultados	será	enunciada	em	forma	de	exercícios.

Definição.	Sejam	f	:	A	⊂	 2	→	 	uma	função,	(x0,	y0)	um	ponto	de	acumulação	de	A	e	L	um	número	real.	Definimos

	significa:	dado	 	>	0,	existe	δ	>	0	tal	que	f	(x,	y)	permanece	em	]L	−	 ,	L	+	 [
quando	(x,	y),	(x,	y)	≠	(x0,	y0),	varia	na	bola	aberta	de	centro	(x0,	y0)	e	raio	δ.

Observação.	De	agora	em	diante,	sempre	que	falarmos	que	f	tem	limite	em	(x0,	y0),	fica	implícito	que	(x0,
y0)	é	ponto	de	acumulação	de	Df.

EXEMPLO	1.	Se	f	(x,	y)	=	k	é	uma	função	constante,	então,	para	todo	(x0,	y0)	em	 2,

Solução

|	f	(x,	y)	−	k	|	=	|	k	−	k	|	0;	assim,	dado	 	>	0	e	tomando-se	um	δ	>	0	qualquer,



0	<	||	(x,	y)	−	(x0,	y0)	||	<	δ	⇒	|	f	(x,	y)	−	k	|	<	 .

Logo,

EXEMPLO	2.	Se	f	(x,	y)	=	x,	para	todo	(x0,	y0)	∈	 2,

Solução

Para	todo	(x,	y)	em	 2,	|	x	−	x0	|	≤	||	(x,	y)	−	(x0,	y0)	||.	(Verifique.)

Então,	dado	 	>	0	e	tomando-se	δ	=	 	vem:

0	<	||	(x,	y)	−	(x0,	y0)	||	<	δ	⇒	|	x	−	x0	|	<	

ou	seja,

0	<	||	(x,	y)	−	(x0,	y0)	||	<	δ	⇒	|	f	(x,	y)	−	x0	|	<	 .

Logo,

EXEMPLO	3.	 	tem	limite	em	(0,	0)?	Justifique.

Solução

Inicialmente,	vejamos	como	se	comportam	os	valores	f	(x,	y)	para	(x,	y)	próximo	de	(0,	0).	Sobre	o
eixo	x	temos:	f	(x,	0)	=	1,	x	≠	0.	Sobre	o	eixo	y,	f	(0,	y)	=	−	1,	y	≠	0.

O	estudo	anterior	nos	mostra	que	não	existe	número	L	tal	que	f	(x,	y)	permaneça	próximo	de	L	para	(x,	y)
próximo	 de	 (0,	 0);	 este	 fato	 indica-nos	 que	 f	 não	 deve	 ter	 limite	 em	 (0,	 0)	 e	 não	 tem	mesmo,	 pois,



qualquer	que	seja	L,	tomando-se	 	=	 ,	tem-se:

se	L	≤	0,	|	f	(x,	0)	−	L	|	≥	 	para	todo	x	≠	0;

se	L	>	0,	|	f	(0,	y)	−	L	|	≥	 	para	todo	y	≠	0.

Assim,	para	todo	real	L,	a	afirmação

é	falsa.
■

Quando	 tivermos	que	provar	que	determinados	 limites	não	existem,	o	próximo	exemplo	poderá	nos
ajudar.

EXEMPLO	4.	Suponha	que	 .	Seja	γ	uma	curva	em	 2,	contínua	em	 t
0
,	com	γ

(t0)	=	(x0,	y0)	e,	para	t	≠	t0,	γ	(t)	≠	(x0,	y0)	com	γ	(t)	∈	Df.	Prove	que

Solução

De	 	segue	que	dado	 	>	0,	existe	δ
1
	>	0	tal	que

Sendo	γ	contínua	em	t0,	para	todo	δ1	>	0	acima,	existe	δ	>	0	tal	que

e,	portanto,	tendo	em	vista	γ	(t)	≠	(x0,	y0)	para	t	≠	t0,

De	 	e	 	segue

ou	seja,

Observação.	Sejam	γ1	e	γ2	duas	curvas	nas	condições	do	Exemplo	4.	Segue	do	exemplo	anterior	que	se
ocorrer



com	L
1
	≠	L

2
,	então,	 	não	existirá.	Da	mesma	forma,	tal	limite	não	existirá	se	um	dos

limites	em	 	não	existir.

Vejamos	 como	 provar	 que	 	 não	 existe	 (Exemplo	 3)	 utilizando	 a	 observação

acima.	Sejam	γ
1
	(t)	=	(t,	0)	e	γ

2
	(t)	=	(0,	t).	Seja	 .	Temos

e

Logo,	 	não	existe.

Observamos	que	continuam	válidas	para	funções	de	duas	variáveis	reais	a	valores	reais	as	seguintes
propriedades	dos	limites	cujas	demonstrações	são	exatamente	iguais	às	que	fizemos	para	funções	de	uma
variável	real	(reveja	o	Cap.	3	do	Vol.	1).

1.	(Teorema	do	confronto.)	Se	f	(x,	y)	≤	g	(x,	y)	≤	h	(x,	y)	para	0	<	||	(x,	y)	−	(x0,	y0)	||	<	r	e	se

então

2.	Se	 	e	se	|	g	(x,	y)	|	≤	M	para	0	<	||	(x,	y)	−	(x
0
,	y

0
)	||	<	r,	onde	r	>	0	e	M	>	0

são	reais	fixos,	então

3.	 .

4.	 .

5.	 .



6.	Se	 .

7.	(Conservação	do	sinal.)	Se	 ,	L	>	0,	então	existirá	δ	>	0,	tal	que,	para	todo
(x,	y)	∈	Df,

EXEMPLO	5.	Calcule,	caso	exista,	 .

Solução

EXEMPLO	6.	Calcule,	caso	exista,	

Solução

Seja	 	e	tomemos	γ
1
	(t)	=	(0,	t)	e	γ

2
	(t)	=	(t,	t).

e



1.

2.

a)

b)

c)

3.

4.

5.

Logo,	 	não	existe.

■

CUIDADO:	 	não	é	limitada!

Exercícios	9.1	

Calcule,	caso	exista.

Seja	 	(veja	Exemplo	9	—	Seção	8.2).

Considere	a	reta	γ	(t)	=	(at,	bt),	com	a2	+	b2	>	0;	mostre	que,	quaisquer	que	sejam	a	e	b,

Tente	visualizar	este	resultado	através	das	curvas	de	nível	de	f.

Calcule	 ,	onde	δ	(t)	=	(t2,	t).

(Antes	de	calcular	o	limite,	tente	prever	o	resultado	olhando	para	as	curvas	de	nível	de	f.)

	existe?	Por	quê?

Sejam	γ1	e	γ2	curvas	satisfazendo	as	condições	do	Exemplo	4.	A	afirmação:

é	falsa	ou	verdadeira?	Justifique.

Calcule	 ,	onde	f	(x,	y)	=	x
2
	+	y.

Calcule,	caso	exista,	 ,	onde	f	é	dada	por	 .



6.

7.

8.

9.2.

Suponha	que	 ,	com	g	não	definida	em	a	e	Im	f	⊂	D
g
.	Prove	que

Prove,	ainda,	que	o	resultado	acima	continua	válido	se	supusermos	g	definida	em	a,	com	g	contínua	em	a.

Calcule	 .

Seja	 .

Calcule	 .

	

CONTINUIDADE

Definição.	Seja	f	 uma	 função	de	duas	variáveis	 reais	 a	valores	 reais	 e	 seja	 (x0,	y0)	∈	Df,	 com	 (x0,	y0)	 ponto	 de	 acumulação	 de	Df.
Definimos:

f	contínua	em	

Se	 f	 for	 contínua	 em	 todos	 os	 pontos	 de	 um	 subconjunto	A	 de	Df,	 diremos	 que	 f	 é	contínua	 em	A.
Diremos,	simplesmente,	que	f	é	contínua	se	o	for	em	todos	os	pontos	de	seu	domínio.

EXEMPLO	1.	A	função	constante	f	(x,	y)	=	k	é	contínua,	pois,

para	todo	(x0,	y0)	em	 2.	(Veja	Exemplo	1,	Seção	9.1.)
■

EXEMPLO	2.	A	função	f	(x,	y)	=	x	é	contínua,	pois,

para	todo	(x0,	y0)	em	 2.	(Veja	Exemplo	2,	Seção	9.1.)
■



EXEMPLO	3.	A	função	 	é	contínua	em	(0,	0)?	Justifique.

Solução

Tomando-se	γ1	(t)	=	(t,	0)	e	γ2	(t)	=	(0,	t)	vem,

e

Logo,	 	não	existe,	e,	portanto,	f	não	é	contínua	em	(0,	0).
■

O	próximo	 teorema	nos	diz	que	se	g	 (u)	e	 f	 (x,	y)	 forem	contínuas	e	 se	 Im	 f	⊂	Dg,	 então	 a	 função
composta	h	(x,	y)	=	g	(f	(x,	y))	também	o	será.

Teorema	1.	Sejam	f	:	A	⊂	 2	→	 	e	g	:	B	⊂	 	→	 	duas	funções	tais	que	Im	f	⊂	Dg.	Se	f	for	contínua	em	(x0,	y0)	e	g	contínua
em	f	(x0,	y0),	então	a	composta	h	(x,	y)	=	g	(f	(x,	y))	será	contínua	em	(x0,	y0).

Demonstração

Como	g	(u)	é	contínua	em	f	(x0,	y0),	dado	 	>	0,	existe	δ1	>	0	tal	que

Sendo	f	contínua	em	(x0,	y0),	para	o	δ1	>	0	acima,	existe	δ	>	0	tal	que

De	 	e	 	resulta,

logo,	h	(x,	y)	=	g	(f	(x,	y))	é	contínua	em	(x0,	y0).
■

Como	consequência	deste	teorema,	segue	que	se	g	(x)	for	contínua,	então	a	função	h	dada	por	h	(x,	y)
=	g	 (x)	 também	 será	 contínua.	De	 fato,	 sendo	 f	 (x,	 y)	 =	 x,	 teremos	h	 (x,	 y)	 =	g	 (f	 (x,	 y)),	 com	g	 e	 f
contínuas.



EXEMPLO	4.	h	(x,	y)	=	x2	é	contínua	em	 2,	pois	g	(x)	=	x2	é	contínua	em	 .
■

EXEMPLO	5.	Sendo	 f	 (x,	y)	contínua,	as	compostas	 sen	 f	 (x,	y),	cos	 f	 (x,	y),	 [f	 (x,	 y)	 ]2	 etc.	 também
serão.

■

Teorema	2.	Sejam	f	:	A	⊂	 2	→	 	uma	função	e	γ	:	I	→	 2	uma	curva	tais	que	γ	(t)	∈	A	para	todo	t	∈	I.	Se	γ	for	contínua	em	t0
∈	I	e	f	contínua	em	γ	(t0),	então	a	composta	g	(t)	=	f	(γ	(t))	será	contínua	em	t0.

Demonstração

Fica	a	cargo	do	leitor.

Sejam	 f	 (x,	y)	e	g	 (x,	y)	 contínuas	em	 (x0,	y0)	 e	 seja	 k	 uma	 constante.	 Segue	 das	 propriedades	 dos
limites	que	f	+	g,	k	f	e	f	·	g	são,	também,	contínuas	em	(x

0
,	y

0
).	Além	disso,	se	g	(x

0
,	y

0
)	≠	0,	então	 	será,

também,	contínua	em	(x0,	y0).
■

EXEMPLO	6.	Seja

Determine	o	conjunto	dos	pontos	de	continuidade	de	f.

Solução

Nos	pontos	(x,	y)	≠	(0,	0)	podemos	aplicar	a	propriedade	relativa	a	quociente	de	funções	contínuas,
pois,	 x3	 e	 x2	 +	 y2	 são	 contínuas	 e	 x2	 +	 y2	 não	 se	 anula	 nestes	 pontos.	 Para	 estudar	 f	 com	 relação	 à
continuidade	no	ponto	(0,	0)	precisamos	primeiro	ver	o	que	acontece	com	o	limite	de	f	neste	ponto.

Conclusão:	f	é	contínua	em	 2.
■



1.

2.

3.

4.

5.

6.

7.

Sejam	agora,	f	:	A	⊂	 2	→	 ,	g,	h	:	B	⊂	 2	→	 	três	funções	tais	que	(g	(x,	y),	h	 (x,	y))	∈	A,	para
todo	(x,	y)	∈	B.	 Sem	nenhuma	dificuldade,	 demonstra-se	que	 se	g	 e	h	 forem	contínuas	 em	 (x0,	y0)	 e	 f
contínua	em	(g	(x0,	y0),	h	(x0,	y0)),	então	a	composta	f	(g	(x,	y),	h	(x,	y))	será,	 também,	contínua	em	(x0,
y0).	Este	resultado,	bem	como	os	teoremas	1	e	2,	são	casos	particulares	de	um	teorema	mais	geral	sobre
continuidade	de	funções	compostas,	que	não	enunciaremos	aqui.

Exercícios	9.2	

Determine	o	conjunto	dos	pontos	de	continuidade.	Justifique	a	resposta.

	é	contínua	em	(0,	0)?	Justifique.

Prove	que	se	f	for	contínua	em	(x0,	y0)	e	se	f	(x0,	y0)	>	0,	então	existirá	r	>	0	tal	que	f	(x,	y)	>	0	para	||	(x,	y)	−	(x0,	y0)	||	<	r.

Seja	A	um	subconjunto	do	 2	que	goza	da	propriedade:	quaisquer	que	sejam	(x0,	y0)	e	(x1,	y1)	em	A,	existe	uma	curva	contínua	γ	 :	[a,
b]	→	A	tal	que	γ	(a)	=	(x0,	y0)	e	γ	(b)	=	(x1,	y1).	Prove	que	se	f	for	contínua	em	A	e	se	f	(x0,	y0)	<	m	<	f	(x1,	y1),	então	existirá	
∈	A	tal	que	f	 	=	m.

(Sugestão:	aplique	o	teorema	do	valor	intermediário	à	função	contínua	g	(t)	=	f	(γ(t)),	t	∈	[a,	b].)

Seja	f	:	A	⊂	 2	→	 ,	A	aberto,	uma	função	contínua	e	seja	c	um	número	real	dado.	Prove	que	o	conjunto	{(x,	y)	∈	A	|	f	(x,	y)	<	c}	é
aberto.

Dizemos	que	a	sequência	de	pontos	((xn,	yn))n	≥	0	converge	a	 	se,	dado	 	>	0,	existe	um	natural	n0	tal	que

Suponha	que	f	(x,	y)	seja	contínua	em	 ,	que	((xn,	yn))n	≥	0	convirja	para	 	e	que	(xn,	yn)	∈	Df	para	todo	n	≥	0.	Prove	que	a
sequência	dada	por	an	=	f	(xn,	yn)	converge	para	f	 .

Suponha	 f	 contínua	 no	 retângulo	 .	 Prove	 que	 f	 é	 limitada	 neste	 retângulo.	 (f
limitada	em	A	significa	que	existe	M	>	0	tal	que	|	f	(x,	y)	|	≤	M	em	A.)

(Sugestão:	suponha,	por	absurdo,	que	f	não	seja	limitada	em	A.	Então,	existirá	(x1,	y1)	em	A	 tal	que	 |	f	(x1,	y1)	 |	>	1.	Tomando-se	o
ponto	médio	de	cada	lado,	divida	o	retângulo	A	em	4	retângulos	iguais;	em	um	deles,	batizado	A2,	f	não	será	limitada,	logo	existirá	(x2,



8.

y2)	∈	A2	tal	que	|	f	(x2,	y2)	|	>	2	etc.)

(Teorema	de	Weierstrass.)	Seja	f	como	no	Exercício	7.	Prove	que	f	assume	em	A	valor	máximo	e	valor	mínimo.

(Sugestão:	veja	Apêndice	A2.4	—	Volume	1.)
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DERIVADAS	PARCIAIS

DERIVADAS	PARCIAIS

Seja	z	=	 f	 (x,	y)	 uma	 função	 real	 de	duas	variáveis	 reais	 e	 seja	 (x0,	y0)	∈	Df.	 Fixado	y0,	 podemos
considerar	a	função	g	de	uma	variável	dada	por

g	(x)	=	f	(x,	y0).

A	derivada	desta	função	no	ponto	x	=	x0	(caso	exista)	denomina-se	derivada	parcial	de	f,	em	relação	a	x,
no	ponto	(x0,	y0)	e	indica-se	com	uma	das	notações:

Assim,	 .	De	acordo	com	a	definição	de	derivada	temos:

ou	seja,

ou,	ainda,

Seja	A	o	subconjunto	de	D
f
	formado	por	todos	os	pontos	(x,	y)	 tais	que	 	 (x,	y)	existe;	 fica	assim

definida	uma	nova	função,	indicada	por	 	e	definida	em	A,	que	a	cada	(x,	y)	∈	A	associa	o	número	
(x,	y),	onde



Tal	função	denomina-se	 função	derivada	parcial	de	1.ª	ordem	de	f,	em	relação	a	x,	ou,	simplesmente,
derivada	parcial	de	f	em	relação	a	x.

De	modo	análogo,	define-se	derivada	parcial	de	f,	em	relação	a	y,	no	ponto	(x0,	y0)	que	se	indica	por

ou

Para	se	calcular	 	fixa-se	y	=	y
0
	em	z	=	f	(x,	y)	e	calcula-se	a	derivada	de	g	(x)	=	f	(x,	y

0
)

em	x	=	x
0
:	 .	Da	mesma	forma,	 	 (x,	y)	é	a	derivada,	em	relação	a	x,	 de	 f	 (x,	 y),

mantendo-se	y	constante.	Por	outro	lado,	 	(x,	y)	é	a	derivada,	em	relação	a	y,	de	f	(x,	y),	mantendo-se

x	constante.

EXEMPLO	1.	Seja	f	(x,	y)	=	2xy	−	4y.	Calcule:

Solução

a)	Devemos	olhar	y	como	constante	e	derivar	em	relação	a	x:

pois

Por	limite:



b)	Devemos	olhar	x	como	constante	e	derivar	em	relação	a	y:

c)	Conforme	a,	para	todo	(x,	y)	em	 2,	 	(x,	y)	=	2y.	Daí

Assim,	

d)	Conforme	b,	para	todo	(x,	y)	em	 2,	 	(x,	y)	=	2x	−	4.	Logo

EXEMPLO	2.	Considere	a	função	z	=	f	(x,	y)	dada	por	z	=	arctg	(x2	+	y2).	Calcule:

Solução

a)	

ou	seja,

b)	

ou	seja,



Antes	de	passarmos	ao	próximo	exemplo,	observamos	que	uma	função	z	=	f	(x,	y)	se	diz	definida	ou
dada	 implicitamente	pela	equação	g	 (x,	y,	z)	=	0	 se,	para	 todo	 (x,	y)	∈	Df,	g	 (x,	y,	 f	 (x,	 y))	 =	 0.	 Por
exemplo,	a	função	 ,	x2	+	y2	<	1	é	dada	 implicitamente	pela	equação	x2	+	y2	+	z2	=	1,
pois,	para	todo	(x,	y)	no	seu	domínio,	 .	As	funções	 	x2

+	y2	≤	1,	e	 	x2	+	y2	≤	1,	são	também,	dadas	implicitamente	pela	equação	x2	+	y2	+	z2	=
1	(verifique).

EXEMPLO	3.	Sendo	z	=	f	(x,	y)	dada	implicitamente	por	x2	+	y2	+	z2	=	1,	z	>	0,	calcule:

Solução

ou	seja,

Poderíamos,	também,	ter	chegado	ao	resultado	acima	trabalhando	diretamente	com	a	equação	x2	+	y2	+	z2
=	1:

ou	seja,



CUIDADOS	COM	NOTAÇÕES.	 A	 notação	 	 (x,	 y),	 como	 vimos,	 indica	 a	 derivada	 de	 f	 (x,	 y)	 em

relação	a	x,	onde	y	é	olhado	como	constante,	ou	seja,	como	independente	de	x.	Por	outro	lado,	a	notação
	[f	(x,	y)]	indica	a	derivada	de	f	(x,	y),	onde	y	deve	ser	olhado	 (quando	nada	for	dito	em	contrário)

como	função	de	x.	As	notações	foram	criadas	para	serem	usadas	corretamente.	Portanto,	não	confunda	
	com	 .

EXEMPLO	4.	 	(x2	+	y2)	=	2x,	enquanto

pois,

EXEMPLO	5.	Suponha	que	z	=	f	(x,	y)	seja	dada	implicitamente	pela	equação

exyz	=	x2	+	y2	+	z2.

Suponha	que	f	admita	derivada	parcial	em	relação	a	x,	expresse	 	em	termos	de	x,	y	e	z.

Solução

Para	todo	(x,	y)	∈	Df,

Temos:



e

Assim,

ou	seja,

em	todo	(x,	y)	∈	Df	com	xy	exyz	−	2z	≠	0.
■

EXEMPLO	6.	Seja	 	uma	função	de	uma	variável	e	derivável.	Considere	a	função	g	dada	por	g
(x,	y)	=	ϕ	(x2	+	y2).	Verifique	que

Solução

Então,	 ,	ou	seja,

Da	mesma	forma,	 ,	ou	seja,

Assim,

Observação.	Se	no	exemplo	anterior	a	função	ϕ	fosse,	por	exemplo,	a	função	seno,	teríamos	g	(x,	y)	=



sen	 (x2	 +	 y2)	 e,	 assim,	 	

EXEMPLO	7.	Seja	 .	Determine

Solução

a)	Nos	pontos	(x,	y)	≠	(0,	0)	podemos	aplicar	a	regra	do	quociente

ou	seja,

Em	(0,	0)

assim,	g	(x)	=	f	(x,	0)	=	x,	para	todo	x;	segue	que

Poderíamos,	também,	ter	calculado	 	(0,	0)	por	limite:

Assim,	 	é	a	função	de	 2	em	 	dada	por



b)	Para	(x,	y)	≠	(0,	0)

Em	(0,	0)

assim,	h	(y)	não	é	contínua	em	y	=	0,	logo,	h′	(0)	não	existe,	ou	seja,	 	(0,	0)	não	existe.	Segue	que	

está	definida	em	todo	(x,	y)	≠	(0,	0)	(mas	não	em	(0,	0))	e	é	dada	por

EXEMPLO	8.	Seja	f	:	 2	→	 	tal	que	 	(x,	y)	=	0	para	todo	(x,	y)	em	 2.	Prove	que	f	não	depende	de

x,	isto	é,	que	existe	 	tal	que	f	(x,	y)	=	ϕ	(y),	para	todo	(x,	y)	∈	 2.

Solução

Fixado	 um	 y	 qualquer,	 a	 função	 h	 (x)	 =	 f	 (x,	 y)	 é	 constante	 em	 ,	 pois,	 para	 todo	 x,	
	Segue	que,	para	todo	x,

h	(x)	=	h	(0)

ou	seja,

f	(x,	y)	=	f	(0,	y).

Como	y	foi	fixado	de	modo	arbitrário,	resulta	que	f	(x,	y)	=	f	(0,	y)	se	verifica	para	 todo	(x,	y)	em	 2.
Tomando-se	ϕ	(y)	=	f	(0,	y)	teremos

f	(x,	y)	=	ϕ	(y)

para	todo	(x,	y)	∈	 2.
■

EXEMPLO	9.	(Interpretação	geométrica.)	Suponhamos	que	z	=	 f	 (x,	y)	admite	derivadas	parciais	em
(x0,	y0)	∈	Df.	O	gráfico	da	função	g	(x)	=	f	(x,	y0),	no	plano	x′	y0	z′	(veja	figura	adiante),	é	a	interseção	do



plano	y	=	y
0
	com	o	gráfico	de	 f;	 	 (x

0
,	y

0
)	é,	então,	o	coeficiente	angular	da	reta	 tangente	T	 a	 esta

interseção	no	ponto	(x0,	y0,	f	(x0,	y0)):

O	 exemplo	 seguinte	 mostra-nos	 que	 a	 existência	 de	 derivada	 parcial	 num	 ponto	 não	 implica	 a
continuidade	da	função	neste	ponto.

EXEMPLO	10.	Mostre	que	a	função

admite	derivadas	parciais	em	(0,	0),	mas	não	é	contínua	neste	ponto.

Solução

Assim,	f	admite	derivadas	parciais	em	(0,	0).	Vamos	mostrar,	a	seguir,	que	f	não	é	contínua	em	(0,	0).	A
composta	de	f	com	a	reta	γ	dada	por	γ	(t)	=	(t,	t)	é



1.

2.

3.

4.

5.

Como	γ	 é	 contínua	em	 t	=	0	e	a	composta	g	 (t)	=	 f	 (t,	 t)	 não	 é	 contínua	 em	 t	=	0,	 resulta	que	 f	 não	 é
contínua	em	(0,	0).	(Por	quê?)

O	exemplo	anterior	mostra-nos	ainda	que	a	mera	existência	das	derivadas	parciais	de	f	num	ponto	(x0,
y0)	 não	 implica	 a	 derivabilidade	 em	 t0	 da	 composta	 g	 (t)	 =	 f	 (γ	 (t)),	 onde	 γ	 é	 uma	 curva	 suposta
diferenciável	em	t0	e	γ	(t0)	=	(x0,	y0).	No	exemplo	anterior,	f	admite	derivadas	parciais	em	(0,	0),	γ	(t)	=
(t,	t)	é	diferenciável	em	t	=	0,	mas	a	composta	g	(t)	=	f	(γ	(t))	não	é	diferenciável	em	t	=	0.

Do	que	vimos	acima,	resulta	que	a	existência	de	derivadas	parciais	num	ponto	(x0,	y0)	não	é	uma	boa
generalização	 do	 conceito	 de	 diferenciabilidade	 dado	 para	 funções	 de	 uma	 variável	 real.	 Uma	 boa
generalização	deverá	implicar	a	continuidade	da	função	e	a	diferenciabilidade	da	composta	g	(t)	=	 f	 (γ
(t))	quando	f	e	γ	o	forem,	porque	é	isso	que	acontece	no	caso	de	funções	de	uma	variável.	Veremos	no
próximo	capítulo	qual	é	a	boa	generalização	do	conceito	de	diferenciabilidade	para	 funções	de	várias
variáveis	reais.

Exercícios	10.1	

Determine	as	derivadas	parciais

Considere	a	função	 .	Verifique	que	 .

Seja	ϕ	:	 	→	 	uma	função	de	uma	variável	real,	diferenciável	e	tal	que	ϕ′	(1)	=	4.	Seja	 .	Calcule

Seja	 	a	função	do	exercício	anterior.	Verifique	que

para	todo	(x,	y)	∈	 2,	com	y	≠	0.

Considere	a	função	dada	por	z	=	x	sen	 .	Verifique	que



6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

A	função	p	=	p	(V,	T)	é	dada	implicitamente	pela	equação	pV	=	nRT,	onde	n	e	R	são	constantes	não	nulas.	Calcule	 .

Seja	z	=	ey	ϕ	(x	−	y),	onde	ϕ	é	uma	função	diferenciável	de	uma	variável	real.	Mostre	que

Seja	 	uma	função	diferenciável	de	uma	variável	real	e	seja	 .	Mostre	que

Sejam	z	=	ex2	+	y2,	x	=	ρ	cos	θ	e	y	=	ρ	sen	θ.	Verifique	que

Conclua	que

Suponha	que	a	função	z	=	z	(x,	y)	admita	derivadas	parciais	em	todos	os	pontos	de	seu	domínio	e	que	seja	dada	 implicitamente	pela

equação	xyz	+	z
3
	=	x.	Expresse	 	em	termos	de	x,	y,	z.

Seja	z	=	f	(x	+	at)	onde	f	é	uma	função	diferenciável	de	uma	variável	real	e	a	uma	constante.	Verifique	que

Seja	z	=	f	(x2	−	y2),	onde	f	(u)	é	uma	função	diferenciável	de	uma	variável	real.	Verifique	que

Considere	a	 função	dada	por	w	=	xy	+	z
4
,	 onde	z	=	z	(x,	y).	Admita	que	 	e	que	z	=	1	para	x	 =	 1	 e	 y	 =	 1.	 Calcule	

.

Seja	 ,	onde	ϕ	é	uma	função	diferenciável	de	uma	variável	real.	Mostre	que



17.

18.

19.

20.

21.

a)

b)

22.

a)

b)

c)

d)

e)

23.

a)
b)

c)

d)

24.

Seja	 	uma	função	diferenciável	e	seja	 .	Verifique	que

Seja	f	(x,	y)	=	x3y2	−	6xy	+	ϕ	(y).	Determine	uma	função	ϕ	de	modo	que

Determine	uma	função	f	(x,	y)	tal	que

Determine	 	sendo	

Seja	

Esboce	o	gráfico	de	f.

Determine	 .

Seja	f	:	 2	→	 	dada	por:	f	(x,	0)	=	1	+	x2,	f	(0,	y)	=	1	+	y2	e	f	(x,	y)	=	0	se	x	≠	0	e	y	≠	0.

Esboce	o	gráfico	de	f.

Calcule	 .

f	é	contínua	em	(0,	0)?	Justifique.

	(0,	1)	existe?	 	(1,	0)?

Qual	o	domínio	de	 ?

Seja	f	(x,	y)	=	x2	+	y2	e	seja	γ	(t)	=	(t,	t,	z	(t)),	t	∈	 ,	uma	curva	cuja	imagem	está	contida	no	gráfico	de	f.

Determine	z	(t).
Esboce	os	gráficos	de	f	e	γ.

Determine	a	reta	tangente	a	γ	no	ponto	(1,	1,	2).

Seja	T	a	reta	do	item	c;	mostre	que	T	está	contida	no	plano	de	equação

Seja	f	(x,	y)	=	x2	+	y2	e	seja	γ	(t)=	(x	(t),	y	(t),	z	(t))	uma	curva	diferenciável	cuja	imagem	está	contida	no	gráfico	de	f.	Suponha,	ainda,
γ	(0)	=	(1,	1,	2).	Seja	T	a	reta	tangente	a	γ	em	γ	(0).	Mostre	que	T	está	contida	no	plano



25.

26.

27.

28.

29.

a)

b)

c)

d)

e)

f)

30.

31.

Interprete	geometricamente.

Suponha	que	z	=	f	(x,	y)	admita	derivadas	parciais	em	(x0,	y0).	Considere	as	curvas	cujas	imagens	estão	contidas	no	gráfico	de	f:

Sejam	T1	e	T2	as	retas	tangentes	a	γ1	e	γ2,	nos	pontos	γ1	(y0)	e	γ2	(x0),	respectivamente.	Mostre	que	a	equação	do	plano	determinado
pelas	retas	T1	e	T2	é

Seja	 	e	seja	γ	(t)	=	(t,	t,	z	(t)),	t	∈	 ,	uma	curva	cuja	imagem	está	no	gráfico	de	f.	Seja

T	a	reta	tangente	a	γ	no	ponto	γ	(0).	Mostre	que	T	não	está	contida	no	plano	de	equação

Considere	a	função	z	=	f	(x,	y)	e	seja	(x0,	y0)	∈	Df.	Como	você	definiria	plano	tangente	ao	gráfico	de	f	no	ponto	(x0,	y0)?	Admitindo
que	f	 admita	derivadas	parciais	 em	 (x0,	y0),	 escreva	 a	 equação	 de	 um	plano	 que	 você	 acha	 que	 seja	 um	 “forte”	 candidato	 a	 plano
tangente	ao	gráfico	de	f	no	ponto	(x0,	y0,	f	(x0,	y0)).

Dê	exemplo	de	uma	função	f	:	
2
	→	 	tal	que	 	seja	contínua	em	

2
,	mas	que	f	não	seja	contínua	em	nenhum	ponto	de	

2
.

Dizemos	que	(x
0
,	y

0
)	é	um	ponto	crítico	ou	estacionário	de	z	=	f	(x,	y)	se	 	e	 .	Determine	(caso

existam)	os	pontos	críticos	da	função	dada.

f	(x,	y)	=	x2	+	y2

f	(x,	y)	=	2x	+	y3

f	(x,	y)	=	x2	−	2xy	+	3y2	+	x	−	y

f	(x,	y)	=	x3	+	y3	−	3x	−	3y

f	(x,	y)	=	3x2	+	8xy2	−	14x	−	16y

f	(x,	y)	=	x4	+	4xy	+	y4

Seja	(x0,	y0)	um	ponto	de	Df.	Dizemos	que	(x0,	y0)	é	um	ponto	de	máximo	local	de	f	(respectivamente,	ponto	de	mínimo	local)	se
existe	uma	bola	aberta	B	de	centro	(x0,	y0)	tal	que,	para	todo	(x,	y)	∈	B	∩	Df,	f	(x,	y)	≤	f	(x0,	y0)	(respectivamente,	f(x,	y)	≥	f	(x0,	y0)).
Prove	que	se	(x0,	y0)	é	um	ponto	interior	de	Df	e	se	f	admite	derivadas	parciais	em	(x0,	y0),	então	uma	condição	necessária	para
que	(x0,	y0)	seja	um	ponto	de	máximo	local	ou	de	mínimo	local	é	que	(x0,	y0)	seja	ponto	crítico	de	f,	isto	é,	que

Seja	f	:	
2
	→	 	e	suponha	que	 ,	para	todo	(x,	y)	∈	

2
.	Prove	que	f	é	constante.



32.

33.

34.

35.

10.2.

Dê	exemplo	de	uma	função	 f	 :	A	⊂	
2
	→	 	 tal	que	 ,	para	 todo	 (x,	y)	∈	A,	mas	que	 f	 não	 seja

constante	em	A.

Suponha	que,	quaisquer	que	sejam	(x,	y)	e	(s,	t)	em	 2,	|	f	(x,	y)	−	f	(s,	t)	|	≤	||	(x,	y)	−	(s,	t)	||2.	Prove	que	f	é	constante.

Seja	f	:	A	⊂	
2
	→	 ,	A	aberto,	e	suponha	que	 	(x,	y)	existe	para	todo	(x,	y)	∈	A.	Sejam	(x

0
,	y

0
)	e	(x

0
	+	h,	y

0
)	dois	pontos	de	A.

Prove	que	se	o	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0)	estiver	contido	em	A,	então	existirá	 	entre	x0	e	x0	+	h	tal	que

Seja	f	:	A	⊂	
2
	→	 ,	A	aberto,	e	suponha	que	f	admite	derivadas	parciais	em	A.	Seja	(x

0
,	y

0
)	∈	A.	Prove	que	se	 	forem

contínuas	em	(x0,	y0),	então	f	também	será.

(Sugestão.	 ;	aplique	o	TVM	a	(I)	e	(II).)

	
DERIVADAS	PARCIAIS	DE	FUNÇÕES	DE	TRÊS	OU	MAIS	VARIÁVEIS
REAIS

Sejam	w	=	 f	 (x,	y,	z)	 e	 (x0,	y0,	z0)	∈	Df.	Mantendo-se	y0	 e	 z0	 constantes,	 podemos	 considerar	 para
função	g	 (x)	 =	 f	 (x,	 y0,	 z0).	 A	 derivada	 desta	 função,	 em	 x	 =	 x0	 (caso	 exista),	 denomina-se	 derivada

parcial	de	f	em	relação	a	x	no	ponto	(x
0

,	y
0

,	z
0

)	e	indica-se	por	 .

De	modo	análogo,	definem-se	as	derivadas	parciais	 .	Tem-se:

Da	mesma	forma,	definem-se	as	derivadas	parciais	de	uma	função	de	mais	de	três	variáveis	reais.

EXEMPLO.	Calcule	as	derivadas	parciais	da	função	s	=	f	(x,	y,	z,	w)	dada	por

s	=	exyzw.

Solução



1.

2.

3.

4.

5.

6.

Exercícios	10.2	

Calcule	as	derivadas	parciais.

Seja	 .	Verifique	que

Seja	s	=	f	(x,	y,	z,	w)	dada	por	 .	Verifique	que

Seja	f	:	 	→	 	contínua	com	f	(3)	=	4.	Seja

Calcule:

Seja	f	:	 	→	 	diferenciável	e	seja	g	dada	por	g	(x,	y,	z)	=	f	(r)	onde	r	=	||	(x,	y,	z)	||.	Verifique	que

Seja	ϕ	:	 	→	 	uma	função	diferenciável	tal	que	ϕ′	(3)	=	4.	Seja	g	(x,	y,	z)	=	ϕ	(x2	+	y2	+	z2).	Calcule:

	



11.1.

11

FUNÇÕES	DIFERENCIÁVEIS

FUNÇÃO	DIFERENCIÁVEL:	DEFINIÇÃO

O	 objetivo	 desta	 seção	 é	 estender	 para	 funções	 de	 duas	 variáveis	 reais	 o	 conceito	 de
diferenciabilidade	dado	para	funções	de	uma	variável	real.

Vimos	 que,	 por	 definição,	 uma	 função	 f	 (x)	 é	diferenciável	 ou	derivável	 em	 x0	 se	 e	 somente	 se	 o
limite,	quando	h	tende	a	zero,	da	razão	incremental	 	existir	e	for	finito.	Esta	forma	não

é	adequada	para	generalização,	pois	se	f	for	uma	função	de	duas	variáveis	reais	h	será	um	par	ordenado
e,	 então,	 a	 razão	 incremental	 não	 terá	 sentido.	 Nossa	 tarefa	 a	 seguir	 é	 a	 de	 tentar	 obter	 uma	 forma
equivalente	à	definição	de	diferenciabilidade	e	que	seja	passível	de	generalização.

Supondo	f	(x)	diferenciável	em	x0,	existe	um	real	a,	a	=	f′	(x0),	tal	que

Temos:

Como

resulta

Portanto,	f	é	diferenciável	em	x0	se	e	somente	se	existir	um	real	a	tal	que

Estamos,	agora,	em	condições	de	definir	diferenciabilidades	para	funções	de	duas	variáveis	reais.

Definição.	Sejam	f	:	A	→	 ,	A	aberto	de	 2,	e	(x0,	y0)	∈	A.	Dizemos	que	f	é	diferenciável	em	(x0,	y0)	se	e	somente	se	existirem	reais



a	e	b	tais	que

O	próximo	teorema	nos	diz	que	diferenciabilidade	implica	continuidade.

Teorema	1.	Se	f	for	diferenciável	em	(x0,	y0),	então	f	será	contínua	em	(x0,	y0).

Demonstração

Sendo	f	(x,	y)	diferenciável	em	(x0,	y0),	existem	reais	a	e	b	tais	que

onde	E	(h,	k)	é	a	função	dada	por

f	(x0	+	h,	y0	+	k)	=	f	(x0,	y0)	+	ah	+	bk	+	E	(h,	k).

Como

e

resulta

Logo,	f	é	contínua	em	(x0,	y0).
■

Vamos	mostrar,	agora,	que	se	f	 for	diferenciável	em	(x0,	y0),	então	 f	admitirá	derivadas	parciais	em
(x0,	y0)	e

será	a	única	transformação	linear	que	goza	da	propriedade



Teorema	2.	Seja	f	 :	A	⊂	 2	→	 ,	A	aberto,	e	seja	 (x0,	y0)	∈	A.	Se	f	 for	diferenciável	em	(x0,	y0),	 então	 f	 admitirá	 derivadas
parciais	neste	ponto.

Demonstração

Sendo	f	(x,	y)	diferenciável	em	(x0,	y0),	existem	reais	a	e	b	tais	que

onde	E	(h,	k)	=	f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0)	−	ah	−	bk.	Segue	de	 	que

Daí

e,	portanto,

De	modo	análogo,	obtém-se	 .

Observação.	Provamos	acima	que	se

então	 teremos	 necessariamente	 .	 Deste	 modo,	 se	 f	 (x,	 y)	 for

diferenciável	em	(x
0
,	y

0
),	então	 	serão	os	únicos	reais	para	os	quais	o

limite	acima	é	zero.
Segue	do	teorema	2	o	seguinte	importante

Corolário.	Seja	f	(x,	y)	definida	no	aberto	A	⊂	 2	e	seja	(x0,	y0)	∈	A.	Tem-se:



Observações

1.	Segue	do	corolário	acima	que	para	provar	que	uma	função	f	é	diferenciável	em	(x0,	y0)	é	suficiente
provar	que	f	admite	derivadas	parciais	em	(x0,	y0)	e	que

2.	Se	uma	das	derivadas	parciais	não	existir	em	(x0,	y0),	então	f	não	será	diferenciável	neste	ponto.

3.	Se	ambas	as	derivadas	parciais	existirem	em	(x0,	y0),	mas	se	o	limite	acima	não	for	zero,	então	 f
não	será	diferenciável	em	(x0,	y0).

4.	Se	f	não	for	contínua	em	(x0,	y0),	então	f	não	será	diferenciável	em	(x0,	y0).

Dizemos	 que	 f	 é	 diferenciável	 em	 B	⊂	Df	 se	 f	 for	 diferenciável	 em	 todo	 (x,	 y)	∈	 B.	 Diremos,
simplesmente,	que	f	é	uma	função	diferenciável	se	f	for	diferenciável	em	todo	ponto	de	seu	domínio.

EXEMPLO	1.	Prove	que	f	(x,	y)	=	x2y	é	uma	função	diferenciável.

Solução

Precisamos	provar	que	f	é	diferenciável	em	todo	(x,	y)	∈	 2	(Df	=	 2).	f	admite	derivadas	parciais	em
todo	(x,	y)	∈	 2	e

Por	outro	lado,	para	todo	(x,	y)	em	 2,

Como,	para	 ,	resulta



Portanto,	f	é	diferenciável	em	todo	(x,	y)	de	 2,	ou	seja,	f	é	uma	função	diferenciável.
■

EXEMPLO	2.

é	diferenciável	em	(0,	0)?	Justifique.

Solução

f	não	é	contínua	em	(0,	0);	logo,	f	não	é	diferenciável	em	(0,	0).	Para	a	não	continuidade	de	f	em	(0,
0),	veja	Exercício	2,	Seção	9.1.	Observe	que	f	admite	derivadas	parciais	em	(0,	0).

■

EXEMPLO	3.

é	diferenciável	em	(0,	0)?	Justifique.

Solução

Temos

ou	seja,	 .	Segue	que



1.

2.

11.2.

Como	 	não	existe,	resulta	que

logo,	f	não	é	diferenciável	em	(0,	0).
■

Observação.	Como

resulta	que	f	é	contínua	em	(0,	0).	Assim,	f	é	contínua	em	(0,	0),	admite	derivadas	parciais	em	(0,	0),	mas
não	é	diferenciável	em	(0,	0).

Exercícios	11.1	

Prove	que	as	funções	dadas	são	diferenciáveis.

f	é	diferenciável	em	(0,	0)?	Justifique.

	
UMA	CONDIÇÃO	SUFICIENTE	PARA	DIFERENCIABILIDADE

Nosso	objetivo,	nesta	seção,	é	demonstrar	que	a	continuidade	em	A,	A	aberto,	das	derivadas	parciais
de	uma	função	f	garante	a	diferenciabilidade	desta	função	em	todos	os	pontos	de	A.	Este	resultado	é
bastante	 importante,	 pois,	 em	 muitas	 ocasiões,	 é	 mais	 fácil	 verificar	 a	 continuidade	 das	 derivadas
parciais	do	que	a	diferenciabilidade	diretamente	pela	definição.



Teorema.	Sejam	f:	A	⊂	
2
	→	 ,	A	aberto,	e	(x

0
,	y

0
)	∈	A.	Se	as	derivadas	parciais	 	existirem	em	A	e	forem	contínuas

no	ponto	(x0,	y0),	então	f	será	diferenciável	neste	ponto.

Demonstração

Como	A	é	aberto,	existe	uma	bola	aberta	B	de	centro	(x0,	y0),	contida	em	A.	Sejam	h	e	k	tais	que	(x0	+
h,	y0	+	k)	∈	B.	Temos

Fazendo	G	(x)	=	f	(x,	y0	+	k),	pelo	TVM	existe	 ,	entre	x0	e	x0	+	h	tal	que

Do	mesmo	modo,	existe	 	entre	y0	e	y0	+	k	tal	que

Assim,

Subtraindo	a	ambos	os	membros	da	igualdade	acima	 	obtemos:



Segue	que

Pela	continuidade	de	 	em	(x
0
,	y

0
),	as	expressões	(III)	e	(IV)	tendem	a	zero,	quando	(h,

k)	→	(0,	0),	e,	portanto,

logo,	f	é	diferenciável	em	(x0,	y0).
■

Seja	f	(x,	y)	uma	função.	Dizemos	que	f	é	de	classe	C
1
	no	aberto	A	se	 	forem	contínuas	em	A.

Segue	do	teorema	anterior	o	seguinte

Corolário.	Seja	f	:	A	⊂	 2	→	 ,	A	aberto.	Se	f	for	de	classe	C1	em	A,	então	f	será	diferenciável	em	A.

EXEMPLO	1.	f	(x,	y)	=	sen	(x2	+	y2)	é	diferenciável	em	 2,	pois,

são	contínuas	em	 2.
■



Observação.	 O	 teorema	 anterior	 conta-nos	 que	 se	 f	 admite	 derivadas	 parciais	 em	 A	 e	 se	 estas	 são
contínuas	 no	 ponto	 (x0,	 y0),	 então	 f	 será	 diferenciável	 em	 (x0,	 y0).	 A	 recíproca,	 entretanto,	 não	 é
verdadeira:	 existem	 funções	 que	 são	 diferenciáveis	 num	 ponto	 sem	 que	 as	 derivadas	 parciais	 sejam
contínuas	neste	ponto.	O	exemplo	seguinte	exibe-nos	uma	tal	função.

EXEMPLO	2.	Seja	

a)	Determine	 .

b)	Mostre	que	 	não	são	contínuas	em	(0,	0).

c)	Prove	que	f	é	diferenciável	em	(0,	0).
d)	Prove	que	f	é	uma	função	diferenciável.

Solução

a)	

De	modo	análogo,	 .	Assim,

e

b)	 	não	existe.	(Verifique.)	Logo,	 	não	é	contínua	em	(0,	0).

De	modo	análogo,	verifica-se	que	 	não	é	contínua	em	(0,	0).



c)	

Como	 ,	resulta	que	f	é	diferenciável	em	(0,	0).

d)	f	é	diferenciável	em	todo	(x,	y)	≠	(0,	0),	pois,	 	são	contínuas	em	todo	(x,	y)	≠	(0,	0).

■

Conclusão.	f	é	uma	função	diferenciável	em	todo	(x,	y)	∈	Df	(Df	=	 2).
	

EXEMPLO	3.	Verifique	que	 	é	uma	função	diferenciável.

Solução

e

Vamos	mostrar	que	 	são	contínuas	em	
2
;	 	são	contínuas	em	todo	(x,	y)	≠	(0,	0),	pois	são

quocientes	de	contínuas.

Em	(0,	0),



1.

a)

b)

c)

d)

e)

f)

2.

ou	seja,

logo,	 	é	contínua	em	(0,	0).	De	modo	análogo,	prova-se	que	 	é	contínua	em	(0,	0).

Da	continuidade	de	 	em	
2
,	segue	que	f	é	diferenciável	em	

2
.

■

Observação.	Para	todo	(x,	y)	≠	(0,	0),	temos:

Exercícios	11.2	

Verifique	que	a	função	dada	é	diferenciável.

f	(x,	y)	=	ex	−	y2

f	(x,	y)	=	x4	+	y3

f	(x,	y)	=	x2y

f	(x,	y)	=	ln	(1	+	x2	+	y2)

f	(x,	y)	=	x	cos	(x2	+	y2)

f	(x,	y)	=	arctg	xy

Determine	o	conjunto	dos	pontos	em	que	a	função	dada	é	diferenciável.	Justifique.



11.3.
	

PLANO	TANGENTE	E	RETA	NORMAL

Sendo	f	(x,	y)	diferenciável	em	(x0,	y0),	temos:

Fazendo	x	=	x0	+	h	e	y	=	y0	+	k,	resulta

Seja	E	(x,	y)	o	erro	que	se	comete	na	aproximação	de	f	(x,	y)	por

Assim,

f	(x,	y)	=	T	(x,	y)	+	E	(x,	y)

onde

Do	que	vimos	na	Seção	11.1	 (veja,	 também,	 o	Exercício	 15	desta	 seção),	 resulta	 que	T	 (x,	 y)	 é	 a
única	função	afim	que	aproxima	f	(x,	y)	com	erro	E	(x,	y)	que	tende	a	zero	mais	rapidamente	que	||(x,	y)
−	(x

0
,	y

0
)||,	quando	(x,	y)	tende	a	(x

0
,	y

0
).	 	D	izer	que	E	(x,	y)	tende	a	zero	mais	rapidamente	que	||	(x,	y)

−	(x
0
,	y

0
)	||,	quando	(x,	y)	tende	a	(x

0
,	y

0
),	significa	que	



Definição.	Seja	f	diferenciável	no	ponto	(x0,	y0).	O	plano

denomina-se	plano	tangente	ao	gráfico	de	f	no	ponto	(x0,	y0,	f	(x0,	y0)).

Observe	que	só	definimos	plano	tangente	em	(x0,	y0,	f	(x0,	y0))	se	f	for	diferenciável	em	(x0,	y0).	Se	f
não	for	diferenciável	em	(x0,	y0),	mas	admitir	derivadas	parciais	neste	ponto,	então	o	plano	 	existirá,
mas	não	será	plano	tangente.	Veremos	mais	adiante	que	se	f	(x,	y)	for	diferenciável	em	(x0,	y0),	o	plano	
	conterá	todas	as	retas	tangentes	ao	gráfico	de	f	no	ponto	(x0,	y0,	f	(x0,	y0)).
Em	notação	de	produto	escalar,	o	plano	 	se	escreve:

Segue	que	o	plano	tangente	em	(x0,	y0,	f	(x0,	y0))	é	perpendicular	à	direção	do	vetor

A	reta	que	passa	pelo	ponto	(x0,	y0,	f	(x0,	y0))	e	é	paralela	ao	vetor	 	denomina-se	reta	normal	ao
gráfico	de	f	no	ponto	(x0,	y0,	f	(x0,	y0)).	A	equação	de	tal	reta	é:

EXEMPLO	1.	Seja	 f	 (x,	y)	=	3x2y	−	x.	Determine	as	equações	do	plano	 tangente	e	da	 reta	normal	do
ponto	(1,	2,	f	(1,	2)).

Solução



Plano	tangente

A	equação	do	plano	tangente	é

Reta	normal

ou	seja,

EXEMPLO	2.	Seja	

Mostre	que	o	gráfico	de	f	não	admite	plano	tangente	em	(0,	0,	f	(0,	0)).

Solução

De	acordo	 com	a	 definição,	 para	 que	 f	 admita	 plano	 tangente	 no	 ponto	 (0,	 0,	 f	 (0,	 0)),	 f	 deve	 ser
diferenciável	em	(0,	0).	Se	provarmos	que	f	é	não	diferenciável	em	(0,	0),	seguirá	que	f	não	admite	plano
tangente	no	ponto	dado.	Temos:



1.

a)
b)

c)

d)

Seja	 .	Temos:

e

Assim,

não	existe,	logo,	f	não	é	diferenciável	em	(0,	0);	portanto,	f	não	admite	plano	tangente	no	ponto	(0,	0,	f
(0,	0)).	Observe	que	o	plano

ou	seja,

z	=	0

não	contém	a	reta	tangente	à	curva	γ	(t)	=	(t,	t,	f	(t,	t))	no	ponto	γ	 (0)	=	(0,	0,	 f	 (0,	0)).	De	fato,	a	 reta
tangente	a	γ	no	ponto	(0,	0,	f	(0,	0))	=	(0,	0,	0)	é:

que,	evidentemente,	não	está	contida	no	plano	z	=	0.
■

Exercícios	11.3	

Determine	as	equações	do	plano	tangente	e	da	reta	normal	ao	gráfico	da	função	dada,	no	ponto	dado.

f	(x,	y)	=	2x2y	em	(1,	1,	f	(1,	1)).
f	(x,	y)	=	x2	+	y2	em	(0,	1,	f	(0,	1)).

f	(x,	y)	=	3x3y	−	xy	em	(1,	−	1,	f	(1,	−	1)).

f	(x,	y)	=	xex2	−	y2	em	(2,	2,	f	(2,	2)).



2.

3.

4.

5.

a)

b)

6.

7.

8.

9.

10.

11.

a)

b)

12.

13.

14.

15.

Determine	o	plano	que	passa	pelos	pontos	(1,	1,	2)	e	(−	1,	1,	1)	e	que	seja	tangente	ao	gráfico	de	f	(x,	y)	=	xy.

Determine	o	plano	que	seja	paralelo	ao	plano	z	=	2x	+	y	e	tangente	ao	gráfico	de	f	(x,	y)	=	x2	+	y2.

z	=	2x	+	y	é	a	equação	do	plano	tangente	ao	gráfico	de	f	(x,	y)	no	ponto	(1,	1,	3).	Calcule	 .

2x	+	y	+	3z	=	6	é	a	equação	do	plano	tangente	ao	gráfico	de	f	(x,	y)	no	ponto	(1,	1,	1).

Calcule	 .

Determine	a	equação	da	reta	normal	no	ponto	(1,	1,	1).

Considere	a	 função	 	onde	ϕ	(u)	 é	 uma	 função	 derivável	 de	 uma	variável.	Mostre	 que	 os	 planos	 tangentes	 ao

gráfico	de	f	passam	pela	origem.

Considere	a	função	 .	Mostre	que	os	planos	tangentes	ao	gráfico	de	f	passam	pela	origem.

Determine	o	plano	que	seja	paralelo	ao	plano	z	=	2x	+	3y	e	tangente	ao	gráfico	de	f	(x,	y)	=	x2	+	xy.

Determine	os	planos	que	sejam	tangentes	ao	gráfico	de	f	(x,	y)	=	x2	+	y2	e	que	contenham	a	interseção	dos	planos	x	+	y	+	z	=	3	e	z	=
0.

β	é	um	plano	tangente	aos	gráficos	de	f	(x,	y)	=	2	+	x2	+	y2	e	g	(x,	y)	=	−	x2	−	y2.	Mostre	que	a2	+	b2	=	1,	sendo	(a,	b,	f	(a,	b))	o	ponto
em	que	β	tangencia	o	gráfico	de	f.

Considere	a	função	f	(x,	y)	=	1	−	x2	−	y2.	Seja	α	o	plano	tangente	ao	gráfico	de	f	no	ponto	(a,	b,	1	−	a2	−	b2),	com	a	>	0,	b	>	0	e	a2	+
b2	<	1.	Seja	V	o	volume	do	tetraedro	determinado	por	α	e	pelos	planos	coordenados.

Expresse	V	em	função	de	a	e	b.

Determine	a	e	b	para	que	se	tenha	 .

Determine	os	planos	tangentes	ao	gráfico	de	f	(x,	y)	=	2	+	x2	+	y2	e	que	contenham	o	eixo	x.

Considere	a	função	f	(x,	y)	=	xg	(x2	−	y2),	onde	g	(u)	é	uma	função	derivável	de	uma	variável.	Mostre	que	o	plano	tangente	ao	gráfico
de	f	no	ponto	(a,	a,	f	(a,	a))	passa	pela	origem.

A	função	z	=	z	(x,	y)	é	diferenciável	e	dada	implicitamente	pela	equação	 .

Mostre	que	 	é	a	equação	do	plano	tangente	no	ponto	(x
0
,	y

0
,	z
0
),	z

0
	≠	0.

Seja	z	=	f	(x,	y)	diferenciável	em	(x0,	y0).	Seja	S	a	função	afim	dada	por
S	(x,	y)	=	a	(x	−	x0)	+	b	(y	−	y0)	+	c.	Suponha	que

f	(x,	y)	=	S	(x,	y)	+	E	(x,	y)

com

Conclua	que	 .



11.4.
	

DIFERENCIAL

Seja	 f	 (x,	 y)	 diferenciável	 em	 (x0,	 y0)	 e	 consideremos	 a	 transformação	 linear	 (transformação	 é
sinônimo	de	função)	L	:	 2	→	 	dada	por

Segue,	do	que	vimos	anteriormente,	que	L	(h,	k)	é	a	única	transformação	linear	de	 2	em	 	que	aproxima
o	acréscimo

f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0)

com	erro	E	(h,	k)	que	tende	a	zero	mais	rapidamente	que	||	(h,	k)	||,	quando	(h,	k)	tende	a	(0,	0).	Isto	é,

Com

Pois	bem,	a	transformação	linear	L,	dada	por	 ,	denomina-se	diferencial	de	f	em	(x0,	y0).

Seja	 .	Sabemos	que	o	gráfico	de	T	é	o

plano	tangente	ao	gráfico	de	f	no	ponto	((x0,	y0),	f	(x0,	y0)).	Fazendo	x	=	x0	+	h	e	y	=	y0	+	k,	vem:

Segue	que	L	(h,	k)	é	a	variação	que	sofre	T,	quando	se	passa	do	ponto	(x0,	y0),	ao	ponto	(x0	+	h,	y0	+
k).

Por	outro	lado,	f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0)	é	a	variação	em	f,	quando	se	passa	de	(x0,	y0)	a	(x0	+	h,	y0
+	k).	Temos:

sendo	a	aproximação	tanto	melhor	quanto	menores	forem	os	módulos	de	h	e	k.

Muitas	 vezes,	 referir-nos-emos	 a	 	 como	 a	 diferencial	 de	 f	 em	 (x
0
,	 y

0
),

relativa	aos	acréscimos	h	e	k.



c)

1.

a)

b)

c)

d)

e)

Consideremos,	agora,	a	função	diferenciável	z	=	f	(x,	y).	Em	notação	clássica,	a	diferencial	de	f,	em
(x,	y),	relativa	aos	acréscimos	dx	e	dy	é	indicada	por	dz	(ou	por	df):

No	que	se	segue,	referir-nos-emos	a	 	simplesmente	como	a	diferencial	de	z	=	f	(x,	y).
O	símbolo	Δz	será	usado	para	representar	a	variação	em	f,	quando	se	passa	de	(x,	y)	a	(x	+	dx,	y	+

dy):

Δz	=	f	(x	+	dx,	y	+	dy)	−	f	(x,	y).

Assim,

Δz	 	dz

sendo	a	aproximação	tanto	melhor	quanto	menores	forem	os	módulos	de	dx	e	dy.

EXEMPLO.	Seja	z	=	x2y.

a)	Calcule	a	diferencial.
b)	Utilizando	a	diferencial,	calcule	um	valor	aproximado	para	a	variação	Δz	em	z,	quando	se	passa	de	x
=	1	e	y	=	2	para	x	=	1,02	e	y	=	2,01.
c)	Calcule	o	erro	cometido	na	aproximação	acima.

Solução

a)	 ;	assim,	dz	=	2xy	dx	+	x
2
	dy.

b)	Δz	 	dz	ou	Δz	 	2xy	dx	+	x2	dy.
Fazendo	x	=	1,	y	=	2,	dx	=	0,02	e	dy	=	0,01	resulta	Δz	 	0,09.

Δz	=	(x	+	dx)2	(y	+	dy)	−	x2y	=	(1,02)2	(1,01)	−	2	=	0,091204	(valor	exato).
O	erro	cometido	na	avaliação	acima	é	0,001204.

■

Exercícios	11.4	

Calcule	a	diferencial.

z	=	x3y2

z	=	x	arctg	(x	+	2y)

z	=	sen	xy

u	=	es2	−	t2

T	=	ln	(1	+	p2	+	v2)



f)

a)

b)

3.

a)

b)

c)

4.

5.

6.

7.

8.

9.

10.

11.

12.

2.

11.5.

x	=	arcsen	uv

Seja	z	=	x	ex2	−	y2.

Calcule	um	valor	aproximado	para	a	variação	Δz	em	z,	quando	se	passa	de	x	=	1	e	y	=	1	para	x	=	1,01	e	y	=	1,002.

Calcule	um	valor	aproximado	para	z,	correspondente	a	x	=	1,01	e	y	=	1,002.

Seja	 .

Calcule	a	diferencial	de	z	no	ponto	(1,	8).

Calcule	um	valor	aproximado	para	z,	correspondente	a	x	=	1,01	e	y	=	7,9.

Calcule	um	valor	aproximado	para	a	variação	Δz	em	z,	quando	se	passa	de	x	=	1	e	y	=	8	para	x	=	0,9	e	y	=	8,01.

Calcule	um	valor	aproximado	para	a	variação	ΔA	na	área	de	um	retângulo	quando	os	lados	variam	de	x	=	2	m	e	y	=	3	m	para	x	=	2,01
m	e	y	=	2,97	m.

Uma	caixa	de	forma	cilíndrica	é	feita	com	um	material	de	espessura	0,03	m.	As	medidas	internas	são:	altura	2	m	e	raio	da	base	1	m.	A
caixa	é	sem	tampa.	Calcule	um	valor	aproximado	para	o	volume	do	material	utilizado	na	caixa.

A	energia	consumida	num	resistor	elétrico	é	dada	por	 	watts.	Se	V	=	100	volts	e	R	=	10	ohms,	calcule	um	valor	aproximado

para	a	variação	ΔP	em	P,	quando	V	decresce	0,2	volt	e	R	aumenta	de	0,01	ohm.

A	altura	de	um	cone	é	h	=	20	cm	e	o	raio	da	base	r	=	12	cm.	Calcule	um	valor	aproximado	para	a	variação	ΔV	no	volume	quando	h
aumenta	2	mm	e	r	decresce	1	mm.

Calcule	aproximadamente	(1,01)2,03.

Um	 dos	 catetos	 de	 um	 triângulo	 retângulo	 é	 x	 =	 3	 cm	 e	 o	 outro,	 y	 =	 4	 cm.	 Calcule	 um	 valor	 aproximado	 para	 a	 variação	 Δz	 na
hipotenusa	z,	quando	x	aumenta	0,01	cm	e	y	decresce	0,1	cm.

Defina	diferencial	de	uma	função	de	três	variáveis.

Calcule	a	diferencial.

Calcule	aproximadamente	 .

	

O	VETOR	GRADIENTE

Seja	z	=	f	(x,	y)	uma	função	que	admite	derivadas	parciais	em	(x0,	y0).	O	vetor

denomina-se	gradiente	de	f	em	(x0,	y0).	Outra	notação	usada	para	o	gradiente	de	f	em	(x0,	y0)	é:	grad	f	(x0,
y0).	Geometricamente,	interpretaremos	∇f	(x0,	y0)	como	um	vetor	aplicado	no	ponto	(x0,	y0).

EXEMPLO.	Seja	f	(x,	y)	=	x2	+	y2.	Calcule	∇f	(1,	1)	e	represente-o	geometricamente.

Solução



Suponhamos,	agora,	que	f	(x,	y)	seja	diferenciável	em	(x0,	y0).	Temos:

com

Tendo	em	vista	a	igualdade

resulta

com

Fazendo	X	=	(x,	y)	e	X0	=	(x0,	y0)	teremos:

com



1.

a)

b)

c)

d)

2.

a)

b)

c)

d)

3.

a)

b)

c)

d)

4.

5.

6.

7.

Já	vimos	que	se	f	(x)	for	função	de	variável	real	e	diferenciável	em	x0,	então

com

Sendo	f	(x,	y)	diferenciável	em	(x0,	y0),	nada	mais	natural,	então,	do	que	definir	a	derivada	de	f	em
(x0,	y0)	por:	f′	(x0,	y0)	=	∇	f	(x0,	y0).	Assim,	a	derivada	de	f	(x,	y)	em	(x0,	y0)	é	o	gradiente	de	f	em	(x0,	y0).

Mais	adiante,	destacaremos	as	principais	propriedades	do	vetor	gradiente.

Exercícios	11.5	

Calcule	∇	f	(x,	y)	sendo	f	(x,	y)	=
x2y

ex2	−	y2

arctg	

Defina	gradiente	de	uma	função	de	três	variáveis.	Calcule	∇	f	(x,	y,	z)	sendo	f	(x,	y,	z)	=

x2	+	y2	+	z2

(x2	+	y2	+	1)z2

z	arctg	

Seja	f	(x,	y)	=	x2	−	y2.	Represente	geometricamente	∇	f	(x0,	y0),	sendo	(x0,	y0)	=
(1,	1)

(−	1,	1)

(−	1,	−	1)

(1,	−	1)

Seja	f	(x,	y)	=	arctg	 .	Represente	geometricamente	∇	f	(x
0
,	y

0
),	sendo	(x

0
,	y

0
)	um	ponto	da	circunferência	x

2
	+	y

2
	=	1.

Seja	f	(x,	y)	=	x2	+	y2	e	seja	γ	(t)	=	(x	(t),	y	(t))	uma	curva	diferenciável	cuja	imagem	está	contida	na	curva	de	nível	f	(x,	y)	=	1,	isto	é,
para	todo	t	no	domínio	de	γ,	f	(x	(t),	y	(t))	=	1	(dê	exemplo	de	uma	tal	curva).	Seja	γ	(t0)	=	(x0,	y0).	Prove	que	γ′	(t0)	·	∇	f	(x0,	y0)	=	0.
Interprete	geometricamente.

(Sugestão:	para	todo	t	no	domínio	de	γ,	(x	(t))2	+	(y	(t))2	=	1;	derive	em	relação	a	t	e	faça	t	=	t0.)

Seja	f	(x,	y,	z)	=	x2	+	y2	+	z2	e	seja	γ	(t)	=	(x	(t),	y	(t),	z	(t))	uma	curva	diferencial	cuja	imagem	está	contida	na	superfície	de	nível	x2	+
y2	+	z2	=	1.	Seja	γ	(t0)	=	(x0,	y0,	z0).	Prove	que	γ′	(t0)	·	∇	f	(x0,	y0,	z0)	=	0.	Interprete	geometricamente.

Calcule	f′	(x,	y)	sendo	f	(x,	y)	=



a)

b)

c)

d)

8.

9.

a)
b)

c)

10.

a)

b)

11.

a)
b)

c)

xy

2x	−	y

x	tg	

arcsen	xy

Seja	f	(x,	y)	=	xy	e	seja	γ	(t)	=	(x	(t),	y	(t)),	t	∈	I,	uma	curva	diferenciável	cuja	 imagem	está	contida	na	curva	de	nível	 f	(x,	y)	=	2.
Mostre	que	para	todo	t	em	I,	γ′	(t)·	∇	f	(γ	(t))	=	0.	Dê	exemplo	de	uma	curva	cuja	imagem	esteja	contida	na	curva	de	nível	xy	=	2.

Sejam	f	(x,	y)	=	y	−	x2	e	γ	(t)	=	(sen	t,	sen2	t).

Verifique	que	a	imagem	de	γ	está	contida	na	curva	de	nível	y	−	x2	=	0.
Desenhe	a	imagem	de	γ.

Verifique	que	para	todo	t,	γ′	(t)	·	∇	f	(γ	(t))	=	0.

Seja	f	(x,	y,	z)	=	x2	+	4y2	+	9z2.

Dê	exemplo	de	uma	curva	γ	(t),	diferenciável,	cuja	imagem	esteja	contida	na	superfície	de	nível	x2	+	4y2	+	9z2	=	1.

Verifique	que	∇	f	(γ	(t))	·	γ′	(t)	=	0.	Interprete	geometricamente.

Considere	a	função	f	(x,	y,	z)	=	x2	+	4y2	+	9z2	e	seja	γ	(t)	=	(x	(t),	y	(t),	y	(t))	uma	curva	diferenciável	qualquer,	com	imagem	contida
na	superfície	de	nível	x2	+	4y2	+	9z2	=	1,	e	tal	que	γ	(t0)	=	(x0,	y0,	z0).

Prove	que	∇	f	(x0,	y0,	z0).	γ′	(t0)	=	0.
Determine	a	equação	do	plano	tangente	à	superfície	de	nível	dada,	no	ponto	(x0,	y0,	z0).

Determine	a	equação	do	plano	tangente	à	superfície	de	nível	x2	+	4y2	+	9z2	=	14,	no	ponto	(1,	1,	1).
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REGRA	DA	CADEIA

REGRA	DA	CADEIA

Sejam	f	(x,	y)	uma	função	definida	num	aberto	do	 2,	γ	(t)	uma	curva	definida	num	intervalo	I,	tais	que
γ	(t)	∈	Df	para	todo	t	∈	I.	Nosso	objetivo	a	seguir	é	provar	que,	se	f	e	γ	 forem	diferenciáveis,	então	a
composta	F	(t)	=	f	(γ	(t))	será,	também,	diferenciável	e	vale	a	regra	da	cadeia

F′	(t)	=	∇	f	(γ	(t))	·	γ′	(t)

onde	∇	f	(γ	(t))	(t)	·	γ′	(t)	é	o	produto	escalar	dos	vetores	∇	f	(γ	(t))	e	γ′	(t).
Vamos	precisar	do	seguinte	lema.

Lema.	Se	f	:	A	⊂	 2	→	 ,	A	aberto,	for	diferenciável	em	X0	∈	A,	então	existirá	uma	função	φ	(X)	definida	em	A	tal	que

f	(X)	−	f	(X0)	=	∇	f	(X0)	·	(X	−	X0)	+	φ	(X)	||	X	−	X0	||

Demonstração

Sendo	f	diferenciável	em	X0	tem-se

f	(X)	−	f	(X0)	=	∇	f	(X0)	·	(X	−	X0)	+	E	(X)

com

Tomando-se



a)
b)

segue	a	nossa	afirmação.	Observe	que	φ	(X)	é	contínua	em	X0.
■

Note	que	no	lema	acima	nada	muda	se	supusermos	f	uma	função	de	n	variáveis.
Antes	de	enunciar	e	demonstrar	a	regra	da	cadeia	para	derivação	da	composta	de	uma	função	de	duas

variáveis	com	uma	curva,	vejamos	o	seguinte	exemplo.

EXEMPLO	1.	Sejam	f	(x,	y)	=	xy	e	γ	(t)	=	(t3,	t2).	Considere	a	composta	F	(t)	=	f	(γ	(t)).

Calcule	F	(t).
Calcule	F′	(t)	e	verifique	que	F′	(t)	=	∇	f	(γ	(t))	·	γ′	(t).

Solução

a)	F	(t)	=	f	(γ	(t))	=	f	(t3,	t2)	=	t5.	Observe	que	F	 fornece	os	valores	que	 f	 (x,	y)	assume	nos	pontos	da
curva	γ	(t)	=	(t3,	t2).

b)	 ;	segue	que	∇	f	(t
3
,	t

2
)	=	(t

2
,	t

3
).	Por	outro	lado,	γ′	(t)	=	(3t

2
,	2t).	Assim,

∇	f	(γ	(t))	·	γ′	(t)	=	(t2,	t3)	·	(3t2,	2t)	=	3t4	+	2t4

ou	seja,

∇	f	(γ	(t))	·	γ′	(t)	=	5	t4	=	F′	(t).

■

Teorema.	Sejam	f	:	A	⊂	 2	→	 ,	A	aberto,	e	γ	:	I	→	 2,	tais	que	γ	(t)	∈	A	para	todo	t	no	intervalo	I.	Nestas	condições,	se	γ	for
diferenciável	em	t0	e	f	em	X0	=	γ	(t0),	então	a	composta	F	(t)	=	f	(γ	(t))	será	diferenciável	em	t0	e	vale	a	regra	da	cadeia

F′	(t0)	=	∇	f	(γ	(t0))	·	γ′	(t0).

Demonstração

Pelo	lema,	para	todo	X	∈	A,

onde

Substituindo	em	 	X	por	γ	(t)	e	X0	por	γ	(t0)	e	dividindo	por	t	−	t0,	t	≠	t0,	vem



Observe	que

De

resulta

Logo,

A	demonstração	do	teorema	acima	é	exatamente	a	mesma,	se	substituirmos	f	de	duas	variáveis	por	f
de	n	variáveis.

Segue	 desse	 último	 teorema	 que	 se	 f	 for	 diferenciável	 em	A	⊂	 2	 e	 diferenciável	 em	 I,	 então	 a
composta	F	(t)	=	f	(γ	(t))	será	diferenciável	e,	para	todo	t	em	I,

F′	(t)	=	∇	f	(γ	(t))	·	γ′	(t).

Fazendo	γ	(t)	=	(x	(t),	y	(t))	e	lembrando	que

resulta

Escreveremos	com	frequência



ficando	subentendido	que	 	devem	ser	calculados	em	(x	(t),	y	(t))	quando	 	for	calculado	em	t.

Com	frequência,	ocorrerão,	ainda,	problemas	do	seguinte	tipo:	são	dadas	as	funções	diferenciáveis	z
=	 f	 (x,	y),	x	=	x	 (t)	e	y	=	y	 (t)	e	pede-se	calcular	 .	Evidentemente,	o	que	 se	deseja	é	a	derivada	da

composta	z	=	f	(x	(t)),	y	(t)).	Assim:

ou	ainda,

Tudo	se	passa	da	mesma	forma	no	caso	em	que	f	é	uma	função	de	três	ou	mais	variáveis.

EXEMPLO	2.	Sejam	z	=	x2y,	x	=	et
2

	e	y	=	2t	+	1.	Calcule	 .

Solução

1.º	processo

ou	seja,

2.º	processo	(regra	da	cadeia)

Assim,

ou	seja,



EXEMPLO	3.	Seja	F	(t)	=	f	(et2,	sen	t),	onde	f	(x,	y)	é	uma	função	dada,	diferenciável	em	 2.

a)	Expresse	F′	(t)	em	termos	das	derivadas	parciais	de	f.
b)	Calcule	F′	(0)	supondo	 	(1,	0)	=	5.

Solução

a)	F	(t)	=	f	(x,	y)	onde	x	=	et2	e	y	=	sen	t.

Daí

F′	(0)	=	5.

■

EXEMPLO	4.	z	=	f	(x2,	3x	+	1),	onde	f	(u,	v)	é	uma	função	de	classe	C1	em	 2.

a)	Expresse	 	em	termos	das	derivadas	parciais	de	f.

b)	Verifique	que	

Solução

Sendo	f	(u,	v)	de	classe	C1	em	 2,	f	(u,	v)	será	diferenciável	em	 2;	u	=	x2	e	v	=	3x	+	1	também	são
diferenciáveis.	Podemos	então,	aplicar	a	regra	da	cadeia.

a)	z	=	f	(u,	v),	u	x2	e	v	=	3x	+	1.

ou	seja,



b)	Fazendo	x	=	1	na	expressão	anterior,	obtemos:

EXEMPLO	5.	Seja	g	(x)	=	f	(x,	x3	+	2),	onde	f	(x,	y)	é	uma	função	dada,	definida	e	diferenciável	num
aberto	do	 2.	Expresse	g′	(x)	em	termos	das	derivadas	parciais	de	f.

Solução

g	(x)	=	f	(x,	y)	onde	y	=	x3	+	2.

ou	seja,

EXEMPLO	6.	Suponha	f	(x,	y)	diferenciável	e	que,	para	todo	x,

f	(3x	+	1,	3x	−	1)	=	4.

Verifique	que	 .

Solução

Para	evitar	confusão	com	as	variáveis,	vamos	primeiro	substituir	x	por	t.	Assim,	para	todo	t,

f	(3t	+	1,	3t	−	1)	=	4.

Derivando	em	relação	a	t	os	dois	membros	obtemos:

Como



teremos,	para	todo	t,

ou	seja,

Segue	que,	para	todo	x,

Observação.	Sejam	f	(x,	y),	g	(x)	e	h	(x)	funções	diferenciáveis	e	seja	γ	(x)	=	(g	(x),	h	(x)).	Assim,

f	(g	(x),	h	(x))	=	f	(γ	(x)).

Pela	regra	da	cadeia

ou	seja,

Vamos,	agora,	resolver	o	exemplo	anterior	trabalhando	diretamente	com	a	equação

f	(3x	+	1,	3x	−	1)	=	4.

Derivando	em	relação	a	x	os	dois	membros,	obtemos:

Como	(veja	observação	acima)

resulta:



EXEMPLO	7.	z	=	f	(e−u,	u2),	onde	f	(x,	y)	é	uma	função	diferenciável	dada.	Expresse	 	em	termos	das
derivadas	parciais	de	f.

Solução
z	=	f	(x,	y)	onde	x	=	e−u	e	y	=	u2.

ou	seja,

onde	x	=	e−u	e	y	=	u2.
■

EXEMPLO	8.	Sejam	A	e	B	abertos	do	 2,	f	(x,	y)	diferenciável	em	A,	g	(u,	v)	e	h	(u,	v)	diferenciáveis
em	B	tais	que,	para	todo	(u,	v)	em	B,	(g	(u,	v),	h	(u,	v))	∈	A.	Seja

F	(u,	v)	=	f	(g	(u,	v),	h	(u,	v)),	(u,	v)	∈	B.

(Observe	que	a	mudança	de	variáveis	x	=	g	(u,	v)	e	y	=	h	(u,	v)	transforma	a	função	de	duas	variáveis	z	=
f	(x,	y)	na	função	de	duas	variáveis

z	=	F	(u,	v)	=	f	(g	(u,	v),	h	(u,	v).)

Mostre	que

ser	calculadas	no	ponto	(g	(u,	v),	h	(u,	v)).

Solução

a)	F	(u,	v)	=	f	(x,	y)	onde	x	=	g	(u,	v)	e	y	=	h	(u,	v).	Para	calcular	 	vamos	aplicar	a	regra	da	cadeia,

olhando	v	como	constante;	tudo	se	passa	como	se	x	e	y	dependessem	apenas	de	u:



onde	x	=	g	(u,	v)	e	y	=	h	(u,	v).

Cuidado.	Escrevemos	 	por	se	tratarem	de	derivadas	parciais.

b)	Para	calcular	 	vamos	aplicar	a	regra	da	cadeia,	olhando	u	como	constante;	tudo	se	passa	como	se	x

e	y	dependessem	apenas	de	v:

onde	x	=	g	(u,	v)	e	y	=	h	(u,	v).
■

EXEMPLO	9.	z	=	f	(u2	+	v2,	uv),	onde	f	(x,	y)	é	uma	função	diferenciável	dada.	Expresse	 	em

termos	das	derivadas	parciais	de	f.

Solução

onde	x	=	u2	+	v2	e	y	=	uv.
■

EXEMPLO	10.	F	(r,	θ)	=	f	(x,	y)	onde	x	=	r	cos	θ	e	y	=	r	sen	θ,	sendo	f	(x,	y)	uma	função	diferenciável
dada.	Verifique	que

Solução

ou



ou

ou

Multiplicando	 	 por	 sen	 θ,	 	 por	 cos	 θ	 e	 somando	 membro	 a	 membro	 obtemos	 a	 relação	 que
queríamos.

■

EXEMPLO	11.	Suponha	z	=	f	(x,	y)	de	classe	C
1
,	 	 .	Admita

que	a	imagem	da	curva	γ	(t)	=	(t2,	3t	−	1,	z	(t)),	t	∈	 ,	esteja	contida	no	gráfico	de	f.

a)	Calcule	z	(t).
b)	Ache	a	equação	da	reta	tangente	a	γ	no	ponto	γ	(1).

Solução

a)	(x,	y,	z)	∈	Gf	⇔	z	=	f	(x,	y).	Como	a	imagem	de	está	contida	no	gráfico	de	f,	para	todo	t,	(t2,	3t	−	1,	z
(t))	∈	Gf,	logo,	z	(t)	=	f	(t2,	3t	−	1).

b)	A	equação	da	reta	tangente	no	ponto	γ	(1)	é:

(x,	y,	z)	=	γ	(1)	+	λγ′	(1),	λ	∈	 .



Temos:

Assim,	 	e,	portanto,	 .	Segue	que

γ′	(1)	=	(2,	3,	18).

A	equação	da	reta	tangente	é,	então,

O	próximo	exemplo	mostra-nos	que	se	for	uma	curva	qualquer,	diferenciável	em	t0,	cuja	imagem	está
contida	no	gráfico	da	função	f	(x,	y),	diferenciável	em	(x0,	y0),	então	a	reta	tangente	γ	no	ponto	γ	(t0)	=	(x0,
y0,	f	(x0,	y0))	está	contida	no	plano	tangente	em	(x0,	y0,	f	(x0,	y0)).

EXEMPLO	12.	Seja	f	(x,	y)	diferenciável	em	(x0,	y0),	γ	(t)	uma	curva	diferenciável	em	t0,	cuja	imagem
está	contida	no	gráfico	de	f.	Seja	γ	(t0)	=	(x0,	y0,	f	(x0,	y0)).	Então	a	reta	tangente	a	γ	no	ponto	γ	(t0)	está
contida	no	plano	tangente	ao	gráfico	de	f	no	ponto	γ	(t0).

Solução

Seja	γ	(t)	=	(x	(t),	y	(t),	z	(t));	como	a	imagem	de	γ	está	contida	no	gráfico	de	f

z	(t)	=	f	(x	(t),	y	(t)).

Sendo	f	diferenciável	em	(x0,	y0),	x	 (t)	e	y	 (t)	diferenciáveis	em	 t0,	podemos	aplicar	a	 regra	da	cadeia
para	obter	z′	(t0):

A	equação	da	reta	tangente	em	γ	(t0)	é:

Precisamos	mostrar	que,	para	todo	λ,	o	ponto



1.

a)

b)

c)

2.

a)

b)

3.

a)

b)

4.

5.

a)

b)

6.

pertence	ao	plano

Basta	mostrar,	então,	que	fazendo	em	 	x	=	x0	+	λx′	(t0)	e	y	=	y0	+	λy′	(t0)	obteremos	z	=	f	(x0,	y0)	+	λz′
(t0).	De	fato,	para	x	=	x0	+	λx′	(t0)	e	y	=	y0	+	λy′	(t0)	temos:

ou	seja,

tendo	em	vista	

Exercícios	12.1	

(Todas	as	funções	são	supostas	de	classe	C1	ou	diferenciáveis,	quando	necessário.)

Calcule	 	pelos	dois	processos	descritos	no	Exemplo	2.

z	=	sen	xy,	x	=	3t	e	y	=	t2.

z	=	x2	+	3y2,	x	=	sen	t	e	y	=	cos	t.

z	=	ln	(1	+	x2	+	y2),	x	=	sen	3t	e	y	=	cos	3t.

Seja	g	(t)	=	f	(3t,	2t2	−	1).

Expresse	g′	(t)	em	termos	das	derivadas	parciais	de	f.

Calcule	g′	(0)	admitindo	 .

Expresse	 	em	termos	das	derivadas	parciais	de	f,	sendo	z	=	f	(x,	y)	e

x	=	t2	e	y	=	3t.

x	=	sen	3t	e	y	=	cos	2t.

Suponha	que,	para	todo	t,	f	(t
2
,	2t)	=	t

3
	−	3t.	Mostre	que	 .

Suponha	que,	para	todo	x,	f	(3x,	x3)	=	arctg	x.

Calcule	 	(3,	1)	admitindo	 	(3,	1)	=	2.

Determine	a	equação	do	plano	tangente	ao	gráfico	de	f	no	ponto	(3,	1,	f	(3,	1)).

Admita	que,	para	todo	(x,	y),



7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Calcule	g′	(t),	sendo	g	(t)	=	f	(2	cos	t,	sen	t).

Admita	que,	para	todo	(x,	y),

Prove	que	f	é	constante	sobre	a	elipse	 .

	
(Sugestão:	Observe	que	a	função	g	do	exercício	anterior	fornece	os	valores	de	f	sobre	a	elipse.)

A	 imagem	 da	 curva	 γ	 (t)	 =	 (2t,	 t2,	 z	 (t))	 está	 contida	 no	 gráfico	 de	 z	 =	 f	 (x,	 y).	 Sabe-se	 que	 f	 (2,	 1)	 =	 3,	

.	Determine	a	equação	da	reta	tangente	a	γ	no	ponto	γ	(1).

Admita	que,	para	todo	(x,	y),

Seja	z	=	f	(u	+	2v,	u
2
	−	v).	Expresse	 	em	termos	das	derivadas	parciais	de	f.

Seja	z	=	f	(u	−	v,	v	−	u).	Verifique	que

Considere	a	função	 .	Mostre	que	 .

Prove	que	a	função	u	=	f	(x	+	at,	y	+	bt),	a	e	b	constantes,	é	solução	da	equação	as	derivadas	parciais

Seja	z	=	t
2
	f	(x,	y),	onde	x	=	t

2
	e	y	=	t

3
.	Expresse	 	em	termos	das	derivadas	parciais	de	f.

Seja	g	dada	por	g	(t)	=	f	(x,	y)	sen	3t,	onde	x	=	2t	e	y	=	3t.	Verifique	que

onde	x	=	2t	e	y	=	3t.

Seja	z	=	u	f	(u	−	v,	u	+	v).	Verifique	que



17.

18.

19.

20.

21.

a)
b)

22.

23.

24.

25.

26.

b)

onde	x	=	u	−	v	e	y	=	u	+	v.

Seja	g	(x,	y)	=	(x2	+	y2)	f	(u,	v),	onde	u	=	2x	−	y	e	v	=	x	+	2y.	Mostre	que

Seja	g	(x)	uma	função	diferenciável	tal	que	f	(x,	g	(x))	=	0,	para	todo	x	∈	Dg.	Mostre	que

f	(t)	e	g	(x,	y)	são	funções	diferenciáveis	tais	que	g	(t,	f	(t))	=	0,	para	todo	t.	Suponha	f	(0)	=	1,	 .

Determine	a	equação	da	reta	tangente	a	γ	(t)	=	(t,	f	(t)),	no	ponto	γ	(0).

f	 (x,	 y,	 z)	 e	 g	 (x,	 y)	 são	 funções	 diferenciáveis	 tais	 que,	 para	 todo	 (x,	 y)	 no	 domínio	 de	 g,	 f	 (x,	 y,	 g	 (x,	 y))	 =	 0.	 Suponha	

.	Determine	a	equação	do	plano	tangente	ao	gráfico	de	g	no

ponto	(1,	1,	3).

Seja	g	(t)	=	f	(3t
2
,	t
3
,	e

2
t);	suponha	 	(0,	0,	1)	=	4.

Expresse	g′	(t)	em	termos	das	derivadas	parciais	de	f.
Calcule	g′	(0).

Seja	g	(x,	y)	=	x	f	(x
2
	+	y,	2y,	2x	−	y).	Expresse	 	em	termos	das	derivadas	parciais	de	f.

Suponha	que,	para	todo	(x,	y),	f	(x,	y,	x
2
	+	y

2
)	=	0.	Mostre	que	 .

Seja	 .	Mostre	que

Seja	F	(u,	v)	diferenciável	em	
2
,	com	 ,	para	todo	(u,	v).	Suponha	que,	para	todo	(x,	y),	F	(xy,	z)	=	0,	onde	z	=	z	(x,

y).	Mostre	que	 .

Seja	f	(x,	y)	diferenciável	e	homogênea	de	grau	λ	no	aberto	A.	Prove:

(Relação	de	Euler.)	Conclua	de	a)	que



27.

28.

29.

30.

31.

32.

33.

a)

b)

34.

a)

b)

(Sugestão	para	a):	Derive	em	relação	a	t	os	dois	membros	de	f	(at,	bt)	=	tλ	f	(a,	b).)

Seja	f	(x,	y)	definida	e	diferenciável	na	bola	aberta	A.	Suponha	que	f	verifica	em	A	a	relação	de	Euler

Prove	que	f	é	homogênea	de	grau	λ.

Seja	ϕ	(u)	uma	função	diferenciável	qualquer.	A	função	 	verifica	a	relação	de	Euler	 ?

Por	quê?

Determine	uma	família	de	funções	que	verifique	a	equação	 .

Suponha	 f	 (x,	 y)	 diferenciável	 no	 aberto	 A	 e	 homogênea	 de	 grau	 λ.	 Prove	 que	 	 é	 homogênea	 de	 grau	 λ	 −	 1,	 isto	 é,	 que	

	para	todo	t	>	0,	e	para	todo	(x,	y)	em	A	com	(tx,	ty)	∈	A.

(Sugestão:	Derive	em	relação	a	x	os	dois	membros	de	f	(tx,	ty)	=	tλ	f	(x,	y).)

Seja	f	(x,	y)	definida	em	 2,	diferenciável	em	(0,	0)	e	tal	que	f	(tx,	ty)	=	t	f	(x,	y)	para	todo	t	∈	 	e	todo	(x,	y)	∈	 2.	Prove	que	f	é
linear,	isto	é,	que	existem	reais	a	e	b	tais	que	f	(x,	y)	=	ax	+	by.

Seja	

Verifique	que	f	(tx,	ty)	=	t	f	(x,	y)	para	todo	t	e	todo	(x,	y).

Olhe	para	o	Exercício	32	e	responda:	f	é	diferenciável	em	(0,	0)?	Por	quê?

Seja	f	(x,	y)	diferenciável	em	 2	e	tal	que	para	todo	(x,	y)	em	 2

Verifique	que	a	função	g	(u,	v)	dada	por	g	(u,	v)	=	f	(x,	y),	onde	x	=	u	+	v	e	y	=	u,	é	tal	que	 	=	0	em	
2
.	Conclua	que	g	(u,	v)	=

φ	(v)	para	alguma	função	φ,	definida	e	diferenciável	em	 .

Determine	uma	família	de	soluções	da	equação	 .



12.2.
	

DERIVAÇÃO	DE	FUNÇÕES	DEFINIDAS	IMPLICITAMENTE.	TEOREMA
DAS	FUNÇÕES	IMPLÍCITAS

Como	já	vimos,	a	função	y	=	g	(x)	é	definida	implicitamente	pela	equação	f	(x,	y)	=	0	se,	para	todo	x
∈	Dg,

f	(x,	g	(x))	=	0.

Admitindo	que	f	e	g	sejam	diferenciáveis,	vamos	deduzir	uma	fórmula	para	o	cálculo	de	g′	(x)	em	todo	x
∈	D

g
,	 para	 os	 quais	 .	Então,	 derivando	 em	 relação	 a	x	 os	 dois	membros	 da	 equação

anterior,	obtemos,

ou

e,	portanto,

Da	mesma	forma,	x	=	h	(y)	é	definida	implicitamente	pela	equação	f	(x,	y)	=	0	se,	para	todo	y	∈	Dh,

f	(h	(y),	y)	=	0.

Supondo	f	e	h	diferenciáveis	e	derivando	os	dois	membros	da	equação	acima	em	relação	a	y,	obtemos:



ou

e,	portanto,

EXEMPLO	1.	A	função	diferenciável	y	=	y	(x)	é	definida	implicitamente	pela	equação

y3	+	xy	+	x3	=	3.

Expresse	 	em	termos	de	x	e	de	y.

Solução

1.º	processo

ou	seja,

em	todo	x	no	domínio	de	y	=	y	(x),	com	3	(y	(x))2	+	x	≠	0.

2.º	processo



ou

EXEMPLO	2.	Suponha	que	a	função	diferenciável	z	=	g	(x,	y)	seja	dada	implicitamente	pela	equação	f
(x,	y,	z)	=	0,	onde	f	é	diferenciável	num	aberto	de	 3.	Verifique	que

em	todo	(x,	y)	∈	D
g
,	com	 .

em	todo	(x,	y)	∈	D
g
,	com	 .

Solução

a)	Para	todo	(x,	y)	∈	Dg

Derivando	em	relação	a	x	os	dois	membros	da	equação,	obtemos:

ou

como	 ,	resulta



b)	Derivando	os	dois	membros	de	 	em	relação	a	y,	obtemos

ou

e,	portanto,

EXEMPLO	3.	A	função	diferenciável	z	=	z	(x,	y)	é	dada	implicitamente	pela	equação

xyz	+	x3	+	y3	+	z3	=	5.

Expresse	 	em	termos	de	x,	y	e	z.

Solução

1.º	processo

Pela	parte	a)	do	exemplo	anterior

2.º	processo



assim,

ou	seja,

EXEMPLO	4.	As	funções	diferenciáveis	y	=	y	(x)	e	z	=	z	(x),	definidas	no	intervalo	aberto	I,	são	dadas
implicitamente	pelo	sistema

onde	F	e	G	são	supostas	diferenciáveis	num	aberto	de	 3.	Expresse	 	em	termos	das	derivadas

parciais	de	F	e	de	G.

Solução

Dizer	que	y	=	y	(x)	e	z	=	z	(x)	estão	definidas	implicitamente	por	 	significa	que,	para	todo	x	em	I,

ou	seja,	significa	que	a	imagem	da	curva	γ	(x)	=	(x,	y	(x),	z	(x))	está	contida	na	interseção	das	superfícies
F	(x,	y,	z)	=	0	e	G	(x,	y,	z)	=	0.

Para	obter	 ,	vamos	derivar	em	relação	a	x	os	dois	membros	de	 .	Temos,	então:



ou	seja,

Pela	regra	de	Cramer,

para	todo	x	∈	I,	com	 	em	(x,	y	(x),	z	(x)).

Notações.	O	símbolo	 	é	usado	para	indicar	o	determinante	jacobiano	de	F	e	G	em	relação	a	y	e

z:

Da	mesma	forma:



Com	estas	notações,	 	se	escrevem:

EXEMPLO	5.	Sejam	y	=	y	(x)	e	z	=	z	(x)	diferenciáveis	em	 	e	dadas	implicitamente	pelo	sistema

a)	Calcule	 .

b)	Determine	um	par	de	funções	y	=	y	(x)	e	z	=	z	(x)	que	sejam	dadas	implicitamente	pelo	sistema	 .

Solução

a)	Para	obtermos	 ,	vamos	derivar	os	dois	membros	de	 	em	relação	a	x,	observando	que	y	e	z

são	funções	de	x:

Assim,

Resolvendo	o	sistema	obtemos:



(Sugerimos	ao	leitor	calcular	 	utilizando	o	exemplo	anterior.)

Resolvendo	o	sistema	nas	incógnitas	y	e	z	obtemos:

Observe	que	a	imagem	de

é	a	reta	na	interseção	dos	planos	2x	+	y	−	z	=	3	e	x	+	y	+	z	=	1.
■

EXEMPLO	6.	Sejam	y	=	y	(x)	e	z	=	z	(x),	z	>	0,	diferenciáveis	e	dadas	implicitamente	pelo	sistema

a)	Expresse	 	em	termos	de	x,	y	e	z.

b)	Expresse	y	e	z	em	função	de	x.

c)	Desenhe	a	imagem	da	curva	γ	(x)	=	(x,	y	(x),	z	(x)).

Solução

Assim,



Resolvendo	o	sistema	obtemos:

Substituindo	y	=	1	−	x	na	1.ª	equação	e	observando	que	z	>	0	obtemos:	 .	Assim,	y	=	1	−	x
e	 ,	com	0	<	x	<	1.

c)

A	imagem	de	está	contida	na	interseção	do	plano	x	+	y	=	1	com	a	superfície	esférica	x2	+	y2	+	z2	=	1.
■

Até	agora,	o	problema	referente	a	uma	função	y	=	g	(x)	dada	implicitamente	por	uma	equação	F	(x,	y)
=	 0	 era	 colocado	 da	 seguinte	 forma:	 suponha	 y	 =	g	 (x)	 diferenciável	 e	 definida	 implicitamente	 pela
equação	F	(x,	y)	=	0;	calcule	 .	Evidentemente,	 	só	terá	significado	se	realmente	F	(x,	y)	=	0	definir

implicitamente	alguma	 função	y	=	g	 (x).	Por	 exemplo,	x2	 +	y2	 =	 −	 3	 não	 define	 implicitamente	 função
alguma;	logo,	 	não	terá,	neste	caso,	nenhum	significado.

O	teorema	que	vamos	enunciar	a	seguir	fornece-nos	uma	condição	suficiente	para	que	a	equação	F	(x,
y)	 =	 0	 defina	 implicitamente	 uma	 função	 diferenciável	 y	 =	 g	 (x).	 Antes,	 porém,	 vamos	 ver	 alguns
exemplos.

EXEMPLO	7.	Seja	F	(x,	y)	de	classe	C1	num	aberto	A	de	 2	e	seja	(x0,	y0)	A,	com	F	(x0,	y0)	=	0.	Suponha



que	 .	Prove	que	existem	intervalos	abertos	I	e	J,	com	x
0
	∈	I	e	y

0
	∈	J,	tais	que,	para	cada	x

∈	I,	existe	um	único	g	(x)	∈	J,	com	F	(x,	g	(x))	=	0.

Solução

	 é	 contínua,	 pois,	 por	 hipótese,	 F	 é	 de	 classe	 C
1
.	 Como	 ,	 pelo	 teorema	 da

conservação	do	sinal	existe	uma	bola	aberta	B	de	centro	(x0,	y0),	que	podemos	supor	contida	em	A,	pois	A
é	aberto,	tal	que

Sejam	y1	e	y2	tais	que	y1	<	y0	<	y2,	com	(x0,	y1)	e	(x0,	y2)	em	B.	Fixado	x0,	consideremos	a	função

Como	 	para	todo	y	∈	[y
1
,	y

2
],	segue	que	 	é	estritamente	crescente	em	[y

1
,	y

2
].	Tendo	em

vista	que	F	(x0,	y0)	=	0,	resulta:

Seja	J	=	]y1,	y2[;	observe	que	y0	=	g	(x0)	é	o	único	número	em	J	tal	que	F	(x0,	y0)	=	0.	Tendo	em	vista	 	e
pela	continuidade	de	F,	existe	um	intervalo	aberto	I,	com	x0	∈	I,	tal	que	para	todo	x	∈	I,	(x,	y1)	e	(x,	y2)
pertencem	a	B,	com	F	(x,	y1)	<	0	e	F	(x,	y2)	>	0.



Como	 	em	B,	para	todo	x	∈	I,	a	função

é	estritamente	crescente	em	[y1,	y2];	tendo	em	vista	que	F	(x,	y1)	<	0	e	F	(x,	y2)	>	0,	pelo	teorema	do	valor
intermediário	e	pelo	fato	de	 	ser	estritamente	crescente	em	[y1,	y2],	existirá	um	único	g	(x)	∈	]y1,	y2[	tal
que	F	(x,	g	(x))	=	0	(veja	figura	seguinte).

A	função	g	:	I	→	J	está	definida	implicitamente	pela	equação	F	(x,	y)	=	0.

Observação.	Para	todos	 	e	 ,	com	 ,	procedendo	como	acima,	encontraremos
um	intervalo	aberto	I1	∈	I,	com	x0	∈1,	tal	que

logo,	g	é	contínua	em	x0.	Deixamos	a	seu	cargo	verificar	que	g	é	contínua	em	todo	x	∈	I.
■

EXEMPLO	8.	Suponha	F	(x,	y)	diferenciável	em	(x0,	y0).	Prove	que	existem	funções	φ1	(x,	y)	e	φ2	(x,	y),
definidas	em	DF,	tais	que



com

Solução

Pelo	lema	da	Seção	12.1,

Basta	tomar

e

EXEMPLO	9.	Prove	que	a	função	g	do	Exemplo	7	é	diferenciável	em	x0	e	que

Solução



Substituindo	y	=	g	(x)	e	y0	=	g	(x0)	em	 	do	Exemplo	8	e	lembrando	que	F	(x,	g	(x))	=	0	e	F	 (x0,	g
(x0))	=	0	resulta,	após	dividir	por	x	−	x0	(x	≠	x0):

Pelo	fato	de	g	ser	contínua	em	x
0
	 ,	resulta:

Teorema	das	funções	implícitas	(Caso	F	(x,	y)	=	0).	Seja	F	(x,	y)	de	classe	C1	num	aberto	A	de	 2	e	seja	(x0,	y0)	∈	A,	com	F

(x
0
,	y

0
)	=	0.	Nestas	condições,	se	 ,	então	existirão	intervalos	abertos	I	e	J,	com	x

0
	∈	I	e	y

0
	∈	J,	 tais	 que,	 para

cada	x	∈	I,	existe	um	único	g	(x)	∈	J,	com	F	(x,	g	(x))	=	0.	A	função	g	:	I	→	J	é	diferenciável	e

Demonstração

Veja	Exemplos	7,	8	e	9.
■

Observação.	Se	a	hipótese	 	for	substituída	por	 ,	então	existirão	intervalos

abertos	I	e	J,	com	x0	∈	I	e	y0	∈	J,	tais	que,	para	cada	y	∈	J,	existirá	um	único	h	(y)	∈	I,	com	F	(h	(y),	y)
=	0.	A	função	h	:	J	→	I	será	diferenciável	e

Teorema	das	funções	implícitas	(Caso	F	(x,	y,	z)	=	0).	Seja	F	(x,	y,	z)	de	classe	C1	no	aberto	A	de	 3	e	seja	(x0,	y0,	z0)	∈	A,

com	F	(x
0
,	y

0
,	z

0
)	=	 0.	Nestas	 condições,	 se	 ,	 então	 existirão	 uma	bola	 aberta	B	 de	 centro	 (x

0
,	y

0
)	 e	 um

intervalo	aberto	J,	com	z0	∈	J,	tais	que,	para	cada	(x,	y)	∈	B,	existe	um	único	g	(x,	y)	∈	J,	com	F	(x,	y,	g	(x,	y))	=	0.	A	função	z	=	g
(x,	y),	(x,	y)	∈	B,	é	diferenciável	e



Demonstração

Deixamos	a	cargo	do	leitor	adaptar	a	demonstração	do	teorema	anterior	a	este	caso.
■

Observação.	 Note	 que,	 pelo	 fato	 de	 F	 ser	 de	 classe	 C
1
	 e	 g	 contínua,	 as	 funções	 ,	

	serão	contínuas	em	B;	logo,	 	serão,	também,	contínuas	em

B,	isto	é,	g	é	de	classe	C1	em	B.

Teorema	das	funções	implícitas	(Caso	F	(x,	y,	z)	=	0	e	G	(x,	y,	z)	=	0).	Sejam	F	(x,	y,	z)	e	G	(x,	y,	z)	de	classe	C1	no	aberto	A

de	
3
	e	seja	(x

0
,	y

0
,	z

0
)	∈	A,	com	F	(x

0
,	y

0
,	z

0
)	=	0	e	G	(x

0
,	y

0
,	z

0
)	=	0.	Nestas	condições,	se	 	em	(x

0
,	y

0
,	z

0
),	então

existirão	um	intervalo	aberto	I,	com	x0	∈	I,	e	um	par	de	funções	y	=	y	(x)	e	z	=	z	(x)	definidas	e	de	classe	C1	em	I,	 tais	que,	para
todo	x	∈	I,	F	(x,	y	(x),	z	(x))	=	0	e	G	(x,	y	(x),	z	(x))	=	0;	além	disso,	y0	=	y	(x0)	e	z0	=	z	(x0).	Tem-se,	ainda:

sendo	que	os	determinantes	jacobianos	devem	ser	calculados	em	(x,	y	(x),	z	(x)).

Demonstração

Como	F	e	G	são	classe	C1	em	A,	e

pelo	teorema	da	conservação	do	sinal	 	permanece	diferente	de	zero	numa	bola	aberta	de	centro

(x
0
,	 y

0
,	 z

0
).	 Podemos,	 então,	 supor	 que	 	 em	A.	 Segue	 de	 	 que	 	 ou	

.	Suponhamos	 .	Pelo	teorema	anterior,	a	equação



1.

2.

a)

b)

3.

a)

b)

4.

5.

a)

b)

F	(x,	y,	z)	=	0

define	implicitamente	uma	função	z	=	g	(x,	y),	(x,	y)	∈	B,	sendo	g	de	classe	C1	na	bola	aberta	B	de	centro
(x0,	y0)	e	z0	=	g	(x0,	y0).	Consideremos,	agora,	a	função

H	(x,	y)	=	G	(x,	y,	g	(x,	y)),	(x,	y)	∈	B.

Temos:	H	(x,	y)	é	de	classe	C
1
,	H	(x

0
,	y

0
)	=	0	e	 	(verifique).	Segue	que	a	equação

H	(x,	y)	=	0,	ou	seja,	G	(x,	y,	g	(x,	y))	0

define	implicitamente	uma	função	y	=	y	(x),	x	∈	I,	sendo	y	(x)	de	classe	C1	no	intervalo	aberto	I	e	y0	=	y
(x0)	(x0	∈	I).	Deixamos	para	o	leitor	completar	a	demonstração.

■

No	Vol.	3,	voltaremos	aos	teoremas	da	função	implícita	e	da	função	inversa.

Exercícios	12.2	

A	equação	y
3
	+	xy	+	x

3
	=	4	define	implicitamente	alguma	função	diferenciável	y	=	y	(x)?	Em	caso	afirmativo,	expresse	 	em	termos

de	x	e	y.

(Sugestão:	Observe	que	(0,	 )	satisfaz	a	equação	e	utilize	o	teorema	das	funções	implícitas	(caso	F	(x,	y)	=	0).)

Mostre	que	cada	uma	das	equações	seguintes	define	implicitamente	pelo	menos	uma	função	diferenciável	y	=	y	(x).	Expresse	 	em

termos	de	x	e	y.

x2y	+	sen	y	=	x

y4	+	x2y2	+	x4	=	3

Mostre	 que	 cada	 uma	 das	 equações	 a	 seguir	 define	 implicitamente	 pelo	 menos	 uma	 função	 diferenciável	 z	 =	 z	 (x,	 y).	 Expresse	

	em	termos	de	x,	y	e	z.

ex	+	y	+	z	+	xyz	=	1

x3	+	y3	+	z3	=	x	+	y	+	z

Suponha	que	y	=	y	(x)	seja	diferenciável	e	dada	implicitamente	pela	equação	x	=	F	(x2	+	y,	y2),	onde	F	(u,	v)	é	suposta	diferenciável.

Expresse	 	em	termos	de	x,	y	e	das	derivadas	parciais	de	F.

Suponha	que	y	=	g	(x)	seja	diferenciável	no	intervalo	aberto	I	e	dada	implicitamente	pela	equação	f	(x,	y)	=	0,	onde	f	(x,	y)	é	suposta	de

classe	C
2
.	Suponha,	ainda,	 	em	D

f
.

Prove	que	 	é	uma	condição	necessária	para	que	x
0
	seja	ponto	de	máximo	local	de	g.

Prove	que	g″	é	contínua	em	I.



c)

6.

7.

8.

a)

b)

9.

10.

11.

Prove	que

e

é	condição	suficiente	para	que	x0	seja	ponto	de	máximo	local	de	g.

A	 função	 diferenciável	 z	 =	 z	 (x,	 y)	 é	 dada	 implicitamente	 pela	 equação	 ,	 onde	 f	 (u,	 v)	 é	 suposta	 diferenciável	 e	

.	Verifique	que

A	 função	 diferenciável	 z	 =	 z	 (x,	 y)	 é	 dada	 implicitamente	 pela	 equação	 	 um	 real	 fixo),	 onde	 f	 (u,	 v)	 é

suposta	diferenciável	e	 .	Verifique	que

Suponha	que	as	funções	diferenciáveis	y	=	y	(x)	e	z	=	z	(x)	sejam	dadas	implicitamente	pelo	sistema

Expresse	 	em	termos	de	x,	y	e	z.

Determine	um	par	de	funções	y	=	y	(x)	e	z	=	z	(x)	dadas	implicitamente	por	 .

Suponha	que	x	=	x	(u,	v)	e	y	=	y	(u,	v)	sejam	dadas	implicitamente	pelo	sistema

Mostre	que	 .

Sejam	u	=	x	+	y	e	v	=	 .	Calcule	o	determinante	jacobiano	 .

Calcule:



12.

13.

a)

b)

14.

15.

a)

b)

Seja	g	(u,	v)	=	f	(x,	y),	onde	x	=	x	(u,	v)	e	y	=	y	(u,	v)	são	dadas	implicitamente	pelo	sistema

Sejam	x	=	x	(u,	v)	e	y	=	y	(u,	v)	dadas	implicitamente	pelo	sistema

Expresse	 	em	termos	de	x	e	y.

Determine	um	par	de	funções	x	=	x	(u,	v)	e	y	=	y	(u,	v)	definidas	implicitamente	por	 .

Sejam	x	=	x	(y,	z),	y	=	y	(x,	z)	e	z	=	z	(x,	y)	definidas	implicitamente	pela	equação	F	(x,	y,	z)	=	0.	Suponha	x0	=	x	(y0,	z0),	y0	=	y	(x0,
z0),	z0	=	z	(x0,	y0)	e	que	no	ponto	(x0,	y0,	z0)	as	derivadas	parciais	de	F	sejam	diferentes	de	zero.	Mostre	que

Sejam	x	=	x	(u,	v)	e	y	=	y	(u,	v)	definidas	implicitamente	pelo	sistema

Expresse	 	em	termos	de	x,	y	e	u.

Determine	um	par	de	funções	x	=	x	(u,	v)	e	y	=	y	(u,	v)	definidas	implicitamente	pelo	sistema.
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GRADIENTE	E	DERIVADA	DIRECIONAL

GRADIENTE	DE	UMA	FUNÇÃO	DE	DUAS	VARIÁVEIS:
INTERPRETAÇÃO	GEOMÉTRICA

O	gradiente	de	uma	função	f	(x,	y)	foi	introduzido	na	Seção	11.5;	nosso	objetivo	aqui	é	interpretá-lo
geometricamente.	Antes	vamos	recordar	a	regra	da	cadeia:	se	f	(x,	y)	for	diferenciável	no	aberto	A	⊂	 2,
γ	 (t)	 diferenciável	 no	 intervalo	 aberto	 I,	 onde	 γ	 (t)	∈	A	 para	 todo	 t	∈	 I,	 então,	h	 (t)	 =	 f	 (γ	 (t))	 será
diferenciável	e

Seja	f	(x,	y)	de	classe	C1	num	aberto	A	⊂	 2	e	seja	(x0,	y0)	um	ponto	da	curva	de	nível	 f	(x,	y)	=	c;
suponhamos	∇	f	(x0,	y0)	≠	(0,	0).	Vamos	mostrar	a	seguir	que	∇	f	(x0,	y0)	é	perpendicular	em	(x0,	y0)	a
toda	curva	γ,	diferenciável,	passando	por	(x0,	y0)	e	cuja	imagem	esteja	contida	na	curva	de	nível	f	(x,	y)	=
c	(nas	condições	acima,	pelo	teorema	das	funções	implícitas,	uma	tal	curva	existe).	Seja,	então,	γ	(t),	t	∈
I,	uma	tal	curva,	com	γ	(t0)	=	(x0,	y0);	como	estamos	admitindo	que	a	imagem	de	γ	está	contida	na	curva	de
nível	f	(x,	y)	=	c,	teremos

para	todo	t	no	domínio	de	γ.	Derivando	os	dois	membros	de	 	em	relação	a	t,	obtemos:

ou

e,	portanto,

ou	seja,	∇	f	(x0,	y0)	é	perpendicular	a	γ,	em	γ	(t0)	=	(x0,	y0).



Dizemos,	então,	que	∇	f	(x0,	y0)	é	um	vetor	normal	à	curva	de	nível	f	(x,	y)	=	c,	em	(x0,	y0).	A	reta
passando	por	 (x0,	y0)	e	perpendicular	a	∇	 f	 (x0,	y0)	denomina-se	reta	 tangente,	em	(x0,	y0),	 à	 curva	de
nível	f	(x,	y)	=	c.	A	equação	de	tal	reta	é:

EXEMPLO	1.	A	curva	γ	(t)	passa	pelo	ponto	(1,	2)	e	é	tal	que	f	(γ	(t))	=	6	para	todo	t	no	domínio	de	γ,
onde	f	(x,	y)	=	x3y3	−	xy	(observe	que	a	imagem	de	está	contida	na	curva	de	nível	f	(x,	y)	=	6).	Suponha	γ
(t0)	=	(1,	2)	e	γ	(t0)	≠	 .	Determine	a	equação	da	reta	tangente	a	γ	no	ponto	(1,	2).

Solução

A	reta	tangente	a	γ	em	γ	(t0)	=	(1,	2)	coincide	com	a	reta	tangente	à	curva	de	nível	f	(x,	y)	=	6	em	(1,	2).
Assim,	a	equação	da	reta	tangente	a	γ	em	(1,	2)	é:

ou

22	(x	−	1)	+	11	(y	−	2)	=	0

ou

y	=	−2x	+	4.

Vejamos	como	fica,	em	notação	vetorial,	a	equação	desta	reta.	O	vetor	(−	11,	22)	é	perpendicular	a	∇	f
(1,	 2)	=	 (22,	 11);	 logo,	 (−	11,	 22)	 é	 paralelo	 a	 γ′	 (t0);	 assim,	 a	 equação	 da	 reta	 tangente	 acima	 pode,
também,	ser	dada	na	forma

EXEMPLO	2.	Considere	a	equação	a	derivadas	parciais



a)	Com	argumentos	geométricos,	obtenha	solução	de	 .
b)	Suponha	f	:	 2	→	 	diferenciável;	prove	que	se	f	satisfaz	 ,	então	existe	φ	:	 	→	 	diferenciável	tal
que	f	(x,	y)	=	φ	(2y	−	x).

Solução

a)	Sendo	f	(x,	y)	solução	de	 ,	para	todo	(x,	y)	∈	 2,

ou

Como	para	todo	(x,	y),	∇	f(x,	y)	é	perpendicular	ao	vetor	(2,	1)	e	como	∇	f	(x,	y)	é	perpendicular,	em	(x,
y),	à	curva	de	nível	de	f	que	passa	por	este	ponto,	é	razoável	esperar	que	as	curvas	de	nível	de	f	 sejam
retas	paralelas	ao	vetor	(2,	1);	assim	f	deve	ser	constante	sobre	cada	reta	paralela	ao	vetor	(2,	1).

Sendo	f	(x,	y)	constante	sobre	a	reta	r

f	(x,	y)	=	f	(0,	m),	onde

,	ou,	 .	Assim,	 ;	tomando-se	 ,	resulta	f	(x,

y)	=	φ	 (2y	 −	x),	 onde	φ	 :	 	→	 	 é	 uma	 função	 derivável.	Verifique	 você	 que,	 para	 toda	φ	 :	 	→	
diferenciável,	 f	 (x,	 y)	 =	 φ	 (2y	 −	 x)	 é	 solução	 de	 .	 Assim,	 as	 funções	 sen	 (2y	 −	 x),	

	etc.	são	soluções	de	 .

Observação.	Consideremos	a	mudança	de	variável

Note	que	quando	(x,	y)	percorre	a	reta	2y	−	x	=	c	o	correspondente	ponto	(u,	v)	percorrerá	a	reta	vertical



u	=	c.

Seja	g	(u,	v)	=	f	(x,	y),	com	x	=	2v	−	u	e	y	=	v.	Vimos,	geometricamente,	que	f	deve	ser	constante	sobre	as
retas	2y	−	x	=	c;	 é	de	se	esperar,	então,	que	g	 seja	constante	 sobre	as	 retas	u	=	c,	 ou	 seja,	 que	g	 não
dependa	de	v.	Vamos,	agora,	resolver	a	parte	b).

b)	Seja	f	(x,	y)	diferenciável	em	 2;	supondo	f	solução	de	 	teremos

Seja	g	(u,	v)	=	f	(x,	y)	com	x	=	2v	−	u	e	y	=	v	(veja	observação	anterior).	Temos:

ou

Assim,	para	todo	(u,	v)	em	 2,

o	que	mostra	que	g	não	depende	de	v,	isto	é,

g	(u,	v)	=	φ	(u),

para	alguma	função	φ	:	 	→	 	diferenciável.	Portanto,	f	(x,	y)	=	φ	(2y	−	x),	onde	φ	:	 	−	 	é	uma	função
diferenciável.

■

Vejamos,	 agora,	 como	 utilizar	 o	 gradiente	 de	 uma	 função	 de	 duas	 variáveis	 na	 obtenção	 da	 reta
tangente	e	da	reta	normal	ao	gráfico	de	uma	função	y	=	g	(x)	de	uma	variável.	Para	isto,	consideremos	a
função	de	duas	variáveis	F	(x,	y)	=	g	(x)	−	y;	evidentemente,	o	gráfico	de	g	coincide	com	a	curva	de	nível
F	(x,	y)	=	0.	Seja	(x0,	y0),	com	y0	=	g	(x0),	um	ponto	do	gráfico	de	g.



Segue	que	∇	F	(x0,	y0)	é	normal	ao	gráfico	de	g	em	(x0,	y0).	Como

resulta,	∇	F	(x0,	y0)	=	(g′	(x0),	−	1).	A	equação	da	reta	tangente	ao	gráfico	de	g,	no	ponto	de	abscissa	x0,	é,
então

(g′	(x0),	−	1)	·	[(x,	y)	−	(x0,	y0)]	=	0

ou

g′	(x0)	(x	−	x0)	−	(y	−	y0)	=	0

ou,	ainda,	y	−	y0	=	g′	(x0)	(x	−	x0).
Por	outro	lado,	a	equação	da	reta	normal	ao	gráfico	de	g	no	ponto	de	abscissa	x0	é:

(x,	y)	=	(x0,	y0)	+	λ	(g′	(x0),	−	1),	λ	∈	 .

Suponhamos,	agora,	que	a	função	diferenciável	y	=	g	(x)	seja	dada	implicitamente	pela	equação	F	(x,
y)	=	0,	onde	F	é	suposta	diferenciável	e	∇	F	(x0,	y0)	≠	 ,	com	y0	=	g	(x0)	(observe	que	a	situação	anterior
é	um	caso	particular	desta).	Segue	que,	para	todo	x	no	domínio	de	g,	F	(x,	g	(x))	=	0,	isto	é,	a	imagem	da
curva	γ	 (x)	=	 (x,	g	 (x))	 está	 contida	na	 curva	de	nível	F	 (x,	y)	 =	 0.	Assim,	∇	F	 (x0,	 y0)	 é	 normal	 ao
gráfico	 de	 g	 no	 ponto	 (x0,	 y0).	 Poderíamos,	 também,	 ter	 chegado	 a	 este	 resultado,	 no	 caso	

,	observando	que

é	o	coeficiente	angular	da	direção	determinada	pelo	vetor



1.

a)

b)

2.

(fórmula	de	derivação	implícita)	é	o	coeficiente	angular	da	reta	tangente	ao	gráfico	de	g	no	ponto	(x0,	y0).

EXEMPLO	3.	y	=	f	(x)	é	uma	função	diferenciável	definida	implicitamente	pela	equação	y3	+	xy	+	x3	=
3x.	Determine	as	equações	das	retas	tangente	e	normal	ao	gráfico	de	f	no	ponto	(1,	1).

Solução

∇	F	(1,	1)	é	perpendicular	ao	gráfico	de	f	no	ponto	(1,	1).	Temos:

Reta	tangente:

ou	seja,

Reta	normal:

y	−	1	=	4	(x	−	1)	ou	y	=	4x	−	3.

Ou,	em	forma	vetorial:

Exercícios	13.1	

É	dada	uma	curva	que	passa	pelo	ponto	γ	(t0)	=	(1,	3)	e	cuja	imagem	está	contida	na	curva	de	nível	x
2	+	y2	=	10.	Suponha	γ′	(t0)	≠	 .

Determine	a	equação	da	reta	tangente	a	γ	no	ponto	(1,	3).

Determine	uma	curva	γ	(t)	satisfazendo	as	condições	acima.

Determine	a	equação	da	reta	tangente	à	curva	γ	no	ponto	γ	(t0)	=	(2,	5)	sabendo-se	que	γ′	(t0)	≠	 	e	que	a	sua	imagem	está	contida	na



3.

4.

5.

6.

7.

8.

9.

10.

a)

b)

11.

a)

b)

12.

a)

b)

13.2.

curva	de	nível	xy	=	10.	Qual	a	equação	da	reta	normal	a	γ,	neste	ponto?

Determine	a	equação	da	reta	tangente	à	curva	de	nível	dada,	no	ponto	dado.

Determine	uma	reta	que	seja	tangente	à	elipse	2x2	+	y2	=	3	e	paralela	à	reta	2x	+	y	=	5.

Determine	uma	reta	que	seja	tangente	à	curva	x2	+	xy	+	y2	=	7	e	paralela	à	reta	4x	+	5y	=	17.

Utilizando	argumentos	geométricos,	determine	soluções	da	equação	a	derivadas	parciais	dada.

Determine	uma	função	z	=	f	(x,	y)	tal	que	 	e	cujo	gráfico	passe	pelos	pontos	(1,	1,	3),	(0,	0,	1)	e	(0,	1,	2).

Determine	uma	função	z	=	f	(x,	y)	tal	que	 	e	cujo	gráfico	contenha	a	imagem	da	curva	γ	(t)	=	(t,	t,	t
2
),	t	∈	 .

Determine	uma	curva	γ	(t)	=	(x	(t),	y	(t))	que	passe	pelo	ponto	γ	(0)	=	(1,	2)	e	que	intercepte	ortogonalmente	as	curvas	da	família	x2	+
2y2	=	c.

Determine	uma	função	y	=	y	(x)	cujo	gráfico	intercepte	ortogonalmente	as	curvas	da	família	xy	=	c,	com	x	>	0	e	y	>	0,	e	tal	que

y	(1)	=	1

y	(1)	=	2

Seja	z	=	f	(x,	y)	diferenciável	em	 2	e	tal	que	∇	f	(x,	y)	=	g	(x,	y)	(x,	y),	para	todo	(x,	y)	em	 2,	onde	g	(x,	y)	é	uma	função	de	 2	em
	dada.

Com	argumentos	geométricos,	verifique	que	é	razoável	esperar	que	f	seja	constante	sobre	cada	circunferência	de	centro	na	origem.

Prove	que	f	é	constante	sobre	cada	circunferência	de	centro	na	origem.

(Sugestão:	g	(t)	=	f	(R	cos	t,	R	sen	t)	fornece	os	valores	de	f	sobre	a	circunferência	x2	+	y2	=	R2.)

Seja	 y	 =	g	 (x)	 definida	 e	 derivável	 no	 intervalo	 aberto	 I,	 dada	 implicitamente	 pela	 equação	 f	 (x,	 y)	 =	 0,	 onde	 f	 (x,	 y)	 é	 suposta

diferenciável	no	aberto	A	⊂	
2
.	Suponha	 	em	A.

Com	argumentos	geométricos,	mostre	que	é	razoável	esperar	que	g	seja	estritamente	decrescente	em	I.

Prove	que	g	é	estritamente	decrescente	em	I.

	
GRADIENTE	DE	FUNÇÃO	DE	TRÊS	VARIÁVEIS:	INTERPRETAÇÃO
GEOMÉTRICA

Seja	f	(x,	y,	z)	de	classe	C1	num	aberto	A	⊂	 3	e	seja	(x0,	y0,	z0)	um	ponto	da	superfície	de	nível	f	(x,
y,	z)	=	c;	suponhamos	∇	f	(x0,	y0,	z0)	≠	(0,	0,	0).	Vamos	mostrar	que	∇	f	(x0,	y0,	z0)	é	normal	em	(x0,	y0,	z0)
a	toda	curva	γ,	diferenciável,	passando	por	este	ponto	e	cuja	imagem	esteja	contida	na	superfície	de	nível



f	(x,	y,	z)	=	c.	Seja,	então,	γ	(t),	t	∈	I,	uma	tal	curva,	com	γ	(t0)	=	(x0,	y0,	z0);	como	estamos	supondo	que	a
imagem	de	γ	está	contida	na	superfície	de	nível	f	(x,	y,	z)	=	c,	teremos

para	todo	t	no	domínio	de	γ.	Derivando,	em	relação	a	t,	ambos	os	membros	da	equação	 	obtemos,	para
todo	t	∈	I,

e,	portanto,	∇	f	(γ	(t0))	·	γ′	(t0)	=	0,	o	que	mostra	que	∇	f	(γ	(t0))	e	γ′	(t0)	são	ortogonais.

Fica	provado	assim	que	∇	f	(x0,	y0,	z0)	é	normal	em	(x0,	y0,	z0)	a	toda	curva	diferenciável	γ	passando	por
este	 ponto	 e	 com	 imagem	contida	na	 superfície	 f	 (x,	 y,	 z)	=	c.	Diremos,	 então,	 que	∇	 f	 (x0,	 y0,	 z0)	 é
normal	à	superfície	de	nível	f	(x,	y,	z)	=	c,	no	ponto	(x0,	y0,	z0).	O	plano	passando	pelo	ponto	(x0,	y0,	z0)	e
perpendicular	a	∇	f	(x0,	y0,	z0)	denomina-se	plano	tangente,	em	(x0,	y0,	z0),	à	superfície	f	(x,	y,	z)	=	c.	A
equação	deste	plano	é:

A	reta

denomina-se	reta	normal,	em	(x0,	y0,	z0),	à	superfície	f	(x,	y,	z)	=	c.
Seja	z	=	g	(x,	y)	uma	função	diferenciável	dada	implicitamente	pela	equação	F	(x,	y,	z)	=	0	onde	F	(x,

y,	z)	é	suposta	de	classe	C1	num	aberto	de	 3;	seja	(x0,	y0,	z0),	z0	=	g	(x0,	y0),	um	ponto	do	gráfico	de	g,
com	∇	F	(x0,	y0,	z0)	≠	 .	Como	o	gráfico	de	g	está	contido	na	superfície	F	(x,	y,	z)	=	0,	resulta	que	toda
curva	γ	com	imagem	contida	no	gráfico	de	g	tem,	também,	sua	imagem	contida	na	superfície	F	(x,	y,	z)	=
0;	assim,	∇	F	(x0,	y0,	z0)	é	normal	ao	gráfico	de	g,	em	(x0,	y0,	z0).

Observe	que	se	γ	(t)	é	uma	curva	diferenciável	com	imagem	contida	na	interseção	das	superfícies	F
(x,	y,	z)	=	0	e	G	(x,	y	z)	=	0,	onde	F	e	G	são	supostos	de	classe	C1	num	aberto	de	 3	e	∇	F	(x0,	y0,	z0)	∧	∇
G	(x0,	y0,	z0)	≠	 ,	então	o	vetor	γ′	(t0)	≠	0,	tangente	a	γ	em	γ	(t0)	=	(x0,	y0,	z0),	é	paralelo	a	∇	F	(x0,	y0,	z0)
∧	∇	G	(x0,	y0,	z0)	(verifique).

EXEMPLO	1.	Determine	as	equações	do	plano	tangente	e	da	reta	normal	à	superfície	xyz	+	x3	+	y3	+	z3	=
3z	no	ponto	(1,	−	1,	2).



Solução

Plano	tangente	em	(1,	−	1,	2):

ou

(1,	5,	8)	·	[(x,	y,	z)	−	(1,	−	1,	2)]	=	0

ou	seja,

(x	−	1)	+	5	(y	+	1)	+	8	(z	−	2)	=	0

ou,	ainda,

x	+	5y	+	8z	=	12.

Reta	normal	em	(1,	−	1,	2):

EXEMPLO	2.	Considere	a	função	z	=	f	(x,	y)	dada	por	 .	Determine	a	equação
do	plano	tangente	no	ponto	(1,	1,	f	(1,	1)).

Solução

1.º	processo



é	a	equação	do	plano	tangente	em	(1,	1,	f	(1,	1)).

2.º	processo

A	função	é	então	definida	implicitamente	pela	equação

∇	F	(1,	1,	2)	é,	então,	normal	ao	gráfico	de	f	no	ponto	(1,	1,	f	(1,	1)).

A	equação	do	plano	tangente	em	(1,	1,	2)	é:

(6,	2,	4)	·	[(x,	y,	z)	−	(1,	1,	2)]	=	0

ou

6	(x	−	1)	+	2	(y	−	1)	+	4	(z	−	2)	=	0,

ou,	ainda,

EXEMPLO	3.	A	imagem	da	curva	γ	(t)	está	contida	na	interseção	das	superfícies	x2	+	2y2	+	z	=	4	e	x2	+	y
+	z	=	3.	Suponha	γ	(t0)	=	(1,	1,	1)	e	γ′	(t0)	≠	 .

a)	Determine	a	reta	tangente	a	γ	no	ponto	γ	(t0).
b)	Determine	uma	curva	γ	(t)	nas	condições	acima.

Solução



1.

2.

a)	Sejam	F	(x,	y,	z)	=	x2	+	2y2	+	z	e	G	(x,	y,	z)	=	x2	+	y	+	z.
Para	todo	t	no	domínio	de	γ	devemos	ter

F	(γ	(t))	=	4	e	G	(γ	(t))	=	3,

pois	a	imagem	de	está	contida	nas	superfícies	de	nível	F	(x,	y,	z)	=	4	e	G	(x,	y,	z)	=	3.	Segue	que

ou	seja,	γ′	 (t0)	 é	normal	 aos	vetores	∇	F	 (1,	1,	1)	 e	∇	G	 (1,	 1,	 1);	 logo,	 γ′	 (t0)	 é	 paralelo	 ao	 produto
vetorial	∇	F	(1,	1,	1)	∧	∇	G	(1,	1,	1).	Temos:

A	equação	da	reta	tangente	a	γ	no	ponto	γ	(t0)	=	(1,	1,	1)	é:

(x,	y,	z)	=	(1,	1,	1)	+	λ	(3,	0,	−	6),	λ	∈	 .

x2	+	y	+	z	=	3	⇒	z	=	3	−	x2	−	y.	Substituindo	na	1.ª	equação	vem:

x2	+	2y2	+	3	−	x2	−	y	=	4

e,	portanto,	2y2	−	y	−	1	=	0,	ou	seja,	y	=	1	ou	y	=	−	 ;	isto	é,	y	não	depende	de	x.	Como	a	curva	deve
passar	pelo	ponto	(1,	1,	1),	vamos	tornar	y	=	1.	Segue	que	z	=	3	−	x2	−	1,	ou	seja,	z	=	2	−	x2.	A	imagem	da
curva	 γ	 (t)	 =	 (t,	 1,	 2	 −	 t2)	 está	 contida	 na	 interseção	 das	 superfícies	 e	 passa	 pelo	 ponto	 (1,	 1,	 1).
Sugerimos	ao	leitor	desenhar	a	imagem	de	γ.

■

Exercícios	13.2	

Determine	as	equações	do	plano	tangente	e	da	reta	normal	à	superfície	dada,	no	ponto	dado.

A	função	diferenciável	z	=	f	(x,	y)	é	dada	implicitamente	pela	equação	x3	+	y3	+	z3	=	10.	Determine
a	equação	do	plano	tangente	ao	gráfico	de	f	no	ponto	(1,	1,	f	(1,	1)).



3.

4.

5.

6.

a)
b)

7.

a)
b)

8.

a)

b)

9.

10.

13.3.

Determine	um	plano	que	seja	tangente	à	superfície	x2	+	3y2	+	2z2	=	 	e	paralelo	ao	plano	x	+	y	+	z

=	10.

É	dada	uma	função	diferenciável	z	=	f	(x,	y)	cujo	gráfico	está	contido	na	superfície	x2	+	y2	+	z2	=	1.
Sabe-se	que	 .	Determine	a	equação	do	plano	tangente	ao	gráfico	de	 f	no	ponto	

.

A	imagem	da	curva	γ	(t)	está	contida	na	interseção	das	superfícies	x2	+	y2	+	z2	=	3	e	x2	+	3y2	−	z2	=
3.	Suponha	γ	(t0)	=	(1,	1,	1)	e	γ′	(t0)	≠	 .	Determine	a	reta	tangente	a	γ	em	γ	(t0).

A	 imagem	da	 curva	 γ	 (t)	 está	 contida	 na	 interseção	 da	 superfície	 cilíndrica	 x2	 +	 y2	 =	 2	 com	 a
superfície	esférica	x2	+	y2	+	z2	=	3.	Suponha	γ	(t0)	=	(1,	1,	1)	e	γ′	(t0)	≠	0.

Determine	a	reta	tangente	a	γ	em	γ	(t0).
Determine	uma	curva	γ	(t)	satisfazendo	as	condições	acima.

É	dada	uma	curva	γ	(t)	cuja	imagem	é	a	interseção	das	superfícies	4x2	+	y2	=	1	e	x	+	y	+	z	=	1.
Suponha	γ	(t0)	=	(0,	1,	0)	e	γ′	(t0)	≠	0.

Determine	a	reta	tangente	a	γ	em	γ	(t0).
Determine	uma	parametrização	para	a	interseção	acima.

Considere	a	função	 .

Determine	uma	função	F	(x,	y,	z),	que	não	envolva	radicais,	tal	que	a	função	dada	seja	definida
implicitamente	pela	equação	F	(x,	y,	z)	=	0.
Determine	a	equação	do	plano	tangente	ao	gráfico	da	função	dada	no	ponto	(2,	2,	1).

Determine	a	equação	do	plano	normal,	em	(1,	2,	3),	à	interseção	das	superfícies	x2	+	y2	+	z2	=	14	e
xyz	=	6.

Determine	um	plano	que	passe	pelos	pontos	(5,	0,	1)	e	(1,	0,	3)	e	que	seja	tangente	à	superfície	x2
+	2y2	+	z2	=	7.

	
DERIVADA	DIRECIONAL

Sejam	z	=	f	(x,	y)	uma	função,	(x0,	y0)	um	ponto	de	Df	e	 	=	(a,	b)	um	vetor	unitário.	Suponhamos	que
exista	r	>	0	tal	que	para	|	t	|	<	r	os	pontos	da	reta	(x,	y)	=	(x0	+	at,	y0	+	bt)	pertençam	ao	domínio	de	f.
Como	estamos	supondo	 	=	(a,	b)	unitário,	a	distância	de	(x0	+	at,	y0	+	bt)	a	(x0,	y0)	é	|	t	|	(verifique).



Pois	bem,	definimos	a	taxa	média	de	variação	de	f,	na	direção	 	=	(a,	b),	entre	os	pontos	(x0,	y0)	e	(x0
+	at,	y0	+	bt)	por

Vamos	destacar,	a	seguir,	o	limite	de	 	para	t	→	0.

Definição.	O	limite

quando	existe	e	é	finito,	denomina-se	derivada	direcional	de	f	no	ponto	(x0,	y0)	e	na	direção	do	vetor	 	=	(a,	b),	com	 	unitário.

A	derivada	direcional	 	denomina-se,	também,	taxa	de	variação	de	f	no	ponto	(x
0
,	y

0
)	e	na

direção	do	vetor	 .	Observe:

sendo	a	aproximação	tanto	melhor	quanto	menor	for	|	t	|.
As	derivadas	parciais	de	f,	em	(x0,	y0),	são	particulares	derivadas	direcionais.	De	fato:

e

Deste	modo,	 	são,	respectivamente,	as	derivadas	direcionais	de	f,	no	ponto	(x
0
,

y
0
),	e	nas	direções	dos	vetores	 .



A	seguir,	vamos	interpretar	geometricamente	 .	Para	isto,	consideremos	a	curva	γ	(t)	dada

por

onde	g	(t)	=	f	(x0	+	at,	y0	+	bt).

Observe	que	a	imagem	de	γ	está	contida	no	gráfico	de	f.	Temos:

ou	seja,

Segue	que	 .	Então,



a)
b)
c)

Como	(a,	b)	é	unitário,	 	(veja	figura	anterior).

EXEMPLO	1.	Seja	f	(x,	y)	=	x
2
	+	y

2
.	Calcule	 	onde	 	é	o	versor	de

	=	(−	1,	1)
	=	(1,	2)
	=	(1,	1)

Solução

Inicialmente,	vamos	calcular	 	onde	 	=	(a,	b)	é	um	vetor	unitário	qualquer.

Ou	seja,

a)	 	é	tangente	em	(1,	1)	à	curva	de	nível	f	(x,	y)	=	2	ou	seja,	x
2
	+	y

2
	=

2	(verifique).



Portanto,	é	razoável	esperar	que,	nesta	direção	t,	a	taxa	de	variação	de	f,	em	(1,	1),	seja	nula.	(Por	quê?)
De	fato

c)	 ;	observe	que	 	é	o	versor	do	vetor	gradiente	∇	f	(1,	1)	=	(2,	2).	Temos:

Note	que	o	valor	de	 	para	 	é	maior	que	para	 .	Provaremos,

na	próxima	seção	que,	sendo	f	diferenciável,	 	assumirá	valor	máximo	para	 	igual	ao	versor

do	vetor	gradiente	∇	f	(x0,	y0).

EXEMPLO	2.	São	dados	uma	função	f	(x,	y)	=	x2	+	y2,	um	vetor	unitário	(a,	b)	e	um	real	β	>	2.	Suponha
que	(1	+	sa,	1	+	sb)	e	 ,	com	s	>	0	e	 t	>	0,	pertençam	à	curva	de	nível	 f	(x,	y)	=	β.

Compare	a	taxa	média	de	variação	de	f	entre	os	pontos	(1,	1)	e	(1	+	sa,	1	+	sb)	e	entre	os	pontos	(1,	1)	e	

.

Solução



Sendo	(a,	b)	unitário,	a	distância	de	(1	+	sa,	1	+	sb)	a	(1,	1)	é	s;	a	distância	de	 	a

(1,	 1)	 é	 t.	 Se	 ,	 teremos	 t	 <	 s.	 Como	

resulta,	para	 ,

É	razoável,	portanto,	esperar	que	 	(1,	1)	assuma	valor	máximo	para	 .

■

EXEMPLO	3.	Seja	 	=	(a,	b)	um	vetor	unitário	dado.	Calcule	 	(0,	0)	onde

Solução

ou	seja,	para	todo	vetor	unitário	(a,	b)



13.4.

Já	vimos	que	f	é	contínua	em	(0,	0),	mas	não	diferenciável	em	(0,	0).	Este	exemplo	mostranos	que	uma
função	 pode	 ser	 contínua	 num	 ponto,	 ter	 derivada	 direcional	 em	 todas	 as	 direções	 neste	 ponto,	 e
mesmo	assim	não	ser	diferenciável	neste	ponto.

DERIVADA	DIRECIONAL	E	GRADIENTE

O	objetivo	desta	seção	é	destacar	mais	algumas	propriedades	do	vetor	gradiente.	Inicialmente,	vamos
provar	que	se	f	for	diferenciável	em	(x0,	y0),	então	f	admitirá	derivada	direcional	em	todas	as	direções,
no	 ponto	 (x0,	 y0),	 e	 cada	 derivada	 direcional	 se	 exprime	 de	 modo	 bastante	 simples	 em	 termos	 do
gradiente	de	f	em	(x0,	y0).

Teorema	1.	Sejam	f	:	A	⊂	 2	→	 ,	A	aberto,	(x0,	y0)	∈	A	e	 	=	(a,	b)	um	vetor	unitário.	Se	f	(x,	y)	for	diferenciável	em	(x0,	y0),
então	f	admitirá	derivada	direcional	em	(x0,	y0),	na	direção	 ,	e

Demonstração

Seja	 g	 dada	 por	 g	 (t)	 =	 f	 (x0	 +	 at,	 y0	 +	 bt);	 da	 diferenciabilidade	 da	 f	 em	 (x0,	 y0)	 segue	 a
diferenciabilidade	da	g	em	t	=	0	e,	pela	regra	da	cadeia,

Como

resulta,

O	teorema	anterior	conta-nos	que	se	f	(x,	y)	for	diferenciável	em	(x0,	y0),	então

Entretanto,	se	f	não	for	diferenciável	em	(x0,	y0)	esta	relação	não	tem	nenhuma	obrigação	de	se	verificar.



(Veja	Exercício	21.)
De	agora	em	diante,	quando	nada	for	dito	sobre	uma	função	 f	(x,	y)	 ficará	 implícito	que	se	 trata	de

uma	função	definida	num	aberto	e	diferenciável.

Vimos	 na	 Seção	 6.4	 que	 se	 	 e	 	 são	 vetores	 não	 nulos	 e	 θ	 o	 ângulo	 entre	 eles,	 então	
;	se	 	for	unitário,	 .	Na	figura	a	seguir,	α	 	é	a	projeção	de	

na	direção	 ,	onde	 .	Diremos	que	o	número	 	a	componente	escalar	de	 	na
direção	 .

Veremos	a	seguir	que	 	é	a	componente	escalar	de	∇	f	(x
0
,	y

0
)	na	direção	 .

Suponhamos	∇	f	(x0,	y0)	≠	 	e	 	unitário.	Seja	θ	o	ângulo	entre	∇	f	(x0,	y0)	e	 	Temos:

Como	 	é	unitário



a)
b)

Teorema	2.	Seja	f	:	A	⊂	 2	→	 ,	A	aberto,	diferenciável	em	(x
0
,	y

0
)	e	tal	que	 .	Então,	o	valor	máximo	de	

	 ocorre	 quando	 	 for	 o	 versor	 de	 ,	 isto	 é,	 ,	 e	 o	 valor	 máximo	 de	

.

Demonstração

	terá	valor	máximo	para	θ	=	0,	ou	seja,	quando	 	for	o	versor	de	∇	f	(x
0
,	y

0
).	O	valor	máximo

de	 	é	então	||	∇	f	(x
0
,	y

0
)	||.

■

O	teorema	acima	nos	diz,	ainda,	que,	estando	em	(x0,	y0),	a	direção	e	sentido	que	se	deve	tomar	para
que	f	cresça	mais	rapidamente	é	a	do	vetor	∇	f	(x0,	y0).

EXEMPLO	1.	Calcule	 ,	onde	 	o	versor	de

	=	(1,	1)
	=	(3,	4)

Solução

Como	f	é	diferenciável

∇	f	(x,	y)	=	(2x	+	y,	x);	logo,	∇	f	(1,	2)	=	(4,	1).



■

EXEMPLO	2.	Seja	f	(x,	y)	=	x2y.

a)	Determine	 	de	modo	que	 	(1,	1)	seja	máximo.

b)	Qual	o	valor	máximo	de	 	(1,	1)?

c)	Estando-se	em	(1,	1),	que	direção	e	sentido	deve-se	tomar	para	que	f	cresça	mais	rapidamente?

Solução

a)	 Como	 f	 é	 diferenciável	 em	 (1,	 1)	 e	 ∇	 f	 (1,	 1)	 ≠	 (0,	 0),	 segue	 que	 	 (1,	 1)	 é	 máximo	 para	

,	ou	seja,	 .

b)	O	valor	máximo	de	 .

c)	∇	f	(1,	1)	=	(2,	1)	aponta	a	direção	e	sentido	em	que	f	cresce	mais	rapidamente	em	(1,	1).
■

EXEMPLO	3.	Admita	que	T	(x,	y)	=	x2	+	3y2	represente	uma	distribuição	de	temperatura	no	plano	xy:	T
(x,	y)	é	a	temperatura	no	ponto	(x,	y)	(supondo	T	em	ºC,	x	e	y	em	cm).



a)	Estando-se	em	 ,	qual	a	direção	e	sentido	de	maior	crescimento	da	temperatura?	Qual	a	taxa	de

crescimento	nesta	direção?

b)	Estando-se	em	 ,	qual	a	direção	e	sentido	de	maior	decrescimento	da	temperatura?	Qual	a	taxa

de	decrescimento	nesta	direção?

Solução

a)	 	aponta,	em	 ,	 a	direção	e	 sentido	de	maior	crescimento	de

temperatura.	Nesta	direção,	 ,	a	taxa	de	variação	da	temperatura	é	máxima:

o	que	significa	que,	a	partir	do	ponto	 	e	na	direção	e	sentido	de	∇	T	 ,	a	temperatura	está

aumentando	a	uma	taxa	aproximada	de	5ºC	por	cm:

sendo	a	aproximação	tanto	melhor	quanto	menor	for	o	t.

b)	 	aponta,	em	 ,	 a	direção	e	 sentido	de	maior	decrescimento	da

temperatura.	Nesta	direção,	 ,	a	taxa	de	variação	da	temperatura	é	mínima:



ou	seja,

Nesta	direção	e	sentido,	a	partir	de	 ,	a	 temperatura	está	decrescendo	a	uma	taxa	aproximada	de

5ºC	por	cm.
■

EXEMPLO	4.	Suponha	que	T	(x,	y)	=	4x2	+	y2	represente	uma	distribuição	de	temperatura	no	plano	xy.
Determine	uma	parametrização	para	a	trajetória	descrita	por	um	ponto	P	que	se	desloca,	a	partir	de	(1,
1),	sempre	na	direção	e	sentido	de	máximo	crescimento	da	temperatura.

Solução

Por	 considerações	 geométricas,	 é	 razoável	 esperar	 que	 a	 trajetória	 descrita	 por	P	 coincida	 com	 o
gráfico	de	uma	função	y	=	f	(x),	com	f	(1)	=	1.

O	coeficiente	angular	da	reta	tangente	ao	gráfico	de	f	em	(x,	y)	é	 .	Como	∇T	(x,	y)	=	(8x,	2y)
deve	ser	tangente	ao	gráfico	de	f,	em	(x,	y),	devemos	ter

	Observe	 que	 a	 direção	 do	 vetor	 	 tem	 coeficiente	 angular	 . 	 Separando	 as

variáveis	em	 	e	integrando,	obtemos,



Para	que	a	condição	f	(1)	=	1	seja	satisfeita,	devemos	tomar	k	=	0;	assim,

Segue	que	γ	(t)	=	(t,	 ),	 t	≥	1,	é	uma	parametrização	para	a	 trajetória	descrita	por	P.	Outro	modo	de
resolver	o	problema	é	determinar	funções	x	(t)	e	y	(t)	 tais	que	a	curva	γ	(t)	=	(x	 (t),	y	 (t))	satisfaça	as
condições

Temos:

Deste	modo,	x	(t)	e	y	(t)	devem	satisfazer	as	condições

Deixamos	a	seu	cargo	verificar	que	x	=	e8t	e	y	=	e2t	satisfazem	as	condições	acima.	Assim,

é,	também,	parametrização	da	trajetória	descrita	por	P.
■

EXEMPLO	5.	Calcule	a	derivada	direcional	de	f	(x,	y)	=	x2	+	y2	no	ponto	(1,	2)	e	na	direção	do	vetor	
.



1.

Solução

O	que	queremos	aqui	 	(1,	2)	onde	 	é	o	versor	de	 .

assim,

Observação.	 Tudo	 o	 que	 dissemos	 nesta	 seção	 generaliza-se	 para	 funções	 reais	 de	 três	 ou	 mais
variáveis.

EXEMPLO	 6.	 Calcule	 a	 derivada	 direcional	 de	 f	 (x,	 y,	 z)	 =	 xyz	 no	 ponto	 (1,	 1,	 3)	 e	 na	 direção	
.

Solução

onde	 	é	o	versor	de	 .

Assim,

Exercícios	13.4	

Calcule	 ,	sendo	dados:



2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

a)

b)

c)

d)

Em	 que	 direção	 e	 sentido	 a	 função	 dada	 cresce	 mais	 rapidamente	 no	 ponto	 dado?	 E	 em	 que	 direção	 e	 sentido	 decresce	 mais
rapidamente?

Seja	f	(x,	y)	=	x	arctg	 .	Calcule	 	(1,	1),	onde	 	aponta	na	direção	e	sentido	de	máximo	crescimento	de	f,	no	ponto	(1,	1).

Calcule	a	derivada	direcional	de	 	no	ponto	(2,	2)	e	na	direção

Calcule	a	derivada	direcional	de	 ,	no	ponto	(−	1,	1)	e	na	direção	 .

Uma	função	diferenciável	f	(x,	y)	tem,	no	ponto	(1,	1),	derivada	direcional	igual	a	3	na	direção	 	e	igual	a	−	1	na	direção	

	Calcule

Admita	que	T	(x,	y)	=	16	−	2x2	−	y2	represente	uma	distribuição	de	temperatura	no	plano	xy.	Determine	uma	parametrização	para	a
trajetória	 descrita	 por	 um	ponto	P	 que	 se	 desloca,	 a	 partir	 do	 ponto	 (1,	 2),	 sempre	 na	 direção	 e	 sentido	 de	máximo	 crescimento	 da
temperatura.

Seja	f	(x,	y)	=	xy.	Determine	uma	parametrização	para	a	 trajetória	descrita	por	um	ponto	P	que	se	desloca,	a	partir	do	ponto	 (1,	2),
sempre	na	direção	e	sentido	de	máximo	crescimento	de	f.

Seja	f	(x,	y)	=	xy.	Determine	a	reta	tangente	ao	gráfico	de	f,	no	ponto	(1,	2,	f	(1,	2)),	que	forma	com	o	plano	xy	ângulo	máximo.

Seja	f	(x,	y)	=	x	+	2y	+	1.	Determine	a	reta	contida	no	gráfico	de	f,	passando	pelo	ponto	(1,	1,	4)	e	que	forma	com	o	plano	xy	ângulo
máximo.

Um	ponto	P	descreve	uma	trajetória	sobre	o	gráfico	de	f	(x,	y)	=	4x2	+	y2.	Sabe-se	que	a	reta	tangente	em	cada	ponto	da	trajetória
forma	com	o	plano	xy	ângulo	máximo.	Determine	uma	parametrização	para	a	trajetória	admitindo	que	ela	passe	pelo	ponto	(1,	1,	5).

Admita	que	o	gráfico	de	z	=	xy	represente	uma	superfície	própria	para	a	prática	do	esqui.	Admita,	ainda,	que	um	esquiador	deslize	pela
superfície	sempre	na	direção	de	maior	declive.	Se	ele	parte	do	ponto	(1,	2,	2),	em	que	ponto	ele	tocará	o	plano	xy?

Seja	A	=	{(x,	y)	∈	 2/5	−	x2	−	4y2	≥	0}.	Suponha	que	o	gráfico	de	z	=	5	−	x2	−	4y2,	(x,	y)	∈	A,	represente	a	superfície	de	um	monte.
(Adote	o	km	como	unidade	de	medida.)	Um	alpinista	que	se	encontra	na	posição	(1,	1,	0)	pretende	escalá-lo.	Determine	a	trajetória	a
ser	 descrita	 pelo	 alpinista	 admitindo	 que	 ele	 busque	 sempre	 a	 direção	 de	 maior	 aclive.	 Sugerimos	 ao	 leitor	 desenhar	 o	 monte	 e	 a
trajetória	a	ser	descrita	pelo	alpinista.

Suponha	que	T	(x,	y)	=	40	−	x2	−	2y2	represente	uma	distribuição	de	temperatura	no	plano	xy.	(Admita	que	x	e	y	sejam	dados	em	km	e
a	temperatura	em	ºC.)	Um	indivíduo	encontra-se	na	posição	(3,	2)	e	pretende	dar	um	passeio.

Descreva	o	 lugar	geométrico	dos	pontos	que	ele	deverá	percorrer	 se	 for	 seu	desejo	desfrutar	 sempre	da	mesma	 temperatura	do
ponto	(3,	2).
Qual	a	direção	e	sentido	que	deverá	tomar	se	for	seu	desejo	caminhar	na	direção	de	maior	crescimento	da	temperatura?

De	quanto	a	temperatura	se	elevará	aproximadamente,	caso	caminhe	0,01	km	na	direção	encontrada	no	item	b?

De	quanto	decrescerá,	aproximadamente,	a	temperatura,	caso	caminhe	0,01	km	na	direção	 ?



15.

16.

17.

18.

19.

20.

21.

22.

Calcule	a	derivada	direcional	da	função	dada,	no	ponto	e	direção	 	indicados.

A	função	diferenciável	f	(x,	y,	z)	 tem,	no	ponto	(1,	1,	1),	derivada	direcional	 igual	a	1	na	direção	 ,	 igual	a	2	na	direção	

	e	igual	a	zero	na	direção	 .	Calcule	o	valor	máximo	de	 .

Seja	f	(x,	y)	diferenciável	e	sejam	 	e	 	dois	vetores	de	 2,	unitários	e	ortogonais.	Prove:

Seja	 g	 (r,	 θ)	 =	 f	 (x,	 y),	 com	 x	 =	 r	 cos	 θ	 e	 y	 =	 r	 sen	 θ,	 onde	 f	 (x,	 y)	 é	 suposta	 diferenciável	 num	 aberto	 do	 2.	 Sejam	
.	Mostre	que

Calcule	||	∇	f	(1,	1)	||	sendo	 .

(Sugestão:	Faça	g	(r,	θ)	=	f	(x,	y),	com	x	=	r	cos	θ	e	y	=	r	sen	θ	e	utilize	o	item	c)	do	exercício	anterior.)

Suponha	 f	 (x,	 y)	 diferenciável	 no	 aberto	 A.	 Sejam	 (s,	 t)	 as	 coordenadas	 do	 vetor	 (x,	 y)	 em	 relação	 à	 base	 ( ,	 ),	 onde	
.	Considere	a	função	g	dada	por	g	(s,	t)	=	f	(x,	y).	Mostre	que

Interprete.

Seja	 .	Mostre	que

Seja	f	(x,	y)	diferenciável	no	aberto	A	de	 2	e	sejam	γ	(t)	e	δ	(t)	duas	curvas	definidas	e	diferenciáveis	num	intervalo	aberto	I	e	com



23.

24.

25.

imagens	contidas	em	A.	Suponha	γ	(t
0
)	=	δ	(t

0
),	 	o	versor	de	∇	f	(γ	(t

0
)).

Suponha,	ainda,	que	γ′	(t0)	não	seja	paralelo	a	δ′	(t0).	Prove	que	existe	r	>	0	tal	que

e

Interprete.

Seja	f	(x,	y,	z)	diferenciável	num	aberto	do	 3	e	sejam	 ,	 ,	e	 	vetores	do	 3,	unitários	e	dois	a	dois	ortogonais.	Prove:

Seja	F	(r,	θ,	z)	=	f	(x,	y,	z),	com	x	=	r	cos	θ	e	y	=	r	sen	θ,	onde	f	é	suposta	diferenciável	num	aberto	do	 3.	Prove	que

Seja	F	(r,	θ,	φ)	=	f	(x,	y,	z),	com	x	=	r	sen	φ	cos	θ,	y	=	r	sen	φ	sen	θ	e	z	=	r	cos	φ,	onde	f	é	suposta	diferenciável	num	aberto	de	 3.
Prove	que

	



14.1.
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DERIVADAS	PARCIAIS	DE	ORDENS	SUPERIORES

DERIVADAS	PARCIAIS	DE	ORDENS	SUPERIORES

Seja	a	função	z	=	f	(x,	y);	na	Seção	10.1	vimos	como	construir	as	funções	 .	Da	mesma	forma,

podemos,	agora,	construir	as	funções:

EXEMPLO	1.	Seja	f	(x,	y)	=	4x5y4	−	6x2y	+	3.	Calcule	todas	as	derivadas	parciais	de	2.ª	ordem.

Solução

Note	que,	neste	exemplo,	 .

EXEMPLO	2.	Seja	



Mostre	que

Solução

a)	Devemos,	primeiro,	determinar	 .	Para	(x,	y)	≠	(0,	0),	temos:

Em	(0,	0)	temos:

Temos,	agora:

■

O	exemplo	anterior	mostra-nos	que	a	igualdade	 	nem	sempre	se	verifica.	O

próximo	 teorema,	 cuja	 demonstração	 é	 deixada	 para	 exercício	 (veja	 Exercício	 15),	 fornece-nos	 uma
condição	suficiente	para	que	tal	igualdade	ocorra.	Antes	de	enunciar	tal	teorema,	vamos	definir	função
de	classe	Cn.

Uma	 função	 f	 :	A	⊂	 2	→	 ,	A	 aberto,	 é	 dita	 de	 classe	Cn	 em	A	 se	 f	 admitir	 todas	 as	 derivadas
parciais	de	ordem	n	contínuas	em	A.

O	 teorema	que	enunciaremos	a	seguir	conta-nos	que	se	 f	 for	de	classe	C2	em	A,	A	 aberto,	 então	 as



1.

a)

b)

c)

d)

2.

3.

4.

5.

6.

derivadas	parciais	mistas	 	serão	iguais	em	A.

Teorema	(de	Schwarz).	Seja	f	:	A	⊂	 2	→	 ,	A	aberto.	Se	f	for	de	classe	C2	em	A,

para	todo	(x,	y)	∈	A.

Exercícios	14.1	

Calcule	todas	as	derivadas	parciais	de	2.ª	ordem.

f	(x,	y)	=	x3y2

z	=	ex2	−	y2

z	=	ln	(1	+	x2	+	y2)

g	(x,	y)	=	4x3y4	+	y3

Seja	 .	Verifique	que

Verifique	que	 ,	onde	f	(x,	y)	=	ln	(x
2
	+	y

2
).

Verifique	que	 ,	onde	 .

Sejam	f,	g	:	A	⊂	 2	→	 ,	A	aberto,	duas	funções	de	classe	C2	e	tais	que

Prove	que

Sejam	f	:	A	⊂	 3	→	 	de	classe	C2	no	aberto	A.	Justifique	as	igualdades.



7.

8.

9.

10.

11.

12.

13.

14.

Seja	 .	Verifique	que

Seja	

Seja	u	(x,	t)	=	A	sen	(aλt	+	φ)	sen	λx,	com	A,	a,	λ	e	φ	constantes.	Verifique	que

Seja	u	=	 f	 (x	−	at)	+	g	 (x	+	at),	onde	 f	 e	g	 são	 duas	 funções	 quaisquer	 de	 uma	variável	 real	 e
deriváveis	até	a	2.ª	ordem.	Verifique	que

Sejam	x	=	x	(u,	v)	e	y	=	y	(u,	v)	duas	funções	que	admitem	derivadas	parciais	num	mesmo	aberto
A.	Suponha	que	(1,	1)	∈	A	e	que	x	(1,	1)	>	0.	Suponha,	ainda,	que	para	todo	(u,	v)	∈	A

Seja	 .	Verifique	que

Seja	z	=	f	(x,	y)	de	classe	C2	no	aberto	A	e	seja	(x0,	y0)	∈	A.	Suponha	que	f	(x0,	y0)	≥	f	(x,	y),	para
todo	(x,	y)	∈	A.	Prove	que

Interprete	graficamente.

Seja	 .	Calcule



15.

a)

b)

c)

d)

e)

Seja	z	 =	 f	 (x,	 y),	 (x,	 y)	∈	A,	 com	A	 aberto.	 Suponha	 que	 	 estão	 definidas	 em	A	 e	 que	

	são	contínuas	em	A.	Seja	(x
0
,	y

0
)	um	ponto	qualquer	de	A;	seja	B	uma	bola	aberta	de

centro	(x0,	y0)	e	contida	em	A.	Sejam	h	e	k	tais	que	(x0	+	h,	y0	+	k)	pertença	a	B.	Seja,	ainda,

H	(h,	k)	=	f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0	+	k)	−	f	(x0	+	h,	y0)	+	f	(x0,	y0).

Considere	as	funções	 	Mostre	que

Prove:	existe	t1	entre	x0	e	x0	+	h	tal	que

Prove:	existem	t1	e	s1,	com	t1	entre	x0	e	x0	+	h	e	s1	entre	y0	e	y0	+	k,	tais	que

Prove:	existem	t2	e	s2,	com	t2	entre	x0	e	x0	+	h	e	s2	entre	y0	e	y0	+	k,	tais	que

Prove:	 .

Observação.	A	razão	de	considerarmos	a	expressão	H	(h,	k)	é	a	seguinte:



14.2.
	

APLICAÇÕES	DA	REGRA	DA	CADEIA	ENVOLVENDO	DERIVADAS
PARCIAIS	DE	ORDENS	SUPERIORES

Sejam	f	(x,	y),	x	=	x	(t)	e	y	=	y	(t)	diferenciáveis.	Pela	regra	da	cadeia,	temos:

ou

Suponhamos,	agora,	que	as	funções	 ,	sejam	também	diferenciáveis.	O	gradiente	de	 	em	(x,

y)	é:

ou	seja,

Temos,	então,	pela	regra	da	cadeia:

Assim,

Da	mesma	forma,

e,	portanto,



EXEMPLO	1.	Suponha	f	(x,	y)	de	classe	C2	num	aberto	do	 2.	Seja	g	(t)	=	f	(3t,	2t	+	1).	Expresse	g″(t)
em	termos	de	derivadas	parciais	de	f.

Solução

ou	seja,

Então,

Temos:

e

Substituindo	em	 	vem:

Como	f	é	de	classe	 .	Logo,

onde	x	=	3t	e	y	=	2t	+	1.

■

EXEMPLO	2.	Sejam	f	(x,	y)	=	x5y4,	x	=	3t	e	y	=	2t	+	1.	Calcule	g″	(t),	sendo	g	(t)	=	f	(3t,	2t	+	1).



Solução

1.°	processo	(pela	regra	da	cadeia)

g	(t)	=	f	(x,	y),	x	=	3t	e	y	=	2t	+	1.

Pelo	exemplo	anterior

onde	x	=	3t	e	y	=	2t	+	1.	Tendo	em	vista	que

resulta,

e,	portanto,

2.°	processo

Portanto,

ou	seja,

EXEMPLO	3.	Suponha	f	(x,	y)	de	classe	C2	num	aberto	de	 2.	Seja	g	dada	por

onde	x	=	t2	e	y	=	t3.	Expresse	g′	(t)	em	termos	de	derivadas	parciais	de	f.

Solução



Pela	regra	de	derivação	de	um	produto,	temos:

Como

resulta,

EXEMPLO	4.	Seja	z	=	f	(x,x
2
)	onde	f	(x,y)	é	de	classe	C

2
	num	aberto	de	

2
.	Expresse	 	em	termos	de

derivadas	parciais	de	f.

Solução

ou	seja,

Segue	que,

Temos:

ou	seja,



Temos,	também:

ou	seja,

Substituindo	 	e	 	em	 	e	lembrando	que	f	é	de	classe	C2,	resulta:

EXEMPLO	5.	Seja	z	=	f	(u	−	2v,	v	+	2u)	onde	f	(x,	y)	é	de	classe	C
2
	num	aberto	de	

2
.	Expresse	 	em

termos	de	derivadas	parciais	de	f.

Solução

Segue	que,

Como

e



resulta

EXEMPLO	6.	Mostre	que	a	mudança	de	variáveis	x	=	eu	e	y	=	ev	transforma	a	equação

em

Solução

Temos

ou	seja,

ABUSOS	DE	NOTAÇÃO.	Aqui	 	deve	ser	olhado	como	função	de	x	e	y,	enquanto	 	deve	ser	olhado

como	função	de	u	e	v.

Segue	de	 	que

Tendo	em	vista	que



1.

2.

3.

a)

b)

4.

resulta

Procedendo	de	forma	análoga	obtém-se

Somando-se	 	e	 	resulta

Exercícios	14.2	

(Quando	nada	for	dito	sobre	uma	função,	ficará	subentendido	que	se	trata	de	uma	função	de	classe	C2	num	aberto.)

Expresse	g′	(t)	em	termos	de	derivadas	parciais	de	f,	sendo	g	dada	por

Expresse	g″	(t)	em	termos	de	derivadas	parciais	de	f,	sendo	g	(t)	=	f	(5t,	4t).

Considere	a	função	g	(t)	=	f	(a	+	ht,	b	+	kt),	com	a,	b,	h	e	k 	constantes.

Supondo	f	(x,	y)	de	classe	C2	num	aberto	de	 2,	verifique	que

onde	x	=	a	+	ht	e	y	=	b	+	kt.
	

Supondo	f	(x,	y)	de	classe	C3	num	aberto	de	 2,	verifique	que

onde	x	=	a	+	ht	e	y	=	b	+	kt.

Considere	 a	 função	 h	 (x,	 y)	 =	 f	 (x2	 +	 y2,	 x2	 −	 y2),	 onde	 f	 (u,	 v)	 é	 suposta	 de	 classe	 C2.	 Verifique	 que	



5.

6.

8.

9.

10.

a)

b)

11.

a)

b)

12.

7.

	onde	u	=	x
2
	+	y

2
	e	v	=	x

2

−	y2.

Considere	a	função	 .	Verifique	que

Considere	a	função	 .	Verifique	que

Seja	g	(u,	v)	=	f	(2u	+	v,	u	−	2v),	onde	f	(x,	y)	é	suposta	de	classe	C2.	Verifique	que

Seja	v	(r,	θ)	=	u	(x,	y),	onde	x	=	r	cos	θ	e	y	=	r	sen	θ.	Verifique	que

Sejam	f	(x,	y)	de	classe	C2	num	aberto	de	 2,	g	(x)	derivável	até	a	2.ª	ordem	num	intervalo	aberto	I	e	tais	que,	para	todo	x	∈	I,	f	(x,	g
(x))	=	0	(isto	é,	y	=	g	(x)	é	dada	implicitamente	pela	equação	f	(x,	y)	=	0).	Expresse	g″	(x)	em	termos	de	derivadas	parciais	de	f.

Suponha	que	f	(x,	t)	satisfaça	a	equação

Verifique	que	g	(u,	v)	=	f	(x,	t),	onde	x	=	u	+	v	e	t	=	u	−	v	satisfaz	a	equação	 .

Determine	uma	coleção	de	funções	f	(x,	t)	que	satisfaçam	 .

Suponha	que	f	(x,	t)	satisfaça	a	equação

Determine	constantes	m,	n,	p	e	q	para	que	g	(u,	v)	=	f	(x,	t),	onde

x	=	mu	+	nv	e	t	=	pu	+	qv	satisfaça	a	equação	 .

Determine	uma	família	de	soluções	de	 .

Seja	F	(r,	θ,	t)	=	f	(x,	y,	t)	onde	x	=	r	cos	θ	e	y	=	r	sen	θ.	Suponha	que	(c	≠	0	constante)

Mostre	que



13.

14.

15.

b)

16.

17.

18.

Sejam	z	=	z	(x,	y),	x	=	e
u
	cos	v	e	y	=	e

u
	sen	v.	Suponha	que	 .	Calcule

Sejam	 .	Suponha	que	 .	Calcule	 .

a)	Ache	uma	função	u	(x,	y)	da	forma	u	(x,	y)	=	F	(x2	+	y2)	que	satisfaça	a	equação	de	Laplace

Faça	a	mesma	coisa	para	funções	de	três	ou	mais	variáveis.

Verifique	que	a	mudança	de	variáveis	x	=	s	cos	θ	−	t	sen	θ	e	y	=	s	sen	θ	+	t	cos	θ	com	θ	constante,	transforma	a	equação

em

Verifique	que	a	mudança	de	variáveis	u	=	x	+	y	e	v	=	y	+	2x	transforma	a	equação

em

Determine,	então,	uma	coleção	de	soluções	de	 .

Suponha	que	z	=	z	(x,	y)	satisfaça	a	equação

Fazendo	a	mudança	de	variáveis	x	=	e
u
	e	y	=	e

v
,	calcule	 .
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15

TEOREMA	DO	VALOR	MÉDIO.	FÓRMULA	DE	TAYLOR	COM
RESTO	DE	LAGRANGE

TEOREMA	DO	VALOR	MÉDIO

Um	dos	 teoremas	 centrais	 do	 cálculo	 de	 funções	 reais	 de	 uma	 variável	 real	 é	 o	 teorema	 do	 valor
médio	 (TVM).	Nesta	 seção,	 vamos	 estendê-lo	 para	 o	 caso	 de	 funções	 reais	 de	 duas	 variáveis	 reais	 e
deixaremos	a	cargo	do	leitor	a	tarefa	de	generalizá-lo	para	funções	reais	de	três	ou	mais	variáveis	reais.

Antes	de	enunciar	e	demonstrar	tal	teorema,	vamos	introduzir	os	conceitos	de	segmento	e	poligonal.
Sejam	P0	e	P1	dois	pontos	do	 2;	o	conjunto

denomina-se	segmento	de	extremidades	P0	e	P1.	Sejam,	agora,	P0,	P1,	P2,	…,	Pn,	n	+	1	pontos	distintos	do
2;	o	conjunto

denomina-se	poligonal	de	vértices	P0,	P1,	…,	Pn.

Teorema	(do	valor	médio).	Sejam	A	um	subconjunto	aberto	do	 2,	P0	e	P1	dois	pontos	de	A	 tais	que	o	segmento	P0P1	 esteja
contido	em	A.	Nestas	condições,	se	f	(x,	y)	for	diferenciável	em	A,	então	existirá	pelo	menos	um	ponto	 	interno	ao	segmento	P0P1
(isto	é,	 	pertence	a	P0P1	mas	não	é	extremidade)	tal	que

Demonstração



Consideremos	a	função	g	:	[0,	1]	→	 	dada	por

Esta	função	g	fornece	os	valores	que	f	assume	nos	pontos	do	segmento	P0P1.	Da	diferenciabilidade	de	f
em	A,	segue	que	g	é	contínua	em	[0,	1]	e	derivável	em	]0,	1[.	Pelo	TVM	existe	 	em	]0,	1[	tal	que

ou	seja,

Como	g	(1)	=	f	(P1)	e	g	(0)	=	f	(P0),	resulta

Pela	regra	da	cadeia

onde	γ	(t)	=	P0	+	t	(P1	−	P0).	Temos

Assim,

onde	 	é	um	ponto	interno	ao	segmento	P0P1	pois	0	<	 	<	1.	Portanto,

Pelo	TVM	existe	 	interno	ao	segmento	P0P1	tal	que

Fazendo	 	resulta,

ou	seja,

ou	ainda,



1.

a)
b)

c)

2.

3.

15.2.

Assim,	se	f	(x,	y)	for	diferenciável	no	aberto	A	e	se	P0P1	⊂	A,	então	existirá	 	interno	a	P0P1	tal	que	a
derivada	direcional	de	f,	em	 ,	e	na	direção	 ,	é	a	taxa	média	de	variação	de	f	entre	os

pontos	P0	e	P1,	P0	≠	P1.

Observação.	O	enunciado	do	TVM	para	função	real	de	n	variáveis	(n	>	2)	é	o	acima,	substituindo	 2	por
n.

Exercícios	15.1	

Determine	 	como	no	teorema	do	valor	médio,	sendo	dados:

f	(x,	y)	=	2x2	+	3y,	P0	=	(1,	1)	e	P1	=	(2,	3).
f	(x,	y)	=	2x2	−	3y2	+	xy,	P0	=	(1,	2)	e	P1	(4,	3).

f	(x,	y)	=	x3	+	xy2,	P0	=	(1,	1)	e	P1	=	(2,	2).

Seja	f	(x,	y)	diferenciável	em	 2	e	suponha	que	existe	M	>	0	tal	que	||∇	f	(x,	y)||	≤	M,	para	todo	(x,	y).	Prove	que

|f	(x,	y)	−	f	(s,	t)|	≤	M	||	(x,	y)	−	(s,	t)	||

quaisquer	que	sejam	(x,	y)	e	(s,	t)	em	 2.

Seja	f	(x,	y)	=	ln	(x	+	y).	Prove	que

|f	(x,	y)	−	f	(s,	t)	|	≤	||	(x,	y)	−	(s,	t)	||

quaisquer	que	sejam	(x,	y)	e	(s,	t),	com	x	>	1,	y	>	1,	s	>	1	e	t	>	1.

	
FUNÇÕES	COM	GRADIENTE	NULO

Estamos	interessados,	agora,	em	estudar	as	funções	que	têm	gradiente	nulo	num	aberto.	Se	f	(x,	y)	for
constante	num	aberto	A	de	 2,	então	∇	f	(x,	y)	=	(0,	0)	para	todo	(x,	y)	∈	A.	Entretanto,	pode	acontecer	de
uma	função	ter	gradiente	nulo	em	todos	os	pontos	de	um	aberto	sem	ser	constante	neste	aberto:	a	função

tem	gradiente	nulo	no	aberto	A	=	{(x,	y)	∈	 2	|y	>	0,	0	<	x	<	1	ou	1	<	x	<	2},	mas	não	é	constante	em	A.



Provaremos	a	seguir	que	se	uma	função	admitir	gradiente	nulo	em	todos	os	pontos	de	um	conjunto	A
conexo	por	 caminhos,	 então	 a	 função	 será	 necessariamente	 constante	 em	A.	Dizemos	que	um	conjunto
aberto	A	é	conexo	por	caminhos	se,	quaisquer	que	forem	os	pontos	P	e	Q	pertencentes	a	A,	existir	uma
poligonal,	de	extremidades	P	e	Q,	contida	em	A.

EXEMPLOS

a)	A	=	 2	é	conexo	por	caminhos.
b)	Toda	bola	aberta	é	conexa	por	caminhos.
c)

d)	 	não	é	conexo	por	caminhos.

Qualquer	poligonal	ligando	P	a	Q	tem	pontos	que	não	pertencem	a	A.	(Observe	que	os	pontos	(1,	y),	y	>
0,	não	pertencem	a	A.)

■

Teorema.	Seja	A	⊂	 2	aberto	e	conexo	por	caminhos.	Nestas	condições,	se	∇	f	(x,	y)	=	(0,	0)	para	todo	(x,	y)	em	A,	então	f
será	constante	em	A.

Demonstração

Seja	P0	=	(x0,	y0)	um	ponto	de	A;	vamos	provar	que	para	todo
P	=	(x,	y)	∈	A,	f	(x,	y)	=	f	(x0,	y0).	Como	A	é	conexo	por	caminhos,	existem	pontos	P1,	P2,	…,	Pn	−	1	e	Pn	=
P	pertencentes	a	A	tais	que	a	poligonal	P0P1	∪	P1P2	∪	…	∪	Pn	−	1Pn	está	contida	em	A.



15.3.

Pelo	teorema	do	valor	médio,	para	todo	i	existe	 	interno	a	Pi	−	1	Pi	(i	=	1,	2,	…,	n)	tal	que

e	como	 	(hipótese)	resulta

f	(Pi)	=	f	(Pi	−	1)

para	i	=	1,	2,	…,	n;	assim,

f	(P0)	=	f	(P1)	=	f	(P2)	=	…	=	f	(Pn)	=	f	(P)

e,	portanto,	f	(x,	y)	=	f	(x0,	y0).	Fica	provado	assim	que,	para	todo	(x,	y)	∈	A,	f	(x,	y)	=	f	(x0,	y0),	ou	seja,	f
é	constante	em	A.

■

RELAÇÃO	ENTRE	FUNÇÕES	COM	MESMO	GRADIENTE

Teorema	1.	Seja	A	⊂	 2	aberto	e	conexo	por	caminhos	e	sejam	f,	g	duas	funções	que	admitem	derivadas	parciais	em	A.	Nestas
condições,	se	∇	f	(x,	y)	=	∇	g	(x,	y)	para	todo	(x,	y)	∈	A,	então	existirá	uma	constante	k	tal	que

g	(x,	y)	=	f	(x,	y)	+	k

para	todo	(x,	y)	em	A.

Demonstração

Seja	h	(x,	y)	=	g	(x,	y)	−	f	(x,	y),	(x,	y)	∈	A;	como

segue	da	hipótese	que	∇	h	(x,	y)	=	(0,	0)	para	todo	(x,	y)	∈	A.	Como	A	é	conexo	por	caminhos,	resulta	que
h	é	constante	em	A;	logo,	existe	uma	constante	k	tal	que	h	(x,	y)	=	k	em	A,	ou	seja,

g	(x,	y)	=	f	(x,	y)	+	k



para	todo	(x,	y)	∈	A.
■

O	 teorema	 acima	 nos	 diz	 que	 duas	 funções	 com	 gradientes	 iguais	 num	 conjunto	 conexo	 por
caminhos	diferem,	neste	conjunto,	por	uma	constante.

EXEMPLO	1.	Determine	todas	as	funções	f	(x,	y),	definidas	em	 2,	tais	que

Solução

Observe	 que	 duas	 funções	 que	 satisfazem	 	 terão	 gradientes	 iguais;	 logo,	 deverão	 diferir	 por
constante,	pois	 2	é	conexo	por	caminhos.	Basta,	então,	determinar	uma	solução	de	 	e	qualquer	outra
será	esta	mais	uma	constante.	A	função

x3y2	+	4x

satisfaz	a	1.ª	equação	(obtém-se	tal	função	integrando-se	a	1.ª	equação	de	 	em	relação	a	x,	mantendo-se
y	constante).	Por	outro	lado,

satisfaz	a	2.ª	equação	de	 .	Segue	que

satisfaz	 .	(Por	quê?)	Logo,

é	a	família	das	soluções	de	 .
■

Sejam	P	(x,	y)	e	Q	(x,	y)	duas	funções	dadas,	definidas	num	aberto	A	do	 2.	O	problema	que	se	coloca
é	o	seguinte:	o	sistema



admite	sempre	solução?	A	resposta	em	geral	é	não.	A	seguir	apresentaremos	uma	condição	necessária
para	que	o	sistema	admita	solução.

Teorema	2.	Sejam	P	(x,	y)	e	Q	(x,	y)	duas	funções	definidas	e	de	classe	C1	num	aberto	A	do	 2.	Uma	condição	necessária	para
que	exista	uma	função	f	:	A	→	 2	tal	que,	para	todo	(x,	y)	∈	A.

é	que	 	em	A.

Demonstração

Suponhamos	que	tal	f	exista;	assim

Derivando	 os	 dois	 membros	 da	 primeira	 equação	 em	 relação	 a	 y	 e	 os	 da	 segunda	 em	 relação	 a	 x,
obtemos,	para	todo	(x,	y)	∈	A,

e

Como	P	 e	Q	 são	 supostas	 de	 classe	C1,	 resulta	 que	 f	 será	 de	 classe	C2;	 pelo	 teorema	 de	 Schwarz	

.	Logo,



EXEMPLO	2.	Consideremos	o	sistema

Como	 ,	segue	que	não	existe	função	definida	em	
2
	que	satisfaça	o	sistema.

■

EXEMPLO	3.	Determine,	caso	existam,	todas	as	funções	z	=	f	(x,	y)	tais	que

Solução

e

Assim,

onde	 .

A	condição	necessária	está	verificada;	o	sistema	pode	admitir	soluções.	Deixamos	a	seu	cargo	verificar
que

é	a	família	das	soluções	do	sistema.
■

Uma	 pergunta	 que	 surge	 naturalmente	 é	 a	 seguinte:	 a	 condição	 necessária	 do	 teorema	 2	 é	 também



4.

5.

6.

7.

8.

1.

2.

3.

suficiente?	A	resposta	é	não.	(Veja	Exercícios	9	e	10.)	Entretanto,	se	algumas	restrições	forem	impostas
ao	conjunto	A	a	condição	será,	também,	suficiente.	Este	problema	será	discutido	no	Vol.	3.

Exercícios	15.3	

Determine	todas	as	funções	f	:	 2	tais	que

Determine	a	função	f	:	 2	→	 	cujo	gráfico	passa	pelo	ponto	(1,	2,	1)	e	tal	que

Determine	a	função	f	:	 2	→	 	cujo	gráfico	passa	pelo	ponto	(0,	0,	2)	e	tal	que

Existe	função	f	:	 2	→	 	tal	que

para	todo	(x,	y)	em	 2?	Justifique.

Determine	z	=	φ
1
	(x,	y),	y	>	0,	tal	que	 ,	para	todo	y	>	0,

Determine	z	=	φ
2
	(x,	y),	x	<	0,	tal	que	 ,	para	todo	x	<	0,

Seja	 .	Determine	z	=	φ	(x,	y),	(x,	y)	∈	A,	 tal	que	 ,	para

todo	(x,	y)	∈	A,

(Sugestão:	Utilize	os	Exercícios	5	e	6.)

Um	campo	de	forças	 ,	onde	P	e	Q	são	funções	definidas	num	aberto	A	⊂	 2,	denomina-se
conservativo	se	existe	um	campo	escalar	φ	:	A	→	 	tal	que



9.

10.

a)

b)

c)

11.

12.

a)

b)

Uma	 tal	 função	φ,	quando	existe,	denomina-se	 função	potencial	associada	ao	campo	 .	O	campo	de	 forças	dado	 é	 conservativo?
Justifique.

Seja	 	um	campo	de	forças	com	P	e	Q	contínuas	no	aberto	A	⊂	 2.	Seja	γ	(t)	=	(x	(t),	y	(t)),	t
∈	[a,	b],	uma	curva	de	classe	C1,	com	γ	(a)	=	γ	(b)	(γ	é	uma	curva	fechada).	Suponha	que,	para	todo	t	∈	[a,	b],	γ	(t)	∈	A.	Prove	que
se	 	for	conservativo,	então,

Seja	 .

Verifique	que,	para	todo	(x,	y)	≠	(0,	0),

onde	 .

Calcule	 ,	onde	γ	(t)	=	(cos	t,	sen	t),	t	∈	[0,	2π].

	é	conservativo?	Por	quê?	(Veja	exercício	9	acima.)

Seja	 	 um	 campo	 de	 forças	 com	P	 e	Q	 definidas	 e	 contínuas	 no	 aberto	A	 de	 2.	 Se	 	 for

conservativo	 então	 existirá	 uma	 função	 escalar	U	 (x,	 y)	 definida	 em	A	 tal	 que	 	 em	A.	 Uma	 tal	 função	 denomina-se
função	energia	potencial	associada	ao	campo	 .	Determine,	caso	exista,	a	função	energia	potencial	associada	ao	campo	 	dado	e
satisfazendo	a	condição	dada.

Seja	 	a	função	energia	potencial	associada	ao	campo	 .

Determine	 .

Uma	partícula	de	massa	1	é	abandonada	na	posição	(1,	1)	com	velocidade	nula.	Admita	que	 	é	a	única	 força	atuando	sobre	a
partícula.	Determine	a	posição	γ	(t)	=	(x	(t),	y	(t))	da	partícula	no	instante	t.	Desenhe	a	trajetória	descrita	pela	partícula.

(Sugestão:	Pela	lei	de	Newton	 ).)



13.

a)

b)

14.

15.4.

Seja	 	a	energia	potencial	associada	do	campo	 .

Determine	 .

Uma	partícula	 de	massa	m	 =	 1	 é	 abandonada	 na	 posição	 (1,	 1)	 com	 velocidade	 inicial	 .	 Sendo	 	 a	 única	 força
atuando	sobre	a	partícula,	determine	a	posição	γ(t)	da	partícula	no	instante	t.	Desenhe	a	trajetória	descrita	pela	partícula.

Seja	 	 a	 força	 do	 exercício	 anterior.	 Uma	 partícula	 de	 massa	 m	 =	 1	 é	 abandonada	 na	 posição	 (1,	 0)	 com	 velocidade	 inicial	

.	 Sendo	 	 a	 única	 força	 atuando	 sobre	 a	 partícula,	 determine	 a	 posição	 γ	 (t)	 da	 partícula	 no	 instante	 t.	 Desenhe	 a
trajetória	descrita	pela	partícula.

	

POLINÔMIO	DE	TAYLOR	DE	ORDEM	1

Seja	f	(x,	y)	de	classe	C2	no	aberto	A	⊂	 2.	Sejam	(x0,	y0)	∈	A	e	(h,	k)	≠	(0,	0)	tais	que	o	segmento	de
extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k)	esteja	contido	em	A.	Consideremos	a	função	g	dada	por

A	g	fornece	os	valores	que	a	f	assume	nos	pontos	do	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).
Esta	função	g	desempenhará	o	papel	de	ligação	na	extensão	da	fórmula	de	Taylor	para	funções	de	duas
variáveis	reais.

Pela	fórmula	de	Taylor,	com	resto	de	Lagrange,	para	funções	de	uma	variável,	temos:

para	algum	 	em	]0,	1[.
Calculemos,	agora,	g′	(t)	e	g″	(t):

ou	seja,

onde	x	=	x0	+	ht	e	y	=	y0	+	kt;

ou	seja,



onde	x	=	x0	+	ht	e	y	=	y0	+	kt.
Temos,	então:

Observe	que	 	é	um	ponto	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k),	pois	 	∈	]0,
1[.

Substituindo	 	em	 	resulta:

onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).
Demonstramos,	assim,	o	seguinte	teorema.

Teorema.	Seja	f	(x,	y)	de	classe	C2	no	aberto	A	⊂	 2	e	sejam	(x0,	y0)	∈	A	e	(h,	k)	≠	(0,	0)	tais	que	o	segmento	de	extremidades
(x0,	y0)	e	(x0	+	h,	y0	+	k)	esteja	contido	em	A.	Nestas	condições,

onde



para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).

Observação.	Fazendo	x	=	x0	+	h	e	y	=	y0	+	k,	obtemos

onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x,	y).
O	polinômio

denomina-se	polinômio	de	Taylor	de	ordem	1	de	f	(x,	y)	em	volta	de	(x0,	y0).
Observe	que	o	gráfico	de	P1	(x,	y)	é	o	plano	tangente	ao	gráfico	de	f	em	(x0,	y0,	f	(x0,	y0)).	E1	(x,	y)	é	o

erro	 que	 se	 comete	 na	 aproximação	 de	 f	 (x,	 y)	 por	P1	 (x,	 y);	 	 é	 a	 expressão	 do	 erro	 na	 forma	 de
Lagrange.	(Às	vezes,	usa-se	a	expressão	resto	em	lugar	de	erro.)

EXEMPLO.	Seja	f	(x,	y)	=	ln	(x	+	y).

a)	Determine	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	 .

b)	Mostre	que	para	todo	(x,	y),	com	x	+	y	>	1,	 .

Solução

a)	

Como

resulta:



1.

ou	seja,

P1	(x,	y)	=	x	+	y	−	1.

para	algum	 	interno	ao	segmento	de	extremidades	 	e	(x,	y).	Temos:

Como	estamos	supondo	x	+	y	>	1,	teremos,	também,	 .	Assim,	para	todo	(x,	y),	com	x	+	y	>	1,	

.	Segue	que

ou

para	todo	(x,	y),	com	x	+	y	>	1.	Assim,

ou

para	todo	(x,	y),	com	x	+	y	>	1.
■

Exercícios	15.4	

Determine	o	polinômio	de	Taylor	de	ordem	1	da	função	dada,	em	volta	do	ponto	(x0,	y0)	dado.



2.

a)

b)

3.

4.

a)
b)

5.

6.

7.

8.

9.

Sejam	f	(x,	y)	=	ex	+	5y	e	P1	(x,	y)	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	(0,	0).

Mostre	que	para	todo	(x,	y),	com	x	+	5y	<	1,

Avalie	o	erro	que	se	comete	na	aproximação

para	x	=	0,01	e	y	=	0,01.

Sejam	f	(x,	y)	=	x3	+	y3	−	x2	+	4y	e	P1	(x,	y)	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	(1,	1).	Mostre	que	para	todo	(x,	y),
com	|	x	−	1	|	<	1	e	|	y	−	1	|	<	1,

Sejam	f	(x,	y)	=	x3	+	y3	−	x2	+	4y	e	P1	(x,	y)	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	(1,	1).

Utilizando	P1	(x,	y),	calcule	um	valor	aproximado	para	f	(x,	y),	sendo	x	=	1,001	e	y	=	0,99.
Avalie	o	erro	que	se	comete	na	aproximação	do	item	a).

(Sugestão:	Utilize	o	Exercício	3.)

Seja	(x0,	y0)	um	ponto	crítico	de	f	(x,	y)	e	suponha	que	f	seja	de	classe	C2	na	bola	aberta	B	de	centro	(x0,	y0).	Prove	que	para	todo	(x,
y)	em	B,	existe	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x,	y)	tal	que

Seja	f	(x,	y)	=	ax2	+	bxy	+	cy2	+	dx	+	ey	+	m	(a,	b,	c,	d,	e,	m	constantes)	e	seja	(x0,	y0)	um	ponto	crítico	de	f.	Prove	que,	para	todo	(h,
k),

f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0)	=	ah2	+	bhk 	+	ck2.

Sejam	f	(x,	y)	e	(x0,	y0)	como	no	exercício	anterior.	Prove	que	se	a	>	0	e	b2	−	4ac	<	0,	então

f	(x0	+	h,	y0	+	k)	>	f	(x0,	y0)

para	todo	(h,	k)	≠	(0,	0).	Como	é	o	gráfico	de	f?

Suponha	f	(x,	y)	da	classe	C2	na	bola	aberta	B	de	centro	(x0,	y0)	e	que	as	derivadas	parciais	de	2.ª	ordem	sejam	limitadas	em	B.	Prove
que	existe	M	>	0	tal	que,	para	todo	(x,	y)	∈	B.

|	f	(x,	y)	−	P1	(x,	y)	|	≤	M	||	(x,	y)	−	(x0,	y0)	||2

onde	P1	(x,	y)	é	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	(x0,	y0).

Considere	o	polinômio	P	(x,	y)	=	a	(x	−	x0)	+	b	(y	−	y0)	+	c,	com	a,	b,	c,	x0	e	y0	constantes.	Suponha	que	exista	M	>	0	tal	que,	para
todo	(x,	y),

|	P	(x,	y)	|	≤	M	||	(x,	y)	−	(x0,	y0)	||2.



10.

15.5.

Prove	que	P	(x,	y)	=	0	em	 2.

Seja	f	(x,	y)	de	classe	C2	no	aberto	A	⊂	 2	e	seja	(x0,	y0)	um	ponto	de	A.	Seja	o	polinômio	P	(x,	y)	=	a	(x	−	x0)	+	b	(y	−	y0)	+	c,	com
a,	b	e	c	constantes.	Suponha	que	existam	M	>	0	e	uma	bola	aberta	B	de	centro	(x0,	y0),	com	B	⊂	A,	tal	que,	para	todo	(x,	y)	em	B,

|	f	(x,	y)	−	P	(x,	y)	|	≤	M	||	(x,	y)	−	(x0,	y0)	||2.

Prove	que	P	é	o	polinômio	de	Taylor	de	ordem	1	de	f	em	volta	de	(x0,	y0).

	
POLINÔMIO	DE	TAYLOR	DE	ORDEM	2

Suponhamos	f	(x,	y)	de	classe	C3	no	aberto	A	⊂	 2.	Sejam	(x0,	y0),	(x0	+	h,	y0	+	k)	e	g	(t)	=	f	(x0	+	ht,
y0	+	kt)	 como	na	 seção	anterior.	Pela	 fórmula	de	Taylor,	 com	 resto	de	Lagrange,	para	 funções	de	uma
variável	segue	que

para	algum	 	em	]0,	1[.

Vimos	no	parágrafo	anterior	que

e

onde	x	=	x0	+	ht	e	y	=	y0	+	kt.	Deixamos	a	seu	cargo	verificar	que

onde	x	=	x0	+	ht	e	y	=	y0	+	kt.	Temos:

Substituindo	 	em	 	resulta:



onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).
Demonstramos	assim	o	seguinte

Teorema.	Seja	f(x,	y)	de	classe	C3	no	aberto	A	⊂	 2	e	sejam	(x0,	y0)	∈	A	e	(h,	k)	≠	(0,	0)	tais	que	o	segmento	de	extremidades
(x0,	y0)	e	(x0	+	h,	y0	+	k)	esteja	contido	em	A.

Nestas	condições,

onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).

O	polinômio

denomina-se	polinômio	de	Taylor	de	ordem	2	de	f	em	volta	de	(x0,	y0).



1.

a)

b)

2.

3.

4.

5.

Fazendo	x	=	x0	+	h	e	y	=	y0	+	k	no	teorema	acima,	resulta:

f	(x,	y)	=	P2	(x,	y)	+	E2	(x,	y)

onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x,	y).

Exercícios	15.5	

Determine	o	polinômio	de	Taylor	de	ordem	2	da	função	dada,	em	volta	do	ponto	(x0,	y0)	dado.

f	(x,	y)	=	x	sen	y	e	(x0,	y0)	=	(0,	0).

f	(x,	y)	=	x3	+	2x2y	+	3y3	+	x	−	y	e	(x0,	y0)	=	(1,	1).

Expresse	o	polinômio	f	(x,	y)	=	x3	+	2x2y	+	3y3	+	x	−	y	como	soma	de	termos	do	tipo	a	(x	−	1)p	(y	−	1)q.

Seja	P2	(x,	y)	o	polinômio	de	Taylor	de	ordem	2	de	f	(x,	y)	=	x	sen	y	em	volta	de	(0,	0).	Mostre	que

para	todo	(x,	y),	com	|	x	|	<	1.

Seja	f	(x,	y)	de	classe	C3	no	aberto	A	⊂	 2	e	seja	(x0,	y0)	um	ponto	de	A	(lembre-se	de	que	f	de	classe	C3	em	A	significa	que	todas	as
derivadas	parciais	de	ordem	3	são	contínuas	em	A).	Prove	que	existem	uma	bola	aberta	B	de	centro	(x0,	y0),	com	B	∈	A,	e	um	número
M	>	0	tais	que,	para	todo	(x,	y)	∈	B,

onde	P2	(x,	y)	é	o	polinômio	de	Taylor	de	ordem	2	de	f	em	volta	de	(x0,	y0).	Conclua	que

onde	E	(x,	y)	=	f	(x,	y)	−	P2	(x,	y);	isto	é,	o	erro	E	(x,	y)	tende	a	zero	mais	rapidamente	que	||	(x,	y)	−	(x0,	y0)	 ||2,	quando	(x,	y)	→	(x0,
y0).

Sejam	f	(x,	y),	P2	(x,	y)	e	(x0,	y0)	como	no	Exercício	4.	Prove	que	existe	uma	função	φ	(x,	y)	definida	em	A	tal	que,	para	todo	(x,	y)	em
A.

com



6.

15.6.

Seja	f	(x,	y)	de	classe	C3	no	aberto	A	⊂	 2	e	seja	(x0,	y0)	um	ponto	de	A.	Seja	 	(x,	y)	um	polinômio	de	grau	no	máximo	2.	Prove	que
se

então	 	(x,	y)	é	o	polinômio	de	Taylor	de	ordem	2	de	f	em	volta	de	(x0,	y0).

	

FÓRMULA	DE	TAYLOR	COM	RESTO	DE	LAGRANGE

Suponhamos	f	(x,	y)	de	classe	Cn	+	1	no	aberto	A	⊂	 2.	Sejam	(x0,	y0),	(x0	+	h,	y0	+	k)	e	g	(t)	=	f	(x0	+
ht,	y0	+	kt)	como	na	seção	anterior.	Vimos	que

e	que

onde	x	=	x0	+	ht	e	y	=	y0	+	kt.	Deixamos	a	seu	cargo	provar	por	indução	que

onde	x	=	x0	+	ht	e	y	=	y0	+	kt.
Pela	fórmula	de	Taylor	com	resto	de	Lagrange	para	funções	de	uma	variável,	temos:

para	algum	 	em	]0,	1[.	Segue	que

onde



para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).
Fica	provado	assim	o	seguinte

Teorema	(Fórmula	de	Taylor	com	resto	de	Lagrange).	Seja	f	(x,	y)	de	classe	Cn	+	1	no	aberto	A	⊂	 2	e	sejam	(x0,	y0)	∈	A	e	(h,
k)	≠	(0,	0)	tais	que	o	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k)	esteja	contido	em	A.	Nestas	condições	onde

onde

para	algum	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k).



16.1.
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MÁXIMOS	E	MÍNIMOS

PONTOS	DE	MÁXIMO	E	PONTOS	DE	MÍNIMO

Seja	f	(x,	y)	uma	função	a	valores	reais	e	seja	(x0,	y0)	∈	A,	com	A	⊂	Df.	Dizemos	que	(x0,	y0)	é	ponto
de	máximo	de	f	em	A	se,	para	todo	(x,	y)	em	A,

f	(x,	y)	≤	f	(x0,	y0).

Sendo	(x0,	y0)	ponto	de	máximo	de	f	em	A,	o	número	f	(x0,	y0)	será	denominado	valor	máximo	de	f	em
A.

Dizemos	que	(x0,	y0)	∈	Df	é	ponto	de	máximo	global	ou	absoluto	de	f	se,	para	todo	(x,	y)	∈	Df,

f	(x,	y)	≤	f	(x0,	y0).

Diremos,	neste	caso,	que	f	(x0,	y0)	é	o	valor	máximo	de	f.
Finalmente,	diremos	que	(x0,	y0)	∈	Df	é	ponto	de	máximo	local	de	f	se	existir	uma	bola	aberta	B	de

centro	(x0,	y0)	tal	que

f	(x,	y)	≤	f	(x0,	y0)

para	todo	(x,	y)	∈	B	∩	Df.
Deixamos	a	seu	cargo	definir	ponto	de	mínimo	de	f	em	A	⊂	Df,	ponto	de	mínimo	global	e	ponto	de

mínimo	local.
Os	pontos	de	máximo	e	de	mínimo	de	uma	função	f	denominam-se	extremantes	de	f.

EXEMPLO	1.	(0,	0)	é	ponto	de	mínimo	global	de	f	(x,	y)	=	x2	+	y2	e	f	(0,	0)	=	0	é	o	valor	mínimo	de	f,
pois,	f	(x,	y)	≥	f	(0,	0),	para	todo	(x,	y)	em	 2.

■

EXEMPLO	2.	Seja	f	(x,	y)	=	2x	−	y	e	seja	A	o	conjunto	determinado	pelas	condições	x	≥	0,	y	≥	0,	x	+	y	≤
3	e	y	≥	x.	Estude	f	com	relação	a	máximo	e	mínimo	em	A.

Solução

Tal	estudo	será	feito	com	auxílio	das	curvas	de	nível	de	f.



Vemos,	geometricamente,	que	 	e	(0,	3)	são,	respectivamente,	pontos	de	máximo	e	de	mínimo

de	f	em	A;	 	é	o	valor	máximo	e	f	(0,	3)	=	−	3	é	o	valor	mínimo	de	f	em	A.	Para	comprovar

analiticamente	que	o	que	dissemos	acima	está	correto,	podemos	proceder	do	seguinte	modo:	para	todo	(x,
y)	em	A

ou	seja,	 .

ou	seja,

EXEMPLO	3.	Seja	(x,	y)	definida	em	 2	dada	por

(0,	0)	é	ponto	de	mínimo	local;	(3,	0)	é	ponto	de	máximo	local	e	todo	(x0,	y0)	pertencente	à	circunferência
x2	 +	y2	 =	 4	 é	 ponto	 de	máximo	global	 de	 f.	Deixamos	 a	 seu	 cargo	 fazer	 um	esboço	do	gráfico	 de	 f	 e
verificar	as	afirmações	acima.



16.2. CONDIÇÕES	NECESSÁRIAS	PARA	QUE	UM	PONTO	INTERIOR	AO
DOMÍNIO	DE	f	SEJA	UM	EXTREMANTE	LOCAL	DE	f

O	teorema	que	enunciaremos	e	demonstraremos	a	seguir	fornece-nos	um	critério	para	selecionar,	entre
os	pontos	interiores	de	Df,	candidatos	a	extremantes	locais	de	f.

Teorema	1.	Seja	(x
0
,	y

0
)	um	ponto	interior	de	D

f
	e	suponhamos	que	 	 	existam.	Nestas	condições,

uma	condição	necessária	para	que	(x
0
,	y

0
)	seja	um	extremante	local	de	f	é	que	 .

Demonstração

Suponhamos	que	(x0,	y0)	seja	um	ponto	de	máximo	local	de	 f.	Como	(x0,	y0)	é	ponto	 interior	de	Df,
existe	uma	bola	aberta	B	⊂	Df,	B	de	centro	(x0,	y0),	tal	que,	para	todo	(x,	y)	em	B

Por	 outro	 lado,	 existe	 um	 intervalo	 aberto	 I,	 com	 x0	 ∈	 I,	 tal	 que	 para	 todo	 x	 ∈	 I,	 (x,	 y0)	 ∈	 B.
Consideremos	a	função	g	dada	por

g	(x)	=	f	(x,	y0),	x	∈	I.

Temos:



daí

g′	(x0)	=	0

e,	portanto,

De	modo	análogo,	demonstra-se	que	 .

■

Segue	deste	teorema	que	se	(x0,	y0)	for	interior	a	Df,	f	diferenciável	em	(x0,	y0)	e	 (x0,	y0)	extremante
local	de	f,	então	o	plano	tangente	ao	gráfico	de	f	em	(x0,	y0,	f	(x0,	y0))	será	paralelo	ao	plano	xy.

Dizemos	que	(x0,	y0)	é	um	ponto	crítico	ou	estacionário	de	f	se	(x0,	y0)	for	interior	a	Df	e	se	∇	f	(x0,
y0)	=	(0,	0).	O	teorema	anterior	nos	diz	que	se	f	admite	derivadas	parciais	em	todos	os	pontos	interiores
de	Df,	 então	 os	 pontos	 críticos	 de	 f	 são,	 entre	 os	 pontos	 interiores	 de	 Df,	 os	 únicos	 candidatos	 a
extremantes	locais	de	f.

Um	ponto	(x0,	y0)	∈	A	que	não	é	ponto	interior	de	A	denomina-se	ponto	de	fronteira	de	A.	O	teorema
anterior	não	se	aplica	a	pontos	de	fronteira	de	Df;	um	ponto	de	fronteira	de	Df	pode	ser	um	extremante
local	 sem	 que	 as	 derivadas	 parciais	 se	 anulem	 nele.	 Os	 pontos	 de	 fronteira	 devem	 ser	 analisados
separadamente.

EXEMPLO	1.	Seja	f	(x,	y)	=	x2	+	y2.	Como	Df	é	um	conjunto	aberto	(Df	=	 2),	de

segue	que	(0,	0)	é	o	único	candidato	a	extremante	local.	Como	f	(x,	y)	≥	f	(0,	0)	=	0,	para	todo	(x,	y)	em	
2,	resulta	que	(0,	0)	é	um	ponto	de	mínimo	global	de	f.

■

EXEMPLO	2.	O	único	ponto	crítico	de	f	(x,	y)	=	x2	−	y2	é	(0,	0).	Verifica-se	sem	dificuldade	que	(0,	0)
não	é	extremante	local	(para	uma	visualização	geométrica,	desenhe	as	interseções	do	gráfico	de	f	com	os
planos	yz	e	xz).	O	ponto	(0,	0)	denomina-se	ponto	de	sela.	O	gráfico	desta	função	tem	o	aspecto	de	uma
“sela	de	cavalo”:	tente	desenhá-lo.



■

EXEMPLO	3.	Seja	z	=	f	(x,	y),	com	domínio	A	=	{(x,	y)	∈	 2	|	x	≥	0	e	y	≥	0},	onde	f	(x,	y)	=	x2y	+	3x.	O
ponto	(0,	0)	é	um	ponto	de	mínimo	de	f	em	A	pois	f	(x,	y)	≥	f	(0,	0)	em	A.	Como	 ,	segue	que	

.	Este	fato	não	contradiz	o	teorema	1,	pois	ele	só	se	aplica	a	pontos	interiores	de	D
f
	e

(0,	0)	não	é	ponto	interior	de	Df	(Df	=	A).
■

Suponhamos,	agora,	que	o	domínio	de	f	seja	aberto	e	que	f	seja	de	classe	C2.	Suponhamos,	ainda,	que
(x0,	y0)	∈	Df	seja	um	ponto	de	máximo	local	de	f.	Consideremos	a	função	g	(x)	dada	por

g	(x)	=	f	(x,	y0).

Tendo	em	vista	as	hipóteses	sobre	f,	segue	que	x0	é	ponto	interior	do	domínio	de	g	e,	além	disso,	é	ponto
de	máximo	local	de	g;	como	g	é,	também,	de	classe	C2	teremos	que	ter	necessariamente

g′	(x0)	=	0	e	g″	(x0)	≤	0

(observe	que	se	tivéssemos	g″	(x0)	>	0,	x0	teria	que	ser	ponto	de	mínimo	local	de	g).	Da	mesma	forma,
considerando	a	função	h	(y)	=	f	(x0,	y),	teremos	que	ter	necessariamente

h′	(y0)	=	0	e	h″	(y0)	≤	0.

Fica	provado	assim	o	seguinte	teorema.

Teorema	2.	Seja	f	de	classe	C2	e	seja	(x0,	y0)	um	ponto	interior	do	domínio	de	 f.	Uma	condição	necessária	para	que	(x0,	 y0)

seja	 ponto	 de	máximo	 local	 de	 f	 é	 que	 (x
0
,	 y

0
)	 seja	 ponto	 crítico	 de	 f	 e,	 além	 disso,	

(Interprete	geometricamente.)

Se	 no	 teorema	 acima	 as	 condições	 	 forem	 trocadas	 por	

	teremos	uma	condição	necessária	para	 (x
0
,	y

0
)	ser	ponto	de	mínimo

local	de	f.

EXEMPLO	4.	Determine	os	candidatos	a	extremantes	locais	de
f	(x,	y)	=	x3	+	y3	−	3x	−	3y	+	4.

Solução

Os	 únicos	 candidatos	 a	 extremantes	 locais	 são	 os	 pontos	 críticos,	 pois	 o	 domínio	 de	 f	 (Df	 =	 2)



1.

2.

3.

4.

5.

6.

16.3.

aberto.	De

resulta	que	os	candidatos	a	extremantes	locais	são	as	soluções	do	sistema

As	soluções	do	sistema	são:	(1,	1),	(−	1,	1),	(1,	−	1)	e	(−	1,	1).	Temos:

;	logo,	(1,	1)	é	candidato	a	ponto	de	mínimo	local.

;	 logo,	 (−	1,	1)	não	é	extremante	 local.	O	mesmo	acontece	com	o

ponto	(1,	−	1).	(Interprete	geometricamente.)

;	logo,	(−	1,	−	1)	é	candidato	a	ponto	de	máximo	local.

■

Seja	(x0,	y0)	um	ponto	crítico	de	f	(x,	y).	Sejam	g	(x)	=	f	(x,	y0)	e	h	(y)	=	f	(x0,	y).	Observemos	que	se
x0	não	for	extremante	local	de	g,	então	(x0,	y0)	não	será	extremante	local	de	f.	Da	mesma	forma,	se	y0	não
for	extremante	local	de	h,	então	(x0,	y0)	não	será	extremante	local	de	f.	(Verifique.)

Exercícios	16.2	

Selecione	os	candidatos	a	extremantes	locais,	sendo	f	(x,	y)	=

2x2	+	y2	−	2xy	+	x	−	y.

x2	−	y2	+	3xy	−	x	+	y.

x3	−	y2	+	xy	+	5.

x3	+	y3	−	xy.

x4	+	y4	+	4x	+	4y.

x5	+	y5	−	5x	−	5y.

	
UMA	CONDIÇÃO	SUFICIENTE	PARA	UM	PONTO	CRÍTICO	SER
EXTREMANTE	LOCAL



Seja	f	(x,	y)	de	classe	C2.	A	função	H	dada	por

denomina-se	hessiano	de	f.	Observe	que

O	próximo	 teorema	 fornece-nos	uma	condição	 suficiente	para	um	ponto	 crítico	de	 f	 ser	 extremante
local	de	f.

Teorema.	Sejam	f	(x,	y)	de	classe	C2	e	(x0,	y0)	um	ponto	interior	de	Df.	Suponhamos	que	(x0,	y0)	seja	ponto	crítico	de	f.	Então
	

a)	Se	 	então	(x
0
,	y

0
)	será	ponto	de	mínimo	local	de	f.

b)	Se	 	então	(x
0
,	y

0
)	será	ponto	de	máximo	local	de	f.

c)	Se	H	(x0,	y0)	<	0,	então	(x0,	y0)	não	será	extremante	local.	Neste	caso,	(x0,	y0)	será	ponto	de	sela.
d)	Se	H	(x0,	y0)	=	0,	nada	se	pode	afirmar.

Demonstração

Veja	Exemplos	3,	4	e	5	da	Seção	16.6.
■

EXEMPLO	1.	Seja	f	(x,	y)	=	x3	+	y3	−	3x	−	3y	+	4.	Os	pontos	críticos	de	f	são:	(1,	1),	(1,	−	1),	(−	1,	1)	e
(−	1,	−	1).	Temos:

Então:

;	logo,	(1,	1)	é	ponto	de	mínimo	local.	Note	que	(1,	1)	não	é	ponto

de	mínimo	global,	pois	f	(−	3,	0)	<	f	(1,	1).

;	 logo	(−	1,	1)	é	ponto	de	máximo	 local;	 entretanto,

(−	1,	−	1)	não	é	ponto	de	máximo	global,	pois	f	(4,	0)	>	f	(−	1,	−	1).	Como	H	(−	1,	1)	<	0	e	H	(1,	−	1)	<	0,



segue	que	(−	1,	1)	e	(1,	−	1)	não	são	extremantes,	são	pontos	de	sela.
■

EXEMPLO	2.	Seja	f	(x,	y)	=	3x4	+	2y4.	O	único	ponto	crítico	de	f	é	(0,	0)	e	temos	H	(0,	0)	=	0;	logo,	o
teorema	 não	 nos	 fornece	 informação	 sobre	 este	 ponto	 crítico.	 Trabalhando	 diretamente	 com	 a	 função
verifica-se	sem	dificuldade	que	(0,	0)	é	ponto	de	mínimo	global.

■

EXEMPLO	3.	Seja	f	(x,	y)	=	x5	+	2y5.	O	único	ponto	crítico	é	(0,	0)	e	H	(0,	0)	=	0.	Como	x	=	0	não	é
extremante	local	de	f	(x,	0)	=	x5,	resulta	que	(0,	0)	não	é	extremante	local	de	f.

■

EXEMPLO	4.	Deseja-se	construir	uma	caixa,	sem	tampa,	com	a	forma	de	um	paralelepípedo-retângulo	e
com	1	m3	de	volume.	O	material	a	ser	utilizado	nas	laterais	custa	o	triplo	do	que	será	utilizado	no	fundo.
Determine	as	dimensões	da	caixa	que	minimiza	o	custo	do	material.

Solução

O	problema	consiste	em	minimizar

ou

Temos



1.

2.

3.

a)

b)

c)

d)

e)

Assim,	 	é	o	único	ponto	crítico	de	f.	Como	 	e

(verifique)	resulta	que	 	é	ponto	de	mínimo	local.	Pela	natureza	do	problema,	é	razoável	esperar
que	 este	 ponto	 seja	 de	 mínimo	 global.	 As	 dimensões	 que	 minimizam	 o	 custo	 são:	

.	(Uma	forma	elegante	de	justificar	que	 	é	ponto	de	mínimo	global	é	a

seguinte:	para	cada	a	>	0,	seja	h	(a)	o	valor	mínimo	de	 ;	verifique,	então,	que	o

valor	mínimo	de	 .	Descreva	geometricamente	este	processo.)
■

Exercícios	16.3	

Estude	com	relação	a	máximos	e	mínimos	locais	a	função	f	(x,	y)	=

Seja	f	(x,	y)	=	ax2	+	by2	+	cxy	+	dx	+	ey	+	l,	onde	a,	b,	c,	d,	e	e	l	são	constantes.	Prove	que	se	(x0,	y0)	for	extremante	local	de	f,
então	será	extremante	global.

(Sugestão:	Observe	que	o	gráfico	de	g	(t)	=	f	(x0	+	ht,	y0	+	kt)	(h	e	k 	constantes)	é	uma	parábola.)

Estude	com	relação	a	extremantes	globais	a	função	f	(x,	y)	=

x2	+	2xy	+	2y2	−	x	+	2y

x2	−	y2	−	3xy	+	x	+	4y

x	+	2y	−	2xy	−	x2	−	3y2

3x2	+	y2	+	xy	−	2x	−	2y

x2	+	2y2	+	3xy	+	2x	+	2y



f)

4.

5.

6.

a)

b)

7.

a)
b)

8.

9.

10.

x2	+	y2	−	2x	−	4y

(Sugestão:	Utilize	o	Exercício	2.)

Determine	o	ponto	do	plano	x	+	2y	−	z	=	4	que	se	encontra	mais	próximo	da	origem.

Método	dos	mínimos	quadrados.	Dados	n	pares	de	números	(a1,	b1),	(a2,	b2),	 ...,	 (an,	bn),	 com	n	 ≥	3,	 em	geral	 não	 existirá	uma
função	afim	 f	 (x)	 =	αx	 +	 β	 cujo	 gráfico	 passe	 por	 todos	 os	 n	 pontos.	 Entretanto,	 podemos	 determinar	 f	 de	modo	 que	 a	 soma	 dos
quadrados	dos	erros	f	(ai)	−	bi	seja	mínima.	Pois	bem,	determine	α	e	β	para	que	a	soma

seja	mínima.

Determine,	pelo	método	dos	mínimos	quadrados,	a	reta	que	melhor	se	ajusta	aos	dados:

(1,	3),	(2,	7)	e	(3,	8)

(0,	1),	(1,	3),	(2,	3)	e	(3,	4)

Determinado	 produto	 apresenta	 uma	 demanda	 y	 (em	 milhares)	 quando	 o	 preço,	 por	 unidade,	 é	 x	 (em	 R$).	 Foram	 observados	 os
seguintes	dados:

x y

5 100

6 98

7 95

8 94

A	tabela	nos	diz	que	ao	preço	unitário	de	5	 reais	a	demanda	foi	de	100.000	unidades;	ao	preço	unitário	de	6	 reais	a	demanda	foi	de
98.000	unidades	etc.

Determine,	pelo	método	dos	mínimos	quadrados,	a	reta	que	melhor	se	ajusta	aos	dados	observados.
Utilizando	a	reta	encontrada	no	item	a),	faça	uma	previsão	para	a	demanda	quando	o	preço,	por	unidade,	for	10	reais.

Considere	as	retas	reversas	r	e	s	de	equações

(x,	y,	z)	=	(0,	0,	2)	+	λ	(1,	2,	0),	λ	∈	
e
(x,	y,	z)	=	(0,	0,	4)	+	μ	(1,	1,	1),	μ	∈	
respectivamente.	Determine	P	e	Q,	com	P	∈	r	e	Q	∈	s,	de	modo	que	a	distância	de	P	a	Q	seja	a	menor	possível.

Duas	 partículas	P
1
	 e	P

2
	 deslocam-se	 no	 espaço	 com	 velocidades	 constantes	 	 =	 (1,	 1,	 0)	 e	 	 =	 (0,	 1,	 1),	 respectivamente.	No

instante	t	=	0	a	P1	encontra-se	na	posição	(1,	1,	3).	Sabe-se	que	a	trajetória	descrita	por	P2	passa	pelo	ponto	(1,	1,	0).	Qual	deverá	ser
a	posição	de	P2	no	instante	t	=	0	para	que	a	distância	mínima	entre	elas	seja	a	menor	possível?

Determinada	 empresa	 produz	 dois	 produtos	 cujas	 quantidades	 são	 indicadas	 por	 x	 e	 y.	 Tais	 produtos	 são	 oferecidos	 ao	 mercado
consumidor	a	preços	unitários	p1	e	p2,	respectivamente,	que	dependem	de	x	e	y	conforme	equações:	p1	=	120	−	2x	e	p2	=	200	−	y.	O
custo	 total	da	empresa	para	produzir	 e	vender	quantidades	x	 e	y	 dos	produtos	 é	dado	por	C	=	x2	+	2y2	+	2xy.	Admitindo	que	 toda



11.

12.

13.

14.

15.

a)
b)

c)

d)

16.

a)

b)

17.

18.

produção	da	empresa	seja	absorvida	pelo	mercado,	determine	a	produção	que	maximiza	o	lucro.

Para	produzir	determinado	produto	cuja	quantidade	é	representada	por	z,	uma	empresa	utiliza	dois	fatores	de	produção	(insumos)	cujas
quantidades	 serão	 indicadas	 por	 x	 e	 y.	 Os	 preços	 unitários	 dos	 fatores	 de	 produção	 são,	 respectivamente,	 2	 e	 1.	 O	 produto	 será
oferecido	ao	mercado	consumidor	a	um	preço	unitário	igual	a	5.	A	função	de	produção	da	empresa	é	dada	por	z	=	900	−	x2	−	y2	+	32x
+	41y.	Determine	a	produção	que	maximiza	o	lucro.

Considere	o	sistema	de	partículas	P1,	P2,	...,	Pn,	localizadas	nos	pontos	(x1,	y1),	(x2,	y2),	...,	(xn,	yn)	e	de	massas	m1,	m2,	...,	mn.	Seja	N
=	(x,	y).	Determine	N	para	que	o	momento	de	inércia	do	sistema,	em	relação	a	N,	seja	mínimo.	Conclua	que	o	N	encontrado	é	o	centro
de	massa	do	sistema.

(Observação.	O	momento	de	inércia	de	Pi	em	relação	a	N	é	o	produto	de	mi	pelo	quadrado	da	distância	de	Pi	a	N;	o	momento	de
inércia	do	sistema	em	relação	a	N	é	a	soma	dos	momentos	de	inércia,	em	relação	a	N,	das	partículas	que	compõem	o	sistema.)

Determine	o	ponto	do	plano	3x	+	2y	+	z	=	12	cuja	soma	dos	quadrados	das	distâncias	a	(0,	0,	0)	e	(1,	1,	1)	seja	mínima.

Considere	 a	 função	 f	 (x,	 y)	 =	 1	 −	 x2	 −	 y2,	 x	 ≥	 0	 e	 y	 ≥	 0.	Determine	 o	 plano	 tangente	 ao	 gráfico	 de	 f	 que	 forma	 com	 os	 planos
coordenados	tetraedro	de	volume	mínimo.

Seja	f	(x,	y,	z)	de	classe	C2	e	seja	(x0,	y0,	z0)	um	ponto	interior	de	Df.	Suponhamos	que	(x0,	y0,	z0)	seja	ponto	crítico	de	f.	Sejam	H	(x,
y,	z)	e	H1	(x,	y,	z)	dadas	por

Pode	ser	provado	(veja	16.6)	que:

(i)	se	 ,	então	(x
0
,	y

0
,	z
0
)	será	ponto	de	mínimo	local.

(ii)	se	 ,	então	(x
0
,	y

0
,	z
0
)	será	ponto	de	máximo	local.

Estude	com	relação	a	máximos	e	mínimos	locais	a	função	f	(x,	y,	z)	=

x2	+	5y2	+	2z2	+	4xy	−	2x	−	4y	−	8z	+	2.
x3	+	y3	+	z3	−	3x	−	3y	−	3z	2.

x3	+	2xy	+	y2	+	z2	−	5x	−	4z.

x2	−	y2	+	4z2	+	2xz	−	4yz	−	2x	−	6z.

Seja	f	(x,	y,	z)	de	classe	C2	e	seja	(x0,	y0,	z0)	ponto	interior	de	Df.	Suponha	que	(x0,	y0,	z0)	seja	ponto	crítico	de	f.	Prove:

	uma	condição	necessária	para	o	ponto	crítico	(x
0
,	y

0
,	z

0
)

ser	ponto	de	mínimo	local	de	f.

	 é	uma	condição	necessária	para	o	ponto	crítico	 (x
0
,	 y

0
,

z0)	ser	ponto	de	máximo	local	de	f.

A	função	f	(x,	y,	z)	=	x2	+	y2	−	z2	−	5x	+	2y	−	z	+	8	admite	extremante	local?	Por	quê?

Seja	f	(x,	y)	definida	e	de	classe	C2	no	aberto	A	de	 2.	Suponha	que,	para	todo	(x,	y)	∈	A,



19.

20.

16.4.

Prove	que	f	não	admite	ponto	de	máximo	local.

Seja	f	(x,	y)	=	x2	(y4	−	x2)	e	considere,	para	cada	 	=	(h,	k),	a	função	 	(observe	que	 	fornece	os	valores	de	f
sobre	a	reta	(x,	y)	=	t	(h,	k)).	Verifique	que	t	=	0	é	ponto	de	máximo	local	de	cada	 	mas	que	(0,	0)	não	é	ponto	de	máximo	local	de	f.

Seja	f	(x,	y)	uma	função	que	admita	derivadas	parciais	em	todo	 2.	Suponha	que	f	admita	um	único	ponto	crítico	(x0,	y0)	e	que	este
ponto	crítico	seja	ponto	de	máximo	local.	Pode-se	concluir	que	(x0,	y0)	é	ponto	de	máximo	global?

	

MÁXIMOS	E	MÍNIMOS	SOBRE	CONJUNTO	COMPACTO

Nas	seções	anteriores	determinamos	condições	necessárias	e	condições	suficientes	para	que	um	ponto
de	Df	 seja	 um	 extremante	 local	 de	 f.	 Entretanto,	 para	 muitos	 problemas	 que	 ocorrem	 na	 prática	 é
importante	 determinar	 os	 extremantes	 em	um	 subconjunto	A	 de	Df.	O	 teorema	 de	Weierstrass,	 que	 é	 o
próximo	 teorema	 a	 ser	 enunciado,	 fornece-nos	 condições	 suficientes	 para	 a	 existência	 de	 tais
extremantes.

Para	enunciar	o	teorema	de	Weierstrass	precisaremos	antes	definir	conjunto	compacto.
Seja	A	um	subconjunto	do	 2;	dizemos	que	A	é	um	conjunto	limitado	se	A	estiver	contido	em	alguma

bola	 aberta	 de	 centro	 na	 origem.	 Dizemos,	 por	 outro	 lado,	 que	 A	 é	 um	 conjunto	 fechado	 se	 o	 seu
complementar	{(x,	y)	∈	 2	|	(x,	y)	∉	A}	for	um	conjunto	aberto.	Pois	bem,	dizemos	que	A	é	um	conjunto
compacto	se	A	for	fechado	e	limitado.

EXEMPLO	1.	Toda	bola	fechada	A	de	centro	(x0,	y0)	e	raio	r	>	0,	A	=	{(x,	y)	∈	 2	||	(x,	y)	−	(x0,	y0)	||	≤
r}	é	um	conjunto	compacto,	pois	é	limitado	e	fechado.

A	é	um	conjunto	limitado	e	seu	complementar	é	um	conjunto	aberto.
■

EXEMPLO	 2.	A	 =	 {(x,	 y)	∈	 2	 |	 y	 ≥	 x2}	 é	 um	 conjunto	 fechado,	 mas	 não	 limitado,	 logo,	A	 não	 é
compacto.

■

EXEMPLO	3.	A	=	{(x,	y)	∈	 2	|	x2	+	4y2	=	1}	é	um	conjunto	limitado	e	fechado,	logo	compacto.
■



O	teorema	de	Weierstrass,	que	enunciaremos	a	 seguir	 (para	demonstração	veja	Exercícios	9	a	12),
conta-nos	que	se	f	for	contínua	no	compacto	A,	então	f	assumirá	em	A	valor	máximo	e	valor	mínimo.

Teorema	(de	Weierstrass).	Se	f	(x,	y)	for	contínua	no	compacto	A,	então	existirão	pontos	(x1,	y1)	e	(x2,	y2)	em	A	tais	que,	para	todo
(x,	y)	em	A,

f	(x1,	y1)	≤	f	(x,	y)	≤	f	(x2,	y2).

O	 teorema	 de	Weierstrass	 garante-nos	 que	 se	 f	 for	 contínua	 em	A	 e	A	 compacto,	 então	 existirão
pontos	(x1,	y1)	e	(x2,	y2)	em	A	tais	que	f	(x1,	y1)	é	o	valor	mínimo	e	f	(x2,	y2)	é	o	valor	máximo	de	f	em	A.
Resta-nos,	agora,	o	problema	de	determinar	tais	pontos.	Suponhamos	que	f	admita	derivadas	parciais	nos
pontos	interiores	de	A.	Sabemos,	então,	que	entre	os	pontos	interiores	de	A	os	únicos	com	possibilidades
de	serem	extremantes	são	os	pontos	críticos:	a	nossa	primeira	 tarefa	consiste,	então,	em	determinar	os
pontos	críticos	de	f	que	estão	no	interior	de	A.	Em	seguida,	procuramos	determinar	os	valores	máximo	e
mínimo	de	f	na	 fronteira	de	A.	Comparamos,	então,	os	valores	que	 f	assume	nos	pontos	críticos	com	o
valor	máximo	de	 f	na	fronteira	de	A:	o	maior	destes	valores	será	o	valor	máximo	de	 f	em	A.	De	modo
análogo,	determina-se	o	valor	mínimo.

EXEMPLO	1.	Determine	os	extremantes	de

Solução

Como	f	é	contínua	e	A	compacto,	vamos	proceder	como	dissemos	anteriormente.

Pontos	críticos	de	f	no	interior	de	A

As	soluções	do	sistema

são:	(1,	1),	(1,	−	1),	(−	1,	1)	e	(−	1,	−	1).	Segue	que	(1,	1)	e	(1,	−	1)	são	os	únicos	pontos	críticos	no
interior	de	A.	Temos

f	(1,	1)	=	−	4	e	f	(1,	−	1)	=	0.

Análise	dos	pontos	de	fronteira



g	(y)	=	f	(2,	y)	=	y3	−	3y	+	2,	−	2	≤	y	≤	2,

fornece-nos	os	valores	que	f	assume	no	segmento	NP.

Assim,	o	valor	máximo	de	f	no	segmento	NP	é	4	e	o	valor	mínimo	é	0.	O	valor	máximo	é	atingido	nos
pontos	(2,	−	1)	e	(2,	2):

f	(2,	−	1)	=	4	e	f	(2,	2)	=	4.

O	valor	mínimo	é	atingido	nos	pontos	(2,	−	2)	e	(2,	1):

f	(2,	−	2)	=	0	e	f	(2,	1)	=	0.

Raciocinando	de	forma	análoga	sobre	os	segmentos	PQ,	MQ	e	MN,	concluímos	que	o	valor	máximo	de	f
sobre	a	 fronteira	é	4	e	este	valor	é	atingido	nos	pontos	 (2,	−	1)	e	 (2,	2);	o	valor	mínimo	de	 f	 sobre	 a
fronteira	de	A	é	−	4	e	este	valor	é	atingido	no	ponto	(1,	−	2).

Conclusão.	Comparando	os	valores	que	f	assume	nos	pontos	críticos	com	os	valores	máximo	e	mínimo
de	f	na	fronteira	resulta:	o	valor	máximo	de	f	em	A	é	4	e	é	atingido	nos	pontos	(2,	−	1)	e	(2,	2);	o	valor
mínimo	de	f	em	A	é	−	4	e	é	atingido	nos	pontos	(1,	1)	e	(1,	−	2).

■

EXEMPLO	2.	Determine	os	extremantes	de	f	(x,	y)	=	xy	em	A	=	{(x,	y)	∈	 2	|	x2	+	y2	≤	1}.



Solução

f	é	contínua	e	A	compacto;	logo,	f	assume	em	A	valor	máximo	e	valor	mínimo.	O	único	ponto	crítico
no	interior	de	A	é	(0,	0),	e	este	ponto	crítico	não	é	extremante	(verifique).	Segue	que	os	valores	máximo	e
mínimo	de	f,	em	A,	são	atingidos	na	fronteira	de	A.	Os	valores	de	f	na	fronteira	de	A	são	fornecidos	pela
função

F	atinge	o	valor	máximo	em	 ;	atinge	o	valor	mínimo	em	 	 .	Segue	que	

	são	os	pontos	de	máximo	de	f	em	A;	 	são	os

pontos	de	mínimo	de	f	em	A.	O	valor	máximo	de	f	em	A	é	 ,	e	o	valor	mínimo,	−	 .	A	figura	seguinte,

na	qual	estão	desenhadas	algumas	curvas	de	nível	de	f,	fornece-nos	uma	visão	geométrica	do	problema:

z	=	xy

EXEMPLO	3.	Determine	os	extremantes	de	f	(x,	y)	=	2x	+	y	em	A	dado	por	x	≥	0,	y	≥	0,	x	+	y	≤	4	e	3x	+
y	≤	6.

Solução

f	assume	em	A	valor	máximo	e	valor	mínimo,	pois	 f	 é	 contínua	e	A,	 compacto.	Como	 f	 não	 admite
ponto	crítico,	os	valores	máximo	e	mínimo	são	atingidos	na	fronteira	de	A.



1.

2.

3.

4.

5.
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Como	f	é	uma	função	afim	e	a	fronteira	de	A	é	formada	por	segmentos	de	retas	(A	é	um	polígono),	resulta
que	entre	os	vértices	de	A	 existe	pelo	menos	um	ponto	de	máximo	e	pelo	menos	um	ponto	de	mínimo.
Calculando	os	valores	de	f	nos	vértices	encontramos:

f	(1,	3)	=	5	valor	máximo	e	f	(0,	0)	=	0	valor	mínimo.

■

Exercícios	16.4	

Estude	a	função	dada	com	relação	a	máximo	e	mínimo	no	conjunto	dado.

Determine	(x,	y),	com	x2	+	4y2	≤	1,	que	maximiza	a	soma	2x	+	y.

Suponha	que	T	(x,	y)	=	4	−	x2	−	y2	represente	uma	distribuição	de	temperatura	no	plano.	Seja	A	=	{(x,	y)	∈	 2	|	x	≥	0,	y	≥	x	e	2y	+	x	≤
4}.	Determine	o	ponto	de	A	de	menor	temperatura.

Determine	o	valor	máximo	de	f	(x,	y)	=	x	+	5y	onde	x	e	y	estão	sujeitos	às	restrições:
5x	+	6y	≤	30,	3x	+	2y	≤	12,	x	≥	0	e	y	≥	0.

Uma	determinada	empresa	está	interessada	em	maximizar	o	lucro	mensal	proveniente	de	dois	de	seus	produtos,	designados	I	e	II.	Para
fabricar	estes	produtos	ela	utiliza	um	tipo	de	máquina	que	tem	uma	disponibilidade	de	200	máquinas-hora	por	mês	e	um	tipo	de	mão	de
obra	com	uma	disponibilidade	de	240	homens-horas	por	mês.	Para	se	produzir	uma	unidade	do	produto	I	utilizam-se	5	horas	de	máquina
e	 10	 horas	 de	mão	de	 obra,	 enquanto	 para	 o	 produto	 II	 utilizam-se	 4	 horas	 de	máquina	 e	 4	 horas	 de	mão	 de	 obra.	Espera-se	 uma
demanda	de	20	unidades	por	mês	do	produto	I	e	45	do	produto	II.	Calcula-se	um	lucro,	por	unidade,	de	R$	10,00	para	o	produto	I	e	R$
6,00	para	o	II.	Determine	as	quantidades	de	cada	produto	que	deverão	ser	fabricadas	por	mês,	para	o	lucro	mensal	ser	máximo.

Determine	(x,	y)	que	maximiza	(minimiza)	a	função	f	(x,	y)	=	x
2
	+	2y

2
,	com	x	e	y	sujeitos	às	restrições:	y	=	1	−	2x,	 .
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Dê	exemplo	de	uma	função	contínua	num	conjunto	limitado	A	⊂	 2,	mas	que	não	assuma	em	A	valor	máximo.

Considere	a	forma	quadrática	Q	(x,	y)	=	ax2	+	2bxy	+	cy2.	Sejam	Q	(x1,	y1)	e	Q	(x2,	y2)	os	valores	mínimo	e	máximo	de	Q	em	A	=
{(x,	y)	∈	 2	|	x2	+	y2	=	1}.	Prove:

se	Q	(x1,	y1)	>	0,	então	Q	(x,	y)	>	0	para	todo	(x,	y)	≠	(0,	0).

se	Q	(x2,	y2)	<	0,	então	Q	(x,	y)	<	0	para	todo	(x,	y)	≠	(0,	0).

Suponha	A	um	subconjunto	fechado	do	 2	e	(x0,	y0)	um	ponto	de	acumulação	de	A.	Prove	que	(x0,	y0)	∈	A.

Prove	que	se	f	(x,	y)	for	contínua	em	(x0,	y0)	∈	Df,	então	f	será	localmente	limitada	em	(x0,	y0)	(f	 localmente	limitada	em	(x0,	 y0)
significa	que	existem	α	e	β	e	uma	bola	aberta	B	de	centro	(x0,	y0)	tais	que	α	<	f	(x,	y)	<	β	para	todo	(x,	y)	em	B	∩	Df).

Seja	R1,	R2,	...,	Rn,	...	uma	sequência	de	retângulos	em	 	2,	onde	 ,	tais	que	R1	⊃
R2	⊃	...	⊃	Rn	⊃	...;	suponha	que	 	tenda	a	zero	quando	n	→	+	∞.	Nestas	condições,	prove	que

onde	x	y	e	são	os	únicos	reais	tais	que

para	todo	n	∈	 ,	n	≠	0.

Seja	A	um	subconjunto	fechado	e	limitado	do	 2	e	seja	f	:	A	→	 	contínua.	Prove	que	f	é	limitada	em	A.

(Sugestão:	Suponha	que	f	não	seja	limitada	e	construa	uma	sequência	de	retângulos	como	a	do	Exercício	11,	tal	que	f	não	seja	limitada
em	A	∩	Rn,	para	n	=	1,	2,	...;	conclua	que	f	não	será	localmente	limitada	em	 	...,	o	que	contradiz	a	hipótese	de	f
ser	contínua	em	 .)

(Teorema	de	Weierstrass.)	Seja	A	⊂	 2,	A	compacto,	e	seja	 f	 :	A	→	 	contínua.	Prove	que	 f	 assume	em	A	 valor	máximo	 e	 valor
mínimo.

(Sugestão:	Veja	Apêndice	A2.4,	Vol.	1,	5.ª	edição.)

	

O	MÉTODO	DOS	MULTIPLICADORES	DE	LAGRANGE	PARA
DETERMINAÇÃO	DE	CANDIDATOS	A	EXTREMANTES	LOCAIS
CONDICIONADOS

O	objetivo	desta	seção	é	o	estudo	de	máximos	e	mínimos	de	uma	função	sobre	conjuntos	do	tipo:

{(x,	y)	|	g	(x,	y)	=	0},	{(x,	y,	z)	|	g	(x,	y,	z)	=	0}

e

{(x,	y,	z)	|	g	(x,	y,	z)	=	0	e	h	(x,	y,	z)	=	0}.

PROBLEMA	1.	Seja	f	(x,	y)	diferenciável	no	aberto	A	e	seja	B	=	{(x,	y)	∈	A	 |	g	(x,	y)	=	0},	onde	g	é
suposta	 de	 classe	C1	 em	A;	 suporemos,	 também,	∇	 g	 (x,	 y)	 ≠	 (0,	 0)	 em	B.	 Estamos	 interessados	 em
determinar	uma	condição	necessária	para	que	(x0,	y0)	∈	B	seja	um	extremante	local	da	f	em	B.	A	figura
que	apresentamos	a	seguir,	onde	estão	desenhadas	algumas	curvas	de	nível	de	 f,	ajudar-nos-á	a	chegar,
geometricamente,	a	tal	condição:



Para	efeito	de	raciocínio,	suponhamos	∇f	(x0,	y0)	≠	 	e	que	z	cresce	no	sentido	indicado	na	figura	(c1	<	c2
<	c3	<	z0).	Vamos	então	pensar	geometricamente:	se	(x0,	y0)	é	um	extremante	local,	é	razoável	esperar	que
a	curva	de	nível	de	f	que	passa	por	este	ponto	seja	“tangente”,	neste	ponto,	à	restrição	g	(x,	y)	=	0,	isto	é,
os	vetores	∇f	(x0,	y0)	e	∇g	(x0,	y0)	devem	ser	paralelos	e	como	∇g	(x0,	y0)	≠	(0,	0)	deverá	existir	um	λ0	tal
que

Geometricamente,	chegamos	à	seguinte	condição	necessária:	uma	condição	necessária	para	que	(x0,	y0)
∈	B	seja	um	extremante	local	de	f	em	B	é	que	(x0,	y0)	torne	compatível	o	sistema

Este	 processo	 de	 se	 determinar	 candidatos	 a	 extremantes	 locais	 é	 conhecido	 como	 método	 dos
multiplicadores	de	Lagrange;	os	λ	que	tornem	tal	sistema	compatível	denominam-se	multiplicadores	de
Lagrange	para	o	problema	em	questão.

Teorema	1.	Seja	f	(x,	y)	diferenciável	no	aberto	A	e	seja	B	=	{(x,	y)	∈	A	|g	(x,	y)	=	0},	onde	g	é	suposta	de	classe	C1	em	A,	e	∇
g	(x,	y)	≠	(0,	0),	para	todo	(x,	y)	∈	B.	Uma	condição	necessária	para	que	(x0,	y0)	∈	B	seja	extremante	local	de	f	em	B	é	que	exista
um	real	λ0	tal	que



Demonstração

Suponhamos	que	(x0,	y0)	∈	B	seja	um	ponto	de	máximo	local	de	f	em	B;	isto	significa	que	existe	uma
bola	aberta	V	de	centro	(x0,	y0)	tal	que

para	todo	 .
Consideremos,	 agora,	 uma	 curva	 γ	 diferenciável	 num	 intervalo	 aberto	 I	 tal	 que	

,	para	todo	t	∈	I	(a	existência	de	uma	tal	curva	é	garantida
pelo	teorema	das	funções	implícitas).	Da	continuidade	de	γ	segue	que	existe	δ	>	0	tal	que

Daí,

para	todo	t	∈	]t0	−	δ,	 t0	+	δ[;	assim,	 t0	é	ponto	de	máximo	local	de	F	 (t)	=	 f	 (γ	 (t))	e	como	 t0	é	ponto
interior	a	I,	resulta	F′	(t0)	=	0,	ou	seja,

Por	outro	lado,	de	g	(γ	(t))	=	0	em	I	resulta

Tendo	em	vista	que	∇	g(γ	(t0))	≠	 ,	segue	de	 	e	 	que	existe	λ0	tal	que

Então,	sendo	f	(x,	y)	diferenciável	no	aberto	A	e	B	=	{(x,	y)	∈	A	|	g	(x,	y)	=	0},	onde	g	é	suposta	de
classe	C1	em	A	e	∇g(x,	y)	≠	(0,	0)	em	B,	os	candidatos	a	extremantes	locais	de	f	em	B	são	os	(x,	y)	∈	A
que	tornam	compatível	o	sistema

Estabelecemos	assim	uma	condição	necessária	para	um	ponto	(x0,	y0)	ser	um	extremante	local	de	f	em



B.	Trabalhando	diretamente	com	a	função	o	aluno	deverá	decidir	quais	dos	candidatos	encontrados	são
realmente	extremantes	locais.

Observação.	Se	no	teorema	1	acrescentarmos	as	hipóteses	 f	de	classe	C1	e	∇	 f	 (x0,	y0)	≠	(0,	0),	então
poderemos	 afirmar	 que	 a	 curva	 de	 nível	 de	 f	 que	 passa	 pelo	 ponto	 (x0,	 y0)	 tangencia,	 neste	 ponto,	 a
restrição	g	(x,	y)	=	0.	Entretanto,	nada	podemos	afirmar	com	relação	à	tangência	se	∇	f	(x0,	y0)	=	(0,	0)
(veja	Exercícios	1	(f)	e	1	(g)).

EXEMPLO	1.	Determine	os	extremantes	de	f	(x,	y)	=	3x	+	2y	com	a	restrição	x2	+	y2	=	1.

Solução

Seja	g	(x,	y)	=	x2	+	y2	−	1;	o	que	queremos	são	os	extremantes	de	f	em
B	=	{(x,	y)	∈	 2|	g	(x,	y)	=	0}.	Como	g	é	de	classe	C1	e	∇g	(x,	y)	=	(2x,	2y)	≠	(0,	0)	em	B,	resulta	que	os
candidatos	a	extremantes	locais	são	os	(x,	y)	que	tornam	compatível	o	sistema

ou

que	é	equivalente	a

Como	λ	≠	0,	das	duas	primeiras	equações	resultam

Substituindo	estes	valores	em	x2	+	y2	=	1,	vem

Segue	 que	 	 são	 os	 candidatos	 a	 extremantes	 locais.	 Como	 B	 é

compacto	e	f	 ,	resulta	que	 	é	ponto	de	máximo

e	 	é	ponto	de	míximo	e	f	em	B.	(Interprete	geometricamente.)



■

EXEMPLO	2.	Estude,	com	relação	a	máximo	e	mínimo,	a	função	f	(x,	y)	=	y	+	x3	com	a	restrição	y	−	x3	=
0.

Solução

Como	g	é	de	classe	C1	e	∇g	(x,	y)	=	(−	3x2,	1)	≠	(0,	0)	em	B,	 resulta	que	os	candidatos	a	extremantes
locais	são	os	(x,	y)	que	tornam	compatível	o	sistema

ou

O	único	candidato	é	(0,	0)	que	não	é	extremante	de	f	em	B,	pois	f	(x,	y)	>	0	para	x	>	0	e	y	>	0	e	f	(x,	y)	<
0	para	x	<	0	e	y	<	0.

EXEMPLO	3.	Encontre	o	ponto	da	curva	xy	=	1,	x	>	0	e	y	>	0	que	se	encontra	mais	próximo	da	origem.

Solução

Trata-se	 aqui	de	 se	determinar	o	mínimo	de	 f	 (x,	y)	=	x2	 +	y2	 com	a	 restrição	xy	=	1	 (f	 (x,	 y)	 é	 o
quadrado	da	distância	de	(x,	y)	a	(0,	0)).

O	único	candidato	é	(1,	1)	e,	por	inspeção,	verifica-se	que	(1,	1)	é	ponto	de	mínimo.	Assim,	(1,	1)	é	o
ponto	da	curva	xy	=	1,	x	>	0	e	y	>	0	que	se	encontra	mais	próximo	da	origem.



EXEMPLO	4.	Determine	a	 reta	 tangente	à	curva	 ,	x	>	0	e	y	>	0	que	 forma	com	os	 eixos

triângulo	de	área	mínima.

Solução

Seja	(a,	b)	(a	>	0	e	b	>	0)	um	ponto	da	elipse	 .	A	equação	da	reta	tangente	em	(a,	b)	é:

ou

A	 área	 do	 triângulo	 0MN	 é:	 .	 O	 problema	 consiste	 em	 minimizar	 	 com	 a	 restrição	

.



Das	duas	primeiras	equações	segue	b	=	2a.	Substituindo	na	última	equação	obtemos	 .	A	equação

da	reta	que	resolve	o	problema	é:

PROBLEMA	2.	Seja	f	(x,	y,	z)	diferenciável	no	aberto	A	⊂	 3	e	seja
B	=	{(x,	y,	z)	∈	A	|	g	(x,	y,	z)	=	0},	onde	g	é	suposta	de	classe	C1	em	A	e	∇g	(x,	y,	z)	≠	(0,	0,	0)	em	B.
Qual	uma	condição	necessária	para	que	(x0,	y0,	z0)	∈	B	seja	extremante	local	da	f	em	B?	Raciocinando
geometricamente,	como	no	Problema	1,	chega-se	à	condição:	a	condição	necessária	para	(x0,	y0,	z0)	∈	B
ser	extremante	local	de	f	em	B	é	que	exista	λ0	tal	que

Deixamos	para	o	leitor	a	prova	desta	afirmação.	Deste	modo,	os	candidatos	a	extremantes	locais	de	f	em
B	são	os	(x,	y,	z)	∈	A	que	tornam	compatível	o	sistema

EXEMPLO	 5.	 Determine	 o	 ponto	 do	 elipsoide	 x2	 +	 2y2	 +	 3z2	 =	 1	 cuja	 soma	 das	 coordenadas	 seja
máxima.

Solução

Queremos	maximizar	f	(x,	y,	z)	=	x	+	y	+	z	com	a	restrição	x2	+	2y2	+	3z2	=	1.

Como	 λ	 deve	 ser	 diferente	 de	 zero,	 da	 1.ª	 equação	 tiramos:	 .	 Substituindo	 na

última	equação	obtemos:



Os	candidatos	a	extremantes	são:

Da	compacidade	de	B,	da	continuidade	de	f	e	de	f	(X1)	>	f	(X2)	segue	que	o	ponto	procurado	é

O	próximo	teorema	fornece-nos	uma	condição	necessária	para	(x0,	y0,	z0)	ser	um	extremante	local	de	f
(x,	y,	z)	com	as	 restrições	g	 (x,	y,	z)	=	0	e	h	 (x,	y,	z)	=	0.	Para	 a	demonstração	de	 tal	 teorema	vamos
precisar	do	seguinte	resultado	(cuja	prova	fica	para	o	leitor):	sejam	 	e	 	vetores	do	 3	tais
que	 ;	 então	 existem	 reais	 λ1	 e	 λ2	 tais	 que	

.

Teorema	2.	Seja	f	(x,	y,	z)	diferenciável	no	aberto	A	⊂	 3	e	seja	B	=	{(x,	y,	z)	∈	A	|	g	(x,	y,	z)	=	0	e	h	(x,	y,	z)	=	0},	onde	g	e	h
são	supostas	de	classe	C1	em	A	e	∇	g	(x,	y,	z)	∧	∇	h	(x,	y,	z)	≠	 	em	B.	Nestas	condições,	uma	condição	necessária	para	que	(x0,
y0,	z0)	∈	B	seja	extremante	local	de	f	em	B	é	que	existam	reais	λ1	e	λ2	tais	que

Demonstração

Suponhamos	que	(x0,	y0,	z0)	seja	ponto	de	máximo	local	de	f	em	B,	o	que	significa	que	existe	uma	bola
aberta	V	de	centro	(x0,	y0,	z0)	tal	que,	para	todo	(x,	y,	z)	∈	B	∩	V,

f	(x,	y,	z)	≤	f	(x0,	y0,	z0)

(como	A	é	aberto,	podemos	supor	V	⊂	A).	Consideremos	uma	curva	diferenciável	γ	:	I	→	 3,	I	intervalo
aberto,	tal	que	γ	(t0)	=	(x0,	y0,	z0),	γ′	(t0)	≠	 	e	γ	(t)	∈	B	para	todo	t	em	I	(a	existência	de	uma	tal	curva	é
garantida	pelo	teorema	das	funções	implícitas).	Da	continuidade	de	γ,	segue	que	existe	δ	>	0	tal	que

Assim,	para	todo	t	∈	]t0	−	δ,	t0	+	δ[	tem-se

Logo,	t0	é	ponto	de	máximo	local	de	F	(t)	=	f	(γ	(t))	e	daí	F′	(t0)	=	0,	ou	seja,

Por	outro	lado,	de	γ	(t)	∈	B	para	todo	t	∈	I	segue	que



g	(γ	(t))	=	0	e	h	(γ	(t))	=	0,

para	todo	t	em	I;	daí

De	 	e	 ,	tendo	em	vista	que	 ,	resulta	que	existem	reais	λ
1
	e

λ2	tais	que

EXEMPLO	 6.	 Determine	 os	 pontos	 mais	 afastados	 da	 origem	 e	 cujas	 coordenadas	 estão	 sujeitas	 às
restrições	x2	+	4y2	+	z2	=	4	e	x	+	y	+	z	=	1.

Solução

Trata-se	de	determinar	os	pontos	que	maximizam	a	 função	 f	 (x,	 y,	 z)	=	x2	 +	y2	 +	 z2	 (f	 (x,	 y,	 z)	 é	 o
quadrado	da	distância	de	(x,	y,	z)	a	(0,	0,	0))	com	as	restrições	g	(x,	y,	z)	=	0	e	h	(x,	y,	z)	=	0,	onde	g	(x,	y,
z)	=	x	+	y	+	z	−	1	e	h	(x,	y,	z)	=	x2	+	4y2	+	z2	−	4.	Temos:

(verifique).	Estamos	indicando	por	B	o	conjunto	{(x,	y,	z)	|	x	+	y	+	z	=	1	e	x2	+	4y2	+	z2	=	4}.	Observe	que
B	é	compacto.	Os	candidatos	a	extremantes	locais	são	os	(x,	y,	z)	que	tornam	compatível	o	sistema



De	 	e	 	segue

2x	(1	−	μ)	=	2z	(1	−	μ).

Para	μ	≠	1,	x	=	z.	Substituindo	em	 	e	

Temos,	então	os	candidatos:	 .	Para	μ	=	1,	 teremos	λ	=	0.	Segue	de	 	que	y	 =	 0;

substituindo	em	 	e	

Segue	que	 	 são	 outros	 candidatos	 a	 extremantes.	 Como	 f	 é

contínua	e	B	compacto,	basta	comparar	os	valores	de	f	nos	pontos	encontrados:

Conclusão.	 	são	os	pontos	mais	afastados	da	origem.	Por

outro	lado,	(0,	1,	0)	é	o	mais	próximo	da	origem.
■

Exercícios	16.5	



1.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Estude	com	relação	a	máximos	e	mínimos	a	função	dada	com	as	restrições	dadas.

f	(x,	y)	=	3x	+	y	e	x2	+	2y2	=	1

f	(x,	y)	=	3x	+	y	e	x2	+	2y2	≤	1

f	(x,	y)	=	x2	+	2y2	e	3x	+	y	=	1

f	(x,	y)	=	x2	+	4y2	e	xy	=	1,	x	>	0	e	y	>	0

f	(x,	y)	=	xy	e	x2	+	4y2	=	8

f	(x,	y)	=	x2	+	2xy	+	y2	e	x	+	2y	−	1	=	0

f	(x,	y)	=	x2	−	2xy	+	y2	e	x2	+	y2	=	1

f	(x,	y)	=	x2	−	2y2	e	x2	+	y2	−	2x	=	0

f	(x,	y)	=	x3	+	y3	−	3x	−	3y	e	x	+	2y	=	3

f	(x,	y)	=	x2	−	2xy	+	3y2	e	x2	+	2y2	=	1

Determine	a	curva	de	nível	de	f	(x,	y)	=	x2	+	16y2	que	seja	tangente	à	curva	xy	=	1,	x	>	0	e	y	>	0.	Qual	o	ponto	de	tangência?

Determine	o	ponto	da	reta	x	+	2y	=	1	cujo	produto	das	coordenadas	seja	máximo.

Determine	o	ponto	da	parábola	y	=	x2	mais	próximo	de	(14,	1).

Determine	o	ponto	do	elipsoide	x2	+	4y2	+	z2	=	1	que	maximiza	a	soma	x	+	2y	+	z.

Determine	a	 superfície	de	nível	da	 função	 f	(x,	y,	z)	=	x2	+	y2	+	2z2	 que	 seja	 tangente	 ao	plano	x	+	2y	+	3z	=	4.	Qual	o	ponto	de
tangência?

Ache	o	valor	máximo	e	o	valor	mínimo	da	função	f	(x,	y,	z)	=	x	+	2y	+	z	com	a	restrição	x2	+	2y2	+	z2	=	4.

Determine	o	ponto	do	plano	x	+	2y	−	3z	=	4	mais	próximo	da	origem.

Determine	o	ponto	da	reta

que	se	encontra	mais	próximo	da	origem.

Maximize	f	(x,	y,	z)	=	x	+	2y	+	3z	sujeita	às	restrições	x2	+	y2	+	z2	=	4	e	x	+	y	+	z	=	1.

Encontre	os	pontos	da	elipse	x2	+	xy	+	y2	=	3	(de	centro	na	origem)	mais	próximos	e	os	mais	afastados	da	origem.	Desenhe	a	elipse.

Encontre	o	ponto	da	curva	x2	−	2xy	+	y2	−	2x	−	2y	+	1	=	0	mais	próximo	da	origem.

Encontre	os	pontos	da	curva	x2	−	6xy	−	7y2	+	80	=	0	mais	próximos	da	origem.	Desenhe	a	curva.

Determine	o	ponto	da	superfície	xyz	=	1,	x	>	0	e	y	>	0	que	se	encontra	mais	próximo	da	origem.

Pede-se	determinar	três	números	positivos	cuja	soma	seja	36	e	cujo	produto	seja	máximo.

Determine,	entre	os	triângulos	de	mesmo	perímetro,	o	de	área	máxima.

(Sugestão:	Utilize	a	fórmula	 	que	fornece	a	área	do	triângulo	em	função	dos	lados	a,	b	e	c,	onde
p	é	o	semiperímetro.)

Verifique	que	 	 é	o	valor	máximo	de	xyz,	x	 ≥	 0,	y	≥	0	 e	z	 ≥	 0,	 com	a	 restrição	x	+	y	+	z	=	c	 (c	 >	 0).	 Conclua	 que	 a	média

geométrica	de	três	números	positivos	é	sempre	menor	ou	igual	à	média	aritmética	destes	números.

Determine,	entre	os	paralelepípedos-retângulos	de	mesmo	volume,	o	de	área	máxima.



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

16.6.

Deseja-se	 construir	 uma	 caixa,	 sem	 tampa,	 com	1	m3	 de	 volume	 e	 com	 a	 forma	 de	 um	 paralelepípedo-retângulo.	O	material	 a	 ser
utilizado	na	 confecção	do	 fundo	custa	o	dobro	do	que	 será	utilizado	nas	 laterais.	Determinar	 as	dimensões	da	 caixa	que	minimiza	o
custo	do	material.

Deseja-se	construir	um	paralelepípedo-retângulo	com	área	total	100	cm2.	Determine	as	dimensões	para	o	volume	ser	máximo.

Determine	o	paralelepípedo-retângulo	de	volume	máximo,	com	arestas	paralelas	aos	eixos,	inscrito	no	elipsoide

Determine	o	paralelepípedo-retângulo	de	volume	máximo,	com	três	de	suas	faces	nos	planos	coordenados,	contido	no	tetraedro	{(x,	y,
z)	∈	 3	|	x	+	2y	+	3z	≤	12,	x	≥	0,	y	≥	0	e	z	≥	0}.

A	temperatura	T	em	qualquer	ponto	(x,	y,	z)	do	espaço	é	dada	por	T	=	100	x2yz.	Determine	a	temperatura	máxima	sobre	a	esfera	x2	+
y2	+	z2	≤	4.	Qual	a	temperatura	mínima?

Determine	o	plano	tangente	à	superfície	 ,	x	>	0,	y	>	0	e	z	>	0,	que	forma	com	os	planos	coordenados	tetraedro

de	volume	mínimo.

Determine	P	na	elipse	x2	+	2y2	=	6	e	Q	na	reta	x	+	y	=	4	de	modo	que	a	distância	de	P	a	Q	seja	a	menor	possível.

Considere	a	forma	quadrática	Q	(x,	y)	=	ax2	+	2bxy	+	cy2	onde	a,	b,	c	são	constantes	não	simultaneamente	nulas.	Seja	g	(x,	y)	=	x2	+
y2	−	1.	Suponha	que	(x0,	y0,	λ0)	seja	solução	do	sistema

Prove	que	Q	(x0,	y0)	=	λ0.
(Sugestão:	Como	Q	é	homogênea	de	grau	2,	utilize	a	relação	de	Euler.	Veja	Exercício	26	da	Seção	12.1.)

Sejam	Q	(x,	y)	e	g	(x,	y)	como	no	exercício	anterior.	Suponha	que	os	multiplicadores	de	Lagrange	associados	ao	problema

sejam	estritamente	positivos.	Prove	que	Q	(x,	y)	>	0,	para	todo	(x,	y)	≠	(0,	0).
(Sugestão:	Utilize	o	Exercício	26.)

Prove	que	os	multiplicadores	de	Lagrange	associados	ao	problema	do	exercício	anterior	são	as	raízes	da	equação

Sejam	Q	(x,	y)	e	g	(x,	y)	como	no	Exercício	26.	Sejam	λ1	e	λ2,	λ1	≤	λ2,	as	raízes	da	equação

Prove	que	λ1	e	λ2	são,	respectivamente,	os	valores	mínimo	e	máximo	de	Q	sobre	a	circunferência	x2	+	y2	=	1.

	
EXEMPLOS	COMPLEMENTARES

EXEMPLO	1.	Seja	 f	 (x,	y)	de	classe	C2	num	aberto	A	do	 2.	Suponha	que	(x0,	y0)	∈	A	 seja	um	ponto
crítico	de	f.	Prove	que	uma	condição	necessária	para	(x0,	y0)	ser	um	ponto	de	mínimo	local	de	f	é	que



para	todo	(h,	k).

Solução

Seja	 	e	consideremos	a	função

Suponhamos	que	(x0,	y0)	seja	ponto	de	mínimo	local	de	f;	então	t	=	0	será	ponto	de	mínimo	local	de	 	e,
portanto,	deveremos	ter	necessariamente	 	(0)	≥	0.	Como

(verifique)	resulta	que

para	todo	(h,	k),	é	uma	condição	necessária	para	(x0,	y0)	ser	ponto	de	mínimo	local	de	f.
■

Observação.	Note	que	 	fornece	os	valores	que	f	assume	sobre	o	trecho	da	reta	(x,	y)	=	(x0,	y0)	+	t	(h,	k)
contido	em	Df.

EXEMPLO	2.	Considere	a	forma	quadrática

Q	(h,	k)	=	ah2	+	2bhk	+	ck2

onde	a,	b	e	c	são	constantes.	Suponha	a	≠	0.	Verifique	que



Solução

ou	seja,

EXEMPLO	3.	Considere	a	forma	quadrática

Q	(h,	k)	=	ah2	+	2bhk	+	ck2.

Prove:

Solução

Pelo	Exemplo	2,	sendo	a	≠	0,

(i)	imediata.
(ii)	se	a	=	0,	 teremos	necessariamente	b	≠	0;	neste	caso,	existe	 tal	que	Q	 (α,	1)	e	Q	 (α,	−	1)	 terão

sinais	 contrários.	 (Verifique.)	 Se	 a	 ≠	 0,	 Q	 (1,	 0)	 e	 Q	 	 terão	 sinais	 contrários	



■

EXEMPLO	4.	Seja	f	(x,	y)	de	classe	C2	num	aberto	A	do	 2	e	seja	 (x0,	y0)	∈	A	um	ponto	crítico	de	 f.
Prove	que	se

então	(x0,	y0)	não	é	extremante	local	de	f.

Solução

Seja

Pela	regra	da	cadeia,

Pelo	Exemplo	3	(ii)

tais	que

Assim,	t	=	0	é	ponto	de	máximo	local	de	 	e	ponto	de	mínimo	local	de	 .	Logo,	 (x0,	y0)	não	é
extremante	local	de	f.



a)

b)

a)

Seja	(x0,	y0)	∈	Df	um	ponto	crítico	de	 f.	Dizemos	que	(x0,	y0)	é	ponto	de	sela	de	 f	 se	em	toda	bola
aberta	de	centro	(x0,	y0)	existirem	pontos	(x1,	y1)	e	(x2,	y2)	com	f	(x1,	y1)	<	f	(x0,	y0)	e	f	(x2,	y2)	>	f	(x0,	y0).

Seja	 f	 (x,	y)	de	classe	C2	 num	 aberto	A	 de	 2	 e	 seja	 (x0,	y0)	∈	A	 um	 ponto	 crítico	 de	 f.	 Segue	 do
Exemplo	4	que	se	H	(x0,	y0)	<	0,	então	(x0,	y0)	será	ponto	de	sela	de	f	(verifique).

EXEMPLO	5.	Sejam	f	(x,	y)	de	classe	C2	e	 (x0,	y0)	um	ponto	 interior	de	Df.	Suponha	que	(x0,	y0)	seja
ponto	crítico	de	f.	Prove:

Se	 ,	então	(x
0
,	y

0
)	será	ponto	de	mínimo	local	de	f.

Se	 ,	então	(x
0
,	y

0
)	será	ponto	de	máximo	local	de	f.

Solução

Da	hipótese	e	da	continuidade	das	funções

segue,	pelo	teorema	da	conservação	do	sinal,	que	existe	uma	bola	aberta	B	de	centro	(x0,	y0)	 (podemos
supor	B	⊂	Df,	pois	(x0,	y0)	é	ponto	interior	de	Df)	tal	que,	para	todo	(x,	y)	em	B,



Pela	fórmula	de	Taylor,	com	resto	de	Lagrange	(veja	teorema	da	Seção	15.4),	para	todo	(h,	k),	com	(x0	+
h,	y0	+	k)	∈	B,	existe	 	interno	ao	segmento	de	extremidades	(x0,	y0)	e	(x0	+	h,	y0	+	k)	tal	que

Como	 	∈	B,

tendo	em	vista	o	Exemplo	3,	para	todo	(h,	k)	≠	(0,	0),	com	(x0	+	h,	y0	+	k)	∈	B,

f	(x0	+	h,	y0	+	k)	−	f	(x0,	y0)	>	0,

ou	seja,

f	(x,	y)	>	f	(x0,	y0)

para	todo	(x,	y)	em	B,	com	(x,	y)	≠	(x0,	y0).	Portanto	(x0,	y0)	é	ponto	de	mínimo	local	de	f.
b)	Fica	a	seu	cargo.	[Basta	verificar	que	(x0,	y0)	é	ponto	de	mínimo	local	de	g	(x,	y)	=	−f(x,	y).]

■

EXEMPLO	6.	Sejam	α,	β,	γ,	δ,	 	e	φ	números	reais	dados.	Considere	a	forma	quadrática

Supondo	α	≠	0,	verifique	que



Solução

Assim,

Supondo	 .

Como,



resulta

EXEMPLO	7.	Considere	a	forma	quadrática

Verifique:

Q	(r,	s,	t)	>	0,	para	todo	(r,	s,	t)	≠	(0,	0,	0).

Q	(r,	s,	t)	<	0,	para	todo	(r,	s,	t)	≠	(0,	0,	0).

c)	Se	 ,	então	existem	(r
1
,	s

1
,	t

1
)	e	(r

2
,	s

2
,	t

2
)	tais	que	Q	(r

1
,	s

1
,	t

1
)	<	0	e	Q	(r

2
,	s

2
,	t

2
)	>	0.

Solução

a)	e	b)	são	consequências	imediatas	do	Exemplo	6.

c)	 ;	 assim,	 Q	 (1,	 0,	 0)	 e	 	 têm	 sinais	 contrários.

[Sugerimos	ao	leitor	determinar	outras	situações	que	levam	à	existência	de	(r1,	s1,	t1)	e	(r2,	s2,	t2)	com	Q
(r1,	s1,	t1)	<	0	e	Q	(r2,	s2,	t2)	>	0.]

■

Deixamos	a	cargo	do	leitor	a	demonstração	do	resultado	que	aparece	no	Exercício	15	da	Seção	16.3.



(Sugestão:	Proceda	como	no	Exemplo	5.)



17.1.
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MÍNIMOS	QUADRADOS:	SOLUÇÃO	LSQ	DE	UM	SISTEMA
LINEAR.	APLICAÇÕES	AO	AJUSTE	DE	CURVAS

TEOREMA	DE	PITÁGORAS

Teorema	 de	 Pitágoras.	 Sejam	 A,	 B	 e	 C	 três	 pontos	 do	 n,	 e	 consideremos	 os	 vetores	
.	Suponhamos	que	os	vetores	 	 sejam	ortogonais,	 isto	 é,	 que	o	produto

escalar	 .	Nessas	condições,	tem-se

De	 fato,	 observando	que	 	 e,	 para	 todo	 ,	 e	 lembrando,	 ainda,	 das
propriedades	do	produto	escalar,	vem

E,	portanto,	tem-se	a	relação	de	Pitágoras

Uma	consequência	importante	do	teorema	de	Pitágoras	e	que	será	utilizada	logo	é	a	seguinte:

Sejam	A,	B	dois	pontos	do	 n	e	seja	Ω	o	conjunto,	contendo	A,	de	todos	os	pontos	C	de	 n	tais	que	C	−	A	seja	ortogonal	a	B	−	A.	Nestas
condições,	para	todo	C	em	Ω,

||	B	−	A	||	≤	||	B	−	C	||

ou	seja,	para	todo	C	em	Ω,	a	distância	de	B	a	A	é	menor	ou	igual	à	distância	de	B	a	C.

De	fato,	pelo	teorema	de	Pitágoras,

||	B	−	C	||2	=	||	B	−	A	||2	+	||	C	−	A	||2.

Como	||	C	−	A	||2	≥	0,	resulta	||	B	−	C	||2	≥	||	B	−	A	||2	e,	portanto,



17.2.

Observação.	Lembre-se	de	que,	sendo	X	e	Y	dois	pontos	do	 n,	a	distância	de	X	a	Y	é	||	X	−	Y	||.	Assim,
se	Ω	for	uma	reta	ou	um	plano	em	 3	(ou	no	 n),	então	||B	−	A||	será	a	distância	de	B	a	Ω.

SOLUÇÃO	LSQ	DE	UM	SISTEMA	LINEAR	COM	UMA	INCÓGNITA

Vamos	começar	considerando	um	sistema	linear	S,	no	plano,	com	uma	incógnita.

Esse	 sistema,	 no	 sentido	 habitual,	 poderá	 ter	 solução	 ou	 não.	 Terá	 solução	 se	 o	 ponto	 B	 =	 (b1,	 b2)
pertencer	à	reta	r,	dada,	em	forma	paramétrica,	por

Se	o	ponto	B	=	(b1,	b2)	não	pertencer	à	reta	r,	o	sistema	S	não	admitirá	solução,	no	sentido	habitual,	mas
admitirá	solução	LSQ	ou	solução	dos	mínimos	quadrados.

Definição	(de	solução	LSQ).	Dizemos	que	t0	é	uma	solução	LSQ	ou	solução	dos	mínimos	quadrados	do	sistema	linear	S	se	t	=	t0
tornar	mínima	a	distância	do	ponto	B	=	(b1,	b2)	ao	ponto	X	=	(a11t,	a21t),	t	real.

Consideremos	os	pontos	A	=	(a11t0,	a21t0),	B	=	(b1,	b2)	e	X	=	(a11t,	a21t).	Pensando	geometricamente,	t0	será
uma	solução	LSQ	do	sistema	linear	S	se	o	vetor	B	−	A	for	ortogonal	à	reta	r	ou,	de	forma	equivalente,	se
B	−	A	for	ortogonal	ao	vetor	X	−	A,	ou	seja,	se

(B	−	A)·(X	−	A)	0.

De	fato,	se	para	t	=	t0	o	vetor	B	−	A	for	ortogonal	a	X	−	A,	pelo	que	vimos	na	seção	anterior,	 teremos,
para	todo	t,

||	B	−	A	||	≤	||	B	−	X	||



e,	portanto,	A	é	o	ponto	da	reta	r	que	se	encontra	mais	próximo	de	B.
Observe:	se	t	=	t0	for	solução	do	sistema	S	no	sentido	habitual,	será,	também,	solução	no	sentido	LSQ.

Você	concorda?
Vejamos	como	achar	rapidamente	a	solução	LSQ	do	sistema	S.	Primeiro	devemos	escrever	o	sistema

S	em	forma	vetorial.	A	seguir,	em	vez	de	representar	um	vetor	em	linha,	vamos	representá-lo	em	coluna,
usando	colchetes.	Façamos

Assim,	o	sistema	S	poderá	ser	reescrito	na	forma

Como	X	 −	A	 é	 paralelo	 a	 ,	 pois	 	 é	 o	 vetor	 diretor	 da	 reta	 r,	 deveremos	 ter	 então	
ortogonal	a	 ,	ou	seja,

Tendo	em	vista	a	distributividade	do	produto	escalar	em	relação	à	adição,	resulta

e,	portanto,

Nada	 muda	 se	 S	 for	 um	 sistema	 linear	 com	 uma	 incógnita	 no	 n.	 Vamos	 resumir	 o	 que	 fizemos
anteriormente	supondo	S	no	 n.

Solução	LSQ	de	um	sistema	linear,	com	uma	incógnita,	no	 n.

Seja	S	o	sistema	linear

A	solução	LSQ	de	S	é	a	raiz	da	equação

e,	portanto,



Outro	modo	de	se	determinar	a	solução	LSQ	do	sistema	linear	S	é	usando	o	cálculo:	determina-se	 t
que	torna	mínimo	o	quadrado	da	distância	do	ponto	B	=	(b1,	b2,	…,	bn)	ao	ponto	X	=	(a11t,	a21t,	…,	an1t).
Indicando	por	W	o	quadrado	da	distância	de	B	a	X,	temos:

Derivando,	obtemos

Igualando	a	zero	e	lembrando	que	 ,	resulta

Como	o	gráfico	de	W	=	W	(t)	é	uma	parábola	com	concavidade	voltada	para	cima	(de	acordo?),	segue
que	o	valor	de	t	acima	torna	mínimo	o	valor	de	W.

EXEMPLO.	Determine	a	solução	LSQ	do	sistema

Solução

Aqui,

A	solução	LSQ	do	sistema	é



1.

2.

3.

17.3.

Conclusão:	x	=	 	é	a	solução	LSQ	do	sistema	dado.	(Observe	que	esse	sistema	não	admite	solução	no

sentido	habitual.	Observe,	ainda,	que,	para	t	=	 ,	a	distância	do	ponto	B	=	(5,	8,	7)	ao	ponto	(3t,	t,	2t)	é

exatamente	a	distância	de	B	à	reta	dada,	em	forma	paramétrica,	por	x	=	3t,	y	=	t	e	z	=	2t.)
■

ATENÇÃO:	Na	HP-48G,	a	solução	fornecida	pelo	aplicativo	SOLVE	LINEAR	SYSTEM	é	uma	solução
LSQ.	No	Apêndice	2,	mostramos	como	trabalhar	nesse	aplicativo.

Exercícios	17.2	

Determine	a	solução	LSQ	do	sistema	dado.

Seja	o	ponto	P	=	(2,1,3)	e	considere	a	reta	r	dada	em	forma	paramétrica	por

Determine	o	ponto	de	r	que	se	encontra	mais	próximo	de	P.

Seja	o	ponto	P	=	(1,1,1)	e	considere	a	reta	r	dada	em	forma	paramétrica	por

Determine	o	ponto	de	r	que	se	encontra	mais	próximo	de	P.

	
SOLUÇÃO	LSQ	DE	UM	SISTEMA	LINEAR	COM	DUAS	OU	MAIS
INCÓGNITAS

Inicialmente,	vamos	considerar	um	sistema	com	duas	incógnitas.	Seja,	então,	S	o	sistema	linear



Definição	(de	solução	LSQ).	Dizemos	que	(x0,	y0)	é	uma	solução	LSQ	de	S	se	(x,	y)	=	(x0,	y0)	tornar	mínima	a	distância	do	ponto

Fazendo

supondo	que	o	vetor	B	−	A	seja	ortogonal	a	X	−	A	e	procedendo	como	na	seção	anterior,	resulta,	para	todo
(x,	y),

||	B	−	A	||	≤	||	B	−	X	||.

Façamos

Observando	que

segue,	se	B	−	A	for	ortogonal	a	 	e	a	 ,	ou	seja,	se

então	B	 −	A	 será,	 também,	 ortogonal	 a	X	 −	A.	 Como	 ,	 o	 sistema	 acima	 poderá	 ser
reescrito	na	forma

que	é	equivalente	a



Resumindo:

Solução	LSQ	de	um	sistema	linear,	com	duas	incógnitas,	no	 n.	Seja	S	o	sistema	linear

A(s)	solução(ões)	LSQ	de	S	é(são)	a(s)	solução(ões)	do	sistema	auxiliar

ATENÇÃO:	Prova-se	em	Álgebra	Linear	que	o	sistema	SA	 é	 sempre	compatível,	 no	 sentido	habitual.
Será	 compatível	 determinado,	 ou	 seja,	 admitirá	 uma	 única	 solução,	 se	 	 e	 	 forem	 linearmente
independentes.	Será	compatível	indeterminado,	ou	seja,	admitirá	uma	infinidade	de	soluções,	se	 	e	
forem	linearmente	dependentes.

MODO	PRÁTICO	PARA	SE	OBTER	SA

Primeiro	escreve-se	S	na	forma	vetorial:

Em	seguida,	multiplicam-se	escalarmente	os	dois	membros	por	 	e,	depois,	por	 ,	para	obter

Outro	modo	de	se	obter	a	solução	LSQ	do	sistema	linear	S	é	determinar,	por	meio	do	cálculo,	o	ponto
que	minimiza	o	quadrado	da	distância	de	B	a	X.	Chamando	de	W	o	quadrado	dessa	distância,	temos:

A(s)	solução(ões)	LSQ	de	S	será(ão)	então	a(s)	solução(ões)	do	sistema



De	 	resulta

que	nada	mais	é	do	que	o	nosso	SA	acima.

EXEMPLO	1.	Resolva,	no	sentido	LSQ,	o	sistema

Solução

Aqui

Temos:

O	nosso	sistema	auxiliar	é	então

cuja	solução	é	 .

Conclusão:	 	é,	então,	a	solução	LSQ	do	sistema	dado.

■



Observação:	Observe	que,	no	sentido	habitual,	o	sistema	do	exemplo	acima	não	admite	solução.

EXEMPLO	2.	Considere	no	 4	o	conjunto

Determine	o	ponto	de	Φ	que	está	mais	próximo	de	B	=	(3,	1,	2,	1).

Solução

O	ponto	(u,	v,	w,	z)	de	Φ	que	está	mais	próximo	de	B	é	aquele	obtido	com	(x,	y)	solução	LSQ	de

que	 nada	 mais	 é	 que	 o	 sistema	 do	 exemplo	 anterior.	 Como	 vimos,	 a	 solução	 LSQ	 desse	 sistema	
	O	ponto	de	Φ	mais	próximo	de	B	é	

EXEMPLO	3.	Resolva,	no	sentido	LSQ,	o	sistema

Solução

Temos

Observe	que	 ,	logo	 	são	linearmente	dependentes.	O	sistema	admitirá	infinitas	soluções
LSQ.	De	fato,

que	é	equivalente	a

Conclusão:	As	soluções	LSQ	do	sistema	dado	são	todos	os	pares	(x,	y)	tais	que	2x	+	4y	=	1.	 (Vejamos
outro	modo	de	resolver	o	problema	acima.	Colocando	o	sistema	S	em	forma	vetorial,	temos



1.

Tendo	em	vista	que	 ,	resulta:	 .	Fazendo	t	=	x	+	2y,	obtemos	o	sistema,	com
uma	incógnita,

cuja	solução	LSQ	é

Então,	as	soluções	LSQ	de	S	são	todos	os	pares	(x,	y)	tais	que	x	+	2y	=	 ,	ou	seja,	tais	que	2x	+	4y	=	1.)

Para	finalizar	a	seção,	observamos	que	o	procedimento	para	se	resolver	um	sistema,	no	sentido	LSQ,
com	 mais	 de	 duas	 incógnitas	 é	 análogo	 ao	 procedimento	 para	 duas	 variáveis.	 Consideremos,	 por
exemplo,	o	sistema	linear	com	três	incógnitas

Em	forma	vetorial,	o	sistema	acima	se	escreve

O	sistema	auxiliar	SA	será,	então,

A	 mesma	 observação	 é	 válida	 para	 o	 sistema	 SA.	 Tal	 sistema	 será	 sempre	 compatível,	 no	 sentido
habitual:	 admitirá	uma	única	 solução	 se	 	 forem	 linearmente	 independentes;	 caso	 contrário,
admitirá	uma	infinidade	de	soluções.

■

Exercícios	17.3	

Resolva,	no	sentido	LSQ,	o	sistema	linear	dado.	A	solução	encontrada	é	solução	no	sentido	habitual?



2.

3.

a)
b)

17.4.

Considere	o	plano	dado	em	forma	paramétrica	por

Seja	B	=	(3,	0,	1).	Determine	o	ponto	do	plano	α	que	se	encontra	mais	próximo	de	B.	Qual	a	distância	de	B	a	α?
Seja	α	o	plano	do	exemplo	anterior.	Uma	partícula	desloca-se	sobre	α,	e	sabe-se	que	no	instante	t	a	posição	da	partícula	é	dada,	em
forma	paramétrica,	por:	x	=	t,	y	=	2t	e	z	=	z	(t).

Determine	z	(t).
Determine	o	instante	em	que	a	partícula	se	encontra	mais	próxima	do	ponto	(1,0,2).

	
AJUSTE	DE	CURVA:	A	RETA	DOS	MÍNIMOS	QUADRADOS

Consideremos	a	tabela

x y

x1 y1

x2 y2

x3 y3

… …

xn yn

Sabemos	que	por	dois	pontos	distintos	sempre	passa	uma	reta.	Por	mais	de	dois	pontos,	só	com	muita
sorte!	Mas,	de	qualquer	forma,	vamos	proceder	como	se	houvesse	uma	reta	passando	por	todos	os	pontos
da	tabela.	Seja

a	reta	que	estamos	interessados	em	determinar.	A	notação	 ,	que	é	usual	em	estatística,	indica	que	o	valor
	correspondente	ao	valor	de	x	é	apenas	uma	estimativa	para	o	verdadeiro	valor	de	y.	Para	que	tal	reta
passe	por	todos	os	pontos,	devemos	ter



a)
b)
c)
d)

Definição	(de	reta	dos	mínimos	quadrados).	Dizemos	que	 	=	mx	+	q	 é	a	reta	dos	mínimos	quadrados	 para	 os	 dados	 da	 tabela
acima	se	(m,	q)	for	a	solução	LSQ	do	sistema	S.

Se	os	pontos	da	tabela	forem	colineares,	então	a	reta	 	=	mx	+	q	passará	por	todos	os	pontos	(xi,	yi),	i
=	1,	2,	…,	n.	Mas,	de	modo	geral,	 isso	não	ocorrerá.	Assim,	em	geral,	o	valor	 ,	 será
apenas	uma	estimativa	para	o	valor	yi	da	 tabela	 (é	comum	referir-se	a	esse	yi	como	valor	observado).
Desse	modo,	quando	usamos	 	para	estimar	yi,	estamos	cometendo	um	erro	Ei:

Segue	que	a	soma	W	dos	quadrados	dos	erros	é

Como	m	e	q	da	reta	dos	mínimos	quadrados	 	=	mx	+	q	é	a	solução	LSQ	do	sistema	S,	 resulta	que	 tal
reta	é	determinada	de	modo	que	a	soma	dos	quadrados	dos	erros	seja	mínima.

A	reta	dos	mínimos	quadrados	é	a	reta	que	minimiza	a	soma	dos	quadrados	dos	erros

EXEMPLO.	Considere	a	tabela

x 2 4 6 8 10

y 5 4 8 6 12

Construa	o	diagrama	de	dispersão.
Determine	a	reta	dos	mínimos	quadrados.
Utilizando	a	reta	dos	mínimos	quadrados,	estime	os	valores	de	y	para	x	=	5	e	x	=	8.
Calcule	as	médias	aritméticas	 	e	 	dos	xi	e	dos	yi,	respectivamente.



e)
f)
g)
h)
i)

j)

k)

a)

b)

Verifique	que	a	reta	dos	mínimos	quadrados	passa	pelo	ponto	 .
Calcule	a	soma	dos	quadrados	 .
Calcule	a	soma	dos	quadrados	 .
Calcule	a	soma	dos	quadrados	dos	erros	Ei.

Verifique	 que	 	 (Está	 parecendo	 teorema	 de

Pitágoras,	não?	Veremos	mais	adiante	que	isso	ocorre	sempre!)
Justifique	a	afirmação:	“É	razoável	esperar	que	os	 	se	concentrem	mais	em	torno	de	 	do	que	os
yi.”

Calcule	o	coeficiente	de	determinação	 .	(Observe	que	0	≤	R

2

	≤	1.

Observe	ainda	que,	quanto	mais	próximo	de	1	estiver	o	R2,	melhor	deverá	ser	o	ajuste	da	 reta	dos
mínimos	quadrados	aos	pontos	da	tabela.	De	acordo?)

Solução

O	diagrama	de	dispersão	é	a	representação	gráfica	dos	pontos	da	tabela.

Seja	 	=	mx	+	q	a	reta	procurada.	Temos

Em	forma	vetorial,	temos

onde



c)
d)

e)

O	sistema	auxiliar	é

e,	portanto,

Resolvendo,	obtém-se	 .

Conclusão:	A	reta	dos	mínimos	quadrados	é	 	=	0,8x	+	2,2.

Para	x	=	5,	 	=	6,2;	para	x	=	8,	 	=	8,6.

.	Assim,	 	=	6	e	

=	7.
	=	0,8x	+	2,2;	para	x	=	6,	tem-se	 	=	7.	Logo,	a	reta	 	=	0,8x	+	2,2	passa	pelo	ponto	 	=	(6,	7).
Então,	a	reta	dos	mínimos	quadrados	pode	ser	colocada	na	forma	 	−	7	=	0,8	(x	−	6).

Para	resolver	os	próximos	itens,	vamos	precisar	da	seguinte	tabela.

xi yi (yi	−	7)2 ( 	−	7)2 (yi	−	 )2

2 5 3,8 4 10,24 1,44



h)

i)

j)

k)

4 4 5,4 9 2,56 1,96

6 8 7 1 0 1

8 6 8,6 1 2,56 6,76

10 12 10,2 25 10,24 3,24

Assim,	 .

Pelos	dados	acima,	 .

É	razoável,	pois	da	relação	acima	resulta	que	a	soma	dos	quadrados	dos	desvios	 	é	menor	ou
igual	 à	 soma	 dos	 quadrados	 dos	desvios	 ,	 e,	 assim,	 é	 de	 se	 esperar	 que	 os	 	 estejam	mais
concentrados	em	torno	da	média	 	=	7	do	que	os	yi.	OK?

.	Assim,	o	coeficiente	de	determinação	é	R

2

	=	0,64.

(Pelo	coeficiente	de	determinação,	o	ajuste	pela	reta	dos	mínimos	quadrados	não	é	lá	essas	coisas.
Concorda?)

■

Para	encerrar	a	seção,	vamos	explicitar	as	fórmulas	para	calcular	m	e	q.	Para	isso,	consideremos	a
tabela	do	início	da	seção.

Os	coeficientes	m	e	q	da	reta	dos	mínimos	quadrados

são	dados	por



e

onde	 	e	 	são	as	médias	aritméticas

Antes	 de	 prosseguirmos,	 vamos	 destacar	 uma	 propriedade	 muito	 importante	 da	 reta	 dos	 mínimos
quadrados.

Propriedade	importante	da	reta	dos	mínimos	quadrados.

Substituindo

na	reta	dos	mínimos	quadrados,	obtemos

A	reta	dos	mínimos	quadrados	sempre	passa	pelo	ponto	 .

Vamos,	agora,	à	demonstração	das	fórmulas	para	calcular	m	e	q

Segue	que

Lembrando	das	fórmulas	para	o	cálculo	das	médias	aritméticas	 	e	 ,	resulta

Então,	o	sistema	auxiliar	será	equivalente	a



Multiplicando	a	segunda	equação	por	− 	e	somando	com	a	primeira,	obtemos

Da	segunda	equação	de	SA,	obtemos

Para	verificar	que

é	só	desenvolver	o	numerador	e	o	denominador	do	segundo	membro.	Vamos	lá.

De

e



segue

Para	verificar	que	 ,	basta	substituir,	na	relação	acima,	y
k

	por	x
k

	e	 	por

.
Existe	outra	maneira,	bastante	 interessante,	de	verificar	a	 relação	 	anterior.	O	caminho	para	essa

outra	maneira	é	lembrar	que	a	reta	dos	mínimos	quadrados	passa	pelo	ponto	 .	Seja

a	reta	dos	mínimos	quadrados	para	os	pontos	(xi,	yi),	i	=	1,	2,	…,	n.	Então,	a	reta

será	 a	 reta	 dos	mínimos	 quadrados	 para	 os	 pontos	 (Xi,	Yi),	 onde	 ,	 pois	 o	 que
fizemos	com	essa	mudança	de	variável	foi	apenas	uma	translação.	Então,	o	coeficiente	m	será	a	solução
LSQ	do	sistema

Sendo

teremos	o	sistema	auxiliar

e,	portanto,

O	que	você	achou?



1.

a)

b)

c)

2.

a)

b)

c)

17.5.

Exercícios	17.4	

Considere	a	tabela

x 0 1 2 3 4 5

y −	1 2 1,5 3,5 3,8 4,5

Construa	o	diagrama	de	dispersão.

Determine	a	reta	dos	mínimos	quadrados.

Determine	o	coeficiente	de	determinação	R2.

A	tabela	a	seguir	apresenta	as	vendas	semanais	(em	toneladas)	de	arroz,	das	últimas	6	semanas,	de	um	supermercado.	(Na	linha	dos	x,
o	−6	estará	representando	seis	semanas	atrás,	o	−5	cinco	semanas	atrás	etc.)

x −6 −5 −4 −3 −2 −1

y 2 2,4 1,9 1,8 2,1 2,2

(Pela	tabela,	há	seis	semanas	foram	vendidas	2	toneladas	de	arroz;	há	cinco	semanas,	2,4	toneladas	etc.)
Determine	a	reta	dos	mínimos	quadrados.

Estime	a	venda	para	a	semana	atual	(x	=	0).

Determine	o	coeficiente	de	determinação	R2.

	
COEFICIENTE	DE	DETERMINAÇÃO.	CORRELAÇÃO

Consideremos	os	pontos	(xi,	yi),	i	=	1,	2,	…,	n.	Seja	 	=	mx	+	q	a	reta	dos	mínimos	quadrados	desses
pontos.	Nosso	objetivo	a	seguir	é	mostrar	que

Temos,	para	k	=	1,	2,	…,	n,

daí

Para	concluir	a	veracidade	da	relação	acima,	basta,	então,	mostrar	que



De	 ,	segue	que	a	relação	acima	é	equivalente	a

A	 seguir,	 vamos	 mostrar	 que	 essa	 última	 relação	 realmente	 se	 verifica.	 Vimos	 no	 final	 da	 seção
anterior	 que	 	 é	 a	 reta	 dos	 mínimos	 quadrados	 para	 os	 pontos	 (Xk,	 Yk),	 onde	

,	para	k	=	1,	2,	3,	…,	n.	Assim,	m	é	a	solução	LSQ	do	sistema

onde

Sabemos	que,	se	m	é	a	solução	LSQ	de	S,	deveremos	ter

que	é	equivalente	a

De	acordo?
Fica	provado	assim	o	seguinte	importante	resultado:

Se	 	=	mx	+	q	é	a	reta	dos	mínimos	quadrados	dos	pontos	(xk,	yk),	k 	=	1,	2,	3,	…,	n,	então	tem-se

Desta	segue	que

sendo	que	a	igualdade	só	ocorrerá	se	a	soma	dos	quadrados	dos	erros	Ek	=	yk	−	 	for	igual	a	zero,	ou



seja,	se	yk	=	 ,	para	k	=	1,	2,	…,	n,	e,	portanto,	se	os	pontos	(xk,	yk),	k	=	1,	2,	…,	n,	forem	colineares.

Definição	(de	coeficiente	de	determinação).	Sendo	 	=	mx	+	q	a	reta	dos	mínimos	quadrados	dos	pontos	(xk,	yk),	k 	=	1,	2,	3,	…,	n,
definimos	o	coeficiente	de	determinação	R2	dessa	reta	por

Do	que	vimos	acima,	resulta	0	≤	R2	≤	1,	e,	quanto	mais	próximo	de	1	estiver	R2,	mais	próximo	de	zero
estará	a	soma	dos	quadrados	dos	erros	Ek.	Portanto,	o	ajuste	da	reta	dos	mínimos	quadrados	aos	pontos
(xk,	yk),	k	=	1,	2,	…,	n,	será	tanto	melhor	quanto	mais	próximo	de	1	estiver	R2.

De	 	segue,	para	k	=	1,	2,	…,	n,	 .	Desse	modo,	o	coeficiente	de
determinação	poderá	ser	colocado	na	seguinte	forma:

Lembrando	que

resulta

Definição	(de	correlação).	O	número
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denomina-se	correlação	entre	os	números	xk	e	yk.

Das	definições	acima,	segue	que	o	coeficiente	de	determinação	é	o	quadrado	da	correlação.	De	R2	≤
1,	resulta	−	1	≤	R	≤	1.	Lembrando	da	definição	de	cosseno	de	ângulo	de	dois	vetores,	a	correlação	entre
os	números	xk	e	yk,	k	=	1,	2,	…,	n,	nada	mais	é	do	que	o	cosseno	do	ângulo	formado	pelos	vetores	de
componentes

PLANO	DOS	MÍNIMOS	QUADRADOS.	AJUSTE	POLINOMIAL

Consideremos	os	pontos	(xk,	yk,	zk),	k	=	1,	2,	…,	n.	Dizemos	que

é	o	plano	dos	mínimos	quadrados	para	os	pontos	acima	se	(a,	b,	c)	for	a	solução	LSQ	do	sistema

Da	mesma	forma	que	fizemos	para	a	reta	dos	mínimos	quadrados,	mostra-se	que	o	plano	dos	mínimos
quadrados	passa	pelo	ponto	 ,	e,	portanto,	a	equação	dos	planos	dos	mínimos	quadrados	pode	ser
colocada	na	forma

Prova-se,	ainda,	que	é	válida	a	relação

De	maneira	análoga,	define-se,	então,	o	coeficiente	de	determinação	R2:



Deixamos	para	o	leitor	provar	o	que	dissemos	acima	e	generalizar	para	p	variáveis.
Consideremos,	 agora,	os	pontos	do	plano	 (xk,	yk),	k	 =	 1,	 2,	…,	n.	 Suponhamos	 que	 o	 diagrama	de

dispersão	desses	pontos	tenha	a	“cara”	de	uma	parábola.	Então,	a	ideia	é	procurar	ajustar	aos	pontos	uma
função	do	tipo	 	=	ax2	+	bx	+	c.	Isso	nos	levará	ao	sistema

Se	considerarmos	os	pontos	do	 3	 ,	k	=	1,	2,	…,	n,	o	problema	é	exatamente	o	mesmo	que
vimos	anteriormente.	Para	esse	ajuste,	o	coeficiente	de	determinação	será

No	Apêndice	2,	veremos	como	lidar	com	esses	problemas	na	HP-48G	e	no	EXCEL.
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Apêndice
1

FUNÇÕES	DE	UMA	VARIÁVEL	REAL	A	VALORES	COMPLEXOS

FUNÇÕES	DE	UMA	VARIÁVEL	REAL	A	VALORES	COMPLEXOS

Uma	função	de	uma	variável	real	a	valores	complexos	é	uma	função	cujo	domínio	é	um	subconjunto
de	 	e	cujo	contradomínio	é	 .

EXEMPLO	1.	Considere	a	função	f	dada	por	f	(t)	=	t2	+	i	cos	t.

a)	Qual	o	domínio?
b)	Calcule	f	(0)	e	 .

Solução

a)	O	domínio	de	f	é	 .

b)	 .

■

EXEMPLO	2.	Seja	f	dada	por	f	(t)	=	cos	t	+	i	sen	t.	Desenhe	a	imagem	de	f.

Solução

Para	cada	t,	f	(t)	identifica-se	com	o	ponto	(cos	t,	sen	t).	A	imagem	de	f	é	a	circunferência	de	centro
na	origem	e	raio	1:



Seja	f	:	A	→	 ,	A	⊂	 ,	uma	função	de	uma	variável	real	a	valores	complexos;	então	existem,	e	são
únicas,	duas	funções	f1	(t)	e	f2	(t),	definidas	em	A	e	a	valores	reais,	tais	que	f	(t)	=	f1	(t)	+	if2	(t),	para	todo
t	∈	A.	 Pois	 bem,	 diremos	 que	 f	 é	contínua	 em	 t0	∈	A	 se	 e	 somente	 se	 f1	 e	 f2	 forem	 contínuas	 em	 t0.
Diremos,	ainda,	que	f	é	derivável	em	t0	se	e	somente	se	f1	e	f2	forem	deriváveis	em	t0.	Sendo	f	derivável
em	t0,	definimos	a	derivada	de	f	em	t0	por

Seja	f	:	A	→	 ,	A	⊂	 ;	dizemos	que	F	:	A	→	 	é	uma	primitiva	de	f	se	F′	(t)	=	f	(t),	para	todo	t	∈	A.
A	notação	 	será	usada	para	indicar	a	família	das	primitivas	de	f.

Teorema.	Seja	f	:	I	→	 ,	onde	I	é	um	intervalo	em	 .	Se	f′	(t)	=	0,	para	todo	t	∈	I,	então	existe	uma	constante	complexa	k	 tal
que	f	(t)	=	k,	para	todo	t	em	I.

Demonstração

Seja	 f	 (t)	 =	 f1	 (t)	 +	 if2	 (t).	 Segue	 da	 hipótese	 que	 	 em	 I;	 assim,	 existem
constantes	reais	k1	e	k2	tais	que,	para	todo	t	∈	I,

f1	(t)	k1					e					f2(t)	k2.

Portanto,	para	todo	t	∈	I,

Como	consequência	deste	teorema	resulta	que	se	f	:	I	→	 	e	g	:	I	→	 ,	I	intervalo,	forem	tais	que	f′
(t)	=	g′	(t)	em	I,	então	existirá	uma	constante	complexa	k	tal	que,	para	todo	t	em	I,

g	(t)	=	f	(t)	+	k.

De	fato,	pela	hipótese,	para	todo	t	em	I,

[g	(t)	−	f	(t)]′	=	0

e,	pelo	teorema	acima,	existe	uma	constante	k	tal	que,	para	todo	t	em	I,

g	(t)	−	f	(t)	=	k.

EXEMPLO	3.	Seja	f	(t)	=	cos	t	+	i	sen	t.

a)	Calcule	f′	(t).
b)	Verifique	que	f′	(t)	=	if	(t).

Solução
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a)	f′	(t)	=	[cos	t	+	i	sen	t]′	=	−sen	t	+	i	cos	t.
b)	f′	(t)	=	i2	sen	t	+	i	cos	t	=	i	(cos	t	+	i	sen	t)	=	if	(t).

■

EXEMPLO	4.	 Seja	u	 (t)	=	eαt	 (cos	βt	 +	 i	 sen	βt)	 onde	α	 e	β	 são	 constantes	 reais.	 Seja	 λ	 =	α	 +	 i	 β.
Verifique	que

Solução

Portanto,	

■

Exercício	

Sejam	f	e	g	duas	funções	a	valores	complexos,	definidas	e	deriváveis	num	intervalo	I.	Prove	que,	para	todo	t	em	I,	tem-se:

	
DEFINIÇÃO	DE	eλt,	COM	λ	COMPLEXO

Seja	λ	um	número	real;	 já	vimos	que	u	(t)	=	eλt	é	a	única	 função	definida	em	 	e	que	é	solução	do
problema.

Suponhamos,	agora,	λ	=	α	+	iβ,	onde	α	e	β	são	constantes	reais.	Vamos	mostrar	a	seguir	que

u	(t)	=	eαt	(cos	βt	+	i	sen	βt)



é	a	única	função	de	 	em	 	que	é	a	solução	do	problema

De	fato,	u	(0)	=	1.	Pelo	Exemplo	4	da	seção	anterior,	 .	Deste	modo	a	função	u	(t)	=	e
αt
	(cos	βt	+	i

sen	βt)	é	a	solução	de	 .	Como	|	u	(t)	|	=	eαt,	segue	que	u	(t)	≠	0	em	 .	Suponhamos,	agora,	que	v	=	v	(t),
t	∈	 ,	seja,	também,	solução	de	 ,	isto	é:

Vamos	mostrar	que	v	(t)	=	u	(t)	em	 .	Temos:

Assim,	existe	uma	constante	complexa	k	tal	que,	para	todo	t	em	 ,

Como	v	(0)	=	u	(0)	=	1,	resulta	k	=	1.	Portanto,

v	(t)	=	u	(t)	em	 .

Fica	provado	que	u	(t)	=	eαt	(cos	βt	+	i	sen	βt)	é	a	única	função	de	 	em	 	satisfazendo	 .
Nada	mais	natural	do	que	a	seguinte	definição.

Definição.	Seja	λ	=	α	+	iβ,	com	α	e	β	reais.	Definimos

eλt	=	e(α	+	iβ)	t	=	eαt	(cos	βt	+	i	sen	βt)					(relação	de	Euler)

para	todo	t	real.

Fazendo	t	=	1	na	definição	acima	resulta:

Se	α	=	0



Seja	z	=	eα	+	iβ.	Observe	que	|	z	|	=	eα	e	que	β	é	um	argumento	de	z:

Seja	λ	uma	constante	complexa.	Do	que	vimos	anteriormente	resulta:

O	próximo	exemplo	mostra-nos	que	a	propriedade

é	válida	em	 .

EXEMPLO	1.	Sejam	λ1	e	λ2	complexos	dados.	Mostre	que

Solução

	é	a	única	função	de	 	em	 	que	satisfaz	o	problema

Por	outro	lado,	 ,	também	satisfaz	 	(verifique).	Portanto,	para	todo

Em	particular,	para	t	=	1,

EXEMPLO	2.	Verifique	que,	para	todo	t	real,

Solução



ou	seja,

Somando	membro	a	membro	 	e	 	resulta

Subtraindo	membro	a	membro	 	e	 	resulta

Sendo	λ	≠	0	uma	constante	complexa,	de	 	segue

EXEMPLO	3.	Calcule:

Solução

Ou	seja,

Como	eit	=	cos	t	+	i	sen	t	e	e−it	=	cos	t	−	i	sen	t,	resulta:

pois



EXEMPLO	4.	Mostre	que

Solução

Por	outro	lado,

Segue	que

Temos,	também,

Assim,

Temos,

ou	seja,

De	 	e	 	resulta:

e

EXEMPLO	5.	Sejam	z	=	eα	+	iβ,	com	0	<	β	<	 ,	e	θ	um	real	com	0	<	θ	<	 .	Represente	geometricamente
z	e	zeiθ.

Solução

Para	fixar	o	raciocínio,	vamos	supor	 .	Temos:	z
1
	=	eα	+	i(θ	+	β).



Os	módulos	de	z	e	z1	são	iguais	a	eα.	O	vetor	0z1	é	obtido	de	0z	por	uma	rotação	de	θ	radiano,	no	sentido
anti-horário.

■

EXEMPLO	6.	Sejam	z1	e	z2	dois	números	complexos	com	argumentos	β1	e	β2,	respectivamente.	Seja	z	=
z1	·	z2.

a)	Verifique	que	|	z	|	=	|	z1	|	|	z2	|.
b)	Mostre	que	β1	+	β2	é	um	argumento	de	z.

Solução

Como	 	e	 ,	resulta:

Portanto,

ou	seja,

Portanto,

a)	|	z	|	=	|	z1	|	|	z2	|
b)	β1	+	β2	é	um	argumento	de	z.



Sejam	a	um	número	complexo	dado	e	f	:	I	→	 	uma	função	contínua	dada,	onde	I	é	um	intervalo	de	 .
Consideremos	a	equação	diferencial	linear,	de	1.ª	ordem,	com	coeficiente	constante,

Procedendo	exatamente	como	na	Seção	5.1	obtemos	a	solução	geral

(Verifique.)

■

EXEMPLO	7.	Resolva	as	equações:

Solução

a)	Pela	fórmula	acima,

u	=	keit				(k	∈	 ).

Ou	seja,

ou	ainda,

EXEMPLO	8.	Mostre	que

x	=	Aeit	+	Be−it	(A,	B	∈	 )

é	a	solução	geral	de	 .

Solução
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Fazendo	 	obtemos

cuja	solução	geral	é	u	=	k1eit.	Assim,

cuja	solução	geral	é:

Fazendo	 	e	B	=	k	obtemos:

[Observe	que	i	e	−i	são	as	raízes	da	equação	característica	da	equação	dada.]	Fazendo	na	solução	acima,
eit	=	cos	t	+	i	sen	t	e	e−it	=	cos	t	−	i	sen	t	obtemos:

ou	seja,

EQUAÇÕES	DIFERENCIAIS	LINEARES,	HOMOGÊNEAS,	DE	2.ª
ORDEM,	COM	COEFICIENTES	CONSTANTES

Consideremos	a	equação

onde	a1	e	a2	são	números	complexos	dados.	Sejam	λ1	e	λ2	(λ1,	λ2	∈	 )	as	raízes	da	equação	característica
de	 .	 Procedendo	 exatamente	 como	na	 demonstração	 do	 teorema	da	Seção	 5.2,	 obtemos	 os	 seguintes
resultados:

a)	se	λ1	≠	λ2,	a	solução	geral	de	 	será



b)	se	λ1	=	λ2,	a	solução	geral	de	 	será

EXEMPLO.	Resolva	a	equação	 .

Solução

A	solução	geral	é:

ou

Lembrando	que	eit	=	cos	t	+	i	sen	t	e	e−it	=	cos	t	−	i	sen	t,	resulta

ou	seja,

Observação:	Se	a1	e	a2	forem	reais	e	se	as	raízes	da	equação	λ2	+	a1λ	+	a2	=	0	forem	complexas,	então
tais	raízes	serão	números	complexos	conjugados:	λ	=	α	±	iβ.	Assim,	a	solução	geral	de

será

ou

Como	 	resulta:

ou



A1.4. EQUAÇÕES	DIFERENCIAIS	LINEARES,	DE	3.ª	ORDEM,	COM
COEFICIENTES	CONSTANTES

Consideremos,	inicialmente,	a	equação	homogênea

onde	a1,	a2,	a3	são	constantes	dadas.	Sejam	λ1,	λ2	e	λ3	as	raízes	da	equação	característica	λ3	+	a1λ2	+	a2λ	+
a3	=	0.	Temos:

Substituindo	em	(I)	obtemos:

que	é	equivalente	a:

Segue	que	x	=	x	 (t),	 t	∈	 ,	 será	solução	de	(I)	se	e	somente	se	 	 for	solução	da	equação

linear	de	2.ª	ordem

Portanto,	x	=	x	(t)	será	solução	de	(I)	se	e	somente	se

ou

Deixamos	a	seu	cargo	concluir	que	a	solução	geral	de	(I)	será:



ou

ou

As	 equações	 lineares	 de	 3.ª	 ordem,	 não	 homogêneas,	 com	 coeficientes	 constantes,	 são	 tratadas	 do
mesmo	modo	que	as	de	2.ª	ordem.	Fica	a	seu	cargo	estender	os	resultados	até	aqui	obtidos	para	equações
lineares,	com	coeficientes	constantes,	de	ordem	n	>	3.
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a)
b)
c)

Apêndice
2

USO	DA	HP-48G,	DO	EXCEL	E	DO	MATHCAD*

AS	FUNÇÕES	UTPN,	NMVX	E	NMVA

A	 função	UTPN	 é	 uma	 função	 da	 calculadora	 e	 que	 se	 utiliza	 para	 cálculo	 de	 probabilidade	 na
distribuição	normal	N	(μ,	σ2).	Esta	função	é	dada	por

UTPN	=	UTPN	(μ,	σ2,	x)	=	P	(X	≥	x).

Para	acessar	UTPN,	digite:

MTH	NXT	 (para	 virar	 página	 do	menu)	 PROB	 (no	menu,	 tecla	 branca	 da	 letra	A)	NXT	 (para	 virar
página	do	menu).

Pronto.	Viu	UTPN	 no	 retângulo	 dentro	 do	 visor	 e	 correspondente	 à	 tecla	 branca	 da	 letra	 C?	 Para
ativar	UTPN,	é	só	pressionar	a	tecla	branca	da	letra	C.

Vejamos	agora	como	utilizar	UTPN.	Cálculos	com	UTPN	são	realizados	no	ambiente	HOME.

EXEMPLO	1.	Seja	X	uma	variável	aleatória	com	distribuição	normal	N(6,	4),	ou	seja,	com	média	μ	=	6
e	variância	σ2	=	4.	Calcule.

P	(X	≥	5).
P	(X	≥	8).
P	(5	≤	X	≤	8).

Solução



a)

b)

c)

Entre	no	ambiente	HOME.	Caso	não	esteja	nesse	diretório,	é	só	ir	pressionando	a	tecla	ON	que	você
acabará	chegando	nele.

Entre	com	6,	4	e	5,	nesta	ordem,	ou	seja,	digite:

6	ENTER	4	ENTER	5	ENTER

Desse	modo,	o	6	estará	no	nível	3,	o	4	no	nível	2,	e	o	5	no	nível	1.	Agora,	é	só	pressionar	a	tecla
branca	da	 letra	C	para	ativar	UTPN.	No	nível	 1,	 aparecerá	o	valor	 da	probabilidade:	 0,69146.
Assim,	P(X	≥	5)	0,69146.
Entre	 com	 6,	 4	 e	 8,	 nessa	 ordem,	 e	 pressione	UTPN	 para	 obter	 0,15865.	Assim,	P	 (X	 ≥	 8)	 =
0,15865.
P	(5	≤	X	≤	8)	=	P	(X	≥	5)	−	P	(X	≥	8)	=	0,53280.

■

EXEMPLO	2.	Considere	a	variável	aleatória	X	com	distribuição	normal	N	(6,	4).	Calcule	P	(μ	−	σ	≤	X	≤
μ	+	σ).

Solução
μ	=	6	e	de	σ2	=	4	segue	σ	=	2.	O	que	queremos	é	P	(4	≤	X	≤	8).	Temos

P	(4	≤	X	≤	8)	=	P	(X	≥	4)	−	P	(X	≥	8).

Procedendo	como	no	exemplo	anterior,	obtém-se

P	(X	≥	4)	=	0,84134	e	P	(X	≥	8)	=	0,15865.

Assim,	P	 (4	≤	X	 ≤	 8)	 0,68268.	 (Esse	 resultado	 já	 é	 nosso	 conhecido,	 lembra-se?	Esqueceu?	Volte
para	o	Cap.	4.)

■

O	que	é	muito	importante	em	estatística	é	determinar	o	valor	de	x	quando	se	conhecem	μ,	σ2	e	P(X	≥
x).	Na	HP-48G	não	existe	 função	que	 realize	 esse	 cálculo	diretamente.	Entretanto,	podemos	criar	uma
função	 que	 nos	 permitirá	 realizar	 essa	 tarefa.	 Tal	 função	 será	 representada	 pela	 variável	NMVX	 (que
lembra:	normal,	média,	variância	e	x):

NMVX	=	NMVX	(M,	V,	X).

Essa	função	fará	o	que	a	UTPN	faz,	e	com	uma	vantagem:	a	calculadora	não	reconhece	UTPN	(M,	V,	X)
como	uma	expressão	nas	variáveis	M,	V	e	X,	mas	reconhecerá	NMVX	(M,	V,	X)	como	tal.	Esse	fato	nos
permitirá	criar	a	equação

NMVX	(M,	V,	X)	=	α



e	 resolvê-la	 no	 SOLVE	 EQUATION	 quando	 houver	 apenas	 uma	 variável	 desconhecida:	 se	 forem
conhecidas	M,	V	e	α,	determinamos	X.

Vamos	 então	 criar	 tal	 função.	 Na	 verdade,	 o	 que	 faremos	 é	 criar	 um	 programa	 e	 armazenálo	 na
variável	NMVX.	Estando	no	ambiente	HOME,	entre	no	nível	1	com	o	programa	(tecle	α	para	escrever)

<<	→	M	V	X	<<	M	V	X	UTPN	>>	>>

ATENÇÃO.	 <<	 >>	 é	 a	 função	 roxa	 na	 tecla	menos	 (−);	→	 é	 a	 função	 verde	 na	 tecla	 0.	 Localizou?
Observamos	que	entre	→,	M,	V	e	X	deve	haver	um	espaço.

Agora,	 digite:	NMVX.	Em	 seguida,	 pressione	 a	 tecla	STO	 para	 armazenar	 o	 programa	na	variável
NMVX.

Vamos	destacar	no	quadro	a	seguir	o	que	fizemos	para	criar	a	variável	NMVX.

Criando	a	variável	NMVX

Nível	1:	<<	→	M	V	X	<<	M	V	X	UTPN	>>	>>

Digite:	NMVX	e	pressione	STO

Pronto.	A	variável	NMVX	já	está	na	memória	da	calculadora	e	pronta	para	ser	usada.	Para	localizá-
la,	pressione	a	tecla	VAR	(VAR	=	VARIÁVEIS)	para	abrir	o	menu	das	variáveis.	Agora,	tente	localizar
tal	 variável	 no	menu	dentro	do	visor;	 se	 for	 necessário,	 pressione	NXT	 para	 virar	 a	 página	 do	menu.
Localizou?	Está,	então,	criada	a	função

NMVX	=	NMVX	(M,	V,	X).

Caso	 você	 queira	 visualizar	 o	 programa	 ou	 corrigir	 algum	 engano	 que	 porventura	 tenha	 ocorrido,
pressione	MEMORY	(função	verde	na	tecla	VAR),	e,	na	caixa	de	diálogo	que	se	abre,	leve	a	barra	de
destaque	para	cima	da	variável	NMVX	e	em	seguida	pressione	EDIT	no	menu	do	aplicativo	(tecla	branca
da	letra	A);	pressione	novamente	EDIT	no	menu	do	aplicativo	que	se	abre.	Visualize	o	programa	ou	faça
a	 correção.	 Para	 confirmar	 a	 correção,	 pressione	ENTER	 três	 vezes.	 Pronto,	 você	 está	 de	 volta	 ao
ambiente	HOME,	com	as	correções	confirmadas.	Para	visualizar	o	que	está	armazenado	numa	variável,
ou	para	fazer	correção,	proceda	sempre	da	mesma	maneira.

Corrigindo	ou	visualizando	o
conteúdo	de	uma	variável

Pressione	MEMORY	 (função	verde	da	 tecla	VAR),	pressione	EDIT	(no	menu,	 tecla	branca	da	 letra	A),	pressione	novamente	EDIT
(no	menu),	faça	as	correções	ou	apenas	visualize	o	conteúdo,	e	em	seguida	pressione	ENTER	três	vezes	para	confirmar	as	correções	e
voltar	para	HOME.

Para	 testar	o	programa,	ou	a	 função	que	acabamos	de	criar,	vamos	calcular	P	 (X	≥	5),	onde	X	 é	 a
variável	aleatória	do	Exemplo	1,	X	:	N	(6,	4).	Primeiro,	precisamos	localizar	a	variável	no	menu	VAR.



Para	 isso,	 pressione	 a	 tecla	 VAR	 e	 localize	 a	 variável.	 Vamos	 em	 frente.	 Antes	 lembramos	 que
pressionar	NMVX	 significa	pressionar	a	 tecla	branca	correspondente	ao	 retângulo	onde	está	alojada	a
variável.	OK?	Vamos	então	ao	cálculo	da	probabilidade:

entre	com	6,	4	e	5	e	pressione	NMVX

O	resultado	obtido	concorda	com	aquele	do	Exemplo	1?	Se	concorda	é	porque	está	 tudo	certo.	Se	não
concorda,	reveja	o	programa,	como	descrito	anteriormente,	verifique	onde	está	o	erro,	corrija-o	e	faça
novamente	o	teste.

No	 próximo	 exemplo,	 veremos	 como	 determinar	 o	 valor	 de	 x	 quando	 são	 conhecidas	 a	 média,	 a
variância	e	a	probabilidade	P	(X	≥	x).

ATENÇÃO.	MUITA	ATENÇÃO.	Se	a	sua	calculadora	estiver	configurada	de	modo	que	o	ponto	seja	o
separador	 decimal	 (por	 exemplo,	 5.3	 é	 cinco	 inteiros	 e	 3	 décimos),	 então	 o	ponto	 da	 calculadora	 é
realmente	ponto	e	a	vírgula	é	 realmente	vírgula.	Se	no	entanto	 sua	calculadora	estiver	configurada	de
modo	que	 o	 separador	 decimal	 seja	 a	vírgula	 (por	 exemplo,	 5,3	 é	 cinco	 inteiros	 e	 3	 décimos),	 então
quando	você	pressionar	 o	ponto	 aparecerá	vírgula	 e	 quando	 pressionar	 a	vírgula	 aparecerá	ponto-e-
vírgula.	MORAL	DA	HISTÓRIA:	Se	o	ponto	for	o	separador	decimal,	teremos

NMVX	=	NMVX	(M,	V,	X);

se	a	vírgula	for	o	separador	decimal,	teremos

NMVX	=	NMVX	(M;	V;	X).

EXEMPLO	3.	Sendo	X	uma	variável	com	distribuição	normal	N	(6,	4),	resolva	a	equação	P	(X	≥	x)	=
0,2.

Solução

Sabemos	que

NMVX	(6,	4,	x)	=	P	(X	≥	x).

Então	o	que	precisamos	é	resolver	a	equação

NMVX	(6,	4,	X)	=	0,2

(Trocamos	o	x	minúsculo	pelo	maiúsculo	simplesmente	porque	é	mais	fácil	digitar	letra	maiúscula	do	que
minúscula.)	Agora,	entre	no	SOLVE	EQUATION	 (para	 isso	pressione	SOLVE	na	 tecla	7	e	escolha	a
opção	Solve	equation),	entre	com	a	equação	no	campo	de	EQ,	entre	com	a	estimativa	6	no	campo	da
variável	X,	traga	a	barra	de	destaque	para	o	campo	da	variável	X	e	pressione	SOLVE	(último	retângulo
da	direita	do	menu	do	aplicativo)	para	obter	X	:	7,68324.

■



a)
b)

a)

b)

Outro	modo,	e	muito	rápido,	para	determinar	X	é	por	meio	do	programa	que	criaremos	a	seguir	e	que
será	 armazenado	 na	 variável	NMVA.	 Sendo	 dados	M	 (M	 =	 μ),	V	 (V	 =	 σ2)	 e	A	 (A	 =	P	 (X	 ≥	 x)),	 tal
programa	resolve	a	equação	NMVX	(M,	V,	X)	=	A	na	variável	X	e	com	a	estimativa	M	para	X.

Criação	do	programa	NMVA

Nível	1:	<<	→	M	V	A	<<	′	NMVX	(M,	V,	X)	=	A	′
′	X	′	M	ROOT	>>	>>

Digite:	NMVA	e	pressione	STO

Para	testar	o	programa,	vamos	resolver	a	equação	do	Exemplo	3,	onde	são	conhecidos	M	=	6,	V	=	4	e
A	=	0,2	(em	estatística,	em	vez	de	A	utiliza-se	com	frequência	a	letra	grega	α).	Primeiro	localize	NMVA:
pressione	VAR	e	procure	por	NMVA	no	menu	das	variáveis;	se	necessário,	pressione	NXT	para	virar	a
página	do	menu.	Vamos	ao	cálculo	de	X.

Utilizando	NMVA	para	calcular	X

Digite:	6	ENTER	4	ENTER	0,2
Em	seguida,	pressione	NMVA	no	menu	das	variáveis

O	valor	obtido	para	X	deverá	ser	o	mesmo	do	Exemplo	3:	X	=	7,68324.	Se	foi	este	o	resultado	que	você
obteve,	o	seu	programa	passou	no	teste	e	está	pronto	para	ser	usado.

Com	a	função	NMVX	e	com	o	programa	NMVA,	você	resolverá	os	cálculos	mais	frequentes,	relativos
à	distribuição	normal,	sem	sair	do	ambiente	HOME.	Gostou?	Espero	que	sim!

EXEMPLO	4.	Seja	X	uma	variável	aleatória	com	média	10,	desvio	padrão	3	e	distribuição	normal.

Calcule	P	(7	≤	X	≤	12).
Determine	x	para	que	se	tenha	P	(X	≥	x)	=	10%.

Solução

Aqui	μ	=	10	e	σ2	=	9;	logo,	M	=	10	e	V	=	9.
P	(7	≤	X	≤	12)	=	P	(X	≥	7)	−	P	(X	≥	12).	Para	calcular	P	(X	≥	7),	entre	com	10,	9	e	7	e	pressione
NMVX:	P	 (X	 ≥	 7)	 =	 0,84134.	 Para	 o	 cálculo	 de	P	 (X	 ≥	 12),	 entre	 com	 10,	 9	 e	 7	 e	 pressione
NMVX:	P	(X	≥	12)	0,25249.	Portanto,
P	(7	≤	X	≤	12)	0,58885.
Precisamos	resolver	a	equação	NMVX	(10,	9,	X)	=	0,1.	Para	resolvê-la,	entre	com	10,	9	e	0,1	e
pressione	NMVA	para	obter:	X	=	13,84465.	(Caso	você	queira	verificar	esse	valor	de	X	é	só	entrar
com	10,	9	e	13,84465,	pressionar	NMVX	e	verificar	se	o	valor	obtido	é	0,1.	OK?)

■



a)

b)

a)

b)

A2.2.

Outro	tipo	de	equação	que	você	terá	que	resolver	em	estatística	é	do	tipo	da	do	próximo	exemplo.

EXEMPLO	5.	Considere	 as	variáveis	 aleatórias,	 com	distribuições	normais,	X	 :	N	 (100,	 25)	 e	Y	 :	N
(115,	36).

Determine	x	de	modo	que

P	(X	≥	x)	=	P	(Y	≤	x).

Sendo	x	a	solução	da	equação	anterior,	calcule	P	(X	≥	x)	e	P	(Y	≤	x).

Solução

Sabemos	que

P	(Y	≤	x)	=	1	−	P	(Y	≥	x).

Desse	modo,	a	equação	que	temos	para	resolver	é

NMVX	(100,	25,	X)	=	1	−	NMVX	(115,	36,	X).

Essa	equação	deverá	ser	resolvida	no	SOLVE	EQUATION;	a	estimativa	para	a	variável	X	 tanto	pode
ser	100	ou	115.	Resolvendo,	obtém-se	X	=	106,818.	Conclusão:	x	=	106,818.

Para	 calcular	 P	 (X	 ≥	 106,818),	 entre	 com	 100,	 25,	 106,818	 e	 pressione	 NMVX	 para	 obter
8,63410207151E	−	2.	Este	E	−	2	no	final	do	número	significa	que	a	vírgula	deverá	ir	duas	casas
para	a	esquerda.	Assim,	P	(X	≥	106,818)	=	0,08634	=	8,634%.	Como	x	=	106,818	foi	calculado	de
modo	que	P	(X	≥	x)	=	P	(Y	≤	x),	resulta
P	(Y	≤	106,818)	=	0,08634.	Assim,

P	(X	≥	106,818)	=	P	(Y	≤	106,818)	=	0,08634	=	8,634%.

■

AS	FUNÇÕES	UTPC,	C2NX	E	C2NA

Sendo	X	a	variável	aleatória	com	distribuição	χ2	(n),	qui-quadrado	com	n	graus	de	liberdade,	UTPC
calcula	a	probabilidade	P	(X	≥	x).

Cálculo	de 	P	(X	≥	x),	onde	X:	χ2	(n)
Entre	com	n	e	x	e	pressione	UTPC

EXEMPLO	 1.	 Sendo	 X	 uma	 variável	 aleatória	 com	 distribuição	 qui-quadrado,	 com	 10	 graus	 de



a)
b)
c)

a)

b)
c)

liberdade,	calcule.

P	(X	≥	5)
P	(X	≥	1)
P	(1	≤	X	≤	5)

Solução

Para	o	cálculo	de	P	(X	≥	5),	entre	com	10,	5	e	pressione	UTPC	para	obter	0,89117.	Assim,	P	(X	≥	5)
=	0,89117.
Entre	com	10,	1	e	pressione	UTPC	:	P	(X	≥	1)	=	0,99982.
P	(1	≤	X	≤	5)	=	P	(X	≥	1)	−	P	(X	≥	5)	=	0,10865

■

A	seguir,	vamos	criar	a	função	C2NX,	que	é	equivalente	a	NVMX	da	seção	anterior.

Criando	a	variável	C2NX

Nível	1:	<<	→	N	X	<<	N	X	UTPC	>>	>>

Digite:	C2NX	e	pressione	STO

Na	variável	C2NX,	C2	lembra	qui-quadrado	e	N	número	de	graus	de	liberdade.	Sendo	X	uma	distribuição
qui-quadrado	com	n	graus	de	liberdade,	para	o	cálculo	de	P	(X	≥	x),	proceda	da	seguinte	 forma:	entre
com	n,	x	e	pressione	C2NX	no	menu	das	variáveis.

A	seguir,	vamos	criar	o	programa	C2NA	que	resolve	a	equação

C2NX	(n,	x)	=	α.

Criação	do	programa	C2NA

Nível	1:	<<	→	N	A	<<	′	C2NX	(N,	X)	A′
′	X	′	10	ROOT	>>	>>

Digite:	C2NA	e	pressione	STO

EXEMPLO	2.	Sendo	X	uma	qui-quadrado	com	12	graus	de	liberdade,	determine	x	tal	que	P	(X	≥	x)	5%.

Solução

Como	C2NX	(N,	x)	=	P	(X	≥	x),	precisamos	resolver	a	equação

C2NX	(12,	x)	=	0,05.



A2.3.

A2.4.

Entre	com	12	e	0,05	e	pressione	C2NA	para	obter	21,02607.	Assim,	x	=	21,02607.
■

AS	FUNÇÕES	UTPT,	TNX	E	TNA

Se	a	variável	aleatória	X	tem	distribuição	t	de	Student,	com	n	graus	de	liberdade,	a	probabilidade	P
(X	≥	x)	 é	 calculada	com	a	 função	UTPT:	 é	 só	 entrar	 com	n,	x	 e	pressionar	UTPT.	A	 função	TNX	 e	 o
programa	TNA	são	equivalentes	a	NMVX	e	NMVA,	respectivamente.

Cálculo	de	P(X	≥	x),	onde	X:	t	(n)

Entre	com	n	e	x	e	pressione	UTPT

A	seguir,	vamos	criar	a	função	TNX.

Criando	a	variável	TNX

Nível	1:	<<	→	N	X	<<	N	X	UTPT	>>	>>

Digite:	TNX	e	pressione	STO

Da	mesma	forma,	vamos	criar	o	programa	TNA	que	resolve	a	equação

TNX	(n,	x)	=	α.

Criação	do	programa	TNA

Nível	1:	<<	→	N	A	<<	′	TNX	(N,	X)	A	′
′	X	′	10	ROOT	>>	>>

Digite:	TNA	e	pressione	STO

AS	FUNÇÕES	UTPF,	FNNX	E	FNNA

Se	a	variável	aleatória	X	tem	distribuição	F,	com	graus	de	liberdade	n1	e	n2,	a	probabilidade	P	(X	≥
x)	calcula-se	com	a	função	UTPF.

Cálculo	de	P	(X	≥	x),	onde	X:	F	(n1,	n2)

Entre	com	n1,	n2,	x	e	pressione	UTPF



A2.5.

A2.6.

A	função	FNNX	e	o	programa	FNNA	são	criados	da	mesma	maneira	que	NMVX	e	NMVA.

Criando	a	variável	FNNX

Nível	1:	<<	→	N1	N2	X	<<	N1	N2	X	UTPF	>>	>>

Digite:	FNNX	e	pressione	STO

Criação	do	programa	FNNA

Nível	1:	<<	→	N1	N2	A	<<	′	FNNX	(N1,	N2,	X)	=	A	′
′	X	′	10	ROOT	>>	>>

Digite:	FNNA	e	pressione	STO

MENU	PERSONALIZADO

Se	você	quiser	poderá	criar	um	menu	personalizado	 que	 contenha	 as	 variáveis	 que	mais	 irá	 usar.
Esse	menu	será	armazenado	na	variável	CST.	Para	chamar	esse	menu	personalizado,	é	só	pressionar	a
tecla	CST.	Vamos,	 então,	 à	 criação	 do	menu	 personalizado,	 contendo	 as	 variáveis	 que	 acabamos	 de
criar.	Pode-se	criar	um	menu	personalizado	em	cada	diretório	que	você	abrir.

Criando	um	menu	personalizado

Digite	CST	e	pressione	STO

Pronto.	Está	criado	o	menu	personalizado.	Para	chamá-lo,	é	só	pressionar	a	tecla	CST.	(ATENÇÃO.	As
chaves	{	}	são	a	função	roxa	da	tecla	+.	Achou?)	Se	você	estiver	no	SOLVE	EQUATION,	para	chamá-
lo	proceda	do	mesmo	modo	como	para	chamar	o	menu	VAR:	leve	a	barra	de	destaque	para	o	campo	de
EQ,	entre	com	′	′	e,	em	seguida,	pressione	a	tecla	CST.

Para	 ampliar	 o	 menu	 personalizado	 ou	 suprimir	 alguma	 variável,	 proceda	 assim:	 pressione
MEMORY	(função	verde	da	tecla	VAR),	leve	a	barra	de	destaque	para	cima	da	variável	CST,	pressione
EDIT	no	menu	do	aplicativo	 (tecla	branca	da	 letra	A),	pressione	novamente	EDIT	(no	menu),	 inclua	a
nova	variável	(sempre	com	espaço	entre	as	variáveis)	ou	exclua	a	variável	que	não	mais	interessa,	e	para
confirmar	as	alterações	pressione	ENTER	 três	vezes.	Pronto,	 você	 está	de	volta	 ao	 ambiente	HOME,
com	as	inclusões	ou	exclusões	realizadas.

RESOLVENDO	SISTEMA	LINEAR	NO	SOLVE	SYSTEM

A	solução	de	um	sistema	linear	calculada	no	aplicativo	SOLVE	SYSTEM	é	uma	solução	LSQ.	Se



houver	mais	 de	 uma	 solução,	 o	 aplicativo	 fornecerá	apenas	 a	 de	menor	 norma.	 Como	 sabemos,	 se	 o
sistema	admitir	solução	no	sentido	habitual,	a	solução	LSQ	será	a	solução	do	sistema.

Para	entrar	no	aplicativo	SOLVE	SYSTEM,	pressione	SOLVE	(função	verde	da	tecla	7)	e,	na	caixa
de	diálogo	que	se	abre,	escolha	a	quarta	opção,	que	é	Solve	linear	system.

No	campo	da	variável	A,	devemos	entrar	com	a	matriz	dos	coeficientes	das	variáveis.	No	campo	da
variável	B,	devemos	entrar	com	a	matriz	dos	termos	independentes.

EXEMPLO	1.	Resolva	o	sistema

Solução

Aqui	a	matriz	A	dos	coeficientes	e	a	matriz	B	dos	termos	independentes	são

Como	o	determinante

segue	 que	 o	 sistema	 é	 compatível,	 no	 sentido	 habitual,	 e	 admite	 uma	 única	 solução.	 Vamos	 então	 à
determinação	da	solução.	Para	entrar	com	a	matriz	A,	 proceda	assim:	 leve	a	barra	de	destaque	para	o
campo	da	variável	A;	pressione	EDIT	no	menu	do	aplicativo	(retângulo	correspondente	à	tecla	branca	da
letra	A)	para	abrir	o	“escrevedor	de	matrizes”.	Digite	a	matriz	e,	em	seguida,	pressione	ENTER	 para
mandar	a	matriz	para	o	campo	da	variável	A.	Agora,	leve	a	barra	de	destaque	para	o	campo	da	variável
B,	pressione	EDIT,	digite	a	matriz	dos	termos	independentes	e	pressione	ENTER	para	mandá-la	para	o
campo	de	B.	 Leve	 a	 barra	 de	 destaque	 para	 o	 campo	 de	X	 e	 pressione	SOLVE	 (último	 retângulo	 da
direita	e	correspondente	à	tecla	branca	da	letra	F)	para	obter	a	solução	X	:	[	[1]	[1]	],	ou	seja,	x	=	1	e	y	=
1.

Conclusão:	A	solução,	no	sentido	habitual,	do	sistema	é	x	=	1	e	y	=	1.
■

Observação

EXEMPLO	2.	Resolva	o	sistema	linear



Solução

Observe	que	x	=	1	e	y	=	1	é	solução	do	sistema	formado	pelas	duas	primeiras	equações,	mas	não	da
terceira.	Logo,	o	sistema	não	admite	solução	no	sentido	habitual,	mas	admite	uma	única	solução	 LSQ,
pois,

são	linearmente	independentes.	Aqui	a	matriz	A	dos	coeficientes	das	variáveis	e	a	matriz	B	dos	 termos
independentes	são	dadas	por

Procedendo	como	no	exemplo	anterior,	obtemos	a	solução	LSQ:	

(ATENÇÃO.	O	resultado	apresentado	pela	calculadora	foi

[	[1,19230769231]
[1,26923076923]].

Logo	a	seguir	mostraremos	qual	a	mágica	para	transformar	esses	números	em	 	e	 .

Observação.	O	sistema	SA	associado	ao	sistema	anterior	é

e,	portanto,

cuja	solução	é	 .	(Não	é	esta	a	mágica,	até	que	poderia	ser!	A	mágica	será	mostrada	a

seguir.)
Qual	a	mágica	que	transforma
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[	[1,19230769231]
[1,26923076923]	]

em	 ?	 Quando	 se	 resolve	 um	 sistema	 no	 SOLVE	SYSTEM,	 a	 solução	 encontrada	 é

automaticamente	 enviada	 para	 o	 nível	 1,	 lá	 no	 ambiente	HOME.	Então,	 pressionando	ON	 para	 voltar
para	o	HOME,	no	nível	1,	você	encontrará	a	solução:

Nível	1:	Soluções:

[	[1,19230769231]
[1,26923076923]	]

Bem.	Para	realizar	a	mágica,	primeiro	teremos	que	desfazer	a	matriz	anterior,	sem	mexer	nos	números,
OK!!!	Para	desfazer	a	matriz,	proceda	da	seguinte	maneira:	pressione	EDIT	(função	roxa	da	tecla	+/−).
Em	seguida,	apague

Soluções:	e	todos	os	colchetes	(sem	mexer	nos	números)

de	modo	que	fiquem	apenas	os	números,	e	pressione	ENTER.	Após	essas	operações,	a	situação	na	pilha
deverá	ser	a	seguinte:

Nível	2:	1,19230769231
Nível	1:	1,26923076923

Agora	é	que	vem	a	mágica.	Para	realizar	a	mágica,	pressione:

	(shift	roxo)	9	NXT	→	Q	(no	menu	do	aplicativo)

para	obter	33/26.	Conseguiu?	Legal!	Anote	esse	número.	Em	seguida,	pressione	a	função	roxa	DROP	(na
tecla	ao	lado	de	DEL)	para	deletar	apenas	o	conteúdo	do	nível	1.	Com	essa	operação,	o	conteúdo	do
nível	2	desce	para	o	nível	1.	Agora,	é	só	pressionar	novamente	→	Q	(no	menu	do	aplicativo)	para	obter
31/26.	A	mágica	acaba	de	ser	realizada!!!

RESOLVENDO	SISTEMA	LINEAR	NO	AMBIENTE	HOME.	AS	FUNÇÕES
LSQ,	RREF	E	COL+

Na	seção	anterior,	aprendemos	a	resolver	sistemas	lineares	no	aplicativo	SOLVE	SYSTEM.	Agora,
vamos	 aprender	 a	 resolver	 tais	 sistemas	 no	 próprio	 ambiente	 HOME.	 A	 variável	 LSQ	 é	 que	 nos
possibilitará	 tal	 façanha:	 LSQ	 é	 uma	 variável	 reservada	 da	 calculadora,	 e,	 quando	 ativada,	 resolve
sistema	linear	no	sentido	LSQ,	ou	seja,	a	solução	que	ela	nos	fornece	é	uma	solução	LSQ.	Para	acessar	a
variável	LSQ,	digite:

MTH	MATR	(no	menu	do	aplicativo,	tecla	branca	da	letra	B).



Pronto,	LSQ	é	a	variável	que	ocupa	o	último	retângulo	da	direita	do	menu	do	aplicativo	e	será	ativada
pela	tecla	branca	da	letra	F.

Para	 entrar	 com	uma	matriz	no	ambiente	HOME,	é	 só	pressionar	MATRIX	 (função	verde	da	 tecla
ENTER)	 para	 abrir	 o	 “escrevedor	 de	matrizes”.	Digitada	 a	matriz,	 pressione	ENTER	 para	mandá-la
para	o	ambiente	HOME.

Para	resolver	um	sistema	linear	no	ambiente	HOME,	primeiro	entramos	com	a	matriz	B	dos	 termos
independentes	e,	em	seguida,	com	a	matriz	A	dos	coeficientes	das	variáveis.

Resolvendo	sistema	linear	no	ambiente	HOME

Primeiro	entre	com	a	matriz	B	dos	termos	independentes;
em	seguida,	com	a	matriz	A	dos	coeficientes	das	variáveis .

Para	resolver	o	sistema,

pressione	LSQ	(no	menu)

ou

digite	LSQ	e	pressione	ENTER

EXEMPLO	1.	Resolva	o	sistema	linear

Solução

Aqui

Como	o	determinante	da	matriz	A	 é	diferente	de	zero	 (detA	=	5),	o	 sistema	admite	 solução	única	e	no
sentido	habitual.	Para	determinar	a	solução,	entre	no	“escrevedor	de	matrizes”	e	digite	a	matriz	B.	Após
digitada,	pressione	ENTER	para	mandá-la	para	o	ambiente	HOME.	Em	seguida,	repita	o	processo	com	a
matriz	A.	Estando	a	matriz	A	no	nível	1	e	a	B	no	nível	2,	pressione	LSQ	para	obter	a	solução	[	[−	2,8]	[
5,4]	],	ou	seja,	x	=	−2,	8	e	y	=	5,	4.	(ATENÇÃO:	Se	você	não	mexeu	na	matriz	[	[−	2,8]	[5,4]	]	e	quiser
passar	a	solução	para	a	forma	de	fração	ordinária,	proceda	como	no	final	da	seção	anterior,	para	obter	x
=	−	14/5	e	y	=	27/5.)

■

Como	 prever	 antecipadamente	 se	 um	 sistema	 linear	 admite	 solução	 única,	 quer	 seja	 no	 sentido
habitual	 ou	 no	 sentido	 LSQ?	 Como	 prever	 antecipadamente	 se	 um	 sistema	 linear	 admite	 infinitas
soluções,	 quer	 seja	 no	 sentido	habitual	 ou	 no	 sentido	LSQ?	 Pois	 bem,	 a	 variável	RREF,	 que	 é	 uma
variável	reservada	da	calculadora,	nos	possibilitará	decidir	antecipadamente	se	o	sistema	admite	solução



1.

2.

3.

4.

única	 ou	 não,	 quer	 seja	 no	 sentido	habitual	 ou	no	 sentido	LSQ.	O	 que	 faz	 a	 variável	RREF?	Quando
ativada,	essa	variável	realiza	o	escalonamento	de	Gauss	da	matriz	que	se	encontra	no	nível	1.

Dado	um	sistema	linear,	chamamos	de	matriz	completa	desse	sistema	a	matriz	obtida,	acrescentando
à	matriz	 dos	 coeficientes	 das	 variáveis,	 como	 última	 coluna,	 a	 matriz	 dos	 termos	 independentes.	 Por
exemplo,	a	matriz	completa	M	do	sistema

Sendo	M	a	matriz	completa	de	um	sistema	linear,	chamaremos	de	matriz	escalonada	de	M	a	matriz
obtida	com	a	aplicação	da	função	RREF.	A	matriz	escalonada	da	matriz	completa	M	 será	 indicada	por
ME.

Solução	de	sistema	linear

Consideremos	um	sistema	linear	com	p	incógnitas	e	n	equações.
Se	a	matriz	escalonada	tiver	p	+	1	colunas	e	for	da	forma

então	(d1,	d2,	…,	dp)	será	a	única	solução,	no	sentido	habitual,	do	sistema.
Se	a	matriz	escalonada	tiver	p	+	1	colunas	e	for	da	forma

o	sistema	não	admitirá	solução	no	sentido	habitual,	mas	admitirá	uma	única	solução	LSQ.
Se	ME	não	for	de	nenhum	dos	tipos	anteriores	e	se	ME	não	possuir	 linha	do	tipo	[0	0	0	…	0	1],	então	o	sistema	admitirá	infinitas
soluções	no	sentido	habitual.
Se	ME	não	for	de	nenhum	dos	tipos	1	e	2	e	se	ME	possuir	uma	linha	da	forma	[0	0	0	…	0	1],	então	o	sistema	não	admitirá	solução
no	sentido	habitual,	mas	admitirá	infinitas	soluções	no	sentido	LSQ.

Tudo	o	que	está	no	quadro	anterior,	prova-se	em	álgebra	 linear.	Se	você	 já	estudou	álgebra	 linear,
sugerimos	provar	o	que	acabamos	de	afirmar.

Acho	que	a	essa	altura	você	já	deve	estar	fazendo	a	pergunta:	e	onde	está	essa	variável	RREF?	Para
encontrar	RREF,	digite:



MTH	MATR	(no	menu)	FACTR	(no	menu)

Acho,	ainda,	que	você	deve	estar	falando	com	os	seus	botões:	e	eu	vou	ter	que	guardar	tudo	isso	na
cabeça?	Não.	O	que	você	precisa	é	guardar	pelo	menos	os	nomes	das	variáveis.	Se	você	souber	o	nome
da	variável,	para	ativá-la	é	só	digitá-la	e	pressionar	ENTER.	Por	exemplo,	se	quisermos	escalonar	uma
matriz,	é	só	entrar	com	a	matriz,	digitar	RREF	e	pressionar	ENTER.

Como	ativar	uma	variável	da	calculadora

Digite	o	nome	da	variável	e	pressione	ENTER
ou

localize	o	menu	que	a	contém	e	pressione	a	tecla	branca	correspondente	ao	retângulo	onde	está	a	variável.

Outro	modo	 bem	mais	 prático	 para	 se	 ativar	 uma	 variável	 da	 calculadora	 ou	 uma	 que	 você	 tenha
criado	é	incluí-la	no	menu	personalizado.

Incluindo	variáveis	no	menu	personalizado

Abra	o	 arquivo	MEMORY,	 leve	 a	 barra	 de	 destaque	 para	 cima	 da	 variável	CST,	 pressione	 EDIT	 (no	menu),	 pressione	 novamente
EDIT	(no	menu),	digite	as	variáveis	que	você	deseja	incluir,	lembrando	que	entre	as	variáveis	deve	haver	um	espaço;	pressione	ENTER
três	vezes	para	confirmar	as	inclusões	e	retornar	ao	ambiente	HOME.

LEMBRE-SE:	para	chamar	o	MENU	PERSONALIZADO,	é	só	pressionar	a	tecla	CST.

Para	 resolver	 um	 sistema	 linear,	 precisamos	 obrigatoriamente	 entrar	 com	 a	 matriz	 B	 dos	 termos
independentes	e	com	a	matriz	A	dos	coeficientes	das	variáveis.	Agora,	se	quisermos	antecipar	como	são
as	soluções	do	sistema,	precisaremos,	também,	da	matriz	completa	M.	Só	que	não	será	necessário	digitar
toda	a	matriz	M:	a	matriz	M	poderá	ser	criada	a	partir	das	matrizes	A	e	B.	Vejamos	como	realizar	essa
proeza.	Primeiro,	para	que	não	aconteça	nenhum	desastre,	vamos	colocar	na	memória	as	matrizes	A	e	B.

Colocando	na	memória	as	matrizes	A	e	B

Digite	no	“escrevedor	de	matrizes”	a	matriz	dos	termos	independentes	e	pressione	ENTER	para	mandá-la	para	o	nível	1	da	pilha.	Em
seguida,	digite:

′	B	′	STO

(ou	B	STO	se	você	tiver	certeza	de	que	a	variável	B	não	consta	da	memória)

Proceda	de	modo	análogo	com	a	matriz	dos	coeficientes	das	variáveis,	trocando,	evidentemente,	o	B	por	A.

ATENÇÃO.	 Quando	 uma	 variável,	 digamos	X,	 já	 está	 na	 memória	 com	 um	 determinado	 conteúdo	 e
queremos	utilizá-la	para	armazenar	outro	conteúdo,	é	só	entrar	no	nível	1	com	o	novo	conteúdo	e	digitar:



′	X	′	STO

que	 a	 substituição	 será	 automática.	 Se	 a	 variável	 X	 não	 consta	 da	 memória,	 para	 armazenar	 um
conteúdo	nela	é	só	entrar	com	o	conteúdo	no	nível	1	e	digitar:

X	STO

Como	fazer	para	colocar	na	pilha	o	conteúdo	de	uma	variável	que	não	armazena	programa?

Colocando	na	pilha	o	conteúdo	de	uma	variável	que	não	armazena	programa

Digite	o	nome	da	variável	e	pressione	ENTER.	Ou,	pressione	a	tecla	VAR	 (para	abrir	o	menu	das	variáveis)	e	pressione	a	variável
desejada.

Como	fazer	para	criar	a	matriz	M	a	partir	das	matrizes	A	e	B?	Vamos	supor	que	as	matrizes	já	estão
armazenadas	nas	 variáveis	A	 e	B.	 Como	 dissemos	 acima,	 para	 entrar	 com	 a	matriz	A	 na	 pilha	 é	 só
digitar	A	e	pressionar	ENTER;	da	mesma	forma	para	a	matriz	B.

Criando	a	matriz	M	a	partir	de	A	e	B

Entre	na	pilha	com	as	matrizes	A	e	B,	nessa	ordem,	e,	em	seguida,	entre	com	o	número	da	última	coluna	da	matriz	M	(que	é	o	número
de	colunas	da	A	mais	1)	de	modo	que	a	matriz	A	estará	no	nível	3,	a	B,	no	nível	2,	e	o	número	da	última	coluna	de	M,	no	nível	1.	Agora,
digite:

MTH	MATR	(no	menu)	COL	(no	menu)	COL+	(no	menu).

ATENÇÃO.	Inclua	COL+	no	menu	personalizado	(não	pode	haver	espaço	entre	COL	e	+).

EXEMPLO	2.	Resolva	o	sistema	linear

Solução

Aqui,



Procedendo	como	dissemos	anteriormente,	digite	a	matriz	B	e	armazene-a	na	variável	B.	Digite	a	matriz	A
e	armazene-a	na	variável	A.	Para	criar	a	matriz	M,	digite	A	e	pressione	ENTER	para	entrar	com	a	matriz
A	na	pilha;	em	seguida,	digite	B	e	pressione	ENTER	para	entrar	com	a	matriz	B	na	pilha.	Para	criar	a
matriz	M,	digite:

4	ENTER	COL+	(no	menu	ou	no	menu	personalizado).

Se	tudo	correu	“dentro	dos	conformes”,	a	matriz	M	deve	ter	aparecido	no	nível	1	da	pilha.	Apareceu?	Se
apareceu	 (se	 não	 apareceu	 reveja	 anteriormente	 qual	 o	 procedimento	 correto)	 a	 matriz	M,	 podemos
determinar	a	matriz	escalonada	ME.	Para	criar	ME,	digite:

RREF	ENTER

para	obter	a	matriz	escalonada,

Assim,	ME	é	do	tipo	1	acima.	Logo,	o	sistema	é	compatível	e	determinado,	sendo	x	=	2,	y	=	1	e	z	=	−	1	a
sua	única	solução,	no	sentido	habitual.

■

EXEMPLO	3.	Resolva	o	sistema

Solução

Aqui

A	matriz	A	é	a	do	exemplo	anterior.	A	matriz	B	difere	da	matriz	do	exemplo	anterior	apenas	na	última
linha;	se	você	não	apagou	a	matriz	B	do	exemplo	anterior,	podemos	substituir	o	11	pelo	10,	e	para	isso,
digite:

MEMORY	(função	verde	da	tecla	VAR)
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Agora,	 leve	 a	 barra	 de	 destaque	 para	 cima	 da	 variável	 B,	 pressione	 EDIT	 (no	 menu),	 pressione
novamente	 EDIT	 (no	 menu),	 leve	 o	 cursor	 para	 cima	 do	 11,	 pressione	DEL,	 digite	 10	 e	 pressione
ENTER	 três	 vezes.	Pronto,	 a	matriz	B	 já	 foi	 alterada.	Como	no	 exemplo	 anterior	 não	 armazenamos	 a
matriz	M,	será	preciso	criá-la,	e,	para	isso,	proceda	como	no	exemplo	anterior.	Estando	a	matriz	M	no
nível	1,	digite:

RREF	e	pressione	ENTER

para	obter	a	matriz

que	é	do	tipo	2	anterior.	Assim,	o	sistema	não	admite	solução	no	sentido	habitual,	mas	admite	uma	única
solução	LSQ.	Para	determinar	essa	única	solução,	entre	com	as	matrizes	B	e	A,	nessa	ordem,	e	digite:

LSQ	ENTER

ou

pressione	LSQ	no	menu	personalizado

para	 obter	 [	 [1,7222…]	 [1,13888…]	 [−0,8888…]	 ]	 e,	 portanto,	 x	 =	 1,7222…,	 y	 =	 1,13888…	 e	 z	 =
−0,8888…	.	Convertendo	para	fração	ordinária,	obtemos:	x	=	31/18,	y	=	41/36	e	z	=	−8/9	que	é	a	única
solução	LSQ	do	sistema.

■

Na	próxima	seção,	vamos	criar	um	programa	que	nos	permitirá	construir	rapidamente	uma	matriz.

PROGRAMA	PARA	CONSTRUIR	MATRIZ:	A	VARIÁVEL	MATR

O	objetivo	desta	seção	é	criar	um	programa	que	nos	permitirá	construir	rapidamente	uma	matriz.	Esse
programa	será	armazenado	na	variável	MATR.	Para	criar	uma	matriz	a	partir	de	seus	elementos,	vamos
precisar	da	função	→	ARRY.	Para	localizar	essa	função,	digite:

PRG	TYPE	(no	menu)

Para	 informar	 à	 calculadora	 qual	 o	 número	 de	 linhas	 (L)	 e	 qual	 o	 número	 de	 colunas	 (C),
precisaremos	entrar	com	a	lista	{L	C},	onde	{	}	é	a	função	roxa	na	tecla	+.	Já	estamos	em	condições	de
construir	uma	matriz	sem	precisar	entrar	no	“escrevedor	de	matrizes”.

EXEMPLO	1.	Entre	com	a	matriz



Solução

Primeiro	precisamos	entrar	com	os	elementos	da	matriz	que	devem	ser	digitados	na	seguinte	ordem:
primeira	linha,	segunda	linha	etc.	Para	entrar	com	a	primeira	linha,	digite:

5	ENTER	3	ENTER	4	ENTER

Com	a	segunda	linha,	digite:

2	ENTER	2	ENTER	1	ENTER

e	assim	por	diante,	até	entrar	com	todas	as	linhas.	OK?
Agora,	 precisamos	 informar	 à	 calculadora	 que	 a	 nossa	matriz	 tem	4	 linhas	 e	 3	 colunas.	 Para	 isso,

digite	a	lista

{4	3}

e	pressione	ENTER	para	mandá-la	para	o	nível	1.	Agora,	digite:

PRG	TYPE	(no	menu)	→	ARRY	(no	menu)

Pronto:	a	sua	matriz	está	montada.

Seguindo	os	passos	do	Exemplo	1,	vamos	construir	um	programa	que	facilitará	mais	ainda	as	coisas.

Programa	para	criar	matriz

Nível	1:	<<	′	C	′	STO	′	L	′	STO
{L	C}	→	ARRY>>

Digite:

MATR	STO

ATENÇÃO.	 Para	 entrar	 com	→	ARRY	 no	 programa	não	 é	 necessário	 digitá-la,	 basta	 pressioná-la	 no
menu.	Também,	não	é	necessário	digitar	STO,	basta	pressionar	a	tecla	STO.

Inclua	a	variável	MATR	em	seu	menu	personalizado.	No	próximo	exemplo,	mostramos	como	usar	o
programa	que	acabamos	de	criar.
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■

EXEMPLO	2.	Utilize	a	variável	MATR	para	entrar	com	a	matriz	do	Exemplo	1.

Solução

Primeiro,	vamos	entrar	com	as	linhas	como	fizemos	no	Exemplo	1:

5	ENTER	3	ENTER	4	ENTER
2	ENTER	2	ENTER	1	ENTER
4	ENTER	0	ENTER	2	ENTER
5	ENTER	9	ENTER	7	ENTER

Agora,	precisamos	entrar	com	o	número	de	linhas	e	com	o	número	de	colunas.	Então,	digite:

4	ENTER	3	ENTER

Para	construir	a	matriz,	digite:

MATR	ENTER

ou,	simplesmente,	pressione	MATR	no	menu	personalizado.	Gostou?
■

UTILIZANDO	O	APLICATIVO	FIT	DATA	PARA	AJUSTE	DE	CURVA
PELO	MÉTODO	DOS	MÍNIMOS	QUADRADOS.	AS	FUNÇÕES	PREDX	E
PREDY

Para	entrar	no	aplicativo	FIT	DATA,	pressione	STAT	(função	verde	da	tecla	5);	na	caixa	que	se	abre,
escolha	a	3.ª	opção,	que	é	Fit	data…	e	pressione	ENTER.	Nesse	aplicativo,	você	poderá,	pelo	método
dos	mínimos	quadrados,	ajustar	aos	pontos

(x1,	y1),	(x2,	y2),	…,	(xn,	yn)

uma	reta,	 	=	mx	+	q,	uma	exponencial,	 	=	qemx,	uma	logarítmica,	 	=	q	+	m	ln	x,	ou	uma	potência,	 	=	q
xm.

Digamos	que	o	diagrama	de	dispersão	dos	pontos	tenha	o	jeito	do	gráfico	de	uma	função	exponencial,
então,	em	vez	de	ajustarmos	uma	reta,	ajustaremos	uma	exponencial	da	forma	 	=	qemx.	Aplicando	ln	aos
dois	membros	de	 	=	qemx,	obtemos	ln	 	=	ln	q	+	mx.	Fazendo,	então,	 	=	ln	y	e	Q	=	ln	q,	teremos	a	reta	
=	Q	+	mx.	O	que	a	calculadora	 faz,	 sem	a	gente	ver,	é	exatamente	o	seguinte:	ajusta,	pelo	método	dos
mínimos	quadrados,	uma	reta	 	=	Q	+	mx	aos	pontos

(x1,	ln	x1),	(x2,	ln	x2),	…,	(xn,	ln	xn)



calcula	o	coeficiente	de	correlação	desses	pontos	e	 toma	q	=	eQ.	O	 raciocínio	para	os	outros	 tipos	de
ajuste	é	análogo.

Você	 pode,	 também,	 solicitar	 à	 calculadora	 que	 ela	 retorne,	 entre	 as	 quatro	 curvas	 acima,	 à	 que
melhor	se	ajusta	(Best	fit)	aos	pontos.	Nesse	caso,	ela	retornará	a	curva	cujo	R2	estiver	mais	próximo
de	1.	(Lembre-se	de	que	R2	é	o	quadrado	do	coeficiente	de	correlação.)

Para	escolher	qual	o	tipo	de	ajuste	que	você	quer,	leve	a	barra	de	destaque	para	o	campo	de	MODEL
e,	pressionando	a	tecla	+/−,	escolha	a	sua	opção.

É	no	campo	da	variável	∑DAT	que	devemos	entrar	com	a	matriz	dos	pontos	dados.	Para	entrar	com	a
matriz,	 leve	 a	 barra	 de	 destaque	 para	 o	 campo	 da	 variável	 ∑DAT	 e	 pressione	 EDIT	 no	 menu	 do
aplicativo	(tecla	branca	da	letra	A)	para	abrir	o	“escrevedor	de	matrizes”;	digitada	a	matriz,	pressione
ENTER	para	mandá-la	para	o	campo	da	variável	∑DAT.

Tendo	entrado	com	a	matriz	e	escolhido	o	tipo	de	ajuste,	pressione	OK	(no	menu	do	aplicativo,	tecla
branca	 da	 letra	 F)	 ou	 simplesmente	 pressione	 ENTER.	 Automaticamente,	 volta-se	 para	 o	 ambiente
HOME,	 e	 na	 pilha,	 no	 nível	 3,	 estará	 a	 curva	 ajustada,	 no	 nível	 2	 a	 correlação,	 e	 no	 nível	 1,	 a
covariância.	Para	ler	os	dados	que	aparecem	nos	vários	níveis,	pressione	a	tecla	que	move	o	cursor	para
cima	(▲)	e	leve	o	triângulo	preto	que	aparece	na	frente	do	nível	1	da	pilha	para	o	nível	que	você	deseja
ler;	em	seguida,	pressione	EDIT	(função	roxa	da	tecla	+/−).	Após	ter	lido	todos	os	dados,	pressione	ON
para	retirar	do	visor	o	tal	triângulo	preto.

Digamos	que	você	queira	ver	o	diagrama	de	dispersão	e	o	gráfico	da	curva	ajustada.	Para	isso	digite:

	(shift	roxo)	5

No	menu	 que	 se	 abre,	 pressione	 PLOT	 (tecla	 branca	 da	 letra	D)	 e,	 no	 novo	menu,	 pressione	 SCATR
(tecla	branca	da	letra	C).	No	visor	aparecerá	o	diagrama	de	dispersão.	Para	fazer	aparecer	o	gráfico	da
curva	 ajustada,	 pressione	 STATL	 (tecla	 branca	 da	 letra	 D).	 (Observação:	 SCATR	 =	 SCATTER	 =
DISPERSÃO;	PLOT	=	PLOTAR	=	ESBOÇAR.)	Pressionando-se	ON,	volta-se	para	HOME.

Suponhamos,	agora,	que	você	queira,	na	curva	estimada,	determinar	 	para	um	dado	valor	de	x.	Para
isso	digite:

	(shift	roxo)	5	FIT	(no	menu).

Agora,	entre	com	o	valor	de	x	e	pressione	PREDY.	Se	você	quiser	o	valor	de	x	para	um	dado	valor	de	y,
entre	com	o	valor	de	y	e	pressione	PREDX.

Para	finalizar	a	seção,	vamos	mostrar	outro	modo	de	entrar	com	a	matriz	no	campo	de	∑DAT.	Então,
para	 entrar	 com	a	matriz	dos	pontos	 (xi,	yi),	 i	=	1,	 2,	…,	n,	 no	 campo	da	variável	∑DAT,	 proceda	 da
seguinte	maneira:	estando	em	HOME,	entre	com	a	matriz	utilizando	a	variável	MATR.	Em	seguida,	digite

′	∑DAT	′	STO

Desse	modo,	armazenamos	a	matriz	na	variável	∑DAT,	e,	então,	ela	estará	no	campo	da	variável	∑DAT
quando	entrarmos	no	aplicativo	FIT	DATA.	ATENÇÃO:	Se	a	variável	∑DAT	estiver	no	menu	de	VAR,
não	será	necessário	digitar	∑DAT:	basta	entrar	com	os	dois	 tracinhos	e	pressionar	∑DAT	no	menu	das
variáveis.	 (ATENÇÃO:	 Para	 digitar	 ∑DAT,	 pressione	 ∑	 (função	 verde	 da	 tecla	 TAN),	 apague	 os
parênteses	que	aparecem	na	frente	de	∑	e	digite,	sem	espaço	e	com	letras	maiúsculas,	DAT.)



A2.10 AJUSTE	LINEAR	COM	DUAS	OU	MAIS	VARIÁVEIS	INDEPENDENTES.
AJUSTE	POLINOMIAL

EXEMPLO	1.	Ajuste,	pelo	método	dos	mínimos	quadrados,	uma	função	linear	 	=	ax	+	by	+	c	aos	dados
da	tabela

x y z

1 3 2

4 5 8

3 2 4

5 3 6

7 2 8

Solução

O	sistema	linear	associado	ao	problema	é

Aqui

Procedendo	como	na	Seção	A2.7,	obtêm-se:

que	é	a	única	solução	LSQ	do	sistema.	Conclusão:



é	a	função	linear	que	melhor	se	ajusta	aos	dados	da	tabela	pelo	método	dos	mínimos	quadrados.
■

(Observação.	O	sistema	auxiliar	SA	associado	ao	sistema	S	anterior	é:

onde

A	título	de	exercício,	verifique	que	a	solução	do	sistema	SA	é	de	fato

ATENÇÃO.	Para	calcular	os	produtos	escalares	 	utilize	a	função	DOT,	e,	para	acessá-
la,	 digite:	MTH	 VECTR	 (no	 menu).	 Por	 exemplo,	 para	 calcular	 ,	 entre	 com	 ,	 com	 ,	 e
pressione	DOT.

EXEMPLO	2.	Ajuste,	pelo	método	dos	mínimos	quadrados,	a	função	polinomial	de	grau	dois,	 	=	ax2	+
bx	+	c,	aos	dados	da	tabela

x 1 3 4 7 8 10

y 8 2 5 10 16 25

Solução

O	sistema	linear	associado	ao	problema	é
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que	admite	a	única	solução,	aproximada,	LSQ

a	=	0,50933,	b	=	−3,53305	e	c	=	10,143511.

Conclusão:	 	=	0,50933	x2	−	3,53305	x	+	10,143511	é	a	função	polinomial	de	grau	dois	que	melhor	se
ajusta	aos	dados	da	tabela.

■

A	FUNÇÃO	RSD.	DISTÂNCIA	DE	PONTO	A	PLANO.	DISTÂNCIA	DE
PONTO	A	RETA

A	função	RSD	(RSD	=	RESÍDUO)	é	outra	importante	função	da	HP-48G.	Para	acessála,	digite:

MTH	MATR	(no	menu)	NXT

O	que	faz	a	função	RSD?	Consideremos	o	sistema

e	seja	(x10,	x20,	…,	xp0)	uma	solução	LSQ	de	S.	Pois	bem,	a	função	RSD,	quando	ativada,	irá	nos	fornecer
o	vetor

que	em	notação	matricial	se	escreve:

Se	E1	=	E2	=	…	=	En	=	0,	então	(x10,	x20,	…,	xp0)	será	uma	solução	no	sentido	habitual.	O	comprimento	||
E	||	do	vetor	E	é	exatamente	a	distância	do	ponto	P	ao	ponto	B,	onde

Na	HP-48G,	a	função	que	calcula	o	comprimento	de	um	vetor	é	a	função	ABS	(ABS	=	ABSOLUTO):



a)
b)
c)
d)
e)

||	E	||	=	ABS	(E)

Para	acessar	a	função	ABS,	digite:	MTH	REAL	(no	menu)	NXT
O	problema	agora	é	como	proceder	para	calcular	E.

Cálculo	do	vetor	E	e	de	ABS	(E)

Sejam	A	a	matriz	dos	coeficientes	das	variáveis	e	B	a	matriz	dos	termos	independentes.	Armazene	na	variável	X	a	solução	encontrada.
Agora,	entre	com	as	matrizes

B	A	X	(nessa	ordem)

Para	calcular	E,	digite:

RSD	ENTER

ou

pressione	RSD	no	menu

ou	ainda

×	−	(vezes	menos)

Para	calcular	o	comprimento	de	E	digite:

ABS	ENTER

ou

pressione	ABS	no	menu.

EXEMPLO.	Considere	o	sistema

O	sistema	admite	solução	no	sentido	habitual?	Discuta	o	sistema	com	relação	ao	número	de	soluções.
Resolva	o	sistema.
Dos	pontos	(x	+	2y,	2x	−	y,	x	+	y,	x	−	y),	x	e	y	reais,	qual	está	mais	próximo	de	(4,	5,	4,	2)?
Qual	a	menor	distância	do	ponto	(4,	5,	4,	2)	aos	pontos	(x	+	2y,	2x	−	y,	x	+	y,	x	−	y),	x	e	y	reais?
Faça	“manualmente”	o	escalonamento	de	Gauss	do	sistema.

Solução



a)

b)

c)

d)

Aqui

Entre	com	a	matriz	A	e	armazene-a	na	variável	A;	entre	com	a	B	e	armazene-a	na	variável	B.	Crie	a
matriz	M	e	determine	a	matriz	escalonada	ME	de	M:

Segue	que	o	 sistema	não	admite	 solução	no	 sentido	habitual.	Admite	uma	única	 solução	no	 sentido
LSQ.
Entre	 com	 a	matriz	B,	 entre	 com	 a	matriz	A,	 pressione	LSQ	 (no	menu)	 ou	 digite	LSQ	 e	 pressione
ENTER	para	obter	a	solução

[	[2,857142…]	[0,714285…]	].

Armazene-a	na	variável	X,	ou	seja,	digite:

′	X	′	STO

Agora,	entre	novamente	com	a	solução	na	pilha	(digite	X	e	pressione	ENTER)	e	passe-a	para	a	forma
de	fração	ordinária	para	obter

É	só	fazer	 	em	(x	+	2y,	2x	−	y,	x	+	y,	x	−	y).	Assim,

	é	o	ponto	mais	próximo	de	B	=	(4,	5,	4,	2).

(Observação.	O	ponto	P	 poderia,	 também,	 ter	 sido	obtido	da	 seguinte	maneira:	 entre	 com	a	matriz	A,
entre	com	a	matriz	X	e	pressione	a	tecla	×,	ou	seja,	obtém-se	P	multiplicandose	a	matriz	A	pela	X.)

Primeiro,	precisamos	determinar	o	vetor	coluna	E.	(Lembre-se	de	que	B	−	AX	=	B	−	P	=	E,	onde	X,	P
e	B	estão	sendo	olhados	como	vetores	colunas.)	Para	determinar	E,	digite:

B	ENTER	A	ENTER	X	ENTER	RSD	ENTER

para	obter



e)

Para	calcular	o	comprimento	de	E,	digite:

ABS	ENTER

para	obter	||	E	||	≈	0,53452.	(Observe:	 .)

Multiplicando-se	a	primeira	equação	do	sistema	S	por	−	2	e	somando-se	com	a	2.ª;	multiplicando-se	a
1.ª	equação	por	−	1	e	somando-se	com	a	3.ª;	multiplicando-se	a	1.ª	equação	por	−	1	e	somando	com	a
4.ª,	e,	em	seguida,	permutando-se	as	posições	das	2.ª	e	3.ª	equações,	resulta:

Multiplicando-se,	agora,	a	2.ª	equação	(do	3.º	sistema)	por	−5	e	somando-se	com	a	3.ª;	multiplicando-
se	a	2.ª	equação	por	−3	e	somando-se	com	a	4.ª,	e,	em	seguida,	dividindo-se	a	3.ª	por	−3	e	a	4.ª	por
−2,	resulta:

Multiplicando-se	a	última	equação	por	−	1	e	somando-se	com	a	3.ª,	multiplicando-se	a	última	por	−4	e
somando-se	com	a	1.ª,	resulta:

Multiplicando-se,	agora,	a	2.ª	equação	por	−2	e	somando-se	com	a	1.ª,	obtém-se:

Observe	que	a	matriz	M	do	último	sistema	é	exatamente	a	matriz	ME	de	S.
Para	 finalizar	a	 seção,	deixamos	para	você	a	 seguinte	 tarefa:	dados	um	plano	 (uma	 reta)	em	 forma

paramétrica	e	um	ponto	B	fora	do	plano	(da	reta),	estabeleça	um	processo	para	determinar	o	ponto	P	do
plano	(da	reta)	que	se	encontra	mais	próximo	de	B	e	a	distância	entre	B	e	o	plano	(reta).



A2.12.CÁLCULO	DO	COEFICIENTE	DE	DETERMINAÇÃO	R2

Suponhamos	que

seja	o	plano	que	melhor	se	ajusta,	pelo	método	dos	mínimos	quadrados,	aos	pontos	(xi,	yi,	zi),	i	=	1,	2,	…,
n.	Então	(a,	b,	c)	é	a	solução	LSQ	do	sistema

Aqui	o	vetor	E	é	dado	por:

Sabemos	que	R2	é	dado	por:

Sabemos,	ainda,	que

Segue	que	R2	poderá	ser	colocado	na	seguinte	forma

Temos,	também,
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onde	B	é	a	matriz	coluna	dos	termos	independentes	do	sistema	S.
Temos,	então,	a	seguinte	fórmula	prática	para	o	cálculo	do	coeficiente	de	determinação	R2.

ATENÇÃO.	Para	calcular	a	média	 ,	proceda	do	seguinte	modo:	armazene	a	matriz	B	na	variável	∑DAT
e	digite:

Shift	roxo	5	IVAR	(no	menu)	MEAN	(no	menu)

Ou,	então,	pressione	STAT	(função	verde	da	tecla	5),	escolha	a	1.ª	opção	que	é	Single-var…	e	pressione
ENTER	 (ou	OK	 no	menu).	 Entre	 com	 a	matriz	B	 no	 campo	 de	 ∑DAT.	 Em	 seguida,	 leve	 a	 barra	 de
destaque	para	o	campo	da	variável	MEAN	e	pressione	a	tecla	+/−	para	confirmar	sua	escolha	(na	frente
de	MEAN	deverá	aparecer	um	vezinho).	Confirmada	a	escolha,	pressione	ENTER.

PROGRAMA	QUE	RETORNA	OS	COEFICIENTES	DO	AJUSTE	E	O	R2

O	objetivo	desta	seção	é	criar	um	programa,	que	será	armazenado	na	variável	BAN,	que	retorna	os
coeficientes	 do	 ajuste,	 bem	 como	 o	 coeficiente	 de	 determinação	R2,	 a	 partir	 das	 matrizes	B,	 A	 e	 do
número	n	de	pontos	dados,	onde	B	é	a	matriz	dos	termos	independentes	e	A	a	matriz	dos	coeficientes	das
variáveis	do	sistema	S	associado	ao	problema.

Programa	BAN

Nível	1:	<<	′	N	′	STO	′	A	′	STO	′	B	′	STO	B	A	LSQ
′	X	′	STO	B	A	X	RSD	ABS	2	∧	′	Y	′	STO

B	ABS	2	∧	′	U	′	STO	B	′	∑DAT	′	STO	MEAN	2	∧
N	*	′	V	′	STO	1	Y	U	V	−	/	−	′	R2	′	→	TAG	X	′	X	′	→	TAG	>>

Agora,	digite:	′	BAN	′	STO

Inclua	a	variável	BAN	em	seu	menu	personalizado.

EXEMPLO	1.	Considere	a	tabela



x 3 5 6 9 10 11

y 7 5 3 4 2 3

Determine	a	reta	dos	mínimos	quadrados	dos	pontos	dados	e	o	coeficiente	de	determinação.

Solução

Seja	 	=	mx	+	q	a	reta	procurada.	O	sistema	associado	ao	problema	é

Aqui,	o	número	de	pontos	é	n	=	6,

Agora,	entre	com	a	matriz	B,	entre	com	a	matriz	A,	com	6	e	pressione	BAN,	no	menu	personalizado,	para
obter

R2:	0,6701858
X:	[[−0,466216][7,418919]]

Ou	seja,	 	=	−0,466216x	+	7,418919	e	R2	=	0,6701858.	 (Sugestão:	Resolva	o	problema	no	aplicativo
FIT	DATA.)

■

EXEMPLO	2.	Considere	a	tabela

x 2 3 4 7 2 8 5

y 3 2 6 3 2 5 8

z 7 5 7 6 5 7 		10
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Determine	o	plano	 	=	ax	+	by	+	c	dos	mínimos	quadrados,	bem	como	o	coeficiente	de	determinação	R2.

Solução

O	número	de	pontos	é	n	=	7,

Entre	com	B,	entre	com	A	e	com	7	e,	em	seguida,	pressione	BAN	para	obter

R2:	0,8490879
X:	[[−6,34715025907E	−	2]	[0,71567357513]	[4,03044041451	]]

Ou	seja,	 	=	−0,0634715025907x	+	0,71567357513y	+	4,03044041451	e	R2	=	0,8490879.
■

DEFININDO	FUNÇÃO	NA	HP-48G

Nesta	seção,	vamos	aprender	como	definir	uma	função	na	HP-48G.	Para	definir	uma	função,	vamos
utilizar	a	função	roxa	DEF	(DEF	=	DEFINE	=	DEFINIR)	na	tecla	STO.	Vejamos,	então,	como	definir,
por	exemplo,	a	função	y	=	x2	+	3x	+	5.

Definindo	a	função	y	=	x2	+	3x	+	5.

Na	 linha	 de	 comando,	 utilizando	 letras	 maiúsculas	 para	 facilitar,	 digite	 y(x)	 =	 x2	 +	 3x	 +	 5,	 em	 seguida,	 tecle	 ENTER;	 no	 nível	 1
deveremos	ter:

Nível	1:								′Y(X)	=	X	 	̂2	+	3	*	X	+	5′

Agora,	pressione	DEF	(shift	roxo	seguido	da	tecla	STO).

Pronto!	A	função	já	está	definida.	A	variável	Y	já	foi	para	a	memória,	isto	é,	já	está	ocupando	um	dos
retângulos	do	menu	das	variáveis.	Para	visualizar	a	variável	Y,	pressione	a	tecla	VAR	e	vá	virando	as
páginas	 do	menu	 até	 encontrar	Y.	 Encontrou?	Ótimo.	 No	 próximo	 exemplo,	 veremos	 como	 calcular	 o
valor	de	y	dado	x.	Para	visualizar	o	conteúdo	da	variável	Y	ou	proceder	a	qualquer	alteração,	faça	como
explicado	anteriormente.

EXEMPLO	1.	Sendo	y	=	x2	+	3x	+	5	a	função	acima	definida,	calcule	o	valor	de	y	para	x	=	1,	x	=	−2	e	x
=	 .



a)
b)

a)

Solução

Inicialmente,	localize	a	variável	Y	no	menu	das	variáveis.	Então,	para	calcular	o	valor	de	y,	digite	o
valor	de	x	e	pressione	a	tecla	branca	correspondente	ao	retângulo	ocupado	pela	variável	Y.

Para	x	=	1,	y	=	?

Digite	1	e	pressione	Y	no	menu	das	variáveis.	No	nível	1,	deverá	aparecer	9.	Assim,	para	x	=	1,	teremos
y	=	9.

Para	x	=	−2,	y	=	?

Digite	−2	e,	em	seguida,	pressione	Y	no	menu	das	variáveis.	No	nível	1,	deverá	aparecer	3.	Assim,	para	x
=	−2,	teremos	y	=	3.

Para	x	=	 ,	y	=	?

Digite:	4	ENTER	5	÷	e,	 em	seguida,	pressione	Y	 no	menu	das	variáveis.	No	nível	1,	deverá	 aparecer
8,04.	Assim,	para	x	=	 ,	teremos	y	=	8,04.

■

EXEMPLO	2.	Defina	a	função	z	=	x2	−	3y3	+	5xy	e	calcule	z	para	os	valores	de	x	e	y	dados.

x	=	1	e	y	=	2
x	=	−5	e	z	=	−6,2

Solução

Definindo	a	função	z	=	x2	−	3y3	+	5xy

Digite	z(x,	y)	=	x2	−	3y3	+	5xy	e,	em	seguida,	pressione	ENTER;	no	nível	1	deveremos	ter:

Nível	1:						′Z(X,Y)	=	X^2	−	3	*	Y^3	+	5	*	X	*	Y	′

Agora,	pressione	DEF	(função	roxa	na	tecla	STO).	Pronto.	A	função	já	está	definida.

Agora,	localize	a	variável	Z	no	menu	das	variáveis.	Lembre-se:	para	abrir	o	menu	das	variáveis,	é	só
pressionar	 a	 tecla	VAR	 e	 procurar	Z,	 usando	NXT	 se	 precisar	 virar	 a	 página	 do	menu.	 Localizou	Z?
Ótimo.

Para	calcular	z,	é	preciso	entrar	com	os	valores	de	x	e	y,	nessa	ordem.
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Digite:	1	ENTER	2	e	pressione	a	variável	Z	no	menu	das	variáveis,	para	obter	−	13,	que	é	o	valor	de
z	=	−	13.

Digite:	−5	ENTER	−6,2	e	pressione	a	variável	Z	para	obter	−844,984,	que	é	o	valor	de	z,	ou	seja,	z	=
−844,984.

■

AJUSTE	DE	CURVA,	PELO	MÉTODO	DOS	MÍNIMOS	QUADRADOS,	NO
EXCEL	97

Consideremos	os	pontos	(xk,	yk),	k	=	1,	2,	...,	n.	No	EXCEL,	podemos	obter	o	ajuste	linear,	polinomial
(até	o	grau	6),	exponencial,	logarítmico	ou	por	uma	potência.	Os	próximos	exemplos	mostram	como	obter
tais	ajustes.

EXEMPLO.	Determine,	 pelo	método	 dos	mínimos	 quadrados,	 a	 reta	 que	melhor	 se	 ajusta	 aos	 pontos
dados.

x 2 4 5 6 6,5 7 7,5 8 10

y 0 5 6,5 8 7 9 10 12 13

Solução

Nas	células	A1	a	A9,	vamos	entrar	com	os	valores	de	x;	nas	células	B1	a	B9	com	os	valores	de	y.
Após	entrar	com	estes	valores,	marcamos	a	matriz	A1:	B9.	Em	seguida,	clicamos	no	ícone	Assistente	de
gráfico,	para	abrir	o	aplicativo	Assistente	de	gráfico.



Neste	 Assistente	 de	 gráfico,	 escolhemos	 a	 opção	 Dispersão	 (XY)	 e,	 como	 Subtipo	 de	 gráfico,
escolhemos	a	primeira	opção,	que	é	o	diagrama	de	dispersão.	Clicando	em	Concluir,	obtemos	o	diagrama
de	dispersão.
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A	seguir,	selecione	o	gráfico;	na	barra	de	ferramentas,	clique	em	Gráfico	e	escolha	a	opção	Adicionar
linha	de	tendência.	(ATENÇÃO.	O	menu	Gráfico	só	aparecerá	após	selecionar	o	gráfico.	Se	ao	lado	do
menu	Ferramentas	aparecer	a	palavra	Dados,	é	porque	você	não	selecionou	o	gráfico.	Para	selecionar	a
região	do	gráfico,	é	só	dar	um	clique	logo	abaixo	do	retângulo	que	envolve	a	palavra	Sequência	1.	Para
desmarcar,	 é	 só	 clicar	 fora	 do	 retângulo	 que	 contém	 a	 região	 do	 gráfico.)	 Clicando,	 então,	 na	 opção
Adicionar	linha	de	tendência,	aparecerá	a	caixa	de	diálogo	Adicionar	linha	de	tendência,	que	oferece	as
várias	opções	de	ajuste.	Como	o	nosso	caso	é	o	ajuste	linear,	clique	no	quadrado	Linear.	(Se	o	ajuste	for
polinomial,	até	o	grau	6,	marque	o	quadrado	polinomial	e	escolha	o	grau	na	caixa	ao	lado.)

Na	caixa	acima,	clique	em	opções	e	marque	as	opções:	exibir	equação	no	gráfico	e	exibir	valor	do	R-
quadrado	no	gráfico.	Clique	OK	para	obter	no	gráfico	a	equação	da	reta	que	melhor	se	ajusta	aos	pontos
dados	e	o	valor	de	R-quadrado.

MÁXIMOS	E	MÍNIMOS	NO	EXCEL

Pontos	de	máximo	ou	mínimo	de	uma	função	são	determinados,	no	EXCEL,	no	aplicativo	SOLVER.
Para	 entrar	 neste	 aplicativo,	 clique	 em	 Ferramentas	 e	 escolha	 a	 opção	 SOLVER.	 Caso	 na	 caixa	 de



diálogo	que	se	abre	não	apareça	a	palavra	SOLVER,	escolha,	nessa	mesma	caixa,	a	opção	Suplementos,
marque	SOLVER	e	pressione	OK	para	incluí-la	na	caixa	Ferramentas.	Caso	em	Suplementos	não	apareça
SOLVER	é	porque	não	foram	instalados	todos	os	aplicativos	do	EXCEL.

EXEMPLO	1.	Determine	o	ponto	de	mínimo	e	o	valor	mínimo	da	função
z	=	x2	+	3xy	+	4y2	−	4x	−	13y.

Solução

Observamos,	inicialmente,	que,	pelo	fato	de	se	tratar	de	uma	função	polinomial	de	grau	2,	tal	função
admitirá	 no	 máximo	 um	 ponto	 de	 mínimo.	 Por	 quê?	 Vamos	 representar	 as	 variáveis	 x	 e	 y,
respectivamente,	por	A1	e	B1.	Na	célula	C1,	vamos	entrar	com	a	expressão	que	queremos	minimizar.	Na
célula	C1,	devemos	digitar:

=	A1^2+3*A1*B1+4*B1^2−4*A1−13*B1

Como	o	SOLVER	utiliza	método	iterativo	para	buscar	o	ponto	desejado,	é	preciso	entrar	com	estimativas
para	x	e	para	y	(uma	estimativa	para	o	ponto	de	mínimo	é	qualquer	ponto	que	esteja	próximo	desse	ponto
de	mínimo).	Vamos	tentar	as	estimativas	0	para	x	e	0	para	y.	(Como	z(0,0)	=	0,	z(0,1)	=	−9	e	z(0,2)	=	−
10,	nesse	problema	as	estimativas	0	para	x	e	2	para	y	seriam	preferíveis.	Por	quê?	Em	todo	caso,	vamos
tentar	 resolver	 o	 problema	 com	 as	 estimativas	 0	 para	 x	 e	 0	 para	 y;	 se	 não	 der	 certo,	 tentaremos	 a
estimativa	(0,	2).)	Entre	com	zero	nas	células	A1	e	B1.	Agora,	marque	a	célula	C1	e,	em	seguida,	clique
em	Ferramentas	e	escolha	a	opção	SOLVER	para	abrir	a	caixa	PARÂMETROS	DO	SOLVER.	Na	caixa
que	se	abre,	em	célula	de	destino,	digite	C1;	escolha	a	opção	Min;	em	células	variáveis,	digite	A1:B1.

Agora,	clique	em	resolver	para	obter	−	1	em	A1,	2	em	B1	e	−	11	em	C1.	Assim,	 (−1,2)	é	o	ponto	de
mínimo	e	 z	 =	 −11	 o	 valor	mínimo	 de	 z.	 (Observe	 que	 a	 função	 dada	 admite	 no	máximo	 um	 ponto	 de



mínimo,	de	acordo?)

Gráfico	e	curvas	de	nível	de	z	=	x2	+	3xy	+	4y2	−	4x	−	13y

EXEMPLO	2.	Determine	os	pontos	de	máximo	e	de	mínimo	de	z	=	2x	−	y	com	as	restrições	x	≥	0,	x	+	y
≤	3	e	y	≥	x.

Solução

Como	o	conjunto	A	de	todos	os	pares	(x,	y)	satisfazendo	as	restrições	dadas	é	compacto	(confira)	e	a
função	dada	é	contínua,	resulta,	pelo	teorema	de	Weierstrass,	que	tal	função	assume	em	A	valor	máximo	e
valor	mínimo.	Tomemos	A1	(A1	=	x)	e	B1	(B1	=	y)	como	células	variáveis.	Em	C1,	vamos	entrar	com	a
expressão	que	queremos	maximizar	ou	minimizar.	Em	C1,	digitamos:

=	2	*	A1	−	B1.

Em	D1,	digitamos:

=	A1	+	B1.

Vamos	primeiro	determinar	o	ponto	de	mínimo.	Parece	que	o	ponto	de	mínimo	deve	estar	próximo	(ou	é	o
próprio)	de	(0,	3).	Vamos	então	entrar	com	as	estimativas	0	em	A1	e	3	em	B1.	Agora,	marque	a	célula	C1
e	 abra	 o	 aplicativo	 PARÂMETROS	DO	SOLVER,	 como	 no	 exemplo	 anterior.	 Em	 célula	 de	 destino,
digite	C1.	Escolha	a	opção	Mín.	Em	células	variáveis,	digite	A1:B1.	Agora,	clique	em	Adicionar	para
abrir	o	aplicativo	Adicionar	restrição.	Em	referência	de	célula,	digite	A1;	escolha	>=;	em	restrição,
digite	0	(é	a	restrição	x	≥	0),	em	seguida,	clique	em	Adicionar.	Agora,	vamos	entrar	com	a	restrição	y	≥
x.	 Em	 referência	 de	 célula,	 digite	 B1;	 escolha	 >=;	 em	 restrição,	 digite	 A1,	 em	 seguida	 clique	 em
Adicionar.	Para	entrar	 com	a	 restrição	x	+	y	≤	3,	 em	referência	de	 célula	 digite	D1;	 escolha	<=;	 em
restrição,	 digite	 3,	 em	 seguida,	 clique	 em	 Adicionar.	 Agora,	 feche	 o	 aplicativo	 para	 voltar	 para
PARÂMETROS	DO	SOLVER,	que	deverá	ter	a	seguinte	“cara”:



Finalmente	clique	em	resolver,	para	obter	0	em	A1,	3	em	B1	e	−3	em	C1.	Assim,	−3	é	o	valor	mínimo	da
função	e	que	ocorre	para	x	=	0	e	y	=	3.	 (A	nossa	estimativa	 já	era	o	ponto	de	mínimo.)	Vamos,	agora,
determinar	 o	 ponto	 de	 máximo	 que	 deverá	 estar	 próximo	 do	 ponto	 (3,	 3);	 entremos,	 então,	 com	 as
estimativas	 3	 em	 A1	 e	 3	 em	 B1.	 Marque	 C1	 e	 abra	 novamente	 o	 aplicativo	 PARÂMETROS	 DO
SOLVER.	Escolha	a	opção	Máx.	(Observe	que	os	dados	com	os	quais	entramos	anteriormente	não	foram
apagados.)	Para	determinar	o	ponto	de	máximo,	é	só	clicar	em	Resolver,	para	obter	1,5	em	A1,	1,5	em
B1	e	1,5	em	C1.	Ou	seja,	1,5	é	o	valor	máximo	e	que	ocorre	para	x	=	1,5	e	y	=	1,5.	(Veja	Exemplo	2,	da
Seção	16.1.)

■

EXEMPLO	3.	Resolva	o	sistema

Solução

Resolver	o	sistema	é	equivalente	a	determinar	os	pontos	de	mínimo	global	da	função

f(x,	y)	=	(x2	+	y	−	3)2	+	(x2	+	2xy	+	5y2	−	4)2.

De	fato,	se	 (x0,	y0)	 for	 solução	do	sistema,	deveremos	 ter	 f(x0,	y0)	=	0,	e,	 então,	 (x0,	y0)	 será	ponto	de



mínimo	global	de	f,	pois,	para	todo	par	(x,	y),	temos	f(x,	y)	≥	0.	Reciprocamente,	se	(x0,	y0)	for	ponto	de
mínimo	de	f	e	tal	que	f(x0,	y0)	=	0,	então	(x0,	y0)	será	solução	do	sistema.	(Você	concorda?)	O	gráfico	da
primeira	equação	é	uma	parábola	com	concavidade	voltada	para	baixo,	intercepta	o	eixo	y	no	ponto	(0,
3)	e	o	eixo	x	nos	pontos	(− ,	0)	e	(− ,	0).	O	gráfico	da	segunda	equação	é	uma	elipse	com	centro	na
origem,	 intercepta	o	eixo	x	nos	pontos	 (2,	0),	 (−2,	0)	e	o	eixo	y	nos	pontos	 (0,	2/ )	e	 (0,	−2/ ).	 O
sistema	 deverá	 ter	 4	 soluções.	 Estimativas	 para	 as	 soluções	 são:	

	e	 .

Solução	próxima	de	(2,	1)

Em	A1,	digite	2;	em	B1,	digite	1;	em	C1,	digite:

=	(A1^2+B1−3)^2+(A1^2+2*A1*B1+5*B1^2−4)^2

Marque	C1	e	entre	em	PARÂMETROS	DO	SOLVER.	Escolha	a	opção	Mín.	Em	célula	de	destino,	digite
C1;	em	células	variáveis,	digite	A1:B1.	Clique	em	Resolver	para	obter:	1,6514	em	A1,	0,2727	em	B1	e
4,49	·	10−11	≈	0	em	C1.	Assim,	x	=	1,6514	e	y	=	0,2727	é	uma	solução,	com	4	casas	decimais,	do	sistema.

Solução	próxima	de	(2,	−1)

É	só	digitar	2	em	A1,	−1	em	B1,	entrar	em	PARÂMETROS	DO	SOLVER	e	clicar	em	Resolver	para	obter
a	solução	x	=	1,9557	e	y	=	−0,8247,	com	quatro	casas	decimais.

Deixamos	a	 seu	cargo	verificar	que	as	outras	duas	 soluções	 são:	x	=	−1,4232	e	y	=	0,9745;	x	 =	−
1,7839	e	y	=	−0,1824.

■

ATENÇÃO.	Observe	que	nesse	problema	o	que	estamos	fazendo	nada	mais	é	do	que	resolver	a	equação
f(x,	y)	=	0.	Então,	em	vez	de	escolher	a	opção	Mín.,	poderíamos	ter	escolhido	a	opção	Valor	de	e	entrado
com	 0	 no	 retângulo	 ao	 lado	 de	Valor	 de	 e	 proceder	 como	 se	 estivéssemos	 determinando	 o	 ponto	 de
mínimo.	Ou	seja,	a	opção	Valor	de	 é	a	que	 resolve	a	equação.	Resolva	o	problema	com	esta	opção	e
compare	com	os	resultados	obtidos	com	a	opção	Mín.

Determinar	estimativas,	em	geral,	não	é	tarefa	fácil.	Quando	o	problema	de	máximo	ou	mínimo	está
ligado	a	um	problema	prático,	é,	às	vezes,	possível	estimar,	com	margem	de	erro	razoável,	o	ponto	de
máximo	ou	de	mínimo.	Mas,	em	geral,	a	tarefa	não	é	nada	fácil.	Se	a	estimativa	não	for	boa,	o	aplicativo
poderá	não	retornar	valor	algum!	Se	a	função	for	de	uma	variável	e	definida	em	um	intervalo	limitado,	a
tarefa	será	bem	mais	fácil:	é	só	construir	uma	tabela	com	a	variável	independente	percorrendo	o	domínio
e	variando,	digamos,	de	1	em	1	ou	de	0,5	em	0,5.	Olhando	para	a	tabela,	é,	então,	possível	determinar
estimativa	para	o	ponto	de	máximo	ou	de	mínimo.	Se	a	função	for	de	duas	variáveis,	z	=	f(x,y),	e	definida
em	um	conjunto	limitado,	um	processo	para	determinar	estimativa	é	o	seguinte:	Considere	o	menor	x0	tal
que	a	reta	x	=	x0	intercepte	o	domínio	da	função,	considere	a	função	z	=	f(x0,	y)	e	construa	uma	tabela	com
y	variando	de	1	em	1	(ou	de	0,5	em	0,5)	e	de	modo	que	o	ponto	(x0,	y)	permaneça	dentro	do	domínio	da
função.	Em	seguida,	construa	a	função	z	=	f(x1,	y),	com	x1	=	x0	+	h,	h	>	0	e	tal	que	a	reta	x	=	x1	intercepte
o	 domínio	 da	 função	 e	 assim	 por	 diante.	 Olhando	 para	 as	 tabelas	 construídas,	 é	 possível	 obter	 boas
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estimativas	 para	 o	 ponto	 de	 máximo	 ou	 de	 mínimo.	 Bem,	 esse	 é	 um	 caminho.	 Faço	 votos	 que	 você
descubra	um	bem	melhor!	No	exemplo	anterior,	x0	=	0	e	z	=	f(0,	y)	=	−y;	assim	o	menor	valor	de	z	=	f(0,
y)	será	−3	e	ocorrerá	em	(0,	3)	e	o	maior	será	0	e	ocorrerá	em	(0,	0).	Tomemos,	agora,	x1	=	1;	o	menor
valor	de	z	=	f(x1,	y)	=	2x1	−	y	=	2	−	y	será	−1	e	ocorrerá	em	(1,	3),	e	o	maior	valor	será	1	e	ocorrerá	em
(1,	1)	e	assim	por	diante.

Para	 encerrar	 a	 seção,	 sugerimos	 ao	 leitor	 resolver	 todos	 os	 problemas	 de	 máximos	 e	 mínimos
propostos	no	Cap.	16.	Por	favor,	se	alguma	resposta	não	estiver	correta,	avise-me	e	ficarei	muito	grato	a
você.

BRINCANDO	NO	MATHCAD

Para	 trabalhar	 no	Mathcad	 é	 muito	 simples.	 A	 partir	 do	 programa	 instalado,	 se	 sua	 versão	 for	 o
Mathcad	2000,	ao	abrir	o	programa	verá	a	seguinte	tela:*

Para	 iniciar,	 clique	 em	 View,	 na	 barra	 de	 menus,	 em	 seguida,	 clique	 em	 Toolbars:	 para	 gráfico,
escolha	a	opção	Graph;	para	cálculo	de	derivada	e	integral,	escolha	a	opção	Calculus;	para	entrar	com
desigualdades,	escolha	Boolean	etc.

Tudo	o	que	você	precisa	agora	é	aprender	a	digitar	expressão.	Para	começar,	clique	em	algum	ponto
da	 página;	 no	 ponto	 clicado	 aparecerá	 uma	 cruzetinha	 vermelha.	 É	 exatamente	 neste	 ponto	 que	 a
expressão	 a	 ser	 digitada	 começará.	 Como	 no	 Excel,	 todas	 as	 operações	 deverão	 ser	 indicadas.	 No
Mathcad,	o	separador	decimal	é	o	ponto.	Para	entrar	com	expoente,	digite	 	̂(acento	circunflexo),	como
no	Excel,	só	que	no	Mathcad	será	expoente	mesmo.	Para	entrar	com	fração,	digite	/	(dividir).	O	Mathcad
trabalha	com	dois	sinais	para	representar	o	igual:	um	deles	é	:=	(para	entrar	com	este	símbolo,	digite	:
(dois-pontos));	o	outro	é	=	(para	entrar	com	este	símbolo,	pressione	simultaneamente	as	teclas	Ctrl	e	=
ou	clique	no	ícone	desigualdades	e,	em	seguida,	clique	em	=).



Quando	se	usa	o	símbolo	:=

Utiliza-se	:=	para	definir	o	valor	de	uma	variável.	Por	exemplo:	para	entrar	com	x	=	5,	digitamos	x	:=	5.
Utiliza-se	 :=	quando	queremos	definir	 f(x,	y).	 Por	 exemplo,	 para	 entrar	 com	 f(x,	y)	=	x	 +	 y,	 devemos
digitar:	f(x,	y)	:=	x	+	y.

Quando	se	usa	o	símbolo	=

Utiliza-se	o	símbolo	=	nas	equações.	Por	exemplo,	para	entrar	com	a	equação	x	+	y	=	5,	digitamos:	x	+	y
=	5.

EXEMPLO	1.	Entre	com	a	expressão	x2	+	5xy.

Solução

Clique	no	ponto	em	que	você	quer	começar	a	expressão.	Agora,	digite:

x	 	̂2	espaço	+	5	*	x	*	y

para	obter

Clicando	fora	do	retângulo,	obtém-se:	x2	+	5	·	x	·	y.
■

Observação.	Digamos	que	você	queira	 trocar	 o	 expoente	2	por	 3:	 clique	 ao	 lado	do	2,	 apague	o	2	 e
digite	3;	em	seguida,	clique	fora	do	retângulo	para	obter	x3	+	5	·	x	·	y.	Para	substituir,	digamos,	o	5	por	6,
proceda	da	mesma	forma:	clique	ao	lado	do	5,	apague	o	5,	digite	6	e	clique	fora	do	retângulo.

EXEMPLO	2.	Determine	o	ponto	de	mínimo	da	função

z	=	x2	+	3xy	+	4y2	−	4x	−	13y.

Solução

Entre	com	a	função:

f(x,	y)	:=	x2	+	3	·	x	·	y	+	4	·	y2	−	4	·	x	−	13	·	y.

Entre	com	as	estimativas:

x	:=	0						y	:=	0.



Agora,	digite:

Minimize	(f,	x,	y)

de	modo	que	tenhamos

Digitando-se	=,	obtém-se	o	ponto	de	mínimo:

Assim,	(−1,2)	é	o	ponto	de	mínimo	da	função	(que	concorda	com	o	ponto	obtido	no	Excel).
■

Antes	de	prosseguir,	 observamos	que,	para	 entrar	 com	os	 sinais	de	desigualdade,	devese	 clicar	no
ícone	em	que	aparecem	os	símbolos	<≠≥	para	abrir	a	caixa	Boolean.	Para	entrar,	digamos,	com	>	é	só
clicar	no	símbolo	>.

EXEMPLO	3.	Determine	o	ponto	de	máximo	de	z	=	2x	−	y	com	as	restrições	x	≥	0,	x	+	y	≤	3	e	y	≥	x.

Solução

x	=	3	e	y	=	3	é	uma	estimativa	para	o	ponto	de	máximo.	Digite:

f(x,	y)	:=	2	·	x	−	y

x	:=	3	y	:=	3

given

x	≥	0	x	+	y	≤	3	y	≥	x

Maximize	 .

Assim,	o	valor	máximo	da	função	ocorre	para	x	=	1,5	e	y	=	1,5.
■

ATENÇÃO.	É	indispensável	a	palavra	given	após	as	estimativas	e	antes	das	restrições.

EXEMPLO	4.	Resolva	o	sistema



Solução

Inicialmente,	 observamos	 que	 este	 sistema	 é	 o	 mesmo	 que	 o	 da	 seção	 anterior.	 Vamos	 apenas
determinar	a	solução	próxima	de	(2,	1).	Digite:

x	:=	2	y	:=	1

given

x2	+	y	=	3
x2	+	2	·	x	·	y	+	5	·	y2	=	4

Find	

Assim,	x	=	1,6514	e	y	=	0,2727	é	a	solução,	com	4	casas	decimais,	que	está	próxima	de	(2,	1).	(Caso
queira	mais	casas	decimais,	clique	ao	lado	de	y,	em	seguida,	na	barra	de	ferramentas,	clique	em	Format,
escolha	a	opção	Result,	escolha	o	número	de	casas	decimais	e	clique	em	OK.)

■

EXEMPLO	5.	Esboce	o	gráfico	de	f(x,	y)	=	x2	+	y2

Solução

Digite:

f(x,	y)	:=	x2	+	y2.

Clique	no	ícone	assinalado	na	figura	a	seguir	para	abrir	a	caixa	Graph	e	clique	na	superfície	verde	(ou
então,	na	barra	de	ferramentas,	clique	em	Insert,	clique	em	Graph	e	escolha	surface	plot).	Em	seguida,	no
pequeno	 retângulo	preto	 situado	à	 esquerda	 logo	abaixo	do	 sistema	de	 coordenadas,	 digite	 f,	 como	na
figura	abaixo.	Para	obter	o	gráfico,	clique	fora	do	maior	retângulo	que	contém	o	sistema	de	coordenadas.
Com	o	mouse,	você	pode	colocar	a	figura	na	posição	que	desejar.	Para	outras	opções,	dê	dois	cliques	em
cima	do	gráfico	e	brinque	à	vontade.



EXEMPLO	6.	Calcule	 .

Solução

Clique	no	ícone	integral	para	abrir	a	caixa	que	contém	o	símbolo	de	integral.	Entre	com	a	integral	de
modo	a	obter

Para	calcular	a	integral,	proceda	da	seguinte	forma.	Se	você	quiser	apenas	o	valor	numérico,	digite	=.	Se
você	quiser	o	valor	exato,	na	barra	de	ferramentas,	clique	em	Symbolics,	em	seguida	clique	na	opção
Simplify.	 Escolhendo	 a	 segunda	 opção,	 o	 resultado	 será	 .	 (Para	 calcular	 limites,	 derivadas	 e
somatórias,	utilize	sempre	a	segunda	opção,	e	divirta-se.)

■

ATENÇÃO.	Para	entrar	com	o	símbolo	de	integral	definida,	clique	no	símbolo	respectivo	na	caixa	ao
lado;	 para	 entrar	 com	 o	 símbolo	 ∞,	 proceda	 da	 mesma	 forma.	 O	 ângulo	 que	 envolve	 a	 expressão	 é
controlado	pela	barra	de	espaço:	se	ele	estiver	envolvendo	somente	o	último	x,	basta	ir	pressionando	a
barra	 de	 espaço	 que	 ele	 acabará	 envolvendo	 toda	 a	 expressão.	 Para	 encerrar,	 vamos	 exibir	 alguns
gráficos	construídos	no	Mathcad.





(Foi	para	enganar	o	Mathcad!!!!)
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a)

b)

c)

d)

e)

f)

g)

h)

1.

2.

RESPOSTAS,	SUGESTÕES
OU	SOLUÇÕES

CAPÍTULO	1

1.2
Sim,	pois,	é	contínua.

Sim,	pois,	é	contínua.

Sim,	pois,	é	limitada	e	descontínua	apenas	em	x	=	1.

Sim,	pois,	é	contínua	em	[0,	1].

Sim,	pois,	é	limitada	e	descontínua	apenas	em	x	=	0.

Não,	pois,	não	é	limitada	em	 .

Sim,	pois,	é	limitada	e	descontínua	apenas	em	x	=	0.

Não,	pois,	não	é	limitada	em	[−1,	1].

CAPÍTULO	2

2.1



d)

1.

b)

3.	a)

b)

2.

x	se	0	≤	x	≤	1,	2x	−	1	se	1	≤	x	≤	2	e	3x	−	3	se	x	>	2.

2.2

F′	(x)	=	x,	x	∈	 .

x	>	1

x	<	1



c)

d)

4.

5.	a)

b)

1.

2.

3.

4.

6.

7.

−2	<	x	<	2

x	>	2

F(x)	=	x,	x	∈	 ;	F′	(x)	=	f(x)	para	x	≠	1
F′	(1)	=	1	≠	f(1)

2.4

Crescente	em	]−∞,	−2]	e	em	[0,	+∞[;	decrescente	em	[−2,	0].

Sugestão.	Verifique	que	[F(x)	−	F(−x)]′	=	0	em	[−r,	r].

Integrando	por	partes:	 .

CAPÍTULO	3

3.1



1.

2.

3.

4.

5.

6.

9.

+∞	se	

k	=	−2

3.2



1.	a)

b)

c)

d)

3.3

+∞

−1



3.	a)

b)

c)

d)

5.	a)

b)

1.	a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
l)
m)

3.	a)
b)
c)
d)

6.

7.

1.	a)

2

+∞

+1

0

+∞

3.4

converge
diverge
converge
converge
converge
converge
converge
converge
converge
converge
converge
converge

diverge
converge
converge
diverge

CAPÍTULO	4
4.1

2



b)

c)

d)

2.	a)
b)
c)
d)

1.	a)

b)
c)

2.

3.

1.	a)

b)

c)

3.

b)

4.

400
0,6
0,12
384

4.2

F(x)	=	0	para	x	<	0,	F(x)	=	 	para	0	≤	x	≤	5	e	F(x)	=	1	para	x	>	5

F(x)	=	0	para	x	≤	0	e	F(x)	=	1	−	e–x/2	para	x	>	0
F(x)	=	 	para	x	≤	0	e	F(x)	=	1	− 	e–x	para	x	>	0

4.3

E(x	=	 	e	Var(X)	=	

E(x	=	2	e	Var(X)	=	2
4.4

x	<	10



5.

1.

2.

2.

3.

3.

4.

1.

4.5

4.6

(−0,5)!	=	Γ(1	+	(−0,5))	=	Γ(0,5)	=	

4.	

4.7

CAPÍTULO	5

5.1



2.

3.

1.

2.

3.
b)
c)
d)

4.
a)
b)

5.

8p0,	onde	p0	é	a	população	no	instante	t	=	0.

A	equação	que	rege	o	resfriamento	é	 ,	onde	α	é	a	constante	de	proporcionalidade.

T(t)	=	90eαt	+	20	onde	 .

5.2

a)	=	Ae t	+	Be t

x	=	Ae−2t	+	Be−3t
y	=	A	+	Be7t
y	=	e5t[A	+	Bt]

A	equação	que	rege	o	movimento	da	partícula	é:	 ,	pois.	m	=	1.
x(t)	=	e−t	(1	+	t).	Desenhe	o	gráfico.
x(t)	=	(1	−	t)e−t.	Desenhe	o	gráfico.

x(t)	=	(2	−	e)e−2t	+	(2e	−	3)e−t

5.3



6.

7.
b)
c)

5.4

x	=	et	sen	t

a)	c	>	2
c	=	2
0	<	c	<	2

5.5



5.

		7.
b)

Sugestão.	Considere	os	casos	w	=	w0	e	w	≠	w0.

CAPÍTULO	6
6.3

a)	(x,	y)	=	(2,	−5)	+	λ(1,	1),	λ	∈	
(x,	y)	=	(1,	−2)	+	λ(−1,	2),	λ	∈	



		8.
b)

		9.
b)

10.
b)

12.

13.
b)

14.	a)
b)

12.

a)	(x,	y)	=	(1,	2)	+	λ(1,	2),	λ	∈	
(x,	y)	=	(2,	−2)	+	λ(1,	3),	λ	∈	

a)	(2,	1,	3)	·	[(x,	y,	z)	−	(1,	1,	1)]	=	0	ou	2x	+	y	+	3z	=	6
(−2,	1,	2)	·	[(x,	y,	z)	−	(2,	1,	−1)]	=	0	ou	2x	−	y	−	2z	=	5

a)	(x,	y,	z)	=	(0,	1,	−1)	+	λ	(1,	2,	−1),	λ	∈	
(x,	y,	z)	=	(2,	1,	−1)	+	λ	(2,	1,	3),	λ	∈	

(x,	y,	z)	=	(1,	2,	−1)	+	λ	(3,	0,	−3),	λ	∈	 	(tal	reta	é	paralela	à	direçãao	de	 	=	(3,	0,	−3)).

a)	 	=	(5,	−4,	−3)
	=	(4,	−2,	8)

	·	[(x,	y,	z)	−	(1,	2,	1)]	=	0	ou	x	−	y	+	z	=	0
	·	[(x,	y,	z)	−	(0,	1,	2)]	=	0	ou	−	4x	+	y	+	3z	=	7

6.4

Sejam	α	e	β	dois	reais	quaisquer	tais	que	α	 	+	β	 	=	 .	Segue	que	 	·	(α	 	+	β	 )	=	 	·	 ;	daí	α(
	·	 )	+	β( 	·	 )	=	0	e,	portanto,	α	=	0.	Do	mesmo	modo,	 	·	(α 	+	β )	=	 	·	 	e,	portanto,	α( 	·	
)	+	β( 	·	 )	=	0;	logo,	β	=	0,	pois.	 	·	 	=	0	e	 	·	 	=	1.	Fica	provado,	assim,	que	quaisquer	que

sejam	os	reais	α	e	β,	α 	+	β 	=	 	⇒	α	=	β	=	0.	Portanto,	 	e	 	são	linearmente	independentes.



1.
b)
c)
d)
e)
f)
g)
h)

2.
b)
c)
d)
e)

b)
c)
d)
e)
f)
g)
h)

f)

6.5

a)	É	aberto
Não	é	aberto
É	aberto	(conjunto	vazio)
Não	é	aberto
É	aberto	(conjunto	vazio)
É	aberto
É	aberto
Não	é	aberto

a)	{(x,	y)	∈	 	|x2	+	y2	≤	1}
ϕ
{(0,	1)}
{(x,	y)	∈	 |x	+	y	≥	1}
{(x,	y)	∈	 |x	=	1,	1	≤	y	≤	2}

7.	a)	É	fechado
Não	é	fechado
É	fechado
Não	é	fechado
É	fechado
É	fechado
É	fechado
Não	é	fechado

CAPÍTULO	7
7.1



7.2





2.
b)

3.
b)

1.
b)
c)
d)

2.

3.

a)	0	<	t	≤	1

a)	− 	<	t	<	−1	ou	2	≤	t	<	
− 	≤	t	≤	 ,	t	≠	0

7.3

a)	3t	+	tsent	+	2t2

(e−tt,	e−t	sen	t,	2e−t)
(t	−	6,	sen	t	−	2t,	2	−	2t2)
(t2	sen	t	−	2t,	6	−	t3	sen	t2	−	3	sen	t)

(2	+	t2)	 	+	(t3	−	t)	 	−	3t

(t)	·	 (t)	=	1	+	t
7.4



3.
b)

5.	a)

6.

a)	{t	∈	 |	t	≥	0}
{t	∈	 	|	t	≥	0}

;	pelo	teorema	do	confronto,	

.

Como	 	é	contínua	em	[a,	b],	|| (t)	também	será.	Segue	que	|| (t)||	é	limitada	em	[a,	b],	ou	seja,
existe	M	<	0	tal	que	|| (t)||	≤	M	em	[a,	b].

7.5



3.

4.

5.

7.

9.	a)

b)

3.

Seja	F	=	(F1,	F2,	...,	Fn);	sendo	F′(t)	=	 	em	I,	resulta	 	=	0	em	I,	para	i	=	1,	2,	...,	n.	Segue	que
existem	constantes	k1,	k2,	...,	kn,	tais	que	Fi(t)	=	ki,	para	todo	t	em	I,	(i	=	1,	2,	...,	n).	Portanto.	F(t)
=	k	em	I,	onde	k	=	(k1,	k2,	...,	kn).

Verifique	que	 	em	I,	e	use	o	Exercício	3.

Sugestão:	para	 .

,	ou	seja,	 	são	ortogonais.

Sugestão.	 (t)	=	v(t) (t).

7.6

Observe	que	 	e	aplique	o	teorema	fundamental	do	cálculo.

7.7



1.
b)
c)
d)

2.
b)

CAPÍTULO	8

8.1

a)	1
3a	+	2x
3
2

a)	{(x,	y)	∈	 |	x	≠	−2y}



4.

5.
b)
c)
d)

f(x,	y)	=	ax	+	by,	onde	a	e	b	devem	ser	determinados	de	modo	que	f(1,	0)	=	2	e	f(0,1)	=	3.	Tem-se
a	=	2	e	b	=	3.	Assim:	f(x,	y)	=	2x	+	3y.

a)	homogênea	de	grau	zero.
homogênea	de	grau	2.
não	é	homogênea.
homogênea	de	grau	−2.



1.

b)

d)

8.2.

a)	1	−	x2	−	y2	=	c	ou	x2	+	y2	=	1	−	c(c	≤	1)

x	+	3y	=	c

As	curvas	de	nível	são	circunferências	com	centros	na	origem.



e)

f)

g)

i)

As	curvas	de	nível	são	retas	paralelas	a	x	+	y	=	0.

As	curvas	de	nível	são	as	circunferências	x2	+	y2	=	1	−	c2,	com	0	≤	c	≤	1.

O	gráfico	de	g	é	a	parte	da	superfície	esférica	x2	+	y2	+	z2	=	1,	correspondente	a	z	≥	0.

x2	=	c(0	≤	c	≤	1);	x	=	−

As	curvas	de	nível	são	as	circunferências	x2	+	y2	=	c2,	c	≥	0.



j)

l)

m)

n)

y	=	x	é	a	curva	de	nível	correspondente	a	c	=	0.	Para	c	>	0,	a	curva	de	nível	é	o	par	de	retas	y
=	x	+	 	e	y	=	x	−	 .

As	curvas	de	nível	são	as	elipses	x2	+	4y2	=	1	−	c2	(0	≤	c	≤	1).

As	curvas	de	nível	são	as	circunferências	 .

As	curvas	de	nível	são	as	circunferências	 .



o)

2.
b)

c)
d)

e)
f)

As	curvas	de	nível	são	retas	x	=	c	(c	≥	0).

a)	x	−	2y	=	c	(c	∈	 )
	⇒	y	=	c(x	−	2),	x	≠	2

(1	+	c)	y	=	(1	−	c)	x	(c	∈	 )
c	(y	−	1)	=	x	(c	∈	 )

xy	=	c	(c	∈	 )
x2	−	y2	=	c	(c	∈	



g)
h)

i)

j)

4.	a)

4x2	+	y2	=	c(c	≥	0)
c	=	3x2	−	4xy	+	y2

cy2	=	(1	−	c)x2	(0	≤	c	≤	1)
Se	c	=	0,	x	=	0
Se	c	=	0,	x	=	0	ou	y	=	0
Se	c	≠	0,	

f(1,	1)	=	3	é	é	o	valor	mínimo	de	f.	Não	admite	valor	máximo.



b)
c)

d)

e)

f)
g)

5.	a)
b)
c)

d)

6.

Não	admite	valor	máximo,	nem	mínimo.
Zero	é	o	valor	mínimo	de	f;	este	valor	é	atingido	nos	pontos	(x,	0),	x	≥	0,	ou	(0,	y),	y	≥	0.	Não
há	valor	máximo.
Valor	máximo:	1;	este	valor	é	atingido	nos	pontos	(x,	0),	x	≠	0.	O	valor	mínimo	é	zero,	que	é
atingido	nos	pontos	(0,	y),	y	≠	0.

	é	o	valor	mínimo	de	f	em	A;	f	não	admite	valor	máximo	em	A.
2	é	o	valor	máximo,	que	é	atingido	em	(0,	0):	f(0,	0)	=	2.	Não	há	valor	mínimo.

	 é	 o	 valor	 máximo;	 	 é	 o	 valor	 mínimo.	 (Sugestão.	

,	fornece	os	valores	de	f	sobre	o	conjunto	4x2	+	y2	=	1,	y	≥	0.)

f(0,	0)	=	3	é	o	valor	mínimo	e	f(2,	0)	=	7	o	valor	máximo.
f(1,	3)	=	4	é	o	valor	máximo	e	f(0,	0)	=	0	o	valor	mínimo.
f(−1,	1)	=	− 	é	o	valor	máximo	e	f(0,	2)	=	−2	o	valor	mínimo.

f(3,	0)	=	0	é	o	valor	mínimo	e	 	é	o	valor	máximo.

O	que	se	quer	são	os	valores	máximo	e	mínimo	de	z	=	(5	−	t)	(t2	+	3)	em	[0,	4].	Altura	máxima:
24.	Altura	mínima:	



1.
b)

8.3

a)	É	uma	esfera	de	centro	(0,	0,	0)	e	raio	1.
É	o	semiespaço	abaixo	do	plano	z	=	1.



1.
b)
c)
d)
e)
f)
g)
h)

4.

CAPÍTULO	9

9.1

a)	0
Não	existe
0
Não	existe
Não	existe
Não	existe
Não	existe
Não	existe

0



5.

6.

7.

8.

b)

c)

d)

e)

2.

5.

1.	a)

f)
g)

Não	existe.

De	 	g(u)	=	L	segue	que	para	todo	∈	>	0,	existe	δ1	>	0,	tal	que

	0	<	|u	−	a|	<	δ1	⇒	|g(u)	−	L|	<	∈

De	 	f(x,y)	=	a,	segue	para	o	δ1	>	0	acima,	existe	δ	>	0	tal	que

0	<	||(x,y)	−	(x0,	y0)||	<	δ	⇒	|f(x,y)	−	a|	<	δ1

Como	a	∉	Dg	e	Im	f	⊂	Dg,	resulta	f(x,y)	≠	a	para	todo	(x,y)	∈	Df.	Assim,

1

0.

9.2

{(x,y)	∈	 	|	2x2	+	32	≤	6}

{(x,y)	∈	 	|	x	>	y}

{(x,y)	∈	 	|	x2	+	y2	<	1}

{(x,y)	∈	 	|	(x,y)	≠	(0,0)}

Seja	B	=	{(x,y)	∈	 	|	f(x,y)	<	c}.	Precisamos	provar	que	para	todo	(x0,	y0)	∈	B	existe	uma	bola
aberta,	de	centro	(x0,	y0).	contida	em	B.	Como	 f	é	contínua	em	(x0,	y0),	 tomando-se	∈	>	0,	com
f(x0,	y0)	+	∈	<	c.	existe	r	>	0	(como	A	é	aberto,	podemos	tomar	r	de	modo	que	a	bola	aberta	de
centro	(x0,	y0)	e	raio	r	esteja	contida	em	A)	tal	que

||	(x,	y)	−	(x0,	y0)	||	<	r	⇒	f(x,	y)	<	f(x0,	y0)	+	e	<	c

e,	portanto,	V	⊂	B;	logo,	B	é	aberto.	(V	é	a	bola	aberta	de	centro	(x0,	y0)	e	raio	r	>	0.)



1.

3.	a)

b)

6.

7.

10.

CAPÍTULO	10

10.1

4

−	4



13.

15.

16.

18.

19.

20.

21.

23.

b)

c)

d)

a)	z(t)	=	f(t,t)	=	2	t2

(x,	y,	z)	=	(1,	1,	2)	+	λ	(1,	1,	4),	λ	∈	
Verifique	que	(1,	1,	2)	pertence	ao	plano	e	que	γ'	(1)	é	ortogonal	ao	vetor



24.

25.

29.

b)

c)

d)

e)

f)

z(t)	=	(x	(t))2	+	(y	(t))2	⇒	z'	(t)	=	2x	(t)	x'	(t)	+	2y	(t)	y'	(t).	Segue	que	γ'	(0)	=	(x'	(0),	y'	(0),	2x'	(0)
+	2y'	(0)).	Verifique	que	(1,1,2)	pertence	ao	plano	e	que	γ'	(0)	é	ortogonal	a

O	plano	determinado	por	T1	e	T2	passa	pelo	ponto	(x0,	y0	f(x0,	y0))	e	é	normal	ao	vetor

A	equação	do	plano	é	então:

a)	(0,0)

Não	há

(1,1),	(1,	−1),	(−1,	1),	(−1,	−1)

(0,0)	(1,	−1)	e	(−1,	1)

10.2



1.

4.	c)

a)

b)

6.	a)

b)

c)

1.	a)

d)

4

8

8

8

8

CAPÍTULO	11

11.1

Portanto	 f(x,y)	 é	 diferenciável	 em	 todo	 (x,	 y)	 ∈	 ,	 ou	 seja	 f	 (x,	 y)	 =	 xy	 é	 uma	 função
diferenciável.



2.	a)

b)

c)

1.	a)

2.	a)

b)

Segue	 que	 f	 é	 diferenciável	 em	 todo	 (x,	 y)	 ≠	 (0.	 0),	 ou	 seja,	 f(x,	 y)	 =	 	 é	 uma	 função
diferenciável.

	f(t,0)	=	1	e	 	f	(0,t)	=	−1,	logo,	f	não	é	contínua	em	(0,0),	portanto,	f	não	é	differenciável
em	(0,0).

11.2

	 são	contínuas	em	 ,	 logo	 f	 é	 differenciável	 em	 ,	ou	 seja,	 f	 é	 uma
função	diferenciável.

f	não	é	contínua	em	(0,	0),	logo,	não	é	diferenciável	neste	ponto.	Em	 	−	{(0.	0)}	as	derivadas
parciais	são	contínuas,	 logo	 f	 é	diferenciável	em	 todos	os	pontos	deste	conjunto.	Assim,	 	 −
{(0,	0)}	é	o	conjunto	dos	pontos	em	que	f	é	diferenciável.

Em	 	−	{0,0)}	as	derivadas	parciais	são	contínuas,	 logo	 f	é	diferenciável	em	todos	os	pontos
deste	conjunto.



1.	a)

b)

c)

d)

e)

f)

2.

3.

4.

5.	a)

b)

8.

9.

11.	a)

b)

c)
d)

12.

Em	(0,	0),

não	existe,	logo	f	não	é	diferenciável	em	(0,	0).	Assim,	IR2	−	{(0,	0)}	é	o	conjunto	dos	pontos	em
que	f	é	diferenciável.

11.3

z	=	4x	+	2y	−	4;	(x,	y,	z)	=	(1,	1,	2)	+	λ	(4,	2,	−1)

z	=	2y	−	1;	(x,	y,	z)	=	(0,1,1)	+	λ	(0,	2,	−1)

z	=	−8x	+	2y	+	8;	(x,	y,	z)	=	(l,	−1,	−2)	+	λ	(−8,	2,	−1)

z	=	9x	−	8y;	(x,	y,	z)	=	(2,	2,	2)	+	λ	(9,	−8,	−1)

x	+	6y	−	2z	=	3

(x,	y,	z)	=	(1,	1,	1)	+	λ	(2,	1,	3)

z	=	2x	+	3y	+	3

z	=	6x	+	6y	−	18



14.

1.	a)

b)

c)

d)

e)

f)

2.	a)

b)

3.	a)

b)

c)

4.

5.

6.

7.

Observação.	As	derivadas	parciais	 	foram	obtidas	diretamente	da	equação	

11.4

dz	=	3x2y2	dx	+	23y	dy

dz	=	y	cos	xy	dx	+	x	cos	xy	dy

du	=	2s	es2	−	t2	ds	−	2t	es2	−	t2	dt

Δz	≅	dz	e	dz	=	(ex2	−	y2	+	2x2ex2	−	y2	dx	−	2	xy	ex2	−	y2	dy.	Fazendo	x	=	1,	y	=	1,	dx	=	0,001	e	dy	=
0,002,	resulta	Δz	≅	0,03	−	0,004,	ou	seja,	Δz	≅	0,026.

Para	 x	 =	 1	 e	 y	 =	 1	 tem-se	 z	 =	 1.	 Assim,	 1	 +	 0,026	 =	 1,026	 é	 um	 valor	 aproximado	 para	 z
correspondente	a	1,01	e	1	002.

2,9966

A	=	xy;	dA	=	y	dx	+	x	dy.	Assim,	ΔA	≅	y	dx	+	x	dy	onde	x	=	2,	y	=	3,	dx	=	0,01	e	dy	=	−0,03,	ou
seja,	ΔA	≅	−0,03.

V	=	πr2h	é	volume	do	cilindro	de	altura	h	e	 raio	da	base	r;	dV	=	πrh	dr	+	πr2	dh.	Sendo	ΔV	o
volume	do	material	utilizado	na	caixa,	ΔV≅	2πrh	dr	+	πr2	dh,	onde	r	=	1,	h	=	2,	dr	=	0,03	e	dh	=
0,03,	ou	seja,	ΔV	≅	0,15π.

ΔP	≅	−5	watts.



8.

9.

11.	a)

b)

c)

d)

12.

1.	a)

b)

c)

d)

2.	a)

b)

c)

d)

3.

(1,	01)2,03	≅	1	+	dZj	onde	dz	é	a	diferencial	de	z	=	xy,	no	ponto	(1,	2),	relativa	aos	acréscimos	dx
=	0,01	e	dy	=	0,03.	Ou	seja,	(1,01)2,03	≅	1,02.

Δz	=	dz	onde	dz	é	a	diferencial	de	z	=	 ,	no	ponto	(3,	4),	relativa	aos	acréscimos	dx	=	0,01
e	dy	=	−0,1.

dw	=	yz	+	xz	dy	+	xy	dz

dx	=	e2u	+	2v	−	t2	(2	du	+	2	dv	−	2t	dt)

ds	=	2xyz	(1	+	x2)yz	−	1	dx	+	(1	+	x2)yz	ln	(1	+	x2)	[z	dy	+	y	dz]

11.5

(2xy,	x2)

ex2	−	y2	(2x	 	−	2y	 )

(2x,	2y,	2z)

(2xz2	(x2	+	y2	+	1)z2	−	1,	2yz2	(x2	+	y2	+	1)z2	−	1,	2z(x2	+	y2	+	1)z2	ln	(x2	+	y2	+1))

▽	f(x,	y)	=	(2x,	−	2y)



4.

5.

7.	a)

b)

c)

d)

11.	b)

c)

	f(x0,	y0)	=	y0	 	−	x0	 .	Observe	que	▽	f(x0,	y0)	é	normal	a	x0	 	+	y0	 	:▽	f(x0,	y0)	é	tangente	em
(x0,	y0)	à	circunferência	x2	+	y2	=	1.

Observe,	ainda,	que	para	todo	(x0,	y0)	na	circunferência	x2	+	y2	=	1,	||	▽f(x0,	y0)	||	=	1.

Derivando	em	relação	a	t	os	dois	membros	de	(x(t))2	+	(y(t))2	=	1,	resulta:

2x(t)	x'	(t)	+	2y	(t)	y'	(t)	=	0

Para	t	=	t0,	(2x0,	2y0)	·	γ'	(t0)	=	0,	ou	seja,	▽f(x0,	y0)	·	δ'	(t0)	=	0.	δ(t)	=	(cos	t,	sen	t)	é	uma	curva
cuja	imagem	está	contida	na	curva	de	nível	x2	+	y2	=	1.

f'	=	(x,	y)	=	(y,	x)

f'	=	(x,	y)	=	xx	−	y	ln	2(1,	−1)

▽	f(x0,	y0,	z0)	·	[(x,	y,	z)	−	(1,	1,	1)]	=	0
(2,	8,	18)	·	[(x,	y,	z)	−	(1,	1,	1)]	=	0

CAPÍTULO	12



1.	a)

b)

c)

2.	a)

b)

3.	a)

b)

4.

5.	a)

b)

6.

7.

8.

10.

14.

12.1

9t2	cos	3t3

−4	sen	t	cos	t

0

1

g'	(t)	=	−	1.

x	=	2	cos	t,	y	=	sen	t	é	uma	parametrização	da	elipse	 .	Basta	mostrar	que	g'	(t)	=	0	4	em	 ,
onde	g	(t)	=	f(2	cos	t,	sen	t).	Observe	que	a	função	g	fornece	os	valores	de	f	sobre	a	elipse	dada.



16.

18.

19.

20.

21.

b)

22.

30.

a)	

g'	(0)	=	8.

Observação.	Poderia	ter	feito	g	(x,	y)	=	x	f	(u,	v,	w),	u	=	x2	+	y,	v	=	2y	e	w	=	2x	−	y.	Teríamos,
então:

f(x,	y)	=	φ	 	onde	φ	(u)	é	uma	função	diferenciável	qualquer.



32.

1.

2.	a)

b)

3.

b)

4.

8.	a)

10.

11.	a)

b)

c)

d)

b)

12.2

2(x	−	y)

−2xy2
−2[s	+	3r]

2t[−9	+	2s]



12.	a)

b)

13.	a)

b)

15.	a)

b)

1.	a)

b)

2.

3.	a)

b)

4.

5.

6.	a)

b)

c)

d)

7.

CAPÍTULO	13

13.1

(x,	y)	=	(1,	3)	+	λ	∈	
γ(t)	=	( 	cos	t,	 	sen	t)

Reta	tangente:	(x,	y)	=	(2,	5)	+	λ	(−	2,	5),	λ	∈	

Reta	normal:	(x,	y)	=	(2,	5)	+	λ	(5,	2),	λ	∈	

=	(4,	2)	·	[(x,	y)]	−	(1,	2)]	=	0	y	−	2	=	−2	(x	−	1).

y	=	−4x	+	3

y	=	−2x	+	3	ou	y	=	−2x	−	3

f(x,	y)	=	φ(2x	−	3y)	onde	φ	(u)	é	uma	função	derivável	qualquer.

f(x,	y)	=	φ(x	+	y)	onde	φ	(u)	é	uma	função	derivável	qualquer.

f(x,	y)	=	φ(x	−	y)	onde	φ	(u)	é	uma	função	derivável	qualquer.

f(x,	y)	=	φ(x2	+	y2)	onde	φ	(u)	é	uma	função	derivável	qualquer.

f(x,	y)	=	φ(x+	y),	com	φ(u)	definida	e	derivável	em	 ,	satisfaz	a	condição	 	Determine	uma
φ	(u)	tal	que	φ	(2)	=	3,	φ	(0)	=	1	e	φ	(1)	=	2.	Por	exemplo,	tome	φ	(u)	=	au2	+	bu	+	c	e	determine
a,	b	e	c	para	que	as	condições	acima	se	cumpram.



8.

9.

10.

a)

1.	a)

b)

c)

2.

3.

b)

f	(x,	y)	=	φ	(2x	+	y),	com	φ	(u)	definida	e	derivável	em	 ,	satisfaz	a	condição	 	Para	que

o	gráfico	de	f	contenha	a	 imagem	de	δ	é	preciso	que	φ	(3t)	=	 t
2

.	Basta	então	 tomar	 	A
função	f	(x,	y)	=	 	resolve	o	problema.

Seja	F	(x,	y)	=	x2	+	2y2.	Vamos	determinar	δ	de	modo	que,	para	todo	t,	δ'	(t)	=	▽	F	(δ	(t)),	ou	seja,
	 =	 2x	 e	 	 =	 4y.	Assim,	 x	=	 k1	e2t	 e	 y	 =	 k2	e4t.	 Para	 que	 a	 condição	 inicial	 δ	 (0)	 =	 (1,	 2)	 se
verifique	 devemos	 tomar	 k1	 =	 1	 e	 k2	 =	 2;	 δ	 (t)	 =	 (e2t,	2e4t)	 intercepta	 ortogonalmente	 todas	 as
curvas	da	família	x2	+	2y2	=	c	e	passa	por	(1,	2).

y	=	x

13.2

Plano	tangente:	(2,	−6,	8)	·	[(x,	y,	z)	−	(1,	−1,	1)]	=	0	ou	x	−	3y	+	4z	=	8.

Reta	normal:	(x,	y,	z)	=	(1,	−1,	1)	+	φ	(2,	−6,	8),	φ	∈	 .
Plano	tangente:	6x	+	3y	+	z	=	9.

Plano	tangente:	x	−	y	+	4z	=	4.

Reta	normal:	(x,	y,	z)	=	(2,	2,	1)	+	φ	(1,	−1,	4),	φ	∈	 .



4.

5.

6.	a)

b)

7.	a)

8.	a)

b)

9.

10.

1.	a)

b)

c)

3.

4.	a)

b)

5.

d)

2.	a)
b)
c)

x	+	y	+	 	z	=	2.

(x,	y,	z)	=	(1,	1,	1)	+	φ	(−2,	1,	1),	φ	∈	 .

(x,	y,	z)	=	(1,	1,	1)	+	φ	(1,	−1,	1),	φ	∈	 .
γ(t)	=	( 	cos	t,	 	sen	t,	1).

(x,	y,	z)	=	(0,	1,	0)	+	φ	(1,	−1,	1),	φ	∈	 .

F(x,	y,	z)	=	x2	+	y2	−	y4z4	+	8.

x	−	7y	−	16z	=	−28.

−5x	+	16y	−	9z	=	0.

x	−	2y	+	2z	=	7	ou	x	+	2y	+	2z	=	7.

13.4

0



6.	a)

7.

9.

10.

11.

12.

13.

14.	a)

b)

c)

d)

15.	a)

b)

16.	a)

b)

8.

(1,	3)

x	=	e−4t	e	y	=	2e−2t,	t	≥	0.

▽	f(1,	2)	=	(2,	1).	Seja	δ(t)	=	(1	+	2t,	2	+	t,	f(1	+	2t,	2	+	t)).	A	tangente	em	δ(0)	=	(1,	2,f(1,	2))	é	a
reta	procurada:	(x,	y,	z)	=	(1,	2,	2)	+	δ(2,	1,	5),	δ	∈	 .

(x,	y,	z)	=	(1,	2,	4)	+	δ(1,	2,	5)

Seja	 P'	 a	 projeção	 de	 P	 sobre	 o	 plano	 xy;	 P'	move-se	 sempre	 na	 direção	 e	 sentido	 de	máximo
crescimento	de	f.	Sendo	(x	(t),	y	(t)),	uma	parametrização	para	a	trajetória	de	P',	δ	(t)	=	(x	(t),	y	(t),
z	(t)),	onde	z	(t)	=	f	(x	(t),	y	(t)),	será	uma	parametrização	para	a	trajetória	de	P	:	δ	(t)	=	(t4,	t,	4t8	+
t2).

(0,	 ).

(Sugestão.	Aproveite	a	solução	do	problema	8.)

γ	(t)	=	(t,	t4,	5	−	t2	−	4t8),	0	≤	t	≤	1.

x2	+	2y2	=	17

−6	 	−	8	

0,1°C

0,08°C



1.	a)

b)

c)

d)

8.

11.

14.	a)

b)

1.	a)

b)

c)

2.

CAPÍTULO	14

14.1

−4xy	sen	(x2	−	y2)2

0

14.2



9.

10.

13.

14.

1.	a)

b)

c)

1.	a)

b)

c)

0

0

CAPÍTULO	15

15.1

f(2,3)	−	f(1,	1)	=	▽	f(1,	1)	=	▽	f( ,	 )	·	[(2,	3)	−	(1,	1)],	com	( ,	 )	no	segmento	de	extremos	(1,
1)	e	(2,	3).	Assim,	( ,	 )	é	solção	do	sistema

15.3

f(x,	y)	=	3x3y2	−	5x2	+	y	+	k

f(x,	y)	=	sen	xy	+	x3	−	xy	+	y3	+	k

f(x,	y)	=	ex2	+	y2	+	arctg	y	+	k



2.

3.

4.

5.

6.

7.

8.	a)

b)

c)

d)

e)

f)

9.

11.	a)

b)

c)

d)

12.	a)

b)

f(x,	y)	=	x2y3	−	x2	+	y2	−	y	−	8.

Sim,	pos	admite	função	potencial	φ(x,	y)	=	

Não,	pois	

φ(x,	y)	=	xy	+	y2	é	uma	função	potential,	logo,	 	é	conservativo.

Admite	função	potencial	φ	(x,	y)	=	ex2	–	y2,	logo	é	conservativo.

Como	 	é	conservativo,	existe	φ	(x,	y)	definida	em	A	tal	que	▽	φ	(x,	y)	=	 	(x,	y).	Pela	regra	d	da
cadeia,	 .	Portanto,

U	(x,	y)	=	3x2	+	y2

Não	é	conservativo

	(x,	y)	=	–▽U	=	(–4x,	–y).
	

Tendo	 em	 vista	 as	 condições	 iniciais,	 γ	 (t)	 =	 (cos	 2t,	 cos	 t).	 Como	 cos	 2t	 =	 2	 cos2	 t	 –	 1,	 a



b)

14.

1.	a)

b)

c)

2.	b)

3.

4.	a)

b)

13.	a)

imagem	de	γ	está	contida	na	parábola	x	=	2y2	–	1.

Como	y	=	cos	t,	a	imagem	de	γ	é	arco	de	parábola	x	=	2y2	–	1,	–1	≤	y	≤	1.

γ	(t)	=	(cos	 t	–	sen	 t,	cos	 t	+	sen	 t)	=	 	A	 trajetória	é	a	circunferência	de
centro	na	origem	e	raio	 .

γ	(t)	=	(cos	t,	2	sen	t).	A	trajetória	é	a	elipse	 .

15.4

1	+	x	+	5y

5	+	(x	–	1)	+	7	(y	–	1)

3x	+	4y

Inferior	a	10–2

|	f	(x,	y)	–	P1	(x,	y)	|	<	7	(x	–	1)2	+	6	(y	–	1)2.

4,931

10–3

15.5



1.	a)

b)

2.

1.

2.

3.

4.

5.

6.

1.	a)

b)

c)

d)

e)

f)

xy

6	+	8	(x	–	1)	+	10	(y	–	1)	+	5	(x	–	1)2	+	4	(x	–	1)	(y	–	1)	+	9	(y	–	1)2

6	+	8	(x	–	1)	+	10	(y	–	1)	+	5	(x	–	1)2	+	2	(x	–	1)	(y	–	1)	+	9	(y	–	1)2	+	(x	–	1)3	+	+	2	(x	–	1)2	(y	–
1)	+	3	(y	–	1)3.

CAPÍTULO	16

16.2

	é	candidato	a	ponto	de	mínimo	local.

Não	admite	extremante	local:	 	é	o	único	ponto	crítico	e	não	pode	ser	extremamente	local,

pois,	

(0,	0)	e	 	candidatos	a	ponto	de	máximo	local.

	é	candidato	a	ponto	de	mínimo	local.	O	ponto	crítico	(0,	0)	não	é	extremante	local,	pois	x	=
0	não	é	extremante	local	de	g	(x)	=	f	(x,	0)	=	x3.

(–	1,	–	1)	é	candidato	a	ponto	de	mínimo	local.

(1,	1)	é	candidato	a	ponto	de	mínimo	local;	(–	1,	–	1)	é	candidato	a	ponto	de	máximo	local.	Os
pontos	críticos	(1,	–1)	e	(–1,	1)	não	são	extremantes	locais.

16.3

	ponto	de	mínimo	local.	(Conforme	Exercício	2,	é	ponto	de	mínimo	global.)

(1,	 1)	 é	 ponto	 de	mínimo	 local,	mas	 não	 global	 (f	 (0,	 y)	 =	 y3	 –	 4y	 +	 5	 tende	 a	 –	∞	 quando	
	é	ponto	de	sela.

(–1,	1)	é	ponto	de	sela.	 	é	ponto	de	mínimo	local,	mas	não	global	f	(x,	0)	=	x
3
	–	5x	tende	a

–∞	para	x	→	–	∞).

	é	ponto	de	sela.

	são	pontos	de	sela.

Não	admite	ponto	crítico.



g)

h)

i)

j)

l)

3.	a)

b)

c)

d)

e)

f)

4.

6.	a)

b)

Os	extremantes	locais	de	f	coincidem	com	os	extremantes	locais	de	g	(x,	y)	=	x2	+	2xy	+	4y2	–	6x
–	12y;	(2,	1)	é	ponto	de	mínimo	local.	(Conforme	Exercício	2,	é	ponto	de	mínimo	global.)

(0,	0)	ponto	de	máximo	local;	(0,	1),	(0,	–1),	(1,	0)	e	(–1,	0)	pontos	de	sela;	(1,	1),	(1,	–1),	(–1,
1)	e	(–1,	–1)	pontos	de	mínimo	locais	(verifique	que	são	pontos	de	mínimo	globais).

(1,	2)	é	ponto	de	mínimo	local.

(–1,	–1)	é	ponto	de	mínimo	local.

(1,	1)	é	ponto	de	mínimo	local;	(1,	–1)	e	(–1,	1)	pontos	de	sela;	(–1,	–1)	ponto	de	máximo	local.

	ponto	de	mínimo	global.

Não	admite	extremantes,	pois,	para	todo	 	O	ponto	crítico	 	é	de
sela.

	ponto	de	máximo	global.

	é	ponto	de	mínimo	global.

Não	admite	extremante;	(2,	–2)	é	ponto	de	sela.	[Desenhe	as	imagens	das	curvas	γ1	(t)	=	(t,	–2,	f
(t,	–2))	e	γ2	(t)	=	(2	–	3t,	–	2	+	2t,	z	(t))	onde	z	(t)	=	f	(2	–	3t,	–	2	+	2t)].

(1,	2)	ponto	de	mínimo	global.

	[Sugerimos	desenhar	a	reta	encontrada	e	marcar	os	pontos	dados.]



b)

8.

9.

10.

11.

13.

14.

15.	a)

b)

c)

d)

1.	a)

b)

89,4

(λ,	2λ,	2)	e	(μ,	μ,	4	+	μ)	são	pontos	arbitrários	de	r	e	s,	respectivamente;

é	a	distância	entre	eles.	Basta,	então,	determinar	(λ,	u)	que	minimiza

g	(λ,	u)	=	(λ	–	u)
2
	+	(2λ	–	u)

2
	+	(2	+	u)

2
.	P	=	(–1,	–2,	2)	e	Q	=	

(1,	2,	1).

L	=	p1x	+	p1y	–	[x2	+	2y2	+	2xy]	=	120x	+	200y	–	3x2	–	3y2	–	2xy.	A	produção	que	maximiza	o	lucro
é	x	=	10	e	y	=	30.

L	=	5z	–	(2x	+	y).	A	produção	z	que	maximiza	o	lucro	é	a	correspondente	a	x	=	15,8	e	y	=	20,4,	ou
seja,	z	=	1576,2.

(1,	0,	2)	ponto	de	mínimo	local	(verifique	que	é	ponto	de	máximo	global).

(1,	1,	1)	ponto	de	mínimo	local:	(–1,	–1,	–1)	ponto	de	máximo	local;	(1,	1,	–1),	(1,	–1,	1);	(1,	–1,
–1),	(–1,	1,	1),	(–1,	1,	–1)	e	(–1,	–1,	1)	não	são	extremantes	(veja	Exercício	16).

(–1,	1,	2)	não	extremante;	 	é	ponto	de	mínimo	local.

(3,	–	2,	–	1)	não	é	extremante.

16.4

Valor	máximo	é	6	e	é	atingido	em	(2,	0);	valor	mínimo	é	–3	e	é	atingido	em	(0,	3).



c)

d)

e)

f)

2.

3.

4.

5.

6.

7.

1.	a)

b)

c)

d)

e)

f)

g)

Valor	máximo	é	0	e	é	atingido	nos	pontos	(0,	y),	0	≤	y	≤	1.	O	valor	mínimo	é	–2	e	é	atingido	em
(1,	0).

Valor	mínimo	é	0	e	é	atingido	nos	pontos	(0,	y),	 	O	valor	máximo	é	 	que	é

atingido	em	

O	único	ponto	crítico	no	interior	de	A	é	(0,	0)	que	não	é	extremante.	Assim,	f	assumirá	os	valores
máximo	e	mínimo	na	fronteira	x2	+	y2	=	4	de	A;	g	(t)	=	f	(2	cos	t,	2	sen	t)	fornece	os	valores	de	f
na	fronteira.	O	valor	máximo	é	4,	sendo	atingido	nos	pontos	(0,	2)	e	(0,	–	2).	O	valor	mínimo	é	–
4,	sendo	atingido	nos	pontos	(2,	0)	e	(–	2,	0).

Valor	mínimo	é	0,	sendo	atingido	em	(0,	0).	Valor	máximo	é	2,	sendo	atingido	nos	pontos	(0,	1)	e
(0,	–1).

(0,	2)

Valor	máximo	é	25,	sendo	atingido	em	(0,	5).

O	problema	consiste	 em	maximizar	o	 lucro	L	=	10x	 +	 6y	 (x	 é	 quantidade	 do	 produto	 I	 e	y	 do
produto	II)	com	as	restrição:	x	≤	20,	y	≤	45,	5x	+	4y	≤	200,	10x	+	4y	≤	240,	x	≥	0	e	y	≥	0.	O	lucro
será	máximo	para	x	=	8	e	y	=	40.

(0,	1)	maximiza;	 	minimiza.

Observe	que	Q	(at,	bt)	=	t2	Q	(a,	b),	onde	a2	+	b2	=	1.

16.5

	é	ponto	de	máximo;	 	é	ponto	de	mínimo.

	é	ponto	de	máximo;	 	é	ponto	de	mínimo.

	ponto	de	mínimo.

	ponto	de	mínimo.

(2,	1)	e	(–	2,	–	1)	pontos	de	máximo;	(–	2,	1)	e	(2,	–	1)	pontos	de	mínimo.

(–	1,	1)	ponto	de	mínimo.

	ponto	de	mínimo;	 	e	 	pontos	de	máximo.



h)

i)

j)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

(2,	0)	ponto	de	máximo;	 	pontos	de	máximo.

(1,	1)	ponto	de	mínimo	local;	 	ponto	de	máximo	local.

	ponto	de	máximo,	 	ponto	de	mínimo.

x
2
	+	16y

2
	=	8;	o	ponto	de	tangência	é	

(2,	4).	[Sugestão.	Minimize	f	(x,	y)	=	(x	–	14)2	+	(y	–	1)2	com	a	restrição	y	=	x2.]

	O	ponto	de	tangência	é	 .

Valor	máximo	é	4,	sendo	atingido	em	(1,	1,	1).	O	valor	mínimo	é	–	4,	sendo	atingido	em	(–1,	–1,	–
1).

	[Sugestão.	Minimize	f	(x,	y,	z)	=	x
2
	+	y

2
	+	z

2
	com	a	restrição	x	+	2y	–	3z	=	4.]

	[Sugestão.	Minimize	x
2
	+	y

2
	+	z

2
	com	as	restrição	x	+	2y	+	z	=	1	e

	maximiza	f.

(1,	1)	e	(–1,	–1)	são	os	mais	próximos	da	origem;	 	são	os	mais	afastados.

Observação.	Sejam	 	sejam	u	e	v	as	componentes	de	(x,	y)	na	base	
	ou	seja,



12.

13.

	Verifique	que	a	mudança	de	coordenadas

transforma	a	equação	dada	na	equação	

	Verifique	que	a	mudança	de	coordenadas	 	transforma	a	equação
dada	na	equação	 	que	é	uma	parábola.

(1,	3)	e	(–1,	–3).	A	mudanφa	de	coordenadas

transforma	a	equação	dada	na	equação	 	que	é	uma	hipérbole:

Observe	que	 	são	os	versores	de	(1,	3)	e	(–	3,	1).



14.

15.

16.

18.

19.

20.

21.

22.

23.

25.

1.	a)

b)

2.

3.

1.	a)

b)

24.

(1,	1,	1).

12	cada	um.

Equilátero.

Cubo.

Cubo	de	aresta	1	m.

Cubo	de	aresta	

Paralelepipedo	de	arestas	 .

.

Temperatura	máxima	200.	Temperatura	mínima:	–200.

.

CAPÍTULO	17

17.1

17.3

(1,1);	sim



c)

2.

3.	a)

b)

b)

c)

2.	a)

b)

c)

1.	a)

z	=	0

17.4

R2	=	0,86532	(aproximado)

R2	=	0
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6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
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19.
20.
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22.
23.
24.
25.
26.
27.
28.
29.
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A
Ajuste	de	curva	pelo	método	dos	mínimos	quadrados,	351

na	HP-48G,	396
no	EXCEL,	397,	409

Ajuste	linear	com	duas	ou	mais	variáveis	independentes,	398
Ajuste	polinomia,	363,	398
Amortecimento	crítico,	90
Amortecimento	forte	ou	supercrítico,	90
Amplitude,	86
Ângulo,	109
Aplicativo	FIT	DATA	da	HP-48G,	396
Argumento,	81

B
Bola	aberta,	112

C
Cálculo	de	integral	de	função	limitada	e	descontínua	em	um	número	finito	de	pontos,	8
Campo	conservativo,	296
Coeficiente	de	determinação,	353,	361,	363,	404,	405
Coeficientes	da	reta	dos	mínimos	quadrados,	356
Combinação	linear,	111
Comprimento	de	curva,	139,	141
Conexo	por	caminhos,	conjunto,	291
Conjugado	de	número	complexo,	80
Conjunto

aberto,	113
compacto,	317
conexo	por	caminhos,	291
fechado,	115,	317
limitado,	115,	317

Conservação	do	sinal,	167
Conservativo,	campo	de	forças,	296
Contínua,	função,	126,	169
Correlação,	362
Cosseno	hiperbólico,	24
Critério	de	comparação	na	integral	imprópria,	38,	39
Curva

definição	de,	139
de	nível,	152
equipotencial,	159
parametrizada	pelo	comprimento	de	arco,	143

Curvatura,	144
raio	de,	144



D
Definindo	função	na	HP-48G,	407
Derivação	de	função	definida	implicitamente,	226
Derivada(s),	127

direcional,	257
parciais,	173,	186

de	ordens	superiores,	274,	278
Desigualdade	de	Schwarz,	108
Desigualdade	triangular,	109
Desvio	padrão,	52
Determinante	jacobiano,	232
Diagrama	de	dispersão,	352
Diferenciabilidade,	uma	condição	suficiente	para,	195
Diferencial,	205
Diferenciável,	função,	190
Distribuição	de	variável	aleatória

de	Rayleigh,	70
de	Weibull,	70
exponencial,	67
F	de	Snedecor,	70
gama,	68
normal	ou	de	Gauss,	55,	56
normal	padrão,	62
qui-quadrado,	69
t	de	Student,	69
uniforme,	67

E
Energia

cinética,	84
potencial,	84

Equação
amostral,	46
diferencial	linear,	de	1.ª	ordem,	com	coeficiente	constante,	71
diferencial	linear	homogênea,	de	2.ª	ordem,	com	coeficientes	constantes,	74
diferencial	linear,	de	3.ª	ordem,	com	coeficientes	constantes,	376
diferencial	linear	não	homogênea,	92
do	plano,	106

Espaço	vetorial,	101

F
Fase,	86
Fatorial,	67
Forma	polar	de	número	complexo,	80
Fórmula	de	Taylor	com	resto	de	Lagrange,	288,	305,	306
Função(ões)

com	gradiente	nulo,	290
dada	implicitamente	por	uma	equação,	176
dada	por	integral,	12,	25

imprópria,	33
de	distribuição,	50
de	duas	variáveis	reais	a	valores	reais,	147
de	uma	variável	real	a	valores	complexos,	365
de	uma	variável	real	a	valores	em	 n,	116,	119,	121



de	variável	aleatória,	60
densidade	de	probabilidade,	45
diferenciável,	190
energia	potencial,	297
gama,	64
homogênea,	150
integráveis,	6
não	integráveis,	1
polinomial,	149
potencial,	296

G
Gradiente,	207,	245

relação	entre	funções	com	mesmo	gradiente,	292
Gráfico	de	função	de	duas	variáveis	reais,	152

H
Hessiano,	312
HP-48G	(veja,	também,	variáveis	da	HP-48G)

aplicativo	FTT	DATA,	396
corrigindo	ou	visualizando	o	coeficiente	de	uma	variável,	380
menu	personalizado	na	HP-48G,	385

incluindo	variáveis	no,	391

I
Imagem	de	função,	116,	147
Imagem	ou	trajetória	de	uma	curva,	116,	139
Impulso	de	uma	força,	definição	de,	138
Integral

de	Riemann,	136
extensões	do	conceito	de,	28
imprópria,	28,	36

Isotermas,	159

L
Laplace,	transformada	de,	44
Limitada,	função,	5,	172
Limite,	123,	163

M
Mathcad,	416
Matriz	completa,	390
Matriz	escalonada,	390
Máximos	(mínimos),	307
Máximos	e	mínimos	no	Excel,	412
Média	aritmética,	51,	356
Método	dos	mínimos	quadrados,	315
Momento	de	inércia,	316
Movimento	harmônico	simples,	86



Movimento	oscilatório	amortecido	ou	subcrítico,	90
Multiplicadores	de	Lagrange,	324

N
Norma	de	um	vetor,	108
Normal

reta,	201,	253
vetor,	250,	253

Número
complexo,	78

adição,	79
multiplicação,	79
puro,	79
real,	79

P
Paraboloide

de	rotação,	154
elíptico,	154

Parametrização,	139
Perpendicularismo	ou	ortogonadismo,	102,	103
Plano	dos	mínimos	quadrados,	363
Plano	tangente,	201,	253
Polinômio	de	Taylor,	298,	302,	304,	306
Ponto

crítico	ou	estacionário,	310,	313
de	acumulação,	114
de	fronteira,	310
de	máximo	(mínimo),	156,	307

global	ou	absoluto,	307
local,	185,	307

de	sela,	310
interior,	112,	309,	313

Princípio	de	superposição,	98
Probabilidade,	46,	47
Produto	escalar,	102

na	HP-48G,	399
Produto	vetorial,	107,	107,	122
Pulsação,	86

R
Raio	de	curvatura,	144
Regra	da	cadeia,	212
Relação	de	Euler,	225,	368
Relação	entre	funções	com	mesmo	gradiente,	292
Reparametrização	de	curva	pelo	comprimento	de	arco,	144
Ressonância,	96,	100
Reta	dos	mínimos	quadrados,	351
Reta	normal,	201

S



Seno	hiperbólico,	24
Sistema	auxiliar,	346,	350
Solução	LSQ	ou	dos	mínimos	quadrados	de	sistema	linear,	341,	343,	346,	390
Solução	particular,	92-93
Solve	System	da	HP-48G,	386
Soma	de	Riemann,	136
Superfície	de	nível,	161

T
Teorema

das	funções	implícitas,	239-240
de	Pitágoras,	340
de	Schwarz,	276
de	Weierstrass,	172,	318
do	confronto,	166
do	valor	médio,	289

para	integral,	16
fundamental	do	cálculo,	19

Transformada	de	Laplace,	44

V
Valor

esperado	de	variável	aleatória,	52-53
máximo,	156,	307
mínimo,	156

Variação	da	quantidade	de	movimento,	139
Variância,	52-53
Variável

aleatória	contínua,	48
aleatória	discreta,	46

Variáveis	da	HP-48G
ABS,	401
BAN,	406
C2NA,	384
C2NX,	383
CST,	391
DOT,	399
FNNA,	385
FNNX,	385
LSQ,	389
MATR,	395
MEAN,	405
NMVA,	382
NMVX,	380
PREDY,	397
RREF,	390
RSD,	400
TNA,	385
TNX,	384
UTPC,	383
UTPF,	385
UTPN,	378
UTPT,	384

Versor,	144,	264
Vetor(es)

linearmente	independentes,	111



perpendiculares	ou	ortogonais,	104
tangente,	129
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