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PREFACIO

Este volume ¢ continuacdo do Volume 1. No Capitulo 1, destacamos as fungdes integraveis (de uma
variavel) que aparecem com mais frequéncia nas aplicacdes. Este capitulo podera ser omitido pelo leitor
que ja tenha estudado o Apéndice 4 do Volume 1. No Capitulo 2, estudamos, com relagdo a continuidade
e derivabilidade, as fun¢des dadas por integral, e, no atual Capitulo 3, as integrais improprias. No
Capitulo 4, que ¢ novo, sdo feitas varias aplicagdes das integrais improprias a Estatistica. No Capitulo 5,
estudamos as equagoes diferenciais lineares de 2.* ordem e com coeficientes constantes, ¢ no Capitulo 7,
as fungdes de uma variavel real com valores em [» com relacdo a continuidade, derivabilidade e
integrabilidade. Os Capitulos 8 a 16 sdo destinados ao estudo, com relagdo a continuidade e
diferenciabilidade, das fungdes de varias variaveis reais a valores reais. No Capitulo 17, novo,
introduzimos o conceito de solu¢do LSQ (ou solu¢do dos minimos quadrados) de um sistema linear, ¢
sao feitas algumas aplicacoes desse conceito a geometria, bem como ao ajuste, por uma funcao linear ou
polinomial, a um diagrama de dispersao.

Nesta 5.* Edicao, além dos capitulos novos (4 ¢ 17) e do novo visual das figuras, foi incluido,
também, o Apéndice 2, que trata do uso da calculadora HP-48G, do Excel e do Mathcad em topicos
tratados neste volume. Observamos que, por sugestdo de varios colegas, o antigo Capitulo 3 (Mais
algumas aplicagdes da integral. Coordenadas polares) foi deslocado para o Volume 1 (4.* Edig¢ao). Todas
essas modificagdes tém sido feitas com um unico objetivo: tornar o texto mais dindmico, mais pratico e
mais atual. E claro que muitas outras modificacdes ainda terdio que ser feitas, e para isso contamos com
sugestoes, ideias e criticas construtivas de professores, colegas e alunos, aos quais ficaremos muito
gratos.

Quanto aos exemplos e exercicios, pensamos té-los colocado em niimero suficiente para compreensao
da matéria. Como no Volume 1, procuramos dispor os exercicios em ordem crescente de dificuldade.
Com relagdo aos exercicios mais dificeis, vale aqui a mesma recomendagao que fizemos no prefacio do
Volume 1: ndo se aborrega caso ndo consiga resolver alguns deles; tudo que vocé terd que fazer nessas
horas ¢ seguir em frente e retornar a eles quando se sentir mais senhor de si.

Mais uma vez agradecemos, pela leitura cuidadosa do manuscrito, as colegas Elvia Mureb Sallum e
Zara Issa Abud. Agradecemos também a colega Lisbeth Kaiserliam Cordani, pela leitura e pelas varias
sugestoes do novo Capitulo 4, ¢ a Marcelo Pereira da Cunha pela revisao cuidadosa do texto. E, ainda,
com grande satisfacdo que agradecemos a colega Elza Furtado Gomide pela leitura, pelos comentarios e
sugestoes de manuscritos que deram origem as primeiras apostilas precursoras deste livro. Finalmente
agradecemos a colega Myriam Sertd Costa pela revisao cuidadosa do texto e pela inestimavel ajuda na
elaboracao do Manual do Professor.

Hamilton Luiz Guidorizzi
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1

FUNCOES INTEGRAVEIS

O objetivo deste capitulo ¢ destacar as fungdes integraveis que vao interessar ao curso. Este capitulo
podera ser omitido pelo leitor que ja tenha estudado o Apéndice 4 do Vol. 1.

1.1. ALGUNS EXEMPLOS DE FUNCOES INTEGRAVEIS E DE FUNCOES
NAO INTEGRAVEIS

Nesta sec¢do, apresentaremos alguns exemplos de fungdes integraveis e de fungdes ndo integraveis,
trabalhando diretamente com a defini¢do de integral de Riemann.

Antes de comegar a estudar os exemplos que apresentaremos a seguir, sugerimos ao leitor rever a
definicao de integral de Riemann apresentada na Se¢do 11.3 do Vol. 1.

EXEMPLO 1. Prove, pela defini¢do, que a fungao constante f(x) = k, x € [a, b], € integravel em [q, b] €
s

queJ fix)de =k(b— a)
[

Solugdo

Para toda particdo P: a=xo<x; <x2 <..<xi-1<xi<..<x,=b de [a, b] temse, independentemente
da escolha de ¢; em [xi- 1, x;], i variando de 1 a n,

" n n
Y fenan=Y kay=kY Ay =k - a).
i=1 i=l i=1

Segue que dado € > 0 e tomando-se um ¢ > 0 qualquer tem-se, independentemente da escolha dos ¢,

n
Y fle) Ay —k(b—a)=0<e

i=1

para toda parti¢ao de [a, b], com max Ax; < o. Logo,

R

lim f(c;) Ax; = k(b — a)
maxdx, — 0 ; s !

ou seja, f ¢ integravel em [a, b] e



h
f(x)dx =k(b— a). =

ol

Antes de passarmos ao proximo exemplo faremos a seguinte observacgao.

Observacao. De acordo com a defini¢ao de integral, sendo f integravel em [a, b], dado € > 0 existira 0 >
0 que s6 depende de €, mas ndo da escolha dos ¢, tal que

” b
z fle;) &x; — J flx)dx| < S
e a 2

para toda particao P de [a, b], com max Ax; < d. Segue que se P for uma parti¢ao de [a, ], com max Ax;
<o,esec;etTi(i=1,2,...,n) foremescolhidos arbitrariamente em [x:- 1, x;], teremos

R b
Y flen Ay — | fdd<<
- a 2

n
b £
D f@) Axi— | flody< =
=1 a
e, portanto,

n "

Z T(c;) Ax; — Z f(T)Ax;) | <€

i=1 i=1

para toda particao P de [a, b], com max Ax; < 0, independentemente da escolha de ¢; e T;. Deste modo, se
f for integravel em [a, b], duas somas de Riemann quaisquer relativas a uma mesma particdo P, com max
Ax; suficientemente pequeno, devem diferir muito pouco uma da outra, e o modulo da diferenca entre elas
devera ser tanto menor quanto menor for max Ax;.

EXEMPLO 2. (Exemplo de fun¢ao ndo integravel.) Prove que

so={srea
ndo € integravel em [0, 1].
Solugdo
SejaP:0xo<x1<x2<...<xi-1<x;<...<Xx,=1 uma particdo qualquer de [0, 1]. Se ¢y, ca, ..., ¢,

forem racionais



R H
. Y g <% w0
i=1 i=1

Se Tj. T2, .... T, forem irracionais
"
® Y f@) Ay =0.
i=1

De (1) e (2) e da observacao anterior segue que f ndo é integravel em [0, 1].

EXEMPLO 3. Sejaf: [0, 2] — R dada por

g [ee gkl
f{'"”_{] se x =1

2
Prove que ¢ integravel em [0, 2] e que J f(x)dx=0.
0
Solucao

Seja P uma particdo qualquer de [0, 2] e suponhamos que 1 € [xj- 1, x;].

Sel€ ]Xj—l, xj[)

H 0 sec; # 1
Z flep) Ax; = 1.&.}.}- se ¢

i=1

I
Sel=x; ec¢ =c¢=1, Z fle) Ax; = ﬂxj_ jiiR ,irj-.
-1 - i=1

Fica a seu cargo concluir que, em qualquer caso

R

Z f(c;) Ax; — 0| = 2 méx Ax;

i=1
independentemente da escolha dos c¢;. Portanto,

R

2
lim Z flc)) Ax; =0 = Jﬂ f(x) dx.

max .-'1'1._1"; — 0 4 I
!:



Observe que a fungdo do exemplo anterior ndo ¢ continua em [0, 2], entretanto, ¢ integravel em [0,
2].

EXEMPLO 4. Seja

[] se 0=y =1

(x)=
! 12 se l<x=<2.

2
Prove que ¢ integravel em [0, 2] e que L} f(x) dx=3.

Solucao

Consideremos a particdo 0 =xo <x; <... <x-; <x<... <Xx, =2 e suponhamos que 1 € [xj_1, x;].

1

I

i=t 7
Temos:
i X, _ 1+ @x—x._)+22—x) sex_i1=c;=1
1 =3 | —1
Y Fle) Ax 5oty o
= 1 G T2 —x ) T2 —x) se l<cg=ux
Segue que
n I —x: se X =c: =1
o ] F7= ]
Zjitf}irf—:%:l]_ se 1 <c:<x
P 1 .l‘f_l 5€ “"‘_,f'“'“‘]'_.?'
(Interprete geometricamente.) Logo,
n
Z f(c;) Ax; — 3| =< max Ax;
=1
independentemente da escolha dos c¢;. Portanto,
B E.
lim fe) A =3= | fx)dx 5
D fle) Ay, m;

max Av; — 0 i

I



EXEMPLO 5. Prove que

l sex=0

(x) =4
/ {l se<x=<1
X

ndo € integravel em [0, 1].

Solucao
1

Seja P uma parti¢do qualquer de [0, 1] e X f(c) Ax uma soma de Riemann de f relativa a esta

i =1 i i

parti¢cao. Tomemos c¢; em ]0, x;[. Se mantivermos fixos ¢z, c3, ..., ¢, teremos

"

li (¢;) Ax; = + 0. (Por qué?
. |_|>n“+ Z{ fle;) Ax; (Por qué?)
!:

Logo, ndo existe nimero L tal que

)
lim Y f(e)Ag=1L

max Ay, — 0

i=1

ou seja, f ndo ¢ integravel em [0, 1].
u

Observe que a fungdo do exemplo anterior ndo é limitada em [0, 1]. (Lembramos que f limitada em
[a, D] significa que existem reais o e f tais que, para todo x € [a, b], a <f(x) <p.)

O proximo teorema, cuja demonstragdo encontra-se no Apéndice 4 do Wl. 1, conta-nos que uma
condi¢do necessdria para f ser integravel em [a, b] € que f seja limitada neste intervalo. Tal condicao
ndo ¢ suficiente, pois,

1 sexe@

Fer= 0 sexe@

¢ limitada em [0, 1], mas ndo ¢ integravel neste intervalo.

Teorema. Se f for integravel em [a, b], entdo f sera limitada em [a, b].

Exercicios 1.1

1. Sejaf: [0, 1] — R dada por



ﬂ&ﬁ‘(E{
fix)=

2 |— I | i
e __,-"‘—I_J_

]:Sﬁ.‘{'E{'U'

Prove que /¢ integravel em [0, 1] e que

rl
J fix)dx = 0.
0

2. Sejaf: [0, 1] Rdadapor /= {3 % £ 0

a) Verifique que se os ¢ forem racionais ‘? f (c) Ax tende a —, quando max Ax — 0.

i i=1 i £ i

b) Prove que f'ndo ¢ integravel em [0, 1].

3. Calcule, caso exista, e justifique sua resposta.

l seld=x<1
{”J‘ fix)dxonde f(x) =<4 se x =1
2 sel=C x=32,

3

b fix)dy onde fix)=
]

se 0= x

)
se2=x=3

l
c) J- f(x)dx onde f(x)= { 3
0

2 sex=
| Cge xS
d) J_J fix)dx onde f(x)= {_ : :: : ¢ g

1.2. FUNCOES INTEGRAVEIS

Os teoremas que enunciaremos a seguir, ¢ cujas demonstragdes encontram-se no Apéndice 4 do Vol. 1,
destacam as fungdes integraveis que vao interessar ao curso.
O teorema 1 conta-nos que toda fun¢do continua em [a, b] € integravel em [a, b] e, o teorema 2, que

toda funcdo limitada em [a, D] e descontinua em apenas um numero finito de pontos de [a, b] €
integravel em [a, b].

Teorema 1. Se f for continua em [a, b], entdo f serd integravel em [a, b].

Teorema 2. Se f for limitada em [a, b] e descontinua em apenas um niimero finito de pontos de [a, b], entdo f sera integravel em
[a, b].




EXEMPLO 1. f(x) = cos 3x ¢ continua em [—1, 5], logo integravel neste intervalo.

EXEMPLO 2. Verifique se

-

f{ﬂzjxf - B ool
] 12 sel=x=3

¢ integravel em [—1, 3].
Solucao

f ¢ limitada em [—1, 3], pois, para todo x em [—1, 3], 0 < f(x) < 2; além disso, /¢ descontinua apenas
emx = 1. Pelo teorema 2, /¢ integravel em [—1, 3].

|

EXEMPLO 3. Verifique se

: : se—l=x<]
fix) =4 x~1
2 sel=x=3
¢ integravel em [—1, 3].
Solucao
Nao, pois f'nao ¢ limitada em [—1, 3].

|

Exercicios 1.2

1. A fungdo dada ¢ integravel? Justifique.



ab f{.‘c} =

by fixy=e V. 0=sx=4

X gee—2 r=<<1
C}f{'t)=<£ sels=x=<?
E
1 se x=10
d) fLT}:ﬁsmxseﬂcixﬂl
4
" 0 sex=0
e) f(x)=
f 13‘311—56{}{.1'5&1
X
[{] se x=10
h f{”_wl nl— xeﬂ*it‘fg
X ¥ T

(2se—1=x<0
g) f(x)=45 sex=0
2 sel<x=1]

B f)=1,2 se lxI=1Lx#0

3 se x =10




2

FUNCAO DADA POR INTEGRAL

2.1. CALCULO DE INTEGRAL DE FUNCAO LIMITADA E DESCONTINUA
EM UM NUMERO FINITO DE PONTOS

O teorema que vamos enunciar ¢ demonstrar a seguir conta-nos que se f e g forem integraveis em |[a,
b] e se f (x) for diferente de g(x) em apenas um numero finito de pontos, entdo suas integrais serdo
iguais.

Teorema. Sejam f e g integraveis em [a, b] e tais que f (x) # g(x) em apenas um nimero finito de pontos. Entao

b b
fix)yde=1 g(x)dx.
o i

Demonstracdo

h(x) = g(x) — f(x) ¢é integravel em [a, b] e h(x) = 0, exceto em um nimero finito de pontos. Como

lim h (c;) Ax;

max .-irll- L i N
e

independe da escolha dos ¢;, resulta que tal limite € zero, pois, para cada particao P de [a, b], podemos
escolher c;em [xi- 1, x;]i=1, 2, ..., n de modo que A(c;) = 0. Assim

b
hix)dx = lim hici)Ax; =0

a max Av. — 0 7
! i=1
ou seja,
r} i
fl (g(x)— fxNdx=0
il

e, portanto,

rb b
J flx)dx = j g(x) dx. =
i i



EXEMPLO 1. Calcule L;f{x} dx

fx)= )
— se |l<=x=2

X

Solucao

f ¢ integravel em [0, 2], pois ¢ limitada e descontinua em apenas x = 1. Temos

by

l 2
Jﬂf{x} dx = Jﬂ ix) dx + J] f(x) dx.
m [0, 1], f (x) = x* logo,
| L. o o 1
L}f{.r} dx = L x=dx = 3

Em/[1, 2], f(x) difere de 2 em apenas x = 1; dai
X

2 2 A 4
L,f(x} dx=L Zax=[2lnx]}=2m2
X

Portanto,

2 1
) dx = —+ 2.
jﬂfmd,x 3 21n2

EXEMPLO 2. Calcule J'If(r} dt x>0, onde
0O

Jr‘ se 0= <]
f(n=
sz—] se 1=1.

Solucao

Pt e o

L ettt



Para todo x > 0, /¢ integravel em [0, x], pois, neste intervalo, /¢ limitada e descontinua no maximo
em um ponto. Temos

X
L}rdr‘ se 0=x=1
X
j F(1) dr =
0 | x
J;}rdr#—_L (12 —1)dt se x>1
A
f ) f(n 4
| |
| |
| |
| l
| |
| I
T Ir iz :; 1 o
x ] I 1 ¥ t
x X x 1 - 3
jf{r)dr=err jfmdr=jrdr+j{r-—l‘;dr,
0 0 0 0 1
Como
X 2 X 3 X 3 i
j rdr="—ej @2~ | =E a2
0 2 1 3 | 3 3
segue que
2
_— se 0=x=1
x 2
1) dt =
jﬂf{ } . 43
g et G e B |
2 3 3
ou seja,
x2
— se D=x=1
x 2
j F(1) dr =
0 i
——x+— se x>1. ]
3 6

Sejam xi, x2, ..., X,, p pontos do intervalo [a, b] e seja f uma funcdo definida em todos os pontos de
[a, b], exceto em x, X2, ..., X,. Suponhamos f limitada e continua em todos os pontos de seu dominio. Pela
defini¢do de integral, ndo tem sentido falar na integral de f em [a, b], pois f ndo esta definida em todos os



pontos de [a, b]. Entretanto, a fun¢ao g definida em [a, b] e dada por

Jf{.r} 86 X & {Xy, Xy, 005 Xp )
g(x)=
{m}. se x=x,1=12,....p

onde m,, my, ..., m, sdo numeros escolhidos arbitrariamente, ¢ integravel em [a, b] e o valor da integral
independe da escolha dos m;. Nada mais natural, entdo, do que definir a integral de f em [a, b] por

b b
f(x)yde=1] gix) dx.
o i

EXEMPLO 3. Calcule L; f(x) dx onde

¥ ose 0sx<l

fx)=1
g 1l el 2,
S e
Solugdo
2 I 2 2 4
j ff-Y)d,T=J .r3dr+j 1,, dx =l+{—l} =
0 0 1 x= 4 X | 4 m
l
EXEMPLO 4. [ 1 dx ndo existe no sentido de Riemann, pois L ndo ¢ limitada em |0, 1].
0 x X
|
Exercicios 2.1
1. Calcule
2 se 0=sx<1

a) J.h fix)dx onde f(x)=-+
0
1

—se Isx=s2
X

% 1 s —1=x=0
b) J f(x)dx onde f(x)= x2 se 0<x<2
. 0 se 2=x=3



X
(* se x¥F 1
c) J f(x)ydy onde fix)=+1+4 x2 ©
_J E ﬁ ‘H

se v =1

-

d) J.h g(u) du onde glu)=-,2 se lul=1
- LJ se lul=<1

2. Calcule

) 2 f‘[ | at [y ; i

i " £ dt ] f{r}: 2 se —1=st=<1

* —1 [ onde L

c) " fit)dt onde fi(r)= 2 oge —]=r=1]
. ‘ 2 se t>1

se 0=f<1
se 1=7=<2

se =2

X
d) () dt onde f(1)=
0

I'_lj t-':. -

2.2. FUNCAO DADA POR UMA INTEGRAL

Seja fuma fungdo definida num intervalo / e integravel em todo intervalo [c, d] contido em /. Seja a
X

um nimero fixo pertencente a /. Para todo x em /, a integral J f(1) dt existe; podemos, entdo, considerar
o

a funcdo F definida em / e dada por
X

® Fey=| f@ar.
i

Nosso objetivo ¢ estudar a F com relacdo a continuidade e derivabilidade. Na Sec¢ao 2.4,
estudaremos (1) supondo f continua em I; provaremos que, neste caso, F' é derivdavel em I e que F' (x) = f
(x) para todo x € I. Na Sec¢do 2.5, estudaremos (1) supondo apenas que f seja integravel em todo
intervalo [¢, d] C I e, portanto, ndo necessariamente continua em /. Provaremos, entdo, que mesmo neste
caso F serd continua em [; provaremos, ainda, que F' sera derivdavel em todos os pontos em que f for
continua e se p for um ponto de continuidade de f, entdo F' (p) = f (p).

Observe que, tendo em vista o que dissemos acima, o grdfico de F ndo pode apresentar salto.
Portanto, se vocé estiver esbogando o grafico de uma fungdo dada por uma integral e se o seu grafico
apresentar salto, apague e comece de novo!

EXEMPLO 1. Esboce o grafico de F(x) = J;: f(t) dt onde



f)=
{2 se =2
Solucao
F esta definida para todo x > 0. Temos
_Eldr s 0<x=<2
Fix)=
Z X
jﬂlerrLz dt se x>2
[l A
2 f
: L
| ! ]
l ’ I ? :
! | I |
! | I [
T L
T t - + t -
X 2 2. x
x 2 x
j F(t) dt —j ldise0<x=<?2 Jﬂf{r}dr =j{}1 dr-l—Ldese.t:}Z
e R se 0=x=<2
= {Zx —~2:8e B>

Observe que F ¢ continua e que F' (x) = f(x) emtodo x # 2.

EXEMPLO 2. Esboce o grafico da fungao



. (1 se —1=t<1
F()= | f@ydr onde f(n=
0 2 se t=1

Solucao

O dominio de F ¢ o intervalo [—1, + oo[. Temos:

_[A-l dt se —1l=x=1
X (i}
F(x)= jﬁf(ﬂ dt = |

| x
j 1dr+rzdr s 51
V0 |

i 4
:_ I I
I I
! : i
1 1 1
I T 1“ [ ‘:’ :
O \ | i I
| I 1 I | I
| | I I ] I
} } 3 o F : } -
-1 ¥ 1 -1 ] X
X X X 1 X
j £(0) dr=j ldtse—1<x<1 j f(r)dr=j 1dr+_[ 2dtsex> 1
0 1] ] 0 |
X se —1l=x=1 X se —1l=x=1
F(x)= =
l—|—[22‘]']]r e | 2x—=1 se x =1

EXEMPLO 3. Considere a fungdo F (x) = fo (1) dt onde f (1) = %, t#0.



a) Determine o dominio de F.
b) Verifique que F' (x) =f (x) para todo x > 0.

Solucao

x
a) Se x > 0, f sera continua no intervalo de extremidades 1 e x; logo, J f(t) dt existe para todo x > 0. Se
l

x
x <0, a integral L f(t) dt ndo existe, pois fnao € limitada em ]0, 1]. O dominio de F' ¢, entdo, o intervalo
10, oo.

;
b) F (x) = j i dr, x > 0; assim
1 T
F(x)=[In r][‘ = Imx;

Segue que F' (x) = L f(x),x>0.

X

Exercicios 2.2

1. Esboce o grafico da fungdo F dada por

2 e O=r<]
X
a) F(x)=| f(t)dt onde f(t)=-1 1

i -
0 — se =1

X

by F(x)=| tdt
Jl

c) Fix)= -If{f}df onde f(1) =+
! ]D se t=0

[D%e r=1

.
dy Fix)=| f)dt onde f(r)=
! ]l se 11

. 1 se —2=t=<0
e) Fix) =J f)dt onde fit)=+
H L‘.’_r se 10

; [0 se Itl=1
hH F{.¥}=J f(r)ydr onde fi(r)=
=5

5
a
e
A

2
I

g) J—"III.7~.'}=J-Jr et gt
0

X "f se [ #1
2. Seja F (x) = J.ﬂ f () dt onde f{f]l=]
2 se t=1



a) Esboce o grafico de F.
b) Calcule F' (x).

3. Determine o dominio da fungdo F

X rx

al Fix) =J ¢t by F(x)= J dt
2 t—1 o r—1
X i X i

c) F(x) = J — d) F(x) = J — it
0t~ —4 3 < —4

4 . [rz se +<1
" Seja F{.Y]I=J‘ ft) dtonde fit)=+2

0

{i se t=1.
I

a) Verifique que F' (x) =f (x) em todo x em que f for continua.
b) F ¢ derivavelem x = 1?
. | 1 se t#1

5. Seja Fm=J" f (1) dtonde f(1)=
0 h se t=1.

a) Verifique que F' (x) =f (x) em todo x em que f for continua.
b) F ¢é derivavel em x = 1? Em caso afirmativo, calcule F’ (1) e compare com f (1).

.
. p=iges e 1

Seja F(x) = j 1) dtonde fit)=+1
0 ; —e e,

t
Verifique que F' (x) =f (x) para todo x.

2.3. TEOREMA DO VALOR MEDIO PARA INTEGRAL

No proximo paragrafo, vamos enunciar e demonstrar o 2.° teorema fundamental do célculo. Para tal,
vamos precisar do teorema do valor médio ou teorema da média para integral.

Teorema (do valor médio para integral). Se f for continua em [a, b], entdo existird pelo menos um c em [a, b] tal que

b
flx)ydx= f(c)(b—a),

‘

Demonstracdo

Como f ¢ continua em [a, b], pelo teorema de Weierstrass, f assume em [a, b] valor maximo e valor
minimo. Sejam M o valor maximo e m o valor minimo de f'em [a, b]. Assim, para todo x em [a, b],

m<fx)=M



e dai

b b b
J m dx = J f(x)dx= J M dx
o o

a

ou seja,
b
mib—a)= J f(x)dy=M(b—a)
e
e, portanto,
—
/b N Y
[l f(x) dx"‘t
m =\ P =M.
—g
LML

b
Deste modo, L F(X) dX ¢ ym ntimero entre o menor e o maior valor de f em [a, b]; pelo teorema do

b—a
valor intermedidrio, existe ¢ em [a, b] tal que

b

F(x) dx
If{t.‘} — i

b—a

ou seja,

b
flx)ydx= fic)(b— a). B

Interpretacao Geométrica do Teorema do Valor Médio para Integral

b
Suponhamos f continua em [a, b] e f (x) > 0 em [a, b]. Assim, J f(x)dx € a area do conjunto 4
o

limitado pelas retas x = a, x = b, pelo eixo x e pelo grafico de y = f(x). O teorema do valor médio conta-
nos, entao, que existe ¢ em [a, b] tal que a area do retingulo de base b — a ¢ altura f(¢) € igual a area de
A.



1
1
I
1
I
1
I
1
|
1
1
T

[ R T —

b

I
i
t
a

Antes de encerrar a secdo, vamos destacar outra propriedade que sera utilizada na demonstragao do
2.° teorema fundamental do calculo.

Seja f integravel em [a, b] e seja ¢ € ]a, b[. Vimos na Secao 11.4 (Vol. 1) que se f for integravel em
[a, c] e em [c, b], entdo

b C b
Fyde=| fx)de+ j £(x) dx.
i i i

Pois bem, na proxima se¢ao, vamos precisar da seguinte propriedade, cuja demonstragao deixamos a seu
cargo: “Se f for integravel em todo intervalo fechado contido em /, entdo

jﬁf{.r} dx = jT,f'{,x'} dx + Jéf{.‘c} dx
(0] i y

quaisquer que sejama, f e y no intervalo 1.”

Exercicios 2.3

]
L Suponha £ (x) > 0 e continua em [a, b]. Prove que f(x)dx = 0.
i

b
2 Suponha f'(x) > 0 e continua em [a, b]. Prove que se f(x)dx=0, entdo f (x) = 0, para todo x € [a, b].
a
3. Suponha f (x) > 0 e integravel em [a, b]. A afirmacdo
b ; "
“I f(x)dx=0=f(x)=0em [a, b]

el

¢ falsa ou verdadeira? Justifique.

4. Suponha f continua em [a, b]. Prove

b
J | ,_J"{J'}lj dx =0 < f(x) =0em [q, b].
&

i

5. Sejam f e g continuas em [a, b], com f (x) >0 em [a, b]. Prove que existe 8 € [a, b] tal que

b b
J fix) glx)de= giﬁjj fx) dx.
i i



2.4. TEOREMA FUNDAMENTAL DO CALCULO. EXISTENCIA DE
PRIMITIVAS

Seja f continua no intervalo / e seja @ um ponto em /. Como estamos supondo f continua em /, para
X
todo x em /, a integral J f (1) dt existe; podemos, entdo, considerar a fungdo F definida em / e dada por
i

X
Fix) = J fir)dt.
a

Provaremos a seguir que a F' acima ¢ uma primitiva de f em /, isto é, F' (x) = f (x) para todo x em /.
No que segue, referir-nos-emos a este resultado como 2.° teorema fundamental do cdlculo ou,
simplesmente, teorema fundamental do calculo.

Teorema (fundamental do célculo). Seja f definida e continua no intervalo I e seja a € I. Nestas condi¢des, a funcdo F dada por
X
Fix)= J- fnde, xeI
a

¢ uma primitiva de f'em /, isto &, F' (x) =f (x) para todo x em /.

Demonstracdo

Precisamos provar que, para todo x em /,

Fix+h—F(x) _

F'(x)= lim fx).
h—10 h
Temos
sx + A rX x+h
Fa+B=F@ J{; ft) dr — JH f(1) dt _ L f(t) dt
h h h 1

Pelo teorema do valor médio para integrais existe ¢ entre x e x + /4 tal que
rxt+h
J f(t)dt = f(c)h.
e
Assim,

Fix+h —F(x)
h

= f(c).

Tendo em vista a continuidade de f'em / e observando que ¢ tende a x quando / tende a zero resulta

P () = h“'“ Fx+h)— F(x) _

(x).
— 0 h f "



Observe que o teorema fundamental do calculo garante-nos que toda fungcdo continua em um intervalo
admite, neste intervalo, uma primitiva e, além disso, exibe-nos, ainda, uma primitiva.

EXEMPLO 1. Seja F () = | .

e dt. Calcule F' (x).
I

Solucao

¢ continua em [B. Pelo teorema fundamental do

Observe que o dominio de F' € [, pois, f(f) = ]

+ 4
calculo
X J )
F' (x) = Ul £(0) dr} = f(x)
ou seja,
?
F'(x)= ——.
() + x3
Na notagao de Leibniz
d Jr 3 '\ 3
dJ] T ® J 1+ x4 -
d ([ ru . "
EXEMPLO 2. Calcule -~ j sen 12 dt |
du | Jo /
Solucao
Seja f'(f) = sen £*. Temos:
d ( *
—_— () dt |= fu)
du J{}'I( : ) S
ou seja,
d {3 s Y 5
EaJ‘ﬁ sen f rh‘g—senn. m
EXEMPLO 3. Calcule G’ (x) sendo ¢ (y) = [r 3 - dr
1 14
Solucao
X 3

dr.

™ AN — 2 =1 7 =
G (x) = F (x*) onde F (x) J] 1+ 4



De

3
G'x)=F(x)2x e F(x)= 1+ 2
resulta
e . 9%
1+ x®

Podemos, também, calcular G’ (x) da seguinte forma:

w3 2
G(x) =J 3 dt onde u = x~;
1 1+1

dG d w3 \ du 3
L j e R
de  dulh 1+1t4 0 Jdv 1+ 4t
Portanto,
: 6x
G’ (x)=
) 1+ x® -
EXEMPLO 4. Calcule H' (x) sendo 7 () — [ 3 .
senx 1+ 14
Solucao
Como f(1) = : + a ¢ continua em [, tomando-se um numero real qualquer, por exemplo 1, tem-se,
para todo x,
l 1 ¥ q
) = - dt + J : dt
Hix Len x 1+ | 1+ 4
ou
L 3 ; sen X 3 ;
H (x) .[1 1+14 " .[1 T+%
dai
3 . 3
Hx)= ——(x') ———————(sen x)’
1+ (x3)4 1+ (sen x)*
ou seja,
9x2 3 cos
iy o X, SC08 X

1+ x12 1+ sen? x



+ 14

Outra forma para se obter H' (x) € a seguinte: como f(r)= : ¢ continua em [, / admite uma
primitiva F; assim

x3 3

H(x) = j dt = [F)]"

senx 1+ 14 sen
ou seja,
H(x)=F (x’) — F (senx)

dai

H' (x) = F'(x’) 3x* = F' (sen x) cos Xx.
Como

3
F'(n= 1
segue
i )= Ox2  3cosx .

1+ x!2  14sen* x
EXEMPLO 5. Suponha f'(¢) continua em [— 7, 7] (> 0) e considere a fungao
X )
F(x) = J- finydt, x|[—rr].
0
Prove que se f for uma fungdo par, entdo F' sera impar.
Solucao
A nossa hipotese € de que /'€ continua em [—7, ] e f(¢) =f (—¢t) em [—r, r]. Queremos provar que
F(=x)=F((x)em|[-7 r].
Como F(x) = rf () dt e fé continua em [—7, 7], pelo teorema fundamental do calculo
0
F'(x)=f(x)em|[-7, r].
Temos, também,

[F(=0)]"=F"(=x) (x)" = = F' (=)



ou seja,
[F (—x)]"=—f (—x), pois F'=].
Segue que, para todo x em [7; 7],
[F(x) + F(=x)]"=F'(x) = F'(=x) =f (x) = f (-x)
ou seja,

[F (x) + F (—x)]' = 0.

0
Logo, existe uma constante & tal que, para todo x em [—7 7], F' (x) + F (—x) = k. Mas F(0) = [ﬂ f(tydt=0

e, assim, k = F'(0) + F(—0) = 0. Portanto, F' (x) + F (—x) =0 ou F' (—x) = —F (x), para todo x € [—7, r].
u

Exercicios 2.4

1. Calcule F'(x) sendo F'dada por
T 3f rX

a) F(x)= — dt by Fix) = J sen 12 dt
J—2 1+ 40 2
) Ayl :
c) F(x)= cos 14 dr d) F(x) = J sen = dt
& l
T ) 4 7 iy | :
e} F(x) = cos < dr ) F(x) = J — dt
1-|:| _-._-2 5 + ir—l
2 % 3 X, 9
g) F(x)=x" J e ds h) Fix)= J x< e ¥ ds
l 0
] ? X 2
() Fix)= j arc tg - dt 0 Fix)= J‘} (x —1) e ! dt
X

3
2. Suponha f (f) = 0 e continua em R. Estude a funcdo p(y) = J"r N
1

-

fit) dr com relagdo a

3x
crescimento € decrescimento.
3. Determine uma funcdo : ¢ : [} — [, continua, tal que para todo x

|
glx)=1+ J t@l(t) dr
0

4. Suponha f continua em [—7 7] ( > 0) e considere a funcao

-

X
F(x)= Jn fit) dr.



Prove que se f for uma fung¢do impar, entdo F serd uma funcao par.

Suponha f continua em [ e periddica com periodo p, isto ¢, f(x) =f (x + p) para todo x. Prove que
a funcao

¢ constante. Interprete graficamente.

~1

X 9
. CalculeJ F(x) dvonde F{x) = Jl e”!" dt. (Sugestdo: integre por partes.)

0

T X
. CalculeJ G(x)dronde Gix)= J sen 12 dr.

0 T

As fungdes cosseno hiperbolico e seno hiperbdlico, que se indicam, respectivamente, por ch € sh,
sao dadas por

o | 1
e e g: g
cht=——— e sht=

a) Verifique que para todo ¢, (ch t) =sh t.

b) Verifique que, para todo ¢, o ponto (ch t, sh t) pertence ao ramo da hipérbole x* —y* = 1 contido
no semiplano x > 0.

¢) Sendo F (?) a area da regiao hachurada mostre que

chit |

I :
Fity= = (cht)-(sht) —J \;'-1’2 — 1 dx parat = 0. Calcule F' (1).
s |

[

d) Prove que F ()= —, t=0,

B2 | o~

e) Qual ¢, entdo, a interpretacdo para o parametro ¢ que ocorre em ch ¢? Compare com o



parémetro ! que ocorre em cos f.

2.5. FUNCAO DADA POR UMA INTEGRAL: CONTINUIDADE E
DERIVABILIDADE

Nesta secao vamos estudar, com relacao a continuidade e derivabilidade, a funcao

X
F=[ fmya, xe1,

ol

onde f ¢ suposta integravel em todo intervalo fechado contido em / e, portanto, ndo necessariamente
continua em /.

Teorema 1. Seja f integravel em qualquer intervalo fechado contido no intervalo I e seja a um ponto fixo de I. Entdo a funcdo
dada por

X
F=[ fmya, xe1,

ol

é continua em 1.

Demonstracdo

Seja p € I; existe um intervalo [a, f] C [ tal que a, p € [a, f] e se p ndo for extremo de /, podemos
tomar a e f de modo que p € ]a, B[. Como /¢ limitada em [a, 5], pois ¢ integravel neste intervalo, existe
M >0 tal que [f (¢)| <M em [a, f]. Para todo x em [a, f] temos

x p x
ﬂﬂ—ﬂm=Jﬁnm— fiydr=| f@ar.
q d ;]

De —M < f(t) < M, para todo ¢ € [a, ], segue que, para todo x € [a, ],

i

X
—M(x—p)= J fHdt =M (x —p)lsex=p,
P

i

;}
—M(p—x)= J f(hdt =M (p—x).sex=p.
X

Pelo teorema do confronto,

lim F(x)= F(p). |

X—=p

Teorema 2. Sejam F (x) = J f (1) df como no teorema 1. Nestas condi¢des, se f for continua em p € I, entdo F sera

i
derivavel emp e F' (p) =f (p).



Demonstracdo

Seja p € I e suponhamos que p ndo seja extremo de /. Vamos provar que se f for continua em p entdo

fim L)~ F(p)— f(p)(x— p)
r—p B P

=0

que equivale a

F'(p)= lim F(x)— F(p) _ F(p).

x—=p X.o— P

Temos
X X X
M FxX)—F(p)—f(ppx—p)=| f(t)dt —J. f(p)dt =J [f{t)— f(p)]dt.
P P p
Sendo f continua em p, dado € > 0 existe 6 >0, com |p —J, p + J[ C I, tal que
p-o<t<pto=—e<f(t)—f(p)<e
dai, paratodoxemJp — 9, p + J],
@ —elx—pl< Jq[f(r) — fip)ldt<elx — pl.
_I!']‘

De (1) e (2) resulta

Fi)—F(p—fp(x—p|_ &
X—p ﬂ

D{Ir—plﬂiﬁ:‘

e, portanto,

iy FO) = F(p) = f(p)(x — p)
I—p b P

= 0.

Analise vocé€ o caso em que p € extremo de /.



3

EXTENSOES DO CONCEITO DE INTEGRAL

3.1. INTEGRAIS IMPROPRIAS

Estamos interessados, nesta secao, em dar um significado para os simbolos

4 mt

J ﬂ.:f(.r}rir, r flx)dx e J xf(x}d_r.
i — =

e ]

Definicdo 1. Seja f integravel em [a, ], para todo ¢ > a. Definimos
p OO

J flx)dx = lim J-r f(x)dx
a a

P—4

desde que o limite exista e seja finito. Tal limite denomina-se integral impropria de f estendida ao intervalo [a, +oo[.

! : .t
Observac¢io. Se lim J f(x)dx for +o0 ou —oo continuaremos a nos referir a J f(x)dx como uma
t—+wda a

integral impropria e escreveremos

a0 s

J - f(x)dx =+ ou J xfu—_} P S—

a
Se ocorrer um destes casos ou se o limite ndo existir, diremos que a integral impropria ¢ divergente. Se o
limite for finito, diremos que a integral impropria é convergente.

Suponhamos f'(x) > 0 em [a, +oo[ € que fseja integravel em [q, ¢] para toda ¢ > a. Seja 4 o conjunto de
todos (x, y) tais que 0 <y < f(x) e x > a. Definimos a area de 4 por

adt oo
drea A =J - f(x) dx.
o O ]
EXEMPLO 1. CalculeJ — dx.
.
Solugdo
p OO st
J I,, dx = lm J L} dx.
xS R

Como



resulta
o el 2 1
J — dx = lim [———i—l}:l
1, X totoo |t
1 1
] 1 t = 1 1 -
] d , 8 ]
drea = [ = 01X area = J A
Jx- 1ox-
: ad . . )
Como J — dx = 1, a integral impropria € convergente.
.
. . , . e , . )
EXEMPLO 2. A integral 1rnpropr1aj — dx ¢ convergente ou divergente? Justifique.
I %
Solucao
t 1 t
[—ar=pax =t
1.
Assim,

4001 _
J —dx= lim Int=+ o=,
1 X f— 4o

Logo, a integral impropria ¢ divergente.

1
\Q_. \Q__
1t L

l

t] + @
fire¢=_|-—d_r=lnr ﬂre¢=J —dx=4+=
¥ 1 X
+ o
EXEMPLO 3. Suponha s > 0 e calcule J e 3 cos t dt.
0

Solucao



+ o ; ] i
J e cost dt = lim J e 5 cos t dt.
0 H—s+m 40

H i _ i
J e~ cos t dt =[e % sen 1] — J —se S sen t dt =e " senu + s_[ e~ sen t dt.
0 1 ) 0 Jo 0
roe
Assim,
. i i
a) J e S costdi=e M senu+s J e % sen t df
= 0 0
Por outro lado,
oo st = i ot
J e “lsent dt =[e 5 (— cos Ny ~ J — 5& % (—cos t) dt
01 T 1]
f g
dai
. * i
(2) J e sentdt=—e" cosu+1-— SJ- e 5 cos t dt.
= 0 0
Substituindo (2) em (1) vem
u - I "
j e costdt=e " senu— se " cosu+ s — 5° _[ e S cost dt.
0 0
Dai

'
(1+ SQ)J- e costdt=e M gsenu—se M cosu+s
0

e, portanto,

1

[e7*¥ sen u — se™5" cos u+ s].
+ 52

i
J- e % costdt =
0 1

.. . i
Sendo sen u e cos u limitadas e “E}TI ¢ =0 (lembre-se de que estamos supondo s > 0) resulta

lim ¢ “senu=0 e lim se cosu=0
H—+= W—+
e, portanto,
L iaseg ; 1 —su —su §
J- e fcostdt= lim 3 [e sen i — se cosu + 5] = —
0 u—+ow 1+ 5 1+ 5=

Assim,

+ oo ) 5
J e Tcostdt= .
0 8 2



Definicdo 2. Seja f integravel em [¢, a] para todo ¢ < a. Definimos
i i ol
J f(x)dx = lim J f(x) dx.
—® f—— i
Definicdo 3. Seja f integravel em [— ¢, ¢], para todo ¢ > 0. Definimos
+ = 0 +
J Fx)dx = J- f(x)dx + J I (x) ex
— o — oD l:-_l

desde que ambas as integrais do 2.° membro sejam convergentes.

Observacao. Com relacao a definicao 3, se as duas integrais que ocorrem no 2.° membro forem iguais a
+ 00 (ou — o), ou se uma delas for convergente e a outra + oo (ou — ), poremos

+ o (
f(x)dx = +=

+ oo
resp. J flx)dx = —o0 |.
\ — oo

Exercicios 3.1

1. Calcule:
rtoe | ~+ :
a) —dx b) &%y
1 x J0
at @ . P e ]
¢) e~ dx (s > 0) d) = dx
J0 71  fx
a0 7t oo
e) te” ! dt f te~ S dt (s > 0)
<10 o)
s+ 2 + = 1
g) xe~ * dx I o £
<] W) I + x=
il NN [P
i) de (v = 0) ) — da
<0 52 + x2 / <1 v
+w ; At .
dx - ——dx
g 42 x—1 A 22 —1
+ = X st
— dx 7] - dx
mn) Ja | + .‘(4 ( Ji {-‘IIJ
«+ 00 + 0 |
p) e~ ! sen t dt q) 3 dx
J0 41 3 il o
PR,
2. Calcule J —ad;,-, onde o é um real dado.
1 X

3. Calcule



-0 , =1 1
a) e* dx b J — dx
J— oo — o6 -
=1 0
c) .—m{:T{ix d) j_m xe ¥ dx
it o0 o |1 selxl=1
€) 1. fx) dx onde f(x) = {U e fiiod
s o0 1) + o0 1
i) ] e e Tidyx 2) .[_:.:—4+ % dx
T 1 selxl=1
h) f(x)dxonde f(x)=, 1
J—w : g Se]
x*
+ o
. Determine m para quej f (x) dx = 1, sendo
—

F ) = m oselxl =3
Bk 0 selxl=3

+ @
. Determine k para que se tenha j ekl di=1

+ oo

. Determine m para que J fixyde=1 onde
o ’

flx) = mx? se Ixl < 1
0 se lxl =1

Sejam dados um real s > 0 e um natural n # 0.

a) Verifique que

b) pe n'
Most st f=—.
ostre que J{] e 't dt ES

Sejam a e s, s > 0, reais dados. Verifique que

R
a) o e senat dr = %{a # 0)
: . 5< + o~
2 s
b) e cosardt= :
J0 2+ a2
-t 0
c) e M dr = (s > a)
<) 5— o
@ 1
d) e dr==
Jo g
= 00 1
e) e tdr=—
J0 52
- 00 |
N e 1w di=__ " (s>a)

<0 (s —a)?



=]

Utilizando o Exercicio 8, calcule j e 5t fr)dt sendo:

0
a) f(t)=sent+ 3 cos 2t

b) f(t) =3t + 23t + tet

10. Suponha que, para todo ¢ > 0, f seja integravel em [— ¢, £]; suponha, ainda, que f (x) > 0 para todo x. Prove que

& 30 r

J flr)de=lim J fix)dx.
—w —1

t— 4>

3.2. FUNCAO DADA POR UMA INTEGRAL IMPROPRIA

Suponhamos f definida em |} e tal que, para todo x, J"T f(ndt seja convergente. Podemos, entdo,

considerar a fungdo F definida em | dada por

F (x) = r £ dt.

Fixado o real a, para todo real u,
X a rx
J finyde=| firydr+ J i) dt;
i i i
fazendo u — — oo resulta

,E x-ﬂ” dt = J-i . flr)yde+ [if{f} dt

LR

e, portanto,
Fx) = J_ . ft)ydt + H (x)
onde
x
Hx)= J f(ndt.
i

Ja vimos que H (x) ¢ continua e que H ¢ derivavel em todo x em que f for continua; além do mais, H' (x) =
S
f (x) emtodo x em que f for continua. Como J f(f)dt € constante, resulta que F' € continua e que F’ (x) =

— a0

f (x) emtodo x em que f for continua.

[ 1selfl =1

EXEMPLO 1. Esboce o grafico de f(y) = J"T f(t) dr onde f(1) = l B [

Solucao



1
AN

—_—

_l X
0dr+J"1dr
o —1

E flydi= E odr J': flyde=

x —1 l x
J f(r}dr=J ﬂdr+J]dr+LDdr

0 dt se x = —1

X x
J ) dt = ﬂdr‘+J l 1 dt se lx| <1

| x
ﬂdr+j dr+J 0dr sex=1
—1 1

ou seja,
0 S H = |

Fx)= Exf(r} di= {1‘ +1 se lxl<1

2 sex =1

yd

-1

— -

Oselxl=1

Observe: F ¢ continua € g (y) = {1 R —

|

! 1
EXEMPLO 2. Esboce o grafico da fungdo F (x) = J"1 f(Hdtonde f(r) = V_E
= 1

se ltl =1

se [ <1



Solucao

b

L_ﬂrfr‘

o f=

Emf“'} dt = f

-

X

x -1 1 x
Hdt = J ——dt+ 1t
.[— o f( — @ fz J— 1

-1

x -1 1 l x 1
J' f{_r)dr=_[ _dr+_[ 1dr+J'—,,dr
— _mfz —1 1 1=
Assim,
X ]
r—szf selxEr—1
x =31 q x
J' (1) dt = r—,,dr+‘[  dr se —1<x<1
— m o — oo [ — 1
—1 ] 1 x ]
—,,dr‘—i-J 1dr+J.—,}dr se x > 1.
J—aw [ —1 [
X X
j gl T J' eggeno i {—l+l}=—l
— o - k——wdk 1= k—s—l  x Kk x
Em particular, J_ Lg Jdt = 1- Entdo
—w [
S se x=—1
X &
Fo=|  fiyd=1+[1, se—1<x<1
— 00 x
I+2+{——} se x > 1
|
ou seja,
el se x = —1
X
Fx)=<x+2 se—]1<xy=]




Como f'¢ continua, F' ¢ derivavel em todos os pontos; assim, o grafico de F' nao apresenta “bico”.

Exercicios 3.2

x
Esboce o grafico de F' (x) = J f (1) dt onde
[ 4]

I xu_Eselrlﬁt 2 F( = t se—l=r=1
- JO=10 selt1>1 > TO=10 selti>1
1 Jr e D=r=1
.z — t=1 . |
3. f”}={; = 4. fin=4— se r>1
0 se t<1 t
* ‘U se +<<0
5. f(f) = 0 i seltl>1 6. F(i)=é K3
—t= selfl=1
1 0 ser=10
1= 3 =T
& ik 1+ 1= % 1) {c?_'rse t =0
|
—~ ser=] 0 set=0
9. fin=1""2 10. f( =1 se0<t=1
P se 11 i‘;n.=f‘::~l
t e

3.3. INTEGRAIS IMPROPRIAS: CONTINUACAO

O objetivo deste paragrafo € estender o conceito de integral para funcdo definida e ndo limitada num
intervalo de extremos a € b, coma e b reais.

Defini¢ao 1. Seja f ndo limitada em ]a, b] e integravel em [¢, b] para todo ¢ em ]a, b[. Definimos

b b
f(x)dx = lim J‘f (x) dx
a +t

t—a

desde que o limite exista e seja finito. O niimero J-f (x) dx denomina-se integral impropria de f em [a, b].



Se o limite for +oo ou —oo, continuaremos a nos referir a J-f (x)dx como uma integral impropria e
o

b b

escreveremos | f(x) dx = + ou | f(x) dx = —=, conforme o caso. Se ocorrer um destes casos ou se 0
i ]

limite ndo existir, diremos que a integral impropria € divergente. Se o limite for finito, diremos que a

integral impropria € convergente.

Ja observamos que uma condi¢do necessaria para uma funcdo f admitir integral de Riemann num
intervalo [a, b] € que f'seja limitada em [a, b]. Deste modo, se f ndo for limitada em [a, b], f ndo podera
admitir, neste intervalo, integral de Riemann; entretanto, podera admitir integral impropria.

!
EXEMPLO. Calcule L dx.

Solucao

fix) = L_ ¢ ndo limitada em ]0, 1] e integravel (segundo Riemann) em [z, 1] para 0 < ¢ < 1; de
X
acordo com a defini¢ao anterior,

| 1
J b = i j A o= tim 2-2411=2
i

0 X =07 VX t—0F
ou seja,
LT
— dx =
0~/ X
i }
! 1
\-".I X \'; X
ro o 0 1 -
e ] & ]
ares =J il darea = | — dx B
RN o 0+x
Exercicios 3.3
1. Calcule
1 11 .
al _[ = dx fr) —dx
0 _\w.' X 0 x

3 1
c) J —dx d) J In x dx
| 0
%



2. Suponha f'nio limitada em [a, b[ e integravel em [a, 1] para a < ¢ < b. Defina J‘hf (x) dx.

a

3. Calcule
1 | 2 1
a) J _ dx b) J” ?— x dx
S
3 |_ X
2 1
c) — dx d) J dx
o — 1 4 S i 0 1 e _,{_E

.o , . mh
4. Suponha f'nio limitada e continua nos intervalos [a, c[ e ]c, b]. DeﬁnaJ f(x) dx.

a

5. Calcule

2] flol
al _[ . dx fr) J — dx
0 {-‘.Y — 1 —11xl

6. Suponha f continua em ]a, 5[ ¢ ndo limitada em ]a, c¢] e em [c, b[. Defina J*hf (x) dx.

a

3.4. CONVERGENCIA E DIVERGENCIA DE INTEGRAIS IMPROPRIAS:
CRITERIO DE COMPARACAO

Em muitas ocasides estaremos interessados ndo em saber qual o valor de uma integral impropria, mas
sim em saber se tal integral impropria € convergente ou divergente. Para tal fim, vamos estabelecer, nesta
se¢do, 0 critério de comparagdo que nos permite concluir a convergéncia ou a divergéncia de uma
integral impropria comparando-a com outra que se sabe ser convergente ou divergente.

Observamos, inicialmente, que se f for integravel em [q, ¢], para todo ¢ > a, e se f(x) > 0 em [a, +oof,
entdo a funcao

rX

F(x)= J fhd,x=a

a

sera crescente em [a, +oo[. De fato, se x; € x, sdo dois reais quaisquer, com a < x; < x,, entao

.".-'j x X
Flxy) —Flxp =] “.fiﬂﬂ’f—_[ l,f{r}<fr=_| 2 f(1) dt =0.
L 1 X

1' .l

Assim, quaisquer que sejamx;, x, em [a, +oof,

X1 <Xxp;= F(X1) < F(XQ).

X
Logo, F ¢ crescente em [a, +oo[. Segue que lim J f (1) dr ou serd finito ou +oo; serd finito se existir M
i

r—+ow Ja

x
> ( tal que J f () dt = M para todo x > a (veja Exercicio 9).
i




Critério de comparacgio. Sejam f e g duas fungdes integraveis em [a, £], para todo ¢ > a, e tais que, para todox > a, 0 <f (x) < g (x).
Entao

+o0

4 o0
a) J £(x) dx convergente = f (x) dx convergente.
i o

+ oo + a0
b) _[ f(x) dx divergente = J £(x) dx divergente.
i 0

Demonstracdo

t +
a) lim J g(x) dx ¢ finito, pois, por hipdtese, J g(x) dx € convergente. De 0 < f(x) < g(x), para

P—stom a
todo x > a, resulta

t t +0
fx)dx= J edr=s| g(x)dx.
i i

a

i i
Sendo F (1) =J f(x)dx crescente e limitada, resulta que lim f(x)dx sera finito e, portanto,
i

t—4® Ya
+

f (x) dx sera convergente.

]

b) Fica a seu cargo.

I £

rf\\

|«

4 4o
_[ gix)dx convergente = J f{x) dx convergente
i i

+ izl
J flx)dx divergente = g(x) dx divergente

a i

+ o ;
EXEMPLO 1. Verifique que J e~ ¥ sen” x dx € convergente.
0

Solucao

. =X 2 X
D=e "sen"x=¢ 7, paratodox =0.

+ o t
_[ e Ydx= lim J- e Ydx= lim [—e '+ 1] = 1. logo.
0 t—+x J0 t—+ow

+ o - 4 N4 * ~ + w ;. 2 4 A
J e~ ¥ dx é convergente. Segue do critério de comparacao que J ¢ "sen” x dx € convergente e, além
0 0



+ oo ~
e Ysen"xdr=1.

disso, J
0

EXEMPLO 2. Verifique que a integral impropria J+ § X ) ; dx € divergente.
1 - G
Solucao
¥ 1 1
4 +3 x 3
x= ];q?l
-
Para todo | P , €, portanto,
x3 1 1
e )
4 +3 4 «x

RER | cy . ~ + m '{'3
De J e dx = +=, segue, pelo critério de comparagio, que J 7
L 4x 1 x*+

dx € divergente.

O exemplo que daremos a seguir serd bastante Util no estudo de convergéncia de integrais improprias

cyjo integrando ndo seja sempre positivo. Tal exemplo conta-nos que se J

o

+ o0
entao J f (x) dx também sera (ndo vale a reciproca).
i

EXEMPLO 3. Suponha fintegravel em [q, ¢], para todo ¢ > a. Prove

+ oo + o0
J | f(x)l dx convergente = [ f(x) dx convergente.
L

1 ol

Solucao

Para todo x > a,

O=[fGI+f()=2]f (Xl

+ 0o
Sendo J | f (x)| dv convergente, resulta, do critério de comparagdo, que J
0

+ o0
| f(x)l dx for convergente,

U r el + ol dr &

o



também, convergente. Temos

[§ 13 i i
j_ £ ) d_r=j_ (IFC+ FO0] = L F (I} dx =J_ HFol +f ] dx— [ 1ol dr.

+ o + 00 + o0

Como J [ f(x)l + f(x)] dx eJ | f(x)l dx sdo convergentes, resulta que J f(x)dx também ¢é
a o o

convergente.

+ o
EXEMPLO 4. A integral irnprc’)priaj ¢~ % sen” x dx ¢ convergente ou divergente? Justifique.
0

Solucao
0<|e“ser’x|<e™™
+ = r ~ + - i -; r /4
Como e~ ¥ dy € convergente, entao l e " sen” x | dx também sera convergente; pelo Exemplo 3,
9 ﬁ
yo 0
J- e~ Ysen” x dx € convergente.
0

EXEMPLO 5. E convergente ou divergente? Justifique.

+9% gan x T sen X
a) J dx b) J dx
I X 1 X
Solucao
f] 1 EE ] .
a) —senxdy=|—(—cosx)| — J ——(—cosx)dx=
G X | I x=
cos fcosx
= 08 1— J — dx.
f e o
Cos X 1 CRaail | . t%®|cos x . .
Para todo () = =—. Como J —-dx ¢ convergente, J —dx também serd, e, portanto,
x2 X I 2 l &=
+% cosx , ,
J —dx ¢ convergente. Como
1 X%
0
o~ limitada
2 cos f - T Ty
lim = lim ‘cosy =10
t—=+w I t—a+w'l ./
resulta
T gsen x FW AR
J- dx = cos 1 —J e
1 X 1 x*



+% gon x

ou seja, J dx € convergente.
I

%
b) Para todo x, [sen x| < 1 e, portanto,
sen” x < |sen x|.

Segue que, para todox > 1,

® |sen x| _ sen® x
| x| x
Temos:
M, Lifd 1 T B 1
—sen? x dx = —L—,r — — sen EXJ — J— — = —sen 2x |dx =
| X ¥\2 4 /]y T 4
sen 2f sen 2 1 sen 2x
= — + + J { — — | dx.
4t 4 L 4x=
. + % gen 2x , A9 +® ]
Tendo em vista que I dx € convergente (por qué?), e dx= +me
I 4x 1 2x
’ sen 2t
lim ——— = 0, resulta
t—+owm L
: ! sen? x
lim —idy = +=
fs+mdl X
ou seja,
+% gen? x
J SeN” X gx = 4o,
I X
*lsen x

dx ¢ divergente. Tendo em vista o item a), conclui-se

+
Pelo critério de comparacao (veja (1)), J
1

x
que a reciproca da afirmacao do Exemplo 3 ndo ¢ verdadeira.

O teorema seguinte, cuyja demonstragdo ¢ deixada para exercicio, estabelece a convergéncia ou
divergéncia de certas integrais improprias € que serdo uteis no estudo de divergéncia e convergéncia de
integrais improprias.

Teorema

+ o8

a) J- —ad_.r ¢ convergente para a > 1 e divergente para o < 1.
l X

E{-

b) R convergente para todo o > 0.
0




Exercicios 3.4

1. E convergente ou divergente? Justifique.

2

\ s oo | Toexs 41
a) —dv b) J T
J xS 3+ 1 x+l
1
st oo '[ , = 0T t:.-.T d:'{
) - dx d) J =
2 3t 42+ vE
~+ = cos Jx rt = cos 2x
e) — dx D ———dx
1 X i x
CoptE 2xe3 e,
2) ST W L %) g
Ja %I — 3_,{-.;, + '[ o2 x= ]ﬂ X
 prm = P i
i) e ' cos Vx dx J) X
Jo 0 wfes g
o Jx+1 e
1) — i m) 4 .2 (b'
L3 gl TR ]

2. Suponha f integravel em [a, ], para todo ¢ > a, com f > (x) 0 em [a, + o[. Suponha que existem um o real e uma fungdo g tais que,

—g (x). Suponha, além disso, que Hng ()=L>0 (L real). Prove:
s S

para todo x > a, Jf'{;.,'} =

a)

+ o=
a = :,J. f i{x) dx convergente
a

b) To
a =1 =:~J f (x) dx convergente
a

3. Utilizando o Exercicio 2, estude a convergéncia ou divergéncia de cada uma das integrais a seguir.

S L S | T x> —3

a) J- = = dx b) J ; dx
2 x' —2x 43 10 ah.':rm + x10 — 1
225 4+ 2 41 T In x

c) . dx d} j —dx
| x> +x+2 1 xlnix+1D

4. Seja f continua em [0, #], para todo ¢ > 0, e suponha que existem constantes M >0 e y > 0 tais que, para todo ¢ > 0,

@ LF (D)1 < MeY".

+00
Prove que j e~ £(1) dt é convergente para s >y.
0 ’
Observacdo. Uma fungdo f se diz de ordem exponencial y se existem constantes M >0 e y > 0 tais que ® se verifica.

+oo
Seja f uma fungdo, com derivada continua, ¢ de ordem exponencial y. Verifique que, para g = -, j e {1 (1) dr é convergente e
0 '

que

et

+o
J e‘“f‘[rm'r=s_|
[

e T f ity dt — F(0).
]

0

6. Suponha que f'seja de ordem exponencial y e que, para todo ¢ real,



(2) F @B FIraI=1

Mostre que, para todo s >,

+m ;
(3) J e S f(t)dt= AL i : :
0 g+3 = (s 4+ 3)

Conclua que existem constantes 4, B, C tais que

i S (0) A B B
J e SLf(ndt = / G i
0 ¥ik3 s 5= x-+3
Agora, utilizando o Exercicio 8 da Se¢do 3.1 e supondo f (0) = 1, determine f que verifique @ e mostre, em seguida, que esta f satisfaz
Observacdo. A fungdo g dada por
& 00

gls)= Jﬂ e T f(ndt

denomina-se transformada de Laplace de f.

7. Procedendo como no exercicio anterior, determine f tal que
a) f'()—2f({)=costef(0)=2.
by f[(n+fH=exef(0)=-1

8. Suponha que fe f” sejam de ordens exponencial y1 e y2, respectivamente. Suponha, ainda, que /" seja continua. Verifique que

-+ Lo 9 -+ L i
[ et wa=52 ety - 0~ f O
a 0

lim Fix)

iy sera finito ou + oco. Serd finito e igual a sup {F (x) | x > a} se existir M

9. Suponha F (x) crescente em [, + oo[. Prove que .

> 0 tal que, para todo x > a, F (x) < M.




4

APLICACOES A ESTATISTICA

4.1. FUNCAO DENSIDADE DE PROBABILIDADE. PROBABILIDADE DE
VARIAVEL ALEATORIA CONTINUA

Defini¢cdo. Seja f uma funcdo definida para todo x real e integravel em todo intervalo [a, b], com a e b reais e a < b. Dizemos que f ¢
uma fung¢do densidade de probabilidade se as seguintes condi¢cdes estiverem satisfeitas:

1) f (x) > 0 para todo x;
P ]

ii)J fl)dx = 1

EXEMPLO 1. Sejam a < b dois reais quaisquer ¢ f a funcao dada por

1
Fx)=3b—a
10 8¢ X<d ou x>.b

se asx=b

Verifique que /¢ uma funcdo densidade de probabilidade.
Solugdo

De b > a segue que f (x) > 0 para todo x. Por outro lado,

+oo0 b
J- fx)dx = J-
—® a b—a

Logo, a fungdao dada ¢ uma func¢ao densidade de probabilidade.

dx = 1.

EXEMPLO 2. Sendo g > 0, verifique que a funcao f dada por
[ e—X/B _ -
f('l} o T S X = ﬂ

0 se x =0

¢ uma funcao densidade de probabilidade.



Solugdo

De S > 0 segue que f (x) > 0 para todo x real. Por outro lado,

ptoo 42 —X/B
J

J flx)dx= dx = = lim J"\ g B gy = ]
—n ]

B B §F—+xm
pois

‘[{:} e B dx = -8 e 4 Be lim e B =0.

§—+m

Assim, a fungdo dada ¢ uma fung¢ao densidade de probabilidade.
]

Consideremos um experimento qualquer, e seja S o espago amostral associado a tal experimento, ou
seja, S € o conjunto de todos os possiveis resultados de tal experimento. Suponhamos, agora, que a cada
resultado possivel de tal experimento seja associado um ntimero X. Pois bem, a varidvel X obtida dessa
forma denomina-se varidvel aleatoria. Se o conjunto de todos os valores de X for finito ou enumeravel,
dizemos que X ¢ uma variavel aleatoria discreta.

Quando a variavel aleatoria X ¢ discreta, ¢ possivel associar a cada valor de X uma probabilidade.
Consideremos, por exemplo, o experimento que consiste em lancar uma moeda. Neste caso, o espaco
amostral ¢ o conjunto {cara, coroa}; se ao resultado cara associarmos o niumero 0 € ao coroa o 1, a
variavel aleatéria X podera assumir qualquer valor do conjunto finito {0, 1}, e X serd entdo uma variavel

aleatdria discreta. Supondo a moeda honesta, a probabilidade p (x) de cada valor x de X ¢ %, ou seja,

p(0) = %e p(l) = %; ¢ usual a notagdo P (X = x) para representar a probabilidade de a variavel

aleatoria X ser igual a x: P (X=x) =p (x). Observe que p (0) +p (1) =1.

Consideremos, agora, um experimento em que o espago amostral consiste em n resultados possiveis,
S1, S2, ..., Sn, € a cada resultado s; associamos um nimero x; entdo {x; |i =1, 2, ..., n} € o conjunto dos
valores possiveis da variavel aleatoria discreta X; a gada valor possivel x; de X podemos atribuir uma

probabilidade p (x) =P (X =x),comp (x) >0 ¢ 2 p(x;)=1. Se o conjunto dos possiveis valores
i i i i=1

assumidos por X for enumeravel, ou seja, da forma {x; | i natural}, as duas condi¢des acima deverao ser
+

substituidas, respectivamente, por p (x) > 0, para todo i natural, e z pi(x;) =1, onde

I Ii=}

~+oo "

2 plx;) = lim z plx;).

y n— tm
i=1 i=1

A seguir, definimos probabilidade de uma variavel aleatéria que ndo ¢ discreta mas que admite uma
funcao densidade de probabilidade.

Definicdo. Sejam X uma varidvel aleatéria e f uma fung¢do densidade de probabilidade. Dizemos que a variavel aleatoria X tem




densidade de probabilidade 1 se a probabilidade de X pertencer ao intervalo Ja, b[, com a < b quaisquer (a = — o ou b = + =), for dada
por

b
Pla<X<bh)= fx)dx
a
respectivamente,

h
P(—0< X <b)=P(X <b)= j Fx)dx

ou

4o
Pla<X<+=)=P(X=a)= flx)dx).

a

a b X

dreahachurada=Pla=X = h)

Desse modo, a probabilidade de X estar entre a ¢ b nada mais ¢ do que a drea da regido limitada pelo
4+
grafico de y = f (x), pelas retas x = a, x = b e pelo eixo x. De J f(x)dx =1ef(x)=0 para todo x,

—og

resulta que a probabilidade de a variavel aleatéria X pertencer ao intervalo Ja, o[ ¢ tal que 0 < P (a < X
< b) < 1. Observe que f (x) dx ¢ um valor aproximado para a probabilidade de a variavel aleatoria X
estar compreendida entre x e x + dx.

Pelo que sabemos sobre as fungdes integraveis, nada muda nas defini¢des acima se um dos sinais <
(ou ambos) for trocado por <; assim,
P(a<X<b)=P(a<X<b)=P(a<X<b)etc.

Dizemos que uma variavel aleatoria X € continua se, para todo a real, a probabilidade de X = a for
zero. Pois bem, se X ¢ uma variavel aleatéria que admite fun¢do densidade de probabilidade f, entdo X

o
sera uma variavel aleatéria continua, pois para todo a real P (X = a) = J fx)dx =10
o

EXEMPLO 3. Suponha que o tempo de duragao de um determinado tipo de bateria (digamos, bateria de
reldgio) seja uma variavel aleatoria X continua com fungdo densidade de probabilidade dada por

f{‘:‘} - J%ﬁ’_'r"r} se x=10
0 se x <<

sendo o tempo medido em anos.



a) E razoavel tomar f'como fun¢do densidade de probabilidade para a variavel aleatoria X?

b) Qual a probabilidade de a bateria durar no maximo um ano?

¢) Qual a probabilidade de o tempo de duracao da bateria estar compreendido entre 1 ¢ 3 anos?
d) Qual a probabilidade de a bateria durar mais de 3 anos?

Solugdo

Pelo Exemplo 2, tal /¢ uma fungdo densidade de probabilidade (f = 3).

a) Inicialmente, observamos que teoricamente X podera assumir qualquer valor real positivo. E razoavel
supor que a probabilidade de X pertencer ao intervalo [x, x + Ax], com Ax > 0 e constante ¢ x > 0,
decresce a medida que x cresce, e, como a probabilidade de X ser menor que zero € zero, ¢ entdo
razoavel esperar que a f seja nula para x menor que zero ¢ descrescente no intervalo [0, +oo[. Como a
f dada acima satisfaz tais condi¢des, ¢ entdo razoavel tomar tal fungdo como funcdo densidade de
probabilidade da variavel aleatoria X. E claro que essa f nio é a tnica fun¢do que satisfaz tais
condicoes.

y

T l i
—x/3
Hﬁ-"""-\-\.._,_ Y = = e
““'“--.._______h_ 3
[—— [—— =
Ax Ax

b) A probabilidade de que a bateria dure no maximo um ano ¢ a probabilidade de a varidvel aleatoria X
pertencer ao intervalo [0, 1]:

. :
PO<X<l== [ ePar= [-e B3] =1-e"~028.
3 Jo

Em termos percentuais, a probabilidade de a bateria durar menos de um ano ¢ de aproximadamente

28%, ou seja, em cada 100 baterias, espera-se que 28 deixem de funcionar com menos de um ano de
uso.

) pl=X= 3) = 2 [ e 3 dy = [—e‘-”-‘]? = —¢ 1 + ¢ 13 =~ 0,35, Assim, a probabilidade de que a
3

bateria dure de um a trés anos ¢ de 35%.

o0 : i

d) pia< X)= % e gy = [—e‘-"’“-‘r

=

]

= ¢~ ! = 0.37. A probabilidade de que a bateria dure mais

r

.

de 3 anos é de 37%, ou seja, em cada 100 baterias, espera-se que 37 durem mais de 3 anos.

EXEMPLO 4. Seja f dada por



£lx) = J% se x =1
l(:‘l se . x<< l.

Que valor da constante & torna f uma fungcdo densidade de probabilidade?

Solugdo

o+

Como J il

o + a0
fx) d_r=J f(x)dx, precisamos determinar k de modo que J
1

—an

iﬂj dx=1. De

I

P ] e E:

J i,; dx = % (verifique), segue k = 2. Assim, para k =2 a f ¢ uma fungao densidade de probabilidade.
I

Exercicios 4.1

1. Determine k para que a fungdo dada seja uma fun¢ao densidade de probabilidade.
a) f(x)=kxe ~ parax>0e f(x) =0 parax <O0.
b) f(x) = ke ' para todo x.
) f(x)=kx(x—5),0<x<5ef(x)=0parax<0oux>S5.

d) fix) = k para todo x.

e

1 + 4x=

2. Suponha que o salario R$X de um funcionario de uma fabrica seja uma variavel aleatoria com
fungio densidade de probabilidade 1 (x) = kx> para x > 400 ¢ f'(x) = 0 para x < 400.

a) Determine k para que f'seja uma fun¢ao densidade de probabilidade.
b) Qual a probabilidade de o salario ser menor que R$1.000,00?
¢) Qual a probabilidade de o salario estar compreendido entre R$2.000,00 ¢ R$5.000,00?

d) Se a fabrica tem 3.200 funciondrios, qual o numero esperado de funcionarios com saldrios
entre R$2.000,00 e R$5.000,00?

4.2. FUNCAO DE DISTRIBUICAO

Seja X uma variavel aleatéria. A fungdo /' dada por
F(x)=P(X<x),comx real,

¢ denominada funcdo de distribui¢do da varidvel aleatoria X. Se X for uma variavel aleatoria continua,
com densidade de probabilidade f, teremos



X
F)=P(X=<x) = J f(t)dt

para todo x real.

Observe que, se X for uma varidvel aleatoria continua com funcdo densidade de probabilidade f,
entdo a sua funcdo de distribuicdo F' ¢ uma funcgdo continua ¢ F' (x) = f (x) em todo x em que f for
continua. Observe, ainda, que a probabilidade de a variavel aleatdria X pertencer ao intervalo [a, b] €

b
Pla=sX=b)=Fib)— Fla)= J fix)dx.
a

Observe que, se F for uma funcdo de distribuicdo, deveremos ter necessariamente

lim F(x)=1le lim F(x)=0 ypee concorda?
X — 4w i . ‘

EXEMPLO 1. Considere a funcido densidade de probabilidade dada por f(x) = L} sex=1ef(x)=0se
x4

x < 1. Determine e esboce o grafico da funcao de distribuicao F.
Solucao

X X
De F(x)= J‘l f(x)dx, segue que F'(x) =0sex<1leF(x)= J %,dr se x > 1, ou seja,
—a" 1 Ay

i
0 se = | Fix)

Fix) = l_l e > 1. 1 I, "____'_Q_—;;'—;""

(Observeque lim Fix)=1.)

X—+mw
u
EXEMPLO 2. Seja X uma variavel aleatoria discreta que pode assumir qualquer valor do conjunto {0,

1} e com probabilidades P (X =0) =p (0) = % ePX=1)=p)= % Esboce o grafico da fungdo de

distribuicao da variavel aleatoria X.
Solucao

Temos P (X <0) 0, pois X ndo pode assumir valor negativo; para0 <x<1,P(X<x)=P(X=0) =

l
z
, pois X =0 ¢ o unico valor que X poderd assumir no intervalo [0, 1[; parax>1, P(X<x)=P (X =0ou
X=1)=PX=0)+P(X=1) 1. Assim,



Fx)=PX=x)= J— se 0= x <1

to | —

Observe que £ ¢ descontinua nos pontos x =0 e x = 1. Observe, ainda, que i“}rm F)=1
|
Exercicios 4.2
1. Determine a funcdo de distribui¢do da varidvel aleatoria X, sendo sua funcao densidade de probabilidade dada a seguir.
1
a)f(x):—paraOSxSSef(x)ZOparax<00ux>5.
5
-2
b)f(x):%e x parax>0ef(x)=0parax <O0.
<) fx)= % e_‘x‘ para todo x real.
2. N S y A 1 p2x 1 \ . <
Sabendo que a funcdo de distribuicdo da varidvel aleatéria X ¢ dada por Fix)= — J — ¢it, determine sua fungdo
b = S

densidade de probabilidade.

3 Seja X uma variavel aleatoria discreta que pode assumir qualquer valor do conjunto {0, 1, 2} e com probabilidades P (X =0) =—, P (X
3

I
=1)=—e P (X=2)=—. Esboce o grafico da funcdo de distribuicao da varidvel aleatoria X.
6

l
2

4.3. VALOR ESPERADO E VARIANCIA DE VARIAVEL ALEATORIA

Consideremos uma colecdo de n niimeros reais em que o nimero x; aparece repetido n; vezes, x;
k

aparece n vezes, ..., x aparece n vezes, de tal modo que 2 n; = n; pois bem, a média aritmética =
desses numeros ¢ dada por
.IE..

;\.
— 1 . S
r= = Z R X; = z Xi fi, onde f; = —.
= n
!:

P21
Sabemos que a distancia do nimero x; a ¥ € | x; — ¥ |; assim, o quadrado da distinciade x;a ¢ (x; — =

)’. A média aritmética dos quadrados das distincias de x; a %, i de 1 a k, é, por defini¢do, a varidncia de

tais nameros:

| k k
T o) g
variancia = — z X;—x)y m= 2 Bl o 2
n
i=1

== =i



A raiz quadrada da variancia denomina-se desvio padrdo de tais numeros:
| &
desvio padrio = :z (xi — %)% f.

\i=1

Observe que, quanto maior o desvio padrao, mais afastados estardo os nimeros x; da média =, e, quanto
menor o desvio padrao, mais concentrados em torno da média ¥ estardo os nimeros Xx;.

Consideremos, agora, uma variavel aleatoria discreta X com possiveis valores xi, x2, X3, ..., Xk €
probabilidades p (x1), p (x2), ..., p (xx). Por defini¢do, o valor esperado ou média de X, que se indica por
E (X) ou simplesmente por u, €

k
EX) = z X; plx;

i=1

Por outro lado, a varidncia de X, que se indica por Var (X) ou simplesmente por ¢*, ¢ > 0, ¢, por
definicao, dada por

L.
Var (X) = (x; — E(X))* p (x)).
fe=1
Observe que se p (x;) = %, paraide 1 a k, o valor esperado £ (X) nada mais ¢ do que a média %, e Var

(X) nada mais ¢ do que a variancia dos numeros xi, x2, X3, ..., X, onde x; aparece repetido n; vezes e
k

Y m=n

i=1

A raiz quadrada de Var (X) ¢ o desvio padrdo o da varidvel aleatoria X:
o= ./ Var (X).

Observando que, para dx suficientemente pequeno, f (x) dx € praticamente a probabilidade de
ocorréncia de x, nada mais natural do que as seguintes definicdes de valor esperado e variancia para
uma variadvel aleatoria continua.

Definicdo. Seja X uma variavel aleatoria continua X, com funcdo densidade de probabilidade f. Definimos o valor esperado E (X) de X
por

+
E(X)= [ xf(x)dx
o —00
e a varidncia Var (X) de X por

o

Var 0 = [ v = EQOP £ () dx

—0oa

desde que as integrais improprias sejam convergentes.




Lembrando que £ (X) ¢ um numero, temos

+o0 + o0 A =
Var (X) = J_ ¥ f)de —2E X J xfde+[EX] | fx)ad.

400 4oz

xf(x)dxe J fix)ydx = | resulta

—0oa

De E (x) = J

—

@ Var (X) = _[ X f(x) dx — [E (X)].

EXEMPLO. Seja X a variavel aleatoria com funcao densidade de probabilidade

[ e—x/B

B se _K-;?D(B}m
1{) e o P

flx) =
Calcule o valor esperado e a variancia de X.
Solucao

Célculo do valor esperado E (X). Como f(x) = 0 para x <0, vem

+oo
E(Xy= 2, J xe 5B gy,
B Jo

Integrando por partes, temos
J'; xe B gy = [ —Bre™*/ 'B] B Py

e, portanto,

J-ﬁ' _1'6?_'1-'{'8 dx = [_Blw—ﬂ'ﬁ] + ‘Bg 11— E_'I;I'B],
]

De lim —Bse™F=0e lim ¢ =0 (confira) resulta

§F— +x §— +ow

| T | B
E(X)= — xe B ay=_— gt=3.
p <o B

Assim, o valor esperado da variavel aleatoria X € E (X) = f. Vamos, agora, ao calculo de Var (X). Tendo
em vista (1),

1 o % ozl 3
Var (X) = — J xZe B gy — [E(X)]".
B Jo

Integrando duas vezes por partes, obtém-se:



+o .
Jﬂ e B gy = 283,

Lembrando que £ (X) = p, resulta:
Var (X) = .
Conclusao:

EX)=pe Var (X)=p"

Exercicios 4.3

1. Determine £ (X) e Var (X) da variavel aleatoria X com a funcdo densidade de probabilidade dada a seguir.

a) flx)= paraa<x<bef(x)=0parax<aex>b.

b—a
by .. 3
fix)= mp&raxEOef(x)20parax<O.

¢) f(x)=xexparax>0e f(x)=0parax <O0.

4.4. DISTRIBUICAO NORMAL

Inicialmente, observamos que no Vol. 3 sera provado o seguinte importante resultado:

teo -
J e dx = N7

—0a

2

_ +oo 5 .
Por e « ser uma fun¢ao par, resultaj R o
0

EXEMPLO 1. Seja £ (x) = ke« com x real. Determine o valor da constante k£ de modo que f seja uma
funcao densidade de probabilidade.

Solucao

i 1 ./
Como f ¢ uma func¢do par, devemos ter J Fe—x212 dx = = Fazendo a mudanga de variavel x = u
0

2, resulta

! -\."?

&) 2 4a p i 2
| ke ax=k2 | e au
Y0 0



Para s — oo, resulta

I
0

k2 \-". T
2

Deveremos ter entao

EXEMPLO 2. Sendo u e g, 6> 0,

ke

—=]
a+2m -

+o

.2 i 2 kA2 T
=X gy =k 42 e dy= — :

o

i

ouseja, k =

duas constantes dadas, mostre que

+oo

o e ]
e~ (X~ ) 207 gy = 1,
a€x

Solucao
r g ] B! ] : 2 r . r . ~ \
Como o grafico de f(x) = ——— e 1¥ ~#)7/207 ¢ gimétrico em relagdo a reta x = u, basta mostrar
a0~ 29T
que
1
‘o
| i —(x— ) 202 | / \
; e~ (X —wP 207 gy = .
oA27 TH 2 S — .
p ¥

., X
Fazendo a mudan¢a de variavel 7 =

exemplo anterior, segue que

1

o
[T}

a2

—

o

, teremos dx = o dz e z = 0 para x = u. Tendo em vista o

a0

2 pn 2 2
em(x=— w3207 gy = JG 12 g

N2

b | —

A seguir, vamos destacar a distribuicdo de probabilidades mais importante da estatistica: a
distribuicdo normal.

Definicdo. Dizemos que a variavel aleatéria continua X tem distribuicdo normal, com média u e varidncia 62,0 > 0, se a sua fungdo
densidade de probabilidade for dada por

A nota¢do X : N (1, 0%) é usada para indicar que a variavel aleatoria X tem distribui¢do normal, com
média u e variancia ¢* (ou desvio padrio o).

EXEMPLO 3. Seja X uma variavel aleatdria continua, com distribui¢do normal, média u e variancia o”.



Mostre que de fato tem-se:

a) E(X) =u
b) Var (X) = o”.
Solucao
a)
1 jad e T
EX)= — J_m xg FTHY20% gy
Temos

0o A i +@ 2 A AT
J- ye X — @)t i2a gy = J- (x — ) e X — )y 1207 gy 4 n J- e x— ) 1207 gy
— o — g

—0

Com a mudanga de variavel s =x — u teremos

+e

+ 3 3 3 3
J (x —p) e R 20° gy = J se 571207 gy =)

—a0 —

pois o integrando da segunda integral ¢ uma fungcdo impar. Segue que

'i":‘:| ] - +'I' ¥ - 2
J- ye— (= p)iti2e gy = I J- e (X — ) 2a7 gy
—oo

—

Assim,

+oo - - +o - 3
E(X) = — j xe~(x—p?20r g — M j e~ —pyi2e% gy =
o 2m A P g

pois

40
: J e~(r—w?120% gy = 1,
o2 Y-

Portanto, £ (X) = u.

b) Temos

1 T ; 3 12
Var (X) = = (x - pﬂrz g\ w)* /207 dx.
o2 J—>

Tendo em vista a simetria do grafico do integrando em relagao a reta x = u, resulta

2
o2

+oo , .,
J (x — )" e~ x—py 1207 gy,
I

Var (X) =



Fazendo f (x) =x —u, g’ (x) = (x — u) e« "%+ e integrando por partes, vem

3 3 2 1% 5 1 n
J. f{(l) r1_E:rr {I} dx = _U-'j- |(~£ it ‘U.} E-f.t’ — Q) ."2-:1~] + U.E -[ f:._'::_\_' — =t 2o- dx.
) n

I
5 I S R
Com lim (s — p) e” 5= #7207 = regulta
L e
52 4o
Var (X) = ZU— J =32 g 2
o2 M

Assim, Var (X) = o°.
m

EXEMPLO 4. Scja X : N (i, 6%). Mostre que P (u — 0 < X< u + o) independe de i e de o e que seu valor

¢
2 | -2 17
Pipu—oc=X=pt+o = — j RS [
2w Y0
Solucao
2 Hto : Dy
Pu—osX=sputo=—— e X~ l2e” gy
ay2m Ju

PL,teremosdx=adz,z=0parax=y,z=1parax=,u+ae,

Fazendo a mudanca de variavel z =

portanto,

Assim, a probabilidade de X pertencer ao intervalo [u — g, u + o] independe dos valores de i e o, € seu
valor ¢



2 1 _ o
Plu—oc=X=p+o=— J e~ 12 dz =~ 0.68.
'x;'gTT 0

Observacao. Para calcular o valor da integral que aparece no 2.° membro, € sé utilizar a desigualdade (x
<0)

{ 73 i
3 v

. P | ¥'|”+ 1
ef —|1l+x+—+—+ .. +- :
2] 3! n!

==

T (n+1)!

(veja Exemplo 7 da Se¢ao 16.3, Vol. 1, 5. edi¢dao) e proceder como no Exemplo 9 da Secao 16.3
mencionada. Efetuados os célculos, chega-se a: P (u —o < X< u +0) = 0,68. Isto &, a probabilidade de X
pertencer ao intervalo [u — o, u + o] € de aproximadamente 0,68. No Apéndice 2, mostraremos como
utilizar a calculadora HP-48G no calculo de probabilidades de algumas distribui¢cdes continuas. Quando
X tem distribui¢dao normal, existem tabelas para o calculo de P (a < X < D).

EXEMPLO 5. Suponha que a distribuicao das alturas dos 850 alunos de uma determinada escola seja
aproximadamente normal, com média 1,72 m e desvio padrao 0,10 m.

a) Qual o nimero esperado de alunos com altura entre 1,62 e 1,82 m?
b) Qual o nimero esperado de alunos com altura superior a 1,90 m?

Solugdo

Aquiu=1,72 e 0=0,10.

a) P(1,62<X<1,82)=P(u—0<X<u+o)=0,68, como vimos no exemplo anterior. Assim, o nimero
esperado de alunos com altura entre 1,62 ¢ 1,82 m ¢ de aproximadamente 68% do total dos alunos da
escola, ou seja, aproximadamente 578 alunos.

] 00

D) p(x=190) = T Jl [ e TITI002 Gy 0,036 (o cdleulo foi feito na HP-48G). Assim, o
A ) Tl 5=

numero esperado de alunos com altura superior (ou igual) a 1,92 m ¢ de aproximadamente 3,6% do



total dos alunos da escola, ou seja, aproximadamente 31 alunos. (Ja d4 para montar um belo time de
basquete ou de vodlei, nao? Bem, depende!)
n

Exercicios 4.4

1. Seja X uma variavel aleatoria continua, com distribuigdo normal, média x e variancia 02, ¢ > 0. Sendo » > 0 um nimero real qualquer,
mostre que

(.2 s

- e 2 g

N2 d-r

Plu—resX=p+ro)=

e conclua que a probabilidade de X estar entre u — ro e u + ro, ndo depende de i e o, s6 depende de r.
2. Seja X : N(u, 62). Mostre que

Pla<X<b =—— —2=I2 -

1 bl -
J [
V2w

la—u o
onde a < b sdo dois reais quaisquer.

3. Sejam X : N(50, 16) e Y : N(60, 25).
a) Resolva a equagdo P(X <x) = P(Y <x).

b) Resolva a inequagdo P(X <x) < P(Y <x).
4. Sejam X : N(p P G‘F ] eY: Nl{;.f.: : (TE ] Discuta a equa¢do P(X <x) = P(Y <x).
5. Considere a fungdo ¢ dada por

1 b i oD gD
’_J o) f2er dx

elp)=
ao\2m Ja
sendo a, b e o constantes, com a < b.
a) Mostre que
1 (b—p)le 5
elp) = — j e 2 gy
27 da—p)o
de
b) Calcule —.
du

4.5. FUNCAO DE VARIAVEL ALEATORIA

Consideremos a funcao Y= 4 (X) definida para todo X real. Se supusermos X uma variavel aleatdria,
a variavel Y serd também aleatoria; desse modo, teremos a variavel Y como funcdo da variavel aleatéria
X. Um problema que surge naturalmente ¢ o seguinte: conhecida a fungdo densidade de probabilidade de
X, como se determina a de Y? Um caminho para resolver o problema ¢ determinar a fungcdo de
distribui¢do de Y. Antes, vamos relembrar como se deriva uma fungcdo dada por integral quando um dos
extremos de integracao ¢ uma fungao.

Sejam f continua em um intervalo / e g definida e derivavel em um intervalo J e tal que g (x) € I, para todo x em J. Nessas condi¢des,
para todo x em J, tem-se




glx)
Fix)= J fiydt = F' (x)=f(g(x) g’ (x)
i

onde a € I, com a fixo. Se / for da forma | —oo, b [, poderemos tomar a = —oo. (Reveja os Capitulos 2 e 3.)

Uma das fungdes de variavel aleatéria que desempenha papel fundamental na inferéncia estatistica ¢ a
dada por

X—p
o

Z:

onde X é uma variavel aleatoria com distribui¢do normal N (u, 6%). Vamos mostrar no proximo exemplo
que Z ¢ uma variavel aleatoria com distribuigao normal padrdo, ouseja, Z: N (0, 1).

EXEMPLO 1. Seja Z a variavel aleatoria dada por

onde X ¢ uma variavel aleatoria com distribui¢do normal N (u, ¢*). Mostre que Z tem distribui¢do normal
padrao Z: N (0, 1).

Solucao

Precisamos mostrar que a fun¢ao £ de distribui¢do de Z ¢ dada por

1 & i
F(2)= — J e 12 gy,
N 2T —o

Temos

F@)=P(Z<y=P|
\ o

De X : N (u, 0%), segue que

Fizy) =P X=o0oz+pu)= ,
o N2 =

Entao,

F'@)=floz+u) (oz+p)

—(x—p)? 1202
— ¢ 1T H)7I=97 Segue que
o 2T

onde f(x) =

F'(z) = e <12 (de acordo?)

\" zﬂ'



e, portanto,

; 1 . B
F(z)= J e * 12 gx.
—

N 27

(Outro modo de resolver o problema, ¢ mostrando diretamente que

L 1 b L
Pla<Z<b)= _j AR - 8

Y 29 vYa
Temos
, R e
F(af::Zib}=F[a{ <b|=Pac+u<X<bo+ ).
o /
Segue que
b+ 5500
Pla<Z<b)= _I J e~ (X" 120" gy
o 27 Jac+u
Fazendo a mudancga de varidvel z= il ,teremos dx =odz,z=aparax=ac+u,z=>bparax =bo + u
o
e, portanto,
1 b 22 19
Pla<Z<b)=— [ e 12 d7) ]
A 29T Ya

Este resultado ¢ tdo importante que merece ser destacado em um quadro.

Se X for uma variavel aleatéria com distribuigdo normal, X : N (u, 62), ¢ se Z for dada por
X—p
o

Z:

entdo a varidvel aleatoria Z tera distribuicdo normal padrao Z : N (0, 1).

EXEMPLO 2. Seja X uma variavel aleatoéria com fungdo densidade de probabilidade f definida e
continua em todo x real. Seja Y=c X+ d, onde ¢ e d sdo constantes, comc > 0 (¢ <0).

a) Qual a funcdo densidade de probabilidade da varidvel aleatoria ¥?
b) Mostre que E (Y) =c E (X) +d.
c) Mostre que Var (Y) = ¢* Var (X).

Solugdo

Suporemos ¢ > 0 (vocé se encarrega de ¢ <0).
a) Sendo F a fungdo de distribui¢do de Y, temos:



y—d (v = d)le
Y= =y)= = = x) dx.
F {8 7 4 P|lX= (x) d.

c
Como a f'¢ continua em todo x, F' ¢ derivavel e

Fv—d
Fo=rf|2
L &

Segue que existe uma constante & tal que

t—d
¢

1 g+ (
Como ?Lm f{
y—d

Logo, g(v)= 2 f{' } ¢ a funcdo densidade de probabilidade da variavel aleatoria Y. (Sugestdo:
B J

c
Sugerimos ao leitor mostrar diretamente que

+oo
] dt = J;m f(x)dx=1(de acordo?) resulta k = 0.

(y—d )

b
HG{Y{M=lJfL J@,
cYa c
Para isto proceda da seguinte forma:
f — —
P{a{}’{b}=P{ﬁ{Lﬂ(+d{ib}=FLa d{X{b d]=.,,.‘j
¢ c
+o = =
b g (Y)= j 2 f ( y—d } dy. Fazendo a mudanca de variavel x = ) d, dy = c dx e dai
—® ¢ ¢

Ty y—d ) v :
E(Y)= j ‘—f(‘ Jd\-‘= j | (cx +d)fix)dx=cE(X) + d

—a0 O O — g

o
(Lembre-se de que j f(x)dx = 1)

c) Temos

4w 2 R
Var(ry = |2 F(2 dJﬁv—[HWH%

e et L

Com a mudanca de variavel acima,
+® 3 7
Var (Y) = J (cx + d)” f(x)dx — [E(Y)]".

De E (Y) = cE (X) + d, resulta

; B 2 ;
Var (¥) = U_m %2 £ dx = [EQOF | = & Var (x)



X—p ¢ um caso particular daquela do
o

. - . Var(
exemplo anterior: Z = cX + d, onde ¢ s ed=—1. Assim, E(7)= B B e Var(Z)= ME.,X}.
ar ar a
X : My, 6°), teremos E(Z) =0 ¢ Var(Z) = 1 que concorda com o Exemplo 1.

Observe que a funcdo de variavel aleatoria dada por Z=

Sendo

o o=

EXEMPLO 3. Seja Y= X, onde X ¢ uma varidvel aleatoria com fungio densidade de probabilidade £,
definida e continua em todo x real. Qual a fungdo densidade de probabilidade de ¥?

Solucao
Vamos calcular diretamente P(a < Y < b). Como Y > 0, podemos supor 0 < a < b. Temos

Pla<Y<b)=Pla<X*<b).

De
a<X?’<bo—Jb<X<—a ou Ja<X<+b
resulta
Pla<Y<b)=P(—/b <X <—a)+P(a<X<b).
Segue que
—x':{l' ~L||5-_.
HG{F{M=[{wﬂﬂm+JﬁfHML
Fazendo na primeira integral, a mudanga de varidvel x = —,/y € na segunda x = ,/y € supondo a > 0,
obtemos

dy.

|I 1.

a f(—. v bF(dy
a 4.

Ha{Fim=—j ,
b 2.y

Como, para a — 0, o segundo membro desta igualdade converge para P(0 < Y<b), onde P(0 <Y <b) ¢
calculado na igualdade anterior, temos

b (=) + (¥

dy
a 2.y

para quaisquer a e b reais, com 0 < a < b. Assim, a funcdo densidade de probabilidade g da variavel
aleatoria Y ¢ dada por



‘D se v=10
gw=r1 [_x-':." ] L ( VY 3 se v = 0. -
24y

Exercicios 4.5

1. Seja X uma variavel aleatéria continua com funcdo densidade de probabilidade f definida e continua em todo x real. Considere a
variavel aleatoria Y dada por Y= X3. Determine a fungio densidade de probabilidade g de Y.

2. Seja X uma variavel aleatoria com distribuigdo normal, X : N (u, 62). Dizemos que a variavel aleatoria Y tem distribui¢do lognormal
com pardmetros u e 62 se X=In Y. Determine a fung¢do densidade de probabilidade de Y.

4.6. AFUNCAO GAMA

Uma fungdo que desempenha um papel muito importante em estatistica ¢ a fun¢do gama, que ¢ dada
por

- O
@)= L e “x* Vdv.a=>0.
)

Observe que a integral acima ¢ impropria em +oo e, também, em 0 se 0 < a < 1. Veremos nos proximos
exemplos que a integral ¢ convergente para o > 0 e divergente para o < 0. Primeiro, analisaremos o caso
a > 1; emseguida, o caso 0 <o <1 e, por fim, a < 0.

oo |

EXEMPLO 1. Mostre que, para a > 1, a integral impr(’)priaJ- e ' x® ' gy € convergente.
0

Solucao

Paraa > 1, f(x) =exxa ' é continua em [0, ], para todo ¢ > 0. Logo, a integral ¢ impropria apenas
em +oo, Temos:

€ xXa I = e_x/z (e_x/z Xa 1).

a—1 -2 -1

lim ‘r—ﬂ = () (verifique), segue que existe » > 0, tal que e x xa <1

—xf2 a—1 _
A o v/2

De lim e
X—=tw X —=+m g

_ -1 -n + ip e . ~
parax >r. Dai, e xxa <ex parax >r. De L} e 92 4y = 2, segue, pelo critério de comparagio, a

. . . e . +w —_— =1
convergéncia da integral 1mpropr1aj e Y S B Y
0

+
EXEMPLO 2. Mostre que, para 0 <a < 1, a integral impr(’)priaj e x® 1 4y é convergente.
0



Solucao

g ey L = a1
J;; g T e = L e x* T dv + L & TxT v

.. ) . R o e , -,
Raciocinando como no exemplo anterior, conclui-se que J e *x®~ gy é convergente. Como e » é

I

o . A Ve geos ) .
limitada em [0, 1], para verificar a convergéncia de J e x* ~ ! dx basta verificar que a integral
0

) TN - e . . . b 1
impropria J ¥~ Ly é convergente. Deixamos a seu cargo verificar que J ¥ lagr=—. Logo, a
0 0 o

. TN ,
integral J e x®~ 1 4y & convergente se 0 <a < 1.
0

[
. . o : .
EXEMPLO 3. Mostre que, para a < 0, a integral 1mpr(')pr1aj e x® 1 gy é divergente.
0
Solucao
! .
Para o <0, J x® 7 1y = +oo (verifique). Para 0 <x <1,
0
exxa '>e 'xa .
C, . +ee ;
Pelo critério de comparacao, J P B
0
[

EXEMPLO 4.

a) Calcule I (1).
b) Mostreque I' (a +1)=aT (a),a>0.
c) Calcule I' (n), com n natural e diferente de zero.

Solucao

oo -
a) (1) = j s X dp= Tim j"" & B,
()

0 5 — 4=
b) Ta+1)= J e ¥ y® gx. Como o > 0, tal integral s6 ¢ impropria em +oco. De acordo? Integrando
! 0
por partes, vem
~5

- ) 5 s . _
J e “x%dx = {—e‘-‘ x| + « J. e *x* 1 gy
0 0 0

. —& O __
lim e " 5% =0 resulta
5§ — +®



+oo o l
_[ e "x%dy =« _[ e “x* ldx
0 0

e, portanto, I' (a + 1) =a I (o).
olr'Q)=1-r(H=11r3)=2-I2)=2-1;4)=3-I'3)=3-2-1.De modo geral,
I'my=n—1-n—2)-...-3-2-1=(mn— 1) [ ]

A seguir, vamos destacar o resultado do item ¢ do exemplo acima.

Para todo natural n, tem-se

n!'=T(n+1).

Assim, a fungdo gama nada mais ¢ do que uma extensao do nosso ja conhecido fatorial.

Defini¢do. Para todo real a > — 1 definimos fatorial de o por

o! =T (a+1).

Observacao. A fungao fatorial da calculadora HP-48G ¢ dada pela defini¢do acima. A tabela a seguir foi
construida com o auxilio dessa calculadora. Para acessar a funcdo fatorial na HP-48G, tecle: MTH NXT
(para virar a pagina do menu do aplicativo MTH), em seguida pressione a tecla branca da letra A para
ativar PROB no menu do aplicativo. Achou o fatorial?

a -0,99 -0,9 -0,1 0 04 0,45 05 0,6 1 2,5 3

al 99,43 9,51 1,07 1 0,887 0,8856 0,886 0,893 1 3323 | 6

Sugerimos ao leitor que, olhando a tabela acima, faga um esbog¢o dos graficos das fun¢des gama e
fatorial.

Exercicios 4.6

] — P ] }
L. Mostre que I (— ] = /qr. (Sugestdo: Lembre-se de que J E—-'f‘? dy= ~m)
\ 2 —
2. Calcule (- 05)'
3.
Calcule T L— | r | — |etc
\ 2]

4. (2n+ 1)
Estabele¢a uma formula para o calculo de T’ |




4.7. ALGUMAS DISTRIBUICOES IMPORTANTES

Dizemos que a variavel aleatoria continua X tem distribui¢do uniforme se sua fungdo densidade de
probabilidade for dada por

[ : se asx=b
flx) = \ é’ i

se ¥y <=g ou x=h

A variavel aleatéria continua X tem distribui¢do exponencial se a sua funcdo densidade de
probabilidade for > 0,

e—X/B
e S -B
fix) 5

se x =10

se x < (.

J4 vimos que nesse caso E (X) = B e Var (X) = f* (veja exemplo da Se¢do 4.3).

A variavel aleatoria continua X tem distribui¢do gama, com parametros o > 0 e f > 0, se a sua fungao
densidade de probabilidade for

. ; x@—1lg=x/IB g x>0
fx) = T (a)B®
0 se x=0.

Observe que a distribui¢ao exponencial ¢ uma distribui¢ao gama com o = 1.

EXEMPLO 1. Seja f'a fungdo densidade de probabilidade da distribuigao gama.

a) Verifique que tal /¢ realmente uma fun¢ao densidade de probabilidade.
b) Calcule E (X).
c) Calcule Var (X).

Solucao

a) E claro que vamos ter que fazer uma mudanca de variavel de modo que apareca a fungéo gama (voce
concorda") Eu acho até que vocé ja sabe qual ¢ a mudanga! Entdo, vamos 14. Fazendo u = —, teremos

B’
= fdu. Assim,

ey o0 L
J:U X2l B =p L} wp)* " e " du =T (a)

Pronto. E realmente uma fungio densidade de probabilidade.

s A : _ T, - I
b) | x(x* le™Pyax = j e Bax = —p {x“ e~*IB L} + af ! Pyl
0 0



Para s tendendo a infinito, a primeira parcela do ultimo membro tende a zero e, dai,

1 T a— 1 —xB
E{X}=—J X (x e “"Nydx = af|.
B*I'(a) Y0

Conclusao: E (X) = ap.

e )
¢) Lembrando que Var (x) = J e flxydx — [E(X }]2, segue que precisamos calcular apenas o valor
da integral do 2.° membro. Temos

Yo +oo -
L} P * e By gy = L} x® T 178 gy

Integrando por partes, resulta:

+ce _ oo T s
_L} DL [_T“ + le*_-“ﬁ]; +(a+1)B L x%e VB gy,

Sendo o valor da primeira parcela do segundo membro igual a 0 e tendo em vista o item anterior, tem-
se

Var (X) = (af)’ + afp’ = (af)* = aff”.

Conclusio: Var (X) = af”.
m

As trés distribuigdes que destacaremos a seguir desempenham papéis fundamentais na inferéncia
estatistica. Sdo elas: distribuicdo qui-quadrado (y*), distribui¢do ¢ de Student e distribuicdo F de
Snedecor.

A variavel aleatdria continua X tem distribui¢do qui-quadrado (), com graus de liberdade, se a sua
funcao densidade de probabilidade ¢ dada por

‘ (/2 — 1) ,—x/2
M2 e x>0
Fx) = {2”3 Tw/2) c e
' 0

se x= 0.

Uma distribui¢do qui-quadrado, com graus de liberdade, ¢ usualmente representada por x> (v). Observe
que a distribui¢dao qui-quadrado ¢ uma distribuicdo gama coma =v/2 e f = 2; assim, E (X) =v e Var (X)
= 2v. De onde surge essa distribuicao? Consideremos uma populagao com distribui¢ao normal padrao, ou
seja, com distribuigao N (0, 1). Retire, aleatoriamente, dessa populacdo uma amostra xi, x, ..., X» com v
elementos e some os quadrados desses nimeros

.,

¥= a2+ as o+ L. 2

Retire outra amostra e calcule y*, e assim por diante. Este y* ¢ uma varidvel aleatoria, e, teoricamente,
podera assumir qualquer valor positivo. Pois bem, prova-se que, sob determinadas condi¢des, a fungao



densidade de probabilidade dessa variavel aleatoria ¢ a fungao f dada acima. Com essa funcao densidade
de probabilidade, P (a <X < b) ¢é a probabilidade de o valor * pertencer ao intervalo de extremos a ¢ b.

Prova-se que, se Z e Y forem varidveis aleatorias independentes Z com distribuigao normal N (0, 1) e
Y com distribui¢do ¥*(v), entdo, a varidvel aleatoria ¢ dada por

4
\-..'I; }, J'II \ !

tem a seguinte funcao densidade de probabilidade

r+1)
F[ / 5 v+ 1)/2
1+ —1 , com [ real qualquer.

Dizemos que uma variavel aleatoria tem distribuigdo ¢ de Student, com v graus de liberdade, se a sua
funcdo densidade de probabilidade ¢ dada pela fungcdo acima. Observe que tal f ¢ uma funcao par. Faga
vocé€ mesmo um esbogo do grafico dessa fungao.

Sejam U e V variaveis aleatorias independentes com distribui¢des x* (vi) e ¢* (v2), respectivamente.

U ) ) -
i tem a seguinte funcdo densidade de probabilidade:

4 ro_.* -ll-"lz
Prova-se que a variavel aleatéria W =

mV
./ _|_ 2 ,
w2 )12
L 2 ( i Wi X{vl 2)/2 -
/ ,m _‘ o o2 X
y F _l | F 1"'__ | \ 2 V] 11 2
fix)= ] L 7 |4 X ‘
0 se x=0.

Uma variavel aleatoria tem distribuicdo F de Snedecor, com graus de liberdade v, € v,, se a sua
funcao densidade de probabilidade ¢ dada pela facima.

Para encerrar a se¢do, observamos que existem tabelas para calcular probabilidades que envolvem as
distribui¢des normal, qui-quadrado, t de Student e F de Snedecor. Entretanto, como no meio estudantil o
uso da calculadora HP-48G ¢ muito comum, mostraremos no Apéndice 2 como utilizd-la em problemas
que envolvem tais distribui¢cdes, bem como para outros calculos comuns em estatistica.

Exercicios 4.7

1. @) Verifique que a fungdo densidade de probabilidade da distribuicdo ¢ de Student é realmente uma fungdo densidade de probabilidade
no caso v = 3.

b) Mostre que E (1)=0¢,parav >3, Var (1) = . O que acontece com Var (¢) para v <2?

v— 2

2. Mesmo exercicio para a distribui¢do F de Snedecor no caso vi =v2 =2.
3. Uma variavel aleatoria X tem distribuicdo de Weibull se sua funcdo densidade de probabilidade ¢ dada por

= BB e se x>0
0 se x 0.



a) Verifique que tal /' ¢ realmente uma fungdo densidade de probabilidade.
b) Determine E (X) e Var (X).
4. Uma variavel aleatoria X tem distribuicdo de Rayleigh se sua fungdo densidade de probabilidade ¢ dada por

2 g 2
xe ¥ 'S ge x>0

J )= [D se x = (.

a) Verifique que tal /' ¢ realmente uma fungdo densidade de probabilidade.
b) Determine E (X) e Var (X).




5

EQUACOES DIFERENCIAIS LINEARES DE 1.°E 2. ORDENS,
COM COEFICIENTES CONSTANTES

5.1. EQUACAO DIFERENCIAL LINEAR, DE 1. ORDEM, COM
COEFICIENTE CONSTANTE

Sejam dados um numero a ¢ uma fungdo f definida e continua num intervalo /. Uma equagao
diferencial linear, de 1.* ordem, com coeficiente constante, ¢ uma equacao da forma

@® u’T1 + ax = f(1).

ar

Multiplicando ambos os membros de (1) pelo fator integrante e (veja Cap. 14, Secdo 14.6, do Vol.
1) obtemos

dx .
e — + axe™ = M f (1)

dt
ou
“il A — il ( )
@ E[IE |=e®f(t)
. od dx )
pOlS, F [-le{flf]= T 'E;le + {J.l.'f?{“-
I dt

Como f'¢é continua em /, e” f (¢) admite primitiva em /. De (2) segue que xe* ¢ da forma
xe™ = k + Je‘”fm dt
ou

©) x=ke % e ™ J e (1) dt

com k constante. Por outro lado, ¢ féacil verificar que as fungdes da forma (3) sdo solucdes de ().
Chegamos, assim, ao importante resultado:

As solugdes de



dx
—Fax=171(t)
dt AU

sdo as fungdes da forma
x=ke % + g~ a Jef” f(r)dt

com k constante.

Este resultado ¢ um caso particular daquele que obtivemos na Se¢ao 14.6 do Vol. 1. Observamos que
no calculo de J e f(1) dr a constante de integragcao pode ser omitida (por qué?).

EXEMPLO. Considere a equagao

dx
— T+ x =i+l
dt

a) Ache a solugdo geral.
b) Ache a solucdo x = x (¢) que satisfaz a condic¢do inicial x (0) = 1. Esboce o grafico.

Solugdo
a) Asolucdogeral ¢ (a=1lef(t)=t+1)

x=ke '+ F_!jf’r{f'i‘ 1) dt.

Como J e' (t + 1) dt = te' (verifique) resulta

x=ke '+t

b) Precisamos determinar k para se ter x = 1 para ¢ = 0.
l=ke®+0=k=1.

A solucao que satisfaz a condicao inicial dada ¢

xX=e:+1t.




Grificos das solugdes da equacio

k>0

Exercicios 5.1

1. Ache a solugdo geral.

dx dx
a) — —3x=¢ by — —x=2t+1
dt dt
dx dx
) — — X=cost dl — + 2xr=sent
dt dt
Tx Tx
&) — —x=e n = _x=5
dt dt
dax dx 1
g)———+x=cos 2t h) — +2x= —
dt dt 2
dv ds
H—+3y=x e =2= e
dax dt
f dv
Iy M 4 g = cos 3t m) — — y=senx
dt dx -
dy dx
m3I — 4+ 2yv=1 02— +x=t
dx ’ dt
Iy Ty T
p)5 —= — 10y = &> q) — =3T+2
dx dt
dy . dy: . —
r)y — = v +cos 3x 5) — =3x—e¢
dx ’ dt

2. Numa certa cultura de bactérias, a taxa de aumento € proporcional ao numero presente.
Verificando-se que o niimero dobra em 2 horas, quantas pode-se esperar ao final de 6 horas?

3. De acordo com a lei de resfriamento de Newton, a taxa de resfriamento de uma substancia, numa
corrente de ar, ¢ proporcional a diferenca entre a temperatura 7" da substancia e a do ar. Sendo a
temperatura do ar 20° e resfriando a substancia de 110° para 80° em 20 minutos, determine a
temperatura 7= T (¢) no instante ¢, (suponha ¢ dado em minutos).

4. Uma das equagoes basicas dos circuitos elétricos €



® LE+Ri=E®
dt

onde L (henry) ¢ a indutdncia, R (ohms) ¢ a resisténcia, i (ampere) € a corrente e £ (volt) a forga
eletromotriz.

a) Resolva (1) supondo L e R constantes ndo-nulas, E () = E, para todo t e i =0 para t = 0.

b) Resolva (1) supondo L =2, R=10, E (¢) = 110 sen 120zt e i = 0 para ¢ = 0.

5.2. EQUACOES DIFERENCIAIS LINEARES, HOMOGENEAS, DE 2.*
ORDEM, COM COEFICIENTES CONSTANTES

Uma equacgado diferencial linear de 2.“ ordem, com coeficientes constantes, ¢ uma equagao da forma

d2x dx
—+b—+cx=f(t
dt= dt AL

@

onde b e ¢ sao numeros reais dados e /: I — [, [ intervalo, ¢ uma fungao continua dada.
Se f(t) =0 em /, a equacdo acima se diz homogénea.
Nosso objetivo a seguir € determinar a solu¢do geral da equagao homogénea
d2x dx

—+b—+cx=0,
dt- dt

@

Para isto, vamos precisar da equacao algébrica
® A H+bA+c=0

denominada equagdo caracteristica de (2).
Observamos que se A; for raiz real de (@), entdo x = €" seré solugdo de (2). De fato, para todo .

@MY + b (MY + ceMtt = AZeM + bA M + e = M2+ bA + ) = 0.

O teorema que demonstraremos a seguir mostra-nos que, conhecendo as raizes da equagao
caracteristica, conhecemos, também, a solucdo geral da equacdo homogénea (2).

Teorema. Suponhamos que as raizes A1 e A» da equagdo caracteristica @ sejam reais. Entao

(i) se Aj # Ay, a solucdo geral da equagdo homogénea @ seré

x =AM + Be™' (A, BER).
(i) se A1 = A2, a solugdo geral serd

A

x = Ae™ + Bte™ (A, BE R).




Demonstracdo

Como 4; e A, sdo raizes de 1> + b1 + ¢ = 0, temos

)‘.[ +.r'1.2 =—h
;lt.-:'Q:(‘.
Assim,
2 : %,
d; s v amsne P2 on wannE sapyesn
dt dt dt= dt

que ¢ equivalente a

i {ﬂ — A _1-—! — A> {i_x — Ay x} = (0. (Verifique.)
| at
i i

Segue que x = x (¢) serd solucdo de (2) se e somente se % — A;x for solugdo da equag@o linear de 1.
ar

ordem

Como u = k»esr, segue que x = x () serd solugdo de (2) se e somente se

{.'f__?( —Alx = f{gf?ﬁf'r,
dt

Deste modo, x = x (¢) serd solugdo de (2) se e somente se for da forma
x = kle"‘lr + M J‘kj_rf?[AE =M

com k; e k, constantes.

Se /11 75/12,
[A At
-~ 2 1°
X k[f':')l]r Jog™i? ke

A — Ay

ou

x =Aew: + Bews
= . K
onde A=K eB= —= .
1 }.2 = ;'1.[

Se l] = lz,



¥ =k eMt + M jk; dt
ou seja,
x = Aei: + Btei

onde A=k e B=k.

EXEMPLO 1. Resolva a equagao

d?x dx
—+3—+2%=0.
dt= dt

Solucao

A equagdo caracteristica ¢ A* + 31 + 2 = 0, cujas raizes sdo — 1 e — 2. A solugdo geral da equagio ¢é
x=Ae T + Be 721,

EXEMPLO 2. Ache a solugao do problema

[ FX 135 pnge i
3 dt- dt
x(M=0ex"(0)=1.

Solucao
O que queremos aqui ¢ a solugdo da equacao

BX g gopen
dt= dt

que satisfaz as condigdes iniciais x (0) =0 e x"(0) = 1. Pelo exemplo anterior, a solucao geral ¢
x=Ae + Be*.
Devemos, agora, determinar 4 ¢ B para que as condi¢des iniciais sejam satisfeitas. Temos
x'=—Ae—2Be*.

Entao



ou

A+ B=10
—A—-2B=1

e, portanto, 4 =1 ¢ B=—1. A solugdo do problema ¢

cyjo grafico ¢

EXEMPLO 3. Resolva a equagao

¥ g™ gy,
di= dt

Solucao
-8l +16=0=1=4.
Como 4 =4 ¢ a unica raiz da equagdo caracteristica, a solucao geral sera
x = Ae™ + Bre™

EXEMPLO 4. Resolva a equagao

Solucao

P=9=0e1=+3,

P,



A solugdo geral da equacao €
x=AeM + Be . =

Na Secao 5.4, veremos como fica a solugdo geral da equagdo homogénea (2), no caso em que as raizes
da equagdo caracteristica forem complexas. Antes, porém, precisamos construir o corpo dos numeros
complexos; € o que faremos na proxima seg¢ao.

Exercicios 5.2

1. Resolva as equacoes.

f:_' 1 lﬂlrE_ dx
n‘}( :—Ei—?ﬂr={} bh) r—2_3'+‘1|:
dt® dt di? dt
?rf_ ﬂrf_ ;I
) : :(—41:'[} d) f_4ﬁ:
dr= dt= dt
d2x dix dx
e) — —3x=10 fi——+2—Fx=40
di= Y/ dt
12y v d2y '
R A T n2+r6L19y=0
dx= dx dx= dax
} d=y dy 0 y = 6
J|‘ = 3 — = = 1| ==
dx= dx + dx?
h dhf + 3 J—l = ) dhf =0
dt~ dt dr-
d2x dx _ d2x dx
ny 2— ——x=0 0) 3——+5—=10
= ¢t 7 dt

2. Determine a solu¢ao do problema.

d%x
==, #iy="18 % (0)y=——1
dt~
b ix
b) £ ,: -2 i 0. x(M=0e x"(0)=1
dt= dt
?TE / iy
oL 28 4 y=0,y0)=1e y(0)=0
dt- dt
3. ~ (. dx . d*x
Resolva a equacdo. | 1 = —e ¥y =—
dt dt=
a) ¥ —2x=10 by i+ 5x +6x=0
)y—Ty=0 dy y— 10y + 25y =20

4. Uma particula de massa m = 1 desloca-se sobre o eixo x sob a acdo da forga elastica —x 7} e de
uma for¢a de amortecimento proporcional a velocidade ¢ dada por —2: 7 Determine a posi¢do x =
x (1), t > 0, da particula no instante ¢ e discuta 0 movimento, supondo

@) x(0)=1¢e:(0)=0
p) x(0)=1¢ s (0)=—2



5. Uma particula de massa m = 1 desloca-se sobre o €ixo x sob a ac¢do da forga elastica —2x 7 e de
uma for¢a de amortecimento proporcional a velocidade e dada por — 3 . Determine a posi¢ao x
=x (t), t > 0, da particula no instante ¢ e discuta o movimento, supondo x (0)=e—1¢ : (0)=—1.

5.3. NUMEROS COMPLEXOS

Por um numero complexo entendemos uma expressao do tipo
z=a+bi

onde a ¢ b sdo numeros reais e i um simbolo cujo significado aparecera logo a seguir. O conjunto dos
nimeros complexos € indicado por C : C = {a + bila, b = R}.

Sejam os nimeros complexos z = a + bi € z; = a; + byi. Dizemos que z € igual a z, se e somente se a =
a; e b=b,, isto é,

a+bi=a1+b1i=>a=a1 eb=b1.
Definimos a soma de z € z; por
(a+bi)+(a+bi)=(a+a)+(b+b)i
Definimos o produto de z por z; por
(a + bl) (Cl1 + bﬂ) = (61611 - bb1) + (ab1 + alb) .
Segue da defini¢do de produto de nimeros complexos que

P=i-i=04+1i)0+1i)=—1.

Deste modo, i ¢ um numero complexo cujo quadrado ¢ — 1. Veja, agora, como vocé pode obter o produto
de a + bi por a; + byi:

(a + bl) (611 + bﬂ) = dada + Clb1i + baﬂ + bb1i2 =daa + abli + bali - bb1
= (ClCl1 - bb1) + (ab1 + a1b) I.

Dizemos que z = a + bi ¢ um numero complexo real se b =0;se a=0 ¢ b # 0, diremos que z ¢ um
numero complexo puro. Por motivos 0bvios identificaremos o complexo real a + 0i com o ntimero real a
: a + 0i = a. Deste modo, podemos olhar [ como subconjunto de .

Deixamos como exercicio verificar que a terna (C, +, ©) € um corpo, isto €, qualquer que sejam os
complexos z1, z», z3 tem-se:

ADICAO MULTIPLICACAO



Al (2 +z)+5=27+(2+2) M) (22) =27 (z2)
A2) z+z=1+2 M2) zz,=zz
A3) Vze(,z+0=z M3) Vze(,1.2=2

A4)  Paratodozem (", existe um tGnicowem (" talz+ w=0.Tal M4) Para todoz=0,z €, existe um Gnico w_e1m Ctalquez-w

w é 0 oposto de z e indica-se por —z. =1.Talw é o inverso de z e indica-se porz ou—.

ay

D)z, (z,+2) =127+ zz

Os nimeros complexos sdo representados geometricamente pelos pontos de um plano: o nimero
complexo z = a + ib é representado pelo ponto (a, b).

b cixo dos complexos puros

Ll R -~ I

g

0 a eixo dos reais

E comum referir-se ao ponto (a, b) como o afixo do complexo z = a + ib.
Seja z = a + ib. O nimero complexo 7 = a — ib denomina-se conjugado de z. O modulo de z ¢
definido por



o

&a |

Seja o nimero complexo z = a + ib e tomemos & de modo que a = |z| cos € ¢ b = |z| sen §. Assim z = [z|
(cos 8 + i sen 6), que ¢ a expressao de z na forma polar.

'Y

7 A

O nimero 0 denomina-se um argumento de z. Observe que sendo 6 um argumento de z, qualquer outro
sera da forma 0 + 2kr, k € 7.

EXEMPLO 1. Determine o inverso, o conjugado ¢ o médulo do complexo z =5 + 3i.

Solucao
S O 5 =3¢ _5—3:.'_5_:-‘:I
z 5+3i (5+30(5-3) 25+9 34 34
Assim,
1 :5_3I
543 34 34

O conjugado de z ¢:



O moédulo de z é:

[Zl= T2 = + 32
ou seja,
|z1=+/34.
]
EXEMPLO 2. Seja z um complexo qualquer. Prove
7= &S rénedl
Solucao
Seja z =a + ib. Temos
I=7I=a—ib=a+ib=2bi=0b=0.
Assim, se 7 = z, entdo z = a que ¢ real. Reciprocamente,
zreal e z=a+0-is =12 |
EXEMPLO 3. Suponha a > 0, a real. Prove
22+a=0&z=iJa ouz=—ia.
Solucao
2 ta=(z+iva)lz—iva).
Assim,
Z2+a=0ez+iva=0o0uz—iJa=0.
ou seja,
2+a=0sz=—iJa ouz=i/a.
Ou ainda
2+a=0s72=—-a< 2= ai’ z=*iva. =

EXEMPLO 4. Considere a equagdo az* + bz + ¢ =0, onde a # 0, b e c sdo reais dados. Suponha A = b* —
4ac < 0. Prove



. —b+iJIA|
azi+bz4+e=0 7= X ;

2a
Solucao
, 5, b c
az=+bz+tc=0=2z-+—z+—=0.
a a
b )
Somando b_j aos dois membros da tltima equacao vem
da-
o) b |
2k 2P e
a da- da- a
ou
[ b b? - 4dac
v e — 3
2a da~
ou
(b Al
i Iu
ik + _J = =~
\ 2a , 4a*
dai
oy b iNIAI
2a 2a
ou seja,
= b*iIAl
T .
2a

EXEMPLO 5. Resolva x> +2x +2 =0.

Solucao

ou seja,

Exercicios 5.3

1. Calcule a e b.



q . -2 ]
a1+ =a+ b by(2+ 3y =a+ bi

!

c) - =a+ bi d) - =a+ bi
343 2

_ 4 _ (14 i)? ,

eyt — 1) " =abi — =a+ bi
(L—2)"
5 : 2+

E) =a + bi I) =a+bi
2—3i =i

2. Resolva as equagoes.
a) Z2+1=0
by *+i+1=0
c) P +24+2=0
d) zZ2+2z+3=0
e) /*+w* =0, onde w# 0 & umreal dado

f) 2+4=0
g P2+i+2=0
Wy 22+5=0
i) 2Z24+2=0
J) A=4=0

) 2-4).+5=0

3. Sejamz e w dois complexos quaisquer. Verifique que
a) =1
b) 7-w= z.w (0o conjugado de um produto é igual ao produto dos conjugados)

¢) T+ w= 74w (0o conjugado de uma soma ¢ igual a soma dos conjugados)

5.4. SOLUCAO GERAL DA EQUACAO HOMOGENEA NO CASO EM QUE AS
RAIZES DA EQUACAO CARACTERISTICA SAO NUMEROS
COMPLEXOS

Vamos estudar inicialmente a equacao

d*x 5
+w-x =10
O dt?

onde @ # 0 é um real dado. A equagdo caracteristica de () é y* + w® = 0, cujas raizes sdo 0s nimeros



complexos wi € — wi; deste modo, o que aprendemos na Secao 4.2 ndo se aplica (no Apéndice 1 veremos

2 :
como dar um tratamento Unico a equagdo homogénea d T e dx

dr= dt

cx = 0, quer as raizes da equacao

caracteristica sejam reais ou complexas).
Observamos que uma fungdo x = x(¢), ¢ € R, sera solucdo de (1) se e somente se, para todo ¢,

@ XD =— > x(1).

Como as fungdes sen wt e cos wt satisfazem (2), segue que x = sen wt € x = cos wt sao solugdes de ().
Deixamos a cargo do leitor verificar que, quaisquer que sejam os reais 4 € B,

©) x=Acoswt + B sen wt

serd, também, solucao de (1). Nosso objetivo a seguir € provar que x = x(t), t € R, sera solucdo de (1) se e
somente se for da forma (3).

Para atingir nosso objetivo, vamos provar primeiro que se x = x (¢), ¢t € R, for solucdo de (1) entdo
existira uma constante k tal que, para todo ¢,

[X' (O +o” [x ()] =k

(Esta relag@o nos diz que, se 0 movimento de uma particula na reta for regido pela equacao (1), entdo a

; e e4y]2
[I{”] com a energia potencial ['i"t"*]l (t ]'] mantémse constante durante o
p) 2

i .

soma da energia cinética

movimento. )
De fato, sendo x = x (#) solugdo de (1), para todo 7, tem-se

x" () + w* x (t) = 0.

Dai, para todo ¢,

= 0.

Logo, [x' ()]* + @* [x (£)]* é constante.
Suponhamos, agora, que x =x (), ¢ € [, seja uma solucao qualquer de (1). Facamos ao =x (0) e by =x
"(0). A fungdo f'dada por f (1) = agcos wt + b sen wt € solucao de (0) e, além disso, f(0) =a e f (0) =
‘ § 0

L]
bo. Sendo f (¢) e x (¢) solugdes de (1), f () — x (¢) também serd. Pelo que vimos acima, existird uma

constante k tal que, para todo ¢,

[ @) —x'OF + o [f () —x (O] =k

De f(0)=x (0) e /' (0) =x'(0) resulta k£ = 0. Assim, para todo ¢,



[ @) —x"OF +o [f () —x (O] =0

e, portanto, x (¢) =f (t), ou seja,

x (t) = A cos wt + B sen wt

onde A = age B = %0 Fica provado assim que x = x (t), t € R, sera solucdo de (1) se e somente se for

L

da forma (3).

A solugdo geral de

onde w # 0 é um real dado, é

x=Acoswt+Bsenwt (4, BER)
EXEMPLO 1. Resolva a equagao
d_j. +4x=0.
dt-
Solugdo
As raizes da equagdo caracteristica
A+4=0

sdo 2i e — 2i. A solucdo geral ¢

x =Acos 2t + B sen 2¢.

As notagdes i e i (devidas a Newton) sdo frequentemente usadas, em fisica, para indicar,

respectivamente, as derivadas de 1.* ¢ 2.* ordens de x em relacdo ao tempo #: y =

préoximos exemplos utilizaremos tais notagoes.

EXEMPLO 2. O movimento de uma particula sobre o eixo x ¢ regido pela equacao

mi+kx=0

B 507 Nog
dt dt=



onde m > 0 ¢ k> 0 sdo constantes reais dadas. Descreva o movimento.
Solucao
A equacao ¢ equivalente a
itowx=0

onde ¢ = i A solugdo geral ¢
m

x =A cos wt + B sen wt.
Tomando-se ¢ tal que

= 1_-';,43 + B? cos peB= -x.".AEI + B? sen ©

2 e e S i

| |

resulta
= -\_."AE + B? [cos @ cos wr + sen @ sen wi]

ou seja,

X = i.".fiﬁ + B2 cos (wt — @).

Trata-se, entdo, de um movimento harménico simples de amplitude /42 + B2 |

u
Observacao: Dizemos que uma particula que se desloca sobre o eixo x descreve um movimento
harmoénico simples (MHS) se a equacdo horaria for do tipo x = a cos (ot + @o). Os nimeros a, @ € @

denominam-se, respectivxmente, amplitude, pulsa¢do e fase inicial do movimento.
Vejamos, agora, qual ¢ a solugdo geral de

X¥ bx+ex=0

no caso em que as raizes da equagdo caracteristica sdo numeros complexos. Se as raizes da equacao



—_—

—b+ A

caracteristica fossemreais e distintas, ) = = , a solugdo geral seria, como ja vimos,

2
(—b++A) ! (=b—+A)
x=Ae 2 + Be 1
ou
By “"_'ﬁ ' e a
x=e 2 |Ae 2 + Be 2
Observeque 40 2 4+ Be 2 (A>0)¢asolucdo geral de
x —— x = 0. (Verifique.)

Provaremos a seguir que se as raizes da equacdo caracteristica forem numeros complexos (A < 0) a
solugdo geral sera

EJ I I
=g A TA vIAL
x=¢ 2 |Acos——1+ Bsen t|
Teorema. Seja a equacgao (b e c reais dados)
® F+bi+cx=0
e suponha que as raizes da equagdo caracteristca A2 + bl + ¢ = 0 sejam complexas
. b JALY ) ,
A=a =x Bionde a=— 5 e B= = Entdio a solugdo geral de (§) sera

x = e™[A cos Bt + Bsen Bf] (A, B < R).

Demonstracdo

Sejam f'e g definidas em | e tais que, para todo ¢,

B

—=F
fity=e 2 g(1).

Vamos mostrar que f sera solugdo de (6) se, e somente se, g for solugdo de
. (—A)
@ X+ L—J,r = (.

De fato, se f for solucdo de () teremos, para todo ¢,



FO+bf () +cf (=0

ou
b, Tk, T T b,
[l’ 2 J:f{f}}+b[v 2 Q{FJ:|+(‘|:E 2 g{r}}=l}.
Como
—Er ’ b —Er —;—}: :
e ¥ g == & 3 e 2 .0
e

h L - b b b
— b‘ o g —= r "
L 2 .;’(f}} = 3 ° 2 g—be 2 g)te 2 g'(),

substituindo em (8) e simplificando resulta

b, (2

=
o

Como A = b* — 4ac, segue que

A
g"(f) + [T} g(t)=0

e, portanto, g ¢ solugdo de (7). Deixamos a seu cargo verificar se g for solucdo de (7) entdo f sera solugdo
de (). Sendo g solucdo de (7)

g (t)=Acos ft+ B sen fit

=t )

onde g = T‘l Segue, entdo, que
!

b
flty=e 2 I [A cos Bt + B sen Br]

e fazendo @ = — —, resulta

b | =

f(t) = e™[A cos Bt + B sen Bi]. ]
EXEMPLO 3. Considere a equacao

X+ 2x + 2x=0.



a) Ache a solugdo geral.
b) Esboce o grafico da solucao que satisfaz as condi¢des iniciais x (0) =0 e i (0) = 1.

Solucao

AN+ +2=0= A=

A solugdo geral ¢
x=e:[Acost+ Bsent].

b) x(0)=0ex=e(Acost+Bsent)= A=0.
Assim, x = Be :sen t. Segue

x=—RBe "sent+ Be™! cost.

Dai i (0) = B, logo, B=1. A solucdo que satisfaz as condic¢oes iniciais dadas ¢

X=e:sent.

#
&
!

_E'I

A seguir, vamos destacar, num quadro, os resultados obtidos nesta se¢dao e na 5.2.

Seja a equacdo
X+ bx +cx=0 (b e c reais dados)
e sejam 41, A2 as raizes da equagdo caracteristica.

(I) Se A1 # 42, 41 e A2 reais, a solugdo geral sera

At At
x=Ael 4+ Be™2,

(II) Se A1 =42, a solucdo geral sera




x ="' [A+ B
(IIT) Se as raizes da equacdo caracteristica forem complexas, 4 = a + fi, a solu¢do geral serd

x =e¥[A cos ft + B sen ft].

EXEMPLO 4. Uma particula de massa m desloca-se sobre o eixo x sob a acdo de uma forca eldstica
—kx7(k > 0) e de uma for¢a de amortecimento proporcional a velocidade e dada por —cii (¢ = ()-
Determine a equacao que rege o movimento e discuta as solugdes.

Solugdo

Pela lei de Newton
mx = —kx —cx
ou seja,
mx +cx +kx=0
que € a equacao que rege o movimento. Esta equagdo ¢ equivalente a

(D) ¥+2y+ w2x=0

& k , o , . .
onde y = e w? = —. As raizes da equacdo caracteristica s30: \ = — v + VY — @t
2m m ' !

1.° caso. Movimento oscilatério amortecido ou subcritico (y* < »?).
Sendo y* < w?, as raizes da equagdo caracteristica serdo complexas, A = — y = wi, onde @ = \*,-'ml o —}af )
A solugdo geral de (i0) sera

x =¢e ¥ [A cos wf + B sen wt]

e, portanto,

x = Ke ™" cos (wt — @)

onde g = JAZ4+B2epe tal que A=K cos ¢ e B=K sen ¢.

2.° caso. Amortecimento critico (y* = w?)

Neste caso, a equacao caracteristica admitird uma unica raiz real A = —y. A solugdo geral sera
x = Ae y+ Bte y

ou seja,



x=en[A+ Bt].

3.° caso. Amortecimento forte ou supercritico (y* > »?)

Sendo y* > w® as raizes da equagdo caracteristica serdo reais e distintas, 1 = —y + Q, onde
0 = ./y2 — @?. Asolucido geral sera

x=e " [4e* + Be ).

A figura a seguir mostra o grafico da solugao que satisfaz as condig¢des iniciais x (0) = xo (xo > 0) e = (0)
=0.

amortecimento forte

amortecimento critico

v ‘
oscilatorio

amortecido

Note que, nos casos 2 € 3, o amortecimento ¢ suficientemente grande de modo a ndo permitir oscilagdo da

particula em torno da posi¢ao de equilibrio (x = 0).
u

Exercicios 5.4

1. Resolva as equagdes.

i x dx %
a) — +2—+5x=0 b) ¥ +5x=0

dt- dt

% . d?x
x4+ x+x=0 ) ==

L] |1d.r‘- Ll
e) X + =20 NDy—2y+y=

i ; d2y dv
g) y—4y+4y=10 hy —+3—=0

dt di

5 : . d%y ly
i) ¥ +6y+10y=0 P gay=ig

w dr=  di
hy—6y+5y=0 m)x—6x+9 =0
n y+4y=0 o) y+3y+3y=0
p) ¥+ ay =0, onde a > 0 é uma constante. ¢) v + ay = 0, onde a < 0 ¢ uma constante.
ry—2v+6y=0 5) X+ 8x 4+ 200 =0

2. Determine a solugdo do problema.



a) x +4x=0,x(0)=0e x(0)=1.

by x+2x+2x=0,x(0)=—1e x(0)=0.
e+ =0 20 =Tex0)=]

d) x+x=0,x(0)=—1ex(0)=2

3. Uma particula de massa m = 1 desloca-se sobre o eixo x sob a acdo da forca elastica —4x T Supondo x (0)=1e 1 (0) =—1,

determine a velocidade no instante ¢.

4. Uma particula de massa m = 1 desloca-se sobre o eixo x sob a acdo de uma forca elastica —2x T e de uma for¢a de amortecimento
proporcional & velocidade dada por —2 3 T Determine a equagao horaria do movimento supondo x (0) =0¢e 1 (0) = 1.

5. f ¢ uma funcao definida em [} tal que sua derivada segunda ¢ igual a diferenca entre sua derivada primeira e ela propria. Determine f
sabendo, ainda, que /' (0) =0¢ /" (0) = 1.

6. Um movel desloca-se sobre o eixo x com aceleragdo proporcional a diferenga entre a velocidade e a posi¢do. Determine a posicao x =
x (¢) do mével, supondo y (0) =2, i (0)=1ex (0)=0.

—

7. Uma particula de massa m = 1 desloca-se sobre o eixo x sob a agdo de uma forga elastica —x i de uma forca de amortecimento

proporcional & velocidade e dada por —cx T (c > 0). Determine ¢ para que o movimento seja

a) fortemente amortecido.
b) criticamente amortecido.

¢) oscilatorio amortecido.

5.5. EQUACOES DIFERENCIAIS LINEARES, NAO HOMOGENEAS, DE 2.
ORDEM, COM COEFICIENTES CONSTANTES

Consideremos a equagao linear, de 2.? ordem, com coeficientes constantes

d2x dx
+b—+cx=f(l)
dt? dt 7

@

onde f "¢ suposta definida e continua num intervalo /. Se f ndo for identicamente nula em /, diremos que (1)
¢ ndo homogénea. Diremos, ainda, que
= d*x dx

p
H +hb—+ex=0
2 dt? A dt =

¢ a equagdo homogénea associada a ().
Mostraremos, a seguir, que se x, = x,(¢), t € I, for uma solugdo particular de (1), entdo a solugdo
geral de (0) seré

X=XxptXx,

onde x; € a solucdo geral da homogénea associada a (1). De fato, sendo x, = x, (¢), ¢ € I, solucdo de (1),
para todo ¢ € [,

Xp(t)+bx, (1) +exp(t)= f(1).

Supondo que x = x (¢), ¢ € I, seja outra solugcdo qualquer de (1), resulta que x (#) — x, (¢) € solugdo da



homogénea (H), pois, para todo ¢ € 1,

-

dr?

[x() —xp (D] +D % [x(1) = x, (D] + € [x(1) = x, ()] =
[X(t)+ bx(1) + ex(1)] — [Xp (1) + bxp(t) + cxp(t)]= f(1) — f(1) = 0.

Por outro lado, se x =x (¢), ¢t € I, for tal que x (¢) — x, (¢) € solucdo da homogénea, entdo x = x (¢) sera
solucao de (1) (verifique). Segue que a solucao geral de (1) €

X=XxptXx,
onde x, € a solugdo geral da homogénea (H; e x, uma solug@o particular de ().

Conclusdo

A solugdo geral de

¥+ bi+cex=f)

X=xhtxp

onde xp ¢ uma solucao particular da equagdo dada e x; a solugdo geral da homogénea associada.

Determinar a solugdo geral da homogénea associada ja sabemos. O problema, agora, ¢ como
determinar uma solugdo particular. Os exemplos que apresentaremos a seguir mostram como determinar,
em alguns casos, uma solucao particular por meio de uma “escolha criteriosa”. No final desta secao vocé
encontrard uma tabela que o ajudara nesta “escolha criteriosa”.

EXEMPLO 1. Determine a solugdo geral de

il L R
dt- dt
Solugdo
A homogénea associada ¢
3
LA AN YOO O
di= dt

e a solucgdo geral x;, = Ae % + Be« (verifique). Vamos, agora, procurar uma solucdo particular da equagido
dada. Tentaremos uma solugao do tipo

X, =m+nt



onde m e n sdo coeficientes a determinar. Vocé acha natural tal escolha? Por qué? O que precisamos
fazer, agora, ¢ substituir esta fungdo na equagao e determinar m e n para que se tenha uma identidade.

(m+nt)'+3(m+nt) +2(m+nt)=t
ou
3n+2m+2nt=t

Devemos ter entao

{Sn-l—ﬁer;:{)
2 =1
) 1 3
ouseja, n = — e m = — —. Deste modo,
2 4
3 i 1 :
X,=——+ —
P 4 2

¢ uma solucao particular da equagao. A solugdo geral sera

.r=A€_3’+B€_’—i+lf N
4 2
EXEMPLO 2. Considere a equacao
X+3+2x=1.
a) Olhando para a equagdo, “chute” uma solugdo particular.
b) Ache a solucao geral.
Solugdo
a) A fungio constante x (¢) = % ¢ uma solucao particular (verifique).
b) A solugdo geral da homogénea associada ¢
X5 = Ae %+ Be ..
Segue que a solucao geral da equagao dada ¢
x=Ae 2 + Be™' + l |

EXEMPLO 3. Considere a equacao



5=

SIPETL T
dt< dt

a) Determine uma solugao particular.

b) Ache a solucao geral.

Solugdo

a) Nada mais natural do que tentar uma solucao particular do tipo
X, = me’

onde m ¢ um coeficiente a determinar. Vocé€ acha que ¢ realmente natural esta escolha? Por qué? Devemos
determinar m de modo que, para todo ¢,

(me)" + 4 (me*) + 4 (me’) = e’

ou
(Om + 12m + 4m) &’ = &%
ou
25me’ i = e
Devemos ter, entao, 25m =1 ou n = % Assim,
Xp = 2]—5 et

¢ uma solucao particular.
b) A solugdo geral da homogénea associada ¢

x, = Ae* + Bte™..
Segue que a solucao geral da equagao dada ¢

x=Ae 2 4 Bre—2t + 2 et m
25

EXEMPLO 4. Ache a solugdo geral de
x + 4x + 4x = sen 2t.

Solugdo



Vamos tentar uma solucao particular do tipo
X, =m cos 2t + n sen 2t.
Devemos determinar m ¢ n de modo que, para todo ¢.
[m cos 2t + n sen 2t]”" +4 [m cos 2t + n sen 2¢]" + 4 [m cos 2t + n sen 2t] = sen 2t
ou

— &m sen 2t + 8n cos 2t = sen 2¢.

Devemos ter, entdo, —8m=1¢e 8n=0,0ouseja,m = ——en = 0.

|
8
¢ uma solucao particular. Como

Xp = Ae %+ Bte
¢ a solucao geral da homogénea associada, segue que

. |
x = Ae 2 + Bre— 2t — = cos 21

¢ a solucao geral da equacgao dada.
n

O quadro que apresentamos a seguir mostra como escolher a solugdo particular nos casos: f (t) = P
(1), P polinémio, /() = ap e ou f (f) = ao cos at.

X+bx+ex=7f)

f(f) Solugao particular

1. Seando é raiz da equacdo caracteristica, x, = me".
eat P . . _ at
a, 2. Seaéraiz simples, x, = mte".

3. Seaéraizdupla, x, = mt'e".

1. Sec#0,x,= P, (t) onde P, é um polindmio de mesmo grau que P.




2. Sec=0eb=0,x,=tP ().

1. Seb#0,x,=mcosat+nsenat.
d, cos at 2. Seb=0e se cosatnao for solucao da homogénea, x, = m cos at.

3. Seb=0ese cosatforsolucdo da homogénea, x, = mt cos at + nt sen at. (Ressondncia.)

Observacao: Se f (¢) = ao sen at, procede-se como no caso, f (¢) = ao cos ot.

EXEMPLO 5. Resolva a equagao
X+3x+2x=e".
Solugdo
A solucao geral da homogénea associada ¢
x,=Ae + Be .
Como e é solugdo da homogénea, a escolha x, = me ™' ndo resolve o problema, pois, qualquer que seja m,
(me )" +3 (me™") +2 (me")=0.

Como — 1 ¢ raiz simples da equagdo caracteristica da homogénea, a equacdo admitird uma solugao
particular do tipo

xp = mte  (veja quadro anterior).
Devemos determinar m de modo que, para todo ¢,
(mte )" +3 (mte™)' +2 (mte)=e'
ou (apo6s derivar e simplificar)
me =e
logo, m = 1. Segue que
X, =te

¢ uma solucao particular. A solugdo geral da equagao dada ¢



x=Ae¢ "+ Be '+t | @

EXEMPLO 6. Determine a solugdo geral de
X +4x =cost
Solucao
Vamos tentar uma solucao particular do tipo
X, =m COs L.
Esta escolha ¢ motivada pelo fato de que derivando-se duas vezes o cosseno volta-se ao cosseno.
(mcost)"+4mcost=cost

ou

3mcost=cost

logo, m = —. Assim, X, = — cost ¢ uma solucdo particular. A solucao geral da equagao dada ¢

i | —
L | —

|
x=Acos2t+ Bsen2t+ ? cos t. &

EXEMPLO 7. Resolva a equagao
X + 4x = sen 2t.
Solucao
A solugdo geral da homogénea ; +4x =0 ¢
xn =A cos 2t + B sen 2t.

Como sen 2¢ ¢ uma solugdo da homogénea associada, ndo adianta tentar solucdo particular do tipo x, = m
sen 2¢, pois, substituindo tal fungdo na equagao dada, o 1.° membro se anula e o 2.° ndo. Tenta-se, entdo,
neste caso, solugdo particular do tipo

@ X, = mt sen 2t + nt cos 2t.

Temos:
(mt sen 2t + nt cos 21)' = m sen 2t + 2mt cos 2t + n cos 2t — 2nf sen 2t

(@)  (mfsen 2t + nt cos 2t)" = 4m cos 2t — 4n sen 2t — 4mt sen 2t — 4dnt cos 21,



Substituindo (2) e (3) na equacao dada e simplificando, vem:

4dm cos 2t — 4n sen 2t = sen 2¢

1 : 1 . “ : N . N
e, portanto,m=0en = — T Assim, Xy i t cos 2t € uma solugdo particular. A solucao geral €, entdo,
| . ,
x =Acos2t+ Bsen2t — ] t cos 2t. (Suponha que o movimento de uma particula que se desloca sobre o

eixo x € regido pela equacao deste exemplo; descreva o movimento.)

Observacao: Na determinagdao de uma solucdo particular, em geral, estio envolvidos muitos calculos;
por este motivo ¢ sempre bom verificar se a solugdo particular encontrada ¢ realmente solucao particular.

1 , ~ . .
Por exemplo, X 5 tcos 2t € realmente uma solucdo particular de y + 4x = sen 2¢, pois,

: (1 ~ 1 I \
rcoszr‘} +4{—Irc052rJ=[——c052r+?r‘sen er — tcos2t=

/

P

b | = 4| =

—_——,

EXEMPLO 8. (Principio de superposi¢do.) Considere a equacao
@ F+bi+ex=fi(h+ K1)

onde f; (¢) e f> (¢) sdo fungdes dadas, definidas e continuas num mesmo intervalo /. Mostre que se x; = x;
(?), t € I, for uma solugao particular de

® X+bx+ex=fit)

e se x> =x, (t), t € I, uma solucgdo particular de

® X+bx+cx= (1)
entdo x, = x; (¢) +x» () sera uma solugdo particular de (@).
Solucao

Sendo x; = x; (¢) € x2 = x» (¢) solugdes particulares de (5) e (), respectivamente, teremos, para todo ¢
€ 1,

X (1) + bxy (1) + cx1 () = fi (D)

X2 (1) + bxa (1) + cxa (1) = (1)

¢ dai, somando membro a membro, resulta



[0 () +2x2 (D]" + b [x1 () 22 (D] + ¢ [x1 () +x2 (D] =f1 () T 12 (D).

Logo, x, =x1 () +x» (¢) € uma solucdo particular da Equacao (@).

EXEMPLO 9. Resolva a equagao

X+ 4x =e' + sen 2t.

Solucao
X = ]T e! € uma solugdo particular de
5
X+ 4dx=¢. (Verifique.)
Pelo Exemplo 7, x, = —% t cos 2t € uma solucdo particular de

X+ 4x = sen 2t.
Pelo principio de superposigao
1
— 1
4

¢ uma solucao particular da equagao dada. Entdo, a solugdo geral da equacao dada ¢

| 1
x=Acos 2t + B:;en?.r—i-?e’ —Ercos 21.
Exercicios 5.5
1. Determine a solu¢do geral.
d2x % ;
a) 2 — 3v = cos 3t by x + 4x +4x =21+ 1
=
~d%x dx ¢ = : 24
c) i 2— 4+ x=15¢ d) xr + 4x +3x=8e
dt dt
d*x dx . .
e) . 22— 4+ 2y =4 Dy+ 2y=4
dt~ dt
- d*y dv :
g) x +x=2sent f) —— =3 +2_v=?‘2
di= dt

dr
Nx +2x +x=cos2t
3

nx—4=e

pP) x —2x =sen3t
e i 2

NY—2%x=e"

J) X +9x=sen t+ 2cost

m) X + 9x = sen 3t
o) x —4x =8 cost
q) x —2x = é
) x —2x=35

2. Resolva a equagdo y + w2x = sen wt, onde w # 0 é um real dado. (Ressondncia.)



3. Determine a solugdo do problema
a) x +4x=costx(0)=1e x (0)= —1.
b) i+ 6x+9%=¢ " x(0)=0e ¥ (0)=1.
c) X +4x=cos2,x(0)=0e x (0)= 0.
d) ¥ +4x=5¢"x(0)=0e ¥ (0)=0.

4. Determine uma solu¢do particular de
X+ 2yx + "-”S x = bsen wt
onde v, w0, b € w sdo constantes ndo nulas dadas.
5. Resolva a equagdo
e )
X + wjx=bsen wl

onde wo, b € w sdo constantes ndo nulas dadas.




6
Os ESPACOS R”

6.1. INTRODUCAO

Nosso objetivo, neste capitulo, é introduzir no @* os conceitos de norma e de conjunto aberto, que
generalizam os conceitos de modulo e de intervalo aberto, e que serdo fundamentais em tudo o que
veremos a seguir. O simbolo B estd sendo usado aqui para indicar o conjunto de todos os pares
ordenados de numeros reais:

R = {(x,») | x, y reais}.

Para as interpretagdes geométricas e fisicas sera muito util pensar um par ordenado (x, y) como um
vetor do plano. Para isto, fixaremos no plano um sistema ortogonal de coordenadas cartesianas (o
habitual) e identificaremos, entdo, o par (x, y) com o vetor op, onde O é a origem do sistema e P o ponto
de coordenadas (x, y). Esta identificacdo nos sugerird como somar pares ordenados e como multiplicar
um par ordenado por um escalar a partir das operagoes sobre vetores, que suporemos conhecidas.

O leitor ndo tera dificuldade alguma em generalizar os conceitos deste capitulo para o [i», n > 3, onde
[» indica o conjunto de todas as n-uplas ordenadas (xi, xz, ..., x,) de nimeros reais.

6.2. O ESPACO VETORIAL [[2

Identificando (x, y) com o vetor p ¢ indicando por ; e j 0s vetores associados, respectivamente, a

(1, 0) e (0, 1) resulta da teoria dos vetores que Hp — : 4 J
i
. v g+
0 xi

E imediato que se /4 é um escalar, isto é, um nimero real, entio, ) Op — a’:l, onde P, ¢ o ponto de
coordenadas (Ax, Ay). Por outro lado, se (ﬁ ¢ o vetor associado a (s, f) € se OR = OP + 0Q, entdo

OR € o vetor associado a (x +s, y + 1) (verifique). Tudo isto sugere-nos a seguinte defini¢éo.

Definicdo. Sejam (x, y) e (s, 7) dois elementos quaisquer do [[J2 e 4 um real qualquer. Definimos:

a) (x+s,y+1) ¢éasomade(x,y)com(s,?):(x,y)+(s,0)=(x+s,y+0).
b) (Ax, Ay) é o produto de (x,y) pelo escalar 1: A (x,y) = (Ax, 1).




(x,y) + (=D (s, ?) € a diferenga entre (x,y) e (s, 1):
) (6,2 = (5,) = (6, ) + (= 1) (5, ).
d) (x,y)=(s,))ex=sey=t

As seguintes propriedades sdo de imediata verificacdo: quaisquer que sejam (x, ), (s, £) e (1, v) em[R
* ¢ quaisquer que sejam as escalares a e 8 tem-se:

AD [(x,y) + (s, )] + (u, v) = (x, ) + [(5, 1) + (u, V)]
A2) (6, p) + (s, ) = (s, ) + (x, 1)

A3) (x, ») +(0,0) = (x, »)

Ad) (x, y) + (= 1) (x,») = (0, 0)

ML) a [ (x, )] = af (x, )

M2) o [(x, y) + (s, D] = (x, y) + a (s, 1)

M3) [a+ ] (x, y) =a (x, ) + 5 (x, )

M) T-(x,y) = (x, ).

Observac¢ao. Uma estrutura de espacgo vetorial sobre um conjunto ndo vazio V fica determinada quando
se definem em J" duas operacdes, uma de adi¢cdo e outra de multiplicagdo de um elemento de V por um
escalar, satisfazendo as oito propriedades acima listadas. As operagdes anteriormente definidas
determinam, entdo, sobre o B* uma estrutura de espaco vetorial real; seus elementos podem, entdo, ser
chamados de vetores.

6.3. PRODUTO ESCALAR. PERPENDICULARISMO

Defini¢cao 1. O niimero
ala2 +bib2
denomina-se produto escalar dos vetores (a1, b1) e (a2, b2) e indica-se por (a1, b1) - (a2, b2). Assim,

(a1, b1) - (a2, b2) =a1a2 + b1b2.

EXEMPLO 1. O produto escalar dos vetores (2, 3) e (1, 5) ¢
(2,3)-(1,5=2-1+3-5=17.
Observe que o produto escalar de dois vetores ¢ um nimero.

) — — - . x . x
Sejam os vetores ; — (ap, by), v =(ay,by)e w = (as, by) © s€ja A um escalar; sdo de verificagao
imediata as seguintes propriedades do produto escalar:



=¥ — — —3
(iy u - v = v + u (comutativa)
T T e S S
(i) [u + \-‘] w=u- -w+ v - -w(distributiva)
- — — —
(ii1) {iu} v —H.(u W)= u-(Av)
. —
(w‘ru .*HD .*=Dq:ruf—(0 0).

Estamos interessados, a seguir, em definir perpendicularismo ou ortogonalismo entre vetores do [R°.

Consideremos os vetores ;; — (aj. by e =it b,)- Vamos olhar estes dois vetores aplicados no ponto

P = (x, y) do plano.

A e B sdo extremidades de | e j’, respectivamente. Temos

i

OA = O j = (x,y) + (a;. b)) = (x + a;.y+ b))

—_—  —>

OB = OP + v = (x,¥) + (a5, by) = (x + a5,y + b,y).
Assim,
A=(x+a,y+b)eB=(x+ayy+b).
Vamos, agora, aplicar a lei dos cossenos ao tridngulo APB para determinar cos 6. Temos

-

AB- — AP° + PB® — 2 AP - PB cos 0

onde jp ¢ adistinciade 4a B, jpde Aa Pe pg de PaB. Como

AB = (ay —ap)? + (by — by)*,

%
T

[oss D 2
= *.,a] + q’{}'l

PB = E."aﬁf + I;r%



segue que

2 ) 7 2 ) ) ) | 1
(ar — ay ) + (by—by)" = af +bf +a5 +b5s —2 \Jaf +bf \a% + by cos B e, portanto,
) ] ) 2
aya; + by by = .laf +bi layz + by cosf

ou seja,

ayay + bbby
id g fe2pepds”
Jaf b as + b3

cos f =

’ == o ~ .
Dai, os vetores ; = (a;.by) e v = (ay, by) serao perpendiculares se e somente se o produto escalar de
(a1, by) com (az, b,) for nulo. Nada mais natural, entdo, do que a seguinte definigao.

Definicdo 2. Dizemos que os vetores (a1, b1) e (a2, b2) sdo perpendiculares ou ortogonais se
(a1, b1) - (a2, b2) =0.

Vejamos como fica, em notacdo de produto escalar, a equacdo da reta » que passa pelo ponto Py = (X0, 10)
e que ¢é perpendicular a direcdo do vetor ; — (a,b) # (0, 0). Vamos olhar -7 como um vetor aplicado no

ponto Py = (xo, }o).

Vv —
"4 H
* P d_'__ﬂ__,r
-
"y
__H__'_'__...,--""'_ Jr 0
_.L

O ponto P = (x, y) pertence a reta r se € somente se o vetor P — P, for perpendicular a 7 = (a, b). Assim,
a equagdo da reta que passa pelo ponto P, = (x, y,) € € perpendicular a diregdo do vetor 7 = (a, b) €

n-(P—Py)=0
ou seja,
(a, b) - [(x,y) — (x0, 10)] = 0.
De (x, y) — (xo, ¥0) = (x — X0, ¥ — y0), Segue que a equa¢io acima é equivalente a
ax+by=c

comc = ax, + by,. E 7 = (a, b) € um vetor perpendicular a tal reta.



EXEMPLO 2. Determine a equagao da reta que passa pelo ponto (1, 2) e que ¢ perpendicular a direcao
do vetor 7 = (— 1, 3).

Solucao
A equacdo da reta ¢
n-[P—Pyl=0

onde ;=(—1,3),P=(x,y) e P,=(1, 2). Assim, a equagao da reta é
7 Y q

(=13 [ »)—(1,2)]=0
ou
~(x—1)+3(—-2)=0
ou ainda
—x+3y—5=0. .

Consideremos, agora, o vetor ? = (m, n), com (m, n) # (0, 0), aplicado no ponto P, = (x,, ),). Na
figura seguinte, representamos a reta » que passa pelo ponto P, = (x,, ¥,) € que tem a direcao do vetor ? =
(m, n).

A B

|
,\';} X
Por semelhanca de tridngulos, para todo P = (x, y) na reta r, existe ¢ tal que

(x — xp=1tm

Y= Yo = In.
Pois bem,
[.T =xg +tm
te R
1.\' =Yg T I

sdo as equacgoes paramétricas da reta que passa pelo ponto Py = (xo, o) € € paralela a dire¢cdo do vetor



L = (m, n). Emnotagdo vetorial, esta reta pode ser expressa na forma

(xx,v=03,—-1D+1t(2,-3),t€R. ®

EXEMPLO 3. Determine a equacdo, na forma vetorial, da reta que passa pelo ponto (3, — 1) e que ¢
perpendicular a reta 2x — 3y =7.

Solugdo
1 = (2, —3) € perpendicular a reta 2x — 3y = 7.

O que queremos, entdo, ¢ a reta que passa pelo ponto (3, — 1) e que seja paralela ao vetor (2, —3). Assim,
a equacao da reta pedida ¢

x»)=G,—-DH+t(2,—-3),t€ER
No R’, os conceitos de produto escalar e de ortogonalismo sdo analogos aos do [”:
(a1, b1, ¢1) - (a2, by, 2) = arax + b1by + c1ca.
(a1, b1, c1) L (a2, by, ¢2) © (ay, by, 1) * (az, by, c2) = 0.

No espago, a equacdo vetorial da reta que passa pelo ponto (xo, Yo, zo) € que ¢ paralela a dire¢ao do
vetor 3, = (a, b, ¢) #(0,0,0) é

(xaya Z) :(-xO,yO, ZO) +t(aa ba C)a t € [.

A equagdo do plano que passa pelo ponto Py = (x,, o, 2o) € que € perpendicular a dire¢do do vetor 7 =
(a,b,c)#(0,0,0) ¢

(aa ba C) ) [(xaya Z) o (xO,yO, ZO)] =0

ou
w o (P—Py)=0.
Observe que o plano de equagao
ax+by+cz=d

¢ perpendicular a diregdo do vetor ; = (a, b, ¢).



Exercicios 6.3

10.

11.

Determine a equagdo da reta que passa pelo ponto (1, 2) e que seja paralela a dire¢do do vetor T’ =(-1D.
Determine a equagdo vetorial da reta que passa pelo ponto (1, —1) e que ¢ perpendicular a reta 2x +y = 1.

Determine um vetor cuja dire¢do seja paralela a reta 3x + 2y =2.

. . I .
Determine a equacao vetorial da reta que passa pelo ponto (— 1 ] e que seja paralela a reta 3x + 2y = 2.
s )
Fra

Determine um vetor cuja dire¢do seja paralela a reta dada.

a)x—2y=3
byx+y=1

c) 2x—5y=4
dyx+2y=3

Determine um vetor cuja dire¢do seja perpendicular a reta dada.

a) 2x+y=1
b)3x—y=3
c) x+3y=2
d)y 2x—3y=1.

Determine a equagao vetorial da reta que passa pelo ponto dado e que seja paralela a reta dada.

a) 2,5 ex—y=1

b) (1,2)e2x +y=3.

Determine a equagdo vetorial da reta que passa pelo ponto dado e que seja perpendicular a reta dada.

a) (1,2)e2x+y=3

b) 2,2)ex+3y=1.

Determine a equagdo do plano que passa pelo ponto dado e que seja perpendicular a dire¢do do vetor ;; dado.
a) (LL1)e 7 =(213)

by (2, L,-De =(-212)

Determine a equagdo vetorial da reta que passa pelo ponto dado e que seja perpendicular ao plano dado.
a) (0,,-1)ex+2y—z=3
by 2,1,-)e2x+y+3z=1

—

Sejam ; =(a;,by,cp)e T’ = (a,, b,, c,) dois vetores do [(§3. Definimos o produto vetorial de ; por ;}, que se indica u

—* — —
— = i / k — — —
uAv =la b c|=bo—cb)i +lax;—ac) j +lah, —aby) k

da !)3 Cq

_':,
m@?:@Qmj:@Lme?:&QanMWwe

A ;}, por



- = - =

a) Ay = —v AUl
— — — —

b) uAnv éortogonala ue av.
—_ — — — — — — —y

) un(v+w)=uAv+unwonde w =(ay bscq)
—5 = —= =3 — — —

di(u+p)Aaw=uAw + v Aw

12. Determine a equacdo vetorial da reta que passa pelo ponto (1, 2, —1) e que seja perpendicular as direcdes dos vetores

- —
u=(L.1LDe v =(1-2,1r
13. Determine um vetor ndo nulo que seja ortogonal aos vetores ; e T’ dados.
— —_
a) u =(1,2,—-1l)e v =(2, 1, 2)
— —
B i =3,2—=1)e v =(—1,:21)
14. Determine a equagdo do plano que passa pelo ponto dado e que seja paralelo aos vetores ; e T’ dados.
-— —
a) (1,2, 1), u =(—1,1,2)e v =(2,1,—1)
-— —
b)(0,1,2), w =(2,—-1,3)e v =(1,1,1)
. — — —* — —* .
15. Sejam dados w = (U uy. iz)e v = (vy, v, V3 com i 0 Verifique que
— —
(X, % 2) = (Xg ¥pu 2p) T 5u +1v (5,1 ER)
, - . , . —3 —¥ —
¢ a equagdo vetorial do plano que passa por (x, y,, Z,) € que € perpendiculara * _ UA Y
6.4. NORMA DE UM VETOR. PROPRIEDADES
Defini¢ao. O numero
| (x. .ﬂ Il = 1,%.";|,'2 + _‘512
denomina-se norma do vetor (x, y).
A
P
},F ------
1
| A norma de (x, y) € o compri-
| :
| ;
1 - mento do vetor OF
0 X

De (x, ) - (x,y) =x>+37 seguell (x. y) Il = /(x, ¥) - (x, V),

Teorema 1. (Desigualdade de Schwarz) Quaisquer que sejam os vetores ;}, ? de [}2, tem-se




- = — —
lag » visllaull-1lvI.

Demonstracdo

Para todo ¢ real,

— — — —

(u +tv) - (u +tv) =0.

Pela distributividade do produto escalar,

- = - = — =3

W +2tu v +tv--v =10

— — —
"
ecomo . . — a2 resulta, para todo ¢,

— - =

- —
NulP +2tu - v +20vIF=0:

logo,

—3

— 2 i
A=C2u - vy —4lual"llviT=0

e, portanto,

- = — —
la - vi=s=lulll vI.

Segue do teorema acima que quaisquer que sejam os vetores ndo nulos , e -, de [* tem-se
T

— =
-V

s =
— —

e 1111 1l

Portanto, existe um tnico numero real 8, 0 < 0 < x, tal que

- =

” . 3 L
cosff= ————ouu-v =Illulllviicosé

—

W 1110w 11

- = - =

Este niimero real 6 denomina-se dngulo entre os vetores |/ e ?

—

u® ? de [[}2 e qualquer que seja o escalar A tem-se:

Teorema 2. Quaisquer que sejam 0s vetores

—

NDIlull=0:lull=0= u = (0,0).

— —
N2) A s Il = TALI a1l
N3) (Desigualdade triangular)

— — —

L
la + viislull+1vIL




Demonstracdo

N1) Imediata.
N2) Pondo ; = (x, y) tem-se
=% ! ) )
A wll = 1A )= 1 (Ax, Av) L= +/(Ax)? + (Ay)2 .
Logo,
Al =1A1 x? + y?
ou seja,
— —
HA w1l = AL e Il
— — — — — — — —

— _},.J e, by |
N)lu + viE=(u+v)-(u+v)y=llal"+2u v +1vI-.

Pela desigualdade de Schwarz

- = — —

ucv=INullvil

Entao,

— — — — — e ZU —

i 2 2 L
Nl + vIEsNTall"+20ulllivi+lUvIIT=dlull +1vID

logo,

— — —3 —

N + vil=Hall +1lvI.

Exercicios 6.4

1. Generalize para o [[In (n > 3) os conceitos e resultados desta secao.

2. Calcule a norma do vetor dado.

— —
a) u = (1,2) by v =(2.1.3)
o) u=1(0,1,2) d)v =(—,—)
2 3
. 3 e
3. Seja .t_; = (uy, u,, u3) um vetor qualquer de [ . Mostre que || y || = | wl, i =1,2,3
—3
4. Seja:; = (uy, ty, ..., un) um vetor do [[in (n = 2). Mostre que || 4 || = | wp k=12 cun
5 Sejam .t_;’ T dois vetores quaisquer do [[I». Verifique que



10.

11.

12.

13.

14.

15.

16.

17.

18.

— —
a)llu — vii=ll u | Eo II vl
— —
bylu — vil= ||1||—||u||
— —
clluy — vil= ||Iu||—||1 Il
— .
Sejam =(uy,uy, ..., un) € v (v{s Vs, ..., vn) vetores quaisquer do [[ln. Mostre que
— —
huw — viizig—v;Li=12, .. n

. —¥ .

Sejam;} e ,, vetores quaisquer do [[In. Prove:
— — — — ) — 5 — 5
ulvelu+viE=0ul™+1vII7

. — — ~ —
Seja ; um vetor qualquer do [[Jn. Prove que se ; Ty 0, para todo y € [[An, entdo ;} =0
Sei —3 —3 d —F —F s § s. Suponh - = ., . — —
ejamu, vy — vetores o [[n tais que W =qau + g v-coma e f reais. Suponha g €y WNArios (| = Jellpll=1)e

— — —>

ortogonais. Prove que & = . '.-‘ ef =

. —F . . . . .
Sejam e v Vetores do [[}2. Dizemos que u e, sdo linearmente independentes se, quaisquer que sejam o0s reais a € f, se

— — o .
au + ﬁ o= .[j. entdo oo = f = 0. Prove que ; = (up, u,y) € v = (vy» v,) sdo lincarmente independentes se e somente se
i

! # 0.
Vi Va

. — —3 —} . . ~ e~ ~ s . .
Sejam e Vetores quaisquer do [[}2. Prove que se u Sy forem linearmente independentes, entdo existirdo (e serdo Uinicos) reais

— —
aeﬂtaisque W=au +8v.

Sejam e 7 sdo linearmente independentes.

u T’ dois vetores unitrios e ortogonais do [[J2. Prove que

Nl'
- = = - = =

Sejam d01s vetores unitarios e ortogonais do [Q Prove que para todo de [Q temse: w =(W - -u)u +(w-v)v

u®

. o5
Sejam Wy € — vetores do [Q3 Dizemos que sy © — sdo linearmente independentes se, quaisquer que sejam os reais a, f € y, se

— — — — — .
au +Bv +vy W o= 0 endoa=p=y=0 Prove T u = (up,up, uz). v = (vi.vy.vi)e w = (wp. wy, wy) 520
i) i i3
linearmente independentes se e somente se [ vy vy, vy [ F 0.

W W Wiy

—>—>—>

Sejam ;}, o © p vetores quaisquer do [[33, com, ;}, T’ ~ linearmente independentes. Prove que - 7 & combinagdo linear de ]

=, oy — —
, isto &, queex1stemrea1sa ﬂeytalsque r =au +r31' + yw-

u >

1' W
. — — L e, . . 3 . . . -3 3 X
Sejam Wy € trés vetores unitarios quaisquer de [[}°, sendo dois a dois ortogonais. Prove que para todo r do [[}° tem-se:
— - = = - = = - = =
F=(r ~u)u +(r ~v)iv+{(r- -w)w
. — N - = — — L =y
Sejam;} e ,, vetores ndo nulos do [Q3 -Mostre que || 4 A vIl=1ullll v Il sen @ onde 6 ¢ oangulo entre ;} ¢y

Prove que quaisquer que sejam y “em 3

u®

| n,f" L’II IIHIIII 1'II




6.5. CONJUNTO ABERTO. PONTO DE ACUMULACAO
Sejam (x, yo) um ponto do B € » > 0 umreal. O conjunto
[(x,y) € R211 (x, y) — (xg. yo) Il < r}

denomina-se bola aberta de centro (xo, Vo) € raio r.

[}
- —
/" ‘“\ | (x, ¥) — (x5, ¥ <7
¥ [ \
i |\ : f' (x=x, 0" + (¥ J’u}l < p?
I\ 1 ’
I el =
b
I F |
1 1 e
Xg

No plano, a bola aberta de centro (xo, yo) € raio » ¢ o conjunto de todos os pontos “internos” ao
circulo de centro (xo, yo) € raio r.

Seja A um subconjunto ndo vazio de R*. Dizemos que (xo, yo) € A é um ponto interior de A se existir
uma bola aberta de centro (xo, o) contida em 4.

EXEMPLO 1.Sejad={(x,y) ER*|[x>0ey>0}.

a) Todo (x, y), comx >0 ey >0, ¢ ponto interior de A.
b) Todo (x, y), comx =0 ouy =0, ndo é ponto interior de A.

De fato,
a)se (x,y) € A4, comx>0ey>0,entdo a bola aberta de centro (x, y) e raio » = min {x, y} estd contida
em 4; logo, (x, y) € ponto interior de A.

b) se (x,y) € A, comx =0 ouy =0, entdo (x, y) ndo € ponto interior de 4, pois 4 ndo contém nenhuma
bola aberta de centro (x, y).

A

®/— ¢ ponto interior
@\ i
ndo € ponto interior u




Definicdo. Seja 4 um subconjunto ndo vazio de [[}2. Dizemos que 4 ¢ um conjunto aberto se todo ponto de A for ponto interior.

Observacao. Por defini¢dao, o conjunto vazio ¢ um conjunto aberto.
EXEMPLO 2. Toda bola aberta ¢ um conjunto aberto.
Solucao

Seja B uma bola aberta de centro (xo, 1o) € raio ». Precisamos mostrar que todo ponto (x;, y;) de B ¢
ponto interior. Seja, entdo, a distancia de (x1, y1) a (xo, )o), isto &,

o = | (x1, 1) = (X0, yo) |-

Vamos mostrar que a bola aberta g de centro (x, y1) e raio i, com0 <7, <r — a, estd contida em B.

Yol
\ . ]
\ YA
\'h- 1 --",
I

(e Bell(y) — (xypll<ry.

Seja, entdo, (x, y) € g; temos

I (x, v) = (g yp) 1= 110x, ¥) — (e yp) + (. yp) — (g v Ul
=l (xy) =yl +HxLy) — Gy ll<rnpta<r

Logo, (x, y) € B. Portanto, g esta contido em 5.

EXEMPLO 3.

a) R ¢ um conjunto aberto.
b) A= {(x,y) €ER’*|x>0¢ey>0} nio é aberto.
c)A={(x,y) ER*|x>0ey>0} ¢éaberto.

Solucao

a) Imediato.
b) Os pontos (x, y) € A, comx =0 ouy = 0, ndo sao pontos interiores; logo, A ndo ¢ aberto.



c) Se (x, y) € A4, abola aberta de centro (x, y) e raio » = min {x, y} estd contida em 4; logo, 4 ¢ aberto.

Defini¢do. Seja 4 um subconjunto do [[}2 e seja (a, b) € [R2 ((a, b) pode pertencer ou ndo a 4). Dizemos que (a, b) € ponto de
acumulagdo de A se toda bola aberta de centro (a, b) contiver pelo menos um ponto (x, y) € 4, com (x, y) # (a, b).

Grosso modo, dizer que (a, b) € ponto de acumulagao de A4 significa dizer que existem pontos de A,
distintos de (a, b), tdo proximos de (a, b) quanto se queira.

EXEMPLO 4. Todo (x, y), com x > 0 e y > 0, ¢ ponto de acumulagdo do conjunto 4 sendo

9
A

] I ~ , ~ . .
A={(x,y)ER*1x>0ey>0); 0 ponto B 1 J ndo ¢ ponto de acumulagao de 4, pois existe uma bola

(1
aberta de centro L o 1] que ndo contém ponto de A.

EXEMPLO 5. O conjunto 4 = {(1, 2), (-1, 0), (1, 3)} ndo admite ponto de acumulagao, pois qualquer
que seja o ponto (a, b) de B*, existe uma bola aberta de centro (a, b) e raio r que nio contém ponto de 4

distinto de (a, b). | Se (a, b) ndo pertence a A, basta tomar » como a menor das distancias de (a, b) aos

pontos (1, 2), (—1, 0) e (1, 3); se (a, b) € A, basta tomar » = %}

= /

Exercicios 6.5

1. Verifique quais dos conjuntos a seguir sdo abertos em [[J2.

a) {(x.v) € R +y2 < 1)

D {ny) ER Ix+y=1)

Dl eER I+ <lex+y>3
Dy ER Ix=1lel<y<3)

o) i y) € R 12 + xy+ 3y < 0]
Ny e I]:t~‘3_2 Ix+y>3e X+ _1-: < 16}
2) {x.y) € R 1 xy > 0)

Wiy ER*x=0ey>—]

F

2. Determine o conjunto dos pontos de acumulagdo do conjunto dado.



@)y RIS +y <)
b) {(x,y) € R" | xe yinteiros}
e
I
Dl ER x+y=1)
) ER Ix=1,1<y<2)
N {lx, ¥v) € R™ | x e y racionais }

‘ |
|Ir1 # () natural Jf
El

Defina bola aberta de centro (xo, 0, z0) e raio » > 0 no [[}3. Interprete geometricamente.
Defina bola aberta, conjunto aberto e ponto de acumula¢do no [[In.

Sejam A4 e B dois subconjuntos do [[J2. Prove que se 4 e B forem abertos, entdo 4 U B e 4 N B também serdo.

Suponha que, para cada natural n, 4, ¢ um subconjunto aberto do [[J2. Seja B a reunido de todos os 4» ¢ C a intersegdo de todos os An.
Pergunta-se: B € aberto? C ¢ aberto? Justifique.

Seja F' um subconjunto do [[}2. Dizemos que F € um conjunto fechado se o conjunto de todos os (x, y) ndo pertencentes a F for
aberto. Verifique quais dos conjuntos a seguir sdo fechados.

o) {y eR I+ =1).
b){(x,y) € H:}'I x=0ey >0}
o) {lx, y) E H‘j | xe yinteiros}.
d) {(x, y) € R” | x e yracionais}.
c) Qf*}
HR
Pl ER Ix=11=<
Hi{xvweR Ix=1.1

—

'I'I. |'J'I"
ot ek
AN

Suponha que o conjunto B, B C [[}2, ndo seja aberto. Pode-se concluir que B ¢ fechado? Sim ou nao? Justifique.

Dizemos que 4 C [[}2 ¢ um conjunto limitado se existir um m > 0 tal que || (x, ) | < m para todo (x, y) € 4. Prove que se 4 for
limitado e se A contiver um niimero infinito de pontos, entdo 4 admitird pelo menos um ponto de acumulagdo. A afirmag@o continua

verdadeira se uma das hipdteses for omitida?




7

FUNCAO DE UMA VARIAVEL REAL A VALORES EM [R".
CURVAS

7.1. FUNCAO DE UMA VARIAVEL REAL A VALORES EM [2

Uma fun¢io de uma variavel real a valores em [* ¢ uma fun¢do F : 4 — R*, onde A é um subconjunto
de B. Uma tal fun¢do associa a cada real ¢ € 4, um tico vetor F (f) € R*. O conjunto 4 é o dominio de F
e serd indicada por Dr. Suporemos sempre que 4 ou ¢ um intervalo ou uma reunido de intervalos. O
conjunto

ImF={F(t) €ER’|t € Dr}

¢ a imagem ou trajetdria de F. A imagem de F ¢ o lugar geométrico, em [*, descrito por F (¢) quando ¢
varia em Dp.

EXEMPLO 1. Seja F'a fungao dada por F'(¢) = (¢, 2t).

a) Calcule F (0) e F/(1).
b) Desenhe a imagem de F.

Solugdo

a) F(0)=(0,0)e F(1)=(1,?2).

,___,____
=

b) X
A imagemde F ¢ a reta de equagdes paramétricas | ¥ = 21

EXEMPLO 2. Desenhe a imagem da fungio F dada por F (¢) = (¢, ).



Solucao

: , < e |x=t
A imagemde F ¢ a curva de equagdes paramétricas sy

{r, 1)

A imagem de F coincide com o grafico da parabola y = x°.

EXEMPLO 3. Seja F'(f) = (cos t, sent), t € [0, 2x]. Desenhe a imagem de F.
Solucao

A imagem de F ¢ a circunferéncia de centro na origem e raio 1.

A

/- '\ms F, sen t)
Spe

EXEMPLO 4. Seja F (f) = (e :cos t, e "sent), t > 0. Desenhe a imagem de F.

Solucao

F(f)= e '(cost sent)

HF (Il = a\..".{f?_" cos 1)2 + (e~ sen 1)?

ou seja,



NFHll=e ',

A

/ a2
(N,
S

L/ 1 d

Quando ¢ varia em [0, +oo[, 0 ponto F' (¢) gira em torno da origem e a distancia a origem tende a zero para
t tendendo a + oo. Observe que a imagem de F coincide com o grafico da espiral p = ev, 0 > 0

(coordenadas polares).
u

EXEMPLO 5. Desenhe a imagem da func¢ao /" dada por F'(¢£) = (2 cos ¢, sen¢), t € [0, 2x].

Solucao
i r
[,x'='2c09r 5 2
¥
3 e = +y2 =1
L\-‘ = sen t y =sent
A

(2 cost, sen )

L

-
>

-

L 2
Assim, para cada ¢ € [0, 27r] o ponto (2 cos ¢, sen ¢) pertence a elipse _ +y = 1. Por outro lado, para

cada (x, y) na elipse, existe ¢ € [0, 27] tal que

{x o A (por qué?)

Vv =sen f

Exercicios 7.1

Desenhe a imagem:
. F(O=(9

2. F()=(@tt+1)



3. F()=Qt—1,t+2)

4. F(H)=(,B)

5. F(o)=(£2,1)

6. F(t)=(2,1%

7. F(f)=(cost,2senft)

8. F(f)=(sent, sen f)

9. F(t)=(sent,sen? )

10. F (f) = (+/2 cos 1,2 sen 7)
11. F ()= (et cos t, el sent),t>0

12. F(©)=(sent, 1)

7.2. FUNCAO DE UMA VARIAVEL REAL A VALORES EM [3

Uma fungdo de uma variavel real a valores em @’ ¢ uma fun¢do F : 4 — R°, onde 4 é um subconjunto
de B. Uma tal fun¢do associa, a cada ¢t € 4, um Unico vetor F (f) € R’. A imagem ou trajetoria de F é o
lugar geométrico, em [°, descrito por F (¢), quando ¢ varia em Dr.

EXEMPLO 1. Desenhe a imagemde F (¢) = (¢, ¢, t),t > 0.

Solugdo

A imagem de F ¢ a semirreta de equacdes paramétricas

4
lhq — ""1
|
L
—

\

W
=

=Y

EXEMPLO 2. Desenhe a imagemde F' (¢) = (cos ¢, sent, 1).

Solugdo

A imagem de F' ¢ uma circunferéncia situada no plano z = 1, com centro no eixo z e raio 1.



Az

w ¥

EXEMPLO 3. Desenhe a imagem de F' (¢) = (cos t, sent, bt), t > 0, onde b > 0 € um real fixo.

Solucao

A imagem de F' ¢ uma hélice circular reta. Quando ¢ varia em [0, +oo[, a proje¢ao de F (¢), sobre o
plano xy, descreve a circunferéncia x = cos ¢, y = sen ¢, a0 passo que a projecao sobre o eixo z descreve
um movimento uniforme, com equagao z = bt.

Az

Muitas vezes serd necessario considerar funcdes de uma variavel real a valores em ., n > 3. Os
proximos exemplos exibem fungdes de uma variavel real a valores em[* e em[°, respectivamente.

n
EXEMPLO 4. F () =(¢t, £, 1, 1), t € R, ¢ uma fungdo de uma variavel real a valores emR*.

n
EXEMPLO 5. F (f) = (cos t, sent, £, t, ), t € R, ¢ uma fungdo de uma variavel real a valores em .

n

Exercicios 7.2

1. Desenhe a imagem:
a) F()=(,t1),t€R
by F(=(1,1,0,120



c) F(H=(11),t>0
d)F@®)=(,0,9),t€R
e) F()=(t1+sent),t>0
f) F(®)=(tcost,sent),t>0
g) F(f)=(cost,sent,2)
h) F(f)=(cost,sent, e ?),t>0
) Fy= |r ;~;~l‘|~;~;{}

\ /
N F@O=0t2),t>0
l) F(f)y=(etcost,etsent,e?),t>0
m) F (f) = (sen t, sen f, \."'73_ cos £),0<t<2rm

n) F()=(sent,sent,?),t>0
0) T _m
F@=(+sent, 1 +sent,cosf),—— = = —,
2 2
2. Seja Fdada por F ()= (Int,1, |1 — 12, 7).
a) Determine o dominio de F.

Calcule F (
LY

u||u.:-
e

3. Determine o dominio.

i | A

|r_2 - 5 —

alFin= |1t | AL == ke |
Vtr+1

f 1
WFE(H=|2 —.%42—12 arcte 1 |
\ { t i

7.3. OPERACOES COM FUNCOES DE UMA VARIAVEL REAL A VALORES
EM [R»

Seja F': A — [» uma fungdo de uma varidvel real a valores em [»; entdo existem, e sdo Unicas, 7
fungdes a valores reais F;: A — R, i =1, 2, 3, ..., n, tais que, qualquer que sejat € A4,

F@O) = @), ), ..., F.(1)).

Tais fungdes sao denominadas fungoes componentes de F. Escreveremos F = (F, I, ..., F,) para indicar
a funcao cujas componentes sao Fi, F, ..., F.

EXEMPLO 1. Seja F () = (cos t, sen ¢, t), t € B. As componentes de F' sdo as fungdes Fi, F>, F;
definidas em [} e dadas, respectivamente, por x =cos ¢, y =sent ez =t.
u



EXEMPLO 2. Seja F () = (t, -/t, sen 3¢, arctg ¢), t > 0. As componentes de F' sdo as fungdes Fi, F, I3,
Fydadas por F (¢) =t, F> () = /t, F5 (¢) =sen 3¢t e F4 (t) arctg t, comt > 0.
]

Sejam F, G : A — R» duas fungdes de uma variavel real a valores em [i», f : 4 — [ uma funcdo a
valores reais € k£ uma constante. Definimos:

a) a funcdo F'+ G : A — [» dada por

F+eO)@O=F@®+G(@

denomina-se soma de F e G.
b) a fung¢do kF : A — R» dada por

(kF) (2) = kE (1)

¢ o produto de F pela constante k.
c) a fungdo /- F': A — [« dada por

(- F) () =1 F(2)

¢ o produto de F pela fun¢do escalar f.
d) a fungdo F'- G : A — [ dada por

(F-GQO=F@®) G@®

onde F(t) G()=F,(t) - Gi(t) +F>(t) - G2 (¢t) + ... + F, (¢) - G, (¢), € 0 produto escalar de F ¢ G.
Estamos supondo aqui F'= (Fy, F>, ..., F,) e G=(G1, G, ..., Gy).
e) Sejan =3. Afungdo F A G : A — R’ dada por

— — =10
: ik
F(t)y F()y FKit)
G (1) Ga(t) Gyl(r)

(FAGY(HD=FHONG()=

denomina-se produto vetorial de F e G, onde

— — —

i J k s
Fi) B(i) KO |=[F0G(H—-—Fy(0)G ()] ¢ +
G () Ga(t) Gi(1)

—

—
+[F_;'[ﬂGl'[IJ'_F] {f\J'G-_g{rﬂ] s [F] (1) GE (1) _Fj_r (1) G]{ﬂ] k.

(Veja Exercicio 11 da Se¢do 6.3.)

EXEMPLO 3. Sejam as fungdes F, G e f, definidas em [, ¢ dadas por F (f) = (cos 3¢, sen 2¢t, %), G () =



(3, £, arctg ¢) e £ (t) = e . Temos
a) o produto escalar de F'e G ¢ a funcao H dada por
H()=F(@t)-G({t)=3cos3t+1 sen2t+ arctgt.
b) o produto de F pela fun¢do escalar ¢ a fungdo com valores em |’ dada por
f(t) F(t)=e % (cos 3t,sen 2t, *) = (e % cos 3t, e *rsen2t, e % 1*).

c¢) o produto vetorial de F e G ¢ a fungdo a valores em[’ dada por

— —3 —
i j k
(F/A\G) ()= |cos 3t sen 2t 12 =
3 t3 arctg t

S 2 = 3
= (sen 2f arctg 1 — ) i + (3t — cos 3t arctgf) j +(rcos3t—3sen2f). =

Uma funcdo de uma variavel real a valores em [» sera frequentemente indicada com a notagao
vetorial 7.

EXEMPLO 4. Sejam as fungdes 7 e 2 dadas por ?(f} — A De CWH) = (3. 1. 1) Calcule

- — —
a) F (- G (1) b) tF (1)

—* — — —
c) F(HN G (1) d) 2F (t) + 3G (1.
Solucao

= = 3 . 3
a F(t)- G =3+t +2t=5+1.

g 7 7 .3
bytF (h=t(tt,2)=(.r1,20).

= E PR
— — : J k 3 — a —> " e
D FMNGOH=|t 2 2|=EFC-20i +O6G—-t)j +@ -3 k
3 ¢ ot
ou seja,
= = 3 - . . 7 5 —3
FONGH=F =2 +6—1) j —2 k.
— — A ) "
dA2F (H+3G (H=2(6,1,2)+3G. ) =(2t+9,2t"+ 3t.4 + %) -]

Exercicios 7.3




g = 2
Sejam F (t) = (t,sent.2)e G (t)= (3,1 17). Calcule

e =¥ —t —
a) F (fy- G (0 e " F (D

— — — —
A FMD—-2G (D dy F (/G (D

2. Calcule s 5 2 1 BT T o AN
r{f)/\ x(fhonde r(N=1ti +2; +Pkex(=ti — Tkl

3. Caleule — — — — - = — = =
ACUC w 1)+ v (n.onde u (f)=senti +costj +tk e v (h=senti +cost j+ k-
4. Sejam = ~ 7 trés fungdes definidas em 4 C [} e a valores em [[1°. Verifique que
M p G, H

— = =

— — — — — — —¥i =y
ad FANG=—G/NF hF-(G+H)=F- -G+ F-H

—

= =3 —> —* =3 —
¢ FAN(G+ Hy= FNG+ FANH

7.4. LIMITE E CONTINUIDADE

Antes de definirmos limites faremos a seguinte observagdo: sempre que estivermos lidando com
funcdo de uma variavel real ficara subentendido que o dominio ou € um intervalo ou uma reunido de
intervalos.

Definicdo 1. Seja F' uma fung¢do de uma variavel real a valores em [[n e seja f0 um ponto do dominio de " ou extremidade de um dos
intervalos que compdem o dominio de F. Dizemos que F (?) tende a L, L € [[n, quando t tende a to’ e escrevemos Il:]} F(r) = L,
0
se para todo € > 0 dado, existir 6 > 0 tal que, para todo ¢ € DF,
Olt—to|<o=||F@)—L|<e
Observacao
I F (1) — Ll <e= F(t) € Be (L)
onde Be (L) ¢ a bola aberta de centro L eraioe: Be (L) ={YER"|| YL | <e}.
A figura seguinte nos da uma visdo geométrica do significado de , I_':]}ﬁ F{n).= L, no caso n = 2:
[
Fir)
F
r
}—e—o— & -
VA P E3
I, — & P o

aQ



dado € > 0, existe 6 > 0, tal que F (¢) permanece na bola aberta Be (L) quando ¢ percorre o intervalo | #, —
5,f0+5[,f¢foef€DF.

EXEMPLO 1. Seja F'uma fungao de uma variavel com valores em . € seja L € .. Mostre que

lim F()=L< lim IIF(H)— LIl =0.

."—)."” ."—).fnI

Solucao

; Ve=>0,d6=>0 talque V1t € Dgp
1 Fihh=L&
i B {Dilr‘—r‘gliﬁ:&IIF(f'}—LII{E

.I‘—).I":I

Ve>0,36>0 talque YVt € Dy
0<lt—tyl<8=IIF({#)—LI—0l<e

= { lim WF({)—LIl=0.

.I‘—:v."l:I 5

O exemplo acima nos diz que se F'(¢) tende a L, para t — to, entdo a distancia de F (t)a L (| F (¢) —

L |)) tende a zero, para t — ty, e reciprocamente.
ﬁ

Antes de demonstrar o proximo teorema, lembramos que se X =.(X1. X2, .... X,) EQ,, entdo, para i =
L2, ..,0 x| = | x;1» ou seja, 0 comprimento de ? ¢ maior ou igual ao modulo de qualquer uma de
suas componentes (veja Exercicio 4, Se¢ao 6.4).

Seja, agora, F'= (F\, F>, ..., F,) uma fungdo de uma variavel com valores em . e seja L = (L, Lo, ..
L») €x; temos

*

FO) —-L=F1()—L,F,(t)— Ly, ..., F, (t) — Ly).
Do que vimos acima, resulta:

\FO—L|>|Fi(®)—Li|G(=1,2,...,n).

: I_":: F@ existira se e somente se existirem e forem finitos os limites
0
' lim F;(f) =L,
das componentes F; de F. Além disso, se, para i = 1, 2, ..., n, acontecer !— 1, , entao
lim Fii)=L= {.Li‘ L-} sinuy L”_}

.I‘—).fr.;I

O proximo teorema nos diz que

Teorema. Sejam F = (F1, F2, ..., Fn) uma funcdo de uma varidvel com valores em [[}n e L = (L1, L2, ..., Ln) € [n. Entdo

lim F{f)=Le lim F{)=L,i=1,2,..n.

!—).I‘I..:| F—)!n

Demonstracdo



Vamos provar primeiro a implicagao

lim F()=L= lim F;(1) =1L,

r—Hﬂ .f—>rn

lim F(r=L lim WF({)—LI=0 .
De ", segue que , ., . Por outro lado, paratodoi=1, 2, ..., n,

0 0
|Fi(®)—Li|<|F@®—-L|

Pelo teorema do confronto,

lim (F;(f)—L)=0o0u lim F;(t)=L,.

=1
."—).I‘l.;I 0

lim F;(f)=L

Reciprocamente, de | fy

iparai=1,2, ..., n, segue que

lim A O-LP+(EBO-L)P+. +(E - 1,)r =0

—1

[i]
e, portanto, , I:’r: LG =Ll = ID; logo,
0
lim F ()= L.
I—)I[]
. = sent —2 > — g =
EXEMPLO 1. Seja F (1) = i +(+3) j.Calcule lim F (7).

t—0

Solucao

cx sen i | 7 5 . T3
lim F ()= | lim i+ lim (t=+3)| j =1 +
t— 0 =0 r t—0

= -
EXEMPLO 2. Seja 7 (f) = (cos £, sen t, £). Caleule jj, F UMD = F (D),

h— 0 h
Solucao
— —
Fit+h —FI) :( cos(t+ h)—cost sen(t+ h)—sent 1"
h h | h ’ J
De
’ cos (t+ h)—cost : sen (r + h) —sen t
lim = —sent e lim = cost
h— 0 h h—0 h

segue



—> —5
) F(t+mh-—F ()

lim = (—sen £, cos t. 1). B

h—=0 h

O proximo exemplo nos diz que o limite de um produto escalar € igual ao produto escalar dos limites,
desde que tais limites existam.

EXEMPLO 3. Sejam 7 = (F\, F,, ..., F,) e & = (G, G,, ..., G,) duas fungdes de uma varidvel com
valores em [n. Suponha que

_ — — . — —
lim F ()= a e lim G (H= b
.’—)FD .’—)IU
— T =
onde , = (ap. dy. ....a,)e b = (by.by. .... b,y Mostre que
_ — — - =
lim F{t): G(Hh= a - b.

.I‘—)."I:]

Solugdo
— —
FMO-GO=F MG ®O+F{0OG({)+..+F,()G,(.
— —
lim F@®=a = lim F,{)=a,i=12,...n
t—=t, = — t—x 1
lim G (= b = lm G ()=b,i=1,2,...n
I—}I” I—:t.l"::I
Entdo
— —
lim F (1) G ()= lim Fi ()G )+ ..+ lim F,(1) G,
t— 1, =ty L= 1y
nec S
=aby+aby+...+tab = a - b. |

n-n

Definicéo 2. Sejam I : 4 — [[In e t0 € A. Definimos:

Fécontinuaem ity = lim F (1) = F (fy).
I — II'I

Dizemos que F' ¢ continua em B C A se F for continua emtodo ¢ € B; dizemos, simplesmente, que F ¢
continua se for continua em cada ¢ de seu dominio.

Do teorema anterior, resulta que F' serd continua em t, se e somente se cada componente de F o for.

Exercicios 7.4

1. Calcule



.2 - =1 s
a) lim F(t),onde F(H=| — 12, ——
t— 1 t—1 t
. = — (g3t e -1 )
by hm F (f),onde F (f)= [ . %
t— 0 f I
T
3 3 _g— Cos—
¢) lim  (H.onde r (= — i+ L j+2tk.
s - — 4 t—2

2. Sejam? | {F“ F‘.‘is ~FnJ- E — {G]. GE- G”} duas funcdes de uma varidvel real a valores em [[I» e f uma funcdo de uma

) — - — Y
varidvel real a valores reais. Suponha que lim F (1) = a, lim G (= be lim fiH=L onde
t= 1, £ 1 1=t
= = '
a =lapay. ... a,), b =(b, by ... 0,) L real. Prove:
— — —5 —
a) lim [FH+ GHh]l=a + b.
t =1
] — —
by lm f()y F()=La.
t— 1,
. - — —
) lim FAOAGH= a /N b (n=3).
¢

]

3. Determine o conjunto dos pontos de continuidade. Justifique a resposta.
— — = —
a) F)y=t i+t j+3k.
— o -

= : : '
by F()= t—1 i + . Ji+1 j+ek.

4. Sejam? ‘ E ‘A R efiA— R continuas em 4 € A. Prove que F ? i E f? ? . E sdo continuas em Ly Se n =3,

— — r r ’
também ¢ continua em ¢,,.
FAG 0

Sejam? Ao E . 4 — > Suponha lim F ()= 0 equell G (1)l =M para todo ¢ € 4, onde M > 0 é um real
: : it
4]
fixo. Prove.
— — — — =
a) lim F (-G (=0 b) lim FHOANG{H= 0
t—tg t—t,

6. Seja F : [a, b] — R continua. Prove que existe M > 0 tal que I !_r:-> ()1l = M em [a, b].

7.5. DERIVADA

Definicfio 1. Sejam /" : 4 — [[In e t0 € A. Definimos a derivada de F em to por

ﬁ(n}_} = lm H =¥ ikg)
dt :—Hﬁ [ fﬂ

desde que o limite exista.




Se F admite derivada em ¢y, entdo diremos que F ¢ derivavel ou diferenciavel em t,. Dizemos que F ¢
derivavel em B C Dr se o for em cada ¢ € B. Dizemos, simplesmente, que F € derivavel ou diferenciavel
se o for em cada ponto de seu dominio.

Teorema 1. Sejam F = (F1, F2, ..., Fn) e to pertencente ao dominio de F. Entdo, F sera derivavel em to se e somente se cada
componente de F o for; além disso, se F for derivavel em to

F (i) = (K (to), &5 (to), ..., By (1p)).

Demonstracdo
F{r)—F{rn}:(F]m—ﬁ(rm B () —F (1) E, (t)y—F, (tg) | -
t—tg \ t—to ' t—to t—to | Sl
. . . F@®)—F(tg) . ., _ .
Pelo teorema da sec¢do anterior, lim existira se € somente se existirem ¢ forem finitos os

t— 1, L=t

. . K@)~ F ) | e
limites lim , i =1,2, ..., n. Logo, F serd derivavel em ¢ se e¢ somente se cada

t— 1, r— 1y 0

componente o for. Teremos entdo:

. F() = F(tp) R (O-F (1y) . BEM—E (ty)
lim (© 0) = | 1im - ( L2 it n (o
11, t—1p (=, e T} t— 1, r—1Iy
ou seja,
F' (tg) = (F (o), B (tg), .-, B, (1g)). -

EXEMPLO 1. Seja F (4) = (sen 3t. . 1) Calcule

1 ? 1 ?
a) < (1) p L5 (o)
dt dt
Solucao

%
d

a) Tr{? (f) = ((sen 31‘}',{313 ¥ ) =13 o8 3L 2t et o |

ou seja,
dF
—— (1) = (3 cos 31, 'Er‘f?fz, i
dt
%
dF

by — (0) = (3,0, 1). 8
) 7 ()



EXEMPLO 2.Seja”) (5 =2 | +arctg2r j +e' k- Calcule.

— o ?
dr d=r
a) b) -
dt dt=
Solucao
d_} ! 1 1
r ¥ y. T a =2 ¢ —t 7
a = — (") i + — (arctg 21) + =& k
T & & e 3 ¥ )
f_, —p 3 s 4 —F
G e i+—=— j etk
dt 1+ 4= -
iy 16
p g — — —
B L =7 = T stk .
dt= (1+ 41<)

. 2 . . l.rF 114 29
Seja, agora, FF: A > R esejat € A. Geometricamente, vemos {? (ty) como um “vetor tangente” a
0 t

trajetéria de £, no ponto F ().

/ |
-
=

F(t)— F(tg)
I—1p

¢ paralelo ao vetor F (1) — F (i)

Fit)— Fi1,
@) (fo) tende ao “vetor tangente” ar

Quando ' — o =%,
t—tg dt

(ty) & trajetoria de Fem F ().
0

dF e o
Definicdo 2. Seja F: 4 — [[in derivavel em ¢ , com — (i) ¥ (). Dizemos que E (ty) ¢ um vetor tangente a trajetoria de F,
0 dr

em F'(10). A reta

X=F{fﬂ)+)q_%(f{}}‘ﬂ€ﬁ

denomina-se reta tangente a trajetéria de F no ponto F (20).

A reta tangente a trajetdria de F no ponto F (¢) €, entdo, por definicdo, a reta passando pelo ponto F



(to) e paralela ao vetor tangente % (fg)-

EXEMPLO 3. Seja F' () = (cos t, sent), t € [. Determine a equacdo da reta tangente a trajetéria de F' no
f ar
onto F' | — |
ponto F( 2 )

Solugdo
-\ ."— 3 ; HI , o
F[EJ: V2 e :dF = (—sen f, cos [); assim, ﬁ{ﬂ = v 2 N2
\ 4 2 " 2 dt 4 ; )
(
A equagao da reta tangente em F LI\
i
X:F(£]+AEEPE]AER
\.4 df'
ou seja,
{1\!—(‘_,£]+A(_»__£]AEH ]
2 ; B R

Faga vocé o desenho da trajetoria de F e da reta tangente.

EXEMPLO 4. Scja F (t) = (¢, t, *). Determine a equacio da reta tangente no ponto £ (1).

Solucao
dF . HF : N .
F)=(,1,1); — = (1,1, 2¢t); assim, T (1)= (1.1, 2). Aequacdo da reta tangente em F' (1) ¢:
dt I
1F
X=F()+A—(1).AER
dt
ou seja,

x,y0=(L1,1D+A,1,2, A eR =

Teorema 2. Sejarn?:> - EE - A — R f: K-l derivaveis em A. Entdo, f F e F . E serdo, também, derivaveis em A e

_}
2L By L. 4p dF
dt dr
~ dF = = dG
BB By=L s wfods Bl

dt dt dt




Além disso, se n = 3, entdo F A E sera, também, derivavelem 4 e

— =y
— — — —
20T N Byt NG ¥ FNEE,
dt dt dt
Demonstracdo

Faremos a demonstra¢cdo no caso n = 3.

a) 7_3 = (F,, F,, F;); como f ¢ uma fungdo a valores reais

FOFO=(OF ().f(O)F,@),.f () F; (1)

para todo ¢ € A.

d s 4 d d d
—[f(H F OD]l=|—IFfWDEHEM] —I[f() B(t)], — 1) Fx(t ]
r [F(D) (1] (df [f 1(1)] & LF(r) F2(1)] 7 [f(D) E ]'].

De
% [FOF, ] =f (O F )+ f1)F| (1)
d ' '
o [fOF2 0] =f" @) Fy(t)+ f(t) Fy (D)
d ) ;
s [FOFy O] =f"(t)Fy() + f(1) Fx (1)
resulta:
d e . ' ' '
S F0l=f O (RO BORO |+ O K0, BOE®
ou seja,
— — gt
2¢Fy=LF +5iL
di dt dt

— —

- =

F = G = FIG] + FEG:. + FjG_i,.

g = d d d
- F ¥ G — F G = F’pG-\ + o F G
ai L b="5 WGly zlitel g Listsl
= M2 Gy + F, A1 B2 oy 3 B0 I gy 35,1808,
dt dt 5 < dr dt - ©dt



Como

%
— IF
8. G =flg 8 gy MG
dt dt dt " dt S
c
e IG e dG
Follep flg gl gp 00
dt dt = odt = dt
resulta
— “3
- — — — !
&% Gledl Jgepts
dt dt dt
- = — — — —
d(F ~ G) ) Ft+hhaAnG(t+h— F(t) n G(1)
c) — (1) = lim =
dt h—=0 h
— - — - — - — —
- Ft+hMAaGit+h—-—FWOAaGt+h+FtaAG(t+h — F(t) A G(t)
h—0 h
Fa+h—-F@) — > Cu+m-COm
= lim i .{”A Gir+hy+ Fit) u 2 (4
h— 0 h h
d? — —* J’E
=— ONGWH+ F A L (1)
dt dt
ou seja,
- = 7 - = c
i[FH\G]=£H\G+ foﬂ_
dt dt dt

EXEMPLO 5. Seja f : 4 — [ derivavel e tal que | 7 (1) | =k, V ¢ € 4, k constante. Prove que

.
Ft-— (=10
dt

para todo ¢ € A. Interprete geometricamente no caso n = 2.

Solucao
— = =
LE )l = +F(t): F(t)

dai



— 5 = —
I F (HlI"= F (f)- F (1)
logo, paratodo t € A4,
— — -
F@-F @)=k,

Segue que, para todo 7 em 4,

d(F - F 0
—~ r)- (1) ] =0,
7 [F( ]
ou seja,
iF = = 4F
W Fo+F@w- S m=0
dt dt
e como o produto escalar ¢ comutativo
> dF
2F (-~ (n=0.
dt
Portanto, para todo ¢ € A,
5 . dF
F (- — (n=0.
_}

Assim, sendo | 7 (¢) || constante, os vetores z dF serdo ortogonais.
F F (e (1) g

Interpretacio geométrica no caso n = 2. Seja 7 (¢) = (F, (¢), F, (1)); sendo || 7 (¢) || constante e igual a k
(k> 0), a trajetéria descrita por (£ (¢), F> (¢)) esta contida na circunferéncia de centro na origem e raio
— —

k; como ¢ F (1) ¢ tangente a trajetoria, dF (1) deve ser tangente a circunferéncia e deve, portanto, ser
dt dt
ortogonal ao vetor de posicao 7_3 (9).

/% (0

—F ()




Exercicios 7.5

— G
1. Calcule d F LA F
dt dt?

EEAY 2 —i 2 :
al F(=03r.¢ ".ln(" 4+ 1)
= 3

by F (=71t i +cost” j +3t

L)

— _ =P — g
¢) F(h=sen5t i +cosdt j —e “ k.

2. Determine a equacgdo da reta tangente a trajetdria da fungdo dada, no ponto dado.

Il
a)F ()= (cost,sent.HheF L

-jT"u
) 3
NGH=(",HeG (1)

/

; (1 1 4 s
AF (= |—.— 1% |eF(2)
3 !

t
) i
dAF(y=(t..teF(1)

e "

3. Seja F definida no intervalo / € com valores em [#». Suponha que F’ (¢) = ﬁ para todo t em /. Prove
que existe uma constante k = (ki, ka, ..., k,) € [ tal que F (¢) = k para todo t em /.

4. Seja ?_3 .1 p3 1 intervalo, derivavel até¢ a 2.* ordem em /. Suponha que exista um real tal que,
" % _}
para todo tem/, 4~ F (= AF (1 PTOVE QUE £ (1) A (1) € constante em /.

2

dt= dt

5. Suponha que 7 . p _, g seja derivavel até a 2.” ordem e que, para todo ¢ > 0,

— —
Wy (0= W,
) i =y o
Proveque 47 dr _ "7 d° 1 em[0,+o[.
dt dt dt?

b) Seja 6 o angulo entre d
dt

%
T
" . Conclua que % =f=m

6. Seja , definida em @, com valores em R’, e derivivel até a 2.* ordem. Prove que se
— —
= dr X = 12 e
T = () for constante em R, entdo DA ;” (= 0 EMR.
i dr2

7. Seja 7 . [ p> I intervalo, derivavel até a 2.* ordem. Suponha que 7* (#) forneca a posi¢éo, no
instante 7, de um ponto P que se move no espago. Definimos a velocidade 7 (¢) e a aceleragio
— —

(1) de P, no instante 1, por: (= 47 T = 9V = 977 (. Determine _ (1) e _, (1)

dt dt dt? 1 i

sendo:



10.

11.

12.

13.

— — a = — — — — —

al r )=t +1 j +4k by r (f)=cost { +sent j +1 k
2 — — - = .

¢) r (h= m + vgt, onde ry e vy serdo dois vetores fixosem H™.

i — — =2 - = —
d) r ()= + vyt + = ap 1=, onde ., vy e ap siio constantes.

Um ponto se move no espago de modo que | 3 () || = & para todo ¢, onde k > 0 é uma constante.

Prove que | (4. & (1) = o para todo z. Interprete.

%

Suponha || _, (¢) ||# 0 para todo ¢. Faga 7 ;) = "> onde v () =|_, () . Prove que
v vit) v

_:,
=% &7 .
a T e S0 ortogonais.
dt
-
=3 dT dv
ba=v + — T.
dt dt
Seja’) () =acoswt i +bsenwt j»Ondea, bew sdo constantes ndo nulas. Mostre que
.
gy - e
= —w" r.
dt?

Sejam 7_3 e E definidas e derivaveis no intervalo / ¢ com valores em [{». Suponha que para todo
%

y
1 F 1G " 55 =3 =
te1, = (1) = = (1 Prove que existe um vetor . — . ¢, ..¢) =R tal que ¢ (= F (1 +

di dt
para todo ¢ oo /.

iy
o

Determine  _ 7 ;, sabendo que

i

_{',
adr — - = — —»
a)—=t i +2 ker 0)=1 + j.
dt
ey
dr — — — — — — —
b) =sent i +cos2t j + k,t=0e r ()= ¢ — j +2 &k
dt Fod=] '
—
dr 1 — o P A —»
¢) = S0 et ok ey =Fk,
dt 1 + 4¢-

(Regra da cadeia.) Sejam ; _, , () 1=[.u— F () = R u = J» funcdes derivaveis, onde / e J sdo
i_r}ltervalclf em [. Suponha que, para todo ¢ o I, u (f)  J. Prove que a fungio z dada por
H ()= F (u(n).t e > ¢ derivavel e que

—

[
dH dF ff_tf

dt du dt



onde 9 F deve ser calculado emu = u (¢).

du
— —3 La = — =3
14. Suponha p (@) =cosf i +senf j, g (A= —senf { +cosf j
e p 1) ”_; (8(1)), com 8 = (1) e p = p (1) derivaveis ate a 2.* ordem num intervalo /.
{ 2.0
Notagiio : p = d—P 9= d—ﬂ p= 2 f} . | Verifique que
X dt dt dr= |
& . =
a) — uy(8)] = 0 ug ().
dt P d
B) L [ug B)1=—bup (O
)— lug (&)= —8Fu .
dit ¢ 3
— — R
c) v = puy+ plug.
— s —F . . —
d) a=[p—p@) Jup+[2p0+pblug.
15. Seja F : I — [ derivavel em ¢, € [ e seja E (Af) o erro que se comete na aproximagao do
acréscimo “F (¢, + At) — F (t,)” por “F’ (t(}g A;”. Prove que E (Af) tende a ﬁ mais rapidamente que
—
At, quando At tende a zero, isto €, que ;r L 0. Prove, ainda, que para todo j = @' com
_}
=X Flfg + At)— F(ty)] — a At =
o LFG fim L0 TANTHRN e N g
Ar =0 At
Observacao. A fungdo linear de @ em [» dada por At — F’ (¢y) At denomina-se diferencial de F
E (At =
emt; F(t +At)—F(t)=F'(t) At + E (At), onde lim P 0.
0 0 0 0 Ar—0  Ar
7.6. INTEGRAL

Sejam? :[mb]%ﬂ%uumaﬁmgﬁo,P:a=t0<t1<tz ...<t =be,paracadai,i=1,2,..,m, seac,

um ponto de [# -1, #;]. O vetor

M —»
E F (il.tj } .I'j-lf-.l'

i=1

denomina-se soma de Riemann de 7_3 relativa a particdo P e aos pontos ci.

m —

Dizemos que ¥ F (¢;) At; tende ao vetor E’ =R quando max At — 0, e escrevemos

i=1
il

_ — —
lim 2 F(g)At; =L
max Ay, =0 =1

se, para todo € > 0 dado, existir 0 > 0 que s6 depende de €, mas ndo da particular escolha dos c;, tal que



m — —
E F 1.({".'} ﬂ\f.; = L
i=1

para toda particao P de [a, b] com max A¢; < 0.
O vetor f‘, que quando existe € unico (verifique), denomina-se integral (de Riemann) de 7_3 em [a, b]

R b — ) )
e indica-se por J F () dt- Assim, por defini¢do,

b — m —
F(t)ydt = lim > F (¢;) At

a max Ar, =0 =

Seja F — F|.F,.....F, definida em [a, b]. Deixamos a cargo do leitor verificar que 7 sera

integravel em [a, b] se e somente se cada componente de 7_3 o for; além disso, se 7_3 for integravel em [a,
b], entdo

F(r)dr—” F (1) dt, ":}E.?(f)df,.- f

'

Se 7  for integravel em [a, b] ¢ E uma primitiva de 7_3 em [a, b] teremos

b —3 —5 —
Frydr= G(b)— Gia).

o

De fato:

entao

b

(]

b b
F(f}df—( Fl(r'}dr,j Fg(ﬂdr‘,,,,,j E, (t) dr}
o o
= (G (b) — G; (@), G5 (b) — G,y (a),.... G, (b) — G, (a)
_}
= G (b) — G (a).
_— o
EXEMPLO 1. Calculej [ti +4j +1* k]dt.
0

Solucao

sy

J[r:+4;+r~k]d (
1
2!



EXEMPLO 2. Suponha 7 continua em [a, b]. Prove que

h —

_}
F (t)dt F(f)

= [b dt.

a ol ]

Solucao

h )
Sendo 7_3 continua em [a, b], | 7_3 | também ser4; logo, J "W F (1)l dr existe.
(]

m — h —
Y F(c)HA — F (t)dt

i=1 d

mo —
Y, FlepAn

i=1

h —
F (t)dt

P

a

assim, de
mo o— h —
im 3 F(c) Al =j F (t) dt
max A, — 0 =1 a
segue
m o — h —
lim | 3 F(c)Ar|= j F (t)dt|
max &, — 0 || /=1 a
Temos
m — m —
Y F(cpAt|= X I Fc)lAt;.
i=1 i=1
Entao
b — m —
F(t)dt||= lim Y. F(c)At
a max A, — 0 |[/=1
mo —
= lim > I F (¢;)1Ag
max &r — 0 =1
r —
=j I F ()it
i
ou seja,
h —» P —
F (t)dt .«sj I F (t)lldt.
a i

Exercicios 7.6

1. Calcule



| — —

ay | [tE +e jldt
“)
1 — 1 — —
b) [sen 3¢ i + — j + k ]dt
-1 L+
a2 — — —>
o | Gi+2)+ ke
+1
2. Sejam 1 ¥ i L o 1 . Caleule
B En=ti + j+e keGin=1i + j + k-
1 — — L — il
a) j (F (1) G (t))dt b) _[ (F (1)- G (t)dl.
0 i
30 . = , .= ¢ 7
Seja - . [a, b] — R continua e seja (7 (1) = F (s) ds. t € |a, b]- Prove que, para todo 7 € [a, b],
j 0 a, o)
%
d G -
(1) = F (1)
dt
4. Seja F (#) uma forca, dependendo do tempo ¢, que atua sobre uma particula entre os instantes #, e ,. Supondo F mntegravel em [z, 1,],
0 vetor
== 1, —
I = F (1) dt

b

denomina-se impulso de F no intervalo de tempo [#,, £,]. Calcule o impulso de F no intervalo de tempo dado.

— = — 43
a) F(ih=ti + j +t°k,t;j=0et, =2
— 1 — 52 —
B FO=s— i 4] & Eshp=0eh =L

t+1

5. Suponha que F (?) seja a forca resultante que atua, no instante ¢, sobre uma particula de massa m que se move no espago. Mostre que

o impulso de F no intervalo de tempo [#,, #,] ¢ igual & variagdo da quantidade de movimento, isto €,

o — =
J Fitydt=mvy, —mw
h

— =

~ . . . . . — %
onde Vs e V| sdo, respectivamente, as velocidades nos instantes tl e tz. (Sugestdo: pela lei de Newton F(y=m

a {f}')

7.7. COMPRIMENTO DE CURVA

Seja / um intervalo em . Uma curva y em [, definida em /, € uma funcgao y: I — [
Uma curva em [», definida em /, nada mais ¢, entdo, do que uma fungdo de uma variavel real a
valores em [1». Segue que tudo o que dissemos anteriormente aplica-se as curvas.

EXEMPLO 1. Scja y (t) = (¢, arctg ¢), ¢t € R, uma curva emp™>

a) Desenhe a imagem de y.
b) Determine uma curva 5 . g _, p2tal que y #d e Imy =1Im 6.



Solucao

Ix =1 22
a) re R

|y = arctg ¢

A imagem de y coincide com a grafico de y = arctg x.

_____________________

_____________________

b) o (t)=(F, arctg ), t € R.
m

Observacao. Sejam 4 C [fn e y : [ — [ tais que Im y = A; ¢ comum referir-se a y como uma
parametriza¢do do conjunto 4. Assim, toda curva y pode ser olhada como uma parametrizagdo de sua
imagem. O exemplo anterior mostra-nos que um mesmo conjunto pode admitir parametrizagdes
diferentes.

Nosso objetivo, a seguir, ¢ definir comprimento de curva em [.. Para motivar tal defini¢do,
trabalharemos com uma curva emR°. Seja, entdo, y : [a, b] — RB* uma curva em@*. Sendo P: a =1, <t <
t, <...<t,=buma parti¢ao qualquer de [a, b], indicaremos por L (y, P) o comprimento da poligonal de
vértices Py =1y (to), P1 =7y (), ..., P.=y (t,):

I
L(y,P)= E] Hy () — v — .
Tomando-se, por exemplo, P: a =t <t <thb <t <ts <ts=b, L (y, P) serd o comprimento da
poligonal de vértices Py =7y (ty), P =y (t1), ..., Ps =7y (t5).

Ly.Py=ly(t) —yt)l+lyt) —ya)l+ ... +1y(ts) — vyl

Suponhamos y = (y1, y2) derivavel em [a, b] eseja P:a =1ty <t < ... <t, = b uma partigdo qualquer
de [a, b]. Temos



@ ly () — 7yt _ pll= -x,;'l{?l () =y (6 P+ [y2 (1) = ya (- D]?.
v
*y{r!-‘,r={*yl H,-_L'YZ (1))
YUi-pD=0y Gi—1)hY, EGi-1)

Pelo teorema do valor médio, existemy; e f em] ti_, ¢ [ tais que

W=y )= i) &=t _ 1)

Yo (@) — va(f;— 1) = Y2 f;) (t; =t _ 1)
ou seja,

NE =N G- D= NEAL e v @) =2 (-1 = Y25 AL,

Substituindo em (1) vem:

Ly (t) = y(t; _ D= [V D +[ya (i) At

Dai

R I —_ .
@ L(y.P)= X 15.'[’}'1{3‘!:}11 + [y2 (£;)]* ﬂfl.'.

i=1

Supondo y" continua em [a, D], Iy (1)1l = m':{"fl (1)2 + (y5 ()2 sera, também, continua em [a, b] e,
portanto, integravel neste intervalo:
n

b o 7 ‘ .M
j Iy (Hllde = lim 3 +/(y1(c)? + (Y2 (ci)? At
o

MAx ﬁ:j —=0;=]

Embora (2) ndo seja soma de Riemann da fungdo g (#) =||y' (¢) |, ¢ € [a, b], (por qué?) € razoavel esperar
b

que, para max At — 0, L (y, P) tenda aj Iy’ (H)ll dr (veja Exercicio 12). Nada mais natural, entdo, do que
i a

a seguinte defini¢ao.

Definicfo. Seja y : [a, b] — [[i» uma curva com derivada continua em [a, b]. Definimos o comprimento L (y) da curva y por

h
L(y)y= | I (Dl dt.
o

Observacao. A definicdo acima estende-se para uma curva y : [a, b] — R» qualquer, com || y" (¢) ||
integravel em [a, b].



EXEMPLO 2. Calcule o comprimento da curva y (¢) = (cos ¢, sent, t), t € [0, 2x].
Solucao
y () = (—sent,cost, 1); Il ¥/ ()1l = +/(—=sen )2 + (cos )2 + 12 .

O comprimento da curva ¢

Vi

Eﬂ' T E
Iy’ (1)1l dt = j V2 dt =272
0 0

Seja y uma curva em B* dada por

x=y(0 e
{\-‘= ¥a (1) < [a, b].

; ’ 2
De d_‘_—?]m e i_—y > (1) segue |/ (1) Il = | \Kd_w 4 d_] e, entdo, o comprimento de y é:
dt dt \\ dt ) dt
b | 32 ’
J ,{ﬂw +|d_‘| dt- Se y for uma curva em dada por
a \\ dt) \ dt )
J.t='}-‘[fﬂ
y=y(t) & [a,b]
|:=*}f_v,{r‘,r

seu comprimento sera:

b ;I-” 'f_'\'j (?rl‘\' (dz)
L&) +(2) +(4) @

Suponhamos que uma particula se desloca no espaco de modo que no instante ¢, ¢t € [0, b[, a sua

posicao seja dada, em forma paramétrica, por x = x(¢), y = y(t) e z = z(t), com a4y d—\ 42 continuas.

dt dr dt
Entdo, o espaco s = s(t) percorrido pela particula entre os instantes 0 ¢ ¢ nada mais ¢ do que o

comprimento da curva descrita pela particula entre esses instantes, ou seja,

t : v ~.|3 P
| ) | +| i] dt. =
Vi dt ) df \ dft |

EXEMPLO 3. Uma particula desloca-se no espago com equacdes paramétricas x = x(¢), y = y(t) e z =
z(t). Sabe-se que, para todo ¢,

,,

Sabe-se, ainda, que =2 e que no instante ¢ = 0 a particula encontra-se na origem.

dr |=g



a) Qual a posicao da particula no instante ¢?

b) Qual a velocidade escalar da particula?

c) Determine o instante 7 em que a particula volta a tocar o plano xy.
d) Qual o espago percorrido pela particula entre os instantes 0 e 77

Solucao
a) $= V2 = x=+2 t+k:dex=0 parat =0,k =0 e, entdo, x = V2 t.

dr

De forma analoga, y = /2 t.
dhf' " d_zz_-2r+kq —s 7 =—12 + kst + ky; das condi¢des z = 0 para r=0c¢
dr= dt ; : dt |=o
—* + 2¢. Assim, no instante ¢ a posi¢do da particula é

dz

=2, resulta z =

b) $= J4+(=2r+2)*, ouseja, ?= 2414+ (2—1)%.
dr t

c) z=0e - +2t=0et=0o0ut=2. Portanto, 7= 2.
d) 52) = zj“

” 2
J1+(2—1)? dr; fazendo 2—t =tgu, dt = —sec u du, u=arctg2 parat=0eu =0 parat=2.
0

Fazendo 6 = arctg 2

0

i
52)= —ZJ secd u du = ZJD sec u du.

&

Integrando por partes, ¢ levando em conta que tg & =2 e secd = ./5, vem

5(2) = tgf sec 6 + In[sec f + tgf| = 245 + In(2+4/5). m

Exercicios 7.7

1. Calcule o comprimento da curva dada.
a) y(f)=(tcost, tsent),t € [0,2x].
by y®=Q2t—1,t+1),¢€[L2].
c) y(t)=(cos t,sent,e1),t € [0, x].
d)y(f)=(et,cost,etsent, e )t €[0,1].
e) y() =@, t€[le]

f) y:[0,7] > [F2dadaporx=1—cost,y=t—sent.

1 ; . N I ,
2 y = g (¢" + ¢ "), x € [—1, 0] (Observagdo: trata-se da curva y dada porx =1,y = — (¢ + ¢~ ") comt = [—1, 0])

2. Dé exemplos de curvas y e ¢ tais que /m y = Im J, mas que seus comprimentos sejam diferentes.

3. Sejamy :[a,b] — [Bne o :[c,d] — [In duas curvas com derivadas continuas. Suponha que exista g : [c, d] — [a, b], com derivada
continua e tal que g’ (#) > 0 em [c, d]. Suponha, ainda, g (c¢) =a, g (d) = b e, para todo u € [c,d], o (u) =y (g (u)). Prove:



a) Imy=1Imo
b) L(y)=L (9)

Observacgdo. Se as curvas J e y estiverem relacionadas do modo acima descrito, entdo dizemos que a curva J ¢ obtida de y pela
mudancga de pardmetro t = g (1) que conserva a orientagdo.

Dizemos que uma curva o : [a, f] — [[n, com derivada continua, estd parametrizada pelo comprimento de arco se || ¢’ (s) || = 1, para
todo s € [a, ff]. Verifique que cada uma das curvas abaixo esta parametrizada pelo comprimento de arco. Interprete o pardmetro s.

a)8(s)=(coss, sens),s=0

j 5 5 "
b &(s)= [ R cos —, R sen —L s =0, onde R = 0 & um real fixo.
R R
[ & 25 )
{‘.1-5{5_1:{—T — |.SI-=-“'D
Y Ald )

¢
Seja y : [a, b] — [[In, com derivada continua, e tal que || 7’ (¢) || # 0 em [a, b]. Seja s : [a, b] — [} dada por s (f) = J " (21l du.

i
a) Verifique que a fungdo s = s () ¢ inversivel e seja ¢ =1 (s) sua inversa.

b) Verifique que a curva 0 : [0, L] — [[» (L é o comprimento de y) dada por
0(s)=y(1(s)
esta parametrizada pelo comprimento de arco. Dizemos que ¢ € a reparametrizagdo de y pelo comprimento de arco.

Reparametrize pelo comprimento de arco a curva y dada.
a)y(@®=Q2t+1,3t—1),t>0.

b) y(f)=(2cos t,2sent),t>0.

c) y(f)=(cost,sent,t),t>0.

d) y(f)=(elcost,elsent),t>0.

2 rt
Seja y : I —[[@ uma curva derivavel até¢ a 2.* ordem, com || y’ (?) || # O no intervalo /. Seja & = J Iy ()l dut, ¢t € 1, comt fixo em
t 0
—5 -},.' ’
I. Sejam, ainda, T (1) = m o versor de y' (¢) e T (s), dada por F (s) = ]_r} (), onde ¢ =1 (s). Mostre que
y'(t
—
dT ¥ () Iy (O — ' () (y" (1) - ¥ (1)

a) (r)= B .

dt ly' (1)1

%

d t ") Ny (OIF — (Y™ (1) = y'(1)

b) (s)= z 1 Y 4}{’}* "y E=1(3)

ds ly’ ()l

di \dt dt JAY" (O (O = (y" (1) - ' (1)
c) (5)|| =4 (5) £y = : ;

ds | ds ds " (£ ) 1-

onde 1 = 1 (5).
_}
i
Observacao. O numero f (5) = 4 { 5} || denomina-se curvatura da curva y no ponto y (¢), ¢t =t (s). Se k (s) # 0, o numero
ds

pls)= . ¢ o raio de curvatura de y em y (f), t = t (s). A motivagdo geométrica para tal definicdo ¢ a seguinte: para As
(s)



suficientemente pequeno o trecho PQ (de comprimento As) da curva y pode ser olhado como um arco de circunferéncia de centro 0
. . . A —F —F , ~
e raio p (s) (aproximadamente). Sendo A@ (radianos) o angulo entre os vetores p (s) e p (s + As), segue que A@ sera, entdo, a

medida do angulo POQ.
- - i
r(s) € 1 {s+ As)
¥
P
t (5} =
T (s + Ag)
— —
A=t (s+As)— t (s)Il
Temos:
— —
L+ As) — 1 (5)
As=p(s5) Af ou ) As '

8. Calcule a curvatura e o raio de curvatura da curva y (f) = (R cos t, R sen ¢) (R > 0 fixo).

9. Sejay:I— [[J2 parametrizada pelo comprimento de arco (isto é: || ' (s) || = 1 para todo s € I).
a) Verifique que, paratodos € 1,k (s) =|| y" (s) ||, onde k (s) é a curvatura em (s).

b) Prove que se k (s) =0, para todo s, entdo y ¢ uma reta.

10. Uma particula move-se no plano de modo que no instante ¢ sua posicdo seja y (f). Suponha que, para todo ¢,

_}
— — . = v D —
Ty I#F0(v =y (e’PT (= onde y (py =1l v (1)1 Prove que
vi(t)
a) T
}} a dT o ortogonais.
dt
by— dv—= v o - “_r:'
a =— T + — n,onde ] ¢ o versor de * - o raio de curvatura de yem y(?).
n ep=pli)
dt P dt

Seja y : [a, b] — [[#2 uma curva com derivada continua e com componentes y1 € y2 (y =(y1,92)). Seja P:a=t0<t1i <t2<...<th=b

11.
uma particdo qualquer de [a, b].
a) Prove que quaisquer que sejamE1 f et _ 14 | (i=1,2, ..., n) tem-se:
n .I i T - r = - il I' e ~ I e -
ZAly ) +Hly20)) A = X I F +Iyv2 ()] Ay | =
;

=1 1

< £ Iva@) — v (@)1 A,
i=1

Sugestdo: utilize a desigualdade



I-\?-'Ia::2 + h: — Qag +ell=1h—cl.

-
a

b) Sejam Ci e C os pontos de minimo e de maximo, respectivamente, de 7y, em [ti_ 1 tl.]. Prove que

i

& — il B ] i — n i 55
2 lyr () — vyt AL, = XY vy (¢) At — 2 vr (¢p) At
2 ;

i=1 i = i=1
c) Prove que

n ! "

< ’ = b
lim > &-'I[’J"l t;)1" + 2 {15}]2 Ar, =J " ()11 dht.

max A, = 0 ;=1 a

no ., = R _ b
Sugestio : lim Y yolg) Aty = lim Y valg) Ay = ¥2 () dt.
max Ay; - 0;=1 maix Af; — 0 j=| a
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FUNCOES DE VARIAS VARIAVEIS REAIS A VALORES REAIS

A maioria das relagdes que ocorrem na fisica, economia e, de modo geral, na natureza ¢ traduzida por
funcoes de duas, trés e mais variaveis reais; dai a conveniéncia de um estudo detalhado de tais fungdes.

Neste capitulo e nos seguintes daremos énfase ao estudo das funcdes reais de duas varidveis reais, € 0
leitor ndo terd dificuldade em generalizar os resultados para fungdes de mais de duas variaveis, ja que
ndo ha diferengas importantes.

8.1. FUNCOES DE DUAS VARIAVEIS REAIS A VALORES REAIS

Uma funcao de duas variaveis reais a valores reais € uma fungao f: A — [, onde 4 ¢ um subconjunto
de B*. Uma tal fungdo associa, a cada par (x, y) € 4, um Unico nimero f (x, y) € @B. O conjunto 4 é o
dominio de f'e seréd indicado por Dy O conjunto

Imf={f(x,y) €ER|(x y) € D

¢ a imagem de f. As palavras aplica¢do e transformac¢do sao sindnimas de fungao.

[

(x, ¥)

]
Y

\f_j I G 1)
A

f transforma o par (x, ) no nimero f (x, ).
Por simplificagdo, deixaremos, muitas vezes, de especificar o dominio, ficando implicito, entdo, que
se trata do “maior” subconjunto do [ para o qual faz sentido a regra em questio.

x+y

EXEMPLO 1. Seja f a funcdo de duas variaveis reais a valores reais dada por f(x, v) = LI Ao
Ryt

dominio de /¢ o conjunto de todos os pares (x, y) de nimeros reais, comx # y, isto é: Dy= {(x, y) € @* | x

X+ y

xX—y

#y}. Esta funcao transforma o par (x, ) no nimero real



EXEMPLO 2. Seja f'a fungdo do exemplo anterior. Calcule

a) f(2,3)
b)f(a+b,a—Db)
Solucao

)
a)f(2,3) = 5 i z =

+bh+a-—
byfla+ b,a—b)= ik i = i.
2 at+b—(a=b) b

EXEMPLO 3. Represente graficamente o dominio da fungao f dada por
flx, y)= -w';.‘!" —g x-':] =t
Solucao

O dominio de /¢ o conjunto de todos os pares (x, y),comy—x>0el—y>0: D;={(x,y) ER* |y >
xey<1}.

1!

EXEMPLO 4. Seja fa fungao dada por

(x, ¥) o0 z onde z = 5x%y — 3x.
O valor de fem (x, y) ¢ z = f(x, y) = 5x*y — 3x. Na equagdo acima, x € y estdo sendo vistas como
variaveis independentes ¢ z como varidvel dependente. Observe que o dominio de £'é o .

EXEMPLO 5. Represente graficamente o dominio da funcdo w = f'(u, v) dada por



w+v+w=1,w>0.
Solucao
b | F
u + 1*2 + wz =l,w=0= w=,41- u? —v?,

Assim, f'¢ a fungéo dada por £y, v) = J1- w2 — 2. Seu dominio € o conjunto de todos (u, v), com 1 —
w —v*>0.

- —VvV>0eu*+1v*<1.

O dominio de f'¢ o circulo de raio 1 e centro na origem.

A

¥

A
w

EXEMPLO 6. Represente graficamente o dominio da fungdo z = f'(x, y) dada por 7 = q_?.-"\.- — x2.

Solucao
Di={(x,y)) ER’ |y—x*>0};y—x*>0=y>x"
A '}
F
et y=yx2
X3 - X -
1 X
T -
yYr-'g
P = (x, y) pertence a ¢ = (x, v) nio pertence a A regido hachurada representa
Dy, pois y = x~. Dy, pois y < 2. o dominio de f. |

EXEMPLO 7. (Fun¢do polinomial.) Uma fun¢do polinomial de duas variaveis reais a valores reais ¢
uma fungdo f/: B* — R dada por



g i M,
fay= X a,x™

m+nu=p

onde p ¢ um natural fixo e 0s a,, sdo numeros reais dados; a soma ¢ estendida a todas as solugdes (m, n),
m € n naturais, da inequagdo m +n < p.

: 1 o~ . : :
a) f(x, v)= 3.1("74'.1*2 — — xy + +/2 € uma fungdo polinomial.
5 ]

b) f (x, y) = ax + by + ¢, onde a, b, ¢ sdo reais dados, ¢ uma fungao polinomial; tal fungdo denomina-se
fungdo afim.

u
EXEMPLO 8. (Fungdo linear.) Toda fungio f: @* — R dada por
f(x, ) =ax+by
onde a, b sdo reais dados, denomina-se funcgdo linear. Toda fungdo linear € uma fungao afim.
u

EXEMPLO 9. (Fung¢do racional.) Toda fungao f dada por

p(x,v)
qix, v)

flx,y) =

onde p e g sdo fungdes polinomiais, denomina-se fungdo racional. O dominio de f'¢ o conjunto D,y= {(x,
V) ER’ g (x,y) #0}.

X+ y . , e 2
a) flx,v)= — ¢ uma fungdo racional. Seu dominio ¢: D = {(x, y) ER |x # y}.
X—y 7
2 . ) 2
b) g (x,v)= A = ?iT I ¢ uma funcdo racional; D =[ .
b g

EXEMPLO 10. (Fung¢do homogénea.) Uma fungdo f: A — R, A C B, denomina-se funcdo homogénea
de grau / se

flx, ty)y=6f(x y)

para todo ¢ > 0 e para todo (x, y) € A4 tais que (tx, ty) € A.
a) f(x, y) = 3x*+ 5xy +* ¢ homogénea de grau 2. De fato,

[t ty) =3 ()" +5 (tx) (ty) + (ty)* = £ (3x" + 5xp +)7)

ou seja,

ftx, ty) =12 f(x, y).



X
B) fixy) = —t ¥ éhomogeénea de grau— 1.

3

xX°+y©
De fato,
X
. txe¥ .
filtx, ty) = : — =1 fix v).
12 (x2 + }-*2)
c) f(x, y)=2x+y+5ndo ¢ homogénea. (Por qué?)
|
Exercicios 8.1
1. Sejaf(x, y) =3x +2y. Calcule
a)f(l, —1) b) f(a, x)
J fix+h y)— f(x9) ) Filx y &) —f(x¥)
c o
h k
XY
2. Seia f{-‘-] yy= —>=
! x+ 2y
a) Determine o dominio.
b) Calcule f 2u +v,v —u).
3. Represente graficamente o dominio da funcdo z = f (x, y) dada por
b xXxX—w
alx+y—1+7=0z=0 b)flx, v)= = : =
".I"Ii —_ _1{-_' _— -.ll-..'_
i i 7 )
ey T=al¥— x2 +42x—y dz=h@Qx™+y —1)
eyt +4=x"+ _\‘2.: =0 Nz= \.-"i:rl — Iyl
: x—y
4l +y+F=12z=<0 h) 7= -

sen x —sen v
4. Sejaf:[}? — [ uma fungdo linear. Sabendo que /' (1,0) =2 e f (0, 1) =3, calcule f (x, ).

5. Verifique se a fungdo ¢ homogénea. Em caso afirmativo, determine o grau de homogeneidade.

3 x4+ 2x? ’ i3 4
D f &y =—3 3 b)f(x,y) = +/x7 +y
PR
- 3 4 . 2
Afx,y)=5xy+x +3 Dfxy) = ————

p Tl o8
6. Suponha que f:[}2 — [} seja homogénea do grau 2 e f (a, b) = a para todo (a, b), com a2 + b2 = 1. Calcule
a) f (443, 4)
b) f(0,3)
) f(x, ), (x, y) #(0,0)

7. Sejaf:[}2 — [} homogénea e suponha que f (a, b) = 0 para todo (a, b), com a2 + b2 = 1. Mostre que f (x, y) = 0 para todo (x, y) #



(0, 0).

8. Seja g : [0, 2z[ — [} uma fungdo dada. Prove que existe uma tinica fungdo f': [J2 — [}, homogénea de grau 4 # 0, tal que, para todo a
€ [0, 27 [, f (cos a, sen a) = g (o). (Observagdo: o Exercicio 8 nos diz que uma funcdo homogénea fica completamente determinada
quando se conhecem os valores que ela assume sobre os pontos de uma circunferéncia de centro na origem.)

8.2. GRAFICO E CURVAS DE NIiVEL

Sejaz=f(x, ), (x, ) € A, uma fungdo real de duas variaveis reais. O conjunto

G={(xy2) ER |z=f(x, ), (x,y) € 4}

denomina-se grdfico de f.
Munindo-se o espaco de um sistema ortogonal de coordenadas cartesianas, o grafico de f pode entdo
ser pensado como o lugar geométrico descrito pelo ponto (x, ¥, ' (x, »)), quando (x, y) percorre o dominio

de .

F
r LT 4

F .f /-: // z‘k/’f’_\ |:'.-|I-I }.-ﬂ-‘:. _‘L|]

(X, ¥)

A representagdo geométrica do grafico de uma fungdo de duas varidveis ndo ¢ tarefa facil. Em vista
disso, quando se pretende ter uma visdo geométrica da funcao, langa-se mado de suas curvas de nivel, cuja
representacao geométrica ¢ sempre mais facil de ser obtida do que o grafico da fungao.

Sejamz = f(x, y) uma funcdo e ¢ € Im f. O conjunto de todos os pontos (x, y) de D,tais que f (x, y) ¢
denomina-se curva de nivel de f correspondente ao nivel z = c. Assim, f é constante sobre cada curva de
nivel.

O grdfico de f é um subconjunto do R°. Uma curva de nivel é um subconjunto do dominio de f,
portanto, do R’

EXEMPLO 1. O gréfico da fungdo constante /' (x, ) = k € um plano paralelo ao plano xy.



X
EXEMPLO 2. O grafico da fungdo linear dada por z = 2x + y ¢ um plano passando pela origem e normal
ao vetor 7 =(2, 1, 1):
z=2x+tye2x+ty—z=02,1,-1) [(x,y,2)—(0,0,0)] =0.
Tal plano ¢ determinado pelas retas

0
2

0 { y
o i
v Z

=
[

X

Observe que {

0
1||!'

zAh

| B

estéd situada no plano xz.

¢ uma reta situada no plano yz, enquanto T[ 1 z g o
n

EXEMPLO 3. O grafico da fungdo afim /' dada por z = ax + by + ¢ € um plano normal ao vetor ;; = (a, b,
— 1). Tal plano ¢ determinado pelas retas



EXEMPLO 4. Desenhe as curvas de nivel de f(x, y) = x> + )7
Solucao

Observamos, inicialmente, que a imagem de /¢ o conjunto de todos os reais z > 0. Seja, entdo, ¢ > 0.
A curva de nivel correspondente a z =c ¢

f(x,y)=coux’+y*=c.

Assim, as curvas de nivel (¢ > 0) sdo circunferéncias concéntricas de centro na origem. Sobre cada curva
de nivel x* + y* = ¢ a fungdo assume sempre o mesmo valor c. A curva de nivel correspondente a ¢ =0 é o
ponto (0, 0).

EXEMPLO 5. Esboce o grafico de f'(x, y) = x> + 7.

Solucao
A intersecao do grafico de f com o plano x = 0 € a pardbola { o Dj localizada no plano yz. Por outro
=y
: < . o Ao T TE
lado, a interse¢do do grafico de f'com o plano z = ¢ (¢ > 0) € a circunferéncia { L de centro no

eixo z e localizada no plano z = ¢. Assim, o grafico de f ¢ obtido girando, em torno do eixo z, a parabola
x=0 n
5. (Por qué?)

i ‘-.
&y z




O grafico de /¢ um paraboloide de rotagdo. Observe que a curva de nivel f(x, y) = ¢ nada mais ¢ que a
proje¢ao no plano xy da intersecdo do grafico de f com o plano z = c.
u

7

2 =
Observacio. O grafico da fun¢do dada por ; = K_ﬁ + ;—,] (a>0e b>0) ¢ uma superficie denominada
a_". 1=

paraboloide eliptico. Se a = b, temos o paraboloide de rotagdo.

EXEMPLO 6. Seja f'a fungao dada por z = I
X5y

a) Determine o dominio e a imagem.
b) Desenhe as curvas de nivel.
¢) Esboce o grafico.

Solucao

a) Dr=1{(x,y) €W’ | (x, ») #(0,0)} e Imf={z €R|z>0}.
b) A curva de nivel correspondente az=c (¢ >0) ¢

3

7 3 1
———==coux +y = —,
x2 + 32 c

As curvas de nivel sdo entdo circunferéncias concéntricas de centro na origem. Quando ¢ tende a +o, o
raio tende a zero. Por outro lado, quando ¢ tende a zero, o raio tende a +oo.

x=0
¢) O plano x = 0 intercepta o grafico de f segundo a curva { 1  Para cada ¢ > 0, o plano z = ¢

= a
Ve

I=c¢
) . O gréfico de f ¢ obtido, entdo, girando

intercepta o grafico de f segundo a circunferéncia 1 :

+ 32 -
&
[.r=0
1

em torno do eixo z, a curva <| g
iy 2
2



:"'..:.;_; <
</
at

EXEMPLO 7. Considere a fungdo f dada por z = %
—

a) Determine o dominio e a imagem.
b) Desenhe as curvas de nivel.

Solucao

a) O dominio ¢ o conjunto de todos (x, y), comx # 1. De f (2, y) = y, para todo y, segue que a imagem de
fém. Assim

Di={xyERIx#1} e Inf=R

b) Para cada c real, a curva de nivel correspondente a z = ¢ ¢

c= ou v=c(x—1)x#1).

x= 1

Cada curva de nivel de f ¢ entdo uma reta que passa pelo ponto (1, 0) e “furada” neste ponto. Como ¢ o
grafico de f? (Sugestdo: pegue cada curva de nivel de f e coloque-a na altura z = ¢ respectiva.)

Sejamz = f'(x, y) uma funcdo e 4 um subconjunto de D;. Seja (xo, y9) € 4. Dizemos que f (X0, yo) € O



valor maximo (resp. valor minimo) de f em A se para todo (x, y) € 4

1 (x, y) < f (x0, yo) (resp. f(x, y) 2 f (xo, y0)).
Diremos, entdao, que (xo, o) € um ponto de maximo de f em A (resp. ponto de minimo).

EXEMPLO 8. Scjam f (x, ) = 2x +y e 4 o conjunto de todos (x, y) tais que x> + y* = 1. Raciocinando
geometricamente, determine, caso existam, os valores maximo ¢ minimo de f'em A.

Solucao

Para cada c real, a curva de nivel de f correspondente a z = ¢ ¢ a reta

D) c=2x+v.

¢ decresce

~

Indicando por cmix 0 valor maximo de f'em 4, a reta (1) para z = cmsx deve ser tangente a circunferéncia.
(Por qué?) Da mesma forma, para z = cmin a reta (1) deve ser tangente a circunferéncia. Vamos entdo
determinar ¢ para que a reta (1) seja tangente a circunferéncia. Devemos determinar ¢ de modo que o
sistema

[x2+y2 =1
121’ +y=<c

tenha solugdo Unica. Substituindo y = ¢ — 2x em x* + y* = 1 obtemos
x4+ (c—2x)*=1oudx*—4ex+c*—1=0.
Para que o sistema tenha solucdo Unica, o discriminante deve ser igual a zero:
162 =20 (c*—1)=0

ou seja,

,..‘
Il
|+

-
hn



Assim, ./5 € o valor maximo de fem 4 ¢ —,/5 o valor minimo. Vamos, agora, determinar os pontos de
maximo ¢ de minimo. O ponto de maximo ¢ o ponto em que a reta 2x +y = /5 tangencia a circunferéncia.
Tal ponto ¢ a solugdo do sistema

2x+ ¥y =4/5

2x+y=4/5 x-2y =0
X 2y=0)

onde x — 2y =0 ¢ a reta que passa pela origem e ¢ perpendicular a 2x +y = /5. O ponto de maximo ¢:
25 5 25 A5 )
5 "5

- J ¢ o ponto de minimo.
O proximo exemplo serd utilizado posteriormente.

. Deixamos a seu cargo verificar que | —

2 J

s

Y 2
EXEMPLO 9. Seja f(x, y) = % (x, ) # (0, 0).
X%ty

a) Desenhe as curvas de nivel de f.
b) Determine a imagem de f.

Solucao
: 2 xy2
a) Se c = 0, ,}—'4={} =x=0ouy=0.
X< +y
Para c # 0,
2xv2 3 3 4 2 > 4
N e 2xyreEoF oyreEsar =2+ ey =10,
x*+y ' ' '

Resolvendo em x obtemos

252 & Jayt < dclyt P f1eed
x = i — = yr.(-l<c=<1c#0).
2¢ ¢

De passagem, observamos que a imagem de f ¢ o intervalo [— 1, 1]. (Por qué?) O valor maximo de f¢ 1 e
¢ atingido em todos os pontos, diferentes de (0, 0), da pardbola x = y* (¢ = 1). A curva de nivel
correspondente a ¢ #0, — 1 <c¢ <1, € constituida de todos os pontos (x, ) # (0, 0) que pertencem ou a



oua

X = y“
o
c=0(0<e<1) 1—-+/1—¢
X= y?
¢
x=-y° x=y1{=1
1+ \_r‘l — ¢t

2= 3?2

ex>0(0<e<l) ¢
i

1b\r:=llii

1—1—¢2

Observe que, a medida que ¢ vai se aproximando de zero, a parabola de “fora”, , — 2, vai

c

[= o2
“abrindo” cada vez mais, enquanto , — I+q1=c

y2 vai “fechando” cada vez mais. O valor minimo
c

de fé — 1 e ¢ atingido em todos os pontos, diferentes de (0, 0), da parabola x = —*. Para ajuda-lo a
visualizar o grafico, vamos estudar, com auxilio das curvas de nivel, a variacdo de f'sobre aretax =1; o
que vamos fazer, entdo, ¢ estudar a variagao de f (1, y) quando y varia em[R: quando y variade — 1 a0, f
(1, y) decresce, passando do valor 1 em (1, — 1) para o valor 0 em (1, 0); quando y variade Oa 1, f (1, y)
cresce, passando do valor 0 em (1, 0) para o valor 1 em (1, 1); (1, y) € crescente em ]— o, — 1] ¢
decrescente em [1, + oo[. Observe que f (1, y) tende a zero para y — + o0 ouy — —oo.

e




A proxima figura mostra a intersecao do grafico de f com o plano x = 1. Sugerimos ao leitor desenhar
a interse¢do do grafico de f com o plano x = xo, onde xo # 0 ¢ umreal qualquer.

Deu para ter uma ideia do grafico de f? Desafio: tente desenhar ou fazer uma maquete do grafico.
byImf=[-1,1].

Para finalizar, observamos que a denominacdo curva de nivel varia de acordo com o que a fungao f
representa. Por exemplo: se /¢ uma distribuicao de temperatura plana, (f (x, y) € a temperatura no ponto
(x, y)) as curvas de nivel denominam-se isotermas (pontos de mesma temperatura); se f ¢ a energia
potencial de um certo campo de forcas bidimensional, as curvas de nivel denominam-se curvas
equipotenciais etc.

u

Exercicios 8.2

1. Desenhe as curvas de nivel e esboce o gréfico.
a) f(x, y)=1-x2-y2
b) f(x, y)=x+3y
c) z=4x2+y2
d) f(x,y)=1+x2+y2
e)z=x+y+1

-

2 glx,y)= \.';I —.1'3.—],'-
) f(x,y)=x2,-1<x<0ey>0

h) fxy)=1-x2,x>0,y>0ex+y<1

D z=x2 + )
hz=@x—-y2,x>0ey>0

) z=f(x, y),dada por x2 +4y2 +22=1,z>0
m) I 5 B

Jixy)= — - ak ey
LI g A

n) z = arctg (x2 +»2)

0) f(x,y)=x,x>0



3
P)z=1- VxT+ 9y "y =1

q) f(x,y)=senx,0<x<m,y>0
r) fe,y)=xpy,0sx<10<y<l
2. Desenhe as curvas de nivel e determine a imagem:

a) f(x,y)=x—2

B) g ¥
xr—2

C) Jfl{-"-. .1'?} =

X

i

d) p= X
y—1

e) z=xy
N fxy)=x2-y2
g) z=4x2+y2

h) z=3x2 —4xy + y2

1)) x2
Tox? 4 }-‘3

. _'[_"Il_.‘
bl B s

3. Desenhe as curvas de nivel e esboce o grafico da fungdo
FEY) = x+D%+y2 +(x -1 +y2.
4. Determine, caso existam, os valores maximo e minimo de f em A4; determine, também, os pontos em que estes valores sdo atingidos.
A 3 7
a)fxyy=x—1)+(xy—-1)"+3eA=R"
¥
b)fix, y) =xveA =R"

Ofy=xed={(xy)ERIx=0ey=0).

. % ; .
d)fxyy = ———ceA={xy) E R (x, v)#F(0,M).

X+ ¥
. - 2 2 —
afx=x +tyedA={x, VER Ix+2y=1}.
(Sugestio: observe que g (v) = f(1 — 2y, v), v £ R. fornece os valores de fsobre a reta
x+2y=1)

Nty =2- «,ﬁ:'.r*’ + 3y eA= R”

SRR e E R A AR =1
pfxy=xyeA={xVER 14x"+yv =1, y=0}.

5. Raciocinando geometricamente, determine, caso existam, os valores maximo e minimo de f em 4, bem como os pontos em que estes

valores sdo atingidos.

a) f(x,y)=2x+y+3eAoconunto de todo (x, y) taisque x >0,y >0e x +y <2.
b) f(x, y)=x+y e Ao conjunto de todos (x, y) taisque x >0,y >0, x +2y <7, 2x +y<5S5ey>x—1.

9 flx, v)= < ] e A o conjunto de todos (x, y)taisque — 1 <x<0e 1<y <2.
e




9) flx, v)= e 4 o circulo (x — 3)2 +( - 1)2 <l1.

x=—1

6. Um ponto P descreve uma curva sobre a superficie z = xy de modo que a sua projecdo Q sobre o plano xy descreve a curva x =5 — ¢,
y=1£+3ez=0. Determine as alturas maxima e minima (em rela¢do ao plano xy) quando # percorre o intervalo [0, 4].

7. Um ponto P descreve uma curva sobre o grafico da fungdo f (x, y) =x2 + y2 de modo que a sua proje¢do Q sobre o plano xy descreve
areta x +y = 1. Determine o ponto da curva que se encontra mais préoximo do plano xy. (Desenhe a trajetoria descrita por P.)

-

8. X~
Seja f(x, y) = ———— Desenhe a imagem da curva y (¢) = (x (¢),y (#),z (1)) onde x =R cos t,y =R sent e z =f (x (¢), y (1) (R
’ x° + "
> (). Como ¢ o grafico de f?

-

9. X~
Mesmo exercicio que o anterior para a fun¢do f(x, y) = —————
' X<+ y°
10. Sejamf (x, y) =xy e y (¢) = (at, bt, f (at, bt)). Desenhe a imagem de y sendo
a)a=0eb=1.
bya=leb=1.
c)a=1leb=0.
dya=—1leb=1.
11. Como ¢ o grafico de f (x, y) = xy?

12. Suponha que T (x, y) = 4x2 + 9y2 represente uma distribuigdo de temperatura no plano xy: 7 (x, y) é a temperatura, que podemos supor
em °C, no ponto (x, y).

a) Desenhe a isoterma correspondente & temperatura de 36°C.
b) Determine o ponto de mais baixa temperatura da reta x +y = 1.

13. Suponha que T (x, y) = 2x +y (°C) represente uma distribuicdo de temperatura no plano xy.

a) Desenhe as isotermas correspondentes as temperaturas: 0°C, 3°C e — 1°C.
b) Raciocinando geometricamente, determine os pontos de mais alta e mais baixa temperatura do circulo x2 +y2 <4,

14. Duas curvas de nivel podem interceptar-se? Justifique.

8.3. FUNCOES DE TRES VARIAVEIS REAIS A VALORES REAIS.
SUPERFICIES DE NiVEL

Uma fun¢do de trés varidveis reais a valores reais, definida em A C @°, é uma fun¢do que associa, a
cada terna ordenada (x, y, z) € A, um Unico numero real w = f (x, y, z). O grafico de tal fungdo ¢ o
conjunto

Gi={x,» W E R* 1w =f(x, v, 2. (x v 2 € A}.

O grafico de f é entio um subconjunto do R, ndo nos sendo possivel, portanto, representilo
geometricamente. Para se ter uma visdo geométrica de tal fun¢do, podemos nos valer de suas superficies
de nivel. Seja ¢ € Im f o conjunto de todos os pontos (x, y, z) € A4 tais que f (x, ¥, z) = ¢ denomina-se
superficie de nivel correspondente ao nivel w = c.

EXEMPLO 1. Seja f (x, y, z) = y. Para cada real ¢, a superficie de nivel correspondente a w =c € o



plano y = c.

EXEMPLO 2. As superficies de nivel de f(x, y, z) = x* + y* + z* sdo superficies esféricas de centro na
origem

x+y +2=c.

A superficie de nivel correspondente a ¢ 0 ¢ o ponto (0, 0, 0).

Exercicios 8.3

1. Represente geometricamente o dominio da fung¢do dada.

-

A f(xy2)= 4l —xt —y? —7? DY f(x,y.2)= 41—z

Oftxyz=J1-x—y—z,x=0y=0ez=0

dw= 1—IxI—Iyl—Izl Ofx )=+ +79

2. Desenhe a superficie de nivel correspondente a ¢ = 1.
a) f(x.y,z)=x
b) f(x,y.2)=z
) f(x, y2)=x"+)
d) f(x, y,2)=x"+4y’ +2°

3. Duas superficies de nivel de uma fungdo f podem interceptar-se? Justifique.
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LIMITE E CONTINUIDADE

9.1. LIMITE

Esta se¢do ¢ quase uma reprodugdo dos topicos abordados no Cap. 3 sobre limite de fungdes de uma
variavel real, razdo pela qual a maioria dos resultados sera enunciada em forma de exercicios.

Definicdo. Sejam f: 4 C [[}2 — [ uma fungdo, (x0, y0) um ponto de acumulag@o de 4 e L um niimero real. Definimos

[Pm‘a todo € = 0, existe 6 = 0 tal que, para todo
lim f(x,¥) =Le q(x,y) € Dy,
W%, 3} = (¥ Yo 0<l(x, y)—(xp, yol<S=1f(x,y)— LI<e

’

Yo

Y
Y

\L__‘__/iy L -« L+

lim Jx ) =L gionifica: dado € > 0, existe d > 0 tal que f (x, ¥) permanece em L — ¢, L + ¢

(x, ¥) —= (x5 ¥g)
quando (x, y), (x, ¥) # (xo0, Vo), varia na bola aberta de centro (xo, yo) € raio o.

Observacao. De agora em diante, sempre que falarmos que ftem limite em (xo, ), fica implicito que (xo,
¥o) € ponto de acumulagdo de Dy

EXEMPLO 1. Se f(x, y) = k ¢ uma fungio constante, entdo, para todo (xo, yo) em >,

lim k=k.

(x, ¥) —= (x5 ¥g)
Solucao

| f(x, ) —k|=|k—k|0; assim, dado € > 0 e tomando-se um ¢ > 0 qualquer,



0<[l(x, y) = (xo, y0) [<0=[f(x, y) —k[<e

lim fix,y) = lim k=k. o

(x,v)— (x5, vp) (x, ¥)—= (xg. ¥g)
EXEMPLO 2. Se f (x, y) = x, para todo (xo, yo) € R’

lim flx,¥) = lim X = Xxy.
(x, ¥) = (x5 ¥) (x, v)— (g, vg)

Solucao
Para todo (x, y) emR?, | x —xo | < | (x, ¥) — (x0, »0) ||. (Verifique.)

Entdo, dado € > 0 ¢ tomando-se 0 = e vem:

0 <[ (x, ¥) = (%0, y0) [ <= |x —x0| <€

ou seja,
0<[(x ») = (x0, y0) [ <= [f(x, ) —x0 | <€
Logo,
lim X = Xp.
(x.v) = (xg. vg)
|
EXEMPLO 3. f(x, y) = % tem limite em (0, 0)? Justifique.
e
Solucao

Inicialmente, vejamos como se comportam os valores f (x, y) para (x, y) proximo de (0, 0). Sobre o
eixo x temos: ' (x, 0) =1, x# 0. Sobre o eixo y, (0, y) =— 1,y #0.

'y
v}l
zf.‘m
I L
T S - — =
sl

O estudo anterior nos mostra que nao existe nimero L tal que /' (x, y) permaneca proximo de L para (x, y)
proximo de (0, 0); este fato indica-nos que f nao deve ter limite em (0, 0) ¢ ndo tem mesmo, pois,



qualquer que seja L, tomando-se € = %, tem-se:

se L<0,|f(x O)—L|2%paratodox7é0;
se L >0, |f(0,y)—L|2%paratodoy7éO.

Assim, para todo real L, a afirmagao

Ve>0,36>0. (M ED, 0<l(xy) —0.0O)I<éd=If(xy) —LI<€

¢ falsa.
n

Quando tivermos que provar que determinados limites ndo existem, o proximo exemplo poderd nos
ajudar.

EXEMPLO 4. Suponha que lim J(x.¥) =L Seja y uma curva em B°, continua em t,, comy

(x, ¥) —= (x5, ¥g)

(f0) = (x0, y0) €, para t # to, y (t) # (xo0, yo) comy (¢) € Dy Prove que

lim f(y(r)= L.

Pl
Solucao

De ., . I_':?YU 45 J(%¥) = Lgegue que dado € > 0, existe d,> 0 tal que
@ 0<ll(xy)— (xpypll<d =Ifx,v)—Li<e

Sendo y continua em ¢,, para todo d, > 0 acima, existe 6 > 0 tal que
lt—tgl <8= Ny () — y(ip) Il <3
e, portanto, tendo em vista y (¢) # (xo, o) para t # t,
@ O0<lt =11 <é=0<lly(®) — (xpyp) | <38,
De (1) e (2) segue
0<It—1fyl <d=If(y(n) —Ll<e
ou seja,

lim f{y())= L. -

I — .I‘.:.

Observacao. Sejam y, e y, duas curvas nas condi¢des do Exemplo 4. Segue do exemplo anterior que se
ocorrer



©) lim f(y (=L e lim f(y2(t))= 1Ly

=iy t—=1,

lim
Pxw) = Lxg, )
limites em (3) ndo existir.

comL # L, entio T (X% ¥) n3o existird. Da mesma forma, tal limite nfo existira se um dos

. . J.'Z = ‘I."2 ~ . iy ~
Vejamos como provar que lim ——~ ndo existe (Exemplo 3) utilizando a observacao
(x, )= (0,0) x= + ¥

acima. Sejamy (£)=(t,0) ey (£)=(0, £). Seja f(x, y) = % Temos
1 2 X° +y°

2

Ilm Fly (1)) = lim r—j=]

t—0 1=
e
rl
lim f(y2(t))= lim —=—1.
t— 0 r—=0 =
x2 — y2
Logo, lim ——— ndo existe.

(x, ) = (0,0) x= + y=

Observamos que continuam validas para fungdes de duas variaveis reais a valores reais as seguintes
propriedades dos limites cujas demonstragdes sdo exatamente iguais as que fizemos para fungdes de uma
variavel real (reveja o Cap. 3 do Vol. 1).

1. (Teorema do confronto.) Se f (x, y) <g (x, y) < h (x, y) para 0 <| (x, ) — (x0, yo) || <7 e se
lim flx, vi=L= lim hix, v)

(x, ¥) = (xq, ¥) (x, ¥v)—= (xg, vg)
entao

lim glx, y)= L

(x, ¥) = (x5, %)

2.8e, Hm - flxy) :ﬂese|g(x,y)|§Mpara0<||(x,y)—(x0,y0) |<7,onder>0eM>0

X, _"-'] _}{J'I:I- _'I.D':I
sdo reais fixos, entdo
/{} limitada
lim & v) gix,y) =20
(x, ¥) = (xg. ¥p) e

lim fix,VV=0& lim lfix, vI=0

“{x, ¥) = (x5, ¥) (x, ¥)— (xp, ¥o)

lim fix,vVV=Le lim [f(x; ¥)—L]1=0

“{x, ¥) = (x5, ¥0) (x, vl — (xg, v)

lim flx,=Le lim flxg +h,vg+k)=1L
Tx, v = (xg. ¥g) (h, k) — (0,0}



6. Se lim flx.y)=L; e lim g(x, y) = L, entdo,
) (x, ¥) = (x5. ¥) (x, ¥} = (xq. ¥p) '
a) lim [fx. M +gx»]=L;+ L,

(X, ¥) = {xg, ¥o)

b) lim kf(x,v)=kLy. (kconstante)

L, ¥ — (xg. v )

c) lim f(x v)g(x, ¥)= LiL,.

[x, ¥)— (x5, ¥g)

flx,y) _ L

d) lim L desde que L, # 0.
(x, ¥) = (xg: 30) £(x,¥) Ly -
7. (Conservacao do sinal.) Se — E}Ilﬁru . flx,v)= L, L >0, entdo existira J > 0, tal que, para todo
(x,y) € Dy,

O0<Ill(x,y) = (xp.yp) I <& =f(x yv)= 0.

X3

EXEMPLO 5. Calcule, caso exista, lim ———
(x.y) = (0,0) x° + y©

Solucao
3 )
X I
x24y2 7 x24y?
2
lim x=0e |————=| =1, paratodo (x, ¥) # (0, 0). Assim,
(x, v — (000 : sl i
limitada
3 g
lim % = lim fﬁt—‘: 0.
(x,¥)—=(0,0) x< + y< (r, )= (0,07 L x2 4 I-.r.-_2-
x2
EXEMPLO 6. Calcule, caso exista, lim ———a-
(x,¥) = (0,0) x= + y°
Solucao
xﬁ
Seja f(x, y) = ——— ¢ tomemos y O=@0,0ey ()=(1,1).
' X= 9y 1 2
2

r

lim f(y(f))= lim ———==0
t—10 t—=0



f
Ilim f(v>(t) = lim ——=—.
:—me‘ t—0 2 + 12

2
J.'E
Logo, lim —— ndo existe.
(x, )= (0,0) x= + vy~
X - ..
CUIDADQO: ———= nao ¢ limitada!
b e i
Exercicios 9.1
1. Calcule, caso exista.
. | . ¥
i) lim XBEM b) lim —
(x,v)—(0,0) X5k (x, ¥)—= (0, 0) 'E"*“'z + 2
£* xy
¢l [im — d) lim e
(x, y)—(0,0) _x,-ﬁ-ﬁ + 2 (x, ¥)—=(0,0) x° + y*°
. xvix — ¥) . x+v
e) lim % h lim -
(x,y)—=i0,00 x° +y (x,¥)—=(0,0) x — ¥
Xy a2
2) lim —1 i) lim —
(x,y)—=(0,0) y — X~ (x, ¥)—=1(0,0) x° — ¥y~
2
2 . £Xy . ~
" Seja fx, y) = —5—— (veja Exemplo 9 — Se¢éo 8.2).

=+ }-‘4
a) Considere a reta y (¢) = (at, bt), com a2 + b2 > 0; mostre que, quaisquer que sejam a e b,

lim f(y(t)) =0

t—=0
Tente visualizar este resultado através das curvas de nivel de f.

b) Calcule ""'] T onde 5 (1) = (A, 0).

t—=(
(Antes de calcular o limite, tente prever o resultado olhando para as curvas de nivel de f)

R
19 - 2xy~ ) .

lim ———— existe? Por qué?
(x,y)—=(0,00 x* + ¥

3. Sejam y1 e y2 curvas satisfazendo as condigdes do Exemplo 4. A afirmacao:

lim f(y; ()= lim f(y,N=L= lim flx,»w=L"

t—= 1, t— 1, (x, v)— t.rﬂ, _‘L'UJ

¢ falsa ou verdadeira? Justifique.

4. : flx+h y+k)— f(x, y)—2xh—k 2
Calcule lim : : ,onde f'(x,y)=x +y.
(h, k) — (0, 0) ik, kil
5. ) s fih k) ‘ 53
Calcule, caso exista, lim ————, onde f'¢ dada por f(x, y) = ——-

(h ky— (0,07 ICh, k) x5yt



lim flx,y)=ae lim g(u=1L

6. ~ .
Suponha que (x, y) = (x,- vy) T ,com g ndo definida ema e Im f C Dg. Prove que
lim giftx, yh = lim g (w).
(x, ) = (x5, ) H—%da

Prove, ainda, que o resultado acima continua valido se supusermos g definida em a, com g continua em a.

sen(x? + y?)

1. Calcule lim ~ -
(x.y)—= (0,00 X~ + ¥y~
|
Y el flx,y)= t X2+ y2 —1 | ) .
Sejal vt 24 e - - A se x“ + }:“; <= I
0 se x7 + 2 =1
lim —f{L y)
Calcule J2 2 ) 22 + 2 -1,
il '1” T .l .l J -

9.2. CONTINUIDADE

Definicfio. Seja f uma fungdo de duas varidveis reais a valores reais e seja (x0, v0) € Dy, com (x0, v0) ponto de acumulagdo de Dy
Definimos:

(xg- ¥o) & lim F(x, ¥) = f(xg )

[ continua em (x, ¥) = (x5, ¥y)

Se f for continua em todos os pontos de um subconjunto 4 de D;, diremos que f € continua em A.
Diremos, simplesmente, que f ¢ continua se o for em todos os pontos de seu dominio.

EXEMPLO 1. A fungdo constante f (x, y) = k € continua, pois,

lim Fx )= k= f(xp vp)
(x,v)— (Xps ¥g)

para todo (xo, yo) emR*. (Veja Exemplo 1, Se¢do 9.1.)

EXEMPLO 2. A fungdo f(x, y) = x € continua, pois,

lim flxy) = lim X = xg = f(xg. ¥)

(x, ¥} = (x4, ¥5) (x.v)— (X5: ¥g)

para todo (xo, yo) emR*. (Veja Exemplo 2, Se¢do 9.1.)



X 7Y e (x,9)#(0,0) ,
a + 2

EXEMPLO 3. A fungdo f (x, v) = ¢ continua em (0, 0)? Justifique.

%
0 se (x, v)=1(0,0)

Solucao

Tomando-se y; () = (¢, 0) e y> (¢) = (0, ¢) vem,

Iim f(yi()= lim —=1
I—}Gf?] t—0 2

e
.
lim f{y2(t))= lim ——=—1.
t—0 t—0 1=
Logo lim — f(X V) p3o existe, e, portanto, fndo ¢ continua em (0, 0).

> Hx, v —=(0.0)
|

O proximo teorema nos diz que se g (1) e f (x, y) forem continuas e se Im f C D,, entdo a funcdo
composta Z (x, y) = g (f (x, y)) também o sera.

Teorema 1. Sejam f:AC[}2 - [Reg:B C[R - [R duas fungdes tais que Im f C Dyg. Se f for continua em (xo, yo) e g continua
em f (xo, y0), entdo a composta h (x, y) =g (f (x, y)) sera continua em (xo, y0).

Demonstracdo

Como g (u) € continua em f (x, o), dado € > 0, existe d; > 0 tal que
@ lu —Flxg. v | <8y =1g(w) —g(flxg. yp) | < e
Sendo f continua em (xo, o), para o 0; > 0 acima, existe 0 > 0 tal que
) H(x, ¥) = (g yp) 1 <& =1f(x, ¥) — fxg.yp) | < 8.
De (1) e (2) resulta,

I(x, y) — Oyl Il =é=1g(flx, ) — g Fxpy) | < &

logo, 1 (x, ¥) =g (f (x, ¥)) € continua em (xo, ).
u

Como consequéncia deste teorema, segue que se g (x) for continua, entdo a fungao /# dada por % (x, y)
= g (x) também serd continua. De fato, sendo f (x, y) = x, teremos 2 (x, y) = g (f (x, ¥)), com g ¢ f
continuas.



EXEMPLO 4. / (x, y) = x* ¢ continua em [, pois g (x) = x* é continua emg.
m

EXEMPLO 5. Sendo f (x, y) continua, as compostas sen f (x, ¥), cos f (x, ¥), [f (x, ¥) ]* etc. também
serdo.
u

Teorema 2. Sejam f: A C [}2 - [ uma fungdo e y : I — [[}2 uma curva tais que y (t) € A para todo t € I. Se y for continua em to
€ I e f continua em y (to), entdo a composta g (t) = f (y (t)) sera continua em to.

Demonstracdo
Fica a cargo do leitor.

Sejam £ (x, y) e g (x, y) continuas em (xo, o) € seja k uma constante. Segue das propriedades dos

limites que f+ g, kf'e - g sdo, também, continuas em (x , y ). Além disso, se g (x ,y ) # 0, entdo ! sera,
0 0 0 0 g

também, continua em (xo, o).

EXEMPLO 6. Seja

FOoy) =9 x2 442

v
J— se (x, v)# (0, 0)
{U se (x, ¥) = (0, 0).

Determine o conjunto dos pontos de continuidade de f.
Solucao
Nos pontos (x, ) # (0, 0) podemos aplicar a propriedade relativa a quociente de fungdes continuas,

pois, x> ¢ x* + y* sdo continuas e x> + ) ndo se anula nestes pontos. Para estudar f com relagdo a
continuidade no ponto (0, 0) precisamos primeiro ver o que acontece com o limite de f neste ponto.

3 7
. : . g, N 5 e
lim filx, y)= lim — = lim X ——=0
{(x.¥)—=(0,0) (x, v)—=(0,0) X+ y*© {x, ¥) —=(0,0) X< + y*©
Observe que lim x=0¢|———=|=1para todo (x, v) # (0, 0). | Assim
{x, y)—= (0.0 X<+ y©

lim flx, v)=0=f(0,0).
(x, v)— (0, 0)

Conclusio: f'¢ continua em R°.



Sejam agora, f: AC R — R, g h: B C R — R trés fungdes tais que (g (x, ¥), & (x, y)) € A4, para
todo (x, y) € B. Sem nenhuma dificuldade, demonstra-se que se g e 4 forem continuas em (xo, yo) € f
continua em (g (xo, y0), / (X0, }0)), entdo a composta /(g (x, ¥), & (x, y)) sera, também, continua em (xo,
Vo). Este resultado, bem como os teoremas 1 e 2, sdo casos particulares de um teorema mais geral sobre
continuidade de fungdes compostas, que nao enunciaremos aqui.

Exercicios 9.2

1. Determine o conjunto dos pontos de continuidade. Justifique a resposta.

a)f(x y)= _%,1'2_1.‘2 —Sxy+ 6 byf(x. v)= 1:"6 — 2x% — 3y?
X—=3 , x—y
afixy=h —— d)fx,¥) = — :
s e e e
. y ~ -
X =3
_ ‘ - — =2 (x, v)F(0,0)
e)fin, v)= 5 x* + y* :
11} se (x, y)=1(0,0)
se + v©
: J sen (x* 11‘ j se (x, y)==(0,0)
ﬂf{\.. "IJ = Xe 4 ye .
l] se (x, y)#(0,0)
gflxy)= ‘c*‘k == ’ se r=<1 onde r =Il(x, y)l
se r=|
2 sen (x2 + y7)
flx y)= 2y 1F,:-- % =), ¢ continua em (0, 0)? Justifique.

| - se (x, yv)#(0,0)
3. Prove que se f for continua em (x0, y0) € se f (x0, y0) > 0, entdo existira » > 0 tal que f (x, y) > 0 para || (x, ) — (x0, y0) || <7.

4. Seja A um subconjunto do [[}2 que goza da propriedade: quaisquer que sejam (x0, y0) e (x1,y1) em A, existe uma curva continua y : [a,
b] — A tal que y (a) = (x0, yo) € y (b) = (x1, y1). Prove que se f for continua em 4 e se f (xo, y0) <m < f (x1,y1), entdo existird (X, V)
€ Atalque f(x, v)=m

(Sugestdo: aplique o teorema do valor intermediario & fungdo continua g () =f (y(¢)), t € [a, b].)

5. Sejaf:A C[R?— [, A aberto, uma fungdo continua e seja ¢ um nimero real dado. Prove que o conjunto {(x, y) € 4 | f(x, y) <c} é
aberto.

6. Dizemos que a sequéncia de pontos (X, yn))n >0 converge a (X, V) se, dado € > 0, existe um natural n tal que
n=>nm=>lx, ) —x.yll<e

Suponha que f (x, y) seja continua em (X, V), que ((xn, yn))n> 0 convirja para (X, V) e que (Xn, yn) € Dypara todo n > 0. Prove que a
sequéncia dada por a, = f (xn, yn) converge para f (X, V).

7. Suponha f* continua no retngulo 4 = {(y y) = RQ lasx=fa=y= E} Prove que f ¢ limitada neste retangulo. (f
limitada em A significa que existe M >0 talque | f(x, y) | <M emA4.)

(Sugestdo: suponha, por absurdo, que f ndo seja limitada em A. Entdo, existird (x1, y1) em 4 tal que | f (x1, 1) | > 1. Tomando-se o
ponto médio de cada lado, divida o retdngulo 4 em 4 retdngulos iguais; em um deles, batizado 42, f ndo serd limitada, logo existira (x2,



y2) € A2 tal que | f'(x2,y2) | > 2 etc.)

8. (Teorema de Weierstrass.) Seja / como no Exercicio 7. Prove que f assume em A4 valor maximo e valor minimo.

(Sugestdo: veja Apéndice A2.4 — Volume 1.)
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DERIVADAS PARCIAIS

10.1. DERIVADAS PARCIAIS

Seja z = f (x, y) uma funcdo real de duas variaveis reais e seja (xo, yo) € D, Fixado yy, podemos
considerar a fungdo g de uma variavel dada por

g (x) =1 (x, o).

A derivada desta fungdo no ponto x = x, (caso exista) denomina-se derivada parcial de f, em relagdo a x,
no ponto (xo, o) € indica-se com uma das notacoes:

0.

)
dx |[¥=%g

af - 2| —
9f (xp. ¥g) ou 97 lx=x
X ¥

Assim, i—j (Xg. ¥g) = & (xg). De acordo com a defini¢do de derivada temos:
x

d ’ ; g(x) — g(xp)
X X —>x, X — Xp
ou seja,
J ) X, Yo) — f(x0. Yo
O (ove) = tim L 30) = F (0. 30)
adx *=dE, X — Xp
ou, ainda,

: o o e 8 e, FE
ﬂ{_l,{}‘_“‘{}}: lim (o + Ax ¥o) — (X0, Yo)
dx Ax =0 Ax

Seja A o subconjunto de D formado por todos os pontos (x, y) tais que ﬂ (x, y) existe; fica assim
A X

definida uma nova fun¢do, indicada por ﬂ ¢ definida em 4, que a cada (x, y) € 4 associa 0 nimero ﬂ
dx dx
(x, y), onde



. + F i _ ; :
r’?‘_f (x,¥)= lim flx+Ax, y) — f(x }}.

o X Ay —0 Ax

Tal fungdo denomina-se funcdo derivada parcial de 1.7 ordem de f, em rela¢do a x, ou, simplesmente,
derivada parcial de f em relagdo a x.

De modo andlogo, define-se derivada parcial de f, em relacdo a y, no ponto (xo, yo) que se indica por

: ?
—f (X, ¥p) ou IZ|y = Eqs
I’.'?_‘L-‘ él}.' y= .T;’:.
; . - Xp, V) — Xo. ¥
I:;]_f'f~‘f{:}=.‘#"¢]|]'= lim f (%0, ¥) — f(x0, Yo)
ay Y=V, Y — Yo
ou

d : xn. vo + Ay — xn. ¥
& (Xgs ¥g) = lim f(x0. Yo + 4y) — F(x0. Yo)
I."‘iJl'l-'1 ﬂy_;. 0 ﬁ},

Para se calcular i—f (xg. vo) fixa-se y =y emz = f(x, ) e calcula-se a derivada de g (x) =/ (x, y )
] X 0 - 0
emx = x: i—f (xg.vg) = £’ (xy). Da mesma forma, ﬂ (x, y) é a derivada, em relagdo a x, de f (x, y),
0 dx » X
mantendo-se y constante. Por outro lado, ﬂ (x, y) € a derivada, em relacdo a y, de f'(x, y), mantendo-se
X

X constante.

EXEMPLO 1. Seja f (x, y) = 2xy — 4y. Calcule:

a) ar (x, v) b) 91 (x, ¥)
ax ay
{‘}ﬂ“,ﬂ fﬂﬂ{—l.l'}
dx ay
Solucao

a) Devemos olhar y como constante e derivar emrelagao a x:

L (X, y) = @ (2xy — 4y) = 2y
dx J X
pois
—(2xy) =2y e —(—4y)=0
dx X

Por limite:



df flx+Ax, y) — f(x, y)

— (xv)= lim
X ' Ar— 0 Ax
: 2(x +Ax)y — 4y — 2xy + 4y
= lim ' ' ' -
Ax— 0 Ax

b) Devemos olhar x como constante e derivar em relacdo a y:

I (x,5) = 2 (2xy — 4y) = 2x — 4.
ay ady
¢) Conforme a, para todo (x, y) em [Qz, ﬂ (x,y) =2y. Dai
X

ar (1,1) = 2.
adx

Assim,—f (1. 1) = 2.

d

dx

d) Conforme b, para todo (x, y) em [Qz, ﬂ (x,y)=2x—4. Logo
X

U 24, 1) =
ady

EXEMPLO 2. Considere a fun¢do z = f'(x, y) dada por z = arctg (x* + )?). Calcule:

a) Ja b) 7z
dx r.:;}_.
) 92|y =1 4 92|,
Solugdo
d .
oz _ & )y o @Y
@) 0% . @ (arctg (x~ + ¥7)) = X . -
ax ax 1+ (x2 + y2)?
ou seja,
7 _ 2X
dx 1+ (x2 + _\-*2}2 j
['93: ['g " 9 & . -
b - ( arctg (x= + y° ] = 5 o x4+ y°),
) r;lv fj"‘l_‘ . . { ’ } 1=+ (x= + }'2)4 ~EY ( - }

ou seja,



Az 2 2
'Lﬂ} _I-1'=|-= =
dx|y=1 14+ 4 5
Az
d) —x=0 =0. m
dv|y=0

Antes de passarmos ao proximo exemplo, observamos que uma funcao z = f (x, y) se diz definida ou
dada implicitamente pela equagdo g (x, y, z) = 0 se, para todo (x, y) € D; g (x, y, f (x, y)) = 0. Por
exemplo, a fungdo 7 = 1 — x2 — y2, x* +)* < | ¢ dada implicitamente pela equagdo x* + y* + 2 = 1,
pois, para todo (x, y) no seu dominio, ¥ + v + (,/1 — x2 — y2)2 = 1. As fungdes 7 = ,\._-"] e
+yP<l,e, = _,\?;"] —x2—y2 X’ +)*< 1,880 tarr;bém, dadas implicitamente pela equagdo x* +y* +z* =

1 (verifique).

EXEMPLO 3. Sendo z = f(x, y) dada implicitamente por x* +y* +z> =1,z > 0, calcule:

a) Ja b) 2%
dx ay
Solucao

A =) ? 2 .
a)z = l—x=—ys, x4+ y <1. Assim,

l

dz (1—x2 —y2) 2 (—2x)

1
dx 2
ou seja,

az =X 2 3
= s Al o B
dx 11— 22— y2
W .

Poderiamos, também, ter chegado ao resultado acima trabalhando diretamente com a equagio x* + y* + z*
=1:

? 7 2. i
& =+ ju-“? +z)= —(1);
dx

dx
7 d 7 d . 2 3z dz 7
como 2 o + }‘3} =, —Jz | =—[2 1" Ok = 2z—e i (1) = 0, resulta:
dx X dz dx dx  dx
2 +27 22 =0
X

ou seja,



i W PN RS

[ z s 2 il
dx < 1= x y
2 d ;
h]—(r + y< + z7) = —(1), ou seja,
r')"lr I"J"I'l."
r?.—.
2y +27 — =0
ay
dz V V 2 7
e, portanio, —— =——==—— : i X I\:«“ =] B
v z 1."1 = 22

CUIDADOS COM NOTACOES. A notagio ﬂ (x, ¥), como vimos, indica a derivada de f (x, y) em
ax

relacdo a x, onde y ¢ olhado como constante, ou seja, como independente de x. Por outro lado, a notagao

;_f [/ (x, y)] indica a derivada de f (x, y), onde y deve ser olhado (quando nada for dito em contrario)

dx

como fungdo de x. As notagdes foram criadas para serem usadas corretamente. Portanto, ndo confunda
7

,f— com L,

dx dx

EXEMPLO 4. — (x + y) 2x, enquanto

dx
i{tq—l-\ ‘r—’h-l——(m 2y = 2x + 2y ay
dx dx dx
pois,
L y=L Do :
dx dy dx dx’

EXEMPLO 5. Suponha que z = f'(x, y) seja dada implicitamente pela equacao
e)g/Z:x2+y2+ZZ.

dz
Suponha que f'admita derivada parcial emrelagdo a x, expresse % em termos de x, y € z.
X

Solucao
Para todo (x, y) € D,

9 @=L R+ + D)
ax ax

Temos:



o e o o -
E (%) =% d (xyz) = €7° f vz + Xy 9z ]

X \ ax
e
L (" + jrj + 77 =2+ 22 531
dx dx
Assim,
g ( ¥Z + Xy 9% ] =2x + 2z oL 1
: - dX dx
ou seja,

emtodo (x, y) € Drcomxy eq- — 2z # 0.
u

EXEMPLO 6. Seja ¢ : R — R uma funcdo de uma varidvel e derivavel. Considere a fun¢do g dada por g
(x,y) = ¢ (x* +%). Verifique que

08

22 1.1y=28 1.
dx ay

Solucao
g(x,v)= ¢ (u)onde u = 22+ }-‘2,
N 0 , :
Entao, it (x.v) = @' (u) ?, ou seja,
) X

X

dg
dx

(x,y)= ¢ o+ _m-*z‘} 2x.

d el g oM @ 2 F o B :
Da mesma forma, ﬂ_g x,=¢ (x" +y) s (x* + 7)., ou seja,
7y 7y

%8 (x,v) = ¢’ (o + }-‘3‘} 2y.
dy
Assim,

98 L,y=2¢"2)= 28 (1,1). »
dx ady

Observacao. Se no exemplo anterior a fungao ¢ fosse, por exemplo, a fungdao seno, teriamos g (x, y) =



sen (x2 + y2) e, assim, j—g (x.y) = sen’ (x + }*2) ﬂi o7+ ;-*2‘; — 2xcos (X + }*2}
X 7 X
e 28 (x,v) = sen’ o + }:2} 2 o + }-‘2'} = 2y cos x* + _1-'2].
ay ady
il
EXEMPLO 7. Seja f(x,y) = {22 442 ¢ © M #(0.0) petermine. Determine
0 se (x,v)=(0,0)
a) ar b) af
dx ay
Solucao

a) Nos pontos (x, y) # (0, 0) podemos aplicar a regra do quociente

ﬂ {x: ¥y =2 3523 + }'2}_ '[IA = ."r’j)zx
dx (22 +y> 7
ou seja,
af () = x4+ 3x2y2 + 212
Ix - UE +1.2’}2
Em (0, 0)

Z—f (0, 0) é a derivada,emx = 0, de g (x) = f(x, 0).
X

_|xsex#0
Jars {{}se:).':{}

assim, g (x) =f (x, 0) = x, para todo x; segue que
af ! ;
9 0,00=¢" (0)=1.
ax

Poderiamos, também, ter calculado ﬂ (0, 0) por limite:
X

i—fm,m= im L& 70,0 _ . X
X

x—=0 x—20 r—=0 X

Assim, ﬂ ¢ a funcao de [Qz em [ dada por
X

4 3.2 2
Xt 3y 2xy
d [ = ' se (x, v)# (0, 0)
. (x.y) = 1 (x2 + y2)2 in L '

d X 1 se (x, ¥)=(0,0)




b) Para (x, y) # (0, 0)

7
iy + :
L (x,y)="— 2‘1?}“ ,,_?.
ay i i < T i
Em (0, 0)
df
I (0, 0) € (caso exista) a derivada, em v = 0, de h (v) = f (0, v);
_ J’—l se y¥ 0
F Oy = 10 sey=0

af daf

assim, 4 (y) ndo ¢ continua em y = 0, logo, /#' (0) ndo existe, ou seja, ¥ (0, 0) ndo existe. Segue que ¥

esta definida em todo (x, y) # (0, 0) (mas ndo em (0, 0)) e ¢ dada por

A 2x2y(1+ x)
—f %Y =——= i a8
ay & e o

EXEMPLO 8. Seja f': [Q — [ tal que — (x y) = 0 para todo (x, ») em[|:g Prove que f ndo depende de
x, 1sto €, que existe ¢ : R — R tal quef(x y) ¢ (), para todo (x, y) € R*.

Solucao

Fixado um y qualquer, a fun¢do %2 (x) = f (x, y) ¢ constantc em [, pois, para todo x,
h' (x) = 9 (x,v) = 0. Segue que, para todo x,
ax

h (x) =h (0)
ou seja,

fx,y)=1(0,y).

Como y foi fixado de modo arbitrario, resulta que f (x, ¥) = f (0, y) se verifica para todo (x, y) em @
Tomando-se ¢ () =/ (0, y) teremos

Jy)=0(»)

para todo (x, y) € R*.
m

EXEMPLO 9. (Interpretagcdo geométrica.) Suponhamos que z = f (x, y) admite derivadas parciais em
(x0, ¥0) € Dy. O gréfico da funcao g (x) =f(x, y0), no plano x'y, z' (veja figura adiante), ¢ a intersecao do



plano y =y com o grafico de f; ﬂ (x, ) ¢, entdo, o coeficiente angular da reta tangente T a esta
0 dx 070

interse¢ao no ponto (xo, yo, f (Xo, yo)j:

af . df
— (Xxp. ¥p) = te @. Interprete vocé —— (xq. vn). m
oy o Yol T8 P 3y 0- Yo

O exemplo seguinte mostra-nos que a existéncia de derivada parcial num ponto ndo implica a
continuidade da fun¢do neste ponto.

T.
Az
1
1
|
& i i
; B N e
/ :'*t-,."r |
’/I £ = =Y !
..... ) : i
Fill 7T |
Faar | / i
I V5.
. i f \
1 - ¥,
| LT Wi v
i L :
I -~
I il
P
L
X
T,

EXEMPLO 10. Mostre que a fungao

J% se (x, v) #F (0,0)
Xy
{{} se (x, ¥v)=(0,0)

flx,v)=

admite derivadas parciais em (0, 0), mas ndo ¢ continua neste ponto.

Solugdo
A oioy= i TEYFE0 o
X e F?
I 0= 1 TN —IFO0 4 .
r::‘;l.""‘ _‘L'%ﬂ .1:-

Assim, f admite derivadas parciais em (0, 0). Vamos mostrar, a seguir, que f ndo ¢ continua em (0, 0). A
composta de f'com a reta y dada por y (¢) = (¢, t) €

1
g =fan=1_3 €i*0
0 set=10



Como y ¢ continua em ¢ = 0 e a composta g (¢) = f (¢, t) ndo € continua em ¢ = 0, resulta que f ndo ¢
continua em (0, 0). (Por qué?)

O exemplo anterior mostra-nos ainda que a mera existéncia das derivadas parciais de f num ponto (xo,
Vo) ndo implica a derivabilidade em #, da composta g () = f (y (¢)), onde y € uma curva suposta
diferenciavel em ¢, e y (z) = (X0, o). No exemplo anterior, f admite derivadas parciais em (0, 0), y (¢) =
(¢, t) é diferenciavel em ¢ = 0, mas a composta g (¢) = f (y (¢)) ndo ¢ diferenciavel em¢ = 0.

Do que vimos acima, resulta que a existéncia de derivadas parciais num ponto (xo, o) nao ¢ uma boa
generalizagdo do conceito de diferenciabilidade dado para fungdes de uma varidvel real. Uma boa
generalizagdo devera implicar a continuidade da fungdo e a diferenciabilidade da composta g (¢) = f (y
(¢)) quando f'e y o forem, porque ¢ isso que acontece no caso de fun¢des de uma varidvel. Veremos no
proximo capitulo qual € a boa generalizacdo do conceito de diferenciabilidade para fungdes de varias
variaveis reais.

Exercicios 10.1

1. Determine as derivadas parciais

: o i 3
a)flx,y) = 3.1"1_1'“ +xv + 4 b) z = cos xy
] x4 y? N =
e e — ( (x. vi=¢ =+ -
# adlls _1-‘2 f '
2, 2, .2 5
e z=x"In(l+x +y) Hz=xye”
; e X
g) flx,y) =(4xy — 3v7) + 5x7y h) z = arctg —
y
. . B
Degxy)=x Nz=x"+v)In ( + _\‘2}
i e 3 I ¥ Xsen v
Dfxy)=43x"+y +3 m) z = > —
cos (x° + y°)
) xy? ) az az
2. Considere a fun¢do ; = —————. Verifique que ¥ + ¥ o
x2 + y? ax ay
3. (

X
Seja ¢ : [} — [ uma fungdo de uma varidvel real, diferencidvel e tal que ¢’ (1) =4. Seja glx,y) = ¢ t—} Calcule
v

u}ﬂ—g{L!} h}ﬁ{LI}

ax ay
{ r Y
Seja g (x,y) = ¢ t'— J a fun¢do do exercicio anterior. Verifique que
.\, _1‘1

d ad
¥ 25 y)+y 78 (x.y) =0
dx ay

para todo (x, y) € [[2, comy # 0.

x
5. Considere a fun¢do dada por z = x sen —. Verifique que
it



10.

11.

12.

13.

14.

15.

16.

an
A fungdo p =p (V, T) é dada implicitamente pela equacdo pV = nRT, onde n e R sdo constantes ndo nulas. Calcule L o e —.

Seja z =e¥ ¢ (x —y), onde ¢ ¢ uma funcdo diferencidvel de uma varidvel real. Mostre que
a3 az
—_ + P

dx ay

el 4
et

X
Seja ¢ : R — [ uma fungdo diferenciavel de uma variavel real e seja f(x, v) = {J{“'l + }-; )b [— ] Mostre que
"ILZ‘

P :
_1'—f+1:r9—‘r

=2,
ax - dy :

Sejam z = ex’ *)7, x = p cos O e y = p sen O. Verifique que

a2 T 2O
= ¢¥" + V" (2xcos § + 2y sen 6).
ap
Conclua que
az az dz
= — cos # + sen #.
dap ax ay

Suponha que a fun¢do z = z (x, y) admita derivadas parciais em todos os pontos de seu dominio e que seja dada implicitamente pela

3 z 7

e
dx dy

equagdo xyz +z =x. Expresse em termos de x, y, z.

Seja z = f (x + at) onde f ¢ uma fun¢do diferencidvel de uma varidvel real e a uma constante. Verifique que

dz a2
=a—.
i ax

Seja z =f (x2 — 2), onde f (1) é uma fungéo diferenciavel de uma variavel real. Verifique que

07 a7

y— + x—= 0.
ax dy
4 a7,
Considere a fun¢do dada por w =xy +z , onde z = z (x, y). Admita que —|*~ : =4 equez=1parax=1¢y=1 Calcule
axy=
aw x=1
dx |y =1
x
Seja Fly) = E_ ) & 2y — xy onde ¢ ¢ uma funcdo diferenciavel de uma varidvel real. Mostre que
) ﬂ ﬁ_f = —f.
ax v !
2+y: 5 . af
Sejaf(x,y) = J. e I” dr. Calcule ! (x,y)e / (x, v).
0 ax Ay

b .
[y _ 42 7 7
Sejaf(x,y) = J : B 1= dt. Calcule - / (x,v)e ok 38 f (x; y).

X+ X dy

ap
av. T



17.

18.

19.

20.

21.

22.

23.

24.

Seja ¢ : R — [ uma fungio diferenciavel e seja g (x, yv) = f(y) + f{
y

ag d ,
22428 =¥" .

ax  dy

Seja f'(x, y) =x3y2 — 6xy + ¢ (v). Determine uma fun¢éo ¢ de modo que

d
a7 _ =2x%y —6x + =
ay y- +1
Determine uma fungdo f (x, y) tal que
d >
i o _}5_1'2}"— . ﬁy
ax
d ¥
—f =2x'y —6x + =
ay y- + 1
x + y?
Determi @ F ; J— se (x, y) # (0, 0)
etermine P € P sendo flx.y)= 2 4 2 : ;
X y ; ‘ ;
: lD se(x, y)= (0,01

|
Seja f(x,y) = .:l whikyt—1 J se r +y? <1
0 se x2 + y2 =1

a) Esboce o grafico de f.
b) af df

Determine — & —

dx 5‘1

Seja f:[B2 — [ dada por: f'(x,0) =1+ x2,f(0,y)=1+)y2ef(x,y)=0sex#0ey #0.

a) Esboce o grafico de f.

P
5 coouie 2L 0.0 e 2L (0.0,

ax ay

¢) f ¢ continua em (0, 0)? Justifique.

) 9T (0,1 existe? 2L (1, 012

ax dx
®) Qual o dominio de 9f,
ax

Seja f'(x,y) =x2+y2esejay(t)=(ttz(?),t €[, uma curva cuja imagem esta contida no grafico de f.

a) Determine z ().
b) Esboce os graficos de fe y.

c) Determine a reta tangente a y no ponto (1, 1, 2).

d) Seja T a reta do item c; mostre que 7 esta contida no plano de equagdo

af af

z—FfllL1)=—— 01 @=1}+—
ax ay

Seja f'(x,y) =x2 +y2 e sejay ()= (x (¢), y (¢), z (¢)) uma curva diferenciavel cuja imagem esta contida no grafico de f. Suponha, ainda,
y(0) =(1, 1, 2). Seja T a reta tangente a y em y (0). Mostre que 7" estd contida no plano

] Verifique que




25.

26.

27.

28.

29.

30.

2 i
31 Seja f:[# — [ e suponha que ﬂ—f (x,y)=0e¢
x

d d
E—IHJ}=—iu.nu—1p+4£uJ}w—1L
ax av

Interprete geometricamente.

Suponha que z =f (x, y) admita derivadas parciais em (x0, y0). Considere as curvas cujas imagens estdo contidas no grafico de f:

[x=,ru x=t
T]:TII=I e Y 1_\'=}-‘u
z= f(xg.1) z= f(t.vp)

Sejam 71 e T2 as retas tangentes a y1 € y2, nos pontos y1 (¥0) € y2 (x0), respectivamente. Mostre que a equagdo do plano determinado
pelas retas T1e 72 ¢

; d d
= flxp.yp) = 4l (xg. ¥p) (x — xp) + £ (Xg. ¥o) (v — ¥p)-
dax ay

2xy?
. —— se(x, v)F(0,0) _ . , , .
Seja flx,v) = 4 x2 + 4 - e sejay () =(41z(?), ¢t €[, uma curva cuja imagem estd no grafico de f. Seja
0 se (x, y) =(0,0)
T a reta tangente a y no ponto y (0). Mostre que 7' ndo esta contida no plano de equagao
: d d
EﬁﬂﬁDF=;EMJHI—D%F;EMHHF—ﬂL
ax ay
Considere a fungdo z =f (x, ) e seja (x0, y0) € Dy. Como vocé definiria plano tangente ao grafico de f no ponto (xo0, y0)? Admitindo

que f admita derivadas parciais em (x0, y0), escreva a equagdo de um plano que vocé€ acha que seja um “forte” candidato a plano
tangente ao grafico de f no ponto (xo, 0, f (x0, y0)).

2 o 2 2
Dé exemplo de uma fun¢do f: [} — [[ tal que r?_ seja continua em[[I , mas que f ndo seja continua em nenhum ponto de [[I .
v

af i

Dizemos que (x ,y ) ¢ um ponto critico ou estaciondrio de z =f (x,y) se — (x5, ¥g) = 0 e — (x5, ¥y) = 0. Determine (caso
0 0 ay ay

existam) os pontos criticos da fungdo dada.

a) f(x,y)=x2+y2

b) f(x,y)=2x +y3

o) f(x,y)=x2 -2y +3y2+x—y
d) f(x,y)=x3+y3—=3x -3y

e) f(x,y)=3x2+ 82 — 14x — 16y
N fx,y)=x4+dxy + 4

Seja (x0, y0) um ponto de Dy. Dizemos que (x0, y0) € um ponto de maximo local de f (respectivamente, ponto de minimo local) se
existe uma bola aberta B de centro (x0, y0) tal que, para todo (x, y) € B N Dy, f (x, ¥) <f (x0, yo) (respectivamente, f(x, ) = f (x0, ¥0)).
Prove que se (x0,y0) € um ponto interior de Dy e se f admite derivadas parciais em (x0, y0), entdo uma condi¢do necessaria para
que (x0, y0) seja um ponto de maximo local ou de minimo local € que (x0, y0) seja ponto critico de f, isto €, que

af

d ;
= '[.T{}.F{}} =0 e _f {.‘{'D._"l'uj ={.
dx dy

af

ay

2
(x, v) = 0, para todo (x, y) € [} . Prove que f é constante.



32. 2 af af
Dé exemplo de uma funcdof: 4 C [ — [} tal que ;5'_ (x, »)=0¢ ﬂ—j {(x.¥) = 0, para todo (x, y) € 4, mas que f ndo seja
X y

constante em A.
33. Suponha que, quaisquer que sejam (x, y) e (s, ) em [[}2, | £ (x,¥) —f (s, ) | <|| (x,») — (s, ) ||2. Prove que f ¢ constante.

5 -
34 Sejaf: 4 C[R} — [[, 4 aberto, e suponha que ﬂ (x, y) existe para todo (x,y) € A. Sejam (x ,y ) e (x + A,y ) dois pontos de A.
: 0 0 0 0

X
Prove que se o segmento de extremidades (x0, y0) € (x0 + 4, y0) estiver contido em A, entdo existira X entre xo € x0 + 4 tal que

. ; @f
filxp + hovg) — filxp, vo) = (?— (x, vg) h.
X

35. af df

2
Sejaf:4 C[} — [}, 4 aberto, e suponha que f admite derivadas parciais em 4. Seja (x ,y ) € 4. Prove que se ?_ e ?_ forem
0 0 dx 4y
continuas em (xo, y0), entdo f também sera.

foy) =g yg) = fx.¥)— flxp.y) + f(,x';}. v) — f(xp. ¥o)

(Sugestao. i -; aplique o TVM a (I) e (II).)
(I (1)

10.2. DERIVADAS PARCIAIS DE FUNCOES DE TRES OU MAIS VARIAVEIS
REAIS

Sejam w = f (x, y, z) e (xo, Yo, 20) € D, Mantendo-se y, € z, constantes, podemos considerar para
funcdo g (x) = f (x, yo, z0). A derivada desta fun¢do, em x = x, (caso exista), denomina-se derivada

af . . ow
parcial de f em relagdo a x no ponto (x ,y ,z ) e indica-se por gy (%o- Yo- Zp) OU gxli_Tor,
- Rt

0 0 0 1=

LF &

) .. 0 o
De modo analogo, definem-se as derivadas parciais a—{ (Xg. ¥o- Zp) € a—f (X0 Yo 2g)- Temese:

af (i v 70) = ﬁlim A f(xo + Ax, vo. z0) — f(x0. Yo. 20)
ax 0= X0 <0 — Ax

f . o_ lim f(xg,y + Ay 20)— f(x0: Y0, 20)
—— X0 ¥0: 20) = Ay 0

dy Ay
é]—'f (X Vo Zo) = lim f(xg. vo. 2o + A2) — f(xg. yo. 20)
az 070~ =0 Az — 0 Az y

Da mesma forma, definem-se as derivadas parciais de uma fungao de mais de trés variaveis reais.
EXEMPLO. Calcule as derivadas parciais da fungao s = f (x, y, z, w) dada por
s =e”".

Solucao



r?s oW f:? VTW
—_— e)'__"m‘“ EEREL, (x}qml\j — },ZH‘E.‘._‘LM\.

dx dx
ds xvzw 0 xygw
— =" — (xvow) = xzwe -
IE';I :'Ir" f? .1"!
s i O .
T g ey =
7z a7z '
a5 w0 _ oW _ o
— =" — (xyzw) = xyze- (v, z e w sdo olhadas como constantes). ®
aw aw
Exercicios 10.2
1. Calcule as derivadas parciais.
Yr—v—7I 2 ¥
af@x.y,)=xe + *= b)w = x“arcsen =
Xyz _— . >
clw= ———— d) f{x.y, z) = sen [.1’2 + _1,-'2 + 77}
X+ y + z

. 2 2 2 2
e)s=fl(x,y.zw)dadapors=xwln(x" + v +z"+w")

) . o X .
© Seja flx.v.2) = . Verifique que
] Fak 24y 422 que q

X ﬂf 'xsﬂ + zﬁ = _j-
dx ay az

X T
Seja s =f (x, y, z, w) dada por N Verifique que
5= g-

d
JfE 7+ }-‘&—S + z—s + wﬂ—5= 0.
dx ay a1 aw

4. Sejaf:[} — [[ continua com f(3) = 4. Seja

,1'+_1'2 +Z4
gx,v.2) = J f(r) dt.
Calcule:
a a a
a2 1.1 » 2,11 22 1.1, 1)
ax ay az

5. Sejaf:[@ — [R diferencidvel e seja g dada por g (x,y,z) =f (r) onde r =|| (x,y, z) ||. Verifique que

g ag ag
dx  dy az

= rf'(r).

6. Seja ¢ : [ — [ uma fungdo diferenciavel tal que ¢’ (3) = 4. Seja g (x,y,z) = ¢ (x2 +y2 +z2). Calcule:

a 28 1.1.1) » 28 1.1.1) o2 111

ax ay az
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FUNCOES DIFERENCIAVEIS

11.1. FUNCAO DIFERENCIAVEL: DEFINICAO

O objetivo desta secdo ¢ estender para funcdes de duas varidveis reais o conceito de
diferenciabilidade dado para fungdes de uma variavel real.

Vimos que, por definicdo, uma funcao f (x) € diferenciavel ou derivdavel em x, se € somente se O
1 £+ h) = f(x0)

h
¢ adequada para generalizagdo, pois se f for uma fun¢do de duas varidveis reais 4 sera um par ordenado

e, entdo, a razdo incremental ndo tera sentido. Nossa tarefa a seguir ¢ a de tentar obter uma forma
equivalente a definicdo de diferenciabilidade e que seja passivel de generalizagao.

Supondo f'(x) diferenciavel em x,, existe umreal a, a =f" (xo), tal que

limite, quando /4 tende a zero, da razao incrementa existir e for finito. Esta forma nao

: (xo + h)— f(xp)
lim 20 f(x0) _
h—=0 h

Temos:
lirm flxg+ M) — f(xg) - fxg +h) — f(xg)— ah i
el h i — 10 h
Como
lim ol 0 < lim Lo . 0 (verifique)
h—0 h hos0
resulta
(xoth)= I (xn + M) — Flxn) —
lim 4 X0 h) — f(x0) g e lim L0 h) — f(xo)—ah —0

h—0 h h—0 I A

Portanto, f'¢ diferencidavel em x, se e somente se existir umreal a tal que

lim f(xo +h)— f(xo) —ah _
h—0 | f1 1

0.

Estamos, agora, em condi¢des de definir diferenciabilidades para fungdes de duas varidveis reais.

Definicdo. Sejam f: 4 — [[I, 4 aberto de [[}2, e (x0, y0) € A. Dizemos que f ¢ diferencidvel em (x0, y0) se € somente se existirem reais



a e b tais que

fxp +h yo+ &) — fxp.¥0) —ah— bk _

lim 0.
(h, k) —(0,0) A, k)
O proximo teorema nos diz que diferenciabilidade implica continuidade.
Teorema 1. Se f for diferenciavel em (xo, yo), entdo f serd continua em (xo, y0).
Demonstracdo
Sendo f'(x, y) diferencidvel em (xo, yo), existem reais a € b tais que
lim E(h k) _ 0
(hky— (0,00 (A, KOl
onde E (h, k) ¢ a fungdo dada por
f(x0+h:y0+k) :f(-XO;yO) +ah +bk+E(h9 k)
Como
lim (ah+ bk)=10
(hk)y— (0,0
e
lim E(h k)= lim II{h.k}II-M= 0
(h. ky— 0,0} (f k) —(0,0) (A, k)l
resulta

lim f(xg+ hovg+ k)= fixg. vo)
(h, k) — (0, 0)

Logo, f'¢ continua em (xo, o).
u

Vamos mostrar, agora, que se f for diferencidvel em (xo, yo), entdo f admitira derivadas parciais em
(XO, Y 0) S

Lhk)= i (x0.vo) h+ ﬂ (x0. o) k
o dy

sera a unica transformacao linear que goza da propriedade



fixag+hyo+E)~—=F (XZg.Yo)— ;—‘i (x0. Yo) h— % (x0. o) k

lim i = 0.
(h.k)—(0,0) ICh, k)l

Teorema 2. Seja f: A C [}2 - [[, A aberto, e seja (x0, yo) € A. Se f for diferenciavel em (xo, yo), entdo f admitird derivadas
parciais neste ponto.

Demonstracdo

Sendo f'(x, y) diferencidvel em (xo, yo), existem reais a € b tais que

® T L N

(h, ky—(0,0) LA, k)
onde E (h, k) =f (xo + h, yo + k) — f (x0, yo) — ah — bk. Segue de (1) que

E(h.0) _ lim flxg + hoyo)— fxp. yo) — ah

lim = ().
(hky—= .0 Ith,O)Il  h=o0 LAl
Dai
xg + h, y) = f (xg. Yo) — a
lim flxg+ h vy)— f(xp, vo)— ah —0
h—=0 h
e, portanto,
“(xp+ h,vo)— f(xp.¥ :
lim J (X0 + 1, yo) — [ (%0, Y0) =q= {‘—ﬁc(.m, Vg )
h—= h oy
De modo anélogo, obtém-se b = % (X0, o). ®.
v

Observacao. Provamos acima que se

lim f(xo + h yo +k)— f(xp,vp) —ah— bk _
(h k) —10,0) N(h. Kl

0

“ : df df
entdo teremos necessariamente a = —f (xg. ypleb= —; (xp. vp). Deste modo, se f (x, y) for
o v

: . N df df ~ . : :
diferenciavel em (x , y ), entdo a = )i (xg. vo)e b= (?i (xp. ¥o) serdo os unicos reais para os quais o
0 0 ox v

limite acima € zero.
Segue do teorema 2 o seguinte importante

Coroldrio. Seja f (x, y) definida no aberto 4 C [[J2 e seja (x0, y0) € A. Tem-se:



a) f admite derivadas parciais em (xp. Vg )i
Ly : E(h k
[ diferencidavel em (xp. vp) & b) Hid (hK) _ 0
(hoky— 0.0y LA, k)l

{

5

E(h k)= f (xo +h.yo +k)— f (x0. yo) — % (Xo, Yo) h — % (xo. Yo) ffJ
c ay

Observacoes

1. Segue do corolério acima que para provar que uma fungdo f ¢ diferenciavel em (xo, yo) € suficiente
provar que f admite derivadas parciais em (xo, o) € que

f(xg+ h.yo+Kk)— f (x5.%)— % (xp. Yo) h— % (xp, Yo) k

lim 2 sy
(h, k) — (0, 0) (A, k)

2. Se uma das derivadas parciais ndo existir em (xo, )o), entdo f ndo sera diferencidvel neste ponto.

3. Se ambas as derivadas parciais existirem em (xo, }o), mas se o limite acima nao for zero, entdo f
ndo sera diferencidvel em (xo, o).

4. Se fnao for continua em (xo, o), entdo f ndo sera diferenciavel em (xo, o).

Dizemos que f € diferencidavel em B C Dy se f for diferencidvel em todo (x, y) € B. Diremos,
simplesmente, que f ¢ uma fun¢do diferenciavel se f for diferenciavel em todo ponto de seu dominio.

EXEMPLO 1. Prove que /' (x, y) = x*y é uma fun¢io diferenciavel.

Solucao

Precisamos provar que f ¢ diferenciavel em todo (x, y) € p* (Dy=R%). f admite derivadas parciais em
todo (x,y) E R’ e
(8 (x,y)=2xye L (x, y)= i,
oy ay

Por outro lado, para todo (x, y) em[R?,

Eh k)= fix+hy+k)—f(x,y)— ﬁ (x, v)h— ﬂ (x, v) k
o v
= (x +h)? (y+k)— x2y —2xyh — x%k =

= 2xhk + h*y + h’k.
LAl

Como, para T——— = |, resulta
"...-'h"' + k=



E (h, k) . 2xhk + hv + hk
im e o S lim : ' =
(h k) = 0,00 A, KWL (B k)= (0, 0) .\\,-';;2 + k2
0 L
) bl h h
= lim '2,1_'.ﬁ ——thy — + hk —— | = 0.
(b, k) = (0,00 | [/ ' b2 4+ k2 Ah2 + k2 Jh? + k2
N y v
limitada™-.__ -~

Portanto, /¢ diferenciavel em todo (x, y) de R?, ou seja, f ¢ uma fungdo diferenciavel.

EXEMPLO 2.

se (x, v) #(0,0)
0 | se (x,v)=1(0,0)

¢ diferenciavel em (0, 0)? Justifique.
Solucao
fndo ¢ continua em (0, 0); logo, f nao é diferenciavel em (0, 0). Para a ndo continuidade de f em (0,

0), veja Exercicio 2, Se¢ao 9.1. Observe que f admite derivadas parciais em (0, 0).
u

EXEMPLO 3.

Tt

f(xy)= ﬁ se (x, y) # (0. 0)

0 | se (x, ¥)=(0, 0)

¢ diferenciavel em (0, 0)? Justifique.

Solucao
T 0,0= tim SEOSCO_ X,y
o xr—=0 == x—=0 X
¥ 0,00 = 1in TGN -FO0
aly y—=0 y— 8
Temos
E{h,m=fu:n+;1,0+m—f{ﬂ,m—im,mh—im,mk
olx oy
. B3
ouseja, E (h, k) = ———— h- Segue que
[ e i an



— hk?
E(hE . b Hks _ = hik?

T = — =G (h, k).
A I 2 + k2 (W2 + k%) (W2 + k2
: ﬁ . —1 ~ .
Como lim G (1,1)= lim ———— ndo existe, resulta que
t—0 t—02+2 It
; E (h k)
lim _—
(h k)= (0,0) 1 (A k) I
logo, f ndo ¢ diferenciavel em (0, 0).
u
Observaciao. Como
0, T
i - i 4 M UL
lim flx,y)= lim X ———=0=f(0,0)
(x,v)—(0,0) (x,¥)—(0,0)/ ‘E” + b e
1 E"].i.ﬁt'dd':l

resulta que f'¢ continua em (0, 0). Assim, /¢ continua em (0, 0), admite derivadas parciais em (0, 0), mas
nao ¢ diferenciavel em (0, 0).

Exercicios 11.1

1. Prove que as fungdes dadas sdo diferencidveis.

a) flx,v) =xy biflx,y)=x+y

) f e, y) = .‘{'2}‘1 d) f(x,y) = =
xy

iz 2 2
DfxN=x"+y

elfix,v)=
] X+

2. fé diferencidvel em (0, 0)? Justifique.

Q) fr,y) =2 se(xy)#(0.00ef(0,0) =0,
¢ tin o
) f(,y) = ——Y se (x, y) # (0,0) e £(0, 0) = 0.
bl _‘}"'
.‘{'-L
(_“}fli’jl,‘, Y= —F——F 58 (X, _"L'}' = [{l 0) Eff_ﬂ-. 0)=0.
e & _"}"'

11.2. UMA CONDICAO SUFICIENTE PARA DIFERENCIABILIDADE

Nosso objetivo, nesta secdo, ¢ demonstrar que a continuidade em A, A aberto, das derivadas parciais
de uma fun¢do f garante a diferenciabilidade desta fun¢do em todos os pontos de A. Este resultado ¢
bastante importante, pois, em muitas ocasides, ¢ mais facil verificar a continuidade das derivadas
parciais do que a diferenciabilidade diretamente pela defini¢ao.



2
7
Teorema. Sejam f: A C [} - [R, A aberto, e (x ,y ) € A. Se as derivadas parciais }— & — existirem em A e forem continuas
0 0 X !

no ponto (xo, yo), entdo f serd diferenciavel neste ponto.

Demonstracdo

Como 4 ¢ aberto, existe uma bola aberta B de centro (xo, o), contida em 4. Sejam 4 ¢ k tais que (xo +
h, yo + k) € B. Temos

f (xg + h, Yo + ky— f (xq, }-‘Q) = f (xg + h, yo T+ k) — f (Xg.¥p T k)
il
+ f (x0. Yo + k) — f (x0. Yo)-
(1)

Fazendo G (x) =f(x, yo + k), pelo TVM existe *, entre xo € xo + 4 tal que
(Dh=Gilxg+h—Gxp)=G (x)h= ji (X, vo + k) h.
ox
Do mesmo modo, existe ¥ entre yo € yo + k tal que
df s
(Il = % (xp. ¥) k.

Assim,

fxg+h yot+k)— f(xp.¥)= ﬂ (X,yop + k) h+ g (x0. ¥) k.
ox av

Subtraindo a ambos os membros da igualdade acima jﬁ (xp.vp) h + % (xg. ¥o) k obtemos:
ox v



f(xg +h yo +Kk)— f (X0, ¥0) — % (X0, Yo) h — % (X0, yo) k
. By

o e o df df
=| — (X, vy + k)~ (x vo) | h+| —(x H——{r yo) | k.
{ S o (X0 Y0 } [ > 0 % 0s Y0
Segue que
flxg+h.vog+k)— f(xg.vg)— iu:'[., Vo) h —i{x@ Vo) k
o oy =
(h. k)l
E_itl‘ii_t_:.l.d:i
"}f (X, Yo +k}—l (X0- Yo )| | —Iﬁl;-+
o) 2 2+ k2]
(Ii1)
—_ K]
+ = (xp. V) — = (x0.Vp)| —————
% 2 | Jh2+k2
(IV)
Pela continuidade de f_r e % em (g, ¥p) em (x y ), as expressoes (II) e (IV) tendem a zero, quando (4,
k) — (0, 0), e, portanto,

fxg+h yo+ k)= f(xp.y0)— (.if«l‘m Yo) h — ﬁ (x0. ¥o) k
: o y i
lim = ()
(k) — (0,0 (h, k)l

logo, f'¢ diferenciavel em (xo, o).

of f‘f

1
Seja f(x, y) uma fungdo. Dizemos que f ¢ de classe C no aberto 4 se o e — forem continuas em A.
dx

Segue do teorema anterior o seguinte

Coroldrio. Seja f: 4 C [2 — [}, 4 aberto. Se f for de classe C! em 4, entdo f sera diferenciavel em A.

EXEMPLO 1. f (x, y) = sen (x* + ?) ¢é diferenciavel em |*, pois,

i—era{r*"“s }eﬂ—ﬂxmﬁu + p4 2y
olx ay

sdo continuas em .




Observacao. O teorema anterior conta-nos que se f admite derivadas parciais em A4 e se estas sao
continuas no ponto (xo, yo), entdo f serd diferencidvel em (xo, 1o). A reciproca, entretanto, ndo ¢
verdadeira: existem fungdes que sdo diferencidveis num ponto sem que as derivadas parciais sejam
continuas neste ponto. O exemplo seguinte exibe-nos uma tal fungao.

2.2 1 :
EXEMPLO 2. Seja f(x. y) = J{.x + v=)sen N se (x, y)#(0,0)

X= oy
h} se (x, v)=1(0,0)
a) Determine s e df
dy oy
da  Jf

b) Mostre que — e — ndo sao continuas em (0, 0).

dy oy
c) Prove que ¢ diferenciavel em (0, 0).
d) Prove que f ¢ uma funcao diferencidvel.

Solucao
: Q _ x% sen —
a) o (0,0) = lim 240 L lim 1= ou seja
oy x—0 =10 x—0 X
[ -
i{'D.El'}l = lim " sen 1_, =0,
ox x—0 / X
limitada
, df _ :
De modo analogo, N (0,0) = 0. Assim,
o
af . . 2x sen — I i 42.1: —COS — ] — se(x,y)#(0,0)
? (X, y)= xSyt oyt b i B o '
A 0 se (x, v)=1(0,0)
e
df . J'Zj-‘ sen —s ] —— ,,2'11 +— COS — : — se (x,v)#(0,0)
T{L Y= Xy xRt : e
o {0 se(x,y)=(0,0)
. df o : af ~ ,
b) lim = (t, r) ndo existe. (Verifique.) Logo, —— ndo ¢ continua em (0, 0).
t—0 oX X

7 . f'j ~ 14 14
De modo anélogo, verifica-se que —af nao ¢ continua em (0, 0).
v



FIO+h 0+ k)— f(O, U}—di{ﬂ ﬂ)h—g{ﬂ' Mk (h*+k*)sen

‘ h? + k32
) 1A K) | Jr + 12

= -~,_-"h3 + k2 sen %
h -+

0
Como - L%ﬂ 60> v h/j/"" kz; AeTl Tl 0 resulta que /¢ diferenciavel em (0, 0).
..l.:uniil;.'ln
T ., . odf df .
d) f ¢ diferenciavel emtodo (x, y) # (0, 0), pois, e = sao continuas em todo (x, y) # (0, 0).
ox ¥
u
Conclusdo. f é uma fungdo diferenciavel emtodo (x, y) € Dy (Dy=R).
x*
EXEMPLO 3. Verifique que f(x,v) = ¢ v2 4 42 (L VF 0.0 ¢ g funcdo diferenciavel.
0 se (x,¥)=(0,0)
Solucao
2x7 + 4x3y2 :
Fe - 5 se(x, v)#(0,0
(}3; (x: 1'."\}: {J.“L +15~2}1 bl ( ; { }
i 0 se (x, y)=(0,0)
e
) —2x4
i (x: ¥ Y= [% se(x, ‘T.} F “J, D\}
=5 (x ¥ )2 _
* 0 se (x,y)=(0,0).
af df af df
Vamos mostrar que e = sdo continuas emm 5 = sao continuas em todo (x, y) # (0, 0), pois sao
ox ¥ ox ¥
quocientes de continuas.
Em (0, 0),
2, 5 + e e
lim ﬁu y) = lim e
(x, ¥)—=(0,0) dx (x. 1) = (0,0) (x2+ y%)? .
mitada
= lim |28 ———=S+ah—=—L |=
(x,y)=> 0,00 7 * !-'71‘2 + }’2}.2-" " "(_-_’fz ]

llmmd"l



ou seja,

lim ()'T—(x,v}=0 =i{ﬂ.01:
{x.v) = (0, 0) o ’ dx

af af

logo, — ¢ continua em (0, 0). De modo andlogo, prova-se que a5 ¢ continua em (0, 0).
X v

. d d 2 ... ., 2
Da continuidade de ?—f e ﬂ—f em[\ , segue que /¢ diferenciavel em[y .
ox ¥

Observacao. Para todo (x, y) # (0, 0), temos:

x4
(x2 + y2)2

—

2_2.,.2 4 2, 22
Osx"sx"+y =xsx+y)y=0=

e - ' 2.9

X<y
= leﬁ,-*z = (IE + I‘l.-‘z]l2 = Qe ——— 5
(X5 o 34)

Lt

Exercicios 11.2

1. Verifique que a fungdo dada ¢ diferenciavel.
a) f(x,y) =exy
b) f(x,y)=x4+y3
¢) f(x,y)=x%y
d) [ (x,y)=In(1+x2+y2)
e) f(x,y) =x cos (x2 +2)
N f(x,y) = arctg xy

2. Determine o conjunto dos pontos em que a fungdo dada ¢ diferenciavel. Justifique.

EyY
; ———— se(x, ¥)F(0,0
a)flx, yl= 1 T it ey

0 se (x, y)=1(0,0)



%2
se (x, v)# (0,0)

b) flx,¥v) = 4 2 442
0 se (x, v)=(0,0)
Xy :
. g L . 'I_
V&N =4 R g2 se (x, v) = (0,0)
10 se (x, v)=(0,0)

I
d) f(x,y)= - l-‘f‘ Vol e x? 4 y2 <1

0 se x2 +y2 =1

11.3. PLANO TANGENTE E RETA NORMAL

Sendo f'(x, y) diferencidavel em (xo, o), temos:

f(xo+h yvo+k)— f(xp,v0) —G}— (x0, yo)h — ﬁUt'ﬂ'- Yo )k
lim ox A =0,
(h. k)= (0, 0) (A, k)|

Fazendo x =xo+ h e y =y, + k, resulta

; : df df
I (x, ¥)— f(xp, ¥o) —— (X0, ¥o) (X —xg) —— (xg, Yo )(¥y — o)
) dx v
lim : =0.
(x, ¥)—=(xq. Yo ||(x: ¥) — (X0, Yo)|

Seja E (x, y) o erro que se comete na aproximacao de f(x, y) por
T(x,y)=f(xp.y) + ﬂ (Xpg. ¥g) (x — xp) + i (Xg. ¥g) (¥ — ¥p).
dx v

Assim,

S, y)=Tx,y) +E(x,y)

onde

; E(x,y
lim &9 =0.
(%, ¥)= (%0, ¥o) [|(X, ¥) = (X0, Yo) |

Do que vimos na Secdo 11.1 (veja, também, o Exercicio 15 desta se¢do), resulta que 7 (x, y) € a
unica fungao afim que aproxima f (x, y) com erro E (x, y) que tende a zero mais rapidamente que ||(x, y)

—(x,y )|, quando (x, y) tende a (x , y ). | D izer que E (x, y) tende a zero mais rapidamente que | (x, y)
0o 0 0o 0

. ) By
,V ), significa que lim _ ' = D.]
o (xy) = (s yo) (X, ¥) = (x0, yo)ll

—(x,y) |, quando (x, y) tende a (x
0

0 0



Definicdo. Seja f diferencidvel no ponto (xo, y0). O plano
, ; ;
@ L= %0 Yg) = if (Xg. Yo) (X — Xxp) + i (Xg. Yo) (¥ — ¥g)
oy v

denomina-se plano tangente ao grafico de f no ponto (x0, yo, f (x0, 10)).

Observe que s6 definimos plano tangente em (xo, Vo, f (X0, ¥0)) se f for diferenciavel em (xo, yo). Se f
ndo for diferenciavel em (xo, y9), mas admitir derivadas parciais neste ponto, entdo o plano (1) existira,
mas ndo serd plano tangente. Veremos mais adiante que se f (x, y) for diferencidvel em (xo, o), 0 plano
(1) conterd todas as retas tangentes ao grafico de /' no ponto (xo, yo, f (X0, V0)).

Em notagdo de produto escalar, o plano (1) se escreve:

(i (Xp. Yo ) ﬂ X Xe ) =—=1 } (x, v, 2) — (xp. o, f(xp. yvon]=0.
\ ox ay /
Segue que o plano tangente em (xo, Vo, f (X0, Vo)) € perpendicular a direcao do vetor
(h-u é‘r‘ b
= X0+ Y0 ) ——=(X0s Yo )y —1 |
@ [ EEL 2% 0. YO J

A reta que passa pelo ponto (xo, yo, f (X0, o)) € € paralela ao vetor (2) denomina-se reta normal ao
grafico de f no ponto (xo, yo, f (X0, 10)). A equagao de tal reta é:

i 13 = kY
(X, ¥, 2) = (xg. ¥o-.F (xg.¥g)) T A Li (xp. vo). i (x0.¥0).—1LA ER.
ox ay

- —_ _H_lll_ri'.!a normal

——
fj —

x> ey

EXEMPLO 1. Seja f (x, y) = 3x*y — x. Determine as equagdes do plano tangente e da reta normal do
ponto (1,2, £(1,2)).

Solucao



Plano tangente

= F1,2) = iilZ}U l}+r_'—)fil,2‘_i{,v—2)
o o
iIlf?(‘L‘,Il—fiuﬁ.—l::>i{l 2)=11
ox ox
i{x, 1}: 3).2:>£{]1 2]':3
.{1.1 {"1

A equacao do plano tangente ¢

z=5=11@x—-1)+3(@ —2).

Reta normal

(x, v.2) = (1,2,f(1, 2}}+A(y{1 2), ‘{1 2),— W}.EIR

G

ou seja,

Ly, 2) =(1L.2,5+A(1L3, -1, A R =

2

s

Xy ——
EXEMPLO 2. Seja f(x,v) = | 42 + y2  © (x, ¥)# (0,0)
0 se (x, ¥) = (0, 0).

Mostre que o grafico de f nao admite plano tangente em (0, 0, 1°(0, 0)).
Solucao
De acordo com a defini¢do, para que f admita plano tangente no ponto (0, 0, f (0, 0)), f deve ser

diferenciavel em (0, 0). Se provarmos que /¢ nao diferencidavel em (0, 0), seguird que f ndo admite plano
tangente no ponto dado. Temos:

r_i (0,0)=0¢e i (0, 0) = 0. (Verifique.)
oy v
O+ h 0+k)— f(0, D}—i{{] IDH—{EII 0)k =
ax v hk=

[k ] TR R



~

. . hk=
Seja C (h.k) = ————————— Temos:
(h% + k%) |2 + k2

lim G(0,7)=10

i—l

e

lim G(t.f)=

t—r 2\{
Assim,

f(O+h0+k)— f(0, D)—EID 0)h— i{{] 0)k
lim olx X
(h. k)—(0,0) || (A, k)|

ndo existe, logo, f ndo ¢ diferencidvel em (0, 0); portanto, f ndo admite plano tangente no ponto (0, 0, f
(0, 0)). Observe que o plano

z—=50,0)= i (0,0)(x —0) + i (0,0)(v— 0)
oy A

ou seja,

ndo contém a reta tangente a curva y (t) = (¢, t, f (¢, ¢)) no ponto y (0) = (0, 0, /£ (0, 0)). De fato, a reta
tangente a y no ponto (0, 0, /(0, 0)) = (0, 0, 0) é:

1
(x,3%.2)=1(0,0,0)+ A (], L, E] AER

que, evidentemente, ndo esta contida no plano z = 0.

Exercicios 11.3

1. Determine as equagdes do plano tangente e da reta normal ao grafico da fungdo dada, no ponto dado.

a) f(x,y) =22y em (1, L f (1, 1)).
b) f(x,y) =x2+y2em (0, 1,7 (0, 1)).

¢) f,y)=3x3y —xyem(l,— 1,/ (1,—1)).
d) f(x,y)=xex =y em (2,2, (2,2)).

(i 1 a1
e) fx,y) = arctg (x — 2y} em 1.—‘} [l En

LY

U 1

554%51

Hfx,v)=xyem [



Determine o plano que passa pelos pontos (1, 1,2) e (— 1, 1, 1) e que seja tangente ao grafico de f (x, y) = xy.

Determine o plano que seja paralelo ao plano z = 2x + y e tangente ao grafico de f (x, y) = x2 + y2.

_ 5
z=2x +y é a equacdo do plano tangente ao grafico de f (x, y) no ponto (1, 1, 3). Calcule i (1,1}« i (1,1).
X ay

2x +y + 3z =6 ¢ a equagdo do plano tangente ao grafico de f (x, y) no ponto (1, 1, 1).

a)cakub-gi{i.l}e-ﬂi (=1
X ay

b) Determine a equagdo da reta normal no ponto (1, 1, 1).

. | X . .
Considere a fungdo f(x, y) = x ¢b ‘ — | onde ¢ (1) ¢ uma fungdo derivavel de uma varidvel. Mostre que os planos tangentes ao
\ ¥

grafico de f passam pela origem.

3

. X .
Considere a fungdo f(x, y) = ———— Mostre que os planos tangentes ao grafico de /" passam pela origem.
“ ' XS~y
Determine o plano que seja paralelo ao plano z = 2x + 3y e tangente ao grafico de £ (x, y) = x2 + xy.

Determine os planos que sejam tangentes ao grafico de f (x, y) =x2 + 32 e que contenham a interse¢do dos planos x +y +z=3 ez =
0.

10. ¢ um plano tangente aos graficos de f (x,y) =2 +x2 +y2 e g (x,y) =—x2 — y2. Mostre que a2 + b2 =1, sendo (a, b, f (a, b)) o ponto

em que S tangencia o grafico de f.
11. Considere a fungdo f (x, y) = 1 —x2 — 2. Seja a o plano tangente ao grafico de /' no ponto (a, b, 1 —a2 —b2),coma >0,b>0e a2 +

b2 < 1. Seja V o volume do tetraedro determinado por « e pelos planos coordenados.

a) Expresse V em fungdo de a e b.

dV IV !
b) Determine a € b para que se tenha — (a, h)=0¢e ; (a.b)=0.
da db

12. Determine os planos tangentes ao grafico de £ (x, y) =2 + x2 + 32 e que contenham o eixo x.
13. Considere a fungdo f (x, y) = xg (x2 —y?2), onde g (1) é uma fungdo derivavel de uma variavel. Mostre que o plano tangente ao grafico

de f'no ponto (a, a, f (a, a)) passa pela origem.
14, i e N L xE  yE g

A fungdo z =z (x, y) ¢ diferenciavel e dada implicitamente pela equacao e e

a¥ B et
XpX Mo ¥ ipd
Mostre que —— + —— + —— = | é a equag@o do plano tangente no ponto (x ,y ,z ),z #0.
as b= o* 00 0 0

15. Seja z =1 (x, y) diferenciavel em (x0, y0). Seja S a fung¢do afim dada por

S (x,y)=a (x —xo0) + b (v —y0) + c. Suponha que

S =8y +EX,y)
com
. Ei(x.v)
lim : =0.
(7 ¥ = (% w0 x, v) — (xg. yp Ml

by o

Conclua que @ = — (xg. Vg ) b = T (xg.vg) e c= fxg, ¥p)

ot oy



11.4. DIFERENCIAL

Seja f (x, y) diferenciavel em (xo, o) € consideremos a transformagdo linear (transformagdo ¢
sindénimo de fun¢do) L : B> — R dada por

@ Lih k)= (_i{x{}‘m} fi -I—(_i{.m,}-‘n}k.
ox ay

Segue, do que vimos anteriormente, que L (h, k) é a inica transformag3o linear de B> em [ que aproxima
0 acréscimo

S (xo+ h, yo+k) = f(x0, yo)

comerro E (h, k) que tende a zero mais rapidamente que | (4, k) ||, quando (4, k) tende a (0, 0). Isto &,

G

fxp+h vy +k)— flxp, vg)= ;ﬁ (Xp. yp)h + % (xp. o)k +E (h, k).
x y
L (h k)

Com

Eh k)
lim =10
(h. k) — (0, 0 I, BHI

Pois bem, a transformagao linear L, dada por (1), denomina-se diferencial de f em (xo, Vo).
Seja T (x, y) = f(xp. ¥p) + % (Xg. ¥p) (x — xp) + % (xg. ¥g) (¥ — ¥g). Sabemos que o grafico de 7 ¢ o
ox v
plano tangente ao grafico de f no ponto ((xo, Vo), f (X0, V0)). Fazendo x =xo + h e y = yo + k, vem:

T (xo+h v+ k)— f(x0,v0)= ﬁ (xp. vo)h + % (x0. vo)k.

oy 7
L (h, k)

Segue que L (h, k) ¢ a variagdo que sofre 7, quando se passa do ponto (xo, }o), ao ponto (xo + A, yo +
k).

Por outro lado, f'(xo + &, yo + k) — f (x0, o) € a variagdo em f, quando se passa de (xo, o) a (xo + 4, Yo
+ k). Temos:

f(xg+hy +E)—F(xp. yg)= ﬁ (xp. ¥o)h + ﬂ (Xp. Yok
oy ('}'L

sendo a aproximacao tanto melhor quanto menores forem os médulos de % e k.

: : G af : :
Muitas vezes, referir-nos-emos a _}i{.x'ﬂ, vo)h+ % (xp, vo)k como a diferencial de fem (x, y),
olx ay 0 0

relativa aos acréscimos /4 € k.



Consideremos, agora, a fungao diferenciavel z = f (x, y). Em notagado cléssica, a diferencial de f, em
(x, y), relativa aos acréscimos dx e dy ¢ indicada por dz (ou por df):

@ dz = g (x,¥) dx + i (x,v)dy.
7 S vy

No que se segue, referir-nos-emos a (2) simplesmente como a diferencial de z = f'(x, ).
O simbolo Az sera usado para representar a variacdo em f, quando se passa de (x, y) a (x + dx, y +

dy):

Az=f(x+dx,y+dy) —f(x,).
Assim,

Az =dz

sendo a aproximagao tanto melhor quanto menores forem os modulos de dx e dy.
EXEMPLO. Seja z = x*y.
a) Calcule a diferencial.
b) Utilizando a diferencial, calcule um valor aproximado para a variacdo Az em z, quando se passa de x

=ley=2parax=1,02¢ey=2,01.
c¢) Calcule o erro cometido na aproximag¢ao acima.

Solucao
. i ,

a) LS. ﬁ = x%; assim, dz =2xy dx +x dy.
o oy

b) Az = dz ou Az = 2xy dx + x* dy.

Fazendox=1,y=2,dx=0,02 e dy = 0,01 resulta Az = 0,09.

c) Az=(x+dx)*(y+dy) —x*y=(1,02)*(1,01) — 2 =0,091204 (valor exato).
O erro cometido na avaliacdao acima ¢ 0,001204.

Exercicios 11.4

1. Calcule a diferencial.
a) z=x3y2
b) z =x arctg (x +2y)
c) z=senxy
du=es ¢

e) T=In(1+p2+y2)



f) x =arcsen uv
Seja z=xex _yz.
a) Calcule um valor aproximado para a variagdo Az em z, quando se passade x =1e y =1 parax = 1,01 e y = 1,002.

b) Calcule um valor aproximado para z, correspondente a x = 1,01 e y = 1,002.

3. Seja = -.\."_1,' —+ ?"._ V.
a) Calcule a diferencial de z no ponto (1, 8).
b) Calcule um valor aproximado para z, correspondente a x = 1,01 e y =7.9.

¢) Calcule um valor aproximado para a variagdo Az em z, quando se passade x =1e y =8 parax =0,9e y =8,01.

4. Calcule um valor aproximado para a variagdo A4 na area de um retangulo quando os lados variam de x =2 me y =3 m para x = 2,01
mey=297m

5. Uma caixa de forma cilindrica ¢ feita com um material de espessura 0,03 m. As medidas internas sdo: altura 2 m e raio da base 1 m. A
caixa ¢ sem tampa. Calcule um valor aproximado para o volume do material utilizado na caixa.

6. 72
A energia consumida num resistor elétrico ¢ dada por p — "_ watts. Se V=100 volts ¢ R = 10 ohms, calcule um valor aproximado

para a variacdo AP em P, quando V decresce 0,2 volt e R aumenta de 0,01 ohm.

7. A altura de um cone ¢ 4 =20 cm e o raio da base » = 12 cm. Calcule um valor aproximado para a variagdo A} no volume quando 4
aumenta 2 mm e 7 decresce 1 mm.

8. Calcule aproximadamente (1,01)2.03,

9. Um dos catetos de um tridngulo retangulo ¢ x = 3 cm e o outro, y = 4 cm. Calcule um valor aproximado para a variagdo Az na
hipotenusa z, quando x aumenta 0,01 cm e y decresce 0,1 cm.

10. Defina diferencial de uma funcdo de trés variaveis.

11. Calcule a diferencial.

L ] ]
X5 T ; A qam
clw= ——— d)s = (1 + x°PF

b)x = €2u+;1'|'—r2
1 4+ 72

a)w = xyg

12. Calcule aproximadamente _,\_."{{1.[}]].3 + (3.02)% +(3.97)%.

11.5. O VETOR GRADIENTE
Seja z = f(x, y) uma funcdo que admite derivadas parciais em (xo, o). O vetor

, f I f
V flxg.vp) = (i (Xp. Yo ) i (Xp. Yo) |-
\ 0x dy |

denomina-se gradiente de f em (xo, ). Outra notacao usada para o gradiente de f em (xo, yo) €: grad 1 (xo,
Vo). Geometricamente, interpretaremos V/ (xo, yo) como um vetor aplicado no ponto (xo, yo).

EXEMPLO. Seja f (x, y) = x> +y*. Calcule V£ (1, 1) e represente-o geometricamente.

Solucao



Vi(x.y)= (—f v —( ]— (2x, 2y). Assim,
L dx dy

— —

VAALD=@2.2)=2i +2].

v

I_““Au,n

e
X

ks ——

Suponhamos, agora, que f (x, y) seja diferenciavel em (xo, o). Temos:

Fx,y)=f(xg.¥9) + (}%{xﬂ, yo) (X —xg)+ %{xﬂ, o) (¥ —¥yg)+ E(x,¥)

com

. E(x,v)
lim - =
(. ¥) = (X, %) H(x, ¥) — (xp,yo) I

Tendo em vista a igualdade

o

cw (Xp. Yo) (x— xg) + i (X0, ¥0) (¥ —vg)=Vf (xg,vg) [(x,¥) — (xp, y0)]

C',ﬁ:

resulta

J(x. y)= f(xp.¥yp)+ Vf(xg. yo)- [(x. ¥) — (xg. ¥o)] + E(x. y)
com

E(x,¥)
lim
(x, ¥)=(xg, %) (X, ¥) — (X0, ‘L[ﬂ”

Fazendo X = (x, y) e Xo = (X0, o) teremos:
f(X)=f(Xo)+ Vf (Xo) (X — Xo)+ E(X)
com

1 E(X)
lim —=
X=X, |[X— Xo|



Ja vimos que se f(x) for fungdo de varidvel real e diferenciavel em x,, entdo
fx)=flxg) +f (xp) (x —xg) + E (x)
com

' E(x)
lim ———=
x—x; | X — Xp|

Sendo f'(x, y) diferenciavel em (x,, yo), nada mais natural, entdo, do que definir a derivada de f em
(x0, y0) por: 1" (x0, y0) =V f(x0, o). Assim, a derivada de /' (x, y) em (x, o) € o gradiente de f'em (xo, o).

Mais adiante, destacaremos as principais propriedades do vetor gradiente.

Exercicios 11.5

1. Calcule V £ (x, y) sendo f (x, y) =
a) x2y
b) €x2 - y2

o) X
.1;
d) i

arctg —
.

2. Defina gradiente de uma fungéo de trés variaveis. Calcule V f (x, y, z) sendo f (x, y, z) =
a) H;'le + _1.'3.+ 72
b) x2+y2+ 22
c) (x2+y2+1)°
d) i

z arctg —
.

3. Seja f (x,y) =x2 —y2. Represente geometricamente V 1 (x0, y0), sendo (x0, y0) =
a) (1,1)
by (=1, 1)
c(—1,-1
d) (1, 1)

X 2 2
Seja f'(x, y) = arctg —. Represente geometricamente V /' (x ,y ), sendo (x ,y ) um ponto da circunferéncia x +y =1.
y 00 00

5. Sejaf(x,y)=x2+yp2esejay ()= (x (¢),y () uma curva diferencidvel cuja imagem esta contida na curva de nivel f (x, y) = 1, isto ¢,
para todo ¢ no dominio de y, /' (x (¢), y (¢)) = 1 (dé exemplo de uma tal curva). Seja y (f0) = (x0, y0). Prove que y’ (t0) -+ V f (x0, y0) = 0.
Interprete geometricamente.

(Sugestao: para todo ¢ no dominio de 7, (x (£))2 + (y (¢))2 = 1; derive em relagdo a ¢ e faca ¢ = 1.)

6. Sejaf(x,y,z)=x2+y2+z2esejay ()= (x(?),y (¢),z () uma curva diferencial cuja imagem estd contida na superficie de nivel x2 +
y2+z2=1. Seja y (t0) = (x0, v0, z0). Prove que y' (t0) - V 1 (x0, y0, z0) = 0. Interprete geometricamente.

7. Calcule f' (x,y) sendo f (x,y) =



10.

11.

a) xy
b) 2x~y
x
) xtg—
.1;
d) arcsen xy

Seja f (x,y) =xy e seja y (f) = (x (¢), y (f), t € I, uma curva diferencidvel cuja imagem estd contida na curva de nivel f (x, y) = 2.
Mostre que para todo ¢ em I,y (¢): V £ (y (¢)) = 0. D& exemplo de uma curva cuja imagem esteja contida na curva de nivel xy = 2.

Sejam f (x,y) =y —x2 e y ({) = (sen ¢, sen? {).

@) Verifique que a imagem de y esta contida na curva de nivel y —x2 = 0.
b) Desenhe a imagem de y.

¢) Verifique que para todo ¢,y (¢) - V f (y (¢)) =0.
Seja f'(x, y, z) = x2 +4y2 + 922,
a) Dé exemplo de uma curva y (¢), diferencidvel, cuja imagem esteja contida na superficie de nivel x2 +4y2 +9z2 = 1.

b) Verifique que V 1 (y (¢)) - ' (£) = 0. Interprete geometricamente.

Considere a fungdo f'(x, y,z) =x2 +4y2 + 922 e seja y (£) = (x (¢), y (¢), y (¥)) uma curva diferenciavel qualquer, com imagem contida
na superficie de nivel x2 + 4y2 + 922 = 1, e tal que y (¢0) = (x0, 0, 20).

a) Prove que V f (x0, y0, z0). y' (t0) = 0.
b) Determine a equagdo do plano tangente a superficie de nivel dada, no ponto (xo, y0, z0).

¢) Determine a equagdo do plano tangente a superficie de nivel x2 + 4y2 + 922 = 14, no ponto (1, 1, 1).




12

REGRA DA CADEIA

12.1. REGRA DA CADEIA

Sejam £ (x, ) uma fun¢do definida num aberto do R?, y (f) uma curva definida num intervalo /, tais que
y (t) € Dypara todo ¢t € 1. Nosso objetivo a seguir ¢ provar que, se f e y forem diferenciaveis, entdo a
composta F' (1) =f (y (1)) sera, também, diferenciavel e vale a regra da cadeia

Fr@=Viy@) - yQ®

onde V f(y (¢)) (¢) - y' (¢) é o produto escalar dos vetores V f'(y (¢)) e y' (¢).
Vamos precisar do seguinte lema.

Lema. Se f: 4 C [J2 — [}, 4 aberto, for diferenciavel em Xo € A4, entdo existira uma fungdo ¢ (X) definida em A4 tal que

S (X) = f(X0) =V f(X0) - (X—X0) + ¢ (X) || X~ X0 |
com lim ¢ (X)=0= ¢ (Xy).

XX,

Demonstracdo

Sendo f diferenciavel em X, tem-se

JX) —f(Xo) =V f(Xo) - (X~ Xo) + E(X)

com

; E(X)
lim

W o AP
X— X IX-— Xyl
Tomando-se

E(X)

P R N X
(P(X\}: ||X_X(}||

0 se X=X,



segue a nossa afirmacao. Observe que ¢ (X) ¢ continua em Xj.

Note que no lema acima nada muda se supusermos f uma funcao de n variaveis.

Antes de enunciar ¢ demonstrar a regra da cadeia para derivagdo da composta de uma fungdo de duas
varidveis com uma curva, vejamos o seguinte exemplo.

EXEMPLO 1. Scjamf'(x, y) =xy e y () = (£, £*). Considere a composta F (¢) = f (y (¢)).

a) Calcule F (¢).
b) Calcule F' (¢) e verifique que F' (t) =V f(y (¢)) - y' (¢).

Solugdo
a) F (1) =f(y (¢)) =f (£, £*) = £. Observe que F fornece os valores que f (x, y) assume nos pontos da

curva y (1) = (£, ).

":-Jf r?f 3 2 2 3 2
DYVf(x,y) = (&_ &_ } = (y.x); segue que V (¢ ,¢)=(t,t). Por outro lado, y' (#) = (3¢, 2¢). Assim,
L dx ay

Vi@ vy @)= 7F) 35 2) =3¢ +2¢
ou seja,

Vi @)y (@=5=F ().

Teorema. Sejam f: A C [J2 — [}, A aberto, e y : I — [[2, tais que y (t) € A para todo t no intervalo I. Nestas condi¢des, se y for
diferenciavel em to e fem Xo =y (to), entdo a composta F (t) = f (y (¢t)) sera diferenciavel em to e vale a regra da cadeia

F'(10) =V f(y (10)) - y" (20).

Demonstracdo

Pelo lema, para todo X € A4,
@ fFEO—fX)=ViXp - X—Xp)+eX)IX—Xpl
onde

lim ¢ (X) =0 = ¢ (Xy).
X—) Xl:l

Substituindo em (1) X por y (¢) e X, por y (%) e dividindo por ¢ — fo, ¢ # to, vem



(vt — flylig) 1)y— yity) My )y = (i )l
Fly(@®) — fly(to)) :v-f{,},(rﬂ)}, y( YU + @ (y () Y Yo 1
r—1p I—1Ip r—1Ip
Observe que
ly() =yl _ 1=yl | y() = y(to)
t—to t—to t—ty '
De
limitada
O Nt 1o (1) — v (o)
lim e/ 10=0 e lim | XLTYTOL g
P— 1ty r‘— ﬁ}, F— 1y r—1in '
resulta
. (t)— vitg)
im oy XO—Y@| _
t—1p IF_IQ
Logo,
Fry= lim O _ yp JOOIZTOED) _ gy y)- v’ (). m
t— I —=1p r—=i =1y

A demonstracdo do teorema acima ¢ exatamente a mesma, se substituirmos f de duas varidveis por f
de n variaveis.

Segue desse tltimo teorema que se f for diferenciavel em 4 C R e diferenciavel em I, entdo a
composta F' (1) =f (y (1)) seréa diferencidvel e, para todo ¢ em /,

F'@=Vf@®) -y Q.

Fazendo y (¢) = (x (¢), y (¢)) e lembrando que

. 2 2 , [ dx dy )
Vi(y @) = (ﬂ(x{r‘}. v, 2L (xv), y{rﬂ ey’ (1) = L—r.—-‘ .
L dX ay ) dt dt )
resulta
dF d. d 1y
—() = A5, (x(1), v(1)) e 2L (x (1), ¥(1)) il
dt ax dt  dy dr

Escreveremos com frequéncia

daF _af dv | af dy
dt  dx dt gy dt



ficando subentendido que 44 e o

? ? devem ser calculados em (x (7), y (¢)) quando 4F for calculado em .
dx  dy ‘

Com frequéncia, ocorrerao, ainda, problemas do seguinte tipo: sdo dadas as fungdes diferenciaveis z

=f(x,),x=x(t) e y=y(t) e pede-se calcular ‘j:. Evidentemente, o que se deseja ¢ a derivada da
df

composta z =f(x (2)), y (¢)). Assim:

dz d af dx df dy
—_ {-.].-, 1|r~} —_ v + i o SR
dt dt L7 (%3] o

x dt dy dt
ou ainda,

dz dz dx a7
dt  dx dt gy dt

Tudo se passa da mesma forma no caso em que /¢ uma funcdo de trés ou mais variaveis.

EXEMPLO 2. Sejamz = xzy, Xx=ei e y=2t+ 1. Calcule i

dt
Solucao

1.° processo

o) P
z =.¥2}-',.1'= el” ey=2t+1=z=¢e“" (2t + 1).

d«- 2 . ) 2
= 4162 (2t + 1) + 22
dt
ou seja,
{I'E'. .2 3
= 2e2° [4F + 2t + 1],
dr

2.°processo (regra da cadeia)

Assim,

ou seja,



dE.' 2 f-f v, 2 vy 2 7 :
= = 4te’ (2t + e’ + 2e*" = 2T [4t° + 2t + 1. s
t

EXEMPLO 3. Seja F () = f (e, sen t), onde £ (x, y) é uma funcdo dada, diferenciavel em [@°.

a) Expresse F" (f) em termos das derivadas parciais de /.
b) Calcule F' (0) supondo % (1,0)=>5.

Solucao

a) F(t)=f(x,y)onde x=ei e y =sent.

dF d d
- = f V) _‘f 4 _f (x, } il iy
di gx dt dy dt
Dai
F'(f) = ¥ (E?I;—, sen f) 2te!” + 97 (e’ , sen f) cos f.
dx Jay

by F'(0) = r;—’?‘{1 0)-0+ rr‘i—fl['l"IZl'“}- 1; logo
a‘.

F'(0)=5.

EXEMPLO 4. z =f(x% 3x + 1), onde f (1, v) ¢ uma fun¢do de classe C' em[@’.

dz

dx

— 29 ey +32 4.

¢ b PR du v

Solucao

Sendo f (u, v) de classe C' em %, f (u, v) sera diferenciavel em B*; u = x* ¢ v = 3x + 1 também sio
diferenciaveis. Podemos entdo, aplicar a regra da cadeia.

a)z=f(u,v),ux’*ev=3x+1.

dx r? u dx dv dx’

ou seja,



dz _ ﬁ{x ’3_1'+]}+35‘f {.1{2.3.1.’4-]]'.
dx u v

b) Fazendo x = 1 na expressdo anterior, obtemos:

@z —29 1 y+3% 149 .
dx|, — Au av

EXEMPLO 5. Seja g (x) = f (x, x’ + 2), onde f (x, y) ¢ uma fungdo dada, definida e diferencidvel num
aberto do B*. Expresse g’ (x) em termos das derivadas parciais de f.

Solucao

g (x)=f(x,y) onde y =x° + 2.

s af dx af dy
i i 700 Wl it 70 B
& dx Codx gy dx
ou seja,
ghx)= a7, (x. x> 4 2) + 3x% ar (x, x© + 2% m
dx ay

EXEMPLO 6. Suponha f(x, y) diferenciavel e que, para todo x,
f(Bx+1,3x—1)=4.

: o
Verifique que % Bx+1,3x—1)=— i (B4 1;3x = 1).

Solucao
Para evitar confusdo com as varidveis, vamos primeiro substituir x por ¢. Assim, para todo ¢,
f@Bt+1,3t—1)=4.
Derivando emrelagao a ¢ os dois membros obtemos:

L3 A3+ 1, 38— 1)]=10
dt

Como
i[f{_'err 1. 3t—1)]= ﬁ{ﬂﬂr 1, 3t~ I‘,r— 4 §—f{1r+l 3t — Hﬂ
d ax dt dy dt
af df

=3 — 3+ 1.3—1H+3 — 3Br+1.3t— 1)
ax dy



teremos, para todo ¢,

39 13- +3 L Gre1,3-1=0,
Jx ay
ou seja,
i Bt+ 1.3t— 1) = ~9F 3141,3t- 1).
ax dy
Segue que, para todo x,
af

o BxF+1,3x=1)= —a—f (Bx+1,3x—1).
dx ay

Observacao. Sejam f (x, v), g (x) e & (x) fungdes diferencidveis e seja y (x) = (g (x), & (x)). Assim,

S (g ), h(x)=f(y ()

Pela regra da cadeia

“, [flgx)hhx)]= X [Fy () ]1=VF(y(x)- vy (x)
dx dx

ou seja,

; ; i R
£ [Fflg(x)h(x)]= ';—f (g(x),h(x) g (x)+ ﬂ (g (x), h(x)) A" (x).
dx dx ay

Vamos, agora, resolver o exemplo anterior trabalhando diretamente com a equagao
fBx+1,3x—1)=4.
Derivando emrelagao a x os dois membros, obtemos:

2 [FfBx+1,3x—1)]=0.
dx

Como (veja observacao acima)

d J
— [fBx+ 1L.3x—1)] = 2], (x+1,3x=103x+ 1)+ of Bx+ 1,3x—1)3x—1)
dx dx ay
=3ﬁi3.1‘+ 1, 3x — I)+3ﬁ{3x+ 1, 313}
dx ay

resulta:



r?—f('j_x'-l- I 3x—1)= —ﬁ(;h'-l- I 8= ) []
ax ay

EXEMPLO 7.z = f (e u, uz), onde f (x, y) ¢ uma funcao diferenciavel dada. Expresse 92 em termos das

dit
derivadas parciais de f.

Solucao
z=f(x,y)ondex=euey=1u

z 7 ( 7
d‘.:rf s dx rf

du dx " du dy 7 du
ou seja,

dz - ‘ af

B et Bl y) + 2u LA (x. )

du dx dy

ondex=euey=u’
m

EXEMPLO 8. Scjam A4 ¢ B abertos do [, f (x, y) diferencidvel em 4, g (u, v) € h (u, v) diferencidveis
em B tais que, para todo (v, v) em B, (g (u, v), h (u, v)) € A. Seja

Fu,v)=f(gWu,v),h(u,v)),(u,v)E€B.

(Observe que a mudanga de variaveis x =g (u, v) € y = h (u, v) transforma a fungao de duas variaveis z =
f (x, y) na fungdo de duas variaveis

z=F(u,v)=1(g u,v), h(u,v).)

Mostre que
dF df dx df ay a4z d. af ady S af

a) — = I 9 + I 9y (c-u % 9F 03 + J 9 W onde 9 e 9 devem
Ju dx du av  du du  dx du  dy du | dx ady

ser calculadas no ponto (g (u, v), & (u, v)).

dF  af dx  df ay ( dz  df dx df é‘y]
b) = + ou — = + —= L

av dx av dy av dv  dx dv a3y dv
Solucao

a) F(u,v)=f(x,y)onde x =g (u, v) e y = h (u, v). Para calcular ﬂ vamos aplicar a regra da cadeia,
ol
olhando v como constante; tudo se passa como se x ¢ y dependessem apenas de u:



du ax au r_?jn ﬂu
ondex=g (u,v)ey=nh(u,v).
Cuidado. Escrevemos L e 9y e nio ax e =l por se tratarem de derivadas parciais.
du  du du  du

F
b) Para calcular 9L amos aplicar a regra da cadeia, olhando u como constante; tudo se passa como se x
av

e y dependessem apenas de v:

OF _ 9f (5 9% 4 8F

1} —
av n?,x' av ay a\

ondex=g (u,v)ey=nh(u,v).

u
EXEMPLO 9.z = /' (i’ R
du  dv
termos das derivadas parciais de f.
Solucao
: ) )
z=flx,v)londex =u~+ v ey = uv.
% = ﬂ{ ]|ﬂ 4= —f{ ]|ﬁ = 2u a—f{u + 12 , Wv) + v ﬁ{uj—i- 1-'3,m-'}.
du X au ay au X ay
&z:ﬂ{ }ﬂ—i-&—f{ }——2 —f{rx}-l—ua—f{,xﬁ,}
av dx av dy v dx ay
onde x =u*+Vv' ey =uv.
u

EXEMPLO 10. F (r, 0) =f(x,y) onde x =7 cos @ ¢ y = r sen 6, sendo f (x, y) uma fungao diferenciavel
dada. Verifique que

‘?_f (x,y) = cos E (r. @) + sen 6' — = (r 7).
a6 ar

av ' r
Solucao
Wity =2 oy g U iy 92
ar ax ar ay ar

ou



™ El[.= H}—Lmﬁﬁ{t v) + sen @ f(x V).
ar ax dy
dF af 79X d f é‘\-‘
—(r, 0 = () e :
a6 fid dx a6 Ay 96
ou
F J '
Lo (r,8)= —rsen @ At (x.v) + rcos @ L2 (X, ¥)
a6 dx ay
ou
@ L@ (r.8) = —sen 6 af (x,¥) + cos @ L (x, ¥).
ro 30 ax ay

Multiplicando (1) por sen 6, (2) por cos € e somando membro a membro obtemos a relagdo que
queriamos.

EXEMPLO 11. Suponha z = £ (x, ) de classe C, f(1.2) = — ‘;f (9= ”:ei—f (1, 2) = 4. Admita

que a imagem da curva y (¢) = (%, 3t — 1, z (¢)), t € R, esteja contida no grafico de f.

a) Calcule z (¢).
b) Ache a equacdo da reta tangente a y no ponto y (1).

Solucao

a) (x,y,z) € Gr= z=f(x,y). Como a imagem de esta contida no grafico de f, para todo 7, (#*, 3t — 1, z
(1) € G logo, z (1) =f (¢, 3t — 1).

() = (e}, wit), z(2)

(x(t), v(1))
X

b) A equacdo da reta tangente no ponto y (1) é:

(x,y,2)=y (D) +4y'(1), 4 €ER.



Temos:

w1y =(1,2,Zz{1= (1,2, 7{1,2)) =(1,2,-2);

Y (1) = (21‘. 3. ca ]:

dt
:=;‘{ i Bl )=s L ,h—I}—+a—f{ I}ﬂ
dt dx dt ay dt
dz df df -
=u2L P3t-1)+3 = 18. Segue que
dt ax ay dr‘ t=1 e d
Y (D) =(2,3, 18).
A equacdo da reta tangente €, entdo,
6y, 2)=(1,2,-2)+A(2,3,18),A € R =

O proximo exemplo mostra-nos que se for uma curva qualquer, diferencidvel em #,, cuja imagem esta
contida no grafico da funcao f'(x, y), diferenciavel em (xo, o), entdo a reta tangente y no ponto y (¢y) = (xo,
Vo, f (X0, Vo)) estd contida no plano tangente em (xo, yo, f (X0, }0))-

EXEMPLO 12. Seja f (x, y) diferencidvel em (xo, 10), y (#) uma curva diferenciavel em ¢y, cuja imagem
esta contida no grafico de f. Seja y () = (xo, Vo, f (X0, ¥0)). Entdo a reta tangente a y no ponto y (#y) esta
contida no plano tangente ao grafico de f no ponto y (7).

Solucao

Seja y (1) = (x (¢), v (¢), z (¢)); como a imagem de y esta contida no grafico de f

z () =f(x(0),y ().

Sendo f diferenciavel em (xo, 10), x (¢) € y (¢) diferenciaveis em ¢y, podemos aplicar a regra da cadeia
para obter z' (#):

' af , df :
Z (fg) = —— (xg, Yo) X" (fg) + —— (xg, ¥g) ¥ (fp).
D (fo) = =~ (x0. Y0) ¥' (fo 5y (0 Y0)Y (o
A equacdo da reta tangente emy () €:
(x, ¥, 2) = (xg. Yo, f(xg: ¥o)) + A (X" (fg), ¥' (1), 2’ (tp)), A € R.

Precisamos mostrar que, para todo 4, o ponto

(xg + AX" (g). ¥g T AY' (1), [ (xg. ¥g) + AZ" (7))



pertence ao plano

@

Basta mostrar, entdo, que fazendo em (2) x = xo + Ax' (o) € y = yo + 4y’ (¢o) obteremos z = f (xo, yo) + Az’

: d af .
2= (X ¥p) T a—i (xg. Yo) (x — xp) + f (Xp. ¥p) (¥ — »o)-

(t0). De fato, para x = xo + Ax' (t9) € y = yo + 4y’ (¢o) temos:

. af . }
z = f (xp. .1"'11}) + r;_‘}; (Xps ,"r’{}\} Ax {f{}\l' + r;—{ (Xp. ¥g) Ay 'l(fﬂ.)‘

ou seja,

7= flxp.yg) + A {ﬂ (xg. vo) x" () + Ll (xp. yo) V' (fg) |:
ax ay

tendo em vista (1)

Exercicios 12.1

Z = f(xg. yg) T AZ' ().

(Todas as fungdes sdo supostas de classe C1 ou diferenciaveis, quando necessario.)

1.

Calcule 25 pelos dois processos descritos no Exemplo 2.
dt

a) z=senxy,x =3tey==~.
b) z=x2+3y2,x =sentey=cos t.
¢) z=In(1+x2+y2),x=sen3tey=cos 3t
Seja g (f) =f (3,22 — 1).
a) Expresse g’ (f) em termos das derivadas parciais de f.
b) Calcule g’ (0) admitindo::—f 0, -1 = l}
X 3

iz . ..
Expresse 25 em termos das derivadas parciais de £, sendoz =f (x, y) e
dt

a)x=~ey=3t

b) x =sen3te y =cos 2t.

2 3 af af
Suponha que, para todo #, f' (¢ ,2f) =t — 3t. Mostre que — (1.2) = — —
ax ay
Suponha que, para todo x, f (3x, x3) = arctg x.
g f':’l
D Careute 2L 3. 1) admitindo a G, 1) =2.
ax AV

b) Determine a equagdo do plano tangente ao grafico de f no ponto (3, 1, (3, 1)).

Admita que, para todo (x, y),



ay & 2f

— xy—x—@xy=2
ax ay

Calcule g’ (f), sendo g (f) =f (2 cos t, sen ?).

7. Admita que, para todo (x, y),
d d
4y L (x,y) —x L2 (x, y) = 0.

ax ay

Prove que f ¢ constante sobre a elipse ks + ~.,~2 =1.

(Sugestdo: Observe que a funcdo g do exercicio anterior fornece os valores de f sobre a elipse.)

8. A imagem da curva y (f) = (2¢, £2, z (¢f)) estd contida no grafico de z = f (x, y). Sabe-se que f (2, 1)

B s : L2 : .
;5'_ 2 1y=:1% 5'_ (2.1) = —1. Determine a equagdo da reta tangente a y no ponto y (1).
x y
9. Admita que, para todo (x, y),
d
X f (x,v) — ¥ 9 (x,y) =0.
dx ay
" T
Mostre que g (1) =.ft b= J t = 0, € constante.
f

0. . 2 dz adz ) .

Sejaz=f(u+2v,u —v). Expresse — & — em termos das derivadas parciais de f.

dit dv

11. Sejaz=f(u —v,v —u). Verifique que

az az
+ — =1L
du av
12. x y dF dF
Considere a fun¢do F (x, y) = f | —. — | Mostre que ¥ — +y — =0
' y X dx Ay

13. Prove que a funcdo u =f (x + at,y + bf), a e b constantes, € solugdo da equagao as derivadas parciais

au au i
— =g — + b —.

at dx dy

2 2 3 1z . -
4 Sejaz=t f(x,y),ondex =t ey =t .Expresse 25 em termos das derivadas parciais de f.
dt

15. Seja g dada por g (¥) =f (x, y) sen 3¢, onde x = 2t e y = 3¢. Verifique que

. af a
g (1) =3f(x.y)cos 3t + sen 3t | 2 o (x,y)+3 of (x. y) |

dx ay
onde x =2te y =3t.

16. Sejaz=uf(u —v,u +v). Verifique que

dut v ay '



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

ondex=u—-vey=u+v.

Seja g (x,y) =2 +2) f(u,v),onde u=2x —y e v=x +2y. Mostre que

d 7 d a
28 2xf(u,v) +(x" + _\*3} [ 2 9 + a1 }
dx au av
Seja g (x) uma funcdo diferenciavel tal que f (x, g (x)) =0, para todo x € Dg. Mostre que
of ( (x))
—(x, glx
i ¢ o ——
— (x. g(x))
ay

7
para todo x = DH‘ com i (x. g (x)) # 0.
fe {'5'}'

. L ag . OF
f(©) e g (x,y) sdo fungdes diferenciaveis tais que g (¢, 1 (£)) = 0, para todo ¢. Suponha f (0) = 1, {?— (0,1)=2e ﬂ_ (0,1)=4.
X y

Determine a equagdo da reta tangente a y (¢) = (¢, f (£)), no ponto y (0).

f(x,y, 2) e g (x,y) sdo fungdes diferenciaveis tais que, para todo (x, y) no dominio de g, f (x, ¥, g (x, ¥)) = 0. Suponha

a
g(l.1)=3, —(1,1,3)=12, —f{i. I.3)=5e —(1.1.3) = 10. Determine a equagdo do plano tangente ao grafico de g no
ax ay az
ponto (1, 1, 3).
. 2 3 2 af
Seja g (1)=f (3t ,t , e 1); suponha (0,0,1)=4.

el
&

a) Expresse g’ (f) em termos das derivadas parciais de f.
b) Calcule g’ (0).

2 d d
Seja g (x,y)=xf(x +y,2y,2x —y). Expresse ﬁ_? e ﬂ—g em termos das derivadas parciais de f.
X ¥
2 2 il T
Suponha que, para todo (x, y), f (x,y,x +y )= 0. Mostre que ﬂ_ (1.1.2)= ﬂ_ (1,1,2),
X y
i X v z
Seja F' (x, v, 7) =f( — =, — w Mostre que
5 NS g
F dF F
,rﬂ—-l-_v— +:§—=ﬂ.
adx ay az
. . ., 2 aF
Seja F (u, v) diferencidvel em [} , com — (u, v) 3 (), para todo (u, v). Suponha que, para todo (x, ), F' (xy, z) = 0, onde z = z (x,
av
az a7
»). Mostre que ¥ — — ¥ =0.
ax ay

Seja f (x, y) diferencidvel e homogénea de grau 4 no aberto 4. Prove:

d d —Ji
a) a of (af, bt)+ b ﬂ—f (at. bt) = A" l.,l‘{a.h]l para todo t = 0 e para todo (a. b) = A, com
dx ¥
(at, bt) € A.
b) (Relagdo de Euler.) Conclua de a) que



27.

28.

29.

30.

31

32.

33.

34.

X of + ¥ ﬂ=.&f.

dx  dy
(Sugestdo para a): Derive em relacdo a ¢ os dois membros de f (at, bt) =t f (a, b).)

Seja f (x, y) definida e diferenciavel na bola aberta 4. Suponha que f verifica em A4 a relagdo de Euler

af & |
Ly L wp=array.

dx ay
Prove que f ¢ homogénea de grau /.
P (at, br) |
( Sugestio: Mostre que g (f) = f—A ¢ constante.
f
. . . g X ) . ﬂf ﬂf -~
Seja ¢ (1) uma fungdo diferencidvel qualquer. A fungdo f(x,y) =x" ¢ | — | verifica a relagdo de Euler X (5'_ +y (3‘_ "
) i X y
Por qué?
X ,
=, . X i ( X
e’ arctg — + sen | cos — .
g _ V 4 H = - , ﬂf l’j'f — ] . a7
Flxiyl = -4 verifica aequagiox — + y — = —f 7?7 Por qué?
_1:'_1_; 1 }_\3 ax ay
. . . af af
Determine uma familia de fungdes que verifique a equacdo X ﬂ_ +y ;i'_ =0,
X V
. y R df . o
Suponha f (x, y) diferencidvel no aberto 4 e homogénea de grau A. Prove que —— ¢ homogénea de grau A — 1, isto &, que
: o X
Bf o ox a1 8F .
— (tx,1v) = —— {x., v) para todo ¢ > 0, e para todo (x, y) em 4 com (x, ty) € A.
ax ) ax

(Sugestdo: Derive em relagdo a x os dois membros de f (tx, 1) = 4. f (x, y).)

Seja f'(x, y) definida em [[}2, diferenciavel em (0, 0) e tal que f (#x, ty) = f (x, ) para todo ¢ € [} e todo (x, y) € [}2. Prove que f ¢
linear, isto €, que existem reais a e b tais que f (x, y) = ax + by.
x°
se (x, y) # (0, 0)
x< +y°
Seja f(x, v) =

0 se (x, y)=1(0,0)

a) Verifique que f (tx, ty) =t f (x, y) para todo ¢ e todo (x, y).

b) Olhe para o Exercicio 32 e responda: f ¢ diferenciavel em (0, 0)? Por qué?

Seja f'(x, y) diferenciavel em [[J2 e tal que para todo (x, y) em [[}2

@ ar (x, y) + 4 (x,y) =0.

dx ay

i) 2
a) Verifique que a funcdo g (u, v) dada por g (4, v) =f(x,y),onde x =u +vey=u, ¢ tal que g8 _ Oem[R . Conclua que g (1, v) =

i
@ (v) para alguma fung¢ao ¢, definida e diferencidvel em [[J.

b) Determine uma familia de solugdes da equagao @



X TR arctg (sen (% — ¥)) FIn 14 (x— _‘a-‘]':'l

(x= }‘}2 + 5

o) flx,y)=

verifica (1)7 (Nio precisa fazer contas!)
F

12.2. DERIVACAO DE FUNCOES DEFINIDAS IMPLICITAMENTE. TEOREMA
DAS FUNCOES IMPLICITAS

Como ja vimos, a fungdo y = g (x) ¢ definida implicitamente pela equagao f'(x, y) = 0 se, para todo x
€ D,,

f(x, g(x)=0.

Admitindo que f ¢ g sejam diferenciaveis, vamos deduzir uma formula para o calculo de g’ (x) em todo x

3f

€ D, para os quais F) (x, g (x)) # 0. Entdo, derivando em relacdo a x os dois membros da equacao
g y
anterior, obtemos,
v

——

5 | y
—[f(x, g(x))]=0
dx

ou

ar dx df
—— xegXx) —+ — (xg@XNg'®=0
oy 8 ) 7y g (X)) g

e, portanto,

ﬂ—f_ (x,¥)

IH: {'{.’]‘ i j-}_—‘ V=g (x),
— (x, ."'!}
ady

desde que E;—f (x, g (x)) # 0.
."':‘

Da mesma forma, x = 4 () ¢ definida implicitamente pela equacao f'(x, y) =0 se, para todo y € Dy,

S (h(»),y)=0.

Supondo f'e 4 diferenciaveis e derivando os dois membros da equagdo acima emrelagdo a y, obtemos:

d
— [ f(h(yv) W)]=0
ﬂf}\ g

X



ou

aj. (x, ¥) I+, i+ a. (x, ¥) D . 0
ax ’ d_\; I,_f_;l}.' d_\;
e, portanto,
i i—j (x, ¥)
& - é‘} ,x=h(y),
dy —(x, ¥
dx

em todo y € D, com i—f (h(v),v) #0.
X

EXEMPLO 1. A fungao diferenciavel y =y (x) ¢ definida implicitamente pela equagao

Yy +xy+x =3.

Expresse % em termos de x e de y.
X

Solucao

1.° processo

f (x.y)

df
dy ax (, ¥) y + 3x2
B mii?
dx ﬂ (x, v) 3ys + x

7y

ou seja,
dy _ y+ 3x2
dx 3y2 + x

em todo x no dominio de y =y (x), com 3 (y (x))* +x # 0.

2.° processo



d d

—[1 +n+r]——{’§)

dx dx

WD i P p3220

dx dx
ou

h y + 3x2
===l B
dx 3y=k 3

EXEMPLO 2. Suponha que a funcao diferenciavel z = g (x, y) seja dada implicitamente pela equacao f
(x, v, z) = 0, onde f ¢ diferenciavel num aberto de [’. Verifique que

—f (x, ¥,:2)
a) oz _ _dx
J.f‘
Jx (x. y. 2)
Ja.f
emtodo (x, y) € D, com (x. v, g(x,y) # 0.
g Z
55 a—f (x, ¥,:2)
by o= }
ay (x, ¥, 2)
df

emtodo (x,y) € D, com
g Z

(x, v, g(x, ) #0.

Solucao

a) Para todo (x, y) € D,
D flx, v, g (x,v))=0.

Derivando em relagdo a x os dois membros da equacao, obtemos:

J =
——LF(x. 5 g(x y)1=0
dx

ou

af (rm"‘r—{)-l-ﬁ(,x\”‘}i(}-i-ﬂ{‘cx"}ﬁ—{)

ax dx ay dx dz o X

COmo L (x)=1e 8, (v) = 0, resulta
dx ax



: 9
a —f (x, v, 2)

ey

b) Derivando os dois membros de (1) emrelagdo a y, obtemos

5 [f(x, ¥ g(x,¥)]=10
.‘l'?

ou
0 1
,g " ”
ﬁ{x’x"}—{}-l-—ffxm"}i{}-l-a—f{ Z) =0
ax dy ay ay az ay
e, portanto,
af (x, ¥, 2)
dz _ _ dy
9) af (x; ¥,2)
az

EXEMPLO 3. A fungao diferenciavel z =z (x, y) € dada implicitamente pela equacao

xyz+x +y +22 =35,

dx
Solucao

1.° processo

3 : .
xyz + x- +}r-]'+3-1'—:&=ﬂ

I x, ¥, Z)
Pela parte a) do exemplo anterior
Iz ax (x, ¥, 2) vz + 3x2
R . = -
R NI

2.° processo



dx P
assim,
¥z + xy 9 32432 9% _y
ox X
ou seja,
dz vz + 3yl
—_— — = —. .
I.';I.r '{_‘I\"-i— 3:{:..,

EXEMPLO 4. As fungdes diferenciaveis y =y (x) e z = z (x), definidas no intervalo aberto /, sdo dadas
implicitamente pelo sistema

Fix.y, 70 =0
® {G{x, ¥, 23 =10

N ) C, . 3 dv  dz
onde F' e G sdo supostas diferenciaveis num aberto de [ . Expresse — e

dx dx

em termos das derivadas

parciais de F'e de G.
Solucao

Dizer que y =y (x) e z =z (x) estdo definidas implicitamente por (1) significa que, para todo x em /,
@ F(x,y(x),z(x) =0 e G(x,y(x),z(x)) =0,

ou seja, significa que a imagem da curva y (x) = (x, y (x), z (x)) esta contida na intersecdo das superficies
Fx,y,2)=0e G (x,y,2)=0.

Gy, 20=0

Para obter 4y e dz

dx dx

, vamos derivar emrelacdo a x os dois membros de (2). Temos, entao:



oflgx, 08 dy ., dF v
dx dx dy dx o0z dx

4G dx | 3G dy | G dz _
| dx dx dy dx dz dx

ou seja,

Ed}-‘_i_ dF dz _ _JF

ay dx  dz dx dx
9G dy , 3G dz __ 3G
dv dx 9z dx J X
Pela regra de Cramer,
OF OF oF  JF
dx 0z o o
dG  dG dG  JdG
dy _ _|dx  dz dz _ dv o
dx JF g dx oF oF
ad  dz &z
dG  dG dG  dG
v dz oy 0z
IF 3F
dy 0z
para todo x € I, com # 0 em(x, y (x), z (x)).
dG dG
dy 0z
< , d (F,G) , L . : : ~
Notacgdes. O simbolo Y ¢ usado para indicar o determinante jacobiano de F'e G emrelagdoay e
¥iZ
z:
dF oF

F:.J{F, G} = I’.?"l" I’.?:

I3 196G 4G
dy dz

Da mesma forma:



IF JF JF IF

PG _(® Pz gFG) |

d (x, 2) 3G a6 d (v, x) aG 4G
ax  dz dy dx
Com estas notagdes, o e % e escrevem:
de  dx
d (F, G) d (F, G)
dy 9 (x2) dz 4 (wx) . .
ix  d(FG ° o 4(F.G
d (¥, 2) d (¥, Z)

EXEMPLO 5. Sejamy =y (x) e z =z (x) diferenciaveis em [ e dadas implicitamente pelo sistema

2x+ty—g=3

@

X+ Y+ r=],

a) Calcule L e df'.
dy  dx

b) Determine um par de fungdes y =y (x) e z =z (x) que sejam dadas implicitamente pelo sistema ().
Solucao

g

dv d . . ~
a) Para obtermos — e —, vamos derivar os dois membros de (1) em relacdo a x, observando que y e z

dx dx
sao funcoes de x:
A, [2x+y—z]= = [3]. ou seja, 2 + B 2w
dx dx dx dx
A, [x +y4g] = b [1]. ou seja, 1 + L) + az _ 0.
dx dx dx dx
Assim,
1y 7
dy d —_—
dy  dx
dy | dz sl
dx  dx '

Resolvendo o sistema obtemos:



dy _ 3 d_ 1
dx 2 de 2
(Sugerimos ao leitor calcular ? e j?' utilizando o exemplo anterior.)
X ‘5
[¥ilg= 3D
b) (D) é equivalente a
yvtz=1—x

Resolvendo o sistema nas incognitas y € z obtemos:

Observe que a imagem de
3 1
(x) = ( L W el I s ]
4 . 2 24

¢ a reta na interse¢do dos planos 2x +y—z=3ex+y+z=1.

EXEMPLO 6. Sejamy =y (x) e z =z (x), z > 0, diferenciaveis e dadas implicitamente pelo sistema

7

,1'“+}-'2+;2=]

a) Expresse By e d
dx  dx

emtermos de x, y e z.

b) Expresse y e z em funcao de x.
c) Desenhe a imagem da curva y (x) = (x, y (x), z (x)).

Solucao

I a : d dy iz
a) et B }-‘3 + :3] = — [1]., ou seja, 2x + 2y 4 2z == 0;
dx dx dx dx

— [x + ¥ = L, (1), ou seja, 1 + 2 0.
dx dx dx

Assim,



\ ﬂ T Z % =—X
dx dx
dx

Resolvendo o sistema obtemos:

dy dz ik
— =—1 e = =
dx dx Z
A'3+|1-'3+zj=] I‘!,‘E—i-,t:3=l—_1:2
b) —
x+v=1 yv=1—ux
Substituindo y = 1 —x na 1.* equag@o e observando que z > 0 obtemos: ; = |2y — 242 . Assim,y =1 —x

€r= K.."g_,; —2x2,com0<x<l.

9

e |

A imagem de esta contida na interse¢do do plano x +y = 1 com a superficie esférica x* +)* +z* = 1.
u

Até agora, o problema referente a uma funcdo y = g (x) dada implicitamente por uma equacao F' (x, »)
= 0 era colocado da seguinte forma: suponha y = g (x) diferenciavel e definida implicitamente pela

equacao F (x, y) = 0; calcule ? Evidentemente, ? s0 terd significado se realmente F' (x, y) = 0 definir
%

X
implicitamente alguma fun¢do y = g (x). Por exemplo, x* + y* = — 3 ndo define implicitamente fungio

dy x , o
alguma; logo, I = — —ndo tera, neste caso, nenhum significado.
X y

O teorema que vamos enunciar a seguir fornece-nos uma condi¢ao suficiente para que a equagao F (x,

y) = 0 defina implicitamente uma fungdo diferenciavel y = g (x). Antes, porém, vamos ver alguns
exemplos.

EXEMPLO 7. Seja F (x, y) de classe C' num aberto 4 de R* e seja (xo, vo) 4, com F (xo, yo) = 0. Suponha



dF : : :
que 37 (xg. vg) = 0. Prove que existem intervalos abertos / e J, comx € /ey € J, tais que, para cada x
v 0

0

€1, existe um tnico g((x) €J,comF(x,g(x))=0.
Solucao

JF , . -, , ! FF e sy
o ¢ continua, pois, por hipotese, F' ¢ de classe C. Como E“{h Vo) = 0, pelo teorema da

consérvac;ﬁo do sinal existe uma bola aberta B de centro (xo, o), que podemos supor contida em A, pois A
¢ aberto, tal que

o (x,v) = 0emB.
ay

Sejam y; € y, tais que y1 < yo < 2, com (xo, 1) € (X0, ¥2) em B. Fixado xy, consideremos a fungao

@ 2=F (X, 3:Y € 1 yal

dF )
Como P (xp.¥) =0 para todo y € [y, y ], segue que (1) ¢ estritamente crescente em [y , y |. Tendo em
¥ 172 12
vista que F (xo, o) = 0, resulta:

@ F(x.¥) <0 e F(xp»m)>0.

Seja J = |y1, y2[; observe que yo = g (xo) € 0 unico nimero em.J tal que F' (xo, yo) = 0. Tendo em vista (2) e
pela continuidade de F, existe um intervalo aberto /, com x, € /, tal que para todo x € I, (x, y1) € (x, 1»)
pertencema B, com F' (x, y;) <0 e F (x, y2) > 0.



g(x)

=B
1 M .
1

W i
-"u“i‘\

1 I

vV, k=-=-%Lroo.

< 1 T f?"
1
1=
1

e,

- =

i o= 2

—— -

LI
X i
)

!

F
Como f;— (x,v) = 0 em B, para todo x € /, a fungao
.'I,.:'

® 7= Fi(x,v) (xfixo)

¢ estritamente crescente em [yy, 1»]; tendo em vista que F (x, y1) <0 e F (x, y2) > 0, pelo teorema do valor
intermediario e pelo fato de (3) ser estritamente crescente em [y1, y»], existira um unico g (x) € |y, y,[ tal
que F (x, g (x)) =0 (veja figura seguinte).

\ (x,g(x)) (Fix.,g(x)=0)

A fungdo g : [ — J esta definida implicitamente pela equacao F (x, y) = 0.

Observacio. Para todos v, € v, COM y; < v, < v < v, < v+, procedendo como acima, encontraremos
Y1v ¥z 5 ats 4 et Bt o Spat
um intervalo aberto /; € I, comx, €, tal que

IENL = gx)E ]E,E[;

logo, g ¢ continua em x,. Deixamos a seu cargo verificar que g ¢ continua em todo x € 1.

EXEMPLO 8. Suponha F (x, y) diferenciavel em (xo, o). Prove que existem funcdes ¢, (x, y) € 92 (x, ),
definidas em Dy, tais que

dF dF
@ F(x.y) = F (x5 v + a— (xg» ¥g) (x — xg) + = (xg: ¥p) (v — ¥p)
x )

+ @1 (X, ¥) (x — Xxg) + @2 (x, ¥) (v — ¥p)



com

lim e (x,¥) =0= ¢ (xp. ¥yl e lim @ (X, ¥) = 0 = ¢ (xp. V).
(2, ¥) = (x5, ¥g) (x,¥) = (x5, ¥)
Solucao

Pelo lema da Secao 12.1,
dF F
F(x,y)= F(xq vy + T (xg. ¥o) (x — xp) + i— (xg. ¥o) (¥ — ¥p)
X 7y
+ @ (x, v) T (x, ¥) — (xg. yg) Il

onde lim @ (x,¥) = 0= ¢ (x5, ¥p)-
(x, %) — (X0, ¥o)

Para (x, v) # (xg. ¥p)-

(x — x0) + (v — y0)?
Hix, v) — (xg. yo)ll

@ (2, %) L (x, ¥) — (xg. o) Il = @ (x, ¥)

X— X Y= ¥
=@ (x,v) (x— xg) + @(x,¥) — Y — ¥a).
Y Y = (o o)l O ) e S = e O Y
Basta tomar
X — Xy
(x, v) se (x, ¥v) # (xp. Vo)
AT 1%, ) — (o, Yo)l Ay 0. Y0
@1 (X, ‘L‘:i =
0 se (X, v) = (xp. ¥g)
e
X —Xp
(x, ¥ se (X, v)F(xp, v
@l .)“(x‘},)_(xﬂ’ o)l (X, ¥) # (Xp, Yo)
) (X, ‘L‘:i =
0 se (x, ¥) = (xp. Yg)

EXEMPLO 9. Prove que a fun¢do g do Exemplo 7 ¢ diferenciavel em x, e que

dF

— (xp. g (xp))
LE"’ (.Tﬂ\l = g; i

R {l-ﬂs g {vllﬂ )}

ay

Solucao



Substituindo y = g (x) € yo = g (x0) em (4) do Exemplo 8 e lembrando que F' (x, g (x)) =0 e F (xo, g
(x0)) = 0 resulta, ap6s dividir por x — xo (x # xo):
g(x)— g l(,'l.'f_p )

0= — ( (xp) e k,"'[ )) : ¢ ( (x))
Xp. 2 (X)) + [ Xn. X + X, g X
ax a &4 d AV O+ 0 X — Xp 1 &1

g(x)— g(xp)
X — A0 .

+ ¢ (x, g (X))

, dF
Pelo fato de g ser continua emx e i (xg. ¥p) # 0, resulta:
0 v

dF ;
— (xp. g(xp))
dx

E,’ {-,i{}} = lim glx)— glxp) e

Fobg Xm0 Z—F (xg. 2 (x0))
."'!

Teorema das fungées implicitas (Caso F (x, y) = 0). Seja F (x, y) de classe C! num aberto A de [[}2 e seja (xo, yo) € A, com F

(x , ¥y ) =0. Nestas condices, se r?—{,l'{,‘ Yo) 7 0, entdo existirdo intervalos abertos I e J, comx € Iey € J, tais que, para
0 0 7y 0 0
cada x € I, existe um tnico g (x) € J, com F (x, g (x)) = 0. A funcdo g : I — J é diferenciavel e

dF
—(x, 2 (x)
ax 8 (%))

g'x)=—

—(x, g (x))
ay

Demonstracdo

Veja Exemplos 7, 8 € 9.

. ., dF _ dF . e
Observacio. Se a hipotese ey (X ¥g) # O for substituida por o (Xg. ¥g) # 0, entdo existirdo intervalos
gy 3 x
abertos / e J, comx, € I e yo € J, tais que, para cada y € J, existira um unico 4 (y) € I, com F (h (), y)
=0. A funcdo & : J — I sera diferenciavel e

ﬁ (h (}:«L V)
ay

h' (v) = —

~—(h (¥).y)
ax

Teorema das fungdes implicitas (Caso F (x, y, z) = 0). Seja F (x, y, z) de classe C! no aberto A de [[}3 e seja (x0, yo, z0) € A,

comF (x ,y,z) = 0. Nestas condicdes, se — (X Vs 3{}} a D, entdo existirdo uma bola aberta B de centro (x , y ) e um
0 0 0 7z 0 0

intervalo aberto J, com zo € J, tais que, para cadal(x, y) € B, existe um unico g (x, y) € J,comF (x,y,g (x,y)) =0. Afungdo z = g
(x,¥), (x,¥) € B, é diferenciavel e




dF
rg_F {x. ¥, g {J." ‘\r}}’} — (X, Y. B (X, I'l."\,':i

08 . .~ _ _ dx dg . .\ _ _ 0¥
ey &) R ja e —(ny)=— 3F .
dx dy (x; ¥z lx; ¥)

—(x. ¥, g (x, ¥))

-
4y &y

Demonstracdo

Deixamos a cargo do leitor adaptar a demonstragdo do teorema anterior a este caso.
u

~ . . dF ,
Observacao. Note que, pelo fato de F ser de classe C e g continua, as fungdes a—(x‘;-:g(.x; V),
3 x

a F r;l F L ~ r & i &I ~ 14 14
) (x, v, g(x.y) e e (x, v, g (x, ¥)) serdo continuas em B; logo, ﬂ—e e a_sz serdo, também, continuas em
3y z ix  dv

B, isto é, g é de classe C' em B.

Teorema das fungées implicitas (Caso F (x, y,z) =0 e G (x,y, z) = 0). Sejam F (x, y, z) e G (x, y, z) de classe C1 no aberto A

3 "

de[} eseja(x,y,z)€A comF(x,y,z)=0eG(x,y,z)=0.Nestas condigdes, se #Dem(x ,Y ,Z ), entdo
0 0 0 0 0 0 0 0 0 d (v, 2) 0 0 0

existirdo um intervalo aberto I, com xo € I, e um par de fungdes y =y (x) e z = z (x) definidas e de classe C! em I, tais que, para

todox €ELF(x,y (x),z(x))=0e G (x,y (%), z(x)) =0; além disso, yo = y (x0) e z0 = z (x0). Tem-se, ainda:

3 (F, &) 9 (F. G)

dy _ d(x7) dz _ (¥ x)

© i A EG ° I 3 (F, O
(v 7) 9 (v, 2)

sendo que os determinantes jacobianos devem ser calculados em (x, y (x), z (x)).

Demonstracdo

Como F e Gsdo classe C' em 4, e

— (x0. Y0. 20)  —— (X0, Yo 20)
ay Jz

G dG
— (Xg. Yo o)
dy

(X0, Yo. 20)

iy

: F.G :
pelo teorema da conservagao do sinal { : permanece diferente de zero numa bola aberta de centro
Y%
< d (F, G) dF
(x,y,z). Podemos, entdo, supor que G # 0 em 4. Segue de (2) que v (Xge Yo Zg) 7 0 ou
070 o 7 (¥, 2 7y

a F a F
= (Xg+ Y- Zn) # 0. Suponhamos =
iy &,

(Xg. ¥g- Zp) # 0. Pelo teorema anterior, a equagdo




F(x,y,2)=0

define implicitamente uma fun¢do z = g (x, ), (x, ¥) € B, sendo g de classe C' na bola aberta B de centro
(X0, Y0) € zo = g (x0, o). Consideremos, agora, a fungao

Hx,y)=G(x, g (), (x,y) €B.

1 dH .
Temos: H(x,y)édeclasse C,H(x,y)=0¢ = (xp. ¥g) # O (verifique). Segue que a equacao
0 0 y

H(x,y)=0,ouseja, G(x,y,g(x,») 0

define implicitamente uma fungdo y =y (x), x € I, sendo y (x) de classe C' no intervalo aberto / € y, = y
(x0) (xo € I). Deixamos para o leitor completar a demonstracgao.
u

No Vol. 3, voltaremos aos teoremas da fungao implicita e da fungdo inversa.

Exercicios 12.2

3 3 . Iy
Aequagdoy +xy+x =4 define implicitamente alguma funcao diferencidvel y =y (x)? Em caso afirmativo, expresse e em termos
(I"J.'
dexey.

(Sugestdo: Observe que (0, 3_."_) satisfaz a equacdo e utilize o teorema das fungdes implicitas (caso F (x,y) = 0).)
W4

. . 1y
Mostre que cada uma das equacdes seguintes define implicitamente pelo menos uma fungdo diferenciavel y =y (x). Expresse 2 em
dax
termos de x e y.

a) x2y +seny =x

3. Mostre que cada uma das equagdes a seguir define implicitamente pelo menos uma fungdo diferenciavel z = z (x, y). Expresse
a7 o0z

& —emtermos de x,y e z.

dx dy

a)extytz+xyz=1
by x3+y3+zB3=x+y+z

4. Suponha que y =y (x) seja diferenciavel e dada implicitamente pela equagdo x = F (x2 + y, y2), onde F (u, v) é suposta diferenciavel.

ay . ..
Expresse — em termos de x, y e das derivadas parciais de F.
dax

5. Suponha que y = g (x) seja diferenciavel no intervalo aberto / e dada implicitamente pela equagéo f (x, y) = 0, onde f (x, y) € suposta de

a
classe C . Suponha, ainda, e (x,y) #0emD.
2 ay /
a)

d
Prove que —f (X

o 1.‘lE.J]I = () é uma condi¢do necessdria para que x seja ponto de maximo local de g.
ax ' 0

b) Prove que g" ¢ continua em /.



10.

11.

c) Prove que

af

E 00 X! =

) [af“] , 9 9f ' | &°F (9F)
© ax ay dxdy dy

%3
b3

¢ condigdo suficiente para que x0 seja ponto de maximo local de g.

= 0Oem (X2 V)

X
A funcdo diferencidvel z = z (x, y) ¢ dada implicitamente pela equagdo f {—

: :} = (J, onde f (u, v) é suposta diferenciavel e
v

ﬂ {1, v) F 0. Verifique que
v

r?h 0z
{:’-'.r -y

= 0.

x I
A fungdo diferencidvel z = z (x, y) ¢ dada implicitamente pela equacdo «f [—, = ] = (A # 0 um real fixo), onde f (u, v) é
Yy X

d
suposta diferenciavel e —f (1., v) #F (). Verifique que
av

JCg—i-".{il*—

ax ay

Az,

Suponha que as fungdes diferenciaveis y =y (x) e z = z (x) sejam dadas implicitamente pelo sistema

[.1'2 +z2 =1
Q)
1}‘3 + 72 =1
dv 1z
a) Expresse ~ e ™ em termos de xX,yez.

drv  dx

b) Determine um par de fungdes y =y (x) e z =z (x) dadas implicitamente por @
Suponha que x =x (u, v) e y =y (u, v) sejam dadas implicitamente pelo sistema

l:r =x+y

= ‘T (x # 0).

Mostre queﬂ [] + \—w =1
du

x X ;
Sejam u =x +y e v =" Calcule o determinante jacobiano {?— (l + \—w =1
v du X/

Calcule:



12.

13.

14.

15.

d(F, G)

a) ——— sendo F (x,v,2) = 2+ }-‘2 +72eG(x, D=2+ y+ g
alx, v)
au, v

b) 2% ) sendou = xyzev = X+ }-*3.
a(y. z)
dix, y

) —’” sendox=r+ 35 + fz ey= f'z — .';2 — 3:‘3.
air, s)
alx, v)

d) T sendox=r+3s5+ 1 ey= P — st =3¢
s, 1)

Seja g (u, v) =f (x,y), onde x =x (u,v) e y =y (u, v) sdo dadas implicitamente pelo sistema

J.u =xZ 4 }?3
{"’ = xy
Suponha x aq._ ¥ 9 _ 0.
ax ay
a) Mostre que ﬂ S ﬁ—A
ait X du

ae
i) Calcule —3.
au
¢) Mostre que f € constante sobre as hipérboles xy = ¢.

Sejam x =x (u, v) e y =y (u, v) dadas implicitamente pelo sistema

b | g )
o=ty

®
v =xy
a) dx  dy
Expresse — e —— em termos de x e y.
o ol

b) Determine um par de fungdes x =x (u, v) e y =y (u, v) definidas implicitamente por (D

Sejamx =x (y,z),y =y (x,z) e z =z (x, y) definidas implicitamente pela equacdo F (x,y, z) = 0. Suponha x0 = x (y0, z0), y0 = y (xo0,
20), z0 = z (x0, y0) € que no ponto (x0, y0, z0) as derivadas parciais de F' sejam diferentes de zero. Mostre que

a2

ay
y=¥ dzI*~h dx
I=12Ig = do Y=o

ax
ay

=—1.

X =g

Sejam x =x (u, v) e y =y (u, v) definidas implicitamente pelo sistema

’
J,x" + u}-*z =y

)
8 oy e

dx
Expresse — em termos de x, y e u.
ou

b) Determine um par de fungdes x =x (u, v) e y =y (u, v) definidas implicitamente pelo sistema.






13

GRADIENTE E DERIVADA DIRECIONAL

13.1. GRADIENTE DE UMA FUNCAO DE DUAS VARIAVEIS:
INTERPRETACAO GEOMETRICA

O gradiente de uma fun¢do f (x, y) foi introduzido na Se¢do 11.5; nosso objetivo aqui ¢ interpreta-lo
geometricamente. Antes vamos recordar a regra da cadeia: se f(x, y) for diferenciavel no aberto 4 C @7,
y (t) diferencidvel no intervalo aberto /, onde y () € A para todo ¢ € [, entdo, & () = f (y (¢)) sera
diferenciavel e

;R : i
h' (1) = = [fyN]T=Vf(y@)-y (1.

Seja f (x, ¥) de classe C' num aberto 4 C [* e seja (xo, yo) um ponto da curva de nivel /' (x, y) = c;
suponhamos V f (xo, o) # (0, 0). Vamos mostrar a seguir que V f (xo, yo) € perpendicular em (xo, yo) a
toda curva y, diferenciavel, passando por (xo, o) € cuja imagem esteja contida na curva de nivel f (x, y) =
¢ (nas condigdes acima, pelo teorema das fungdes implicitas, uma tal curva existe). Seja, entdo, y (¢), t €
[, uma tal curva, comy (#y) = (xo, o); como estamos admitindo que a imagem de y esta contida na curva de
nivel f'(x, y) = ¢, teremos

Q) fly(m =c
para todo # no dominio de y. Derivando os dois membros de (T) em relagdo a ¢, obtemos:
% [f(y(N]= %{c‘}
ou
Viy(m) ¥y @ =0teEIL
e, portanto,
Vily(tg) v (tg) =0

ouseja, V f(xo, yo) € perpendicular ay, emy (ty) = (xo, Vo).



Yol

fx,y)=c

Dizemos, entdo, que V f (xo, yo) é um vetor normal a curva de nivel f(x, y) = ¢, em (xo, }o). A reta
passando por (xo, yo) € perpendicular a V f (xo, yo) denomina-se reta tangente, em (xo, o), a curva de
nivel /' (x, y) = c. A equacdo de tal reta é:

V fixg yo) [(x, ») — (x5, yp)] = 0.
EXEMPLO 1. A curva y (¢) passa pelo ponto (1, 2) e ¢ tal que f(y (¢)) = 6 para todo ¢ no dominio de y,

onde f'(x, y) = x’y° — xy (observe que a imagem de estd contida na curva de nivel f'(x, y) = 6). Suponha y
(t0)=(1,2) ey (t) # E Determine a equacgao da reta tangente a y no ponto (1, 2).

Solucao

of J

af !
Vi(l.2)= ( (L 2), 2-(1, 2) | = (22, 11).
dy J

A reta tangente a y em y (¢p) = (1, 2) coincide com a reta tangente a curva de nivel f (x, y) = 6 em (1, 2).
Assim, a equacao da reta tangente a y em (1, 2) é:

VIiL2) Ty —(1,2)]=0
ou
2x-1H+11(y—2)=0
ou
y=-2x+4.
Vejamos como fica, em notagdo vetorial, a equag@o desta reta. O vetor (— 11, 22) é perpendicular a V f

(1, 2) = (22, 11); logo, (— 11, 22) ¢ paralelo a y' (#)); assim, a equacdo da reta tangente acima pode,
também, ser dada na forma

(xy)=(1.2)+A(—11,22), AER. B

EXEMPLO 2. Considere a equacao a derivadas parciais



@ zﬂ—f+'g—f:=0

a) Com argumentos geométricos, obtenha solucao de (2).
b) Suponha f: @* — R diferenciavel; prove que se f satisfaz (2), entdo existe ¢ : @ — [ diferenciavel tal
que f (x, y) = ¢ (2y — x).

Solucao

a) Sendo f'(x, ) solugdo de (2), para todo (x, y) € R,

d af
2 9f (x, y) + r?—f (x,y) =0
5

ax

ou
2, 1) Vfx y)=0.

Como para todo (x, y), V f(x, y) € perpendicular ao vetor (2, 1) e como V f'(x, y) é perpendicular, em (x,
y), a curva de nivel de f que passa por este ponto, € razodvel esperar que as curvas de nivel de f sejam
retas paralelas ao vetor (2, 1); assim f'deve ser constante sobre cada reta paralela ao vetor (2, 1).

|

(x,

Sendo f(x, y) constante sobre a reta

f(x, v)=1£(0, m), onde

v—m 1 2y —x Y~

=—,0u, m= . Assim, f(x, v)=f [ﬂ,
x—0 2 2 m

y) =9 (2y —x), onde ¢ : @ — B ¢ uma fungdo derivavel. Verifique vocé que, para toda ¢ : @ — R
diferencidvel, f (x, ¥) = ¢ (2y — x) ¢é solugdo de (2). Assim, as fungdes sen (2y — x),
2\' —x {2"«-. = .r}z + EE'T_ *
s

2y — x)* +1

]; tomando-se ¢ (1) = f {ﬂ, %], resulta f (x,

etc. sdo solugdes de (2).

Observacao. Consideremos a mudanca de variavel

H=2y—x x=2v—u
' ou
IL.I:?"? }!‘:\}

Note que quando (x, y) percorre a reta 2y —x = ¢ o correspondente ponto (u, v) percorrera a reta vertical



y 4 v 4
2y—x=¢
~_ 1w
/ (x, ¥)
fir- -
/ x c u

Seja g (u, v) =f(x, y), comx =2v —u ey =v. Vimos, geometricamente, que / deve ser constante sobre as
retas 2y — x = ¢; ¢ de se esperar, entdo, que g seja constante sobre as retas u = ¢, ou seja, que g nao
dependa de v. Vamos, agora, resolver a parte b).

b) Seja f (x, y) diferenciavel em R*; supondo f'solugdo de (2) teremos

2 L2 (x, y) + of (x, ¥) = 0Oem R,

dx Z

Seja g (u, v) =f(x, y) comx =2v —uey=v (veja observagao anterior). Temos:

o8 (u, v) = 9f (x, ¥) o + i (x, ¥) 24
v ax av ay v
ou
9% (u, v) = 2 L (2x;:9) . (x, y).
av dx ' ay '
0
Assim, para todo (u, v) em[@’,
98 (uv)=0

v

o que mostra que g nao depende de v, isto €,

g (u,v) =9 (u),

para alguma fungdo ¢ : R — R diferenciavel. Portanto, f'(x, y) = ¢ (2y — x), onde ¢ : @ — R ¢ uma fungdo
diferenciavel.
u

Vejamos, agora, como utilizar o gradiente de uma fun¢ao de duas variaveis na obtencdo da reta
tangente e da reta normal ao grafico de uma fungao y = g (x) de uma variavel. Para isto, consideremos a
funcdo de duas variaveis F' (x, y) = g (x) — y; evidentemente, o grafico de g coincide com a curva de nivel
F (x,y) =0. Seja (xo, o), com yo = g (xo), um ponto do grafico de g.



Segue que V F (xo, Vo) € normal ao grafico de g em (xo, ). Como
VFE(x,v)=(g (x),—1)

VF(x,.5,)
Yo=E&xIF----

Fix, =0

-

Hl-=—===

o

resulta, V F (xo, yo) = (g’ (x0), — 1). A equagdo da reta tangente ao grafico de g, no ponto de abscissa x, €,
entiao

(&' (x0), = 1) - [(x, ¥) = (x0, y0)] =0

ou

g (xo) (x =x0) =(¥ =30) =0

ou, ainda, y —yo =g’ (x0) (x — Xo).
Por outro lado, a equagdo da reta normal ao grafico de g no ponto de abscissa xy €:

(x, ») = (x0, o) + 4 (8" (x0), = 1), L E R

Suponhamos, agora, que a fungdo diferencidvel y = g (x) seja dada implicitamente pela equacao F' (x,
y) =0, onde F ¢é suposta diferenciavel e V F (xo, yo) # E, com ), = g (xo) (observe que a situagdo anterior
¢ um caso particular desta). Segue que, para todo x no dominio de g, F' (x, g (x)) = 0, isto ¢, a imagem da
curva y (x) = (x, g (x)) esta contida na curva de nivel F (x, y) = 0. Assim, V F (xo, yo) € normal ao
grdfico de g no ponto (xo, o). Poderiamos, também, ter chegado a este resultado, no caso

o d
= (xg. vg) # 0e e (xp. vg) ¥ 0, observando que
y X

5y (50> 30

ﬁ{u' Vo)
gx 40- Y0

¢ o coeficiente angular da direcao determinada pelo vetor



— —

F ; dF :
V F (x5, ¥0) = i— (xg.¥g) © + = (Xp. ¥g) J eque
7 X y

(formula de derivagao implicita) € o coeficiente angular da reta tangente ao grafico de g no ponto (xo, o).

EXEMPLO 3. y = f (x) ¢ uma fun¢io diferencidvel definida implicitamente pela equagdo y° + xy +x° =
3x. Determine as equagdes das retas tangente e normal ao grafico de f no ponto (1, 1).

Solucao

0

_1,-*3 P % XY =3re }*3 T xR x3 = 3x
F (X, V)

V F (1, 1) ¢ perpendicular ao grafico de fno ponto (1, 1). Temos:
VE,1)=(14),pois, VF(x v) = (v + 3x> — 3,3* + x)
Reta tangente:
VFEF(LD [(x,y—(1,1H]=0

ou seja,

-I'—l’Jl

Reta normal:
y—1=4(x—-1)ouy=4x—3.

Ou, em forma vetorial:

V)= (1, 1)+ A(l,4),A R ®

Exercicios 13.1

1. E dada uma curva que passa pelo ponto y (¢)) = (1, 3) e cuja imagem esta contida na curva de nivel x2 + 2 = 10. Suponha 5’ (t) # E
a) Determine a equagdo da reta tangente a y no ponto (1, 3).

b) Determine uma curva y (f) satistfazendo as condi¢des acima.

—
Determine a equagdo da reta tangente a curva y no ponto y (f0) = (2, 5) sabendo-se que ' (f0) # () € que a sua imagem estd contida na



curva de nivel xy = 10. Qual a equacdo da reta normal a y, neste ponto?

3. Determine a equagdo da reta tangente a curva de nivel dada, no ponto dado.

2 2
a)x"+xy+y —3y=1em(l,2).

— (1 A
}+11'+2j.*=4emL—~l ]
2

A

b) {J.‘:’J

4. Determine uma reta que seja tangente a elipse 2x2 + y2 = 3 ¢ paralela a reta 2x +y = 5.

5. Determine uma reta que seja tangente a curva x2 + xy +y2 =7 e paralela a reta 4x + 5y = 17.

6. Utilizando argumentos geométricos, determine solugdes da equacdo a derivadas parciais dada.

d d e d af
{?}j'—f“'}—f:U f?}—'f——'}l:ﬂ
ax ay dax dy
3 af d af
{‘}i+i=ﬂ' a’\—f—x =0
ax dy ax ay
) N af  af
7. Determine uma fungdo z = £ (x, y) tal que I-'_ i'_ e cujo grafico passe pelos pontos (1, 1, 3), (0,0, 1) e (0, 1, 2).
ax )
; af
8. Determine uma fungio z = £ (x, y) tal que ri‘_ = {?— e cujo grafico contenha a imagem da curva y (f) = (¢, ¢, t ) tER.
X )

9. Determine uma curva y (¢) = (x (¢), y (¢)) que passe pelo ponto y (0) = (1, 2) e que intercepte ortogonalmente as curvas da familia x2 +
2y2=c.

10. Determine uma funcdo y =y (x) cujo grafico intercepte ortogonalmente as curvas da familia xy =c,comx >0e y >0, e tal que
a)y()=1
b) y(1)=2

1 Seja z =f (x, y) diferencidvel em [(§2 e tal que V f'(x, ) =g (x, ») (x, ¥), para todo (x, y) em [[}2, onde g (x, y) ¢ uma fungdo de [[}2 em
'[R dada.

a) Com argumentos geométricos, verifique que é razodvel esperar que f seja constante sobre cada circunferéncia de centro na origem.

b) Prove que f ¢ constante sobre cada circunferéncia de centro na origem.
(Sugestao: g (1) =f (R cos t, R sen {) fornece os valores de f'sobre a circunferéncia x2 + y2 = R2.)

12. Seja y = g (x) definida e derivdvel no intervalo aberto /, dada implicitamente pela equacdo f (x, y) = 0, onde f (x, y) € suposta
af ;
— (x, v) = 0em4.

2 af
diferenciavel no aberto 4 C [} . Suponha ﬁ—j (x, y)- 5
X y

a) Com argumentos geométricos, mostre que ¢ razoavel esperar que g seja estritamente decrescente em /.

b) Prove que g ¢ estritamente decrescente em /.

13.2. GRADIENTE DE FUNCAO DE TRES VARIAVEIS: INTERPRETACAO
GEOMETRICA

Seja f'(x, y, z) de classe C' num aberto 4 C |’ e seja (xo, Vo, zo) um ponto da superficie de nivel f (x,
v, z) = ¢; suponhamos V £ (xo, yo, zo) # (0, 0, 0). Vamos mostrar que V 1 (xo, yo, z0) € normal em (xo, Vo, Zo)
a toda curva y, diferencidvel, passando por este ponto e cuja imagem esteja contida na superficie de nivel



f(x,y,z)=c.Seja, entdo, y (), t € I, uma tal curva, com y () = (X0, o, Zo); como estamos supondo que a
imagem de y est4 contida na superficie de nivel f'(x, y, z) = ¢, teremos

@ fly(h)=c

para todo # no dominio de y. Derivando, em relagdo a ¢, ambos os membros da equagdo (1) obtemos, para
todot € I,

Viltyt)y-y(H=0

e, portanto, V 1'(y () - v’ (t0)) =0, o que mostra que V f(y (¢)) e ' (o) sdo ortogonais.

Afiyizg))
w A7)
\ /
T{-rn] - B
J X
T

flx, _1'?:_3 =

Fica provado assim que V f'(xo, yo, zo) € normal em (xo, yo, zo) a toda curva diferenciavel y passando por
este ponto e com imagem contida na superficie f (x, y, z) = c. Diremos, entdo, que V f (xo, Vo, Zo) €
normal a superficie de nivel f (x, y, z) = ¢, no ponto (xo, yo, zo). O plano passando pelo ponto (xo, yo, zo) €
perpendicular a V f'(xo, yo, zo) denomina-se plano tangente, em (xo, yo, zo), a superficie f(x, y, z) =c. A
equagao deste plano é:

V f (xg: Yo Zg) * [(x, 3, 2) — (xg, ¥g: 2901 = 0.
A reta
(x, ¥, )= (.1'{.. ."'.{]" f{}} + A V‘f{.‘cﬂ. I"-'n, :".{]}1 AeER

denomina-se reta normal, em (xo, Vo, Zo), & superficie f (x, y, z) = c.

Seja z = g (x, y) uma funcdo diferencidvel dada implicitamente pela equacao F'(x, y, z) = 0 onde F (x,
¥, z) é suposta de classe C' num aberto de |’; seja (xo, Yo, 20), zo = g (X0, Vo), um ponto do grafico de g,
com V F (x4, o, 2o) # E Como o grafico de g esta contido na superficie F (x, y, z) = 0, resulta que toda
curva y com imagem contida no grafico de g tem, também, sua imagem contida na superficie F (x, y, z) =
0; assim, V F (xo, yo, o) € normal ao grafico de g, em (x, yo, o).

Observe que se y (¢) ¢ uma curva diferenciavel com imagem contida na intersecao das superficies F
(x,y,2)=0e G (x, yz) =0, onde F e G sdo supostos de classe C' num aberto de @’ € V F (xo, yo, z0) N V
G (x0, Yo, 20) # E, entdo o vetor y' (t) # 0, tangente a y em y (¢9) = (xo, Vo, Z0), € paralelo a V F (xo, Vo, Zo)
A V G (x0, yo, zo) (verifique).

EXEMPLO 1. Determine as equagdes do plano tangente € da reta normal a superficie xyz +x° +3° +2° =
3z no ponto (1, — 1, 2).



Solucao

1 ;
xyz + o+ }-*3 +77 =3z xz+x3+ Y +72-3z=0.
F(x.v.2)

dF dF AF )
& J =R 3, 3,1-‘2, xy + 372 - 3).

VFE(x,y2) = [ e
' dx dy dz

VF(l,-1,2)=(1,5,8).

Plano tangente em (1, — 1, 2):

VFE(L,-1,2): [(xy2)—= ({1,=1,2]] =0

ou

(1,58 [(x,y2)—(,-1,2)]=0
ou seja,

x—D+5@p+1H)+8(z—-2)=0
ou, ainda,

x+5y+8z=12.
Reta normal em (1, — 1, 2):
xv2=(,-1.2)+A(.,58.AER. g

EXEMPLO 2. Considere a fungdo z = f (x, y) dada por f(x, y) = ,\?,-'g — 3x2 — y2. Determine a equagdo
do plano tangente no ponto (1, 1, /' (1, 1)).

Solucao
1.° processo

g—f(1,1) = . (1. D)= 1) L 1, DHE—-1
dx dy



f(,1)=2

9y = : —6x : logo, 4. (1, 1H)= =3
dx  2,8—3x2 —y? ax 2
df _ —2y 1

: _ —: logo, ﬂ{l, 1)=——
Iy 2./B—3xt—y? Ay 2

q
g d=mimm = 1)— Z(y=—1)
> ;

1
2
¢ a equagao do plano tangente em (1, 1, (1, 1)).

2.° processo

| 2 2 2 2
7= 8-t =yt =83~y

A fungdo ¢ entdo definida implicitamente pela equagao

3x2 +y2 4+ 72 -8=0
Ft’x:}’, Z)

V F (1,1, 2)¢, entdo, normal ao grafico de fno ponto (1, 1, (1, 1)).
VF(x,v,2)=(6x,2v.2) =V F(1,1,2) = (6,2, 4).

A equacao do plano tangente em (1, 1, 2) é:
(6,2,4) [(x,y,2)—(1,1,2)]=0
ou
6(x—1)+2@H—-1)+4(=z—-2)=0,
ou, ainda,

(v — 1). |

"__2__3 _]__]
z = E{_.‘( ) E

EXEMPLO 3. A imagem da curva y (¢) estd contida na interse¢do das superficies x* +2)* +z=4ex* +y
+z=3. Suponha y (to) =(1, 1, 1) e y' (o) # ¢

a) Determine a reta tangente a y no ponto y ().
b) Determine uma curva y (¢) nas condigdes acima.

Solucao



a)SejamF (x, 3, z)=x*+2° +ze G(x, y, z) =x* +y +z.
Para todo ¢ no dominio de y devemos ter

F@@)=4eG(y () =3,

pois a imagem de esta contida nas superficies de nivel ' (x, y, z) =4 ¢ G (x, y, z) = 3. Segue que
VFE(ytg) ¥ (tg)=0 e VG(y(ty) vy (g =0,

ou seja, y' (to) € normal aos vetores V F (1, 1, 1) e V G (1, 1, 1); logo, y' (ty) é paralelo ao produto
vetorial V F(1,1,1) AV G (1, 1, 1). Temos:

VF(LLD) AVG(L L1 1)=

|—;|—|?§=¢
&
1

b B3 o=
—_— ]

A equacao da reta tangente a y no ponto y (z) = (1, 1, 1) é:

(.. 2)=(,1,1)+4(3,0,-6), A €ER.

-2

+z7=4

£

] ”

+

(5 :
b) Jl"l.z i 2.'\ .
b (el o R i

x*+y+z=3=z=3—x"—y. Substituindo na 1.* equagio vem:
X+ +3-x*—y=4

e, portanto, 2y2 —y—1=0,0ouseja,y=1ouy=- %; isto €, y ndo depende de x. Como a curva deve

passar pelo ponto (1, 1, 1), vamos tornar y = 1. Segue :]ue z=3—-x*—1, ouseja, z=2 — x*. A imagem da
curva y (£) = (¢, 1, 2 — £*) estd contida na intersecdo das superficies e passa pelo ponto (1, 1, 1).
Sugerimos ao leitor desenhar a imagem de y.

u

Exercicios 13.2

1. Determine as equagdes do plano tangente e da reta normal a superficie dada, no ponto dado.
c;}.rz + 3}'2 + 4:2 =8emi(l,—1,1)
f hY
b)2xyz=3em | — 1,3 |
: (s ]

s
X—y 3 - ,
clze “+z7 =2em(2,.2. 1)

2. A fun¢do diferenciavel z = f(x, y) é dada implicitamente pela equagio x° +° +z° = 10. Determine
a equacao do plano tangente ao grafico de f no ponto (1, 1, f (1, 1)).



3. Determine um plano que seja tangente & superficie X 3y2 +27 = % e paralelo ao plano x + y + z

= 10.

4. E dada uma fungdo diferenciavel z = f (x, y) cujo grafico estd contido na superficie x* +* + 2% = 1.

(1 11 2

Sabe-se que f L S J =: . Determine a equagao do plano tangente ao grafico de f no ponto

k9 )
2 2

2
N

(I 1 42
272" 9

Y

5. Aimagemda curva y (¢) estd contida na interse¢do das superficies x* +)* +z2 =3 ex* +3)* — 2> =
3. Suponha y (¢,)) =(1, 1, 1) e y' (¢, # E Determine a reta tangente a y em y (#,).

6. A imagem da curva y (¢) estd contida na interse¢do da superficie cilindrica x* + y* = 2 com a
superficie esférica x* +y* +z* = 3. Suponha y () = (1, 1, 1) e ' (t0) # 0.
a) Determine a reta tangente a y em y (Zo).
b) Determine uma curva y (¢) satisfazendo as condigdes acima.

7. E dada uma curva y (¢) cuja imagem é a intersecdo das superficies 4x> + > =1lex+y +z = 1.
Suponha y () = (0, 1, 0) e y' (t,) # 0.
a) Determine a reta tangente a y em y (Zo).
b) Determine uma parametriza¢ao para a interse¢ao acima.

. - ..]‘.I 4 2 £ 2
8. Considere a fungdo , = A8+ ¥~ *)

.‘IFI
a) Determine uma fungdo F (x, y, z), que ndo envolva radicais, tal que a funcao dada seja definida
implicitamente pela equacdo F' (x, y, z) = 0.
b) Determine a equacao do plano tangente ao grafico da fungao dada no ponto (2, 2, 1).

9. Determine a equa¢do do plano normal, em (1, 2, 3), a interse¢do das superficies x* +)* +z> = 14 ¢
xyz = 6.

10. Determine um plano que passe pelos pontos (5, 0, 1) e (1, 0, 3) e que seja tangente a superficie x*
+2y*+ 22 =1,

13.3. DERIVADA DIRECIONAL

Sejamz = f'(x, y) uma fungdo, (X, y,) um ponto de D, e ; = (@, b) um vetor unitario. Suponhamos que
exista » > 0 tal que para | ¢ | < r os pontos da reta (x, y) = (xo + at, yo + bt) pertencam ao dominio de f.
Como estamos supondo ;= (a, b) unitario, a distincia de (x, + at, y, + bt) a (x,, y,) € | | (verifique).



{xy +at. ¥y, + bt}

Y - /f
\< 3 / Dr
J

x"\._______ﬂ.f -

Pois bem, definimos a taxa média de variagio de f, na direcdo ; = (a, b), entre os pontos (x,, y,) € (x,
+ at, yo + bt) por

@ Sxg +at, yo + bt)— f(x9, ¥)
t

Vamos destacar, a seguir, o limite de (1) para ¢t — 0.

Definicdo. O limite

; (xp + at, vo + bt)— flxp. v
95 (Xgs ¥g) = lim J(xo + at, yo ) — f(xg, Yo)
& t—0 t
du

ﬁ =(a, b),com — unitério.

quando existe e € finito, denomina-se derivada direcional de f no ponto (x, y,) e na direg¢do do vetor i

af .o
A derivada direcional == (X0- Y0) denomina-se, também, taxa de variagio de f no ponto (x ,y ) e na
du 0 0
diregdo do vetor ;. Observe:

af _ flxp tat, vy + bt)y— f(xg, Vo)
— Ko Yo) = ”
du
sendo a aproximagao tanto melhor quanto menor for | ¢ |.
As derivadas parciais de f, em (xo, )o), sao particulares derivadas direcionais. De fato:

af Sflxo + 1t v0) — f(xp, ¥0) _ df

—— (xp. Vp) = lim (xg, ¥
g ¥o- Yo) t—0 f adx Y- Yo)
d i
€
' : Xg.¥g + 1) — fxg. w :
% (xg. o) = lim f (%0, %0 )~ J - 30) = o] (Xp. ¥o)-

3 t—0 r ay

2

df N . . . .
Deste modo, i (xg: ¥o) € ﬂ_f (xp. ¥p) sdo, respectivamente, as derivadas direcionais de f, no ponto (x ,
X v 0

yo), ¢ nas direcdes dos Vetorés T — (.0 e _;’ = (0. 1)



af
A seguir, vamos interpretar geometricamente — (X0 Yo). Para isto, consideremos a curva y () dada
d i

por

xX=xg +at

Y1y = Yo + bt

= g(1)

-
e

onde g (1) =f (xo + at, yo + bt).

|

Y)Y

Observe que a imagem de y esta contida no grafico de /. Temos:

— —+ o+ — q '
g (0)= lim £0—50) _ lim Jxg ¥ at, yo + 50 = f{X0:90) _ 4f (Xg Yok
t—0 f t—0 f &:

ou seja,

d
g: (D\J P _‘i U.'ﬂ, ."”{}}-
du

. Entao,

Segue que ¥ (0) = (a, b, g' (0)) = [a. b, a—i (X0, Vo)
adu



r I':.J
v (0)=(a, b,0)+ | 0,0, —L (Xxp. }-‘{}}W.

\ U /
¥ (0) af
0,0, — {x,.¥,)
du
(g, b, 0)

af
Como (a, b) € unitario, —= (¥p. Yo) = tg B (veja figura anterior).
d u

22 df
EXEMPLO 1. Seja f(x, y) =x +y . Calcule —= (1. 1) onde 1 € o versor de

d u
a) 7=(11
b) 7=(1,2)
o 7 =(01
Solucao

e
Inicialmente, vamos calcular —i (1. 1) onde 7, = (a, b) ¢ um vetor unitario qualquer.
d u

o o
ﬂ_{;“’” = lim a1 rh"“—' J(.1)
Ju t— 0
babi 24 b bt =3
_ fim Atayta+en -2, .
t—0 t
Ou seja,
d
é(1,1}=2(4+25,
du

2 (—11) 1 | 3, . ) 2 2
a)u = ——— = | ——— —— |. u étangente em (1, 1) a curva de nivel f(x, y) =2 ouseja,x +y =
=11 L 22 )

2 (verifique).



u
a5
fix,y)=2

Portanto, ¢ razoavel esperar que, nesta direcao ¢, a taxa de variacao de f, em (1, 1), seja nula. (Por qué?)
De fato

5 \E J \.-'2 J
¥ 2 g
b) u = L - (LL] = (a, b)
(1, 2)li R R T
L T L
— \J5
du
. (1, 1) 1
c)u = = | —. —— |, observe que |, ¢ o versor do vetor gradiente V f'(1, 1) = (2, 2). Temos:
(1, D N2 A2 )
1 L)
ﬂn =2 [—|+2-[,—J=é. m
50 V2 ) v2 V2
df — 1 - 1 )
Note que o valor de == (1. 1) para 4 = [ —_ ] ¢ maior que para u = ( — —T] Provaremos,
A u . J2 742 I Y

af
na proxima se¢do que, sendo f diferenciavel, —= ¥0: Y0) assumir4 valor maximo para 7, igual ao versor
r? u

do vetor gradiente V f'(xo, ).

EXEMPLO 2. Sio dados uma fungéo 1 (x, y) = x> + 3%, um vetor unitario (a, b) e umreal 8> 2. Suponha

f X
que (1 +sa, 1 + sb) e[ 1 +%.] —kL2 J, coms >0 e t> 0, pertencam a curva de nivel f (x, y) = p.
v v

Compare a taxa média de variagao de f'entre os pontos (1, 1) e (1 +sa, 1 + sb) e entre os pontos (1, 1) e

(1+ g b W
; \ 2 !

V2

Solucao



{1+ s5a, 1+ sh)
! {
A "*('i fo — ’1 .|.—-—)
/1' JI
Sl i
1
fix,y)=¢8
filx, ¥)=2

Sendo (a, b) unitario, a distancia de (1 +sa, 1 +sb) a (1, 1) é s; a distancia de [ 1+ 'r_ = I_ ] a

(1, 1) é t. Se (a, b) + [L_ 1_] teremos ¢ < 5. Como f(1 + sa, 1 + sb) = ;f1+ BT }
V2T A2 \ V2 V2
resulta, para (a, b) # [L L \
A2 42
f[1+L 1+L]—ff1 1)
f+sal+sb)=f.1) _ J2© T 2 |
5 1

, ) df . 3 11
E razoavel, portanto, esperar que —— (1, 1) assuma valor maximo para 4 = | —.,— |.
d u "

df
EXEMPLO 3. Seja; = (a, b) um vetor unitirio dado. Calcule == (0, 0) onde
i

3
E .
fix, v)= Jﬁ se (x, v)# (0, 0)
{ﬂ se (x,v)=(0,0).
Solucao
a’t?
fO+ar0+b0—f(0.0) _ (a)*+@n* _ o' _ 53
t t a* + b2
1
+ + bt) —
I (6.0 = lim LOFSHOF—FO0) _ s
=0 t

i

ou seja, para todo vetor unitario (a, b)



e 3
;f (0,0)=a". &

—

i u

Ja vimos que f ¢ continua em (0, 0), mas ndo diferenciavel em (0, 0). Este exemplo mostranos que uma
fungdo pode ser continua num ponto, ter derivada direcional em todas as dire¢oes neste ponto, e
mesmo assim ndo ser diferenciavel neste ponto.

13.4. DERIVADA DIRECIONAL E GRADIENTE

O objetivo desta secao ¢ destacar mais algumas propriedades do vetor gradiente. Inicialmente, vamos
provar que se f for diferencidvel em (x, 1), entdo f admitird derivada direcional em todas as dire¢des,
no ponto (xo, 1o), € cada derivada direcional se exprime de modo bastante simples em termos do
gradiente de f'em (xo, o).

Teorema 1. Sejam f: A C [[}2 - [, A aberto, (x,, y,) €Ae :’ = (a, b) um vetor unitario. Se f (x, y) for diferenciavel em (x,, y,),

entdo fadmitird derivada direcional em (x, y,), na direcdo ﬁ, e

df . : =
—‘i (X ¥g) = V.f (x5, ¥g) * u.
d u

Demonstracdo

Seja g dada por g (¥) = f (xo + at, yo + bt); da diferenciabilidade da f em (xo, )o) segue a
diferenciabilidade da g em¢ =0 e, pela regra da cadeia,

L4 af |
g (0) = r;—f (Xg. Yp) @ + ﬂ—f (Xgs ¥o) & = V f(xg, ¥g) * (a, b)
X by

Como
o : ;
é {).'ﬂ.. I‘L’Dl =i (0)
ad u
resulta,
I,._',l 3 —
—i (xg. ¥o) = V f(xg, yp) - 1. -
a i

O teorema anterior conta-nos que se f (x, y) for diferencidavel em (xo, yo), entao

daf B T
— (Xp, Yo) = Vfixg, yg): u.
du

Entretanto, se f ndo for diferencidvel em (xo, yo) esta relacdo ndo tem nenhuma obrigagao de se verificar.



(Veja Exercicio 21.)
De agora em diante, quando nada for dito sobre uma fungdo /' (x, y) ficara implicito que se trata de
uma funcdo definida num aberto e diferenciavel.

Vimos na Se¢do 6.4 que se ,, e , sdo vetores ndo nulos e & o angulo entre eles, entdo
- = — — . — e s =3 —3 — : — 4 s —
wo = llwllllllcos @ S€ 3 for unitario, i\ . 7 — |1yl cos - Na figura a seguir, a ] € a projegdo de

. ~ — — . /4 — —%
na dire¢do 7/, onde ., — |||l cos g DIT€MOs que 0 NUMEro , — 10|l cos @ ¢ & componente escalar de \; na

: ~ =
diregdo 7.
. If ~
Veremos a seguir que —= Yo Y0) é a componente escalar de V f(x , y ) na dire¢do 7.
o i 0 0
Suponhamos V f'(x, v,)) # E e j unitério. Seja 6 o angulo entre V f'(x, y,) € j Temos:
I";If . N — v N y 4 — v . N D I
— (xg. ¥p) = V[ (xp. yp) - u =1V fxg. yg) Il - Lzt ]l cos 6.
du
Como j ¢ unitario
'
]
{xu ¥ j‘rﬂ} \
" Ej-__-; (o0
au
d
—{ (xg. ¥p) = 1V f (xg, vg) Il cos 6.
du
af i e g e
—— (xp. Yo) € a componente escalar de V f (xq, vo) na direcdo u.
du
TATE A ﬂ.}( . s
ATENCAO: —— (xy, yp) € nimero.
i




Ny 2 : . : ¥ o
Teorema 2. Seja f: A C [}° - [[}, A aberto, diferencidvel em (xO, yO) e tal que vf (xp- - ()- Entdo, o valor maximo de

Yo)

J o - V f(xg. vo)
4 (X0-¥0) ocorre quando :’ for o versor de Tf{_r“!}-ﬂ}’ isto 6, W = J(xp, vo)

i - IV £ (xg. vo)lI’

e o valor maximo de

e ;
é (%9, o) €NV (o y)ll.
au

Demonstracdo

af :
% (Xg- ¥o) = I vf (Xp. ¥p) Il cos @

du
— X0-Y0) terd valor maximo para 6 = 0, ou seja, quando ; for o versor de V f(x , y ). O valor mximo
Ir? 5 0 0
df ~
de == Yo Yo) éentdo |V f(x,») |
r::} u 0 0

O teorema acima nos diz, ainda, que, estando em (xo, o), a diregcdo e sentido que se deve tomar para
que [ cres¢a mais rapidamente é a do vetor N f (xo, ).

af

EXEMPLO 1. Calcule = (1: 2), onde £y y) = 42 + yy. ¢ o versor de
0 fx, .

a) 7=(1,1)

b) 1 =@,4)

Solucao

Como f¢ diferenciavel

- —
%{],2}=V.;"{L2}* u.

J U

Vi y)=2x+yx)logo, Vf(1,2)=(4,1).



—
—* v 1 | .
a) 4 = = e — L assim,
% i |'

N b

df 1 I 5
—1{1,2}={4.I}-[ — W= ,.
\ V2 A2 ) 42
du
%
o 1 { 3 ™
by u = = =L—‘i|
e 3 B
Il w ]
7 3 4\ 16
rf (1,2) = (4, 1) |T TJ:_~
2 Ay 5
r?'M
u
EXEMPLO 2. Scja f(x, y) = x*y.
a) Determine ;] de modo que —= (1, 1) seja méximo.
du
b) Qual o valor maximo de —= (1, 1)?
d u
c) Estando-se em (1, 1), que direcao e sentido deve-se tomar para que f cres¢a mais rapidamente?
Solucao
Vi, D= [—fil 1), —’f(l 1) [=(2,1).
d ay
. . df
a) Como f ¢ diferenciavel em (1, 1) e V £ (1, 1) # (0, 0), segue que —= (1, 1) é maximo para
d u
i VLD . 2 (2 i
U =————0usCjla, 4 = | —,—— |
IV £(1, D V3 A5 ]
af ; : .-
b) O valor maximo de == (L D€V F(L D= +5
du
o)V f(1,1)=(2, 1) aponta a diregdo ¢ sentido em que f cresce mais rapidamente em (1, 1).
u

EXEMPLO 3. Admita que T (x, y) = x> + 3y” represente uma distribui¢do de temperatura no plano xy: 7
(x, y) € a temperatura no ponto (x, y) (supondo 7'em °C, x e y em cm).



a) Estando-se em( 2, % ], qual a dire¢do e sentido de maior crescimento da temperatura? Qual a taxa de

crescimento nesta dire¢ao?

b) Estando-se em( 2, % ], qual a direcao e sentido de maior decrescimento da temperatura? Qual a taxa

de decrescimento nesta direcao?

Solucao
1 -7 =F C e ) . .
a)VT| 2, E] =(4,3)=4 | + 3 aponta, em( 2, % ], a dire¢ao e sentido de maior crescimento de
LY 4
L vI|2 %]
temperatura. Nesta diregdo, # = > . a taxa de variagao da temperatura ¢ maxima:
H v T{ 2, — J ‘
e R
i b
L PR vT| z,lJ = 5 (°Clem),
ﬂ;} L2 ) \ 2

o que significa que, a partir do ponto ( 2, % ] ¢ na dire¢do e sentido de V T’ ( 2, % ], a temperatura esta

aumentando a uma taxa aproximada de 5°C por cm:

)-1(23)

’~.J'|||"._*-'.‘,:7I

x4 3yt = —

sendo a aproximacao tanto melhor quanto menor for o .

1 - -
b)—VT(Z,E\ = —(4i + 3j ) aponta, em
\ J

2, ], a direcao e sentido de maior decrescimento da

1
2

e | —

(2

3
temperatura. Nesta diregdo, 4 = — H , a taxa de variacao da temperatura ¢ minima:

b | = b | —

=

" g



]".
VT| 2. —
%fz”:v:r[zlj = [ 2) =—HTT[2%]
aw > 2 Hvﬂ 2%] N
\ 3 « /)
ou seja,
r.?_z [ 2, l} =3 (A em).
du : %)

Nesta direcdo e sentido, a partir de ( 2, ], a temperatura esta decrescendo a uma taxa aproximada de

b | =

5°C por cm.
u

EXEMPLO 4. Suponha que T (x, y) = 4x* + y* represente uma distribui¢do de temperatura no plano xy.
Determine uma parametriza¢do para a trajetoria descrita por um ponto P que se desloca, a partir de (1,
1), sempre na direcao e sentido de maximo crescimento da temperatura.

Solucao

Por consideragdes geométricas, ¢ razoavel esperar que a trajetoria descrita por P coincida com o
grafico de uma fungdo y = f(x), comf (1) = 1.

'
v T(x»)
'--.____H‘-‘-
4
& 4x* + ¥yl =r¢
O coeficiente angular da reta tangente ao grafico de fem (x, y) ¢ '}i = ' (x). Como VT (x, y) = (8, 2y)
dx
deve ser tangente ao grafico de f, em (x, ), devemos ter
dv 2y
© dx  8x’
| Observe que a dire¢do do vetor y T (x, y) = 8:;:? 4 2}? tem coeficiente angular 2—‘ Separando as

8x J
variaveis em (1) e integrando, obtemos,



Iny = l Inx + £k ( ﬂ = jl—dr]
’ 4 Y 4x

Para que a condi¢do /(1) = 1 seja satisfeita, devemos tomar & = 0; assim,

1 4]
Iny=—1Inx ou y= &

Segue que y () = (¢, 4/t), t = 1, € uma parametrizagdo para a trajetoria descrita por P. Outro modo de
resolver o problema ¢ determinar fungdes x (¢) € y (¢) tais que a curva y (¢) = (x (¢), v (¢)) satisfaca as
condicoes

y' () =VT(y(1)

v(0)=(L1).
A
¥ vy
Y
v (D)
T, M=c
Temos:

Y () = VT (y (1) < (x(1), ¥() = (8x (1), 2y (1))
Deste modo, x (¢) € y (¢) devem satisfazer as condigoes
x = 8x

y =2y

x(0)=1 e y(0) =1
Deixamos a seu cargo verificar que x = e e y = €% satisfazem as condi¢des acima. Assim,
y (@) = (¥, e¥), 120,

¢, também, parametrizacao da trajetoria descrita por P.
u

EXEMPLO 5. Calcule a derivada direcional de f (x, y) = x> + y* no ponto (1, 2) e na dire¢do do vetor
— —
2i — j



Solucao

af .
O que queremos aqui —= (1, 2) onde ] é o versorde 5 ; _ T
i
% # . L
Vil,2)=2,4) e u = (20 =[ ?_,— L }
2, —Hll A A
assim,
é]—i,(_l,2}=(2,4‘;-( 2 ,—..1—}=D. N
d u V3 V3

Observacao. Tudo o que dissemos nesta se¢do generaliza-se para fungdes reais de trés ou mais
variaveis.

EXEMPLO 6. Calcule a derivada direcional de f (x, y, z) = xyz no ponto (1, 1, 3) e na direcao
— — —

ol 5 4
Solucao
%
%(1,1,3}=T’_f(l. 1.3)- u
o U

= & e TR
onde ¢ oversorde ; 4 ; 4 .

u e Vf(1,1,3)=(3,3,1)

-

oGy (11
ool "\ )

Assim,
d | | | 7
—‘i“,l,B}:f:‘;,S,”[ = T = T F ]=.— ]
Ju V3 A3 A3 3
Exercicios 13.4
& e o
L. Calcule — & (Xps ."‘{}}, sendo dados:
du
: > 2 g a o T
a)fx,y)=x —3y,0xgy) =(0,2)e u oversorde2 i + J.

2 2 —
byf(x,y)=e* =¥ (xg.yg) = (1. 1) e u oversorde (3, 4).

X _ —= 1 1

'L"}_‘f{__\'. _11"} = ('l;['ctg o {'Yﬂ"‘ }1{}} = 13’ 3'} e 4 = —_ : I
¥ A2 N2

— — —

d)f(x,¥y)=xy, (xg.yg)=(1,1)e u oversorde { + j.



10.

11.

12.

13.

14.

Em que direcdo e sentido a funcdo dada cresce mais rapidamente no ponto dado? E em que direcdo e sentido decresce mais
rapidamente?
= ? 2
a)f(x,y)=x +xy+y em(l,]1).
byf(x,y)=Inll (x, v} ll em (1. —1).

-
1=

; ,, 1
) f(x,y)= y4—x—2y° em ( ] ]

L2
x af .
Seja f (x, y) =x arctg —. Calcule  _ (1, 1), onde , @ponta na dire¢do e sentido de maximo crescimento de f, no ponto (1, 1).
\ d
Calcule a derivada direcionalde fx, y) = ."] + x2 4+ 2 noponto (2,2) e na diregdo
- W : =
— i — —
al v =1(1.2) b)Y W=+ T 27
. L PP O _ oo E o0 =
Calcule a derivada direcional de f(x, v} P no ponto (— 1, 1) e na direcdo 2i +3j
Uma fungdo diferenciavel / (x, y) tem, no ponto (1, 1), derivada direcional igual a 3 na diregéo 3 T 4 4 T e igual a — 1 na direcdo

4 T _ 5? Calcule

a)V f(1, 1).

f - 2 5

b) (1,1)onde u éoversorde ; + j.

—
au
Admita que 7 (x, y) = 16 — 2x2 — »2 represente uma distribuigdo de temperatura no plano xy. Determine uma parametrizagdo para a

trajetdria descrita por um ponto P que se desloca, a partir do ponto (1, 2), sempre na direcdo e sentido de maximo crescimento da
temperatura.

Seja f (x, y) = xy. Determine uma parametrizacdo para a trajetoria descrita por um ponto P que se desloca, a partir do ponto (1, 2),
sempre na direcdo e sentido de maximo crescimento de f.

Seja f (x, y) =xy. Determine a reta tangente ao grafico de £, no ponto (1, 2, / (1, 2)), que forma com o plano xy dngulo maximo.

Seja f'(x, y) =x + 2y + 1. Determine a reta contida no grafico de f, passando pelo ponto (1, 1, 4) e que forma com o plano xy angulo
MmAximo.

Um ponto P descreve uma trajetoria sobre o grafico de f (x, y) = 4x2 + y2. Sabe-se que a reta tangente em cada ponto da trajetoria

forma com o plano xy angulo maximo. Determine uma parametrizagdo para a trajetoria admitindo que ela passe pelo ponto (1, 1, 5).

Admita que o grafico de z = xy represente uma superficie propria para a pratica do esqui. Admita, ainda, que um esquiador deslize pela
superficie sempre na dire¢cdo de maior declive. Se ele parte do ponto (1, 2, 2), em que ponto ele tocard o plano xy?

Seja A = {(x, y) € [32/5 —x2 —4y? > 0}. Suponha que o grafico de z =5 — x2 — 4y2, (x, y) € 4, represente a superficie de um monte.
(Adote o km como unidade de medida.) Um alpinista que se encontra na posicdo (1, 1, 0) pretende escald-lo. Determine a trajetéria a
ser descrita pelo alpinista admitindo que ele busque sempre a direcdo de maior aclive. Sugerimos ao leitor desenhar o monte e a
trajetoria a ser descrita pelo alpinista.

Suponha que T (x, y) =40 — x2 — 2?2 represente uma distribuigdo de temperatura no plano xy. (Admita que x e y sejam dados em km e
a temperatura em °C.) Um individuo encontra-se na posi¢ao (3, 2) e pretende dar um passeio.

a) Descreva o lugar geométrico dos pontos que ele devera percorrer se for seu desejo desfrutar sempre da mesma temperatura do
ponto (3, 2).
b) Qual a direcdo e sentido que devera tomar se for seu desejo caminhar na direcdo de maior crescimento da temperatura?

c) De quanto a temperatura se elevara aproximadamente, caso caminhe 0,01 km na direcdo encontrada no item b?

%
d) De quanto decrescera, aproximadamente, a temperatura, caso caminhe 0,01 km na dire¢ao i ?
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Calcule a derivada direcional da fungdo dada, no ponto e diregao W indicados.
— — — —
a) fix,vwz)=xyzem(l,1, 1)enadirecio w =21 + j — k.
5 2 : % T EA
D) f(x. v, 2)=x"+xy+z7°em(l,2, —1)enadirecRio w = i +2 j + &

A func¢do diferenciavel f (x, y, z) tem, no ponto (1, 1, 1), derivada direcional igual a 1 na dire¢ao 4}) + 31,}, igual a 2 na dire¢do

af
—4 T 4 T e igual a zero na direcdo j Calcule o valor maximo de = (1;1;1 ).
au
Seja f (x, y) diferenciavel e sejam I: e T dois vetores de [[J2, unitarios e ortogonais. Prove:
d - d -
Vi y= —i (x,y) u + —J]_i (x, v) v.
du dv
ﬂlf ﬂjl " I s : =% =F
— (x, y)e — (x, y) sdo os componentes de V f (x, y) em relagdo a base (u, v ).
au av 4
Seja g (r, ) =f (x, y), comx =r cos § e y =r sen 6, onde f (x, y) é suposta diferencidvel num aberto do [[J2. Sejam
— — — -— — —
w =cos® i +senf jev=—senf i +cosf j-Mostreque
d d I dg d
a) ﬂ—g (r.0)= —J]_i (X y)e — ﬂ—; (r. @) = —i (X v
r r
du av
. af - af -
by Vflx,y)= —i (xy u+—"—(@xy v.
du adv
g 2 1[a ?
5
AV wi™ = [_g (r, E}} + _j|:_§‘ (r, ﬂ}} .onde x =rcos fey=rsenf.
ar r<| ae
4
y

Caleule | V.f(1, 1) [| sendo f(x, y) = | arc sen ———
"'.,'I .1.'2 + ¥

(Sugestdo: Faca g (r,60) =f (x, y),comx =r cos § e y =r sen 6 e utilize o item ¢) do exercicio anterior.)

Suponha f (x, y) diferenciavel no aberto 4. Sejam (s, ) as coordenadas do vetor (x, y) em relacdo & base (;', T), onde

— — . ~
u = (cosa.sena)e v = (—sena, cosa) Considere a fungdo g dada por g (s, ) =f (x, ). Mostre que

(}‘_g (5, 1) = ﬂ (x, yle ﬂ (5, 1) = ﬂ (x, ¥).
ds - at >
du av

Interprete.

3
X
Seja f(x, v) = ————=se(x, y) # (0, 0) e f(0, 0) = 0. Mostre que

x5 4y
af _ , —? = 1 | .
—— (0,0)FVf(0,0) u,onde u = [ _— J Explique.

Seja f'(x, y) diferenciavel no aberto 4 de [[}2 e sejam y (7) e 6 (t) duas curvas definidas e diferencidveis num intervalo aberto / e com



%
imagens contidas em 4. Suponha y (tO) =0 (tO),” Y (i)l =118 Gl = 1V f(y (o) # 0 ey (i) o versor de V 1 (y (to)).
Suponha, ainda, que y’ (f0) ndo seja paralelo a J’ (f0). Prove que existe » > 0 tal que

flytn=f@ @) paratg<t<ty+r

e
flym) <fld(t)paraty—r<r<t,
Interprete.
23. Seja f (x, y, z) diferencidvel num aberto do [[I3 e sejam ?, T, e : vetores do [[}3, unitarios e dois a dois ortogonais. Prove:
Vixyz= — @32 u oy v +F—Eno w
du av aw
24. Seja F (r, 6,z) =f(x, y, z),comx =r cos e y =r sen 6, onde f ¢ suposta diferenciavel num aberto do [[}3. Prove que
: aF - 1 4F — F s
Vieywo=— b u+——(rdy v+ (r, 8.2) k
ar roag az
iy

— — - = —
onde t =cos@ i +senf jev =—senf i +cosh j.

25. Seja F (1, 6,9) =f(x, y, z),comx =rsen ¢ cos 6,y =rsen ¢ sen f e z =r cos ¢, onde f ¢ suposta diferenciavel num aberto de [[I3.

Prove que
— — —

aF 1 aF
— (e v +— —(rnbe w

F
Vilx, v2) = ﬁ— r.l.e¢ u + ——
ar rsen ¢ df roog

— —

onde u = (sen ¢ cos f. sen ¢ sen B, cos ), v = (—sen f.cos f)e

%
w = (cos @ cos @, cos ¢ sen f, —sen ).




14

DERIVADAS PARCIAIS DE ORDENS SUPERIORES

14.1. DERIVADAS PARCIAIS DE ORDENS SUPERIORES

. o ;
Seja a fun¢do z = f (x, y); na Se¢do 10.1 vimos como construir as fungdes af e d—f Da mesma forma,

dx ay’
podemos, agora, construir as fungdes:

0f 10 2 Bf_ 8 (oF) a4 _ (a_f} 2 _ o (1)
ax2  ax \ax J av:  ay ; - - ’

gy L dy ) axdy dx L ady ) dvox dy \ax &
Pf_ (af.f“‘

rr.ﬁf 3 { ﬁ‘zf b o
- . — C.
ax3  ax | ax? [ axayax ax LH}-‘ ax J

EXEMPLO 1. Seja f(x, y) = 4x°y* — 6x°y + 3. Calcule todas as derivadas parciais de 2.* ordem.

Solucao
ﬂf y) = 20+ 1 — 12xy e ﬁu; y) = lfm.‘c::;'jr'q — 6x”.
r.ur ay
0T tx, y)= fﬁf (. nJ 92004 - 12xy) = B0xy* — 12,
ax= ax \ dx 0x
L PRE RS & ['” *;]=f—’(2m-4;, — 12xy) = 80x"y? — 12x.
dy dx dv \ dx dy
2 ¢ \ - ;
i f ¥) = ﬁ (% E}J = i{ 16y — fi.rz} = 48.‘{5?2.
ay? av \ dyv ay '
I = ti{ o=t 65 =B = 0P < iz m
dx ay dx \ dy ax ' '
2 2 ¢
Note que, neste exemplo, 4= (x, v)= . (x, ¥), para todo (x, v) £ R2.
ax dy dy dx
B 0,0
EXEMPLO 2. Seja f(x, v) = | 2 4 2 ¢ (17 0.0)

0 se (x, ¥v)= (0, 0).



Mostre que

oL 0o=0 p 2T 0.0)=1
ax dy ady dx
Solucao

o ) af
a) Devemos, primeiro, determinar % Para (x, y) # (0, 0), temos:
av

ﬁ { ¢ 1';’} - 3.,“': UZ + }_.2}_ 2“‘4 _ I}_A + 3_1._3}_,2
ay (2% +32)? (2 + 332

Em (0, 0) temos:

9 0,0)= tim LO» 70,0

= 0. Assim,
ay y—=0 v
1 (v 4 332
af 2TV e (x y)#(0,0)
T{J.-. .1")_ (x= +“I.’“\j‘:’
o 0 se (x, v) = (0, 0).
Temos, agora:
S ﬂ(l‘, U}—E,}—'}({D,D) 52
OJ (0,0)= lim % oy — 0 owsein, 2T (0, Dy= 0.
ox dy x—0 X[ ax dy
S L T,
. ¥? (X5 )y —2xy ,
b) i—f (x )= @ iR e (6 MFO0.0 (yerifique).
a 0 se (x, y) = (0, 0).
2f i’f(ﬂ, }-‘}—LI_{D, 0) 2 f
(0,0)= lim 9% 2 =1 ou seja, — (0,0)=1. w
av dx y—0 y—0 ay dx

2 2

O exemplo anterior mostra-nos que a igualdade f { (x, V)= f ‘}f (x, v) nem sempre se verifica. O
ox oy oV ox

proximo teorema, cuja demonstragdo ¢ deixada para exercicio (veja Exercicio 15), fornece-nos uma
condi¢do suficiente para que tal igualdade ocorra. Antes de enunciar tal teorema, vamos definir fungao
de classe (.

Uma fungdo f: A C B* — R, A4 aberto, ¢ dita de classe C" em A se f admitir todas as derivadas
parciais de ordem » continuas em 4.

O teorema que enunciaremos a seguir conta-nos que se f for de classe C* em A4, A aberto, entdo as




ad e a7
: C a< = s
derivadas parciais mistas J e / serdo iguais em 4.
ox dy  dydx

Teorema (de Schwarz). Seja f: A C [R2 - [[, A aberto. Se f for de classe C2 em A,
G W
= g
- f (x, )= _’f (x, ¥)
ax dy dy dx

para todo (x, y) € 4.

Exercicios 14.1

1. Calcule todas as derivadas parciais de 2.* ordem.

a) f(x, y)=xy’
b) z=er y

c) z=In(1 +x*+)?)
d) g (x, y) =4xy" +

*f

=7

& f

2. Seja (x,v)= (x, v). Verifique que
ax dy dy dx
‘::}2 - ':}2 i 3 f
a)x ,}: x,v+y / (x,y)=-—3 i{.r. V)
ox= Cdydx dx
8 f @’ 4
=00 ¥ {{.r. y)=— e
dx- dy” (x= +y° )
: af  af 2 2
3. Verifique que ——+——=10,0onde f(x, y) =In(x +y).
ax2 0y’
4 ) 3z 9%z &x
© Verifique que x + y—>=10, onde e
ax ﬂ\,' E ,a'}r— ’ = + _'ﬁ-‘]' e ¥

5. Sejamf, g: A C R* — R, 4 aberto, duas fungdes de classe C* e tais que

af _dg of _ %
ax a8y ay ax’
Prove que
aj ; 'I;}E ; 'I;}E = -}2 ;
J 400 g 28,98 _,
ax= ay- dx= ay-

6. Sejamf: A C B’ — R de classe C* no aberto 4. Justifique as igualdades.



10.

11.

12.

13.

14.

N P " f }Eﬁf 9 f
i = _ = c =
dx dy dyidx dxdz a4z dx dvdz adzdy
Seja f. ¥ 2) = —F—————— Verifique que
) VAT + ¥+ aued
atf  atf @l
e f il Lo
ax2  ayr 8zl
TE =2 "r‘z 3 3
. N g - 3 = 'Ha- s
Seja fx, vy =1" 2+ y? e (6 ) #0:0) earcute - f (0,0)e l«[U. 0).
) dx dy av dx

0 C ose(x, y) =(0,0)

Seja u (x, 1) = A sen (at + ) sen Ax, com A4, a, 1 € ¢ constantes. Verifique que

- 2
w4

el | - 5

it ix=

Sejau =f(x —at) + g (x + at), onde f e g sdo duas fungdes quaisquer de uma variavel real e
derivaveis até a 2. ordem. Verifique que

- 2
w4

el | - 5

it ix=

Sejam x =x (u, v) e y =y (u, v) duas fungdes que admitem derivadas parciais num mesmo aberto
A. Suponha que (1, 1) € 4e que x (1, 1) > 0. Suponha, ainda, que para todo (u, v) € 4

3 3y
¥y = ey 2w

ax
Calcule —
du|u=1
y= I
x

Seja 7z = xye?. Verifique que

8z 8z
¥ty )
- dy dx-

Sejaz = f(x, y) de classe C* no aberto 4 e seja (xo, o) € A. Suponha que f (xo, Vo) > f (x, ), para
todo (x, y) € A4. Prove que

a2 f i
—'f[:n'n“ Vo) =0 e
dx-

L".'[}.. _";‘.:JI = (),

=
y4

o

Interprete graficamente.

. xt =yt i .
Seja z =J I sen 1= dr | du. Calcule
1 [

i}



15.

922 8%z
: by —|  _
dx ay ax2 | x=1

y=1

a)

Seja z = f(x, ), (x, ¥) € A, com A aberto. Suponha que % ﬂﬁ estdo definidas em 4 e que

dy

o7 e s sdo continuas em 4. Seja (x , y ) um ponto qualquer de 4; seja B uma bola aberta de

dx dy dydx 0 0
centro (xo, ¥o) € contida em 4. Sejam 4 ¢ k tais que (xo + A4, yo + k) pertenca a B. Seja, ainda,

H (h, k)=f(xo+h, yo+ k) = f(x0, o + k) = f (x0+ h, yo) + [ (xo0, Vo).

a) Considere as fungdes ¢ (1) =f (1, yo + k) — f(t, yg) e p (s) = f (x5 + h, 5) — f (x. 5). Mostre que

H ”1'_. k)= o {.'L'{] + h) — o {.'L'{]} . {_"r'u, + k} —p {_"r'n}.

b) Prove: existe ¢, entre xo € xo + / tal que

af i
elxg+h)—elp) =@ t))h= [_f (t1. vo + k) ces 0, (1. Yo ]I:| h.
dx ox

c) Prove: existem ¢, € 51, com ¢, entre xo € Xo + 4 € 51 entre y, € Vo + £, tais que

-

Hh k) = (1. 51) = @ (xg + h) — @ (xy).

dy dx

d) Prove: existem £, € 52, com £, entre xo € Xo + 4 € s, entre y, € Vo + £, tais que

i
Hih k)= 0] (1. 55) = p(yp + k) — p(yy)
ax dy ~

5 e [
ik a-
e) PrOVe: —j{._rl.:“ _1"'II:|} = —Jf {Y“.. _";-'{I_'.
dx dy dy dx -

Observacao. A razao de considerarmos a expressao H (4, k) ¢ a seguinte:

af . xg +h yo) — f (xp. ¥o)
— (xp, yp) = lim .
ox h—0 h
d af
= —f (Xp. Yo + k) — — '[."-'U.. _";'n}
i : ax

(xg. o) = lim
dy dx k=0 k

o flxg +h yo + k) — flxg. yo + k) lim flxg +hoyo) — flxg. ¥o)

h—=0 h h—=0 h

= [im
k=0 k

= lim [ lim flxa +h yo +k)— flxo, yo + k)= flxo + h yo) + flxp, _‘r'{]]'}

E—=0|h=o fik



14.2. APLICACOES DA REGRA DA CADEIA ENVOLVENDO DERIVADAS
PARCIAIS DE ORDENS SUPERIORES

Sejam f(x, y), x =x () e y =y (¢) diferenciaveis. Pela regra da cadeia, temos

d . of of
P {_1 5 =_{ _+ S
g TED= o E N Gt 5y o dr
ou

—[f(r WI=Vfi(x,y)- (dj ('f"'],
dt  dt

5 o
Suponhamos, agora, que as fungdes Tf e ;—f sejam também diferenciaveis. O gradiente de a em (x,
X oy ax
y) €

ou seja,

Temos, entdo, pela regra da cadeia:

] ] ~ \
i[ﬂ{l‘ 1*}:| — v i(x‘ ‘\r.‘]. (d_’f‘ d_\] = ﬂ (df dr
dr | dx X

= Zen)g ol en)a

av \ dx J dt
Assim,

- 2 2 _.
i [ﬂ {I, .1,..\\":| — 0 ‘{ (.1', \\) ﬂ -+ d 'f {x. ¥ dy
dr | dx . 0

ax= dt dy dx )E'
Da mesma forma,
dt | dy ax \ ay ar - ay dt
e, portanto,
d|af a2 f de  92f dy
— | ——(x,¥)|= 5 Pty o (ot B
drt L’h ’ } dx dy dt y< ) drt



EXEMPLO 1. Suponha f'(x, y) de classe C* num aberto do R*. Seja g (¢) = f (3¢, 2t + 1). Expresse g"(?)
em termos de derivadas parciais de f.

Solucao
g=fxv)x=3teyv=2f+ 1.
af df dy
{ﬂ—— (x, v)]=—(x, ‘r—+ V) —
3 L/ ! ax dr ady dt
ou seja,
g'(H= Sﬂ (x, y)+ 2 0r (x, ¥)
ax ay
Entao,
@ & () = q_|:ﬂ( } 158 |0 o 9l
- dt | dx dt | dy
Temos:
2 22 F .
i|:rf_f(t!1~):|=‘?{( )ﬂ—k o f (x’.\.'ﬂ
tlox ax= di  dyadx dt
e
- 2 S0 .~
] cj—f(.‘f‘ Y| = 1 (x, }*}d;r-l- ¢ ’: (x, ¥) ﬂ
dt | ay ax dv dt ay© dt
dx dy
Substituindo em D | lembrando que T =3¢ E =2 |vem:
.2 22 ¢ 52 )
g”m=9'? f v)+ 6 F ——(x, 1)+6 A (_1-:.+4” {cu,y).
dl‘* ay ax dx dy ay-

g
Como f'¢ de classe €2, o°f _ & '] . Logo,
ay ax  ax ay

2 a
g"(r‘)=9‘?—j{ W+ 12— f X, y) + & f
dx= ax ch d.\-*

1

ondex=3tey=2t+1.

EXEMPLO 2. Secjamf'(x, y) =xy*, x =3t e y =2t + 1. Calcule g" (¢), sendo g (¢) =f (3¢, 2t + 1).



Solucao

1.° processo (pela regra da cadeia)

g)=f(xy),x=3tey=2t+1.
Pelo exemplo anterior

2 2 52
.aa”m=9'a{ }+1?n’f( {(11)
ox- dx ay

onde x =3t ¢ y=2¢t+ 1. Tendo em vista que

2 =
O & yy=20% 8T s sy= 005 27 C L y) = 12607
d.x= ax dy d‘

resulta,
g (1) = 180xy? ) A = 240+ 1 + 482y v

e, portanto,

g” () = 180 (31)° (2t + 1)* + 240 3n* 21 + 1)° + 48 (31° 2t + 1)%.
2.° processo

g(n =30 2+ D
g (1 =1530* 2+ 1 +8(30° (2t + 1)°,
Portanto,
2 (=180 30 2+ D + 120 3n* 2t + 1P + 120 3 (2t + 1)} + 48 (3¢ (2t + 1)

ou seja,

¢ () =180(30° (2t + D* + 240 3n* (2t + 1)’ + 48 30° (2 + 1)~
EXEMPLO 3. Suponha f(x, y) de classe C* num aberto de R°. Seja g dada por

.
g= fzi}—f{x, ¥).

X

onde x =t e y = . Expresse g’ (£) em termos de derivadas parciais de f.
y p g p

Solucao



Pela regra de derivacao de um produto, temos

Como

resulta,

EXEMPLO 4. Sejaz =

derivadas parciais de f.

g (1) = er—f(.x. y+2L

X

d | d d | ¢ 13
—[d—f{t }-*)}=,r—[d—f{ X, \)}iJrf_(ﬂ(
dt | dx dx | dx dt  av \ax
2.r n? r ’
: { (r,}-')ﬁJr 7 (x, ;-')d—}
dx< dt dv ax dt
=29y +32 T oy
dx< dv dx
g’ (f) = ZrEU 39 f
dx x2

Solucao
z=f(x, y)ondey= 2.
d.x r’i.r dx ay d.x
ou seja,
Iz a ;
o AL X, y) + QJ'E{.T, V).
dx  ax ay
Segue que,
_ d’z d|af d af
= = V) | = 2% V)]
£ axX  dx [ax Z "} d_r{ Tay 7 }
Temos
d | d d d; d [ d \d
— [ﬁ (X, }-‘)} =2 (r}l_ (x }}] o “+ L (r—{r 1)} £
dx | dx ax \ dx dx  dy \ adx dx
ou seja,

dy

di

”)®




o
IL\_I
-~
|:a.
=
Y
=
p—
=
et
p—
| ST |
1
Q;
)
=
L
}-ﬂ
_..-‘
+
"3
L
]
I‘.}
=
(Y
-
o

Temos, também:

8 [Zx or (x, }-‘}} =2 ar (x, v) +2x & [ﬂ 6 }-')]
dx \ ay

dx ay ay
f{rﬂ—l—z,x{df f(r ﬂ}
ay ax ay dy=
ou seja,
] af 2 92 f
(3) {h’i( } Zi(.r,y}—l-lr L (x, ) + 4x2 g {{x“v}.
- dx ay dy dx ay av-
Substituindo (2) € (3) em (1) e lembrando que /¢ de classe C*, resulta:
¥ a2
df;’=af(t\}+4,x f{t,x}-l—alrzdf(,x ¥) + 2- fux] u
dx = ax= dx dy ay= av

827
au?

EXEMPLO S. Sejaz =f(u—2v, v+ 2u) onde f(x, y) ¢ de classe C num aberto de [Q Expresse em

termos de derivadas parciais de f.

Solucao
z=f(x, v, x=u—2vey=v+ 2u.
dz _ @ f df
=—[fENI== - —
du o i ! al. r )au d} } du
Segue que,
f’j i [M ):|+2r_ A i,
u’ dit | dx i | Ay
Como

i [ﬂ (x, ,ﬂ} = e +2 2wy

di | ox dx- dv dx



i d_f x ‘\r'-':' =r_j[a_f (xl \}]ﬂ{—i[ﬂ{l \*}]ﬂ:
du | dy dx \ dy Jau ay .\ ay i

92 f a2
=g Sas P L o
dx ay dye
resulta
. i o 32
e d= il

g == if{x_. y) + 4i f{x, V). m
au= ax= ax dy ay<

EXEMPLO 6. Mostre que a mudanga de variaveis x = e ¢ y = ¢" transforma a equagao

2 r:!j 292z, 0z, &2
- —+ X — y—=1
ax gy~ ax ay
em
2,  ale
& O
et
= dv=
Solucao
Z=zZ(x, y).x =€ ey=¢
Temos
0z _ 9z Ei'" dy
du dx r.”}u ay au
ou seja,
= az i er;
(1) —=¢
dit ax

ABUSOS DE NOTACAO. Aqu1 %% deve ser olhado como funcao de x e y, enquanto - d_ deve ser olhado
dx u

como funcao de u e v.

Segue de (1) que

0%z wdz, w9 [z
€ e [ =)
du~ ax o | dx

Tendo em vista que



D W RN WL W e : 42
i 0z o 8 (d""]m_ki(d"]ﬁ:eud:'
au | dx ax \ax /) ou dy \dx /) du ax=

resulta
. 8%z 9z | 2 9°z
@:J L S M S et -l
du= ax dx<
Procedendo de forma analoga obtém-se
o o a2
— o0“Z dz AT ¢ S
(3) ,_\,=.ﬁ,+.1_2.
av= ay ay

Somando-se (2) e (3) resulta

2 -
0°Z g i}“: 2u 9’z 2Ly D dzi’-_i_ H":}F"-_i_f,ﬁ dz
du=  gv- ax< ay- ax av
Vi 2
94z 0“2 0z A7
sl Ll D o qlc 5%,
ax= ay< dx )

Exercicios 14.2

(Quando nada for dito sobre uma fungéo, ficara subentendido que se trata de uma fungdo de classe C2 num aberto.)

1. Expresse g’ (f) em termos de derivadas parciais de f, sendo g dada por

i) “{r}—af{m ¥l 1—r2e1. = sen f.
ix
by g(n =1fj"£{'31~ 21).
dax
c) g () =—f{r 2045 ﬂf (sen 31, t).
dx dy

2. Expresse g” (f) em termos de derivadas parciais de f, sendo g (¢) =f (5¢, 4?).

3. Considere a fungcdo g (f) =f (a + ht, b + kt),com a, b, h e k constantes.

a) Supondo 1 (x, y) de classe C2 num aberto de [[}2, verifique que

~

i i i’ f
¢ (h=h f (x, ) + 2hk f (x, y) + & J: (x, )
x> dx dy ay~
ondex=a+htey=>b+kt.
b) Supondo f'(x, y) de classe C3 num aberto de [[}2, verifique que
a?- : aﬁ _ 63 r 1:13 >
g =h : (x,y) + 3hk ,\—fu:, V) + 35:&2—'}‘,,{;, D+ B 5
' ax- ' dx=dy dx dy- ay- '

ondex=a+htey=>b+kt.

4. Considere a fun¢do % (x, y) = f (2 + p2, x2 — y2), onde f (u, v) ¢é suposta de classe C2. Verifique

que



10.

11.

12.

-

dx=
_ yz_

du av o= du v

Considere a fungdo 7 = a—f{_x'. sen Jx). Verifique que

ax
dz _a*f i
— = { (x, sen 3x) + 3 cos 3x o°f (x, sen 3x).
dx  dx© dy dx
. e W e &
Considere a fungdo 7 = ﬂ_{ 2x, x7). Verifique que
v
dz @ 3 atf 3 7 2
= r,—f'[lx, FY AL gl f (2x, x°) + 3x” { X ).
de  ady dx dy dy-

Seja g (u, v) =f (2u +v, u —2v), onde f (x, y) é suposta de classe C2. Verifique que

2 2 2 2
il av- dx< dy-

LN

Seja v (r, 8) =u (x, y), onde x =r cos e y =r sen 6. Verifique que

Py @t v 1 a1 atv
kil e S

axr et rar ot e

3 f i At f 92 f
—{: W) = E[i (o, v) + ﬁ (u, L'}:|+4_‘{2|: { (x,v)+2 9 (e, v) +

G

a2 f

-

av=

22
{4, v)|ondeu=x +y ev=x

2

Sejam f(x, y) de classe C2 num aberto de [[J2, g (x) derivavel até a 2.* ordem num intervalo aberto / e tais que, para todox € I, f (x, g
(x)) =0 (isto &, y = g (x) é dada implicitamente pela equacgdo f (x, y) = 0). Expresse g" (x) em termos de derivadas parciais de f.

Suponha que f (x, /) satisfaca a equagdo

® L2
dx~ ot
. - - - . . d'g
Verifique que g (1, v) =f (x, f),onde x =u +v e t =u — v satisfaz a equacdo
dv du

b) Determine uma colegdo de fungdes f (x, f) que satisfagcam ®

Suponha que f (x, /) satisfaca a equagdo

) 5
(i i :

@ {r =ig? ,{ (¢ # 0 constante).
il ax-

a) Determine constantes m, n, p € g para que g (1, v) =f (x, t), onde

. _ g
X =mu +nvet=pu+qv satisfaca a equacao = =)
du av

b) Determine uma familia de solu¢des de @

Seja F (r, 6, ) =f (x,y,t) onde x =r cos 8 e y =r sen 6. Suponha que (¢ # 0 constante)

2 £ Y 52
a'f=v* 6‘,{4_({.
dr= dx= dy-

Mostre que

=0.



-

are 2 oant roar

iF FF 1 &F 1 aF
°°F _ {. L1 &@F 134 }_

13. u u 92z 9%z
Sejamz =z (x,y),x =e cosvey=e senv. Suponha que — + ——= = 0. Calcule
ax- ay”

X

A G ]
il (i v

-y "

A’ dy=

2 2 2
- F - F a°F 2
: g + — = (). Calcule G
a2

4. F(x y) y
Sejam (7 (i, v) =;.u = x + y e v =-. Suponha que ——— — 2 5
X X dx= dx dy ay

15. a) Ache uma fungdo u (x, y) da forma u (x, y) = F (x2 + »2) que satisfaca a equagdo de Laplace

i ey |
a=u a=u
0.

- g .l
ax2 gy

b) Faca a mesma coisa para fungdes de trés ou mais variaveis.

16. Verifique que a mudanga de variaveis x =s cos § —tsen f e y =s sen 6 + ¢ cos 8 com 8 constante, transforma a equacao

S a
o i d-u

- =0(u=ulxy)
ax= ay-
cm
atu atu .
——+———=0(u=uls1).
s~ I

17. Verifique que a mudancga de varidveis u =x +y e v =y + 2x transforma a equagao

7 3 2
(7 a5 o 0z
@ i +2 —=0
dx= dx dy ay-
em
.
0°Z
=0.
diu v
Determine, entdo, uma cole¢do de solugdes de @
18. Suponha que z =z (x, y) satisfaca a equacdo
@z @z a2 32
X —+ 2y —X =xy".
dx< dx dy ax
L u v 9’z a2 a7
Fazendo a mudanca de variaveis x =e ey =e , calcule —F2 —2
- du dv e




15

TEOREMA DO VALOR MEDIO. FORMULA DE TAYLOR COM
RESTO DE LAGRANGE

15.1. TEOREMA DO VALOR MEDIO

Um dos teoremas centrais do calculo de funcdes reais de uma variavel real ¢ o teorema do valor
médio (TVM). Nesta se¢ao, vamos estendé-lo para o caso de fungdes reais de duas variaveis reais e
deixaremos a cargo do leitor a tarefa de generaliza-lo para fungdes reais de trés ou mais variaveis reais.

Antes de enunciar ¢ demonstrar tal teorema, vamos introduzir os conceitos de segmento e poligonal.
Sejam P, e P; dois pontos do [B*; 0 conjunto

PoP=(PERIP=Py+ A (Py—Pp.0<A<1)

denomina-se segmento de extremidades P, ¢ P,. Sejam, agora, Po, Py, P, ..., P,, n + 1 pontos distintos do
R*; o conjunto

PyP U PP, U ...UP, _ P,

denomina-se poligonal de vértices Py, P, ..., P,.

P:

segmento de extremidades Pﬂ e P poligonal de vértices P“. PI o PT P 4 € P

Teorema (do valor médio). Sejam A um subconjunto aberto do [[}2, Po e P1 dois pontos de A tais que o segmento PoP1 esteja
contido em A. Nestas condigdes, se f (x, y) for diferenciavel em A, entdo existird pelo menos um ponto p interno ao segmento PoP1

(isto é, p pertence a PoP1 mas ndo é extremidade) tal que

fP) —f(Py) =Vf(P)- (P — Py).

Demonstracdo




Consideremos a fungdo g : [0, 1] — R dada por
g()=f(Pyp+t(Py—Py)0=tr=1.

Esta funcdo g fornece os valores que f assume nos pontos do segmento PyP;. Da diferenciabilidade de f
em A, segue que g ¢ continua em [0, 1] e derivavel em ]0, 1[. Pelo TVM existe 7 em ]0, 1] tal que

g(l) —g(0)=g"(F). (1 —0),

ou seja,

g (1) —g(0) =g’ (7).
Como g (1) =f(P1) e g (0) =1 (Py), resulta

f(P) —f(Py) =g (1)
Pela regra da cadeia

g =V (Py+t(P;— Py vy (D
onde y (t) = Py + t (P1 — Po). Temos
Y =Pyttt (P —P)=v(t)=P — Py
Assim,
g)y=VfB+t(B—R) (A —R)
onde P = P, +1(A — B))¢umponto interno ao segmento PyP; pois 0 <7 < 1. Portanto,
fPY—fPy) =V (P): (Py— Pp). f

Pelo TVM existe p interno ao segmento PoP; tal que

: =, = =B
f(R)~ f(R)=VF(P)- (A — R) = VF(P)-——0_j1q — Ry
A — Kl
- —
Fazendo u =ﬁresulta,
1A =Rl

-
F(P) —f(P)=(Vf(P) u)lP; — Pyl
ou seja,
df

f(R)— f(R)=—=(P)IR— R
d u

ou ainda,



(R —fR) _ I 5
= 2_p) .
TN _%{ ) (A+#+ R)

du

Assim, se f (x, y) for diferencidavel no aberto A e se Po\P, C A, entdo existira p interno a PyP) tal que a

: L — L, - R ;g L
derivada direcional de f, em p, e na dire¢do u = ”:—;”, ¢ a taxa média de variagdo de f entre os
— fn

pontos Py e Py, Py # P\.

Observagio. O enunciado do TVM para fungdo real de n varidveis (n > 2) é o acima, substituindo R por
Rn.

Exercicios 15.1

1. Determine P = (X, V') como no teorema do valor médio, sendo dados:

a) f(x,y)=2x2+3y, Po=(1,1) e P1=(2,3).
b) f(x,y)=2x2—-3y2 +xy, Po=(1,2) e P1 (4, 3).

) f,y)=x3+x2, Po=(1,1)e P1=(2,2).
2. Seja f'(x, y) diferenciavel em [[J2 e suponha que existe M > 0 tal que ||V f'(x, y)|| < M, para todo (x, y). Prove que
[f ey =f (s, Dl =M (x,y) = (s, 0 ||
quaisquer que sejam (x, y) e (s, ) em [[J2.
3. Sejaf(x,y) = (x +y). Prove que
) =fenl<ley) =]

quaisquer que sejam (x, y) e (s, f),comx >1,y>1,s>1et> 1.

15.2. FUNCOES COM GRADIENTE NULO

Estamos interessados, agora, em estudar as fungdes que t€ém gradiente nulo num aberto. Se f (x, y) for
constante num aberto 4 de j?, entdo V f(x, y) = (0, 0) para todo (x, y) € A. Entretanto, pode acontecer de
uma fungao ter gradiente nulo em todos os pontos de um aberto sem ser constante neste aberto: a fungao

(5 ) (2sey>0e0<x<] JEEEEEnSmanRRa —
fx,y)=+ L1

1 sey>0el<x<2 i
/
2

tem gradiente nulo no aberto A= {(x,y) €@’ [y >0,0<x<1oul <x <2}, mas ndo é constante em 4.



Provaremos a seguir que se uma fungao admitir gradiente nulo em todos os pontos de um conjunto 4
conexo por caminhos, entdo a fungdo sera necessariamente constante em 4. Dizemos que um conjunto
aberto A ¢ conexo por caminhos se, quaisquer que forem os pontos P ¢ Q pertencentes a 4, existir uma
poligonal, de extremidades P e Q, contida em 4.

EXEMPLOS

a) A=[R* é conexo por caminhos.
b) Toda bola aberta ¢ conexa por caminhos.

9

e

Qualquer poligonal ligando P a Q tem pontos que nao pertencem a A. (Observe que os pontos (1, y), y >
0, ndo pertencem a 4.)
n

Teorema. Seja A C [}2 aberto e conexo por caminhos. Nestas condigdes, se V f (x, y) = (0, 0) para todo (x, y) em A, entdo f
sera constante em A.

Demonstracdo

Seja Py = (X0, ¥o) um ponto de 4, vamos provar que para todo
P=(x,y) € 4, f(x,y) =1 (x0, Vo). Como A ¢ conexo por caminhos, existem pontos Py, P>, ..., Pn-1 ¢ P, =
P pertencentes a A tais que a poligonal P,P, U PP, U ... U P, P, estd contida em A.



Pelo teorema do valor médio, para todo i existe P internoa Pi_, P;(i=1,2, ..., n) tal que
FR)=F(P;_ )=V (B) - (P;=Pi_{)
e como V f( B) = 0 (hiptese) resulta
S (P)=f(Pi-1)

parai=1,2, ..., n; assim,

SPo)=f(P)=f(P)=...=f(P)=f(P)
e, portanto, 1 (x, y) = f (xo, o). Fica provado assim que, para todo (x, y) € 4, f (x, y) =f (xo, o), Ou seja, f

¢ constante em 4.
n

15.3. RELACAO ENTRE FUNCOES COM MESMO GRADIENTE

Teorema 1. Seja A C [[}2 aberto e conexo por caminhos e sejam f, g duas fun¢des que admitem derivadas parciais em A. Nestas
condigdes, se V f (x, y) =V g (x, y) para todo (x, y) € A, entdo existird uma constante k tal que

gxy)=f(xy) tk

para todo (x, y) em 4.

Demonstracdo

Seja h (x,y) =g (x,y) —f (x, ), (x,y) € 4 como
Vh(x,v)=Vg(x.v)— Vfixy.(xy €A,

segue da hipotese que V 4 (x, y) = (0, 0) para todo (x, y) € A. Como A4 é conexo por caminhos, resulta que
h € constante em A, logo, existe uma constante & tal que /4 (x, y) = k em A4, ou seja,

gx,y)=f(x,y) +k



para todo (x, y) € 4.
u

O teorema acima nos diz que duas fungoes com gradientes iguais num conjunto conexo por

caminhos diferem, neste conjunto, por uma constante.

EXEMPLO 1. Determine todas as fungdes 1 (x, y), definidas em [?, tais que

Solucao
Observe que duas fungdes que satisfazem (1) terdo gradientes iguais; logo, deverdo diferir por
constante, pois [i* ¢ conexo por caminhos. Basta, entdo, determinar uma solugdo de (1) € qualquer outra

sera esta mais uma constante. A funcao

x’y* +4dx

satisfaz a 1.” equagdo (obtém-se tal funcdo integrando-se a 1.* equagdo de (1) emrelagdo a x, mantendo-se

y constante). Por outro lado,
2

” 1'._:--
o+
: 3

satisfaz a 2.% equacgdo de (1). Segue que
3

3 7 V-
Xy +4x + T

satisfaz (1). (Por qué?) Logo,

}
3.9 '
fx,)=xy +4x + T + k

k € R)

¢ a familia das solugdes de (7).
]

Sejam P (x, ) € O (x, y) duas fun¢des dadas, definidas num aberto 4 do @*. O problema que se coloca

¢ o seguinte: o sistema



ﬂ=P{J;,_‘n-‘“1
X
o
— =0 (x,v)
Ea

admite sempre solugdo? A resposta em geral ¢ ndo. A seguir apresentaremos uma condi¢do necessdria
para que o sistema admita solucao.

Teorema 2. Sejam P (x, y) e Q (x, y) duas fungdes definidas e de classe C1 num aberto A do [[}2. Uma condigdo necessdria para
que exista uma funcdo f: A — 2 tal que, para todo (x, y) € A.

Ji (x, v)= P(x,y)
X
o
—(x. ¥) = Q(x,y
o 9 =0EY
JdQ  dP
éque — = —em
o
Demonstracdo

Suponhamos que tal f exista; assim

[i (x,v)= P(x,v)
4 j; emA.
—(x, v) = Q(x,v)

5 (0= 00

Derivando os dois membros da primeira equacdo em relacdo a y e os da segunda em relagdo a x,
obtemos, para todo (x, y) € 4,

' f P
—— (xny)=—(xV)
dvox v
e
T wgy =22 .
ox oy o

Como P e O sdo supostas de classe C', resulta que f sera de classe C% pelo teorema de Schwarz
a2 f _ D f
dxdy  dvox

Logo,



EXEMPLO 2. Consideremos o sistema

) ] .. . : 2 : :
Como — (xy) # (— (v) em HE, segue que nao existe fungdo definida em que satisfaga o sistema

o ol

EXEMPLO 3. Determine, caso existam, todas as fungdes z = f'(x, y) tais que

& _ ;>
A = 2 72 5
{ d‘f AEED em R™ — {(0,0)}
(.:'h}_, _r; + }_,._'
Solucao
d X ] __ 2n
v\ x2+y2 ] (22 +y2)2
e
g Y _ ] __ —2xy
o |\ xZ + y? ) 24y
Assim,
oF o8 em R? — ({0, M}
v o
de P(x,y) = Le Qx 1-*‘}=;—€_-"
onde ey .Tj + }_,j Sty .TE £ .1':2

A condigdo necessaria estd verificada; o sistema pode admitir solugdes. Deixamos a seu cargo verificar

que
In(x2+yH)+e ¥ +k (kER)

dy

o | —

¢ a familia das solucdes do sistema.
]

Uma pergunta que surge naturalmente ¢ a seguinte: a condicdo necessaria do teorema 2 ¢ também



suficiente? A resposta ¢ ndo. (Veja Exercicios 9 e 10.) Entretanto, se algumas restri¢gdes forem impostas
ao conjunto 4 a condi¢do sera, também, suficiente. Este problema sera discutido no Vol. 3.

Exercicios 15.3

Determine todas as fungdes f': [[22 tais que

1.

. 5 ) 3

a) i = 9.?(2].‘“ — 10x, i =6x"y+ 1
ot oy
& . 5

b) i =yeosxy + 3x” —y, i =xcosxy—x+ 3}-‘2
o oy

c) g _ 2xex +37 L - 2ye* +¥0 4 -
(.h; (]-'-'I"Z‘ . l + 1}1.-;',

Determine a fungdo f': [(2 — [} cujo grafico passa pelo ponto (1, 2, 1) e tal que
3 ~.2 2
Vf(x,y)=Qxy — 2x, 3x7y" + 2y — 1).

Determine a fungdo f': [(12 — [} cujo grafico passa pelo ponto (0, 0, 2) e tal que

. X / 2
¥V fix. y)I= ( > + ye?

| 1 + x2 +}-‘2 "1+ x? +}-‘2
4. Existe funcdo f: [J2 — [} tal que

Vi =@ +y+ 1 22—y + 1)
para todo (x, y) em [[32? Justifique.
Determine z = 9, (x,»),y>0,talque g (1. 1) = % €, para todo y > 0,

=y X
Vor(x,y)= ( = ]

2 . 7 3
\ X<+ ¥y x4y

-

Determine z =¢ (x,y),x <0, talque @~ (—1. 1) = ? e, para todo x <0,
2 = ;

—v X
Vor(xny)=| 50— —5— }

. : 3m
Seja 4 = {(x,y) E ﬂ%g ly >0} U {(x,y) E Hz lx < 0} Determine z = ¢ (x, y), (x,y) € 4, tal que @ (—1, 1) = T e, para
todo (x, y) € 4,

R, X
VX +y xc+y
(Sugestdo: Utilize os Exercicios 5 e 6.)

8. Um campo de forgas F (x. V) = P(x.v) T} + 0 (x.y) }}, onde P e Q sdo fungdes definidas num aberto 4 C [QZ, denomina-se

conservativo se existe um campo escalar ¢ : 4 — [[} tal que

%
Vel(x.y)= F (x.y)emA.



Uma tal funcdo ¢, quando existe, denomina-se fun¢do potencial associada ao campo F O campo de forcas dado é conservativo?

Justifique.
= = =2 =F = =
a) Flx,y)=x1 +y ] by F(x,y)=yi —xj
< — — = X1 +yj
o Fx,=yi +&+2y j d) F (x,y) = — = {;,,
(x=+y°)"'~
o = 2} = 3z o =2
e) Filx,yy=41i +x D-F = @i —23.3)

9. Seja ?:} (x,y) = P(x.y) _f +Q(x.y) _; um campo de for¢as com P e Q continuas no aberto 4 C [Qz. Seja y () = (x (9), y (1)), t

€ [a, b], uma curva de classe C1, com y (a) =y (b) (y é uma curva fechada). Suponha que, para todo ¢ € [a, b],y (f) € A. Prove que
se F for conservativo, entio,

b

F (y())-¥'(t)dt=0.

el

10. — oy x =
Seja Fix. _1” = ﬁ i + e T '[.X-._"F‘} I{D ﬂ]‘

) 2 !
e s x= 4+ y°

a) Verifique que, para todo (x, y) # (0, 0),

dP 0
=== 0E»
&y o
¥ X
onde P (x, Y)=——F"-—7F¢ Q{;;"}r} i
xXe + = x< + y-
b) 2qr — , -
Calcule F (v (t))-v'(t)dt ondey (¢) = (cos t,sen ?), ¢ € [0, 2x].
o :

—, . . . .. .
c) Fe conservativo? Por qué? (Veja exercicio 9 acima.)

i i = i i 2 Se 7

11. Seja F.y)=P(.y) i +Q(xy j umcampo de forcas com P e Q definidas e continuas no aberto 4 de [[J<. Se r for
conservativo entdo existira uma funcdo escalar U (x, y) definida em A4 tal que !_E = _yyem A. Uma tal funcdo denomina-se
fungdo energia potencial associada ao campo F Determine, caso exista, a fungdo energia potencial associada ao campo F dado e
satisfazendo a condi¢ao dada.

- = -

a)Fixyy=—6&i —2y ] elU(0,00=0.
— — — )

b) F(x,v)=x1 +yjelU(0,0)=0.

— -
- | xi+yj 1
c) F CXY) =a— s Y el/(3.4)= —
x° + y° -ﬁv-'xq"* + y? 5

— — — )
d)Fix,y)=xi —xyjelU(0,0)=1.000.

. 2 > . . .
12.Seja U (x, v) = 2x~ + — v~ a fungdo energia potencial associada a0 campo F

b | =

a) Determine F

b) Uma particula de massa 1 é abandonada na posicdo (1, 1) com velocidade nula. Admita que F ¢ a unica for¢a atuando sobre a

particula. Determine a posi¢ao y (f) = (x (), y (¢)) da particula no instante z. Desenhe a trajetdria descrita pela particula.

(Sugestdo: Pela leide Newton 5 (1) — F:} (y ()



13. Seja {7 (x, y) = : aE T a energia potencial associada do campo F

a) Determine F

b) Uma particula de massa m = 1 é abandonada na posi¢do (1, 1) com velocidade 1mc1al =(—1.1) Sendo Fa unica forca

atuando sobre a particula, determine a posicdo y(f) da particula no instante #. Desenhe a trajetona descrita pela particula.

14. Seja F a forca do exercicio anterior. Uma particula de massa m = 1 ¢ abandonada na posicdo (1, 0) com velocidade inicial
%
¥y
trajetdria descrita pela particula.

= (0. 2y Sendo F a Unica forca atuando sobre a particula, determine a posicdo y (f) da particula no instante ¢. Desenhe a

15.4. POLINOMIO DE TAYLOR DE ORDEM 1

Seja f'(x, y) de classe C* no aberto A C @*. Sejam (xo, yo) € A4 € (h, k) # (0, 0) tais que o segmento de
extremidades (xo, yo) € (xo + A, yo + k) esteja contido em A. Consideremos a fungdo g dada por

g (t) =f(xg + ht.yg + k). 1 € [0, 1].

A g fornece os valores que a f assume nos pontos do segmento de extremidades (xo, yo) € (xo + 4, Yo + k).
Esta funcdo g desempenhard o papel de ligagdo na extensao da formula de Taylor para fungdes de duas
variaveis reais.

Pela formula de Taylor, com resto de Lagrange, para fungdes de uma variavel, temos:

@ g() =g ©@+g ©1—0+E9 -0
para algum 7 em ]0, 1].
Calculemos, agora, g' (1) e g" (¢):
g e df df
rty=L =Ly T L2
: dt LAl ox dv oy dt
ou seja,
§ af df
() =——(%, ) A+="(x ¥).k
§ 728 - v

onde x =xo+ ht e y=yo + kt;

g”{ﬂ=i{:ﬂ{. ‘r}h+—{in }}k

dt | dx dt | o
= dhf X, v)h + dh} (x, V)k |h+ o’F (x, v)h + *f (x. V)k |k,
ox < oy dlx dx dy dy?

ou seja,



7 Z
d L (x, y) B2 +2 9f (,y}h;c+()h,,f(x,;-m2

f.f{r-.' =
8 o2 ax oy ave

onde x =xo+ ht e y = yo + kt.
Temos, entao:

g(hy= flxg+h vy + k) g(0)= f(xg.vp).

g'(0)= iifﬂ! yo)h + % (x0. Yo)k e

ax
@ > N
8" (F) = o*f (%, ¥)h2 + 2 of (T 9)hk + T G
2 ax v

onde Xx=uxy +hifey=y + k?.

Observe que (¥, ¥) € um ponto interno ao segmento de extremidades (xo, o) € (xo + A, yo + k), pois 7 € ]0,

[

Substituindo (2) em (1) resulta:

£(xp F+ 81 Yo FE)=F (%0, %)+ ?—U‘u: Yo) b+ éﬁflus Yo) k+ E (h, k)
X dy

onde

f

(X, ¥)k?

Ll P Pf o _
E(h k)=— (X, V)h2 + 2 (¥, ‘n’;’c—l—
= 2 Llr dray o’

para algum (¥, ¥) interno ao segmento de extremidades (xo, o) € (xo + A, yo + k).
Demonstramos, assim, o seguinte teorema.

Teorema. Seja f (x, y) de classe C2 no aberto A C [[}2 e sejam (xo, yo) € A e (h, k) # (0, 0) tais que o segmento de extremidades
(x0, yo) e (xo + h, yo + k) esteja contido em A. Nestas condicGes,

£(xp F+ 81 Yo FE)=F (%0, %)+ ?—U‘u: Yo) b+ %U'us Yo) k+ E (h, k)
X dy

onde

5

2 F 0
{ f g 5yht 4221 (5 Syhe 4 }}"f (X. y)k?

E(h k)=

m|'—

Jx2 (,x(}m oy~




para algum (¥, V) interno ao segmento de extremidades (xo, yo) € (xo + &, yo + k).

Observacao. Fazendo x = x, + i e y =y, + k, obtemos

f(x,¥)= f(xg,y0) t+ ii.‘cﬁ, Vo) Lx~=xg) % i{.m, vo) (¥ — ¥g) T E| (x,¥)
olx oy

P (x. V)
onde
1|a%f arf _ _
Ei(x,y)=— (X.¥V)(x —xp)% +2 (X, ¥)(x —x9)(y— ¥
@ RES ZL X V)X~ xg 2y 0)(¥y — o)
12f "
+ i’hg (x, y)(¥y — m}*}

para algum (¥, ¥) interno ao segmento de extremidades (xo, o) € (x, ).
O polindbmio

B (x, y)= fixg, )+ (_‘ii X0, ¥o) (x — xqg) + i(-’l’ﬂx Yo) (¥ — o)
ox oy

denomina-se polinomio de Taylor de ordem 1 de f (x, y) em volta de (xo, ).

Observe que o grafico de P, (x, y) € o plano tangente ao grafico de f 'em (xo, yo, f (X0, 0)). E1 (x, y) € 0
erro que se comete na aproximac¢do de f (x, y) por P (x, y); 3 € a expressdo do erro na forma de
Lagrange. (As vezes, usa-se a expressio resto em lugar de erro.)

EXEMPLO. Seja f(x,y) =In (x +y).

a) Determine o polindmio de Taylor de ordem 1 de f em volta de L

t¢|—~

1
3/
|

b) Mostre que para todo (x, y),comx+y> 1, lln(x+v)—(x +v—1DI< — (x +v— 1)

1
g
Solucao

i " '
' i e dr \2 2) 7.8 dy \2 2/ \ 2

Como

resulta:



ou seja,

J 2 )
B o £
+ 2 (¥ 1}L}- 2] }
para algum (¥, ¥) interno ao segmento de extremidades [% %J e (x, ). Temos:
J '.’: (x,v)= =4 -~ = o°f (X.¥)= ()La i
ox < (x +v)= ooy v
Como estamos supondo x + y > 1, teremos, também, ¥ + ¥ > 1. Assim, para todo (x, y), comx +y > 1,
]
———{ < 1. Segue que
(x +v V)2 e
1 Y 1 1 ( LY
]E{J.,}.H{E (,1 _El +2{r—5} (]. —E]—i- \1 EJ
ou

IE (x, v)I < L (x+y—1)°
> :
para todo (x, y), comx +y > 1. Assim,

In(x +y) =P (x,y) | < % e 1)2
ou

| T ) = (X Ay 1) ]2 %Lr—l-}-‘— fi3

para todo (x, y), comx +y > 1.

Exercicios 15.4

1. Determine o polinémio de Taylor de ordem 1 da fun¢@o dada, em volta do ponto (x0, y0) dado.



x + 5y

a) flx.y)=¢ e (xg, ¥g) = (0, 0).
3 o

b) flx,y) =2 +¥ —x +dye (x5 y9 = (L, 1).
¢) fix,y) = sen (3x + 4y) e (xg, ¥p) = (0, 0).
Sejam f (x, y) = ex* 5y e P1 (x, y) o polindmio de Taylor de ordem 1 de f em volta de (0, 0).

a) Mostre que para todo (x, y), com x + 5y <1,

X+ 3y PJ

3 o
| & (r,vl< =&+ 5v°
. 5 L

b) Avalie o erro que se comete na aproximagao
: + Sy i
FtV=p, (xy)
parax =0,01 ey =0,01.

Sejam f (x,y) =x3 + y3 —x2 + 4y e P1 (x, y) o polindmio de Taylor de ordem 1 de f em volta de (1, 1). Mostre que para todo (x, y),
com|x—1|<le|y—1|<]1,

fG =P el <TG—12+ 64— 1)

Sejam f (x,y) =x3 +y3 —x2 + 4y e P1 (x,y) o polindmio de Taylor de ordem 1 de f em volta de (1, 1).

a) Utilizando P1 (x, y), calcule um valor aproximado para f (x, y), sendo x = 1,001 e y = 0,99.
b) Avalie o erro que se comete na aproximac¢ao do item a).

(Sugestdo: Utilize o Exercicio 3.)

Seja (x0, y0) um ponto critico de f (x, y) e suponha que f seja de classe C2 na bola aberta B de centro (xo0, y0). Prove que para todo (x,
y) em B, existe (x, V) interno ao segmento de extremidades (xo, y0) € (x, y) tal que

o | - -

ol dxdy

F

. : 1| a*f _ _ 5 f _ _
Flx, y)— flxp. yo) g Lo gl V=) 22— @& V)& —25) (¥ =)

-3

+= f (x,¥) {}-‘—_m}j}-

ay*

Seja f'(x,y) =ax2 +bxy +cy2 +dx +ey + m(a, b, c,d, e, m constantes) e seja (xo, y0) um ponto critico de f. Prove que, para todo (%,
k),

S (x0+ h,yo + k) —f (x0,y0) = ah? + bhk + ck2.
Sejam f (x, y) € (x0, y0) como no exercicio anterior. Prove que se a >0 e b2 — 4ac <0, entdo
S (o +h,yo+ k) > f(x0,0)

para todo (4, k) # (0, 0). Como ¢ o grafico de f?

Suponha f (x, y) da classe C2 na bola aberta B de centro (x0, y0) e que as derivadas parciais de 2.* ordem sejam limitadas em B. Prove
que existe M > 0 tal que, para todo (x, y) € B.

|f () =P, p) [ <M (x,y) — (x0, y0) [|2
onde P1 (x,y) ¢ o polindmio de Taylor de ordem 1 de f em volta de (xo, y0).

Considere o polinémio P (x,y) =a (x —x0) + b (y —y0) + ¢, com a, b, ¢, x0 e yo constantes. Suponha que exista M > 0 tal que, para
todo (x, ),

| P (x,p) =M || (x,y) = (x0,y0) 2.



Prove que P (x,y) =0 em[J2.

10. Seja f (x,y) de classe C2 no aberto 4 C [[}2 e seja (x0, y0) um ponto de 4. Seja o polindmio P (x,y) =a (x —x0) + b (y —»0) + ¢, com
a, b e ¢ constantes. Suponha que existam M > ( e uma bola aberta B de centro (x0, y0), com B C 4, tal que, para todo (x, y) em B,

|f () =P (x,y) | <M || (x, ) = (x0, y0) ||

Prove que P ¢ o polindmio de Taylor de ordem 1 de f'em volta de (xo, y0).

15.5. POLINOMIO DE TAYLOR DE ORDEM 2

Suponhamos £ (x, ) de classe C° no aberto A C @*. Sejam (xo, Vo), (xo + &, yo + k) € g (£) = f (xo + ht,
Vo + kt) como na secdo anterior. Pela formula de Taylor, com resto de Lagrange, para fungdes de uma

variavel segue que

2 g”’{ﬂ“_ 3
!

{ L— i 0)

| (0
®  s=gO+gO-0+ D

para algum 7 em ]0, 1].

Vimos no paragrafo anterior que

i df df
(t)=—=—(x, v)h+—=—(x, vk
g0 = 2r Eh+ o
e
2 2
,_E‘”(ﬂ=(?_{l[t‘n}fz+2( f v)hk + ;fit v)k?2
o~ oy c}f\ ov*

onde x =xo + ht e y = yo + kt. Deixamos a seu cargo verificar que

93 3 3
g” (1) =2+ f (x, V)h? + 3 }f (x, V)h2k + 3 Cast PR +i , k3
o3 Z o Iy P
onde x =xo + ht e y = yo + kt. Temos:
g(l)= f(xp + hyo + k). g(0)= f(xp. o)
g'(0)= (_i{_ru, yo)h+ g (xXp. Yo)k,
o o
7 7 )
H 1 9 _}'L }" '
@ <g”7(0)= a { Cxpy Ya )k 2 r — (xp. Vo) hk + f f (xq. }-'ﬂ.)kz
ax= ax oy d“u
“% 3 ': 3
”’{r}——f{I Vh3+3 _‘},f (X, V)h%k +3 f (X, V) hk? +§—’f(r y) k3
e ? ax=dv dr(h o3
onde X = xg + hf e ¥ = yy + ki.

Substituindo (2) em (1) resulta:



flxg+ h.ygt k) = fxy ¥g) + i (Xg. Yp) h + i (X Yo) k
oy o

“ “

42 3 3
+l|:d ! (x0, yo)h? + 2 o f (xg. yp ) hk + >/ (xg. Vo) k2 |+ E(h. k)
O

2| o2 Axay o2
onde
L [@3F . .4 PAf o _ S5 A
E(h k)=— e A e = (X y)htk A3 = (X, ¥) hk~
(-5) 3 L?ﬁ kel ax? dy 3 X o= 4
Af . a
+ —— (x, v)k°
o? ' }

para algum (x. ¥) interno ao segmento de extremidades (xo, o) € (xo + A, yo + k).
Demonstramos assim o seguinte

Teorema. Seja f(x, y) de classe C3 no aberto A C [[J2 e sejam (xo0, yo) € A e (h, k) # (0, 0) tais que o segmento de extremidades
(x0, yo) e (xo + h, yo + k) esteja contido em A.

Nestas condi¢des,

f{lﬂ, + h, Yo + k} = f{:'f“, I‘Ir’ﬂ:i + r_i (J.'.D, I‘L’,D} h+ ﬂ {Iu1 I"r‘ﬂ) k
ox dy

I 2 32 72 b
+ E{d { (xg. yo)h? + 2 o f (X0, yo)hk + dh{ (X0, yo)k* |+ E(h, k)
i . (‘!--

ox dxay
onde
E (h k}—l{i G +3 20 ntk+3 20 5yme
- 3| a3 T Cokioy T Tyt
+ (‘;;{ (x, ‘\*)kg}

para algum (¥, V) interno ao segmento de extremidades (xo, yo) € (xo + &, yo + k).

O polindbmio
Py (x,¥) = f(xp. ¥g) + 4 (Xg. ¥g) (x — xp) + i (xg. ¥p) (v — ¥p)
o av
d=f

1| d%f 5 2
+ — | —(xg, yp)(x — xp)= + 2 —— (xg, vp) (x — xg )y — ¥p)
Z{dx'z 0-Y0) 0) Tegy 0r Y0) ( o)y — Yo

(} f 2
+ —5- (X0, Y0) (¥ — Y0)*
F% 0+ Y0)(; 0 }

denomina-se polinomio de Taylor de ordem 2 de f em volta de (xo, ).



Fazendo x = x¢ + h e y = yo + k no teorema acima, resulta:

f(x:y):PZ (.X,y)+E2 (.X,y)

onde

Py (x,¥) = f(xp. ¥g) + 4 (Xg. ¥p) (x — xp) + i (Xxg. ¥g) (¥ — ¥p)
- ol av

=7

1| g2 5 3
+ — {(_ { (X0, Yo) (X — Xp)* + 2 o°f
2 | o= G

(xp. ¥0) (X — xg )y — ¥p)

d f a4
+ —=(xp. Yo ) (v — vp)-
52 (%0:70) (= o }

para algum (¥, ¥) interno ao segmento de extremidades (xo, o) € (x, ).

Exercicios 15.5

1. Determine o polinémio de Taylor de ordem 2 da fun¢@o dada, em volta do ponto (x0, y0) dado.
a) f (x,y) =xseny e (x0, y0) = (0, 0).
b) f(x,y) =x3 +2x2y +3y3 +x —y e (x0,y0) = (1, 1).

2. Expresse o polindmio f (x, y) =x3 + 2x2y + 3y3 + x —y como soma de termos do tipo a (x — )p (y — 1)q.

3. Seja P2 (x,y) o polindmio de Taylor de ordem 2 de f (x, y) =x sen y em volta de (0, 0). Mostre que

|y I? |
lf (x, ) — B (x, 9)I< = [I_rl + T |y I}

para todo (x,y), com | x | < 1.

4. Sejaf(x,y) de classe C3 no aberto 4 C [[}2 e seja (x0, y0) um ponto de 4 (lembre-se de que f de classe C3 em A significa que todas as
derivadas parciais de ordem 3 sdo continuas em A4). Prove que existem uma bola aberta B de centro (x0, y0), com B € 4, € um niimero
M > 0 tais que, para todo (x,y) € B,

. 3
1l fx,y)— Pr(x, v =Ml (x, ¥) — (x5, yp) II
onde P2 (x,y) ¢ o polindmio de Taylor de ordem 2 de /' em volta de (xo, y0). Conclua que

: E(x, ¥)
lim ' — =
(x,¥) = (xg.v9) N(x, ¥) — (xg. yg I

onde E (x,y)=f(x,y) — P2 (x,y), isto é, o erro E (x, y) tende a zero mais rapidamente que || (x, y) — (x0, y0) ||2, quando (x, y) — (xo,

30).
5. Sejam f (x, ), P2 (x,y) e (x0, y0) como no Exercicio 4. Prove que existe uma func¢do ¢ (x, y) definida em A4 tal que, para todo (x, y) em
A.
Fas w o e ) 2
fa,y)=Py(x,v) + @x, ¥) Il (x,¥) — (xp, yolll
com

lim @ (x, v) =@ (xq. vg) = 0.

':"-31"] i 4 ["Y['I r}'ﬁ )



6. Seja f (x,y) de classe C3 no aberto 4 C [[}2 e seja (x, ¥o) um ponto de 4. Seja P, (x, y) um polindmio de grau no maximo 2. Prove que
se

. fx.y)— B (x,y)
lim - = s
(x.3) = (x5, ¥p) (x, ¥) — (xg. ¥o) I

entdo P, (x,y) € o polindmio de Taylor de ordem 2 de /" em volta de (x, y)

=0

15.6. FORMULA DE TAYLOR COM RESTO DE LAGRANGE

Suponhamos £ (x, ) de classe C. "' no aberto A C R*. Sejam (xo, o), (xo + &, yo + k) e g () =f (xo +
ht, yo + kt) como na se¢ao anterior. Vimos que

g'(r) = ti’—ﬁfil‘, yh + i (x, V) K,
(.'11' (h’

2 ; 32
g™ @)= X [iJ e E—— 6_*;}11” (x, y) h2—P)gp
p=0 axs /

|HJ‘;: )k +L f m;c+(2] o

oy
_ H{ (x, V)h% +2 o3 f (x, y)hk + - j (x. Y)k?
2 ax oy oy-

1}k‘

e que

gr() = : (2 ] -

b3 —————— (x. y) hO PP
de® TP gyP

p=n lp

onde x =X + ht e y = yo + kt. Deixamos a seu cargo provar por inducao que
: 4 \ 3 :
g = X rJ e (- / (x, ¥) h'r = PP
p=0 x" TP P

onde x =xo+ ht e y =yo + kt.

Pela formula de Taylor com resto de Lagrange para fungdes de uma variavel, temos

o EIJ,w.z+l],lf1¥‘,
gh=g()+ > — OH+==—-
g ( ( j_lr;—:() D!

para algum 7 em ]0, 1[. Segue que

f(xg+h yo+k)=f(xp.¥)+ X L[ Zﬂ[

r=17r. | p=

r d'f _
—————(xg, yp)h" P kP
pJ P e (]‘.wr} 0. Y0
+ E (h, k)

onde



1 n+1 1) (}n+lf

Ehky=— %
(n+1)! P:(_}L I (11'”"'[_'”(}}-‘?

(X. V) h{.li' +1—p) kP

para algum (¥, ¥) interno ao segmento de extremidades (xo, o) € (xo + A, yo + k).
Fica provado assim o seguinte

Teorema (Formula de Taylor com resto de Lagrange). Seja f (x, y) de classe Cn* 1 no aberto A C [[}2 e sejam (xo, yo) € A e (h,
k) # (0, 0) tais que o segmento de extremidades (xo, yo0) e (xo + h, yo + k) esteja contido em A. Nestas condicdes onde

flxg+h v +k\}:ff\f Vo ) + E L ‘jz (!JL{‘{ vo) h" — P kP
J A0 % 00 A0: YO =1l | p20\P) P oyr A0- Y0

+ E(h, k)

onde

1 "Flipgn) gntly

Eh ky=— X
{ﬂ—i—l'}!p:.[]l P ,J(?.r”H_f’cfh””

(X. V) hin+ 1 —p) kP

para algum (¥, V) interno ao segmento de extremidades (xo, yo) € (xo + &, yo + k).




16

MAXIMOS E MINIMOS

16.1. PONTOS DE MAXIMO E PONTOS DE MINIMO

Seja f'(x, y) uma funcdo a valores reais e seja (xo, yo) € 4, com A C D;. Dizemos que (xo, yo) € ponto
de maximo de f em A se, para todo (x, y) em 4,

S, y) < (xo, yo).

Sendo (xo, o) ponto de maximo de f 'em A, o nimero f (xo, o) serd denominado valor maximo de f em
A.

Dizemos que (xo, o) € Ds¢€ ponto de mdaximo global ou absoluto de f se, para todo (x, y) € D;,

S, y) < (xo, yo).

Diremos, neste caso, que f (xo, Vo) € 0 valor maximo de f.
Finalmente, diremos que (xo, yo) € Dy € ponto de maximo local de f se existir uma bola aberta B de
centro (xo, o) tal que

S x y) <f (xo0, Yo)

paratodo (x, y) € BN D,

Deixamos a seu cargo definir ponto de minimo de f em A C Dg ponto de minimo global e ponto de
minimo local.

Os pontos de maximo ¢ de minimo de uma func¢ao /' denominam-se extremantes de f.

EXEMPLO 1. (0, 0) ¢ ponto de minimo global de f(x, y) = x> + y* ¢ £(0, 0) = 0 é o valor minimo de f,

pois, £ (x, ) >£(0, 0), para todo (x, y) emR>.
m

EXEMPLO 2. Seja f(x, y) =2x — y e seja 4 o conjunto determinado pelas condigdes x >0,y >0, x +y <
3 e y > x. Estude f comrelagdo a madximo € minimo em A.

Solugdo

Tal estudo seré feito com auxilio das curvas de nivel de f.



z=—3y=2x+3[f(0,3) = — 3]
~=E¢>1=2r—i ;«(3 1}:1 / /
= 217 \27 2.) 2 =0

.2"---—

: 3 3 . : - ,
Vemos, geometricamente, que =2 e (0, 3) sdo, respectivamente, pontos de mdximo e de minimo

de fem 4, r(i %] = % ¢ o valor maximo ¢ f (0, 3) = — 3 € o valor minimo de f em A. Para comprovar

analiticamente que o que dissemos acima esta correto, podemos proceder do seguinte modo: para todo (x,
y) em A

2 20
{ | frg 3\| , 3 {3 Y {. -..}‘{D
LYY= flo=|=2x—y=——=—|-—%|—(O —x}=
! LZ 2) S 42 J s
3 3
ouseja, f(x, U‘if(; ;].

=0

Fa»N—f0,3)=2x—y+3=: 3 + (B—x— \‘,r =0

ou seja,
fx y)=f(0,3). "
EXEMPLO 3. Scja (x, y) definida em B* dada por
: 3% 4yt sex2+y2i=4
‘ = ' a ~ e
1) {1 —(x—3)2 —ysex2+y2>4

(0, 0) € ponto de minimo local; (3, 0) ¢ ponto de maximo local e todo (xo, o) pertencente a circunferéncia
x* +y* = 4 ¢ ponto de maximo global de f. Deixamos a seu cargo fazer um esbogo do grafico de f ¢
verificar as afirmacoes acima.



16.2. CONDICOES NECESSARIAS PARA QUE UM PONTO INTERIOR AO
DOMINIO DE fSEJA UM EXTREMANTE LOCAL DE f

O teorema que enunciaremos € demonstraremos a seguir fornece-nos um critério para selecionar, entre
os pontos interiores de Dy, candidatos a extremantes locais de f.

d
Teorema 1. Seja (x , y ) um ponto interior de D e suponhamos que '—f{.rﬂ,_ Vo) €—
0 0 f X '

( X(. Vg) existam. Nestas condigGes,

]

af . d
uma condi¢do necessdria para que (x , y ) seja um extremante local de f é que ‘}—f{.fﬂ.. Yo) = 0e— (x5, I‘L-‘(_}\J' = 0.
0 0 dXx ay

Demonstracdo

Suponhamos que (xo, o) seja um ponto de maximo local de f. Como (xo, o) € ponto interior de Dy
existe uma bola aberta B C D, B de centro (xo, )9), tal que, para todo (x, y) em B

Jx¥) = fxg yp)-

Por outro lado, existe um intervalo aberto /, com x, € I, tal que para todo x € I, (x, yo) € B.
Consideremos a fun¢do g dada por

g (x)=f(x, yo),x € I

glx)

Temos:



gogs & o [, af ;
g é derivavel em .r{}t g(xp)y=——1(x0.¥i)

oX

X € ponto interior de [ e
X € ponto de maximo local de g

dai
g (x0) =0
e, portanto,
af
—(xn. ¥a) = 0.
ax B0

7 a :
De modo analogo, demonstra-se que _}—{u{}‘ vg) = 0.
ay

Segue deste teorema que se (xo, Vo) for interior a D; f diferenciavel em (xo, o) € (X0, ¥o) extremante
local de £, entdo o plano tangente ao grafico de f'em (xo, vo, f (X0, ¥0)) serd paralelo ao plano xy.

Dizemos que (xo, yo) € um ponto critico ou estacionario de f se (xo, yo) for interior a Dre se V f (xo,
vo) = (0, 0). O teorema anterior nos diz que se f admite derivadas parciais em todos os pontos interiores
de D; entdo os pontos criticos de f sdo, entre os pontos interiores de D; os unicos candidatos a
extremantes locais de f.

Um ponto (xo, o) € 4 que ndo € ponto interior de A denomina-se ponto de fronteira de A. O teorema
anterior ndo se aplica a pontos de fronteira de Dy; um ponto de fronteira de D, pode ser um extremante

local sem que as derivadas parciais se anulem nele. Os pontos de fronteira devem ser analisados
separadamente.

EXEMPLO 1. Seja f(x, y) = x> +y*. Como D;¢é um conjunto aberto (Dy=R%), de

af

—(x, y)=2x
ox
ﬁf.‘ﬁ yv)=2x
[ ay

segue que (0, 0) € o unico candidato a extremante local. Como f'(x, y) > f (0, 0) = 0, para todo (x, y) em [}
2 resulta que (0, 0) é um ponto de minimo global de f.
n

EXEMPLO 2. O tmico ponto critico de ' (x, y) = x* —* é (0, 0). Verifica-se sem dificuldade que (0, 0)
ndo ¢ extremante local (para uma visualizagdo geométrica, desenhe as interse¢des do grafico de f com os
planos yz e xz). O ponto (0, 0) denomina-se ponto de sela. O grafico desta funcao tem o aspecto de uma
“sela de cavalo”: tente desenha-lo.



EXEMPLO 3. Seja z =f(x, y), com dominio 4 = {(x, y) € B’ |x >0 ey >0}, onde f (x, y) = x°y + 3x. O
ponto (0, 0) ¢ um ponto de minimo de f'em A4 pois f (x, y) > (0, 0) em A. Como ﬂ = 2xy + 3, segue que
- ax
r’f—f{[}. 0) = 3 # 0. Este fato ndo contradiz o teorema 1, pois ele so se aplica a pontos interiores de D ¢
X A
(0, 0) ndo ¢ ponto interior de Dy (D,= A).

u

Suponhamos, agora, que o dominio de f'seja aberto e que f seja de classe C°. Suponhamos, ainda, que
(X0, ¥0) € Dyseja um ponto de maximo local de f. Consideremos a fun¢do g (x) dada por

g (x) =1 (x yo).

Tendo em vista as hipoteses sobre f, segue que x, ¢ ponto interior do dominio de g e, além disso, € ponto
de maximo local de g; como g ¢, também, de classe C* teremos que ter necessariamente

g' (x0)=0eg"(x)=0

(observe que se tivéssemos g"” (xo) > 0, x, teria que ser ponto de minimo local de g). Da mesma forma,
considerando a fungdo % (y) = f (xo, ¥), teremos que ter necessariamente

h' () =0 h" (y) <O0.

Fica provado assim o seguinte teorema.

Teorema 2. Seja f de classe C2 e seja (x0, yo) um ponto interior do dominio de f. Uma condi¢do necessdria para que (xo, y0)
o )
1= o=
seja ponto de maximo local de f é que (x , y ) seja ponto critico de f e, além disso, {—‘,,(,1'{], vg) =0e g ,}: (xp. ¥p)=0.
0 0 dx= ' ay= )

(Interprete geometricamente.)

7 SR s IS

. o~ d- 1=
Se no teorema acima as condigdes —'{{.x'{}, yo) < 0e- i’:{x{}. vg) = 0 forem trocadas por
ax- ' A i
T vy 0L o g0 t dicd (7 o, ) t0 de mini
52 0 Vo) = 065 (X yo) = O teremos uma condicdo necessdria para xO, yO ser ponto de minimo
local de f.

EXEMPLO 4. Determine os candidatos a extremantes locais de
f(x, y)=x>+y’=3x -3y +4.

Solugdo

Os unicos candidatos a extremantes locais sdo os pontos criticos, pois o dominio de f (Dy = j%)



aberto. De

d d
i{.r. y) = 3% —3e ,f
ax day

-

(x.y)=3y —3

resulta que os candidatos a extremantes locais sdo as solucdes do sistema

3x
3y

As solugdes do sistema sdo: (1, 1), (=1, 1), (1,—1) e (— 1, 1). Temos:

-
s

—3

bd Id

0
0.

?h{ (x, v)=6x e d_’f (x, ¥) = 6y.
Jx- e
A 9 f . o L
—(1, 1) = 6 e—=~(1. 1) = 6; logo, (1, 1) é candidato a ponto de minimo local.
ax- dv-
*f A . _ -
—=(—1,1) = —6e 52 (—1.1) = 6; logo, (— 1, 1) ndo ¢ extremante local. O mesmo acontece com o
ax- ay=

ponto (1, — 1). (Interprete geometricamente.)

7 )

aﬁ f (—1,—1)= —6e i :{{—], —1) = —6; logo, (— 1, — 1) ¢é candidato a ponto de maximo local.
Ax= ave

Seja (xo, yo) um ponto critico de f (x, y). Sejam g (x) = f(x, yo) € & () = f (X0, ). Observemos que se
xo ndo for extremante local de g, entdo (xo, o) ndo serd extremante local de /. Da mesma forma, se yo nao
for extremante local de 4, entdo (xo, o) ndo serd extremante local de f. (Verifique.)

Exercicios 16.2

Selecione os candidatos a extremantes locais, sendo f (x, y) =
1. 2x2+y2—=2xy+x—y.

2. x2—y2+3xy—x+y.

3. x3—y2+xy+5.

4. x3+y3—xy.

5. x4+y4+4x +4y.

6. x5+y>—5x—5y.

16.3. UMA CONDICAO SUFICIENTE PARA UM PONTO CRITICO SER
EXTREMANTE LOCAL



Seja f'(x, y) de classe C*. A fungdo H dada por

nZ

a=f i
; ,{ (x;, ¥) ;f (x, v)
H(x, y) = ra"; ; ?‘; '::;"
—(x, ¥) ' & L&)
axay ay=

denomina-se hessiano de f. Observe que

)
2

Hix v)= %U', V) ﬂh‘f )~ o°f (x, v)| .
ax= dy~ dxdy

O proximo teorema fornece-nos uma condigdo suficiente para um ponto critico de f ser extremante
local de f.

Teorema. Sejam f (x, y) de classe C2 e (xo, yo) um ponto interior de Df. Suponhamos que (X0, y0) seja ponto critico de f. Entdo

g2 f

= -}
F A

a) Se

(Xg: Yo) = eH {.1'1} o) = (), entdo (x , y ) serd ponto de minimo local de f.
e ; 0 0
B,

b) Se -2 (x0: Yo) < Oe H (xq. "-‘{ﬂ = (), entdo (x , y ) sera ponto de maximo local de f.

; } 0 Yo oo
c) Se H (xo, yo) < 0, entdo (x0, yo) ndo sera extremante local. Neste caso, (xo, y0) sera ponto de sela.
d) Se H (xo0, yo) = 0, nada se pode afirmar.

Demonstracdo

Veja Exemplos 3, 4 ¢ 5 da Sec¢ao 16.6.

EXEMPLO 1. Seja f(x, y) =x’ +3° — 3x — 3y + 4. Os pontos criticos de f'sdo: (1, 1), (1,—1), (=1, 1) e
(—1,—1). Temos:

H(x, y)=

0 6y e—5(x y) = 6x.

6x 0 ‘ a2 f
ax-

Entao:

22
H(l,1)=36>0e ¢ {{_1‘ 1) = 6 > 0; logo, (1, 1) é ponto de minimo local. Note que (1, 1) ndo é ponto
ax~

de minimo global, pois f(— 3, 0) <f(1, 1).

-

Hi—1,—-1)=36>=0e¢ r ‘f{—l, —1) = — 6 < 0; logo (— 1, 1) € ponto de maximo local; entretanto,
dx-

(—1,— 1) ndo ¢ ponto de maximo global, pois f(4,0)>f(—1,—1). Como H(—1,1)<0e H(1,— 1) <0,




segue que (— 1, 1) e (1, — 1) ndo sdo extremantes, sdo pontos de sela.
u

EXEMPLO 2. Seja f'(x, y) = 3x* + 2y*. O unico ponto critico de £¢é (0, 0) e temos H (0, 0) = 0; logo, o
teorema ndo nos fornece informagao sobre este ponto critico. Trabalhando diretamente com a fungao
verifica-se sem dificuldade que (0, 0) € ponto de minimo global.

]

EXEMPLO 3. Seja f(x, y) =x° + 2y°. O tnico ponto critico é (0, 0) e H (0, 0) = 0. Como x = 0 ndo ¢
extremante local de f(x, 0) = x°, resulta que (0, 0) ndo ¢ extremante local de .
u

EXEMPLO 4. Deseja-se construir uma caixa, sem tampa, com a forma de um paralelepipedo-retangulo e
com 1 m’ de volume. O material a ser utilizado nas laterais custa o triplo do que sera utilizado no fundo.
Determine as dimensdes da caixa que minimiza o custo do material.

Solucao

O problema consiste em minimizar

fla, b)y =3 (2ac + 2bc) + ab, onde ¢ = Lb
a

ou

f(a, b) =§+ E—i— ab,a>0eb>0,
a

Temos



—=——+be —=— + a
da a* ab b2
6
—— +b=0 a*h =6
.
6 = ;
——,J-I—(;:D ab® =6

g g
ab=ab <= a=>hb.

Assim, (a, b) = (Lﬁ lﬁ} é 0 Unico ponto critico de f. Como H (1& 3\.-"6):::* 0e

Ea ]

_,.j"! lr.
r g Ll 5 1
L (-—ii-ﬁ. V6)>0
Aa J
(verifique) resulta que ({6, 36 ) é ponto de minimo local. Pela natureza do problema, é razoavel esperar
que este ponto seja de minimo global. As dimensdes que minimizam o custo sao:

i= g ps s ﬁ (Uma forma elegante de justificar que ({6, 3\15) é ponto de minimo global é a

seguinte: para cada a > 0, seja 4 (a) o valor minimo de g (b) = B + %4‘ ab, b = 0; verifique, entdo, que o
a

valor minimo de /1 (a) é,f{ﬁ-’ﬁ .36 ) Descreva geometricamente este processo.)

Exercicios 16.3

1. Estude com relacdo a maximos e minimos locais a fungdo f (x, y) =

a) x> + 3xy+ 4 }-j ~ =+ 2y b) x> + _1;3 +xy—3x—4y+35
)x + 2xy + }-‘2 —3% d)— x> + }-‘2 + 2xy + 4x — 2y
e) ,11 — 322 v+ 27y n — dxy + 4}-‘1 et A ) |
g};::-'xi +- 22y 4 4}-‘3 g 1 2 f:}.1'4 + }-‘4 = 2_‘:’2 - 2}-‘3

[ ,1'4 + xy + }-'2 —6x — Sy 7 _1'4 + _'g.-"L + 4x + 4y
F}.x'5+}!5—5,x'—ﬁy m“}%+%+.1}*._r}[}e}*}0

2. Sejaf(x,y)=ax?2+by2+cxy+dx +ey+1londea, b, c, d, e e lsido constantes. Prove que se (x0, yo) for extremante local de f,
entdo serd extremante global

(Sugestdo: Observe que o grafico de g (¢) =f (xo0 + ht, yo + kf) (h e k constantes) é uma parabola.)
3. Estude com relagdo a extremantes globais a fungdo f (x, y) =

a) x2 +2xy +2y2 —x +2y

b) x2—y2—3xy+x+4y

¢) x+2y—2xy —x2 — 3y?

d) 3x2 +y2 +xy—2x — 2y

e) x2+2y2 +3xy +2x + 2y



) x2+y2-2x—4y
(Sugestdo: Utilize o Exercicio 2.)
Determine o ponto do plano x + 2y —z = 4 que se encontra mais proximo da origem.

Método dos minimos quadrados. Dados n pares de numeros (a1, b1), (a2, b2), ..., (an, bn), com n > 3, em geral ndo existird uma
funcdo afim f (x) = ax + S cujo grafico passe por todos os n pontos. Entretanto, podemos determinar f de modo que a soma dos
quadrados dos erros f (ai) — bi seja minima. Pois bem, determine o e f§ para que a soma

n
E(@p) =Y [flaj)—bT
=1
seja minima.
Determine, pelo método dos minimos quadrados, a reta que melhor se ajusta aos dados:
a) (1,3),(2,7) e (3,8)
b) (0,1),(1,3),(2,3)e(3,4)

Determinado produto apresenta uma demanda y (em milhares) quando o preco, por unidade, é x (em R$). Foram observados os
seguintes dados:

10.

X J
5 100
6 98
7 95
8 9%

A tabela nos diz que ao prego unitario de 5 reais a demanda foi de 100.000 unidades; ao prego unitario de 6 reais a demanda foi de
98.000 unidades etc.

a) Determine, pelo método dos minimos quadrados, a reta que melhor se ajusta aos dados observados.

b) Utilizando a reta encontrada no item a), faga uma previsdo para a demanda quando o prego, por unidade, for 10 reais.

Considere as retas reversas r e s de equagdes

(x, ,2=(0,0,2) +1(1,2,0),1 ER

e

x,»2)=0,0,49H+u(,1,),u €M

respectivamente. Determine P e O,com P € re Q € s, de modo que a distancia de P a Q) seja a menor possivel.

Duas particulas P1 e P2 deslocam-se no espaco com velocidades constantes T =(,1,0)e i = (0, 1, 1), respectivamente. No

instante ¢ = 0 a P1 encontra-se na posi¢cdo (1, 1, 3). Sabe-se que a trajetdria descrita por P2 passa pelo ponto (1, 1, 0). Qual devera ser
a posi¢do de P2 no instante ¢ = 0 para que a distdncia minima entre elas seja a menor possivel?

Determinada empresa produz dois produtos cujas quantidades sdo indicadas por x e y. Tais produtos sdo oferecidos ao mercado
consumidor a precos unitdrios p1 e p2, respectivamente, que dependem de x e y conforme equagdes: p1 = 120 —2x e p2 =200 —y. O
custo total da empresa para produzir e vender quantidades x e y dos produtos é dado por C = x2 + 2y2 + 2xy. Admitindo que toda



11.

12.

13.

14.

15.

16.

17.

18.

producdo da empresa seja absorvida pelo mercado, determine a produgdo que maximiza o lucro.

Para produzir determinado produto cuja quantidade ¢ representada por z, uma empresa utiliza dois fatores de produgdo (insumos) cujas
quantidades serdo indicadas por x e y. Os precos unitarios dos fatores de producdo sdo, respectivamente, 2 ¢ 1. O produto sera
oferecido ao mercado consumidor a um prego unitario igual a 5. A fung¢éo de producdo da empresa é dada por z =900 — x2 — y2 + 32x
+41y. Determine a producdo que maximiza o lucro.

Considere o sistema de particulas P1, P2, ..., Pn, localizadas nos pontos (x1, y1), (x2, ¥2), ..., (Xn, yn) € de massas m1, m2, ..., mn. Seja N

= (x, ). Determine N para que o momento de inércia do sistema, em relagdo a V, seja minimo. Conclua que o N encontrado € o centro
de massa do sistema.

(Observagdo. O momento de inércia de Pi em relagdo a N é o produto de m; pelo quadrado da distancia de P; a N; o momento de
inércia do sistema em relagcdo a N é a soma dos momentos de inércia, em relagdo a &V, das particulas que compdem o sistema.)

Determine o ponto do plano 3x + 2y +z = 12 cuja soma dos quadrados das distancias a (0, 0, 0) e (1, 1, 1) seja minima.

Considere a fungdo f (x, y) =1 —x2 —y2, x > 0 e y > 0. Determine o plano tangente ao grafico de f que forma com os planos
coordenados tetraedro de volume minimo.

Seja f (x, y, z) de classe C2 e seja (x0, 0, z0) um ponto interior de Df. Suponhamos que (x0, y0, z0) seja ponto critico de f. Sejam H (x,
¥, z) e H1 (x, y, z) dadas por

F #f Ef

ax?  axay dxaz af
5. atf a8t f @ f ¢ H = a.fl ax 3y

dx dy dy= Ay az G

2f 0 f f ax ay v’

dxaz ayar 8z’

Pode ser provado (veja 16.6) que:

N ; ~ . -
(i) se ﬂT}; (xg, ¥g» 2g) = 0, Hy (xg. ¥p: Z9) = 0 e H (xp, ¥ Zg) = 0, entio (xo, Yy ZO) sera ponto de minimo local.

-

g

.. o ~ , (-
(i) se / (xg. ¥or Zp) < 0. Hy (X ¥g. 2g) = 0 e H (x5, ¥g. 2g) < 0, entdo (x ,y , z ) sera ponto de maximo local.

-

dx 0 0 0
Estude com relagcdo a maximos e minimos locais a fungdo 1 (x, y, z) =

a) x2+5y2+222 +4xy —2x —4y — 8z + 2.
b)y x3+y3+23-3x—3y—3z2.

c) x3+2xy +y2+22—5x —4z.

d) x2 —y2 +4z2 + 2xz — 4yz — 2x — 6z.

Seja f(x, y, z) de classe C2 e seja (x0, y0, z0) ponto interior de Dy. Suponha que (x0, 10, z0) seja ponto critico de /. Prove:

i I T p ¥
a) o= i i o L. L.
f (xXgs ¥o» 20) = 0, f (xXg Yo Zg) = (.e 1 (Xg. Yo Zg) = () uma condi¢do necessaria para o ponto critico (x ,y ,z )
hng az- az- 0 0 0
ser ponto de minimo local de f.
b) 0*f 0> f 9 f

(Xg: Yo 29) =0,

(Xp.-¥p-2p) = Oe — (Xp. ¥ps T = 0 é uma condigdo necessaria para o ponto critico (x , y ,

az 0 0

N

=
¥

z0) ser ponto de maximo local de f.
A fungdo f'(x, y, z) =x2 +y2 —z2 — 5x + 2y — z + 8 admite extremante local? Por qué?

Seja f'(x, y) definida e de classe C2 no aberto 4 de [[}2. Suponha que, para todo (x, y) € 4,



A p I . .
5 i 9 9
f (x, y)+ { (x, y) +2 L (x,y)+3 Led (x,y)=0.
ax” ay~- dx dy
Prove que f ndo admite ponto de maximo local.
19. Sejaf(x, y) = x% (y* — x2) e considere, para cada T} = (h, k), a fungdo .!;’—1-.1” = f(ht, kr) (observe que 8= fornece os valores de f

sobre a reta (x, y) =t (h, k)). Verifique que ¢ =0 ¢ ponto de maximo local de cada 3; mas que (0, 0) ndo ¢ ponto de maximo local de f.

20. Seja f (x, y) uma fungdo que admita derivadas parciais em todo [[J2. Suponha que f admita um unico ponto critico (xo, y0) € que este
ponto critico seja ponto de maximo local. Pode-se concluir que (x0, y0) € ponto de maximo global?

16.4. MAXIMOS E MINIMOS SOBRE CONJUNTO COMPACTO

Nas secoes anteriores determinamos condigdes necessarias € condi¢des suficientes para que um ponto
de D, seja um extremante local de f. Entretanto, para muitos problemas que ocorrem na pratica ¢
importante determinar os extremantes em um subconjunto 4 de D O teorema de Weierstrass, que € o
proximo teorema a ser enunciado, fornece-nos condicdes suficientes para a existéncia de tais
extremantes.

Para enunciar o teorema de Weierstrass precisaremos antes definir conjunto compacto.

Seja A um subconjunto do [*; dizemos que A é um conjunto limitado se A estiver contido em alguma
bola aberta de centro na origem. Dizemos, por outro lado, que A ¢ um conjunto fechado se o seu
complementar {(x, y) € R* | (x, y) € 4} for um conjunto aberto. Pois bem, dizemos que A é um conjunto
compacto se A for fechado e limitado.

EXEMPLO 1. Toda bola fechada 4 de centro (xo, yo) € raio ¥ >0, 4= {(x, y) € R || (x, ¥) — (x0, y0) || <
r} € um conjunto compacto, pois ¢ limitado e fechado.

¥

A ¢ um conjunto limitado e seu complementar ¢ um conjunto aberto.
u

EXEMPLO 2. 4 = {(x, y) € @* | y > x*} é um conjunto fechado, mas ndo limitado, logo, 4 ndo é
compacto.
m

EXEMPLO 3. 4= {(x, y) € B* | x* +4)* = 1} é um conjunto limitado e fechado, logo compacto.



O teorema de Weierstrass, que enunciaremos a seguir (para demonstracao veja Exercicios 9 a 12),
conta-nos que se f for continua no compacto A, entdo f assumird em A valor mdximo e valor minimo.

Teorema (de Weierstrass). Se f (x, y) for continua no compacto 4, entdo existirdo pontos (x1, y1) e (x2,y2) em A tais que, para todo
(x. y)em 4,

SLy) <f(x, y) <f(x2,2).

O teorema de Weierstrass garante-nos que se f for continua em A ¢ A compacto, entdo existirdo
pontos (x1, y1) € (x2, 12) em 4 tais que f (x1, y1) € o valor minimo e f (x2, y2) € 0 valor maximo de f em A.
Resta-nos, agora, o problema de determinar tais pontos. Suponhamos que /' admita derivadas parciais nos
pontos interiores de A. Sabemos, entdo, que entre os pontos interiores de A os Unicos com possibilidades
de serem extremantes sdo os pontos criticos: a nossa primeira tarefa consiste, entdo, em determinar os
pontos criticos de f que estdo no interior de A. Em seguida, procuramos determinar os valores maximo e
minimo de f na fronteira de 4. Comparamos, entdo, os valores que f/ assume nos pontos criticos com o
valor maximo de f na fronteira de 4: o maior destes valores sera o valor maximo de f em A. De modo
andlogo, determina-se o valor minimo.

EXEMPLO 1. Determine os extremantes de
fix, y) = x>+ _1-*; —3x—3vemA={(xy)E REI0=x=2e lyl=2}.
Solugdo
Como f'¢ continua e 4 compacto, vamos proceder como dissemos anteriormente.
Pontos criticos de f no interior de A

af 2 f

= i 5
—(x¥)=3x"—3e—(x ¥) =3y — 3.
ax I:J_'l.’

-
sao: (1, 1), (1,= 1), (=1, 1) e (— 1, — 1). Segue que (1, 1) e (1, — 1) sdo os Unicos pontos criticos no
interior de 4. Temos

As solucoes do sistema

Lo Lad

0
0

Ll Tl

f(,1)=—4def(1l,-1)=0.

Analise dos pontos de fronteira



g =f(2,y)=y’-3y+2,-2<y<2,

i

Q P

2
A
-

2

=2
M N

fornece-nos os valores que f assume no segmento NP,

g =3y -3

g' " 1 L 1
) L) 1] L

g(—2)=0,g(—1)=4,g(1)=0eg(2) =4

Assim, o valor maximo de f no segmento NP ¢ 4 ¢ o valor minimo ¢ 0. O valor maximo ¢ atingido nos
pontos (2, — 1) e (2, 2):

f2,—1)=4def(2,2)=4.

O valor minimo ¢ atingido nos pontos (2, —2) e (2, 1):

£(2,-2)=0ef(2,1)=0.

Raciocinando de forma analoga sobre os segmentos PO, MQ ¢ MN, concluimos que o valor maximo de f
sobre a fronteira ¢ 4 e este valor ¢ atingido nos pontos (2, — 1) e (2, 2); o valor minimo de f sobre a
fronteira de 4 ¢ — 4 e este valor ¢ atingido no ponto (1, — 2).

Conclusdo. Comparando os valores que f assume nos pontos criticos com os valores maximo € minimo
de f na fronteira resulta: o valor maximo de fem A € 4 e ¢ atingido nos pontos (2, — 1) e (2, 2); o valor
minimo de fem A ¢é — 4 e ¢ atingido nos pontos (1, 1) e (1, —2).

u

EXEMPLO 2. Determine os extremantes de /(x, y) =xy emA = {(x, y) € @’ |x¥* +y* < 1}.



Solucao

f ¢ continua e 4 compacto; logo, /' assume em 4 valor maximo e valor minimo. O Unico ponto critico
no interior de 4 ¢ (0, 0), e este ponto critico ndo € extremante (verifique). Segue que os valores maximo e
minimo de f, em 4, sdo atingidos na fronteira de 4. Os valores de f na fronteira de 4 sdo fornecidos pela
funcao

1
F(t) = f(cost,sent) = Es‘en 2t.0=t= 2.

. - T Swo .. ;- 3 T
F atinge o valor maximo em t = — e { = —, atinge o valor minimo em ¢ = T et = T Segue que
JI Al i) 2 . 9 43 J2Y L
( : “‘—] e (— ~= — 2= I'sd0 os pontos de mdaximo de fem A4; (— e} } e (L - } sd0 0S
L2 2] L 2 2. 2 " 2 \ 2 2.

pontos de minimo de f em A. O valor maximo de fem A € — €0 valor minimo, — —. A figura seguinte,

na qual estdo desenhadas algumas curvas de nivel de f, fornece-nos uma visao geométrica do problema:

Z=Xy

1
e
2

\ /” 2
1
r=cf — ? <e <O /pﬂntcr de maximo

1
r=e{ 0 < < —
X S ( ?_)

P

-

|
Z=—
2 m

EXEMPLO 3. Determine os extremantes de f(x, y) =2x +yemA dadoporx>0,y>0,x +y<4e3x +
y<6.

Solucao

fassume em 4 valor maximo e valor minimo, pois f ¢ continua ¢ 4, compacto. Como f ndo admite
ponto critico, os valores maximo ¢ minimo sao atingidos na fronteira de A.



Como f ¢ uma fun¢do afim e a fronteira de 4 ¢ formada por segmentos de retas (4 ¢ um poligono), resulta
que entre os vértices de 4 existe pelo menos um ponto de maximo e pelo menos um ponto de minimo.
Calculando os valores de f nos vértices encontramos:

f(1,3) =15 valor maximo ¢ f(0, 0) = 0 valor minimo.

Exercicios 16.4

1. Estude a fungdo dada com relacdo a maximo ¢ minimo no conjunto dado.

a) f(x, y) = 3x — yno conjunto A de todos (x, ) taisquex =0, y=0,y —x=3,x+y=4
edx +y=6. S ,
biyf(x, ) =3x —yemA={x, yER"Ix"+y =1}

c)flx,y) = x4 Jxy— 3xemA={x P E R%1x =0, y=0ex+y=1}.
dfxy)y=xyemA={(x, ER " Ix=0,y=0e2x+ y=35}.

: i) 7 . g 7
e flx, =y —x"emA = {(x, y) € R"I 2+ v =4}
>
Nfx )= X — 2xy + 2}‘2 emA={(x, WER IIxI+1yl=1}.
2. Determine (x, y), com x2 + 4y2 < 1, que maximiza a soma 2x + y.

3. Suponha que T (x, y) =4 —x2 — y2 represente uma distribuicdo de temperatura no plano. Seja 4 = {(x, y) E[B2|x>0,y>xe 2y +x <
4}. Determine o ponto de A de menor temperatura.

4. Determine o valor maximo de f (x, y) = x + 5y onde x e y estdo sujeitos as restricdes:
Sx+6y<30,3x +2y<12,x>0ey>0.

5. Uma determinada empresa estéd interessada em maximizar o lucro mensal proveniente de dois de seus produtos, designados I e II. Para
fabricar estes produtos ela utiliza um tipo de maquina que tem uma disponibilidade de 200 maquinas-hora por més e um tipo de mao de
obra com uma disponibilidade de 240 homens-horas por més. Para se produzir uma unidade do produto I utilizam-se 5 horas de maquina
e 10 horas de mdo de obra, enquanto para o produto II utilizam-se 4 horas de maquina e 4 horas de mdo de obra. Espera-se uma
demanda de 20 unidades por més do produto I e 45 do produto II. Calcula-se um lucro, por unidade, de R$ 10,00 para o produto I e R$
6,00 para o II. Determine as quantidades de cada produto que deverdo ser fabricadas por més, para o lucro mensal ser maximo.

. . S 2 2 .. .
Determine (x, y) que maximiza (minimiza) a fun¢do f (x, y) =x +2y ,comx e y sujeitos as restricdes: y =1 —2x,(} = y = %



7. D¢ exemplo de uma fungéo continua num conjunto limitado 4 C [[}2, mas que nao assuma em A valor maximo.

8. Considere a forma quadratica Q (x, y) = ax? + 2bxy + cy2. Sejam Q (x1, ¥1) e Q (x2,2) os valores minimo ¢ maximo de Q em 4 =
{(x, ) € [}?|x2+y2=1}. Prove:

(1) se O (x1,y1) >0, entdo O (x, y) > 0 para todo (x, y) # (0, 0).
(i) se O (x2,y2) <0, entdo O (x, y) <0 para todo (x, y) # (0, 0).

9. Suponha 4 um subconjunto fechado do [[}2 e (x0, y0) um ponto de acumulag@o de 4. Prove que (x0, y0) € 4.

10. Prove que se f (x, y) for continua em (x0, y0) € Dy, entdo f sera localmente limitada em (xo0, y0) (f localmente limitada em (xo0, y0)
significa que existem a e £ e uma bola aberta B de centro (x0, y0) tais que o <f (x, y) </ para todo (x, y) em B N Dy).

11. Seja Ry, Ry, ..., Ry, ... uma sequéncia de retangulos em [{} 2, onde R, = {(x, y) ER*la, = x=c,. a,=y= b}, tais que R; D

Ry D ..D R, D ..;suponha que d, = Il (q,.a,) — (c,, b,) |l tenda a zero quando n — + co. Nestas condigdes, prove que
By VB e TV B e = ()
onde x y e sd0 os Unicos reais tais que
aQ,=2X=c,eq, =y=Dh,

paratodon € f,n #0.

12. Seja A um subconjunto fechado e limitado do [[§2 e seja f: 4 — [} continua. Prove que f ¢ limitada em 4.

(Sugestdo: Suponha que f ndo seja limitada e construa uma sequéncia de retdngulos como a do Exercicio 11, tal que f ndo seja limitada
emA N Ry, para n = 1,2, ...; conclua que / ndo sera localmente limitada em (X, ¥)= R ("1 K> (" ..., o que contradiz a hipétese de f
ser continua em (X, V).)

13. (Teorema de Weierstrass.) Seja A C [[§2, A compacto, e seja f : A — [} continua. Prove que f assume em A4 valor maximo e valor
minimo.

(Sugestdo: Veja Apéndice A2.4, Vol. 1, 5.% edicdo.)

16.5. 0 METODO DOS MULTIPLICADORES DE LAGRANGE PARA
DETERMINACAO DE CANDIDATOS A EXTREMANTES LOCAIS
CONDICIONADOS

O objetivo desta se¢do € o estudo de maximos e minimos de uma fungcdo sobre conjuntos do tipo:

{x, gk y»)=0}, {(x, ¥ 2)[gx y 2)=0}

{(,y2)|gxy2)=0eh(x,y z)=0}.

PROBLEMA 1. Seja f (x, y) diferenciavel no aberto 4 e seja B = {(x, y) € 4| g (x, y) =0}, onde g ¢
suposta de classe C' em A; suporemos, também, V g (x, y) # (0, 0) em B. Estamos interessados em
determinar uma condi¢do necessaria para que (xo, yo) € B seja um extremante local da f'em B. A figura
que apresentamos a seguir, onde estdo desenhadas algumas curvas de nivel de f, ajudar-nos-4 a chegar,
geometricamente, a tal condigao:



z2=F(xy)

Yol -

L g =0

e

Ko

Para efeito de raciocinio, suponhamos Vf'(x,, y,) # E e que z cresce no sentido indicado na figura (¢, <c,
<3 <zp). Vamos entdo pensar geometricamente: se (xo, o) € um extremante local, ¢ razoavel esperar que
a curva de nivel de f que passa por este ponto seja “tangente”, neste ponto, a restri¢do g (x, y) = 0, isto €,
os vetores Vf (xo, yo) € Vg (x0, yo) devem ser paralelos ¢ como Vg (xo, o) # (0, 0) devera existir um 4, tal
que

z, =f{x, )

vEI(X,, V)

N, Yl

glx, =0
Vf (X0, Yo) = Ag Vg (g, Yo)-

Geometricamente, chegamos a seguinte condi¢ao necessaria: uma condi¢do necessaria para que (xo, Vo)
€ B seja um extremante local de f em B é que (xo, yo) torne compativel o sistema

Vixy) = AVg(x y)
gix,yv)=20

Este processo de se determinar candidatos a extremantes locais € conhecido como método dos
multiplicadores de Lagrange; os A que tornem tal sistema compativel denominam-se multiplicadores de
Lagrange para o problema em questao.

Teorema 1. Seja f (x, y) diferenciavel no aberto A e seja B= {(x,y) € A|g (x, y) = 0}, onde g é suposta de classe Cl em A, e V
g (x,y) # (0, 0), para todo (x, y) € B. Uma condi¢cdo necessaria para que (xo, yo) € B seja extremante local de fem B é que exista
um real Ao tal que

vf {.T{}, I‘l.'.[].:i = )1.,[} T.H (."[.'ﬂ, ‘I‘r:‘ﬂ).




Demonstracdo

Suponhamos que (xo, o) € B seja um ponto de maximo local de f'em B; isto significa que existe uma
bola aberta V" de centro (xo, yo) tal que

A

Y }
D
t_\_‘UI . | g(xy) =0

f (x, I‘L-‘\} -'5';}‘{"['{}1 'LD}

paratodo(x, vV EBMV.((x, v EBNVeg(x,yv)=0e(x,v)E V)
Consideremos, agora, uma curva 7y diferenciavel num intervalo aberto [/ tal que
¥ (tg) = (¥g Yo)s tg E LY’ (1) # E} e g (y (1) =0, paratodo 7 € [ (a existéncia de uma tal curva ¢ garantida

pelo teorema das fungdes implicitas). Da continuidade de y segue que existe 0 > 0 tal que
tE Tt — 8.+ =y EBNV.
Dai,
fly ()= f(y (i)

para todo ¢ € ]ty — 0, to + J[; assim, 7, € ponto de maximo local de F (¢) = f (y (¢)) e como ¢, ¢ ponto
interior a /, resulta F' (¢y) = 0, ou seja,

@® Vi(y (tg) -y (tg) = 0.
Por outro lado, de g (y (¢)) = 0 em [ resulta
@) Ve (v (1) -y’ (1) = 0.
Tendo em vista que V g(y (¢,)) # E, segue de (1) e (2) que existe 4, tal que
V(v (1) = Ao Vg (v (). 8

Entdo, sendo f (x, y) diferencidvel no aberto 4 e B= {(x, y) € 4| g (x, y) = 0}, onde g ¢ suposta de
classe C' em A4 e Vg(x, y) # (0, 0) em B, os candidatos a extremantes locais de f em B sdo os (x, y) € 4
que tornam compativel o sistema

Vi y) =AVg(x
gxy) =0

Estabelecemos assim uma condi¢ao necessaria para um ponto (xo, Vo) ser um extremante local de /' em



B. Trabalhando diretamente com a fun¢ao o aluno devera decidir quais dos candidatos encontrados sao
realmente extremantes locais.

Observagdo. Se no teorema 1 acrescentarmos as hipdteses f de classe C' e V f (xo, yo) # (0, 0), entdo
poderemos afirmar que a curva de nivel de f que passa pelo ponto (xo, o) tangencia, neste ponto, a

restri¢do g (x, y) = 0. Entretanto, nada podemos afirmar com relagdo a tangéncia se V 1 (xo, yo) = (0, 0)
(veja Exercicios 1 (f) e 1 (g2)).

EXEMPLO 1. Determine os extremantes de f'(x, y) = 3x + 2y com a restrigdo x* +)* = 1.
Solucao
Seja g (x, y) =x* +3* — 1; 0 que queremos sdo os extremantes de /'em

B={(x,y) €ER’g(x, y)=0}. Como g ¢ de classe C' e Vg (x, y) = (2x, 2y) # (0, 0) em B, resulta que 0s
candidatos a extremantes locais sdo os (x, y) que tornam compativel o sistema

Vix,yy=AVg(xy
[ gxy=0

ou

que € equivalente a

3 =2Ax
2 =2Ay
2 ¥
Xy =1
Como A # 0, das duas primeiras equagdes resultam
3 1
xX=—e y=—,
2 A
Substituindo estes valores emx* +3)* =1, vem
13
g,, +L,]=1 ou A== i ;
4r= A“ 2
3J13 213 3413 2413 : : .
Segue que t :;_ ;*; ¢ [— e TT sao os candidatos a extremantes locais. Como B ¢
313 2JI3)_ ( 313 243 313 2403
compacto ¢ = J > f|— B A T resulta que TRET J ¢ ponto de maximo

3
313 243), . :
e [— ;’; = IV;_ } ¢ ponto de miximo e f'em B. (Interprete geometricamente.)

s



EXEMPLO 2. Estude, comrelagdo a maximo e minimo, a fung¢do f(x, y) =y + x° coma restri¢io y —x° =
0.

Solucao
glxy)=y— reB= i) E R’ | g (x, y) = 0}.

Como g ¢ de classe C' e Vg (x,y) = (= 3x% 1) # (0, 0) em B, resulta que os candidatos a extremantes
locais sdo os (x, y) que tornam compativel o sistema

[ Vi y)= AVg(x v

gx,v)=20

ou

[ B3, ) = A (=37, 1)

Vo=

O tnico candidato ¢ (0, 0) que ndo ¢ extremante de fem B, pois f (x,y) >0 parax>0eypy>0ef(x, y) <
Oparax<0ey<O0.

—

EXEMPLO 3. Encontre o ponto da curvaxy =1, x > 0 e y > 0 que se encontra mais proximo da origem.

Solucao

Trata-se aqui de se determinar o minimo de f (x, y) = x* + y* com a restricdo xy = 1 (f(x, y) é o
quadrado da distancia de (x, y) a (0, 0)).

Vi(x, v) = AVg(x, v 2x,2) = A (3, %)
gx,y)=0 S ly-1=0

O unico candidato ¢ (1, 1) e, por inspecao, verifica-se que (1, 1) ¢ ponto de minimo. Assim, (1, 1) ¢ o
ponto da curva xy =1, x >0 e y > 0 que se encontra mais proximo da origem.



2
EXEMPLO 4. Determine a reta tangente a curva 2 4
4

triangulo de area minima.

Solucao

Seja (a, b) (a>0 e b > 0) umponto da elipse * + o I. A equacao da reta tangente em (a, b) €:
4

(2(:, %] [(x,¥) —(a, &)] =0

ou

ax +E= |
4

)
A éarea do triangulo OMN ¢: A =Lb
a

. C . 2 .~
. O problema consiste em minimizar A =— com a restri¢cao

ILx>0¢ey>0 que forma com os eixos



=)
i ! (i
= % R sz=}.L2(:,£|
. a<b ab- : 2 ) 4
U —F7 =
b2 ab”
cf3+—= i
4 i 2
=¥ ==,
4

. . .o i . wf D N
Das duas primeiras equagoes segue b = 2a. Substituindo na ultima equagdo obtemos g = “T“ A equagao
da reta que resolve o problema é:

2x + YiTiL i m

PROBLEMA 2. Seja f(x, y, z) diferenciavel no aberto 4 C @’ € seja

B={(x,y,z) €EA|g(x,y z) =0}, onde g ¢é suposta de classe C' emA4 e Vg (x, y, z) # (0, 0, 0) em B.
Qual uma condi¢do necessaria para que (xo, Vo, zo) € B seja extremante local da f em B? Raciocinando
geometricamente, como no Problema 1, chega-se a condi¢do: a condi¢do necessaria para (xo, yo, o) € B
ser extremante local de f em B € que exista 4, tal que

Tf{lﬁ1 _"-'{}1 :1}\.' = fln TIE," {Yﬂ. Yo :ﬂ}

Deixamos para o leitor a prova desta afirmagdo. Deste modo, os candidatos a extremantes locais de /' em
B sdo os (x, y, z) € 4 que tornam compativel o sistema

Tf{"i-y ¥, :} —. | Tg (x, ¥, 2)
g(x,y,2 =0 -

EXEMPLO 5. Determine o ponto do elipsoide x* + 2y* + 3z = 1 cuja soma das coordenadas seja

Solucao

Queremos maximizar f'(x, y, z) = x + y +z com a restrigdo x* + 2y* + 3z = 1.

Vi v,2)=AVg(x v, 2) [{ L. I, 1) = A (2x, 4y, 62)
gx,»2 =0 = X+ +377—1=0.
g(x, v, 2)
) . 1 | 1 o
Como /4 deve ser diferente de zero, da 1.* equacdo tiramos: y = T g e Substituindo na

ultima equagao obtemos:




Os candidatos a extremantes sao:

=[l f'll__ll |'II1 'E\‘EX =(_l
L7 2V2a aN2a 6 V24 )" 72 | 2

Da compacidade de B, da continuidade de f'e de f (X;) > f(X2) segue que o ponto procurado ¢

EELI L
2V24 a\V24 624 ]
B

O préximo teorema fornece-nos uma condi¢do necessaria para (xo, Yo, Zo) ser um extremante local de f

(x, ¥, z) com as restrigdes g (x, , z) =0 ¢ & (x, y, z) = 0. Para a demonstragao de tal teorema vamos

precisar do seguinte resultado (cuja prova fica para o leitor): sejam ;7 e [ | vetores do R’ tais

-, = = S — = - =, 5 : : -
que A v+ 0 u-c=0 v:co=0emw:c =0 cntdo existem reais A, € A, tais que
—

— —
wW=Aju + Ay v

Teorema 2. Seja f (x, y, z) diferenciavel no aberto A C[13esejaB={(x,y,z) €EA|g(x,y,z)=0eh(x,y,z)=0},ondege h
sao supostas de classe ClemAe Vg (x,y,z) AVh(x,y,z)# {_:; em B. Nestas condi¢des, uma condi¢do necessaria para que (x,,

Y0, Z0) € B seja extremante local de fem B é que existam reais A1 e A2 tais que

Tj‘ 1:,'!.'”.. .T'f}‘ :“J = ;'Ll T%” {.l-”‘ .1'.{}" :“} = )1_2 Vh {X{}, Vi £y ].}.

Demonstracdo

Suponhamos que (xo, o, Zo) seja ponto de maximo local de f'em B, o que significa que existe uma bola
aberta V' de centro (xo, Vo, Zo) tal que, para todo (x, y,z) €E BNV,

S (x y, 2) < f (x0, yo, 20)

(como A ¢ aberto, podemos supor ¥ C A). Consideremos uma curva diferenciavel y : I — R, I intervalo
aberto, tal que y (¢,) = (xy, Vo 2), V' (¢,) # E ey () € B para todo ¢ em / (a existéncia de uma tal curva ¢

garantida pelo teorema das fungdes implicitas). Da continuidade de y, segue que existe 0 > 0 tal que
tE]ig—d. g +té[l=ym=eBNWV
Assim, para todo ¢ € ]ty — J, tp + J[ tem-se
Fy () =1y ).
Logo, ¢, ¢ ponto de maximo local de F' (¢) =f (y (¢)) e dai F" (o) =0, ou seja,
@ VIl () -y (tp) = 0.

Por outro lado, de y () € B para todo ¢ € [ segue que



g @)=0eh(y(®)=0,
para todo ¢ em /; dai
@ Vg (v (1)) ¥ (tg) =0e Vh(y(1g)) * ' (1g) = 0.

De (D ¢ (2), tendo em vista que -’ (to) # E} e Vg (v (tg) AV h (y (tg) # {_]}, resulta que existem reais 4, e
A, tais que

VF(y (1) = Ay Vg (v (1) + Ay Vh (y (tg)).

Ve

glx,v,2)=20

EXEMPLO 6. Determine os pontos mais afastados da origem e cujas coordenadas estdo sujeitas as
restricdes x> + 4> + 22 =4ex+y+z=1.

Solucao

Trata-se de determinar os pontos que maximizam a fungdo /' (x, y, z) = x> +y* + 22 (f(x, y, z) é 0
quadrado da distancia de (x, y, z) a (0, 0, 0)) com as restrigdes g (x, v, z) =0e & (x, y, z) =0, onde g (x, ,
Z)=x+ty+z—leh(x y z)=x"+47*+2z*— 4. Temos:

g Ly ws
i Jj ok
Ve(x,y, D2AVA(x v, 2D = |1

2x 8y 2z

(verifique). Estamos indicando por B o conjunto {(x, y, z) |[x +y +z =1 e x* + 4)y* + 2> = 4} . Observe que
B ¢ compacto. Os candidatos a extremantes locais sao os (x, , z) que tornam compativel o sistema



Vi, »2)=AVeg(x,v,2) + uVh(x, y,2)

g(x%,2)=0

h(x,v,z)=0.
2% = A + 2ux 2wl —w=r @
2y = A + Suy 2y(l —8uw)y=A @
127=A +2uz = 122(1l—pw)=A2 @
x+y+z=1 xtytz=1 @
| X"+ 4y 47" =4 | X"+ 4y +77=4 B

De (1) e (3) segue
2x (1 —p) =2z (1 —p).
Para u # 1, x = z. Substituindo em (1) e (5)

2%+ y=1 y=1- 2
2% + v =4 Gu X+ 2}'2 = 2.

3 4 N 8
¥ HF2] =) = 24:&91'“—3.T=ﬂ1:r.r=ﬂoux=a.

Temos, entdo os candidatos: (0, 1,0) e (%—%%] Para ¢ = 1, teremos 4 = 0. Segue de (2) que y = 0;

substituindo em (@) e (5)

XxrEr=l
2+z2=4

+ .
f+¢1—m3=4ﬁJﬁ—2x—3=0ﬁx=If;?
L+ o L=AT 1—7 _1+47) . . ,
Segue que ( ; 0, ; ]ﬂ[ 2'\' e o 2\ } sdo outros candidatos a extremantes. Como f ¢

continua ¢ B compacto, basta comparar os valores de f nos pontos encontrados:

3 7 8 171
(0, 1,0) =1, (—,——,—]=—1
I f.g 9 9 31
, 0, =4 = . 0,
f{ 2 2 ! 2 2

Conclusdo. [] _;? .0, 1 +;? W e [ ] +;? .0, ] _21”:? ] s30 0s pontos mais afastados da origem. Por
K

outro lado, (0, 1, 0) ¢ o mais préximo da origem.

Exercicios 16.5




10.

11.

12.

13.

14.

15.

16.

17.

18.

Estude com relagdo a maximos e minimos a fungao dada com as restrigdes dadas.
a) f(x, y)=3x+yex2+2y2=1

b) f(x,y)=3x+yex2+2y2<1

) fy)=x2+22e3x+y=1

A y)=x2+42exy=1,x>0ey>0

e) f(x,y)=xyex2+42=38
N [ y)=x2+2py+y2ex+2y-1=0

g fx y)=x2-2y+yrex2+y2=1

h) e y)=x2—22ex2+y2-2x=0

D fx,y)=x3+y3-3x—-3yex+2y=3

D fxy)=x2=2y+32ext+22=1

Determine a curva de nivel de f (x, y) = x2 + 16)2 que seja tangente a curva xy = 1,x >0 e y > 0. Qual o ponto de tangéncia?
Determine o ponto da reta x + 2y = 1 cujo produto das coordenadas seja maximo.

Determine o ponto da parabola y = x2 mais proximo de (14, 1).

Determine o ponto do elipsoide x2 + 4y2 + z2 = 1 que maximiza a soma x + 2y + z.

Determine a superficie de nivel da fungdo f (x, y, z) = x2 + y2 + 222 que seja tangente ao plano x + 2y + 3z = 4. Qual o ponto de
tangéncia?

Ache o valor maximo e o valor minimo da fungéo f'(x, y, z) =x + 2y +z com a restrigdo x2 + 2y2 + z2 =4
Determine o ponto do plano x + 2y — 3z = 4 mais préximo da origem.
Determine o ponto da reta

x4 2y +g=1
x+y+z=4

que se encontra mais proximo da origem.

Maximize f'(x, y, z) =x + 2y + 3z sujeita as restricdes x2 +y2 +z2=4ex+y+z=1.

Encontre os pontos da elipse x2 +xy + 32 = 3 (de centro na origem) mais proximos e os mais afastados da origem. Desenhe a elipse.
Encontre o ponto da curva x2 — 2xy + 2 — 2x — 2y + 1 = 0 mais proximo da origem.

Encontre os pontos da curva x2 — 6xy — 7y2 + 80 = 0 mais proximos da origem. Desenhe a curva.

Determine o ponto da superficie xyz =1,x >0 e y > 0 que se encontra mais préximo da origem.

Pede-se determinar trés niimeros positivos cuja soma seja 36 e cujo produto seja maximo.

Determine, entre os tridngulos de mesmo perimetro, o de drea maxima.

(Sugestao: Utilize a formula 4 = \_." pi{p—a)(p—>b)(p— ) que fornece a area do tridngulo em funcdo dos lados a, b € ¢, onde
p € o semiperimetro.)

3
ey ) - 5di
—] ¢ o valor maximo de xyz,x >0,y >0 e z > 0, com a restrigdo x +y +z = ¢ (¢ > 0). Conclua que a média
3

geométrica de trés numeros positivos ¢ sempre menor ou igual 8 média aritmética destes niimeros.

Verifique que [

Determine, entre os paralelepipedos-retangulos de mesmo volume, o de drea maxima.



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Deseja-se construir uma caixa, sem tampa, com 1 m3 de volume e com a forma de um paralelepipedo-retdngulo. O material a ser
utilizado na confeccdo do fundo custa o dobro do que serd utilizado nas laterais. Determinar as dimensdes da caixa que minimiza o
custo do material.

Deseja-se construir um paralelepipedo-retangulo com area total 100 cm2. Determine as dimensdes para o volume ser maximo.
Determine o paralelepipedo-retdngulo de volume méaximo, com arestas paralelas aos eixos, inscrito no elipsoide

7 3 3
X Y i

=]

4 9 16

Determine o paralelepipedo-retangulo de volume méaximo, com trés de suas faces nos planos coordenados, contido no tetraedro {(x, ,
Z) EM3 | x+2y+32<12,x>0,y>0ez>0}.

A temperatura 7 em qualquer ponto (x, y, z) do espaco é dada por 7'= 100 x2yz. Determine a temperatura maxima sobre a esfera x2 +
y2 +22 < 4. Qual a temperatura minima?

. \ X Y A
Determine o plano tangente a superficie — + —— +

4 9 16

= 1,x>0,y>0¢ez >0, que forma com os planos coordenados tetraedro

de volume minimo.
Determine P na elipse x2 +2y2 =6 e Q na reta x +y =4 de modo que a distdncia de P a Q seja a menor possivel.

Considere a forma quadratica Q (x, y) = ax2 + 2bxy + cy2 onde qa, b, ¢ sdo constantes ndo simultancamente nulas. Seja g (x, y) =x2 +
2 — 1. Suponha que (x0, 0, 10) seja solug@o do sistema

{Y’Q (x.y) =AVg(x y)
7 7
Xy =l

Prove que Q (xo0, y0) = Ao.
(Sugestdo: Como Q ¢ homogénea de grau 2, utilize a relacdo de Euler. Veja Exercicio 26 da Sec¢do 12.1.)

Sejam Q (x, ) e g (x, ¥) como no exercicio anterior. Suponha que os multiplicadores de Lagrange associados ao problema
{ VO (x,y) =AVg(x,y)
7 ’
Xy =],

sejam estritamente positivos. Prove que Q (x, y) > 0, para todo (x, y) # (0, 0).
(Sugestdo: Utilize o Exercicio 26.)

Prove que os multiplicadores de Lagrange associados ao problema do exercicio anterior sdo as raizes da equacao

a—A b
2 c—A

=

Sejam Q (x, ) e g (x, ¥) como no Exercicio 26. Sejam 11 e 12, A1 < 12, as raizes da equagdo
a—A b
b e—=X

=

Prove que 41 e A2 sdo, respectivamente, os valores minimo e maximo de Q sobre a circunferéncia x2 +y2 = 1.

16.6. EXEMPLOS COMPLEMENTARES

EXEMPLO 1. Seja f (x, y) de classe C* num aberto 4 do @*. Suponha que (xo, ¥9) € 4 seja um ponto
critico de f. Prove que uma condigdo necessaria para (xo, o) ser um ponto de minimo local de /¢ que



i)

X f ;ﬁf

(x, ]u’:r + 2
dl" 0 Yo

(ﬂs_{}}hﬁ"‘ }E{UG F}R“}*U

para todo (4, k).
Solucao
Seja’y, — (4 k) # (0. 0) € consideremos a fungdo

Suponhamos que (xo, o) seja ponto de minimo local de f; entdo ¢ = 0 serd ponto de minimo local de &3 e
portanto, deveremos ter necessariamente &= (0) > 0. Como

-

}"f . d%f 2 f

S
(Xgs ¥qy) Ik + —=—(xp, vo) kK~
2 ax v 0- Yo i ey

g% (0) =

= =
L_\I - J"' Jtr f
Il:"\. -_ _F;-flt(
.: '.-:A'_‘—‘——-______‘_____-.-
L\ S (xg + th, g + th)
*(xg, ¥o)
(verifique) resulta que
2 f d*f 92 22f

{t,j,)h + 2 (xq. vo) hk + —5- U,\)}L =10
0- X0 (}:ld"u 0: Yo (}\ 0- Y0

rﬁl -

para todo (4, k), ¢ uma condi¢ao necessaria para (xo, o) ser ponto de minimo local de f.
n

Observacio. Note que &3 fornece os valores que f assume sobre o trecho da reta (x, y) = (xo, yo) + ¢ (A, k)
contido em Dr.

EXEMPLO 2. Considere a forma quadratica
O (h, k) = ah* + 2bhk + ck?

onde a, b e ¢ sdo constantes. Suponha a # 0. Verifique que



J.*

[ B oY* . B B
Qifr.k}=ath+—?k} o+ 173
a a
Solugdo
.2 2 i 2 b ' a
ah™ + 2bhk + ck™ = a h*+2—hk+_k~}
L ia a
=da J:rz+&hk+b: kf—b—:k2+ig;2}
L a a« a= a
[ b V¥  ac— b2
= a [h—i——;:;] + ) RL]
a a-
ou seja,
. la b
/ 2 ol
Q (h, k}=ath+£;¢} i Eligs .
a a

EXEMPLO 3. Considere a forma quadréatica
O (h, k) = ah* + 2bhk + ck.

Prove:

[

(1) sea }Deb

i)‘} 0. entdo Q (h, k) = 0, para todo (h, k) # (0, 0).

(i1) se g ?‘«:‘: 0, entdo existem (f11, ky) e (hy, k) tais que Q (h, kj) <0e Q (hy, ky) = 0,

Solucao
Pelo Exemplo 2, sendo a # 0,

)

=

( b
O (h, k) =crth+—k] 8
a / {

(1) imediata.
(i1) se a = 0, teremos necessariamente b # 0; neste caso, existe tal que O (a, 1) ¢ O (a, — 1) terdo

sinais contrarios. (Verifique.) Se a # 0, O (1, 0) e QO (E,—] terdo sinais contrarios
a

a b
b ¢

i

{ B

Qil,D)=aeQL§.—]J=




EXEMPLO 4. Seja f (x, y) de classe C* num aberto 4 do B* e seja (xo, yo) € 4 um ponto critico de f.
Prove que se

}2 : }2
' { (Xp. Yo) d (X0. Yo)
H S | o dx v
{Iﬂ‘ \U} = A . 9 <0
d- (X0, v0) d=f (xn. v0)
Fr gy 0¥ oo (%0, Yo

entdo (xo, Vo) ndo € extremante local de f.
Solugdo
Seja
N
83 D(1) =flxg+ ht,yg + kD) (v = (h k).

Pela regra da cadeia,

" (0) = o%f (x0. Vo h® +2 ’ (x0. vo) hk + 0 (x0, ¥o) k2
8= 2 \F0. Y0 2 Oy X0, Yo ¥ 0. Yo) k=,
Pelo Exemplo 3 (i1)
a*F 9> f dif .
a=—+1(xp, Vo) b =——(xp, ¥o) e c = —5(xg. Vp) |existem
\ o < (X0, o) oy oy 2= o= (o ,r}}g e
— —

Vi = (f’!]‘ kl) i Vo = {.I'TI;:_-, f\:)
tais que

gs (0)<0 e g- (0)>0.
1III 1“2

Assim, ¢t = 0 ¢ ponto de maximo local de 3;; (f) ¢ ponto de minimo local de 3;; (1. Logo, (x,, y,) ndo €
extremante local de f.



‘“-7(___ (x.+hm.;,+£n
[.r,:, + ||!-i'|’l|r.. Vo + .IE.J”
Seja (xo, ¥o) € Dy um ponto critico de f. Dizemos que (xo, o) € ponto de sela de f se em toda bola
aberta de centro (xo, yo) existirem pontos (xi, 1) € (X2, ¥2) comf (x1, ¥1) <f (X0, ¥o) € f (x2, ¥2) > f (X0, Vo).

Seja f (x, y) de classe C* num aberto 4 de @* e seja (xo, o) € A um ponto critico de f. Segue do
Exemplo 4 que se H (xo, yo) <0, entdo (xo, Vo) sera ponto de sela de f (verifique).

EXEMPLO 5. Sejam f (x, ) de classe C* e (xo, yo) um ponto interior de D Suponha que (xo, Vo) s€ja
ponto critico de f. Prove:

f

. ¥g) = 0e H (xq, vy) = 0, entdo (x y ) sera ponto de minimo local de f.

b) se r‘; (Xg. ¥g) < 0e H (x. vy) = 0, entao (x y ) sera ponto de maximo local de f.
v 2

Solucao

a) Da hipotese e da continuidade das fungdes

12 £ 2
=z # (x, ¥) ! (x, ¥)
d=f 6 ST o= oy dy
——(x, YeH(x, y)=| 52 2
ox* g _f (x, ¥) (?_? f X, ¥)
dxdly av=

segue, pelo teorema da conservacao do sinal, que existe uma bola aberta B de centro (xo, o) (podemos
supor B C Dy, pois (xo, Vo) € ponto interior de D)) tal que, para todo (x, y) em B,



% f

— (X, Y) =0 H(x ) >0,
ox =

Pela formula de Taylor, com resto de Lagrange (veja teorema da Secdo 15.4), para todo (4, k), com (xo +
h, yo + k) € B, existe (¥, ¥) interno ao segmento de extremidades (xo, Vo) € (xo + A4, yo + k) tal que

2 )2 f )2 f
‘ [a L aor+22L @onm+2L &y ﬁ'z}

a2 dx oy av=

fOo +h ¥ +K) = f(xp.30) =
rhc r]\.f‘ ! & A m
lembre - se de que J_ (xg, o) =0= ¥ (xp. ¥p). pois (xg, ¥p) € ponto critico de f |.
oy oy

Como (x.7) € B,

drf _ _  drf _ _
52 ==y — (X, ¥)
2 7 : e :
? f (%, ¥)>0eH(T, )= ?ﬁf a;z? =0
> 77y ZLay
axaly dv=

tendo em vista o Exemplo 3, para todo (4, k) # (0, 0), com (xo + A, yo + k) € B,
S (xo+ h, yo+ k) — f (x0, 0) > 0,
ou seja,
S (x, ) > f (x0, yo)
para todo (x, y) em B, com (x, ) # (xo, Vo). Portanto (xo, o) € ponto de minimo local de f.
b) Fica a seu cargo. [Basta verificar que (xo, 1o) € ponto de minimo local de g (x, y) = —f(x, y).]
EXEMPLO 6. Sejam a., f, y, 0, € € ¢ nimeros reais dados. Considere a forma quadratica

. . 3
Q(r, s, 1)=ar + Bs + yt° + 2rs + 2ert + 2est.

Supondo a # 0, verifique que



> BA| L be
o [ -} o JB o & b
= +—s+—1| + + - CH
Q(r.s.1) af[r Q_-r ar‘} = § 7 Sr ~ 5 t
5 5 B
Solucao
r -~ j j
O(r.s.)=a r2+E53+1r2+2—ﬂm+irr+£sr}
i o o o o a
_,‘ 2 2 o)
= @ r*’—i—a—qsz-i-f—zrz-i-grﬁ-i-iﬁ
I - a a a
280 sr—a—hci—fz et :;r+2—"’°sr+ﬁsﬁ+1tf}
a“ a“ - a” o @ @
Assim,
/ \2 —-8 —€e2 . 2 i
Qir'..tf}=&[{r+is+£rj L WG r~'+'(""1"r‘":',J €0) sr]
« o a“ o o
I a € S €
& € o o € V¥ - 8 ¢
=a|lrt+t—s+—1t| + b S S st
a o a a a )
6{5,1‘}
o o,
Supondo 5 Bl7 0.
a o a € Al €
| N
O(s, t) = 52 + e st
o a o a O
i 6 B 6 B
‘{r 5‘_ ‘a € ‘a e|? a el a € |
o o o o 4 "
= P s + 2 Y15t + f’p_,r‘*— f’mjr‘;—i-'E yr“
o ‘*‘-T 5 a & a 8| ‘ﬂf 5‘
] 5 B 5 B 5 B o Bl |
‘af ) ‘af € ‘{r Slla €| |a ef
o o o € O 4
= & 5+ ' I o p ¥ 5 i =
a ‘af 8 a &7
6 B 5 B

Como,



‘af 5|l|la € o € a & €
5 = =a|dé B ¢|(verifique)
o € ‘5 @
B Y ¢ o o iy
resulta
g a 6 €
2 a §|( a € V" O B ©
f( ".IL. a a y
Q{J-.Sif\j={r|r+ilg+ir| + -B g+ &L ¢ n E @ Y 2
\ a a ) a ‘a 5‘ P 5‘
LS 5 .8 J 5 '8

EXEMPLO 7. Considere a forma quadréatica

= 7 1 gl
Q(r, s, 1)=ar + s + yt" + 26rs + 2ert + 2¢st.

Verifique:
a O € 5
asSe|s B ¢ }D,: ‘}Dea}{lentﬁﬂ
€ ¢ Y
O s, t) >0, paratodo (7 s, ) # (0, 0, 0).
a O 5
bySe |6 B ¢ f:D,: >0ea< 0, entio
E ¢ ¥
Q7 s, t) <0, paratodo (7 s, ) # (0, 0, 0).
c)Seg 6{Dea:}{).,entéoexistem(r,s,t)e(r,s,t)taisqueQ(r,s,t)<OeQ(r,s,t)>O.
-B 1 1 1 2 2 2 1 1 1 2 2 2
Solucao

a) e b) sdo consequéncias imediatas do Exemplo 6.

o O \
]_ ‘5 B|; assim, Q (1, 0, 0) e Q(ﬁ -1 DJ tém sinais contrarios.
e o
o

o
[Sugerimos ao leitor determinar outras situacdes que levam a existéncia de (71, 51, #1) € (72, 52, £2) com O
(r1, 81, 1) <0e Q(ra, 82, 12) >0.]

i
) 0(1.0,0) = ae QLE,—LU

Deixamos a cargo do leitor a demonstragcdo do resultado que aparece no Exercicio 15 da Secao 16.3.



(Sugestao: Proceda como no Exemplo 5.)
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MINIMOS QUADRADOS: SOLUCAO LSQ DE UM SISTEMA
LINEAR. APLICACOES AO AJUSTE DE CURVAS

17.1. TEOREMA DE PITAGORAS

Teorema de Pitagoras. Sejam A, B e C tés pontos do [dn, e consideremos o0s vetores
—

— — — =% N .
a =B—C. b =C—Ae ¢ =B—A Suponhamos que os vetores B sejam ortogonais, isto é, que o produto
escalar _} _ 7 Nessas condic¢des, tem-se
b - c =0
=2 5 = T
Hall==1b6Il=4+1cll«.

—3

., ¢ lembrando, ainda, das

De fato, observando que E

— - =
p © para todo 7 72 =

propriedades do produto escalar, vem

= - = - = —3 = iy =D = — =y =3
lgll==a «+ & =(¢c—8)*(c—b)= ¢+ ¢ —=28 « &g~ bbb
E, portanto, tem-se a relacao de Pitdgoras
- . - . - .
Hall==11&I1=+ 1l ¢l [

Uma consequéncia importante do teorema de Pitagoras e que sera utilizada logo ¢ a seguinte:

Sejam A4, B dois pontos do [[In € seja £ o conjunto, contendo 4, de todos os pontos C de [[In tais que C — A4 seja ortogonal a B — 4. Nestas
condi¢des, para todo C em £,

1B-4ll=[[B-C]

ou seja, para todo C em £, a distAncia de B a A é menor ou igual & distAncia de B a C.

De fato, pelo teorema de Pitagoras,
|B=C[P=|B-AF+|C~4].

Como || C—A|f>0,resulta||B—C|*>| B—A| e, portanto,



IB—Al=IB—-CI- &

Observacgao. Lembre-se de que, sendo X e Y dois pontos do [, a distdncia de Xa Yé || X — Y. Assim,
se Q for uma reta ou um plano em R’ (ou no [»), entdo ||B — A|| sera a distAncia de B a Q.

17.2. SOLUCAO LSQ DE UM SISTEMA LINEAR COM UMA INCOGNITA
Vamos comecar considerando um sistema linear .S, no plano, com uma incégnita.

G- {ﬁ']lf = b
o laagt = by

Esse sistema, no sentido habitual, podera ter solucdo ou ndo. Terd solugdo se o ponto B = (b, by)
pertencer a reta », dada, em forma paramétrica, por

. {T = dajf
F.
Vv = ast.

Se o ponto B = (b1, b,) ndo pertencer a reta r, o sistema S ndo admitira solugdo, no sentido habitual, mas
admitird solu¢cdo LSQ ou solugdo dos minimos quadrados.

Definicio (de solugdo LSQ). Dizemos que t0 ¢ uma solug¢do LSQ ou solugdo dos minimos quadrados do sistema linear S se ¢ = #0
tornar minima a distancia do ponto B = (b1, b2) ao ponto X = (a11t, a21f), t real.

A |

/

Consideremos os pontos A = (aiito, azto), B = (b1, b2) € X= (ant, axt). Pensando geometricamente, ¢, sera
uma solu¢do LSQ do sistema linear S se o vetor B — A for ortogonal a reta » ou, de forma equivalente, se
B — A for ortogonal ao vetor X — 4, ou seja, se

(B— A)-(X— A4) 0.

De fato, se para ¢t = t, o vetor B — A for ortogonal a X — A4, pelo que vimos na secdo anterior, teremos,
para todo ¢,

IB—-A|=]lB—X]|



e, portanto, 4 ¢ o ponto da reta » que se encontra mais proximo de B.

Observe: se ¢ = t, for solugdo do sistema S no sentido habitual, serd, também, solugao no sentido LSQ.
Vocé concorda?

Vejamos como achar rapidamente a solu¢do LSQ do sistema S. Primeiro devemos escrever o sistema
S em forma vetorial. A seguir, em vez de representar um vetor em linha, vamos representd-lo em coluna,

usando colchetes. Facamos
_lan| .7 _ | B
- [“21} L [fﬁ}

Assim, o sistema S podera ser reescrito na forma

— —
S:{tw = b.
Como X — A4 ¢ paralelo a *_11’ pois *_11 ¢ o vetor diretor da reta », deveremos ter entdao ﬁ _ n:n»_f

__'|. .
ortogonal a v > ou seja,

— - =
(b —tfyv ) vy =0.

Tendo em vista a distributividade do produto escalar emrelagdo a adigao, resulta

— — — =
vt = = bouw
e, portanto,
— —
s b - V]
0™ =5 =
'I.'] Ll L!l

Nada muda se S for um sistema linear com uma incognita no [». Vamos resumir o que fizemos
anteriormente supondo S no [n.

Solugdo LSQ de um sistema linear, com uma incégnita, no [[In.

Seja S o sistema linear

(J'Hf= EJ‘l a1 f?]
. jant=b 7 any g by
R i sy = Y le b =0
ay t = by, Uy by,
A solugdo LSQ de S ¢ a raiz da equacdo
— — —

(b —tv) v =0

€, portanto,




Outro modo de se determinar a solugdo LSQ do sistema linear S € usando o calculo: determina-se ¢
que torna minimo o quadrado da distancia do ponto B = (by, b», ..., b,) ao ponto X = (ant, axt, ..., ant).
Indicando por W o quadrado da distincia de B a X, temos:

H

W= > (b —tay)?.
k=1

Derivando, obtemos

AW n ] n
& 2 (b —tagy) (—ap) =2 tagag) — 2 Z brag,

k=i

k=1 k=1
H

I
Igualando a zero e lembrando que Z agjag; =1 Z ap1ag, resulta
k=1 k=1

n
z f?,r‘-dk l i ik

s k=1 _ h.\sl
= H — ==

V] Vi
Z g4k

k=1

Como o grafico de W= W (¢) ¢ uma parabola com concavidade voltada para cima (de acordo?), segue
que o valor de ¢ acima torna minimo o valor de W.

EXEMPLO. Determine a solu¢do LSQ do sistema

r__,_}.

x=35
=8
x=T7.

[

:
1_
Solucao

Aqui,

A solugdo LSQ do sistema ¢



— =
by _ 15+8+14 37

).'= rmm s m——

T 2 9+1+4 14

~ 37, ~ . . N . N
Conclusdo: x = % ¢ a solucdo LSQ do sistema dado. (Observe que esse sistema nao admite solugao no

) . i 3 Y ,
sentido habitual. Observe, ainda, que, para ¢t = %, a distancia do ponto B = (5, 8, 7) ao ponto (3¢, ¢, 2¢) €
exatamente a distancia de B a reta dada, em forma paramétrica, por x =3¢,y =t ez =2t.)

]

ATENCAO: Na HP-48G, a solugdio fornecida pelo aplicativo SOLVE LINEAR SYSTEM ¢ uma solugdo
LSQ. No Apéndice 2, mostramos como trabalhar nesse aplicativo.

Exercicios 17.2

1. Determine a solu¢do LSQ do sistema dado.

al b}
—J | v
s 2y =5
Ixr=1 _
dx=4
x=2 h':l
22=3 >

2. Seja o ponto P =(2,1,3) e considere a reta » dada em forma paramétrica por

[}
—

X
ri4y

Determine o ponto de » que se encontra mais proximo de P.
3. Seja o ponto P =(1,1,1) e considere a reta » dada em forma paramétrica por

[.t=r+l
r:qy=2t
{:=!+2

Determine o ponto de » que se encontra mais proximo de P.

17.3. SOLUCAO LSQ DE UM SISTEMA LINEAR COM DUAS OU MAIS
INCOGNITAS

Inicialmente, vamos considerar um sistema com duas incdgnitas. Seja, entdo, S o sistema linear

appx tapv=~h
arpxt+anyv=h

Nt

[”H] Xy y= by




Definicdo (de solucdo LSQ). Dizemos que (x0, y0) € uma solu¢do LSQ de S se (x, y) = (x0, y0) tornar minima a distdncia do ponto

by ajpx +dpy

b aynx+any
B=|2 ao ponto X = 21 2201

by, amx+ayy

Fazendo

dyp Xp T 412 Vo
A= |921%0 T axnyo

Ayl Xo T ay2 Yo

supondo que o vetor B — A4 seja ortogonal a X — 4 e procedendo como na se¢ao anterior, resulta, para todo
(x, ),

|B—A|<|B—X]||
Fagamos
by ap ar
D=2 = |en — _ |an
—_— v —_— E_- 1'2 —_—
bu iy tn2

Observando que

— —2
X—A=x—x) vy +(y—y) M2

segue, se B — A for ortogonal a |,/ e a , ouseja, se

(B—A)-
(B—A):

0
0

_:.
_:.
2

~ , . =¥ =2 . . ,
entdo B — A serd, também, ortogonal a X — A. Como 4 — Xy Vi + ypVv2» O Sistema acima podera ser

reescrito na forma

— - - =
(b —xpv —Yov2)-
- - - =
(b —Xxgvy —yov2)' v

|
T

&)
|

que ¢ equivalente a



[ — — =%, — 3
J1Xp vy - v +yvgvor vy = b -y

- = - = = =
Ii’ﬂ v *va YoV v = b ooy

Resumindo:

Solucdo LSQ de um sistema linear, com duas incognitas, no [[In. Seja S o sistema linear

ajpx +ax v =h apy an by

C anx+anvy=b T an _’ s =3 b
S - 21 22. sov = 2] ¥ 21 e b = 2
dy] X + an"’ y=b, iy ay2 b,

A(s) solugdo(oes) LSQ de S é(sdo) a(s) solucao(des) do sistema auxiliar

[y “— — = —y"
S’A ) 1.'] . \;] b s o 1_.] . -i_:-2 ."'! — f} . 1.']
R e — =

1.'] * \."2 __'l' + \.-'2 # ].?.‘w_, .'||r!' — l||_!-;|' * \.‘2

ATENCAO: Prova-se em Algebra Linear que o sistema SA é sempre compativel, no sentido habitual.

Serd compativel determinado, ou seja, admitira uma #nica solugdo, se *_11 ,:} forem linearmente
_}

independentes. Sera compativel indeterminado, ou seja, admitira uma infinidade de solugdes, se *-'[ €

forem linearmente dependentes.

MODO PRATICO PARA SE OBTER S4

Primeiro escreve-se S na forma vetorial:

— — —=
S:{xvi +yv2 = b,
Em seguida, multiplicam-se escalarmente os dois membros por vy & depois, por \1y > PATA obter
[ ¥ —3% — — =3 —:-
G4 - ¥V + Yy vy = b -y
A - J yra
i T - = = —:~
AV "WV + ¥YVa - va = h - Vo .

Outro modo de se obter a solugcdo LSQ do sistema linear S ¢ determinar, por meio do calculo, o ponto
que minimiza o quadrado da distancia de B a X. Chamando de W o quadrado dessa distancia, temos:

n
, : 2
W= Z (ap1x + apoy — by)".
k=1

A(s) solugdo(des) LSQ de S sera(ao) entdo a(s) solugao(des) do sistema



JI(?W ~ 0

dx
W
oW =
dy
aw Lo aw S
De — = Z 2(apx tapy —bpay e — = - 2(agx +agyy — by a5 resulta
dx dy z
k= - k=1
R n H
| -
X Z ag +y Z dapdapy = Z brag
k=1 k=1 =1
R i} n
x Z agiagy Ty Z at, = Z braga
k=1 k=1 k=1
que nada mais € do que o nosso S4 acima.
EXEMPLO 1. Resolva, no sentido LSQ, o sistema
x+2y=3
3x—y=1
x—y=2
x+3y=1.
Solucao
Aqui
1 2 3
3 = ~1 = 1
3 — 3 — —
L=11p v2=|q| ¢ b =]
1 3 1
Temos:
— =y - = e - = - = I
Vi v =12, v = vt =1, b -V =9,V *va =1, v vy =15e b - vy =

O nosso sistema auxiliar € entao

. ~ 63 129
cyasolugdo éx= —eyv= —.
179 179
~ 63 129 , N ~ .
Conclusdo: x = — e v = —— ¢, entdo, a solugcdo LSQ do sistema dado.

179



Observacao: Observe que, no sentido habitual, o sistema do exemplo acima nao admite solucgao.
EXEMPLO 2. Considere no R* o conjunto

D= {{ug.v.w.Dlu=x+2y,v=3x —y,w=x—y,2=x+ 3y, xe yreais}.
Determine o ponto de @ que estd mais proximo de B=(3, 1, 2, 1).
Solucao

O ponto (u, v, w, z) de ® que estd mais proximo de B € aquele obtido com (x, y) solu¢do LSQ de

[ x+2y=73
Ix—yv=1
x—y=2

[x +3y =1

que nada mais ¢ que o sistema do exemplo anterior. Como vimos, a solugdo LSQ desse sistema
63 129 . - (321 60 —66 450

x=——ey= —— O ponto de ® mais proximo de B ¢ Py 1 W
179 179 179 179 179 179

EXEMPLO 3. Resolva, no sentido LSQ, o sistema

[,1' + 2y =2
S:92x+ 4y =1
{3.{ + 6y = 1.
Solucao
Temos

ool

sao linearmente dependentes. O sistema admitird infinitas solucoes

- =

71
2v1> 080 o ¥y

%
Observe que vy
LSQ. De fato,

14x + 28y =7

e 7[23,1- + 56y = 14

que ¢ equivalente a

L |2x+ 4y =1
JA; {2.&'4- 4y =1.

Conclusdo: As solucoes LSQ do sistema dado sdo todos os pares (x, y) tais que 2x + 4y = 1. (Vejamos
outro modo de resolver o problema acima. Colocando o sistema S em forma vetorial, temos



—3 - =
S:{xVi +yv, = b.

Tendo em vista que :” - ‘T’ resulta: g . {(x + 2y) T; _ E} Fazendo ¢ = x + 2y, obtemos o sistema, com
uma incognita,
A
S:{tvp = b
cuja solugdo LSQ ¢
- =
_bow 1 1
=

Entdo, as solucoes LSQ de S sao todos os pares (x, y) tais que x + 2y = %, ou seja, tais que 2x + 4y =1.)

Para finalizar a se¢do, observamos que o procedimento para se resolver um sistema, no sentido LSO,
com mais de duas incognitas ¢ andlogo ao procedimento para duas varidaveis. Consideremos, por
exemplo, o sistema linear com trés incognitas

appxtapyvtaszz=h
g.Jjanxtanyta3nz=h

Aup X+ ap2 ¥y + ay3 2 = by,

Em forma vetorial, o sistema acima se escreve

. = e - -
S:{xv1 +yv +zv3 = b.

O sistema auxiliar S4 sera, entao,

— = - = = = = =
xXvi vy +yvarvpHzvacvyp = b -y

e o e R S T
SA:qxvi*wvatyvnvwmt+zvicva=>b+w
o - = = = = =
XVivatyvaivatzvzem=b ‘v3,

A mesma observacdo ¢ valida para o sistema SA4. Tal sistema sera sempre compativel, no sentido

. e s .. ~ - = = . . -
habitual: admitird uma vnica solucido se Vi, V9 € V3 forem linearmente independentes; caso contrario,

admitira uma infinidade de solucgdes.

Exercicios 17.3

1. Resolva, no sentido LSQ, o sistema linear dado. A solugdo encontrada ¢ solugao no sentido habitual?



; 2x+y=3
X y=:2 N0 7 2x +y=
a)4x —y = b) 1, 4+ 2y =3 c) +4x + 2y =1
My =1 ] 2y = [ ) B
x + 2y LR_ —2y=1 6x + 3y =4
2. Considere o plano dado em forma paramétrica por
(v =2u+v
a:ay=u—v
I=u+w

Seja B=(3, 0, 1). Determine o ponto do plano o que se encontra mais proximo de B. Qual a distdncia de B a a?
3. Seja a o plano do exemplo anterior. Uma particula desloca-se sobre a, e sabe-se que no instante ¢ a posicdo da particula ¢ dada, em
forma paramétrica, por:x =ty =2te z =z ().
a) Determine z (z).
b) Determine o instante em que a particula se encontra mais proxima do ponto (1,0,2).

17.4. AJUSTE DE CURVA: A RETA DOS MINIMOS QUADRADOS

Consideremos a tabela

X y
X1 yi
X2 2
X3 »3
Xn Yn

Sabemos que por dois pontos distintos sempre passa uma reta. Por mais de dois pontos, s6 com muita
sorte! Mas, de qualquer forma, vamos proceder como se houvesse uma reta passando por todos os pontos
da tabela. Seja

~

y=mx-—+gq

a reta que estamos interessados em determinar. A notacdo v, que € usual em estatistica, indica que o valor
v correspondente ao valor de x € apenas uma estimativa para o verdadeiro valor de y. Para que tal reta
passe por todos os pontos, devemos ter

mx; +4 =¥
Lo JmXy T g =W
g 2 1= ¥2

Miy, +4 = V.




Definicao (de reta dos minimos quadrados). Dizemos que { =mx + q ¢ a reta dos minimos quadrados para os dados da tabela
acima se (m, q) for a solu¢do LSQ do sistema S.

Se os pontos da tabela forem colineares, entdo a reta v = mx + g passard por todos os pontos (x;, i), i
=1, 2, ..., n. Mas, de modo geral, isso ndo ocorrerd. Assim, em geral, o valor y;, v; = mx; + g, serd
apenas uma estimativa para o valor y; da tabela (¢ comum referir-se a esse y; como valor observado).
Desse modo, quando usamos v; para estimar y;, estamos cometendo um erro £

Ell o s ‘I-J -— Hllll — j“l_l‘ll + {jr —_— I‘ll-'ll.'lI umars I\ 2‘ R .”‘1

Segue que a soma W dos quadrados dos erros €

n

W = i E!-2 = Z (mx; +q — _\‘,-‘}2.

i=1 i=1

Como m e g da reta dos minimos quadrados v = mx + q € a solu¢do LSQ do sistema S, resulta que tal
reta ¢ determinada de modo que a soma dos quadrados dos erros seja minima.

- --’-’
/ k_f' =mx+ g
&

.'l.'!. X
A reta dos minimos quadrados ¢ a reta que minimiza a soma dos quadrados dos erros
EXEMPLO. Considere a tabela
X 2 4 6 8 10
y 5 4 8 6 12

a) Construa o diagrama de dispersao.

b) Determine a reta dos minimos quadrados.

c) Utilizando a reta dos minimos quadrados, estime os valores de y parax=5¢ x =8.
d) Calcule as médias aritméticas € ¥ dos x; e dos y;, respectivamente.



e) Verifique que a reta dos minimos quadrados passa pelo ponto (¥, ).

f) Calcule a soma dos quadrados (y. — _\-)3.
g) Calcule a soma dos quadrados ( y; — ;}3.
h) Calcule a soma dos quadrados dos erros E..
5 5 5
L = " = " = ;
) Verifique que 2 v — ¥ ) = 2 (yi— ¥ ¥ 2 (¥; — _1-*;'}3, (Estd parecendo teorema de
Foe i=1 i=1
Pitagoras, nao? Veremos mais adiante que isso ocorre sempre!)

j) Justifique a afirmacgdo: “E razodvel esperar que os v, se concentrem mais em torno de v do que os

29

Ji.

k) 5 . 2
D, i =2
Calcule o coeficiente de determinacdo g* = z l (Observe que 0 <R <1.
3. =3
i=1
Observe ainda que, quanto mais proximo de 1 estiver o R*, melhor deverd ser o ajuste da reta dos
minimos quadrados aos pontos da tabela. De acordo?)
Solucao

a) O diagrama de dispersdo € a representacao grafica dos pontos da tabela.

[
154
124 L
g4

L]
5-; L]
L]

| L]
3
0 T -

0 2 4 & 8 10 i2

b) Seja v=mx + q a reta procurada. Temos

2m+ g =235
dm+g =4
S:q6m+g=28
Bgm+qg==6
10m+ g = 12.
Em forma vetorial, temos
— — —
S:{mvi + gv = b

onde



 d

I
g7 = i LT S 5
s
Il
e
o
b
Il
— N 00 Iu Uh

O sistema auxiliar é

- = - = = -
Jm ViV tgvarvi=b v
SA
- = - = =2 -
l_m Vi *vatgvarva=b vy

e, portanto,

220m + 30q = 242

L) {30H?+—5q =35

Resolvendo, obtém-se i =

u~|-l:-

11
eq = ?

Conclusao: A reta dos minimos quadrados ¢ v=0,8x +2,2.

[}

15+

124 -

]

6

3l

Uk . -
0 2 4 g 8 10 12

c¢) Parax=35,v=6,2; parax =8, v=28,6.

d) 3 3
X Z Vi o _
.Assim, x=6¢ 7

| _2+4+6+8+10 : = :5+4+8+6+12=?
5 5 : 5 5 '

e) v=0,8x +2,2; para x = 6, tem-se v = 7. Logo, a reta v = 0,8x + 2,2 passa pelo ponto (x,¥) = (6, 7).
Entdo, a reta dos minimos quadrados pode ser colocada na forma vy —7 = 0,8 (x — 6).

Para resolver os proximos itens, vamos precisar da seguinte tabela.

X; y/‘ :'-1;' (y/ - 7)2 ({1; - 7)2 (y’ - ,{1;')2

2 5 38 4 10,24 1,44




4 4 54 9 2,56 1,96

6 8 7 1 0 1
8 6 8,6 1 2,56 6,76
10 12 10,2 25 10,24 3,24

5
P Y = =6-1+@-T+E-D2+ 6 -7+ (12 -7 = 40.
i=1
- =2 ) 2 ) 7 n.
8 Y (=¥ =0@8-1+G4-T+T-D"+ @867+ (102 7).
i=1

3
Assim, 2 (3 — ¥)? =25.6.

i=1

5 P
Y ;- 3 =144

=1

h)

5 5 5
Pelos dados acima, z v — ¥ = Z (5i — ¥)* + 2 (v; — 3%

=1 =1 =1
7) E razoavel, pois da relacdo acima resulta que a soma dos quadrados dos desvios 3; — ¥ é menor ou
igual a soma dos quadrados dos desvios v; — v, e, assim, ¢ de se esperar que os y; estejam mais
concentrados em torno da média ¥ = 7 do que os y;. OK?

5
= 5.6 . ~
RE= 1= ! = ":H‘f = (.64. Assim, o coeficiente de determinagdo ¢ R = 0,64.

5

Z (¥ — _"'_".]'2

i=1
(Pelo coeficiente de determinacdo, o ajuste pela reta dos minimos quadrados ndo ¢ 1a essas coisas.
Concorda?)

k)

Para encerrar a se¢dao, vamos explicitar as formulas para calcular m e ¢g. Para isso, consideremos a
tabela do inicio da secao.

Os coeficientes m e g da reta dos minimos quadrados

ety

=mx + g

sdo dados por




"

I
Z Xp Ve — Xy Z (xp — ) — )

k=1 k=1
jn — ——
n ” fi'. —_
Z Xp —nx" 2 (107 Sk 4
k=1 k=1
€
g=—mx +y

onde ¥ e ¥ sdo as médias aritméticas

z X Z Vi

— _ k=l - _ k=
X=r—/——— B} &

n f

Antes de prosseguirmos, vamos destacar uma propriedade muito importante da reta dos minimos
quadrados.

Propriedade importante da reta dos minimos quadrados.

Substituindo

g=—mx + ¥
na reta dos minimos quadrados, obtemos

y— y=mx— x).

A reta dos minimos quadrados sempre passa pelo ponto (x, V).

Vamos, agora, a demonstracao das formulas para calcular m e g

X 1

Vi
=2 o o 1 7 Vo
v = “hov = g h =<
Yn I Vi
Segue que
e A &, — = e Z,
¥ vy = Z Xix V2 :v2a=n e b vy = Vi
k=1

Lembrando das formulas para o calculo das médias aritméticas = e ¥, resulta

- =

_ - =
VI + V2 = HX e

b vy = ny.

Entdo, o sistema auxiliar serd equivalente a




— — _ — —
mvycvy taxg= b -y

SA : J
l_rﬁ m+ng=ny.

Multiplicando a segunda equacao por —x e somando com a primeira, obtemos

n

3§ .5 L z XV —HXY
_ bvi—nxy k=l
= — — -2 o i »
VsV —HX D T
I Z Xp—nx
k=1

Da segunda equacgdo de S4, obtemos
g=—mzx-+ y.

Para verificar que

H n
Z XgYg — XY Z (X — ) — V)

k=1 k=1

i a2 = nx i (xp — x)2

b m=

¢ s6 desenvolver o numerador € o denominador do segundo membro. Vamos 14.

" L
Z (xXg — X) Or— ¥) = Z (X — XY — Xy T x ¥).

k=1 k=1
De
" !
S
n R
-2 = N | £ gl T
Z Xy =y Z n=yn|——|=nxy
k=1 k=1
H -
z_r.\*ﬁ—n Xy
k=
e

R
2 Xy=Xxy+xy+..Ttxy=nxy
k=

s
1 n parcelas



segue
i ! i g
2 le —= -r-} (‘\:‘R- e .\3) e 2 _,],';'__‘l,"k — " X _‘l'.
k=1 k=1
n i
. =.2 F 2 itui 30 aci ¥
Para verificar que Z (x — X))~ = 2 Xj —n X7, basta substituir, na relagdo acima, y porx € ¥ por

x.

Existe outra maneira, bastante interessante, de verificar a relagdo (1) anterior. O caminho para essa
outra maneira ¢ lembrar que a reta dos minimos quadrados passa pelo ponto (¥, ¥). Seja

-

F—y=m(@x—x)
a reta dos minimos quadrados para os pontos (x;, y;), i =1, 2, ..., n. Entdo, a reta
Y =mX

sera a reta dos minimos quadrados para os pontos (X, ¥), onde X, =x;— xe¥;=v;,— v, pois 0 que
fizemos com essa mudancga de variavel foi apenas uma translagcdo. Entdo, o coeficiente m serd a solucdo
LSQ do sistema

[(xp —X)m=y; — ¥
g. (2 — X)ym=y, — v

(X —x)m =y, — y.

Sendo
X=X ¥~ ¥
= .= e -
5 o= (XK e B o MY
X, — X Vi = ¥

teremos o sistema auxiliar

—
SA:{mv = b

e, portanto,

M
5 - Z (v — ¥)xp — x)

B b v k=1
m= e -
VoV ZH‘;" — )2

k=1

O que vocé achou?



Exercicios 17.4

1. Considere a tabela

y ~1 2 15 35 38 45

a) Construa o diagrama de dispersao.
b) Determine a reta dos minimos quadrados.

¢) Determine o coeficiente de determinagdo R2.

2. Atabela a seguir apresenta as vendas semanais (em toneladas) de arroz, das ultimas 6 semanas, de um supermercado. (Na linha dos x,
0 —6 estara representando seis semanas atras, o —5 cinco semanas atras etc.)

X —6 ) —4 -3 -2 -1

y 2 24 1,9 1,8 2,1 2,2

(Pela tabela, ha seis semanas foram vendidas 2 toneladas de arroz; ha cinco semanas, 2,4 toneladas etc.)
a) Determine a reta dos minimos quadrados.

b) Estime a venda para a semana atual (x = 0).

¢) Determine o coeficiente de determinagéo R2.

17.5. COEFICIENTE DE DETERMINACAO. CORRELACAO

Consideremos os pontos (x;, yi), i =1, 2, ..., n. Seja v = mx + q a reta dos minimos quadrados desses
pontos. Nosso objetivo a seguir € mostrar que

L

i i
—.1 ~ =0 ' ~ooy P
Z {.1".,5_' gty | = Z { Ve — ¥ i Z {T;' - ¥e)

Temos, parak=1, 2, ..., n,

2

A A -2
Ok =¥ =0 = Y+ Y~

-, j ) -~ Ak -, =+ i
Or =¥ =0 = W) F200 = ) (e — ¥) H (e — ¥)

Para concluir a veracidade da relagdo acima, basta, entdo, mostrar que



n
Z (Vi — _‘E;_-){_‘:-‘,;- == ;\j = 0.
Fes

Dey, — v=m(x— x)edey,— ¥ =¥, — ¥ — (¥ — ¥), segue que a relagdo acima ¢ equivalente a

n
2 [p— ¥y —m— )] G — X)=0.
k=1

A seguir, vamos mostrar que essa ultima relagdo realmente se verifica. Vimos no final da sec¢ao
anterior que y —,;x ¢ a reta dos minimos quadrados para os pontos (X, Y:), onde
X,=x,— xel,=v.— v,parak=1,2,3, ..., n. Assim, m € a solu¢do LSQ do sistema

— —
S:{mv = b
onde
x| — X Y1 =)
—3 = —3 N =
F = X2 X e b o= Va Y
Y'n — T': Yo — ;

Sabemos que, se m € a solugcdo LSQ de S, deveremos ter

- - . =
(b —mv ) v =0

que € equivalente a

I
Z (v, — ¥) —m@x— 0] (% — x)=0.
k=1
De acordo?
Fica provado assim o seguinte importante resultado:

Se { =mx + ¢q ¢ a reta dos minimos quadrados dos pontos (xi, vi), k =1, 2,3, ..., n, entdo tem-se

H "

H
Y == D) (-3 ) k= B

k=1 k=1 k=1

Desta segue que

sendo que a igualdade s6 ocorrera se a soma dos quadrados dos erros Ex = yx — v; for igual a zero, ou



seja, se yx = vy, parak =1, 2, ..., n, e, portanto, se os pontos (xx, yx), k=1, 2, ..., n, forem colineares.

Definicao (de coeficiente de determinagdo). Sendo { =mx + q a reta dos minimos quadrados dos pontos (xi, vx), k =1,2,3, ..., n,
definimos o coeficiente de determinagdo R? dessa reta por
"
- T

k=1

] f
Z (v — ?}2

k=1

R =

Do que vimos acima, resulta 0 < R* < 1, e, quanto mais proximo de 1 estiver R*, mais proximo de zero
estara a soma dos quadrados dos erros E. Portanto, o ajuste da reta dos minimos quadrados aos pontos
(ks Vi), k= , 1, serd tanto melhor quanto mais proximo de 1 estiver R°.

Dey — v = m{x — x)segue,parak=1,2, ..., n, v — v =m(x, — x). Desse modo, o coeficiente de
determinacao podera ser colocado na seguinte forma

H

m? Z (xp — x)2

R]_* _ k=1
H =
z{jr,;. = .1-'}3
k=1
Lembrando que
I
Z (X — X)(¥r —¥)
k=1
m =
n _
Z (xp — x)2
k=1
resulta

Definicao (de correlagdo). O nimero



f
S (k= Dok
k=1

-.?: i (xp — E}E 1.: i (Vp — I}l‘

k=1 V=1

R:

denomina-se correlagdo entre os nimeros xk € yk.

Das defini¢des acima, segue que o coeficiente de determinagdo é o quadrado da correlacdo. De R* <
1, resulta — 1 <R < 1. Lembrando da defini¢ao de cosseno de angulo de dois vetores, a correlacdo entre
0s numeros x; € v, k = 1, 2, ..., n, nada mais ¢ do que o cosseno do angulo formado pelos vetores de

componentes

(] — XaXp— X, oots X, — X) € (B = ¥s¥a— Vs vt Vyy — ¥
l 2 2 LB & . S

o R i1

17.6. PLANO DOS MINIMOS QUADRADOS. AJUSTE POLINOMIAL

Consideremos os pontos (xx, Vi, zx), k=1, 2, ..., n. Dizemos que
Z=ax+by+c
¢ o plano dos minimos quadrados para os pontos acima se (a, b, ¢) for a solucdo LSQ do sistema
xja+vib+ce=zg
g. JX2d + b+ ¢ = 17
Kl —|1-r‘:|,-',,b +e =T
Da mesma forma que fizemos para a reta dos minimos quadrados, mostra-se que o plano dos minimos

quadrados passa pelo ponto ( x, v, 7), €, portanto, a equacao dos planos dos minimos quadrados pode ser
colocada na forma

I—zZ=a(x—x)+bHy—y)
Prova-se, ainda, que ¢ vélida a relacao
M
-2 ~ -2 ' R
Z (G—2) = Z (&g —=&) = Z = )"
k=1 = k=
De maneira analoga, define-se, entdo, o coeficiente de determinacdo R*:

H
N =8P

k=1

[ :
p D
2 . — Z)°

k=1

R =




Deixamos para o leitor provar o que dissemos acima e generalizar para p varidveis.

Consideremos, agora, os pontos do plano (x, ), kK = 1, 2, ..., n. Suponhamos que o diagrama de

dispersao desses pontos tenha a “cara” de uma pardbola. Entdo, a ideia ¢ procurar ajustar aos pontos uma
fung¢do do tipo ¥ = ax® + bx + ¢. Isso nos levara ao sistema

_1‘]3(; + x1b+ ¢ =y
x%a + x2b+c=w

5
L
Xsa ¥ X+ ¢ =y,

Se considerarmos os pontos do | rf X v, k=1,2, ..., n, o problema ¢ exatamente 0 mesmo que
vimos anteriormente. Para esse ajuste, o coeficiente de determinagdo sera

n .
D G —»?

k=1

i OV — ?}3 |

k=1

R =

No Apéndice 2, veremos como lidar com esses problemas na HP-48G e no EXCEL.



Apéndice
1

FUNCOES DE UMA VARIAVEL REAL A VALORES COMPLEXOS

Al1.1.FUNCOES DE UMA VARIAVEL REAL A VALORES COMPLEXOS

Uma fungdo de uma variavel real a valores complexos ¢ uma fungao cujo dominio ¢ um subconjunto
de B e cujo contradominio € .

EXEMPLO 1. Considere a fun¢do f'dada por f(¢) = £* +i cos .
a) Qual o dominio?

b) Calcule £(0) e {%J

Solugdo

a) O dominio de f ¢ .
o ’ 2
b) £(0) = :‘e;‘[%] = [%} :

EXEMPLO 2. Seja f'dada por f(¢) = cos t + i sen £. Desenhe a imagem de f.

Solugdo

Para cada ¢, f (¢) identifica-se com o ponto (cos 7, sen #). A imagem de f ¢ a circunferéncia de centro
na origem e raio 1:

v

/-\cm t, sent)
W]/




Seja f: 4 — (, A C R, uma fungao de uma varidvel real a valores complexos; entdo existem, ¢ sao
unicas, duas fungoes f; (¢) e f> (¢), definidas em A4 e a valores reais, tais que f (1) = fi (¢) + if> (¢), para todo
t € A. Pois bem, diremos que f ¢é continua em ty € A se ¢ somente se f; ¢ f, forem continuas em f.
Diremos, ainda, que /' ¢ derivavel em t, se € somente se f; € /» forem derivaveis em . Sendo f derivavel
em fy, definimos a derivada de f em ¢, por

I () = fi' () + i fy' (Kp).

Sejaf: A— C, A CR;dizemos que F' : A — ¢ ¢ uma primitiva de f'se F' (t) = f(¢), para todo ¢t € A.
A notagao J f(t)dt sera usada para indicar a familia das primitivas de f.

Teorema. Seja f:1 — (, onde I é um intervalo em . Se f (t) = 0, para todo t € I, entdo existe uma constante complexa k tal
que f (t) = k, para todo t em I.

Demonstracdo

Seja f () = fi (¢) + if2 (¢). Segue da hipdtese que f;" (f) =0efy' (f) =0 em [; assim, existem
constantes reais k; € k tais que, para todo ¢ € I,

H(Ok e fib) k.

Portanto, para todo ¢ € I,

Como consequéncia deste teorema resulta que se f: I — C e g : [ — (, [ intervalo, forem tais que f’
(1) =g'(¥) em [, entdo existira uma constante complexa k tal que, para todo  em /,

g =/ +k
De fato, pela hipdtese, para todo ¢ em /,
[g(®-f(O]'=0
e, pelo teorema acima, existe uma constante £ tal que, para todo ¢ em /,
g —f(=k
EXEMPLO 3. Seja f(t) =cos ¢t +isent.

a) Calcule 17 (¢).
b) Verifique que /' () = if (¢).

Solugdo



a)f'(t)=[cost+isent]'=—sent+icost.
b)f(f)=i*sent+icost=i(cost+isent)=if ().

EXEMPLO 4. Seja u (1) = ¢” (cos ft + i sen ft) onde a ¢ [ sdo constantes reais. Seja A = a + i f.
Verifique que

o _ At
dt
Solucao
d” _ ol A . ¥l . ) . _—
s =ae [cosBt+ isenBt] +e [—Bsen Bt + i cos Bt
= ae™ [cos Bt + i sen Bf] + Bie™ [cos Bt + i sen Bt]
= (a + iB) ™ [cos Bt + i sen Bi].
du

Portanto, = AU
dt

Exercicio

Sejam f'e g duas fungdes a valores complexos, definidas e derivaveis num intervalo /. Prove que, para todo ¢ em /, tem-se:
a)[fit)+ g =f (O + g (D

b)[ kf (1) ]" = kf" (1), onde k é uma constante complexa.

Alfe] = (Degy+f)g (0.

) [ fFin } ' gl — fln) g
i = S 3
gt [g (1}]°

emtodo = [, comg (1) # 0.

A1.2.DEFINICAO DE e, COM 1 COMPLEXO

Seja A um ntmero real; ja vimos que u (¢) = ex € a unica fungao definida em | e que ¢ solucao do
problema.

ﬂ=}m

r -
u(0)=1.
Suponhamos, agora, A = a + iff, onde a € S sdo constantes reais. Vamos mostrar a seguir que

u (1) =e" (cos ft +i sen fr)



¢ a unica fungdo de | em C que ¢ a solugao do problema

du
— = Au
Q) {

dt
u(0)y=1.

De fato, u (0) = 1. Pelo Exemplo 4 da sec¢do anterior, # = Au. Deste modo a fungdo u (¢) = e (cos pt +i
ar

sen fit) ¢ a solugdo de (7). Como | u (¢) | = e, segue que u (¢) # 0 em |. Suponhamos, agora, que v =v (¢),
t € R, seja, também, solucao de (1), isto é:

{ V(1) = Av(t), para todo t, e
v(0) =1

Vamos mostrar que v (1) = u (f) emR. Temos:

0.

v(t) | _ vy u(t)y— vty u'(r) _ Av(0) u(®) — Av(t) u(r) _
uir) [u()]? [u(t)]>

Assim, existe uma constante complexa k tal que, para todo t em [,

e, g
ui(r)

Como v (0) =u (0) = 1, resulta k£ = 1. Portanto,
v(t)=u(t) em[ .

Fica provado que u (¢) = e” (cos ft + i sen f5t) ¢ a unica fungdo de |} em ¢ satisfazendo (7).
Nada mais natural do que a seguinte defini¢ao.

Definicdo. Seja A = o + i, com a e f reais. Definimos
ex=-elatip) 1= e (cos ft +isenff) (relagdo de Euler)

para todo ¢ real.

Fazendo ¢ = 1 na defini¢do acima resulta:

e TP = o (cos B + i sen B).

Sea=0

e'P = cos B+ isen B.




Seja z = e ip. Observe que |z |= e« € que B é um ar ento de z:
1) q q gum

A

T zzea’+z'_ﬁ-
— F
g I

S ———

e” cos d

Seja 4 uma constante complexa. Do que vimos anteriormente resulta:

[
[ f’M] = xeM, para todo 7 real.

O préoximo exemplo mostra-nos que a propriedade

P NS0 VN N
¢ valida em .
EXEMPLO 1. Sejam 4, e 4, complexos dados. Mostre que
PN W .
Solucao

(1) = et A1 ¢ atmica fungdo de B em € que satisfaz o problema

du

—=({A + A u
@ ‘dr i

1:1(D}=|.

Por outro lado, y (1) = eMf Mt t = R, também satisfaz (2) (verifique). Portanto, para todo

el A A = e Gt

Em particular, para t =1,

E:"‘ll + "12 = ,E?"ll * f‘-"‘j"l .
EXEMPLO 2. Verifique que, para todo ¢ real,
et + it et — it
cost= ————esenf= ———
2 2i
Solucao
@ e =cost+isent.

e "= cos (=1 +isen(—1)



ou seja,

i | =
@ ¢ " =cost—isent.
Somando membro a membro (1) e (2) resulta

el + g7

-~

ra

cosf=

Subtraindo membro a membro (1) e (2) resulta

it _ it
senil =
2i

i

Sendo 4 # 0 uma constante complexa, de (¢*)" = )¢ segue

J eM dt = % N+ k.
EXEMPLO 3. Calcule:
a) J‘ff” dt b) Je’ cos 1t d.
Solucao

: e
a) _[f“' dt == " 1 k.
I

[ et 4 ot I . .
b) _[f‘ cos t dt = J.gr i RN N ¢ J [l i 4 =D gt

i 2 2

|',tl+:'3r i1—ix
o D S W

il L4 1—i

Ou seja,

I < N EC

| {,a‘.r {,—!'I
Ji’r costdt= = et + + k.

Como e"=cost+isentee =cost—isent resulta:

1 cost+isent <cost—isent 1

j-:?r costdt =—e' Tty . +k=—¢ [cost+seni]+ k.
2 F: o ] =3 2

pois

c05r+fsenr+cosr—isenr
1+ 1 —1i

= cos t + sen 1 (verifique).



EXEMPLO 4. Mostre que

cos 30 = cos” @ — 3cos Bsen” fe sen 39 = 3 cos” @ sen § — sen” 6.
Solucao
¢ = cos 0+ i sen b.
Por outro lado,
(€93 = o0 . o0 . (0 . — (36
Segue que
&0 = (cos f + i sen 3}'1'.

Temos, também,

e = cos 30 + i sen 36.
Assim,
@) (cos @ + i sen ﬁ,‘i} = cos 36 + { sen 30.
Temos,

(cos 8 + i sen 813 = cos® f+3 cos’ f(isen ) + 3 cos #(isen 1&')2 + (i sen 3}3.

ou seja,
@) (cos # + i sen 8)3 =cos @ —3cosfsen’+i [3 cos” fsen f — sen” f].
De (3) e (@) resulta:
3 2
cos 36 =cos” # — 3cos fsen” f
e

2 3
sen 360 = 3 cos” fsen @ — sen” 6. o

. m m .
EXEMPLO 5. Sejamz =e. i, com 0 <f < = ¢ ¢ umreal com 0 < 6 <—-. Represente geometricamente

zeze.

Solucao

. e . 7‘- - s g [
Para fixar o raciocinio, vamos supor — < 6+ B < .Sejaz; = 7¢"® Temos: z = ea fo' p.



Os modulos de z e z; sdo iguais a e«. O vetor 0:; € obtido de 0: por uma rotagdo de € radiano, no sentido
anti-horario.

EXEMPLO 6. Sejam z; e z; dois nimeros complexos com argumentos f; € f,, respectivamente. Seja z =
zZ1 * Z).

a) Verifique que |z |=|z1 || z2 |
b) Mostre que £, + f> ¢ um argumento de z.

Solucao

g, By

(cos B2+ i sen 32)

22

z1= |71 [(cos B+ i sen By) 2=

Como ¢/B1 = cos B; + i sen B e e'P: = cos B, + i sen B,, resulta:

z=lzi1eP e zy=1Izy1¢Pe,
Portanto,
z=1z/11z51 B+ B)
ou seja,
z=1z/ 11z [cos (B + By) +isen (B + Bl
Portanto,
a)|z|=|z1]] 2|

b) pi + f» € um argumento de z.



Sejam a um numero complexo dado e f: I — ¢ uma fungdo continua dada, onde / ¢ um intervalo de .
Consideremos a equagao diferencial linear, de 1.* ordem, com coeficiente constante,

dx
— + ax = f(1.
dt /

Procedendo exatamente como na Secdo 5.1 obtemos a solugdo geral

x=ke " +e @ je‘”f(ﬂ dt (k € C).

(Verifique.)
u
EXEMPLO 7. Resolva as equagdes:
a) % —iu=0 b) fT; + ix =k e (ky constante)
Solucao
a) Pela formula acima,
u=ke" (k€q).
byx = ke it + ¢ Jff”k] elt dt = ke~it + kye~it Jeﬁfl' dt.
Ou seja,
x=ke "+ ke " et
2i
ou ainda,
x=ke "+ A—L el (k € C). n

EXEMPLO 8. Mostre que
x=Ae"+Be" (4, B € )

d?x
2

¢ a solucao geral de
di =

+x=10.

Solucao



=
]

X
=

+ x = 0 € equivalente a

dt-
4, { & + r'.r} — i {d—l + f.x‘} = 0 (verifique).
dr | dt dr
ax o
Fazendo u = = + ix obtemos
ar
du :
— T I =L
dt
cuja solugdo geral € u = kjeir. Assim,
ﬂ + jx = kif"l;!
dt

cuja solugdo geral ¢:

I=Mq“F%4“ (k. ky € C).

Fazendo 4 = % e B = k obtemos:
2i

x =Ae' + Be " (A, B € C).

[Observe que i € —i sdo as raizes da equagao caracteristica da equagdo dada.] Fazendo na solugdo acima,
e'=costtisentee “=cost—isentobtemos:

x=A(cost+isent) + B(cost—isent)= (A+ B)cost+ (Ai — Bi) sen,

“_'_'-'V'"'_'-'I ‘-_,_,..Y_,_,_J
Ay B,
ou seja,
x=A cost+ Bysent(A,B € ). 8

A1.3. EQUACOES DIFERENCIAIS LINEARES, HOMOGENEAS, DE 2.*
ORDEM, COM COEFICIENTES CONSTANTES

Consideremos a equagao

d?x dx
—+a —+ax=0
dt- dat

@

onde a; € a, sdo numeros complexos dados. Sejam 4, € 4, (41, 4> € ) as raizes da equagdo caracteristica
de (1). Procedendo exatamente como na demonstra¢do do teorema da Secdo 5.2, obtemos os seguintes
resultados:

a) se 11 # A, a solugdo geral de (1) sera



X = .413"" + B, ghat (A;,B; € C).
b) se A1 = 2, a solucdo geral de (1) sera

X = A] E}ALI + B] ff']'l:! (;‘1], B] = II:\}
EXEMPLO. Resolva a equacao ¥ + 25 + 2x = 0.

Solucao
M +24+2=0=A=—1+ioud=—1—1i
A solugdo geral é:
s .4]#‘{_] + 0t & B]e‘[‘_l — i)t
ou
x=¢ "[Ae"+ Bie” "] (A, B, €C).
Lembrando que e”=cos t+isentee “=cost—isent, resulta

x=e '[(A + B)) cost+ (iA; — iBy) senf].
A B

ou seja,

x=¢ "[Acost+ Bsent] (A B Q). m

Observagio: Se a; ¢ a, forem reais e se as raizes da equagio A* + a;4 + a, = 0 forem complexas, entdo
tais raizes serao numeros complexos conjugados: 4 = a + iff. Assim, a solucao geral de

d:;r + ay e +ax =0
dr= dt
sera
s A]E‘m + i)t r B]Em — i)
ou

x=e AP +Be P (A.B, €0).
Como oA = cos Br + isen Bre e P = cos Br — i sen pr resulta:
x = e [(A; + By) cos Bt + (iA; — iBy) sen B1]

ou



x=e"[Acos Bt +Bsen ft](A Be C).

A1.4. EQUACOES DIFERENCIAIS LINEARES, DE 3. ORDEM, COM
COEFICIENTES CONSTANTES

Consideremos, inicialmente, a equacdo homogénea

d3x d%x dx
— + +a3F+a3_r=D

(I g1 —=
0 arr ' ar?

onde ai, a2, as sdo constantes dadas. Sejam A1, A, e A; as raizes da equacdo caracteristica A> + ajA* + apd +
a; = 0. Temos:

J}.l + Ay + A3 = —q
AlA2 + AjAy + A2Ay = ap (relagdes de Girard).

AlA2A3 = —a3
Substituindo em (/) obtemos:
DY PR A2 S ik AN F ke = Ahaha =0
dt & = e E : =t :

que € equivalente a:

o {ﬁ = ﬁ._gx} L F—‘“ = Ag.}(} E RS {ﬂ = Ap} = 0.
dr | dr dt

dr? | dr
e e’ e el —_—
i u u
Segue que x = x (¢), t € R, sera solucdo de (/) se e somente se y = de — Ax for solugdo da equagao
dr :
linear de 2.* ordem
2
8 - rray P yaa=0,
dt? dt =

Portanto, x = x (¢) sera solucdo de (/) se e somente se

dx
— —Ax = :‘-'l]E"l‘l! i Bj{*“‘j"ﬂ'r
dt i
ou
dx
E = ;"L_g.'-'l.' — “-'l[f‘”l'! + B]ff’}"r s ‘;\'l — )1.}

Deixamos a seu cargo concluir que a solugao geral de (/) seréa:

x = AeM' + BeM' + CeM' se A;# Ajparai # j,



ou
x = AeM + BreM! + CeM se Aj = Ay # A3,

ou

-

x = AeM + BteM + Cr2eMt se Aj = Ay = A3,

As equagdes lineares de 3.* ordem, ndo homogéneas, com coeficientes constantes, sdao tratadas do
mesmo modo que as de 2.* ordem. Fica a seu cargo estender os resultados até aqui obtidos para equagdes
lineares, com coeficientes constantes, de ordemn > 3.



Apéndice
2

UsO DA HP-48G, DO EXCEL E DO MATHCAD*

A2.1.AS FUNCOES UTPN, NMVX E NMVA

A fungdo UTPN ¢ uma fungdo da calculadora e que se utiliza para célculo de probabilidade na
distribui¢do normal N (u, 6°). Esta fun¢do ¢ dada por

UTPN = UTPN (i, &, x) = P (X > x).

1

r \."I 2

2 =i 242
UTPN (., 07, X) = J e r—ul2e? gy,
L

Para acessar UTPN, digite:

MTH NXT (para virar pagina do menu) PROB (no menu, tecla branca da letra A) NXT (para virar
pagina do menu).

Pronto. Viu UTPN no retangulo dentro do visor e correspondente a tecla branca da letra C? Para
ativar UTPN, ¢ s6 pressionar a tecla branca da letra C.

Vejamos agora como utilizar UTPN. Calculos com UTPN sao realizados no ambiente HOME.

EXEMPLO 1. Seja X uma variavel aleatoria com distribuicao normal N(6, 4), ou seja, com média u = 6
e variancia o = 4. Calcule.

a) P(X>5).
b) P(X>38).
¢) P(5<X<8).

Solugdo



Entre no ambiente HOME. Caso ndo esteja nesse diretdrio, € sé ir pressionando a tecla ON que vocé
acabara chegando nele.
a) Entre com 6, 4 ¢ 5, nesta ordem, ou seja, digite:

6 ENTER 4 ENTER 5 ENTER

Desse modo, o 6 estara no nivel 3, 0 4 no nivel 2, € 0 5 no nivel 1. Agora, ¢ so pressionar a tecla
branca da letra C para ativar UTPN. No nivel 1, aparecera o valor da probabilidade: 0,69146.
Assim, P(X>5) 0,69146.

b) Entre com 6, 4 ¢ 8, nessa ordem, e pressione UTPN para obter 0,15865. Assim, P (X > 8) =
0,15865.
c) P6<X<8)=PX=5)—P(X=8)=0,53280.
u

EXEMPLO 2. Considere a variavel aleatoria X com distribui¢cao normal N (6, 4). Calcule P (u —o < X <
u+ o).

Solugdo
u=06¢de o’ =4segue o=2.0 que queremos ¢ P (4 < X< 8). Temos

P(4<X<8)=P(X>4)-P(X=8).
Procedendo como no exemplo anterior, obtém-se
P(X>4)=0,84134¢ P(X>8)=0,15865.

Assim, P (4 < X < 8) 0,68268. (Esse resultado ja ¢ nosso conhecido, lembra-se? Esqueceu? Volte
para o Cap. 4.)
u

O que ¢ muito importante em estatistica ¢ determinar o valor de x quando se conhecem u, o ¢ P(X >
x). Na HP-48G nao existe fungdo que realize esse céalculo diretamente. Entretanto, podemos criar uma
funcdo que nos permitird realizar essa tarefa. Tal funcdo serd representada pela varidvel NMVX (que
lembra: normal, média, variancia ¢ x):

NMVX=NMVX (M, V, X).
Essa fungdo fard o que a UTPN faz, e com uma vantagem: a calculadora nio reconhece UTPN (M, V, X)
como uma expressao nas variaveis M, V e X, mas reconhecerd NMVX (M, V, X) como tal. Esse fato nos

permitird criar a equacao

NMVX (M, V, X)=o



e resolvé-la no SOLVE EQUATION quando houver apenas uma variavel desconhecida: se forem
conhecidas M, V e a, determinamos X.

Vamos entdo criar tal fungdo. Na verdade, o que faremos € criar um programa e armazenilo na
variavel NMVX. Estando no ambiente HOME, entre no nivel 1 com o programa (tecle a para escrever)

<L ->MVX<<MVXUTPN>>>>

ATENCAO. << >> ¢ a funcdo roxa na tecla menos (—); — ¢ a funcio verde na tecla 0. Localizou?
Observamos que entre —, M, V' e X deve haver um espago.

Agora, digite: NMVX. Em seguida, pressione a tecla STO para armazenar o programa na variavel
NMVX.

Vamos destacar no quadro a seguir o que fizemos para criar a variavel NMVX.

Criando a variavel NMVX
Nivell: << > M VX<<M VX UTPN >>>>

Digite: NM VX e pressione STO

Pronto. A varidvel NMVX ja estd na memoria da calculadora e pronta para ser usada. Para localiza-
la, pressione a tecla VAR (VAR = VARIAVEIS) para abrir o menu das varidveis. Agora, tente localizar
tal varidvel no menu dentro do visor; se for necessario, pressione NXT para virar a pagina do menu.
Localizou? Esta, entdo, criada a funcao

NMVX=NMVX (M, V, X).

Caso vocé€ queira visualizar o programa ou corrigir algum engano que porventura tenha ocorrido,
pressione MEMORY (fung¢ao verde na tecla VAR), e, na caixa de didlogo que se abre, leve a barra de
destaque para cima da varidvel NMVX e em seguida pressione EDIT no menu do aplicativo (tecla branca
da letra A); pressione novamente EDIT no menu do aplicativo que se abre. Visualize o programa ou faga
a correcdo. Para confirmar a correcdo, pressione ENTER trés vezes. Pronto, vocé esta de volta ao
ambiente HOME, com as corre¢des confirmadas. Para visualizar o que esta armazenado numa variavel,
ou para fazer correcao, proceda sempre da mesma maneira.

Corrigindo ou visualizando o
conteudo de uma variavel

Pressione MEMORY (fungdo verde da tecla VAR), pressione EDIT (no menu, tecla branca da letra A), pressione novamente EDIT
(no menu), faga as corregdes ou apenas visualize o conteudo, e em seguida pressione ENTER trés vezes para confirmar as corregdes e
voltar para HOME.

Para testar o programa, ou a fungdo que acabamos de criar, vamos calcular P (X > 5), onde X ¢ a
variavel aleatoria do Exemplo 1, X' : N (6, 4). Primeiro, precisamos localizar a varidvel no menu VAR.



Para isso, pressione a tecla VAR e localize a varidvel. Vamos em frente. Antes lembramos que
pressionar NMV'X significa pressionar a tecla branca correspondente ao retangulo onde estd alojada a
variavel. OK? Vamos entdo ao calculo da probabilidade:

entre com 6, 4 ¢ 5 e pressione NMVX

O resultado obtido concorda com aquele do Exemplo 1? Se concorda ¢ porque estd tudo certo. Se nao
concorda, reveja o programa, como descrito anteriormente, verifique onde estd o erro, corrija-o e faca
novamente o teste.

No proximo exemplo, veremos como determinar o valor de x quando sdo conhecidas a média, a
variancia e a probabilidade P (X > x).

ATENCAO. MUITA ATENCAO. Se a sua calculadora estiver configurada de modo que o ponto seja o
separador decimal (por exemplo, 5.3 ¢ cinco inteiros ¢ 3 décimos), entdo o ponto da calculadora ¢
realmente ponto ¢ a virgula ¢ realmente virgula. Se no entanto sua calculadora estiver configurada de
modo que o separador decimal seja a virgula (por exemplo, 5,3 ¢ cinco inteiros ¢ 3 décimos), entdo
quando vocé pressionar o ponto aparecera virgula e quando pressionar a virgula aparecerd ponto-e-
virgula. MORAL DA HISTORIA: Se o ponto for o separador decimal, teremos

NMVX=NMVX (M, V, X);
se a virgula for o separador decimal, teremos
NMVX=NMVX (M;V; X).

EXEMPLO 3. Sendo X uma variavel com distribuicao normal N (6, 4), resolva a equacao P (X > x) =
0,2.

Solugdo
Sabemos que
NMVX (6,4,x)=P(X=>x).
Entdo o que precisamos ¢ resolver a equagao
NMVX(6,4,X)=0,2

(Trocamos o x mintsculo pelo maiusculo simplesmente porque ¢ mais facil digitar letra maitscula do que
minuscula.) Agora, entre no SOLVE EQUATION (para isso pressione SOLVE na tecla 7 e escolha a
op¢ao Solve equation), entre com a equagdo no campo de EQ, entre com a estimativa 6 no campo da
variavel X, traga a barra de destaque para o campo da varidvel X e pressione SOLVE (ultimo retangulo
da direita do menu do aplicativo) para obter X : 7,68324.

u



Outro modo, e muito rapido, para determinar X ¢ por meio do programa que criaremos a seguir € que
serd armazenado na variavel NMVA. Sendo dados M (M = u), V(V =0") e A (A= P (X > x)), tal
programa resolve a equacdo NMVX (M, V, X) = A na variavel X e com a estimativa M para X.

Criacao do programa NMVA

Nivel 1: << > M VA<<'NMVX(M,V,X)=A4"'
'X' M ROOT >>>>

Digite: NM VA e pressione STO

Para testar o programa, vamos resolver a equagao do Exemplo 3, onde sd3o conhecidos M =6, V=4 ¢
A= 0,2 (em estatistica, em vez de A utiliza-se com frequéncia a letra grega o). Primeiro localize NMVA:
pressione VAR e procure por NMVA no menu das varidveis; se necessario, pressione NXT para virar a
pagina do menu. Vamos ao calculo de X.

Utilizando NMVA para calcular X

Digite: 6 ENTER 4 ENTER 0,2
Em seguida, pressione NMVA no menu das variaveis

O valor obtido para X deverd ser o mesmo do Exemplo 3: X' = 7,68324. Se foi este o resultado que vocé
obteve, 0 seu programa passou no teste e esta pronto para ser usado.

Com a funcdo NMVX e com o programa NMVA, vocé resolveréd os calculos mais frequentes, relativos
a distribui¢do normal, sem sair do ambiente HOME. Gostou? Espero que sim!

EXEMPLO 4. Seja X uma varidvel aleatdria com média 10, desvio padrao 3 e distribui¢ao normal.

a) Calcule P (7 <X<12).
b) Determine x para que se tenha P (X > x) = 10%.

Solugdo

Aquiu=10ec°=9;logo,M=10e V=9.

a) P(7T<X<12)=PX>=7)— P(X>12). Para calcular P (X > 7), entre com 10, 9 e 7 e pressione
NMVX: P (X > 7) = 0,84134. Para o célculo de P (X > 12), entre com 10, 9 ¢ 7 e pressione
NMVX: P(X>12) 0,25249. Portanto,

P(7<X<12)0,58885.

b) Precisamos resolver a equacao NMVX (10, 9, X) = 0,1. Para resolvé-la, entre com 10, 9 ¢ 0,1 ¢
pressione NMVA para obter: X = 13,84465. (Caso vocé€ queira verificar esse valor de X ¢ sé entrar
com 10, 9 e 13,84465, pressionar NMVX e verificar se o valor obtido ¢ 0,1. OK?)



Outro tipo de equacdo que vocé terd que resolver em estatistica ¢ do tipo da do proximo exemplo.
EXEMPLO 5. Considere as varidveis aleatorias, com distribui¢des normais, X : N (100, 25) e Y : N
(115, 36).

a) Determine x de modo que

P(X>x)=P(Y<x).

b) Sendo x a solugao da equagdo anterior, calcule P (X>x) e P (Y<x).
Solugdo
a) Sabemos que

P(Y<x)=1-P(Y=x).
Desse modo, a equagao que temos para resolver ¢

NMVX (100, 25, X) = 1 — NMVX (115, 36, X).

Essa equacdo devera ser resolvida no SOLVE EQUATION; a estimativa para a variavel X tanto pode
ser 100 ou 115. Resolvendo, obtém-se X = 106,818. Conclusao: x = 106,818.

b) Para calcular P (X > 106,818), entre com 100, 25, 106,818 e pressione NMVX para obter
8,63410207151E — 2. Este £ — 2 no final do niimero significa que a virgula devera ir duas casas
para a esquerda. Assim, P (X > 106,818) = 0,08634 = 8,634%. Como x = 106,818 foi calculado de
modo que P (X>x) =P (Y<x), resulta
P (Y<106,818) =0,08634. Assim,

P(X=>=106,818)=P(Y<106,818) =0,08634 = 8,634%.

A2.2.AS FUNCOES UTPC, C2NXE C2NA

Sendo X a variavel aleatoria com distribui¢do y* (n), qui-quadrado com n graus de liberdade, UTPC
calcula a probabilidade P (X > x).

Cilculo de P (X > x), onde X: 2 (n)
Entre com n e x e pressione UTPC

EXEMPLO 1. Sendo X uma variavel aleatéria com distribuicdo qui-quadrado, com 10 graus de



liberdade, calcule.

a) P(X>5)
b) P(X>1)
¢) P(1<X<5)

Solugdo

a) Para o calculo de P (X > 5), entre com 10, 5 e pressione UTPC para obter 0,89117. Assim, P (X > 5)
=0,89117.

b) Entre com 10, 1 e pressione UTPC : P (X> 1) =0,99982.
c) P(1<X<5)=PX=1)—P(X=5)=0,10865

A seguir, vamos criar a fungdo C2NX, que ¢ equivalente a NVMX da se¢do anterior.

Criando a variavel C2NX
Nivel 1: << - NX << N X UTPC >>>>

Digite: C2NX e pressione STO

Na variavel C2NX, C2 lembra qui-quadrado e N nimero de graus de liberdade. Sendo X uma distribui¢ao
qui-quadrado com n graus de liberdade, para o calculo de P (X > x), proceda da seguinte forma: entre
comn, x € pressione C2NX no menu das varidveis.

A seguir, vamos criar o programa C2NA que resolve a equagao

C2NX (n, x) = a.

Criagao do programa C2NA

Nivel 1: << 5> N4 <<'C2NX (N, X) A’
"X"10 ROOT >>>>

Digite: C2NA e pressione STO

EXEMPLO 2. Sendo X uma qui-quadrado com 12 graus de liberdade, determine x tal que P (X > x) 5%.
Solugdo
Como C2NX (N, x) = P (X > x), precisamos resolver a equagao

C2NX (12, x) = 0,05.



Entre com 12 e 0,05 e pressione C2NA para obter 21,02607. Assim, x =21,02607.

A2.3.AS FUNCOES UTPT, TNXE TNA

Se a varidvel aleatéria X tem distribui¢ao ¢ de Student, com n graus de liberdade, a probabilidade P
(X > x) ¢ calculada com a fungdo UTPT: ¢ s6 entrar com n, x € pressionar UTPT. A funcdo TNX e o
programa TNA sao equivalentes a NMVX e NMVA, respectivamente.

Ciélculo de P(X = x), onde X: t (n)

Entre com # e x e pressione UTPT

A seguir, vamos criar a fungao TNX.

Criando a variavel TNX
Nivel 1: << - N X << N X UTPT >>>>

Digite: TNX e pressione STO

Da mesma forma, vamos criar o programa TNA que resolve a equagao

TNX (n, x) = a.

Criacao do programa TNA

Nivel 1: << > NA<<'TNX(N,X) A’
' X' 10 ROOT >> >>

Digite: TNA e pressione STO

A2.4.AS FUNCOES UTPF, FNNX E FNNA

Se a varidvel aleatoria X tem distribuicdo F, com graus de liberdade n, e n,, a probabilidade P (X >
x) calcula-se com a funcao UTPF.

Calculo de P (X = x), onde X: F (n1, n2)

Entre com n1, n2, x e pressione UTPF




A fungdo FNNX e o programa FNNA sao criados da mesma maneira que NMVX e NMVA.

Criando a variavel FNNX
Nivel 1: << — N1 N2 X << N1 N2 X UTPF >>>>

Digite: FNNX e pressione STO

Criacdo do programa FNNA

Nivel 1: << > N1 N2 4 <<'FNNX (N1,N2,X)=A4"'
"X"10 ROOT >>>>

Digite: FNNA e pressione STO

A2.5. MENU PERSONALIZADO

Se vocé€ quiser podera criar um menu personalizado que contenha as varidveis que mais ira usar.
Esse menu serd armazenado na variavel CST. Para chamar esse menu personalizado, ¢ sé pressionar a
tecla CST. Vamos, entdo, a criacdo do menu personalizado, contendo as varidveis que acabamos de
criar. Pode-se criar um menu personalizado em cada diretdrio que vocé abrir.

Criando um menu personalizado

{NMVX NMVA C2NX C2INA

Nivel 1:
TNX TNA FNNX FNNA)

Digite CST e pressione STO

Pronto. Esta criado o menu personalizado. Para chama-1lo, é so pressionar a tecla CST. (ATENCAO. As
chaves { } sdo a funcdo roxa da tecla +. Achou?) Se vocé estiver no SOLVE EQUATION, para chama-
lo proceda do mesmo modo como para chamar o menu VAR: leve a barra de destaque para o campo de
EQ, entre com’ ' e, em seguida, pressione a tecla CST.

Para ampliar o menu personalizado ou suprimir alguma variavel, proceda assim: pressione
MEMORY (funcao verde da tecla VAR), leve a barra de destaque para cima da varidvel CST, pressione
EDIT no menu do aplicativo (tecla branca da letra A), pressione novamente EDIT (no menu), inclua a
nova variavel (sempre com espago entre as variaveis) ou exclua a variavel que ndo mais interessa, € para
confirmar as alteragdes pressione ENTER trés vezes. Pronto, vocé esta de volta ao ambiente HOME,
com as inclusdes ou exclusdes realizadas.

A2.6. RESOLVENDO SISTEMA LINEAR NO SOLVE SYSTEM

A solugdo de um sistema linear calculada no aplicativo SOLVE SYSTEM ¢ uma solug¢do LSQ. Se



houver mais de uma solugdo, o aplicativo fornecera apenas a de menor norma. Como sabemos, se 0
sistema admitir solugao no sentido habitual, a selug¢do LSQ seré a solugao do sistema.

Para entrar no aplicativo SOLVE SYSTEM, pressione SOLVE (fungdo verde da tecla 7) e, na caixa
de dialogo que se abre, escolha a quarta opg¢ao, que ¢ Solve linear system.

No campo da variavel 4, devemos entrar com a matriz dos coeficientes das variaveis. No campo da
variavel B, devemos entrar com a matriz dos termos independentes.

EXEMPLO 1. Resolva o sistema

+ +
)

——
[
o=

%]
Il
L n

Solugdo

Aqui a matriz 4 dos coeficientes e a matriz B dos termos independentes sao

SR

Como o determinante

segue que o sistema ¢ compativel, no sentido habitual, e admite uma unica solugdo. Vamos entdo a
determinagdao da solugdo. Para entrar com a matriz 4, proceda assim: leve a barra de destaque para o
campo da variavel 4; pressione EDIT no menu do aplicativo (retdngulo correspondente a tecla branca da
letra A) para abrir o “escrevedor de matrizes”. Digite a matriz e, em seguida, pressione ENTER para
mandar a matriz para o campo da variavel 4. Agora, leve a barra de destaque para o campo da variavel
B, pressione EDIT, digite a matriz dos termos independentes ¢ pressione ENTER para mandé-la para o
campo de B. Leve a barra de destaque para o campo de X e pressione SOLVE (ultimo retangulo da
direita e correspondente a tecla branca da letra F) para obter a solu¢do X : [ [1][1] ], ouseja,x=1ey =
1.

Conclusao: A solugdo, no sentido habitual, do sistemaéx=1e y=1.

Observacao
X:[[1][1]] = m

EXEMPLO 2. Resolva o sistema linear



[ x+y=2
2x —y=1
12_1' +v=4

Solucao

Observe que x =1 e y = 1 ¢ solugdo do sistema formado pelas duas primeiras equagdes, mas nao da
terceira. Logo, o sistema ndo admite solugdo no sentido habitual, mas admite uma tnica solugdo LSQ,
pois,

1 |
— — =
L’l ] 2 E‘ 1_' . —
2 = |
sao linearmente independentes. Aqui a matriz A dos coeficientes das variaveis e a matriz B dos termos
independentes sdo dadas por

2
A=12 —-1|e B=|1|
2 1 4

£ 33

Procedendo como no exemplo anterior, obtemos a solugdo LSQ: x = oy ey= o

?1
(ATENCAO. O resultado apresentado pela calculadora foi

[[1,19230769231]
[1,26923076923]].

. . e , 31 33
Logo a seguir mostraremos qual a magica para transformar esses niimeros em xy = 5 ey=——
26 7 26

Observacao. O sistema SA4 associado ao sistema anterior ¢

— = — = — =
v xtvyewvp y=>b -y
SA: |— — - — — =
|V V2 X + Va s Va ¥ = b - Va
e, portanto,
(Ox + v =12
SA : '
2 {.r +3y=35
) ~ 31 33 ~ L . , . L . .
cuja solugdo ¢é x = o ey= =3 (Nao ¢ esta a magica, até que poderia ser! A magica serd mostrada a
6 6

seguir.)
Qual a magica que transforma



[[1,19230769231]
[1,26923076923] |

3 . ~ ,
em x = A ey= iV Quando se resolve um sistema no SOLVE SYSTEM, a solucao encontrada ¢

26 26
automaticamente enviada para o nivel 1, 14 no ambiente HOME. Entdo, pressionando ON para voltar

para o HOME, no nivel 1, vocé encontrara a solugao:
Nivel 1: Solucdes:

[[1,19230769231]
[1,26923076923] |

Bem. Para realizar a magica, primeiro teremos que desfazer a matriz anterior, sem mexer nos nimeros,
OK!!! Para desfazer a matriz, proceda da seguinte maneira: pressione EDIT (funcdo roxa da tecla +/-).
Em seguida, apague

Solugdes: ¢ todos os colchetes (sem mexer nos nimeros)

de modo que fiquem apenas os numeros, ¢ pressione ENTER. Apos essas operagdes, a situagao na pilha
devera ser a seguinte:

Nivel 2: 1,19230769231
Nivel 1: 1,26923076923

Agora ¢ que vem a magica. Para realizar a magica, pressione:
7 (shift roxo) 9 NXT — Q (no menu do aplicativo)

para obter 33/26. Conseguiu? Legal! Anote esse niimero. Em seguida, pressione a fungao roxa DROP (na
tecla ao lado de DEL) para deletar apenas o contetido do nivel 1. Com essa operagdo, o contetido do
nivel 2 desce para o nivel 1. Agora, € sO pressionar novamente — Q (no menu do aplicativo) para obter
31/26. A magica acaba de ser realizada!!!

A2.7.RESOLVENDO SISTEMA LINEAR NO AMBIENTE HOME. AS FUNCOES
LSQ, RREF E COL+

Na sec¢do anterior, aprendemos a resolver sistemas lineares no aplicativo SOLVE SYSTEM. Agora,
vamos aprender a resolver tais sistemas no proprio ambiente HOME. A variavel LSQ ¢ que nos
possibilitard tal facanha: LSQ ¢ uma variavel reservada da calculadora, e, quando ativada, resolve
sistema linear no sentido LSQ, ou seja, a solugdo que ela nos fornece ¢ uma solugcdo LSQ. Para acessar a
variavel LSQ, digite:

MTH MATR (no menu do aplicativo, tecla branca da letra B).



Pronto, LSQ ¢ a variavel que ocupa o ultimo retangulo da direita do menu do aplicativo e sera ativada
pela tecla branca da letra F.

Para entrar com uma matriz no ambiente HOME, ¢ s6 pressionar MATRIX (fun¢do verde da tecla
ENTER) para abrir o “escrevedor de matrizes”. Digitada a matriz, pressione ENTER para manda-la
para o ambiente HOME.

Para resolver um sistema linear no ambiente HOME, primeiro entramos com a matriz B dos termos
independentes e, em seguida, com a matriz 4 dos coeficientes das varidveis.

Resolvendo siste ma linear no ambiente HOME

Primeiro entre com a matriz B dos termos inde pendentes;
em seguida, com a matriz 4 dos coeficientes das variaveis.

Para resolver o sistema,
pressione LSO (no menu)
ou

digite LSQ e pressione ENTER

EXEMPLO 1. Resolva o sistema linear

dx +3y=235
x+ 2y =8.

Solugdo

Aqui

4 3 5
=iz e o-fy)
Como o determinante da matriz A ¢ diferente de zero (detA = 5), o sistema admite solucdo unica € no
sentido habitual. Para determinar a solugdo, entre no “escrevedor de matrizes” e digite a matriz B. ApoOs
digitada, pressione ENTER para manda-la para o ambiente HOME. Em seguida, repita o processo com a
matriz 4. Estando a matriz 4 no nivel 1 e a B no nivel 2, pressione LSQ para obter a solugdo [ [— 2,8] [
5,4] ], ouseja, x =—2, 8 e y =5, 4. (ATENCAO: Se vocé nio mexeu na matriz [ [— 2,8] [5,4] ] e quiser
passar a solucdo para a forma de fracao ordindria, proceda como no final da secdo anterior, para obter x

=—14/5ey=27/5.)
|

Como prever antecipadamente se um sistema linear admite solucdo umica, quer seja no sentido
habitual ou no sentido LSQ? Como prever antecipadamente se um sistema linear admite infinitas
solugdes, quer seja no sentido habitual ou no sentido LSQ? Pois bem, a varidvel RREF, que ¢ uma
variavel reservada da calculadora, nos possibilitard decidir antecipadamente se o sistema admite solugao



unica ou nao, quer seja no sentido habitual ou no sentido LSQ. O que faz a variavel RREF? Quando
ativada, essa variavel realiza o escalonamento de Gauss da matriz que se encontra no nivel 1.

Dado um sistema linear, chamamos de matriz completa desse sistema a matriz obtida, acrescentando
a matriz dos coeficientes das variaveis, como ultima coluna, a matriz dos termos independentes. Por
exemplo, a matriz completa M do sistema

‘“ Ix+v=6
xX—yv=35
1_21’4— Jv=2
3 1 6
eEM=|1 —1 5|
2 3 3

Sendo M a matriz completa de um sistema linear, chamaremos de matriz escalonada de M a matriz

obtida com a aplicagdo da funcdo RREF. A matriz escalonada da matriz completa M sera indicada por
ME.

Solucao de sistema linear

Consideremos um sistema linear com p incognitas e n equagoes.
1. Se a matriz escalonada tiver p + 1 colunas e for da forma

ME = R ou da forma ME =
000..1d, 0901,
1000..00 |
entdo (d1, d2, ..., dp) seréd a unica solucdo, no sentido habitual, do sistema.
2. Se a matriz escalonada tiver p + 1 colunas e for da forma

100...00] o
1000

ME = e ou ME = 000..10
000...10
000.. 01 000...01
- TS 000...00

o sistema nao admitird solucdo no sentido habitual, mas admitira uma tnica solugcdo LSQ.

3. Se MFE nao for de nenhum dos tipos anteriores e se ME nao possuir linha do tipo [0 0 0 ... 0 1], entdo o sistema admitird infinitas
solugdes no sentido habitual.

4. Se ME nao for de nenhum dos tipos 1 € 2 e se ME possuir uma linha da forma [0 00 ... 0 1], entdo o sistema ndo admitird solugdo
no sentido habitual, mas admitira infinitas solu¢des no sentido LSQ.

Tudo o que estd no quadro anterior, prova-se em algebra linear. Se vocé ja estudou algebra linear,
sugerimos provar o que acabamos de afirmar.

Acho que a essa altura vocé ja deve estar fazendo a pergunta: e onde estd essa variavel RREF? Para
encontrar RREF’, digite:



MTH MATR (no menu) FACTR (no menu)

Acho, ainda, que vocé deve estar falando com os seus botdes: € eu vou ter que guardar tudo isso na
cabeca? Nao. O que vocé precisa ¢ guardar pelo menos os nomes das varidveis. Se voc€ souber o nome
da variavel, para ativa-la ¢ so digita-la e pressionar ENTER. Por exemplo, se quisermos escalonar uma
matriz, ¢ s6 entrar com a matriz, digitar RREF e pressionar ENTER.

Como ativar uma variavel da calculadora

Digite o nome da variavel e pressione ENTER
ou
localize 0 menu que a contém e pressione a tecla branca correspondente ao retangulo onde est4 a varidvel.

Outro modo bem mais pratico para se ativar uma varidvel da calculadora ou uma que vocé tenha
criado ¢ inclui-la no menu personalizado.

Incluindo varidveis no menu personalizado

Abra o arquivo MEMORY, leve a barra de destaque para cima da variavel CST, pressione EDIT (no menu), pressione novamente
EDIT (no menu), digite as variaveis que vocé deseja incluir, lembrando que entre as variaveis deve haver um espaco; pressione ENTER
trés vezes para confirmar as inclusdes e retornar ao ambiente HOME.

LEMBRE-SE: para chamar o MENU PERSONALIZADO, ¢ s¢ pressionar a tecla CST.

Para resolver um sistema linear, precisamos obrigatoriamente entrar com a matriz B dos termos
independentes e com a matriz 4 dos coeficientes das variaveis. Agora, se quisermos antecipar como sao
as solugdes do sistema, precisaremos, também, da matriz completa M. S6 que ndo sera necessario digitar
toda a matriz M: a matriz M podera ser criada a partir das matrizes 4 e B. Vejamos como realizar essa
proeza. Primeiro, para que ndo aconteca nenhum desastre, vamos colocar na memoria as matrizes 4 e B.

Colocando na memoria as matrizes 4 e B

Digite no “escrevedor de matrizes” a matriz dos termos independentes e pressione ENTER para mandéa-la para o nivel 1 da pilha. Em
seguida, digite:

'B'STO
(ou B STO se vocé tiver certeza de que a variavel B ndo consta da memoria)

Proceda de modo andlogo com a matriz dos coeficientes das varidveis, trocando, evidentemente, o B por 4.

ATENCAO. Quando uma variavel, digamos X, jd estd na memoria com um determinado conteudo e
queremos utiliza-la para armazenar outro contetido, ¢ s6 entrar no nivel 1 com o novo contetido e digitar:



'X'STO

que a substituicio sera automatica. Se a variavel X ndo consta da memdria, para armazenar um
conteudo nela € s6 entrar com o contetido no nivel 1 e digitar:

XSTO

Como fazer para colocar na pilha o conteudo de uma variavel que nio armazena programa?

Colocando na pilha o conteiido de uma variiavel que ndo armazena programa

Digite 0 nome da variavel e pressione ENTER. Ou, pressione a tecla VAR (para abrir o menu das varidveis) e pressione a variavel
desejada.

Como fazer para criar a matriz M a partir das matrizes 4 ¢ B? Vamos supor que as matrizes ja estao
armazenadas nas variaveis 4 e B. Como dissemos acima, para entrar com a matriz 4 na pilha é s6
digitar 4 e pressionar ENTER; da mesma forma para a matriz B.

Criando a matriz M a partirde 4 e B

Entre na pilha com as matrizes 4 ¢ B, nessa ordem, e, em seguida, entre com o nimero da ultima coluna da matriz M (que é o nimero

de colunas da 4 mais 1) de modo que a matriz 4 estara no nivel 3, a B, no nivel 2, e o nimero da ultima coluna de M, no nivel 1. Agora,
digite:

MTH MATR (no menu) COL (no menu) COL+ (no menu).

ATENCAO. Inclua COL+ no menu personalizado (nde pode haver espaco entre COL e +).

EXEMPLO 2. Resolva o sistema linear

2x +3y—z=28
] xty—zZ 4
2x—y+dz=—1

Sx+3y+2z7=11.

Solugdo
Aqui,

2 3 —1 8 2 3 =1 8

1 I =1 4 1 1 =1 4

A=12 -1 4/ B=|—1|leM= |2 -1 4 —1

5 i 2 11 5 F 2. T



Procedendo como dissemos anteriormente, digite a matriz B e armazene-a na variavel B. Digite a matriz 4
¢ armazene-a na variavel A. Para criar a matriz M, digite 4 e pressione ENTER para entrar com a matriz
A na pilha; em seguida, digite B e pressione ENTER para entrar com a matriz B na pilha. Para criar a
matriz M, digite:

4 ENTER COL+ (no menu ou no menu personalizado).

Se tudo correu “dentro dos conformes”, a matriz M deve ter aparecido no nivel 1 da pilha. Apareceu? Se
apareceu (se nao apareceu reveja anteriormente qual o procedimento correto) a matriz M, podemos
determinar a matriz escalonada ME. Para criar ME, digite:

RREF ENTER
para obter a matriz escalonada,
1 0 0 2
0 1 0 1
ME=10 0 1 —1}
0 0 0 0
Assim, ME ¢ do tipo 1 acima. Logo, o sistema ¢ compativel e determinado, sendox=2,y=1ez=—1a
sua unica solucdo, no sentido habitual.
u
EXEMPLO 3. Resolva o sistema
2x+3y—z=48
x+y—z=4

1 2x— }-*'-i- 4z =—1
li"a.x‘ + 3v+ 2z=10.

Solugdo
Aqui
2 3 —1 8 3 3 ~1 8
2 =] 40 — ] 2 =] 4 =17
5 3 2 10 5 3 2 10

A matriz 4 ¢ a do exemplo anterior. A matriz B difere da matriz do exemplo anterior apenas na ultima
linha; se vocé ndo apagou a matriz B do exemplo anterior, podemos substituir o 11 pelo 10, e para isso,
digite:

MEMORY (fungdo verde da tecla VAR)



Agora, leve a barra de destaque para cima da variavel B, pressione EDIT (no menu), pressione
novamente EDIT (no menu), leve o cursor para cima do 11, pressione DEL, digite 10 e pressione
ENTER trés vezes. Pronto, a matriz B ja foi alterada. Como no exemplo anterior ndo armazenamos a
matriz M, sera preciso cria-la, e, para isso, proceda como no exemplo anterior. Estando a matriz M no
nivel 1, digite:

RREF e pressione ENTER
para obter a matriz
1 0 0 0
101 0 0
ME=10 0 1 0
0 0 O 1

que ¢ do tipo 2 anterior. Assim, o sistema ndo admite solucao no sentido habitual, mas admite uma tnica
solugdo LSQ. Para determinar essa Unica solugdo, entre com as matrizes B ¢ 4, nessa ordem, e digite:

LSQ ENTER
ou
pressione LSO no menu personalizado

para obter [ [1,7222...] [1,13888...] [-0,8888...] ] e, portanto, x = 1,7222..., y = 1,13888... e z =
—0,8888... . Convertendo para fracao ordindria, obtemos: x = 31/18, y =41/36 ¢ z = —8/9 que ¢ a tnica
solugdo LSQ do sistema.

u

Na proxima se¢do, vamos criar um programa que nos permitird construir rapidamente uma matriz.

A2.8. PROGRAMA PARA CONSTRUIR MATRIZ: A VARIAVEL MATR

O objetivo desta se¢do € criar um programa que nos permitira construir rapidamente uma matriz. Esse
programa sera armazenado na variavel MATR. Para criar uma matriz a partir de seus elementos, vamos
precisar da funcdo — ARRY. Para localizar essa funcao, digite:

PRG TYPE (no menu)
Para informar a calculadora qual o nimero de linhas (L) e qual o numero de colunas (C),
precisaremos entrar com a lista {L C}, onde { } ¢ a fungdo roxa na tecla +. Ja estamos em condi¢des de

construir uma matriz sem precisar entrar no “escrevedor de matrizes”.

EXEMPLO 1. Entre com a matriz



LV T N o A |
(¥ Il e B 0 TS
I S T

Solugdo

Primeiro precisamos entrar com os elementos da matriz que devem ser digitados na seguinte ordem:
primeira linha, segunda linha etc. Para entrar com a primeira linha, digite:

5 ENTER 3 ENTER 4 ENTER
Com a segunda linha, digite:

2 ENTER 2 ENTER 1 ENTER
e assim por diante, até entrar com todas as linhas. OK?

Agora, precisamos informar a calculadora que a nossa matriz tem 4 linhas e 3 colunas. Para isso,
digite a lista
{43}

e pressione ENTER para mandé-la para o nivel 1. Agora, digite:

PRG TYPE (no menu) — ARRY (no menu)

Pronto: a sua matriz esta montada.

Seguindo os passos do Exemplo 1, vamos construir um programa que facilitara mais ainda as coisas.

Programa para criar matriz

Nivel 1: <<’ C'STO ' L' STO
{L C} — ARRY>>

Digite:

MATR STO

ATENCAO. Para entrar com — ARRY no programa ndo ¢ necessario digita-la, basta pressiona-la no
menu. Também, ndo ¢ necessario digitar STO, basta pressionar a tecla STO.

Inclua a variavel MATR em seu menu personalizado. No préximo exemplo, mostramos como usar o
programa que acabamos de criar.



EXEMPLO 2. Utilize a variavel MATR para entrar com a matriz do Exemplo 1.
Solugdo
Primeiro, vamos entrar com as linhas como fizemos no Exemplo 1:

5 ENTER 3 ENTER 4 ENTER
2 ENTER 2 ENTER 1 ENTER
4 ENTER 0 ENTER 2 ENTER
5 ENTER 9 ENTER 7 ENTER

Agora, precisamos entrar com o numero de linhas e com o numero de colunas. Entdo, digite:
4 ENTER 3 ENTER
Para construir a matriz, digite:
MATR ENTER

ou, simplesmente, pressione MATR no menu personalizado. Gostou?

A2.9. UTILIZANDO O APLICATIVO FIT DATA PARA AJUSTE DE CURVA
PELO METODO DOS MINIMOS QUADRADOS. AS FUNCOES PREDX E
PREDY

Para entrar no aplicativo FIT DATA, pressione STAT (fungdo verde da tecla 5); na caixa que se abre,
escolha a 3.* opgao, que ¢ Fit data... e pressione ENTER. Nesse aplicativo, vocé podera, pelo método
dos minimos quadrados, ajustar aos pontos

(xla yl)a (X2, yZ), ceey (xna yn)

uma reta, v = mx + g, uma exponencial, v = ge™, uma logaritmica, v =g + m In x, ou uma poténcia, v = ¢
xm

Digamos que o diagrama de dispersao dos pontos tenha o jeito do grafico de uma fungao exponencial,
entdo, em vez de ajustarmos uma reta, ajustaremos uma exponencial da forma y = ge™. Aplicando In aos
dois membros de y = ge™, obtemos In v = In g + mx. Fazendo, entdo, y =Iny e O = In g, teremos a reta y
= Q + mx. O que a calculadora faz, sem a gente ver, ¢ exatamente o seguinte: ajusta, pelo método dos

minimos quadrados, uma reta y = Q + mx aos pontos

(x1, Inxy), (x2, Inxy), ..., (x,, Inx,)



calcula o coeficiente de correla¢do desses pontos e toma g = €. O raciocinio para os outros tipos de
ajuste ¢ analogo.

Vocé pode, também, solicitar a calculadora que ela retorne, entre as quatro curvas acima, a que
melhor se ajusta (Best fit) aos pontos. Nesse caso, ela retornara a curva cujo R* estiver mais proximo
de 1. (Lembre-se de que R* ¢ o quadrado do coeficiente de correlagdo.)

Para escolher qual o tipo de ajuste que vocé quer, leve a barra de destaque para o campo de MODEL
e, pressionando a tecla +/—, escolha a sua opgao.

E no campo da variavel Y DAT que devemos entrar com a matriz dos pontos dados. Para entrar com a
matriz, leve a barra de destaque para o campo da varidvel Y DAT e pressione EDIT no menu do
aplicativo (tecla branca da letra A) para abrir o “escrevedor de matrizes”; digitada a matriz, pressione
ENTER para manda-la para o campo da variavel Y DAT.

Tendo entrado com a matriz e escolhido o tipo de ajuste, pressione OK (no menu do aplicativo, tecla
branca da letra F) ou simplesmente pressione ENTER. Automaticamente, volta-se para o ambiente
HOME, e na pilha, no nivel 3, estard a curva ajustada, no nivel 2 a correlacdo, ¢ no nivel 1, a
covariancia. Para ler os dados que aparecem nos varios niveis, pressione a tecla que move o cursor para
cima (A) e leve o tridngulo preto que aparece na frente do nivel 1 da pilha para o nivel que vocé deseja
ler; em seguida, pressione EDIT (funcao roxa da tecla +/—). Apo6s ter lido todos os dados, pressione ON
para retirar do visor o tal triangulo preto.

Digamos que vocé queira ver o diagrama de dispersao e o grafico da curva ajustada. Para isso digite:

“7 (shift roxo) 5

No menu que se abre, pressione PLOT (tecla branca da letra D) e, no novo menu, pressione SCATR
(tecla branca da letra C). No visor aparecerd o diagrama de dispersdo. Para fazer aparecer o grafico da
curva ajustada, pressione STATL (tecla branca da letra D). (Observag¢ao: SCATR = SCATTER =
DISPERSAO; PLOT = PLOTAR = ESBOCAR.) Pressionando-se ON, volta-se para HOME.

Suponhamos, agora, que voc€ queira, na curva estimada, determinar v para um dado valor de x. Para
isso digite:

“7 (shift roxo) 5 FIT (no menu).

Agora, entre com o valor de x e pressione PREDY. Se vocé quiser o valor de x para um dado valor de y,
entre com o valor de y e pressione PREDX.

Para finalizar a se¢do, vamos mostrar outro modo de entrar com a matriz no campo de Y DAT. Entao,
para entrar com a matriz dos pontos (x;, y;), i = 1, 2, ..., n, no campo da varidvel Y DAT, proceda da
seguinte maneira: estando em HOME, entre com a matriz utilizando a varidvel MATR. Em seguida, digite

'SDAT' STO

Desse modo, armazenamos a matriz na variavel ) DAT, e, entdo, ela estard no campo da variavel Y DAT
quando entrarmos no aplicativo FIT DATA. ATENCAO: Se a variavel . DAT estiver no menu de VAR,
ndo serd necessario digitar ) DAT: basta entrar com os dois tracinhos e pressionar Y DAT no menu das
variaveis. (ATENCAO: Para digitar Y DAT, pressione 3 (funcdo verde da tecla TAN), apague os
parénteses que aparecem na frente de )| e digite, sem espaco e com letras maitsculas, DAT.)



A2.10 AJUSTE LINEAR COM DUAS OU MAIS VARIAVEIS INDEPENDENTES.

AJUSTE POLINOMIAL
EXEMPLO 1. Ajuste, pelo método dos minimos quadrados, uma fun¢do linear 7 = ax + by + ¢ aos dados
da tabela
X y z
1 3 2
4 5 8
3 2 4
5 3 6
7 2 8
Solugdo

O sistema linear associado ao problema ¢

a+3b+c=2
da+5v+c=8
S:43a+2b+c=4
Sa+3b+c=6

| Ta+ 2y+c=28

Aqui
[1. .3 17 2]
4 5 1 8
A=13 2 1| e B= |4\
3 3 1 6
|7 2 1] 8
Procedendo como na Secao A2.7, obtém-se:
32 30 —278
a=—,b=— c= ——
20 29 145
que € a tnica solu¢ao LSQ do sistema. Conclusio:
32 3 2
._32 30 _ 278




¢ a funcao linear que melhor se ajusta aos dados da tabela pelo método dos minimos quadrados.

(Observacao. O sistema auxiliar S4 associado ao sistema S anterior é:

— — — = — — e T
avy vy +bvo-vi+evivy=5b v
SA - — = e A — — - =3

. a 1.] . 1'1 —+ f} \;2 . \,lj + o 1’_;-; . 1"’2 — b i ]12

— — — —2 — —3 — =2

Iy, 1.!] . \;3 + ‘J_.r;r ‘;2 . 1_-.3 + ¢ 1?‘ A ":'_'{, — h

onde
1] 3] 1] [2]
4 5 | b]
3/ — 22 | = 4|
=5 v2=[3|v3=|]| e b=]|¢
_?_ _2_ _l_ _8_

A titulo de exercicio, verifique que a solugao do sistema SA4 ¢ de fato

32 30 —278
ML - [ AT T J)
20 29 145

a:

— =—=ip —F a1 ~ r
vieb v utilize a fungdo DOT, e, para acessa-

la, digite: MTH VECTR (no menu). Por exemplo, para calcular 7, . ?f’, entre com 7, com 1_';’ e

ATENCAO. Para calcular os produtos escalares T: .

pressione DOT.

EXEMPLO 2. Ajuste, pelo método dos minimos quadrados, a fungdo polinomial de grau dois, v = ax* +
bx + ¢, aos dados da tabela

X 1 3 4 7 8 10
y 8 2 5 10 16 25
Solucao

O sistema linear associado ao problema ¢

at+b+c=28
Q9a+3b+c=2
16a+4b+c=5
Qa+7Tb+c=10
64a + 8b +¢c =16
100a + 106 + ¢ = 25




que admite a tnica solugdo, aproximada, LSQ
a=0,50933, b =-3,53305 ¢ ¢ = 10,143511.

Conclusdo: v = 0,50933 x* — 3,53305 x + 10,143511 ¢ a fungdo polinomial de grau dois que melhor se
ajusta aos dados da tabela.
]

A2.11. AFUNCAO RSD. DISTANCIA DE PONTO A PLANO. DISTANCIA DE
PONTO A RETA

A fungdo RSD (RSD = RESIDUO) é outra importante funcdo da HP-48G. Para acessala, digite:
MTH MATR (no menu) NXT

O que faz a fungao RSD? Consideremos o sistema

(a1 x) + appxy + .+ apx, = by
azixy +axpxy * ..t GpXp = by

=b

Ay X| T apaxy ... T Gppx P

P

e seja (x10, X20, ..., Xpo) uma solug¢do LSQ de S. Pois bem, a funcdo RSD, quando ativada, ird nos fornecer
o vetor

E| Ey = by — (apxp +appxz +... + ajpxpo)

E Ey = by — (@rnxjg + @ax0g + ... + s, x
= 2 onde 2 2 21410 22420 2p pﬂ}

E, _En = by — (@mxip + apaxap + ...+ f‘Tnp-x'pﬂ}

que em nota¢ao matricial se escreve:

El bl apy a2 '”ﬂ]}'l‘ 10
E> b {an {dan  L..dn X3
E i o = o — "'] -~ ".P ‘-’“
E, by pl  Gp2  .--App | [ Xp0
Se By, =E,=...=E,=0, entdo (xi9, X20, ..., Xpo) S€rd uma solucao no sentido habitual. O comprimento ||

E || do vetor E ¢ exatamente a distancia do ponto P ao ponto B, onde

ap xyp ¥ apxo *..F A1 pXp0 by

az1X10 T GppX30 t ..o+ @ pXpc b
p= 21410 22220 2pApl oifli= 2|

Ap1X10 T Ap2X20 T ... T ppXpo Dy

Na HP-48G, a fungdo que calcula o comprimento de um vetor ¢ a fungao 4ABS (4BS = ABSOLUTO):



I £ =A4BS (E)

Para acessar a funcao ABS, digite: MTH REAL (no menu) NXT
O problema agora ¢ como proceder para calcular E.

Caélculo do vetor £ e de ABS (F)

Sejam A4 a matriz dos coeficientes das variaveis e B a matriz dos termos independentes. Armazene na variavel X a solu¢do encontrada.
Agora, entre com as matrizes

B A X (nessa ordem)

Para calcular E, digite:

RSD ENTER
ou

pressione RSD no menu
ou ainda
X — (vezes menos)

Para calcular o comprimento de £ digite:

ABS ENTER
ou

pressione ABS no menu.

EXEMPLO. Considere o sistema

"_‘(+2.\-‘=4
. j2x—y=35
S'}.r—i—;-':cl

xX—y=2

a) O sistema admite solugdo no sentido habitual? Discuta o sistema com relagdo ao nimero de solugdes.
b) Resolva o sistema.

¢) Dos pontos (x + 2y, 2x —y, x + y, x — y), x e y reais, qual estd mais proéximo de (4, 5, 4, 2)?

d) Qual a menor distancia do ponto (4, 5, 4, 2) aos pontos (x + 2y, 2x =y, x + y, x —y), x € y reais?

e) Faca “manualmente” o escalonamento de Gauss do sistema.

Solugdo



Aqui
1 ¥
poaz | =l i
A i | e B
|

T L | T 18

a) Entre com a matriz 4 e armazene-a na variavel 4; entre com a B e armazene-a na variavel B. Crie a
matriz M e determine a matriz escalonada ME de M:

] 2

M=|2 ~1
Lo

. =]

e ME =

P = h =
=l D
=
o -0 O

Segue que o sistema ndo admite solucdo no sentido habitual. Admite uma tinica solugdo no sentido
LSQ.

b) Entre com a matriz B, entre com a matriz 4, pressione LSQ (no menu) ou digite LSQ e pressione
ENTER para obter a solugdo

[ [2,857142...]1[0,714285...11].
Armazene-a na variavel X, ou seja, digite:
'X'STO

Agora, entre novamente com a solugao na pilha (digite X e pressione ENTER) e passe-a para a forma
de fracdo ordindria para obter
20 3

xX=—ey= —.
T 7

) B s6 fazer x = % ey = %em(x+2y,2x—y,x+y,x—y).Assim,

5 : :
7 T 22 ¢ o ponto mais proximo de B = (4, 5, 4, 2).

(30 35 25

(Observacao. O ponto P poderia, também, ter sido obtido da seguinte maneira: entre com a matriz 4,
entre com a matriz X e pressione a tecla X, ou seja, obtém-se P multiplicandose a matriz 4 pela X.)

d) Primeiro, precisamos determinar o vetor coluna E. (Lembre-se de que B — AX =B — P=FE, onde X, P
¢ B estdo sendo olhados como vetores colunas.) Para determinar £, digite:

B ENTER 4 ENTER X ENTER RSD ENTER

para obter



—0,285714... .

0 0
E= = =B — AX.
0,428571... 3T
—0,142857... =147

Para calcular o comprimento de E, digite:

ABS ENTER

para obter || E ||~ 0,53452. (Observe: || E|| = ""14 )

!

e) Multiplicando-se a primeira equacao do sistema S por — 2 e somando-se com a 2.%; multiplicando-se a
1.* equacdo por — 1 e somando-se com a 3.%; multiplicando-se a 1.* equagdo por — 1 e somando com a
4.2 e, em seguida, permutando-se as posi¢oes das 2.* e 3.* equagdes, resulta:

x+2v=4 x+2y=4 x+2v=4
|2x—y=25 —5y=-—3 —v=10
| 2+y=4 & —y=0 ¢&| —5y=-3
l x—y=2 —3y=-2 —3y=-

Multiplicando-se, agora, a 2.? equagdo (do 3.° sistema) por —5 ¢ somando-se com a 3.%; multiplicando-
se a 2.% equacao por —3 ¢ somando-se com a 4.% e, em seguida, dividindo-se a 3.* por —3 ¢ a 4. por
—2, resulta:

oo | =
<+
[ O e R
[

B

+

]

|

o

Multiplicando-se a tltima equagao por — 1 e somando-se com a 3.%, multiplicando-se a tGltima por —4 ¢
somando-se coma 1.2 resulta:

t+21‘=4 r+2 = ()
g. |2x—y=5 y =0 X
2 = - = =]
x+y=4 0=0 D=
L‘{—}=2 0=1 m

Observe que a matriz M do ultimo sistema ¢ exatamente a matriz ME de S.

Para finalizar a se¢do, deixamos para vocé a seguinte tarefa: dados um plano (uma reta) em forma
paramétrica e um ponto B fora do plano (da reta), estabeleca um processo para determinar o ponto P do
plano (da reta) que se encontra mais proximo de B e a distancia entre B e o plano (reta).



A2.12.CALCULO DO COEFICIENTE DE DETERMINACAO R:

Suponhamos que

z=ax+by+c

seja o plano que melhor se ajusta, pelo método dos minimos quadrados, aos pontos (x;, v, z:), i =1, 2, .

n. Entdo (a, b, ¢) ¢ a solugdo LSQ do sistema

xja+ vib+c =z
g jX2@ Tt b +c=12

Aqui o vetor E ¢ dado por:

E Ei=gn—(mat+tynb+te) =z —7
E= Ep onde Er=7 —(xpa+wb+c)=20 — 2>
Ey E,=zy —(xpb+yb+ )=z, — %,

Sabemos que R* ¢ dado por:

Sabemos, ainda, que

n n n
(

Y @G-8 2 )«

=1 =1 i=1

Temos, também,

n
i o) ‘) —_ % — A .
D G—%P =0ElP e ) (-0*= ) z —ng> =IBIP—nZ?
i =1 '

XY



onde B ¢ a matriz coluna dos termos independentes do sistema S.
Temos, entdo, a seguinte formula pratica para o célculo do coeficiente de determinagio R°.

s
Il E Il-

3 —7

I B |I=— nz*

onde

e %

bad =

ATENCAO. Para calcular a média 7, proceda do seguinte modo: armazene a matriz B na variavel S DAT
e digite:

Shift roxo 5 IVAR (no menu) MEAN (no menu)

Ou, entdo, pressione STAT (fungdo verde da tecla 5), escolha a 1.* op¢ao que ¢ Single-var... ¢ pressione
ENTER (ou OK no menu). Entre com a matriz B no campo de Y DAT. Em seguida, leve a barra de
destaque para o campo da varidvel MEAN e pressione a tecla +/— para confirmar sua escolha (na frente
de MEAN devera aparecer um vezinho). Confirmada a escolha, pressione ENTER.

A2.13.PROGRAMA QUE RETORNA OS COEFICIENTES DO AJUSTE E O R2

O objetivo desta se¢do ¢ criar um programa, que sera armazenado na variavel BAN, que retorna os
coeficientes do ajuste, bem como o coeficiente de determinagdo R’ a partir das matrizes B, 4 e do
nimero n de pontos dados, onde B ¢ a matriz dos termos independentes e A a matriz dos coeficientes das
variaveis do sistema S associado ao problema.

Programa BAN

Nivel 1: <<’ N'STO'A4'STO 'B'STO B A LSQ
"X'STOBAXRSDABS2 A'Y'STO
BABS2 N'"U'STO B'YDAT'STO MEAN 2 A
N*'"V'STO1YUV—-/—"R2'" > TAGX' X' — TAG >

Agora, digite: ' BAN ' STO

Inclua a variavel BAN em seu menu personalizado.

EXEMPLO 1. Considere a tabela




Determine a reta dos minimos quadrados dos pontos dados e o coeficiente de determinagao.
Solugdo

Seja v = mx + g a reta procurada. O sistema associado ao problema é

Im+qg=17
Sm+qg=2>3
g. | Om+g=3
1 9m+g=4
10m~+qg=2
1lm+gq=3
Aqui, o numero de pontos ¢ n =6,
3 A7 (7]
a 5
L |6 1 S
A= 9 1| © B = 4l
10 1 2
11 1 3]

Agora, entre com a matriz B, entre com a matriz A, com 6 e pressione BAN, no menu personalizado, para
obter

R2:0,6701858
X: [[-0,466216][7,418919]]

Ou seja, v = —0,466216x + 7,418919 ¢ R* = 0,6701858. (Sugestdo: Resolva o problema no aplicativo

FIT DATA.)
||

EXEMPLO 2. Considere a tabela




Determine o plano 7 = ax + by + ¢ dos minimos quadrados, bem como o coeficiente de determinagdo R*.
Solugdo

O ntimero de pontos € n =7,

= 7
F 2 1 5
4 6 1 7
A=|7 3 1| e B=|6|
2 2 1 5
8 5 1 7
5 8 1 10

Entre com B, entre com 4 e com 7 e, em seguida, pressione BAN para obter

R 0,8490879
X: [[-6,34715025907E — 2] [0,71567357513] [4,03044041451 1]

Ou seja, 7 =—0,0634715025907x + 0,71567357513y + 4,03044041451 ¢ R* = 0,8490879.

A2.14.DEFININDO FUNCAO NA HP-48G

Nesta secdo, vamos aprender como definir uma fung¢do na HP-48G. Para definir uma fungdo, vamos
utilizar a funcdo roxa DEF (DEF = DEFINE = DEFINIR) na tecla STO. Vejamos, entdo, como definir,
por exemplo, a fun¢do y = x* + 3x + 5.

Definindo a fun¢do y = x2 + 3x + 5.

Na linha de comando, utilizando letras maiGisculas para facilitar, digite y(x) = x2 + 3x + 5, em seguida, tecle ENTER; no nivel 1
deveremos ter:

Nivel :  'YX)=X"2+3*X+5

Agora, pressione DEF (shift roxo seguido da tecla STO).

Pronto! A fungdo ja esta definida. A variavel Y ja foi para a memoria, isto &, ja esta ocupando um dos
retangulos do menu das varidveis. Para visualizar a variavel ¥ pressione a tecla VAR e va virando as
paginas do menu até encontrar Y. Encontrou? Otimo. No préximo exemplo, veremos como calcular o
valor de y dado x. Para visualizar o contetido da variavel Y ou proceder a qualquer alteragdo, faca como
explicado anteriormente.

EXEMPLO 1. Sendo y = x* + 3x + 5 a fun¢do acima definida, calcule o valor de yparax=1,x=-2e¢x
4

E.



Solugdo

Inicialmente, localize a varidvel ¥ no menu das variaveis. Entdo, para calcular o valor de y, digite o
valor de x e pressione a tecla branca correspondente ao retangulo ocupado pela variavel Y.

Parax=1,y=7?

Digite 1 e pressione ¥ no menu das variaveis. No nivel 1, devera aparecer 9. Assim, para x = 1, teremos
y=09.

Parax=-2,y="7

Digite —2 e, em seguida, pressione ¥ no menu das variaveis. No nivel 1, devera aparecer 3. Assim, para x
=—2, teremos y = 3.

Parax=— y=7?

| &

Digite: 4 ENTER 5 + e, em seguida, pressione Y no menu das variaveis. No nivel 1, deverd aparecer

a

8,04. Assim, para x = —, teremos y = 8,04.

o |

EXEMPLO 2. Defina a fungdo z = x> — 3)° + 5xy e calcule z para os valores de x e y dados.

a)x=ley=2
by x=-5ez=-6,2

Solugdo

Definindo a fun¢do z =x2 — 3y3 + 5xy
Digite z(x, y) =x2 — 3y3 + 5xy e, em seguida, pressione ENTER; no nivel 1 deveremos ter:

Nivel1l: 'Z(XY)=X2-3*Y3+5*X*Y’'

Agora, pressione DEF (fungdo roxa na tecla STO). Pronto. A fungao ja esta definida.
Agora, localize a varidvel Z no menu das variaveis. Lembre-se: para abrir o menu das varidveis, € sO
pressionar a tecla VAR e procurar Z, usando NXT se precisar virar a pagina do menu. Localizou Z?

Otimo.

a) Para calcular z, € preciso entrar com os valores de x e y, nessa ordem.



Digite: 1 ENTER 2 e pressione a variavel Z no menu das varidveis, para obter — 13, que ¢ o valor de
z=—13.

b) Digite: =5 ENTER —6,2 ¢ pressione a varidvel Z para obter —844,984, que ¢ o valor de z, ou seja, z =
—844,984.
u

A2.15.AJUSTE DE CURVA, PELO METODO DOS MINIMOS QUADRADOS, NO
EXCEL 97

Consideremos os pontos (xx, k), k=1, 2, ..., n. No EXCEL, podemos obter o ajuste linear, polinomial
(até o grau 6), exponencial, logaritmico ou por uma poténcia. Os proximos exemplos mostram como obter
tais ajustes.

EXEMPLO. Determine, pelo método dos minimos quadrados, a reta que melhor se ajusta aos pontos

dados.
X 2 4 5 6 6,5 7 75 8 10
y 0 5 6,5 8 7 9 10 12 13
Solugdo

Nas células Al a A9, vamos entrar com os valores de x; nas células B1 a B9 com os valores de y.
ApOs entrar com estes valores, marcamos a matriz Al: B9. Em seguida, clicamos no icone Assistente de
grafico, para abrir o aplicativo Assistente de grafico.
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Neste Assistente de grafico, escolhemos a opg¢ao Dispersao (XY) e, como Subtipo de grafico,
escolhemos a primeira op¢ao, que ¢ o diagrama de dispersao. Clicando em Concluir, obtemos o diagrama
de dispersao.

X Microsoft Excel - Figura 2
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A seguir, selecione o grafico; na barra de ferramentas, clique em Grafico e escolha a op¢ao Adicionar
linha de tendéncia. (ATENCAO. O menu Grafico so aparecerd apds selecionar o grafico. Se ao lado do
menu Ferramentas aparecer a palavra Dados, ¢ porque vocé ndo selecionou o grafico. Para selecionar a
regido do grafico, ¢ s6 dar um clique logo abaixo do retangulo que envolve a palavra Sequéncia 1. Para
desmarcar, ¢ sO clicar fora do retangulo que contém a regido do grafico.) Clicando, entdo, na opg¢ao
Adicionar linha de tendéncia, aparecera a caixa de didlogo Adicionar linha de tendéncia, que oferece as
varias opcoes de ajuste. Como o nosso caso ¢ o ajuste linear, clique no quadrado Linear. (Se o ajuste for
polinomial, até o grau 6, marque o quadrado polinomial e escolha o grau na caixa ao lado.)

i Adicionar linha de tendéncia
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Na caixa acima, clique em opgdes e marque as opgdes: exibir equagdo no grafico e exibir valor do R-
quadrado no grafico. Clique OK para obter no grafico a equagao da reta que melhor se ajusta aos pontos
dados e o valor de R-quadrado.
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A2.16. MAXIMOS E MINIMOS NO EXCEL

Pontos de maximo ou minimo de uma fung¢ao sdo determinados, no EXCEL, no aplicativo SOLVER.
Para entrar neste aplicativo, clique em Ferramentas e escolha a op¢do SOLVER. Caso na caixa de



didlogo que se abre ndo apareca a palavra SOLVER, escolha, nessa mesma caixa, a op¢ao Suplementos,
marque SOLVER e pressione OK para inclui-la na caixa Ferramentas. Caso em Suplementos nido aparega
SOLVER ¢ porque nao foram instalados todos os aplicativos do EXCEL.

EXEMPLO 1. Determine o ponto de minimo e o valor minimo da fungdo
z=x*+3xy + 47 —4x — 13y.

Solucao

Observamos, inicialmente, que, pelo fato de se tratar de uma fun¢ao polinomial de grau 2, tal fungao
admitirda no maximo um ponto de minimo. Por qué? Vamos representar as variaveis x € J,

respectivamente, por Al e B1. Na célula C1, vamos entrar com a expressao que queremos minimizar. Na
célula C1, devemos digitar:

= A1"2+3*A1*B1+4*B1"2—4*A1-13*B1

Como o SOLVER utiliza método iterativo para buscar o ponto desejado, ¢ preciso entrar com estimativas
para x e para y (uma estimativa para o ponto de minimo ¢ qualquer ponto que esteja préximo desse ponto
de minimo). Vamos tentar as estimativas 0 para x ¢ 0 para y. (Como z(0,0) =0, z(0,1) = -9 e z(0,2) = —
10, nesse problema as estimativas 0 para x ¢ 2 para y seriam preferiveis. Por qué? Em todo caso, vamos
tentar resolver o problema com as estimativas 0 para x ¢ 0 para y; se ndo der certo, tentaremos a
estimativa (0, 2).) Entre com zero nas células Al e B1. Agora, marque a célula C1 e, em seguida, clique
em Ferramentas e escolha a opgdo SOLVER para abrir a caixa PARAMETROS DO SOLVER. Na caixa
que se abre, em célula de destino, digite C1; escolha a op¢ao Min; em células variaveis, digite A1:B1.
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Agora, clique em resolver para obter — 1 em Al, 2 em Bl e — 11 em CI. Assim, (—1,2) ¢ o ponto de
minimo e z = —11 o valor minimo de z. (Observe que a fungdo dada admite no maximo um ponto de



minimo, de acordo?)

Grafico e curvas de nivel de z = x* + 3xy + 4)> — 4x — 13y
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EXEMPLO 2. Determine os pontos de maximo ¢ de minimo de z = 2x — y com as restrigdes x > 0, x + y
<3ey=>ux.

Solucao

Como o conjunto 4 de todos os pares (x, y) satisfazendo as restrigdes dadas ¢ compacto (confira) e a
funcdao dada ¢ continua, resulta, pelo teorema de Weierstrass, que tal fungao assume em 4 valor maximo e
valor minimo. Tomemos Al (Al =x) e BI (B1 =y) como células variaveis. Em C1, vamos entrar com a
expressao que queremos maximizar ou minimizar. Em C1, digitamos:

=2 *Al —BI.
Em D1, digitamos:
= Al + B1.

Vamos primeiro determinar o ponto de minimo. Parece que o ponto de minimo deve estar préximo (ou ¢ o
proprio) de (0, 3). Vamos entdo entrar com as estimativas 0 em Al e 3 em B1. Agora, marque a célula C1
e abra o aplicativo PARAMETROS DO SOLVER, como no exemplo anterior. Em célula de destino,
digite C1. Escolha a op¢do Min. Em células variaveis, digite A1:B1. Agora, clique em Adicionar para
abrir o aplicativo Adicionar restricao. Em referéncia de célula, digite Al; escolha >=; em restricao,
digite O (¢ a restricdo x > 0), em seguida, clique em Adicionar. Agora, vamos entrar com a restri¢ao y >
x. Em referéncia de célula, digite B1; escolha >=; em restri¢cao, digite Al, em seguida clique em
Adicionar. Para entrar com a restricdo x + y < 3, em referéncia de célula digite D1; escolha <=; em
restricao, digite 3, em seguida, clique em Adicionar. Agora, feche o aplicativo para voltar para
PARAMETROS DO SOLVER, que devera ter a seguinte “cara”:
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Pronto

Finalmente clique em resolver, para obter 0 em Al, 3 em Bl ¢ —3 em CI1. Assim, —3 ¢ o valor minimo da
funcdo e que ocorre para x = 0 e y = 3. (A nossa estimativa ja era o ponto de minimo.) Vamos, agora,
determinar o ponto de maximo que deverd estar proximo do ponto (3, 3); entremos, entio, com as
estimativas 3 em Al e 3 em Bl. Marque Cl ¢ abra novamente o aplicativo PARAMETROS DO
SOLVER. Escolha a opcao Max. (Observe que os dados com os quais entramos anteriormente nao foram
apagados.) Para determinar o ponto de maximo, € so clicar em Resolver, para obter 1,5 em Al, 1,5 em
Bl e 1,5 em Cl1. Ou seja, 1,5 ¢ o valor madximo e que ocorre parax = 1,5 ¢ y = 1,5. (Veja Exemplo 2, da

Sec¢do 16.1.)

EXEMPLO 3. Resolva o sistema

12 4y=3
__xz +2xv+5vi =4,

Solucao

Resolver o sistema ¢ equivalente a determinar os pontos de minimo global da fungao

S, y) =" +y—3)°+(x*+2xy + 5y —4)*.

De fato, se (xo, 1o) for solucdo do sistema, deveremos ter f(xo, yo) = 0, e, entdo, (xo, o) sera ponto de
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minimo global de f, pois, para todo par (x, y), temos f{(x, y) > 0. Reciprocamente, se (xo, o) for ponto de
minimo de f e tal que f(xo, yo) = 0, entdo (xo, yo) serd solugdo do sistema. (Vocé€ concorda?) O grafico da
primeira equacao ¢ uma parabola com concavidade voltada para baixo, intercepta o eixo y no ponto (0,
3) e o eixo x nos pontos (—/3, 0) e (—/3, 0). O grafico da segunda equacao ¢ uma elipse com centro na
origem, intercepta o eixo x nos pontos (2, 0), (-2, 0) e o eixo y nos pontos (0, 2/./5) e (0, —2/./5). O
sistema devera ter 4 solucoes. Estimativas para as solucoes sdo:
(2,2/45)= @, 1), (2,-2/5)=@2,=1), (-2.2/45)=(-2, D e(-2,-2/+/5)= (-2, D).

Solugdo préxima de (2, 1)

Em Al, digite 2; em B1, digite 1; em C1, digite:
= (A172+B1-3)" 2+ A1"2+2*A1*B1+5*B1/2—4)"2
Marque C1 e entre em PARAMETROS DO SOLVER. Escolha a op¢io Min. Em célula de destino, digite

C1; em células variaveis, digite A1:B1. Clique em Resolver para obter: 1,6514 em Al, 0,2727 em Bl ¢
4,49 - 10" =0 emCl. Assim, x = 1,6514 ¢ y = 0,2727 ¢ uma solugio, com 4 casas decimais, do sistema.

Solugdo préxima de (2, —1)

E s6 digitar 2 em Al, —1 em B1, entrar em PARAMETROS DO SOLVER e clicar em Resolver para obter
a solucao x = 1,9557 e y = —0,8247, com quatro casas decimais.
Deixamos a seu cargo verificar que as outras duas solugdes sdo: x = —1,4232 e y = 0,9745; x = —
1,7839 ¢ y =—0,1824.
]

ATENCAO. Observe que nesse problema o que estamos fazendo nada mais é do que resolver a equacdo
f(x, y) = 0. Entdo, em vez de escolher a op¢ao Min., poderiamos ter escolhido a op¢ao Valor de e entrado
com 0 no retdngulo ao lado de Valor de e¢ proceder como se estivéssemos determinando o ponto de
minimo. Ou seja, a op¢ao Valor de ¢ a que resolve a equagao. Resolva o problema com esta opgao e
compare com os resultados obtidos com a op¢ao Min.

Determinar estimativas, em geral, ndo ¢ tarefa facil. Quando o problema de maximo ou minimo esta
ligado a um problema prético, ¢, as vezes, possivel estimar, com margem de erro razodvel, o ponto de
maximo ou de minimo. Mas, em geral, a tarefa ndo ¢ nada facil. Se a estimativa ndo for boa, o aplicativo
podera ndo retornar valor algum! Se a fungao for de uma variavel e definida em um intervalo limitado, a
tarefa sera bem mais facil: € s6 construir uma tabela com a variavel independente percorrendo o dominio
e variando, digamos, de 1 em 1 ou de 0,5 em 0,5. Olhando para a tabela, €, entdo, possivel determinar
estimativa para o ponto de maximo ou de minimo. Se a fungdo for de duas variaveis, z = f(x,y), e definida
em um conjunto limitado, um processo para determinar estimativa ¢ o seguinte: Considere o menor x, tal
que a reta x = x, intercepte o dominio da fungao, considere a fungao z = f(xo, y) € construa uma tabela com
y variando de 1 em 1 (ou de 0,5 em 0,5) e de modo que o ponto (xo, y) permanec¢a dentro do dominio da
funcdo. Em seguida, construa a fungdo z = f{xi, y), comx; =xo + A4, h > 0 e tal que a reta x = x; intercepte
o dominio da fun¢dao e assim por diante. Olhando para as tabelas construidas, ¢ possivel obter boas



estimativas para o ponto de madximo ou de minimo. Bem, esse ¢ um caminho. Fago votos que vocé
descubra um bem melhor! No exemplo anterior, xo = 0 e z = f{0, y) = —y; assim o menor valor de z = f{0,
y) sera —3 e ocorrera em (0, 3) e o maior serda 0 e ocorrera em (0, 0). Tomemos, agora, x; = 1; o menor
valor de z = f(x;, y) = 2x; —y =2 — y serd —1 e ocorrera em (1, 3), e o maior valor serd 1 e ocorrera em
(1, 1) e assim por diante.

Para encerrar a secdo, sugerimos ao leitor resolver fodos os problemas de maximos € minimos
propostos no Cap. 16. Por favor, se alguma resposta ndo estiver correta, avise-me e ficarei muito grato a
voce.

A2.17.BRINCANDO NO MATHCAD

Para trabalhar no Mathcad ¢ muito simples. A partir do programa instalado, se sua versao for o
Mathcad 2000, ao abrir o programa vera a seguinte tela:*
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Para iniciar, clique em View, na barra de menus, em seguida, clique em Toolbars: para grafico,
escolha a op¢ao Graph; para célculo de derivada e integral, escolha a opg¢ao Calculus; para entrar com
desigualdades, escolha Boolean etc.

Tudo o que vocé precisa agora ¢ aprender a digitar expressao. Para comecar, clique em algum ponto
da pagina; no ponto clicado aparecera uma cruzetinha vermelha. E exatamente neste ponto que a
expressdo a ser digitada comegard. Como no Excel, todas as operagdes deverdo ser indicadas. No
Mathcad, o separador decimal é o ponto. Para entrar com expoente, digite * (acento circunflexo), como
no Excel, s6 que no Mathcad sera expoente mesmo. Para entrar com fracao, digite / (dividir). O Mathcad
trabalha com dois sinais para representar o igual: um deles ¢ := (para entrar com este simbolo, digite :
(dois-pontos)); o outro € = (para entrar com este simbolo, pressione simultaneamente as teclas Ctrl e =
ou clique no icone desigualdades e, em seguida, clique em =).



Quando se usa o simbolo :=

Utiliza-se := para definir o valor de uma variavel. Por exemplo: para entrar comx = 5, digitamos x := 5.
Utiliza-se := quando queremos definir f{x, y). Por exemplo, para entrar com f{x, y) = x + y, devemos

digitar: f(x, y) :=x + .

Quando se usa o simbolo =

Utiliza-se o simbolo = nas equagdes. Por exemplo, para entrar com a equagao x +y = 5, digitamos: x + y
=5.

EXEMPLO 1. Entre com a expressdo x* + 5xy.
Solugdo
Clique no ponto em que vocé quer comegar a expressao. Agora, digite:
x”~2espago+5*x*y

para obter

_1'3 + 5 1ﬂ

Clicando fora do retangulo, obtém-se: x* +5 - x - .

u
Observac¢ao. Digamos que vocé queira trocar o expoente 2 por 3: clique ao lado do 2, apague o 2 ¢
digite 3; em seguida, clique fora do retingulo para obter x* + 5 - x - y. Para substituir, digamos, o 5 por 6,
proceda da mesma forma: clique ao lado do 5, apague o 5, digite 6 e clique fora do retangulo.
EXEMPLO 2. Determine o ponto de minimo da fungao
z=x>+3xy +4)y* —4x — 13y.
Solugdo
Entre com a funcao:
fix,y) =x*+3-x-y+4-y" —4-x—13-y.

Entre com as estimativas:



Agora, digite:
Minimize (f, x, y)

de modo que tenhamos

Minimize (f, x, }-"}|

Digitando-se =, obtém-se o ponto de minimo:
[ — ]\.
(f, x, v) = | 9 J
L

Assim, (—1,2) € o ponto de minimo da fungdo (que concorda com o ponto obtido no Excel).
u

Antes de prosseguir, observamos que, para entrar com os sinais de desigualdade, devese clicar no
icone em que aparecem os simbolos <#> para abrir a caixa Boolean. Para entrar, digamos, com > ¢ sé
clicar no simbolo >.

EXEMPLO 3. Determine o ponto de maximo de z = 2x —y com as restrigdes x >0, x + y<3 ey >ux.
Solugdo

x =3 e y=3 ¢ uma estimativa para o ponto de maximo. Digite:

fix,y)=2-x—y

given
x>0x+y<3y>x

1.5)
15|

h

Maximize ( f, x, v) = (
!

Assim, o valor maximo da fung¢ao ocorre parax=1,5ey=1,5.

ATENCAO. E indispensavel a palavra given apds as estimativas e antes das restri¢des.

EXEMPLO 4. Resolva o sistema
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Solugdo

Inicialmente, observamos que este sistema ¢ o mesmo que o da secdo anterior. Vamos apenas
determinar a solugdo préxima de (2, 1). Digite:

given

x*+y=3
X +2-x-y+5-y7=4

1.65]41

Find (x, v)= (D 2797

Assim, x = 1,6514 e y = 0,2727 ¢ a solugdo, com 4 casas decimais, que esta proxima de (2, 1). (Caso
queira mais casas decimais, clique ao lado de y, em seguida, na barra de ferramentas, clique em Format,

escolha a op¢ao Result, escolha o nimero de casas decimais e clique em OK.)
u

EXEMPLO 5. Esboce o grafico de f{x, y) = x* +)?
Solugdo
Digite:
flx, y) =x"+ )%

Clique no icone assinalado na figura a seguir para abrir a caixa Graph e clique na superficie verde (ou
entdo, na barra de ferramentas, clique em Insert, clique em Graph e escolha surface plot). Em seguida, no
pequeno retangulo preto situado a esquerda logo abaixo do sistema de coordenadas, digite f, como na
figura abaixo. Para obter o grafico, clique fora do maior retangulo que contém o sistema de coordenadas.
Com o mouse, vocé pode colocar a figura na posi¢ao que desejar. Para outras opgdes, dé dois cliques em
cima do grafico e brinque a vontade.
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EXEMPLO 6. Calculej e dx.
—

Solucao

Clique no icone integral para abrir a caixa que contém o simbolo de integral. Entre com a integral de
modo a obter

,[i, va:-:[:r(_—):'2 )dx

Para calcular a integral, proceda da seguinte forma. Se vocé€ quiser apenas o valor numérico, digite =. Se
vocé quiser o valor exato, na barra de ferramentas, clique em Symbolics, em seguida clique na opg¢ao
Simplify. Escolhendo a segunda opgdo, o resultado sera . ;. (Para calcular limites, derivadas e

somatorias, utilize sempre a segunda opgao, e divirta-se.)
u

ATENCAO. Para entrar com o simbolo de integral definida, clique no simbolo respectivo na caixa ao
lado; para entrar com o simbolo o, proceda da mesma forma. O angulo que envolve a expressao ¢
controlado pela barra de espaco: se ele estiver envolvendo somente o ultimo x, basta ir pressionando a
barra de espaco que ele acabara envolvendo toda a expressdo. Para encerrar, vamos exibir alguns
graficos construidos no Mathcad.
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RESPOSTAS, SUGESTOES
OU SOLUCOES

CAPITULO 1
1.2
a) Sim, pois, ¢ continua.
b) Sim, pois, ¢ continua.
¢) Sim, pois, ¢ limitada e descontinua apenas emx = 1.
d) Sim, pois, ¢ continua em [0, 1].
e) Sim, pois, ¢ limitada e descontinua apenas emx = 0.

L
) Nio, pois, ndo é limitada em [G. i}.
T

g2) Sim, pois, ¢ limitada e descontinua apenas emx = 0.

h) Nao, pois, ndo ¢ limitada em [—1, 1].

CAPITULO 2
2.1

1. al 2+ In2 b u c) lIn 5

3 2
X
2. i lecfr se 0=sx=| s s e ]
a) f(tydt=+"9 = il IR
0 ‘“J 1 se x>1

X
Icﬁ—i—jﬂdr se x =1
0 1

3

X 4
b) - < e :ie—lféxﬂl.ﬁx—T se x> 1.
';'3
) [ [J- t2dt se —1=x=1 se —1<x=1
¢ — 0 _ 3
(1) dt =+ — 3
Jll f 5

[ t2 *’r-l—J 2dr se x =1 2x—— se x=>1
0

d) 1



d) xse0<x<1,2x—1sel<x<2e¢3x—3sex>2.

2.2
1.
Fix) = 2x e 0=yr=1]
a) A= 24+Inxy se x=1
-
h) )
i
41-2
-1 2% se x <0
Fix)=
0sex>0
d) €)
1
0sex=<l1 izse—z-:x-:{]
e *+1s3x>0
f) £)
1
2/3 ==
-1 3__..--‘;:
1 e B |
x2
9 a)Fx)=—, xR

*b) F'(x)=x, X€ n.

3.a) x>1
b) x<1



c) 2<x<2

d) x>2
4. x> ;
T se x=1: x* se x<]1
=4 = ' o p— 3
a) F(x) I F' (x) 1: o ]
?—i-ﬂln.x se x>>1 X
Fix)y— Fil Fix)— F(l
by Nao: lim )= P =1 e lim {“—“ =2
x—= 1" xr—1 =17 xr—1
S5.a) F(x)=x,x € p; F' (x) =f(x) parax # 1
b) F'(1)=1#A1)
2.4
3x 5
1. a) F'ix)= 1 by F' (x) = sen _rl c) F'(x) = —cos _1"1

1+ x8

y 332
dy F' (x) = 2x sen .r4 e) F'(x)=2cos :’er f Flix)= e — %

2
54 x2 5+ xf

ol E S 3 —qd X g D
g) F'(x)=3x J e ds+ xe ¥ h F'(x)=2x J e ¥ ds+x-e "
I 0
- x .
i) F'(x)= —arctgx D F&x)y= [ g™ dt,

<0

2. Crescente em ]—oo, —2] e em [0, +oo[; decrescente em [—2, 0].

2

3. x

Q(x)=c¢ 2

4. Sugestao. Verifique que [F(x) — F(—x)]'=0em[—7, r].

1 x 1 1
6. Integrando por partes:J Fix)dx =|:.‘{'J' et dr} —J xF'(x) dx.
0 1 0 0
7. ]— [cos 1';2 = 1]
CAPITULO 3

3.1



1
1
c) — d) +o
5
|
e) 1 ﬁ 5—2
1 oo
g} ? I =y
w T - |
) — ) —
2s / 3
I e m}%lniﬂ
i) il a) 3
7 3
1 l
—; I
r) 3 q) lln..
+oosea = 1: se a>1
o — 1
a) 1 b) _I_
4
) ) E
e) 2 hH 2
9
) — h) 4
& i,
1
m= —
6
k=2
3
m==
2
| s 2 I
+ + _
a}|+i'2+—1-+5'2 b 52 :==3 (s — 1)



3.3

b) +
c) 2426

d) —1




3.0 X

b) 2.2
c) +oo

d) +1

5.a) 0
b) +o00

3.4

1. a) converge
b) diverge
¢) converge
d) converge
e) converge
f) converge
g) converge
h) converge
i) converge
J) converge
l) converge

m) converge

3.a) diverge
b) converge
¢) converge
d) diverge
10 L]

6. fy=—eF——+—1t
9 9 3

b “a
7. a) i_“ e — —cost+ —sent
5 5 >
CAPITULO 4
4.1

l.a) 2

1,
B) ——e Fek—e®



2.a) 400
b) 0,6
¢) 0,12
d) 384
4.2

l.a) F(x)=Oparax<O,F(x)=%para0§x§5eF(x)= I parax>35
b) F(x)=0parax<0e F(x)=1—-eparax>0

¢) F(x)=2rparax<0e F(x) = —%eﬁxparax>0
2. e B 1l
Jix) 1T{]+4.‘+.'2I..Ylm
3. '}
l 4
121 5

MmBpb—o0

4.3
+1 b—a)?
L9 pon=7 ¢ varon=—20
b) E(x :% e Var(X) :%
¢) E(x=2¢ Var(X)=2
4.4
1 (x—50)/4 o 1 (x—60)/5 .
@y = e T p=—ors e “ ' dz, logo, x=10
V2w o= 2 J-=

b) x<10

4 o HIT2 — H20
g —a

para a2+ @



5, de_ 1

4.5
1 Ry
glv)= ( ,_‘.),1 0. i
3332
2. Iny —(x—p)? a2
g(}‘)=M paray >0 e fily)y=0 para y=0, onde fl[:q:}=t' ..
y o2
4.6
2. (=0,5)!=I(1+(=0,5)=TI(0,5)= .+
L] f L] f i f L] 3 Y i B
3. r(i =r|]+l|=lr|l|=LﬂT r|£|=r|1+“—|=ir|ij=i-l--m
240 N 20 2 A2 2 \ 2/ L S 2 2
L ]
4. l"( 2n+1 WZ q{En 1)! Jr
2 ) 2inlp—1)!
4.7
3 : — ia P i — i —xB 2
- b EX)= " e dx e Var(X)= A 2xe dv —[E(X)]
A -
4. b) E{X}=\ b ¢ Vm'{X}=4—F
2 2
CAPITULO 5
5.1
1 1 1
L gyx=ke¥——¢ b)x=ké—2-3 ¢) x=ke' ——cost+—sent
a1 2 % o
d) x= ke ’—gmsr—i-fsenf e) x=-¢" [k+1] N x=k—35
5
| ] 2 — 2 ] R —3x ] I.
g)x=ke " +—cos2t+—sen2t h)yx=ke = +— 1) y=ke R
5 5 4 3 9
) os= ke* + te™ 1y g=ke "+ %cos 3t +—sen 3t m) y=ke' — . COS X —lsen x
2 1
g | ey . .
n) y=ke -“"I-I—E o) x=ke 2 +1—2 pj_1‘=kc?1‘+leh
: 3 ] "
q) T=kf1"r—£ r) ‘5-‘=kf'1—iccns 3x +—sen 3x 5) .r=kc?3r+lf !
3 | 10 10



5.2

5.3

8po, onde py € a populacao no instante ¢ = 0.

A equacdo que rege o resfriamento ¢ X ar- 20), onde a ¢ a constante de proporcionalidade.

a) x(t) =e (1 +¢). Desenhe o grafico.
b) x(t) = (1 — t)e . Desenhe o grafico.

x(H) =2 —e)e i+ (2e—3)e

dt
T(f) = 90eu + 20 onde a=— 1n =,
20 3
R
L) = ﬂ{l—.f' f—)
k !
B)i= — L _D6dmwe S~ 264 weos 120 mt + 11 sen 120 7]
| + 576x2
a) x=Ae" + Be™! by x=¢ (A + Br) . ¢) x=Ae” + B ¥
d) x=A + Be* e) x= AeY! + BV il x=e "(A+ B
g y= Ae™ +Be " hy v= ¢ (A + Bx) i) y=A+ Be X
j) y=Ae V6T £ BeVSX ) x=A+ Be m) x=A + Bt
| 5
_ —t =t
n) x=Ae "+ Bel o) x=A+ Be 3
2 g 1,
a) x=—et + = ¥ by x=——+4 — ¢! _ t
3 7 92 ) F=(L=he
a) = Ae.>:+ Be. 7
b) x= Ae* + Be s
c) y=A+Be's
d) y=e A+ Bt
A equacdo que rege o movimento da particula &: m¥ = — 2& — x ou ¥ + 2 + x =0, pois. m = 1.



5.4

5.5

bya=-5 ¢ b=12

c) a=— e h=——

|l

L
| —

dla=—éeb=% el a=—4eb=10 pH a=—-1¢e b=0
g']In'=E € =2 hya=— e .E:r=l
13 13 2
. 1 NE)
2. a) £i by ——x —i ¢) —1*xi d) —1 /2]
2 2
; 1, AT . s
e) £ wi iy g = i h)y = +35 i
2 )
iy *£+2i =2 I 2+
1. a) c«?_r(A cos 2t + Bsen 2t) by Acos -w'ISI:‘—I— B sen x.fir‘

l i
—_—t i

3 I3
c) e 2 (ACDSMTF—FBsenx—H

e¢) Acos3t+ Bsen3t

By A+Be ™ i) ¢ (Acost+ Bsent) J)

h ¢ (Acost +

it

d) AeVSt 4 Bem V5!

Bsent) z) e"“m + Bt)

DA % B

3
Cad)

a) e 2

3 3
Acos——t+ Bsen —— ¢
2 2

m) {’31 (A + B

ny Acos2t+ Bsen 2t

p) Acos~at+ Bsen Aat

| — |
1 1
e 2 f’ims% I+BSﬁll\ t
2 7

q) AeVTe! 4 BeTNTA!

r) € [A cos 5t + Bsen+/5 r]

s)e X [A cos 2t + B sen 21]

2. a) x —%sen 2t b) —e T(cost+ seni)
-4 7 31 7
c) e 2 msw r+'\' sen\' t d) —cost+ 2sent
2 7 2
3. x(H)=—2sen2t —cos 2t 4 x(H)=¢ 'sent
23 3
5. f)= y el  sen i f
3 2
x=ée'sent
a)c>2
b) c=2
c) 0<c<2



{ / 1 . _
1. a) Ae¥3 ' + Be™ V3!l — cos 3¢ b) Ae” > + Bre™ ™ + lf—l
2 4
¢) Ae' + Bid' + %fger d) Ae "+ Be 4 %E‘EI
¢) ¢ '(Acost+ Bsent) +2 N A +Be ¥+ 2t
| B 3 7
g) Acost+ Bsent —fcost I;}A€2I+B€!+EF‘+EI+E
. At 1 3 1 5 2 . 1 |
) A+Be" —— " ——t-——t Jj) Acos3t+ Bsen3t+—senf+ —cost
3 3 8 4
— — 3 4
h Ae "+ Bie — - CO0S 2t + — sen 2t
m) Acos3t+ Bsen3dr— %f cos 3t
") At + B H + lff_’m o) A B H = ECDS t
4
p) A +B-:?2‘r+1ms SF—L_SEH 3t q) A + Be* — ¢
39 13
ry A+ Bc?zr+ ;IEEI 5y A+ Bﬂzr—gr
|
2. Acoswt+ Bsenwt — t cos wi
2w
3. a) E+::-:+:~: Er—lsen 2?+icusf b) r‘zf_'q'f[l—i-lf}
3 2 3 2
5 5 5
c) Lr‘sen 2t d) ——cos?r—]—senzf—i-lfy
4 13 2 13
4 b (9 t+ (w2 — wh) sen wi]
4. x,= —2vyw cos w wy — w) sen wit].
Powd —w?)? + dyiw? % @ '
5. Sugestiao. Considere 0s casos w = wy € W # wy.
CAPITULO 6
6.3
L x)=(L2)+A(-L1.AER 2.y =(L.—-D+ARILAER
— P .
3. u=(-23) 4. I[.r.y}=[%.]J+A{—2~3}~AEH
LY
— — — —
S.a) u=(2,1 D u=(—1,1) ¢) u=152) dy u=(-2,1)
— — — —
6. a) n=1(2,1) by n=1(3.—1) ¢) n=1(1.3) d) n=1(2,—-3)

7. @) (x,9)=(2,-5) + M1, 1), € &
B) (x,9)=(1,-2)+M~1,2),A € r



10.

12.

13.

14.

6.4

12.

a) (x,y)=(1,2) +M1,2),A Er
b) (x,y)=12,-2)+M1,3),LEn

@) (2,1,3) [(x,1,2)— (1,1, )] =00u2x+y+32=6
b) (-2,1,2) [(x,»,2)—(2,1,-1)]=00u2x—y—2z=5

a)(x,y,2z)=0,1,-1)+r(1,2,-1),A €ERr
b) (x,y2)=2,1,-1)+r(2,1,3),LEn

x,»2)=0,2,-1)+1(3,0,-3), A € r (tal reta € paralela a diregdao de ;] » |7 =(3, 0, =3)).
a) n 3 =(,-4,-3)
b) :ﬁﬂ =(4,-2,8)
@), ny o lyz)—(1L,2,1)]=0oux—y+z=0
b) [ Ay [(x2)—(0,1,2)]=00u—4x+y+3z=7
. ,. . V13
2. a) +5 by ~/14 c) /3 d) —
4]
i [ 7 2 [ n :
ol = sjuf +us +us = up =l l(veja:
ui +u3=0=ud +ud+uiz=ul = \l..":r]2 +ui +ui = .I"'H[" ). De modo anidlogo,
— —
tem-se: lull=lu, lellull=1u,l
5 — — — — — — — : — — — —
Sca)llull=0Cu —v)+ vii=llu — v I+l v ilLousgja,ll u — v I=lull—1 v I
— — — - = — — — - = - = - =
9. w=au+pv=un-w=u-(au+Bv)=alu-uw)+plu-v)=u--w=a,
—_ = — - -— —_ -
pois, u + u =l u I>=1le u - v =0. De modo andlogo, obtém-se v - w = f.

Sejam o e B dois reais quaisquer tais que 0., + B =5. Segue que ;- (a, + B 7)) =7, - s dai of
= = — —> — =, = —

) TBG, 7)) = 0e, portanto, a = 0. Eo mesmo modo, 77 - (o 2) =73 " ¢ portanto, a(;

D HBG ) 0; logo, B = O pois. - Oe - =1L Flca provado assnn, que quaisquer que

sejam os reais a e B, o, =0> oc B 0. Portanto, ., €7, sdo linearmente independentes.

'L'



ey R

=
H-v 3 (u - v)-
Y = = = - o = EH
17. cos @ T O0=f0=msen =1 r——
Iz 100w I {7 | el | IR O
| = = e Ay (o 1 T T 7 T 2
| 7 T 7 g2 2 2 r 2 s P , . .
e VI P v IR —(a - v)* _ i Fuy Fus ) (v + vz Hvy) =gy Figvy +usvs)
s - =
- = A
e I w Il oz 1w I
| 3 ) A — " oy
W (H2vs —uave)® + (uz3v) —wva)® + (wpva —uavy)” I A vl
- - = R —
e 101w 1 o 11w 1

6.5

1. a) E aberto
b) Nao ¢ aberto
¢) E aberto (conjunto vazio)
d) Nao ¢ aberto
e) E aberto (conjunto vazio)
) E aberto
g) E aberto
h) Nao ¢ aberto

2. a){(xy) €Exp +)y’ <1}
b) ¢
¢ {(0, 1)}
d {(x,y) € +y=>1}
e) {(x,y) Egtkr=1,1<y<2}
pE

7. a) E fechado
b) Nao ¢ fechado
¢) E fechado
d) Nao ¢ fechado
e) E fechado
) E fechado
g) E fechado
h) Nao ¢ fechado

CAPITULO 7
7.1



(1,1

B, L e
& = =
* A
-l
ur.._
v * =
N .
i
= SN
& ~ N/ o
-
-f ~ S

7.2



b)

a)

'

-—r==
1

d)

C)




m)

nh zl o)

2. a0<t<1
b) |;In ilii\
. 5355

25

3. a)—/)5<t<-lou2<t<,s
b) -2 <t<2,t#0
7.3

1. a)3t+tsent+2¢
b) (e t,esent, 2e )
c) (t—6,sent—2t,2—2F)
d) (sent—2t,6—1 sent*—3 sent)

2. (2+f2)?+(t3—t)}>—3t?

3. j(t) -j(t)=1+t



1.

2

-

- t —1 . —1 1
a) lim F(n= [lim b . lim =, lim —
t—1 t—=1 t—1 =1 t—1 2
— =¥ —
b) (3,2,0) c) 3i +Ij—|——i

— —
a) lim [F(n+ G(n]= [ lim [F () + Gy (1)],.... lim [E, (t}+ G, I[f}]]

e =iy Pty
— —
=(ay + f?]. ar + h} sl EJ”} —a + b
b) lim f(r) F(n= ( lim f(n) K (1), im f(t) B (1), .... lim f(1) F, {I}]
Py =iy Pty t— iy
—
= (Lay, Lay, ... La,) = La
— —
¢} lim F() A G= lim (Fy() Gy(0) — F3(1) Gy (0, F3 (N G () — F (1) G5 (1),

=iy F—=y

— —
F] {f}Gz (f]' == Fz (r) G] {f” = {‘aﬁhﬁ = (I}bz. H}bl — {?lh-_j'. {?]f?z = ﬂzf]‘l} = 4a fﬂ". b

3. a){t€n|t>0}
b) {ten|t>0}
5, a) ]mutad1
=3 =3
F@ - COI<NFOICHIe lim ||?m|| I cmu — 0> pelo teorema do confronto,
. . =ty
im | F(f)- G(H|=0;logo, lim F{f} . G (1) =
t—tg Py
6. Como f ¢ continua em [a, b], [7(¢) também serd. Segue que [[A()| é limitada em [a, b], ou seja,
existe M <0 tal que [£(#)| <M em [a, b].
7.5

— —3
dF 21t d* F 2 —2¢?
. g) —= 6.?.._{’_:.. ]; sl 6, f‘_!.ﬁ
di 1+ ) dr? (%)
— —
dF 2 = : 5 B —2 =
b) e i —2tsen J'—i-_’ak', A f—{Eﬂenf‘—i-—’H‘cusr}J
dt 331 d?  9ilt
F — - L = d*F - — L=
c) =5cos5¢ i —4sendt j+2¢ =" k;———=—25sen5¢t i —16cosdt j—de ' k
dt dt-
{ f ! i
1 A3 = 3 1
L a) (x,y.2)= L—*“— —J + A [—L.—, I], AER
’ 27 273 2 2

by (x.y)=(LLH+A2, 1AER

11 (1 1
&) By g = [yl +AL——,_—, e
279 4’ 4

d (xy,zw=011L1,D+A(,2,1,2),AeR

R

im



3. SejaF=(F,F,, .., Fn);sendo F'(¢) = ﬁ) em/, resulta F'=0em/, parai =1, 2, ..., n. Segue que
existem constantes ki, ka, ..., k,, tais que Fi(t) = k;, paratodo tem [, (i = 1, 2, ..., n). Portanto. F{(¢)
=kem/, onde k= (ki, ko, ..., k).

—

: d | = dF - -
Verifique que - | FOA—-@f=0 em /, e use o Exercicio 3.
L

—

5. Sugestdo:para ;=g 17 =+t & r -7 0=t

— —
7. — dr = -+ = dy —
ay vi)=—=i +2j: alh=—=12
it dt
—3 - =+ . o d v 3 —3
by v (t)=—sent i +msr;+k:am=d—=—cusrr—ﬁcnu
I
— .5,',\‘_‘ - = a‘T - - - - - —
¢l vih=—=vp all=—=10 dy v (= vg+ agl, a (= ag
dt dt
9.a) dT dT
. —- - — . — ~ .
Y Toi=1,70  Ta) =1, dai? . T =0, 0US€)a, 7. Z- sao ortogonais.

At dt

b) Sugestio. [(¢) = v(1)7(2).

— 12 - —
12. a) r (1)= ?-i-] i+ 2k
;

— — 1 — —
by r{ih)=(2—cost) i + (?sen 2;—1];‘ +(24+In{t+ 1)) &

¥id 1 i —t, 2 =
c) r{r}=?arctg2f: Fi{] =) § hAig=RT) &

7.6
1 = — | — l — L = —
Lmj [£7 +e jldt= Inﬁ P+ jefn': .
0 0 0 2
brT;+2k ¢)3i +2j + k

- > 1
Jj——ﬂ' by —+e
2 7

i

R S
2.a) (2—e)i +[{’—

b | o

3. Observe que G ()= ['E] Rs)ds, ..., J'DI F, (s) ds] e aplique o teorema fundamental do célculo.

— — — — — —
P +2j+—k byln2i +—j + k

wd | =

4. a) 2

.ulm

7.7



N 5 -\."IE { [
d) 6 (s)= - cos | In
2
CAPITULO 8
8.1
1. al
b) 3a+2x
c) 3
d) 2
2. a){(x,y) € g?x#-2}

[ , | =
l. a) m+/1+4n= + E In (2m + (1 + 47?)

Fid
o |
1]

1+ e ™ dr= |4

b) /5

T
1
arctg ™" | sen 6

+ (cos H}_E sen 8| d8 =

l + 'n,ll.'I] + E—E.-'T — [ o
=In - te0i2 Hfailh e
1+4/2
P B . = 5
dy 3[1—e"] e In ; =+ 1+4/1+e” —+/2
L+ 4142
) 4 Ll
I g Yy
2 3 = P 2
ﬁ+a15{5}=( ,F + 1. ,S —lj blé(s)=£2m5i‘256ui]
413 413 2 2
. 5 iy 5
c) o {5}=(c05 —, BENl ——, — }
2 N2 W2

b -




3 a) b)

c) d) '

WM,
1/ ¥
2 | &

A

i
e A b lxi=lyl=0ea-lxl=y=|xl

e
g hi

\\ & T

\x\\ \}/ //_r.__uz I

fix,y) =ax + by, onde a e b devem ser determinados de modo que {1, 0) =2 e f{0,1) = 3. Tem-se
a=2e¢b=3. Assim: f(x, y) =2x + 3y.

a) homogénea de grau zero.
b) homogénea de grau 2.

¢) nao ¢ homogénea.

d) homogénea de grau —2.



by £10,3)=3*F(0.1)=0

¢) flx,y)= l\_-".rl +y2 )2 j‘[ =

r ¥ {2 7
I-q T 2 i ke
VESHYE AxT 4y
8.2.
1. @)l—-—x"—y*=coux’*+)y’=1-c(c<1)
z
A c=10
1
1 ¥
c=1 X
z
¥
X
)
4
¥

dx? + yi=¢

paraboloide eliptico

d) As curvas de nivel sdo circunferéncias com centros na origem.



e) As curvas de nivel sdo retas paralelas ax +y =0.

Z

X

f) As curvas de nivel sdo as circunferéncias x> +3*=1—¢*, com0<c < 1.

O grafico de g ¢ a parte da superficie esférica x* +y* + z* = 1, correspondente a z > 0.

Z

g xX*=c(0<c<l);x=—

Eel

fi) ¥

*

i) As curvas de nivel sdo as circunferéncias x> +)* = ¢% ¢ > 0.



Jj) y=x ¢ acurva de nivel correspondente a ¢ = 0. Para ¢ > 0, a curva de nivel ¢ o par de retas y
=xXtJcey=x—4c.

) As curvas de nivel sdo as elipses x> + 4> =1 —-c*(0<c<1).

; ~ . A s = 1
m) As curvas de nivel sdo as circunferéncias c=1)r +v" =1 — —

1"' .
ol




0) As curvas de nivel sdo retas x = ¢ (¢ > 0).

r)

1k -
Tl =1

c = [)a— : b
X} =

a)x—2y=c(c €En)
b) c-=ﬁ=>y=c(x—2),x7é2

JI

Imagem de f= R Imagem de /= R

¢ (1+tco)y=(1-¢c)x(c €n)
dciy—1)=x(c €n)

Imagem de f = B

Imagem de f= R

e) xy=c(c €En)
) ¥—y'=c(cE€nr



f‘:ﬂ t
- =1

=)
Imagem de ;= R

Imagem de f = B

g 4’ +y’=c(c>0)
h) c=3x*—4xy +y*
y=1+ {xi +c (ctER)

Imagem = [0, + =]
Imagem = R

X
D) o =1-c)x*(0<c<1)
Sec=0,x=0
J) Sec=0,x=00uy=0
Sec#0,, =V "% ,
| T -y
Sct#[!.j.—__lu S x Imagem [2. 2:|
Imagem = [0.1]
| g
I=r =
r.';;l *
e=10
c=10

4.a) f(1,1)=23¢ ¢ o valor minimo de /. Nao admite valor maximo.



b) Nao admite valor maximo, nem minimo.

¢) Zero ¢ o valor minimo de f; este valor ¢ atingido nos pontos (x, 0), x > 0, ou (0, ), y > 0. Nao
hé valor maximo.

d) Valor maximo: 1; este valor ¢ atingido nos pontos (x, 0), x # 0. O valor minimo ¢ zero, que ¢
atingido nos pontos (0, y), y # 0.

e i |% %J =li ¢ o valor minimo de f'em A4; f ndo admite valor maximo em 4.

f) 2 ¢ o valor maximo, que ¢ atingido em (0, 0): /{0, 0) = 2. Nao ha valor minimo.

N I .- ~
T=|="7 ¢ © valor minimo. (Sugestao.
Ay L L) -

g ;'( A ]=% ¢ o valor maximo; _r'['—

2" 2
W2
1

:'x,'l; 2-
glx)=2xy1 —ax?, ——

=x=_, fornece os valores de f'sobre o conjunto 4x*> +y* =1,y >0.)

5.a) £(0,0) =3¢ o valor minimo e f{2, 0) = 7 o valor maximo.

b) f(1,3)=4 ¢ o valor maximo ¢ f{0, 0) = 0 o valor minimo.

o fi-1,1)= —% ¢ o valor maximo e {0, 2) = —2 o valor minimo.

(11 8Y_4 -
|?.;|=%eovalormaX1mo.

d) f(3,0)=0 ¢ o valor minimo ¢

6. O que se quer sdo os valores maximo ¢ minimo de z = (5 — 7 (£ + 3) em [0, 4]. Altura maxima:
24. Altura minima: 22

27




Lol
12 a) ¥ i
2
/’\;xu i 9_}:2 = 36
k—/s - x
13. a)
=1
=3¢
? :[}D{-|
T'=-1°C
8.3

ii.

b) Ponto de mais alta temperatura:

R
[4;5, s }.Punm de mais baixa

| 5" 5

lemperatura:

( 4 \'I.S 2 \I;SI ‘}

1. a) E uma esfera de centro (0, 0, 0) e raio 1.
b) E o semiespago abaixo do plano z = 1.



ch

CAPITULO 9

9.1

a)0

b) Naio existe
c) 0

d) Nao existe
e) Nao existe
Jf) Nao existe
g) Nao existe
h) Nao existe

d}




5. Nao existe.

6. De "™ o)=L segue que para todo € >0, existe 8, > 0, tal que
DO0<ju—al<d=|gu) —LI<E
De (.. J_iﬂ‘_l-;,, w1 f(x,y) = a, segue para o 8; > 0 acima, existe 6 > 0 tal que

0 <||(x,y) = (X0, Yo)l| <& = [f{x,y) — a| <&,

Como a & Dg e I, f C D,, resulta f(x,y) # a para todo (x,y) € Dy. Assim,

@O<li,y) — gyl <8=0<If(x,y) —al <§,.

De@e@0<llix,y)—xpigpll<d=lpxy)—Ll<e
7. 1
8. 0.
9.2
2
l.a) #

b) {(x,y) € 52 |2x* +3°<6}
¢) {(xy) € g2[x>y}

d {xy) €2 |X+y <1}
e) {(xy) € g2|(xy) #(0,0)}

fH =
.
g *
‘I.':
2. E continua em (0, 0): lim flx. = lim x-———=0=f{00).
(x ¥) — (0 D) (r.y)=0.0 I +¥°

5. Seja B = {(xy) € 52 | f(x,y) <c}. Precisamos provar que para todo (Xo, yo) € B existe uma bola
aberta, de centro (Xo, yo). contida em B. Como f ¢ continua em (xo, Yo), tomando-se € > 0, com
f(X0, Yo) + € <c. existe r > 0 (como A ¢ aberto, podemos tomar » de modo que a bola aberta de
centro (Xo, yo) € raio » esteja contida em A) tal que

1 (x, ) = (X0, Yo) | <1 = f{x, ¥) <f(x0, y9) T €<c

e, portanto, V' C B; logo, B ¢ aberto. (J ¢ a bola aberta de centro (Xo, yo) € raior > 0.)



CAPITULO 10

10.1
1. al ar_ lilrl'}'l + }'3 e 4 S lll}f}' + 3.1’_\'1
ax ay
-
b) Ix = —ysen xy e —— = —xysenxy
X
& gz  x* +3xyI -2l dz 2xLyi-x)
= E —_— —
dx (x? + y2)? ay  (x? +yH)?
d) 2 _ 2y X ¥ @ a7 _ —z_w_xl =¥
dx ay
9 4 2 3 77 Z 2y
eiﬂ=lenil+x‘+}";++c d_“=%
ax EE5hys dy 1+1x°+y°
z J 7z :
fi c}‘-_=}'er-"tl—rw} @ i=xer-‘ {1+ xv)
g) % =12y -3 + 10y e f;—{ =34y — ) (dx — 9 + 5x°
75 av
i) dz ¥ i dz  —X
e ¥ @ i S SN
dx 1l 42 av 1l +12
i) ﬂ:ﬁ"' e ﬂ=_t-¥ln_r
ax ay
i) §i=2x[l+]ntr3 +39)1 e 92 _ 29[t + In G2+ yH]
1 ﬂ = _];1 e ﬂ = 2y
ax Y +92 + 302 ay 3t +y2 +3)2
) r?‘_z _sen y [cos (x? + _‘rl} + 2x2 sen (x% + _1-3}]
dx [cos(x? + y5))
dz _ Xcosy cos(x? + ¥2) + 2yx sen v sen (x2 + y%)
avy [cos(x? + v2))?
3.a) 4
b) —4
6. o __nmRT . Oop _nmR
av V2 JdaI v
7. L = d' (x—y) e a—z=e:rqb{_r—1‘:—9"11‘;“[_1:—1'}:]0 !
dx : = (}1' ) Ha 080
I,01_y
—+—=&dlx—y ==L
dx dy ¢ ’
10 gz . 1—-% : gz —x
ax xy+ 372 dy  xy+ 372



1. sigemeE)

15. af B £=2_1.'e_”: L y2p

16. i—"r-=—2.1'f_‘r4 e ?=3}'E‘_}4
A x ¥
18. d:f_‘r}=%ln[] +_v33
. x'l;l— xy +—In | +1.'3?
19. ¥y — 6y +~in(l +)
S Dl
20. ﬂ=#;r” (0. Cn[al-iIr {0, 0) ndo existe
ax (x? + y2)2 dx 4
3 __.1_.2.5-2.5_2.
(_—f= — : }}«. - se(x N+ 0.0) e ﬂ:u__mﬂl
dy (x= +y° ) av
. L &
_“" ] gy =1 Sﬂ.f2+]'2-'-il
ety —=1)=
' sex” +y° = |
( 1
—2\. el‘t _.,I.!_JJ S;:_t"2+_‘|'2"-il
(x=+y=—1)° L
sExr+y =1

c) (x’y’Z):(la 192)+7\’(17 174)77\'6 R

d) Verifique que (1, 1, 2) pertence ao plano e que y' (1) € ortogonal ao vetor

af]l] Jr[] ). — I}

R()’l

lr’_
2 f af
Observe que| — (1. 1) L1, —1
| mncqmtaxi 7y ! }

¢é normal ap plano.)



24. zZ(t)=(x )" + (v (1))’ = 2' (1) = 2x (t) X () + 2y () y' (V). Segue que y' (0) = (X' (0), y' (0), 2x' (0)
+ 2y' (0)). Verifique que (1,1,2) pertence ao plano e que y' (0) ¢ ortogonal a
(df df ]]_

— i =11,
r,-'t’ ay

25. O plano determinado por T, e T, passa pelo ponto (Xo, Yo f(X0, Yo)) € € normal ao vetor

i J k
af - i
e 3 ey el T i 7 f By g f =
ll."]["u,uf iy }r’:{_\n]— 0 | e ‘..r.{].:h_]:' _r—il.l] Yo Vi +r—H’.;] Yo :I |I — k.
:"f adx ay
>
I 0 —{xp.¥g)
dx
A equacdo do plano ¢ entdo:
af af o : :
—— (%g. Yo — (xp Yo — 1| -1 ¥ 2) — O Yoo F Gige YY1 = 0
dx ay J .
; i i
ou seja. Z — _,|r1.1'|:'|. _'||'|':|.| = _Jlr ':r” "uﬂ:' (X — lﬂ,f i Jlr “.[:, "u,n,:l |:'I- 'D:I
dx ay

29. a) (0,0)

b) Nio hd

¢) [—— u|

d) (LD, (1L, =D, -1, 1), (-1, -1)
) .0(25)e(~5-3)

H (0,0)(1,-1)e(-1,1)

10.2



ay —= ¥ o
gx 7l fz
- % 2
dw ¥ aw x* Izl dw ¥
by — =2xamsen—, —=——_—__ E = 7
I"].\. Z ¥ o -l.l:lzl —_ '1:3 f} i |E | ﬁlnlzl = _1|'2
dw _ yziy+z) ow  xglx+g)  ow  xox+y)

dx (x+y+z* v (x+y+2)” dz (x+y+z)

'F.J a4, G
d) —f=2.r;_'ust_1'3+}'3+z']._—='2_1‘cosi_r1 +_'r3+33‘|| e

dx oy
d
¥ 2zcos (x2 +v2 +20)
dz
s 252 ’ i o 5. | 08 2w

gl =W = 2 oy 1+]nt"‘._+}l_—':_+“l_}~_: 7 ] o] g
dx 4y +c +we Eh ¥+t w
s 2xzw ds 2w? W R .
—=W 2 g —=X — —+in€x® +y* +z%+we)
dz ;i g ks A o ow R s AR

4. ¢) ‘;—f Xy =flx+y +2H-a g—fu. L1)=16

c) 8

CAPITULO 11

11.1
1. a) Ehb=fx+hy+k—Fflxy —(?—f (x, ¥) h —2f {x, ¥} k = ht. Entdo,
dx ay
lim Tl = lim h ; =}
thoky=mo L I k=0 JhY + k2

Portanto f(x,y) ¢ diferenciavel em todo (X, y) € g2, ou seja f (x, y) = xy ¢ uma funcdo

diferenciavel.

1 1 h kK _ hiy? + h2ky + k2x2 + hkooy + hi2x

d) cnn= T B s
(x+h)y+k) x» xv (x+ By +k) oy




Eihk) . l h2y2 + hlky + k2x? + hiory + hik2x -

im = im — -
k=000 00 EM (hE)—00) (x + AXY + k) x°¥° _.v-,sﬁ + k2

pois,

, [ 1 . h=y?
lim T g lim —_——=
th =00 (x+ ) (y +E)xy. ¥ EE-00 (B2 4+ 2

: " h : k
= lim s —=10, lim By ——— =0el.
Ch, k) — (0,0 ‘.,-"Ff: + k2 (h, k) — (0, 0) JhE 2
L}

I
Segue que f ¢ diferenciavel em todo (x, y) # (0. 0), ou seja, f(X, y) = » € uma funcdo
diferenciavel.

2.2) '™ At0)=1¢ "™ £(0,t) =—1, logo, fndo é continua em (0,0), portanto, f nio ¢ differenciavel

t—=0 t—=0

em (0,0).

Eih k)
b) lim ol ol
it ky—=o0m G KN

o S
FO+h0+0—F0.0-2L00n8-2L 0 0k
= lim £ i
Ui, Ky — (0, 0) x-'lfr: + k2
hik i
I i Wk

lim o= lim ¢ ; y
(h, &) = (0, 0) ‘-.,"hj + k2 (e, k) — [0, IZ:n.\[;I? 1 I;‘-E]\v.'hE + k2

GCh b

oo G o _ : | : . ;
nioexiste, pois, lim G(0.&)=0e lim Gt =— = Portanto, f nio é diferencidvel
k—0 t—D* 242
em (0, 0).
h*
c) = 7

. Eth, k) : he + k=

lim = lim —-=
thky— 0.0y ICh, KM (h k3= 00.0) Jh? + k2 limitada

B I:I-"-.--.-”__--.--..‘\
h* e oo

= lim - ; = lim a': = i 1 = (),
k)= 0.0 (h2 + E2y h2 + k2 U k) — (0, 00 -J_J' + k= "J'hl + k2

Portanto, fé diferencidvel em (0, 0).
11.2

1. a) r:)‘__,lr =yt r}_.l" = g 52
dx dy

funcao diferenciavel.

sdo continuas em g2, logo f € differencidvel em 52, ou seja, f € uma

2.a) fndo ¢ continua em (0, 0), logo, ndo ¢ diferenciavel neste ponto. Em 52 — {(0. 0)} as derivadas
parciais sdo continuas, logo f ¢ diferenciavel em todos os pontos deste conjunto. Assim, 52 —

{(0, 0)} ¢ o conjunto dos pontos em que f ¢ diferenciavel.

b) Em 52 — {0,0)} as derivadas parciais sdo continuas, logo f ¢ diferenciavel em todos os pontos
deste conjunto.



Em (0, 0),

W _h
E(h, k) _ h? + k2 — hik?
im = im —_—= lim
th )= @0 I B h s (p2 + 2 (h )= @0 (b2 + k2), K2 + #2

ndo existe, logo fndo ¢ diferenciavel em (0, 0). Assim, IR* — {(0, 0)} é o conjunto dos pontos em
que /¢ diferenciavel.

)
d

11.3

l.a) z=4x+2y—4;(x, 7,2 =(1,1,2) + A (4,2, 1)
b) z=2y-1;(x,y,2) =(0,1,1) + A (0, 2, —1)
¢) z=-8x+2y+8;(x,y,2)=(,-1,2)+ A (-8,2,-1)
d) z=9x—-8y; (X, y,2)=(2,2,2) + 1 (9,8, 1)

e) 4 =M —dy + (o — 2 {xy, 1—[ %H]hl[:.—],—l)
R Tt O L LI T el
f) 4-=11+;_1—I.i.1:.}.53—{2.2 4] [2 > ]]
2. x+t6y—2z=3

‘:I
3. z=Zx+y-=
x+¥Y =5

4. rff” =2 @ g pay,

7X ady

)
5. a) ﬂu h=-= e r?—"{:|.1r=—l1

b) (x,y,2=(L, 1, 1) +A (2, 1,3)
8. z=2x+3y+3

9. z=6x+6y—18

3 g e
11. a) 'L-'tq' h.l =M
S 2Mab
b) a =i e b =i
2 z



14 x> yoc2
¢ I—Ip=——5—&— 15 ——5—{(¥ — yp) segue que

a2y h=Zp
rl 3 3
S0t - A, - Ak AR WY o 08
= a a b* b
ou seja,
XpX Yo¥ n ’ "-':'I i
20 20 S0y pois L4200
as b= £ ol E N
. .. 9z 92 . . R
Observacio. As derivadas parciais 7 © 5y foram obtidas diretamente da equagdo =z "3z " 7~ !

114

1.a) dz=3xy dx+2%ydy

b) i x 2x
di =\arctg (x + 2y) + = |+ — dy
i o e B o b o e

¢) dz=ycos xy dx + x cos xy dy
d) du=2se¥ “ds—2te’ ¥ dt

2 oV

e) ar—— g+ 4V
1+ p2 + V2 1+ p2+ V2

f) dr=——— dut———dv
yl—usvs V1 —usvs

2.2) Az=dzedz=(e" ¥ +2x%° Y dx—2xye* ¥ dy Fazendox=1,y=1,dx=0,001¢dy=
0,002, resulta Az = 0,03 — 0,004, ou seja, Az = 0,026.

b) Parax=1¢ey=1 tem-se z= 1. Assim, 1 + 0,026 = 1,026 ¢ um valor aproximado para z
correspondente a 1,01 e 1 002.

3. a) dz =%:f_1‘ + %ff_‘l'

b) 2,9966
c) Az = 41460 , 00 seja, Az = —0,049166
§l ]"_P

4. A=xy,dA=ydx+xdy Assim, AA=ydx+xdyonde x=2,y=3,dx=0,01 e dy=-0,03, ou
seja, AA = —0,03.

5. V= ar*h é volume do cilindro de altura 4 e raio da base r; dV = nrh dr + ar* dh. Sendo AV o
volume do material utilizado na caixa, AV= 2nrh dr + ar* dh, onde r =1, h=2,dr = 0,03 e dh =
0,03, ouseja, AV = 0,157.

6. AP = -5 watts.

7. AV=—amrh dr —l1 mf:c!.r':, onder=12 h=20.dr= -0l edh = 0.2.

2
3



8. (1,01)*® = 1 + dZj onde dz ¢ a diferencial de z=x’, no ponto (1, 2), relativa aos acréscimos dx
=0,01 e dy=0,03. Ouseja, (1,01)>* = 1,02.

9. Az=dzonde dz ¢ a diferencial de z= x> +¥*, no ponto (3, 4), relativa aos acréscimos dx = 0,01
e dy=-0,1.

11.a) dw=yz+xzdy+xydz
b) dx=e™"% "Y' (2 du+2dv—2tdt)

2x 2y 2z(x2 + y9)
©) = —dy + ———dv — ——dz
1+ 7= 1+ z- 1+ z=)

d) ds=2xyz (1 +x3)"* " 'dx+ (1 +x*)*In(1 +x%) [zdy +y dz]

12.  (0.01)2 +(3.02)% + (3.97)% =5 + dw, onde dw € a diferencial dew = 1 x2 + 32 + 22,

no ponto (0, 3, 4), relativa aos acréscimos dy = 0,01, dy = 002 e dz = —0.03

L0012 + (3,02)% + (3.97)% = 4988,
11.5

1.a) (2xy, x%)
b) "' (2x7 -2y J)
c) [L _-_ﬁ]

v ¥

— —_

d) '\}I'\I_ 'u-r'\.lf

x4y E il o

2. a) .r_r} + 1? + :f

Nty 42
b) (2x, 2y, 2z)
) 2xZ (C+y + 1)L 2yZ (Y H D)L 22K Ty D)7 In (X +y 1)
Y EEN———
V)

4y xT +y

3. VAixy=02x -2y

i

=
-2

a) Vf(l,1)=2




4. v (X0, Yo) =Yo7 — Xo 1 Observe que V (X0, yo) € normal a Xo 7 + yo 1 :V (X0, o) € tangente em
(X0, Yo) & circunferéncia x> +y* = 1.

L
P

(Xg, ¥o)
vffxer.}’u:'

Observe, ainda, que para todo (o, yo) na circunferéncia x> +y* = 1, || V(xo, yo) | = 1.

5. Derivando emrelacdo a ¢ os dois membros de (x(t))* + (y(t))* = 1, resulta:

2Zx() X () +2y () y (1) =0
7 (1) ‘\:;{ Vilx,. 2,0

£1y
N

Para t = to, (2Xo, 2y0) - ¥' (to) = 0, ou seja, Vi(Xo, yo) - &' (to) = 0. 3(t) = (cos t, sen t) € uma curva
cuja imagem esta contida na curva de nivel X* +y* = 1.

7.2) f=(xy)=(x
b) f=(xy =x"7In2(1,-1)

o}

L

_ N R b 5 X

c) ffixyr={lg—+—sec—, ——sec-—

S y L 3

i

d) f"*-*‘~-‘~"*=[. 5w J

| 1.2 3.2
A1 —a"3 y1=x%

11.b) V f(Xo0, Yo, 20) - [(X, y,2) —(1,1,1)] =0
¢) 2,8 18) [(xy,2—(1,1,1)]=0

CAPITULO 12



12.1

1.a) 9t cos 3¢
b) -4 sentcost

¢) 0
2.a) 3= [ 3,28 — 1y + 4t 2L a2 — 1)
; ay
b) 1

3. a) 2:‘” (2, 30 + 390 (2 3p
ax ay

3
b) 3 cos ia‘f}—f (x, ¥} — 2sen Zrc;—fu. y),ondex =sen3fey=cos Xt
ax ay

7 d
4. . f .2 +2%L f a" 2 = — 3; faca agorat = 1.
X ay

5. a) =]

a6
11
b .'-.—£=——u—’*n++’?n— 1)
) 4 f

6. g(=-1

X =2 cos t, y =sent ¢ uma parametrizagao da elipse T +3" =1 Basta mostrar que g (t) =04 emy,
onde g (t) = f(2 cos t, sen t). Observe que a fungdo g fornece os valores de fsobre a elipse dada.

| af L of |
. D=2 e D=y — + 2 (D =(2.2.0)0e
8. ym=i )e ~- (& dr a (x, 1} ﬂ Sy e

(1) =12, 1, 3). A reta tangente & (x, ¥, 2) = (2, L3+ A 2,0, AER.

1]

r d d
z iw+2*» W —w4+ In— f
du  ax ay

10.

(e + 2v, u — V)

]
*a

af af 2
=2 or ir, v)———(x viondex=u+2vey=u —v
ax gy

-l

14. %= wf. A+ P2 2L 2.1 :+’iraf{rj.F3'l}.

]'t ay



=uflx ¥, x=u—veyv=u+ v Entio:
16 L :

a;—ftt 1J+u[§—‘ff1 1}+dfu;}')} e E-‘_:t:”[ afn H+}fix 1J:|

i ay av dx ay
Portanto,
::—:—ru£=z*2u?ﬂ
du av v
18. — [th g{xn] =—[El] 2 (x, g (x)) + 21 (r.g(x) g (x)=
ax ay
19. 98 (1 f 4y

X

—— A equacfo da reta tangenie é:
cg i, fFmn
ay

Yy =({.fnefin=—-

(x,¥) = (0, 1) + A {1, —%‘1. AER.

.'—L
20. _i[f ix, v, glx ¥)i]l= i[{J]: tEf—"llr[x_. ¥, glx, v)) +’;—J'r[x, ¥, 2(x, ¥)) R B2 0, ou seja,
ax ax dx dz ax
d
a—ftr ¥ glx v
agir\}——a; emanﬂ{l.ln ‘1?. c?‘g[l )= %
03 (x v, 2{x ¥)) ax 5 ay T
A equacio do plano tangente no ponto (1, 1. 3) &z — 3= — %{x =k %{}' —1%
| 0 <
o .
Observe: }—lfn v, giﬂm—ﬂ ax pofrd sy of d: _df . af dz

dx &r ay ax dz dx ax Az dx

21. g (1) =6t ﬂtx, Yo+ EIEEU. R+ ) of (x,y, Dyonde x= 3 | —fez=¢"
a) ax y dz
b) ¢ (0)=8.
22. ﬂ{:f,_'r] =,f:x2—:}=_3}r_1r—}'r—:_r 2x aftr‘+\ 2y, Zx—y)+12 E[1r +¥.2%2x—¥) |.
ax ax az

ag i i i 7
—‘Llr ¥i=x —ft‘{ +v. 29,20 —¥)+2 fn"+_1.-_2}‘,1t—}']——f{x——r}',l_v,lx—y: .
ay gx ay 2z

Observacio. Poderia ter feito g (x, y) =x f (u, v, w), u =x’ +y, v=2y e w = 2x — y. Teriamos,
entao:

dg

of du af av  of aw]_
ax -

= fiu, v, w) + [
ol ax dv dx dw dx

f(x y)=0! [ ]‘ onde ¢ (u) ¢ uma funcdo diferenciavel qualquer.



i
32. paracada (x, v ﬁxo,%lf (tx, )] i fix ¥,
: t=

ou 5eja.

p | CA2 0,00+ v 2t (0.0y=f (x, ¥)
7x gy
\—r}_ﬂ \—f“_ﬂ

12.2

j.' ;
a—m, =0

1. SejaFix,y) =_\3 + 3+ x© —4: Fédeclasse C'em R, F(0,34 ) =0e 5
oy
Pelo teorema das funcdes implicitas, a equacio define uma funcio v = y (x) de classe C ! num

dy ¥+ 32

intervalo aberto { contendo 0. — = - )
dx I +ax

2. a) Seja F ix, y) = xz}' + sen v — x; observe que F (0. 0) = 0 e que

7 F dy 2y —1
L 0me0 -
¥ dx x° +cosy

. e TR
b) dy En +-1.:rJ
dx 4y + 2x-y

3. @ SejaFxyo=¢"Y" %+ 7 1:note que

L 15
ErATRbyE  d g ai T

dF a9z €
(0,000 +#0; - R e c T
Az ax eXt¥tI 4y gy ePT¥YTI 4oy

FO.0.0=0 e

3y —1

L. M
ax 322 -1 ay 3z —1

=t

b) 2z 2=

oo,
4. l—lxai—{.r* + v, %)
i o il

dy _
@ oF 3 F 3
de 7 (x + v v+ 2_\'&— (x2 + v vH

di v

11.a) 2(x—Yy)
b) —2xy,
¢) —2[s + 3r]
d) 2¢[-9 + 2s]



a d ax ay
12. a) —(=—(h0=y—+1==
au du Cdu du
by 2221 2x,9f dy_of dx_0f(¥)ox_g
du  dx du dJdy du Jdx du dyv\x/du

dx x gy =¥
13, a) —= _:l_l—_l g — = -3,"'—"
du  2xs—ys)  du  2{x° —y)
b) Jie+ v —fu—2v i+ 2v 4o fw—2v
= e y=
) = 3

15.2) 2% _u+y?

o i u—2x

b) u— .x.";h' — 3y L+ -\."41' — 3u?
= Lol S

e v=,
| = | a

L § L

CAPITULO 13
13.1

l.a) (x,y)=(I,3)+A €y
b) y(t) = (1o cos t, ;in sent)

2. Reta tangente: (x,y)=(2,5)+A(—2,5),A €y
Reta normal: (x,y)=(2,5)+A(5,2),A € 5

3.a) =(4,2) - [(xy)] - (1,2)]=0y—2=-2(x—1).
b) y=—4x+3

4., y=-2x+3ouy=-2x—3

5. _\'—E=—ir_r—]}nu_\'—2=—if..r—I)
5 3

6.a) f(x, v) = ¢(2x— 3y) onde ¢ (u) ¢ uma funcdo derivavel qualquer.
b) f(x, y) = o(x +y) onde ¢ (u) € uma funcdo derivavel qualquer.
¢) f(x, y) =o¢(x—y) onde ¢ (u) ¢ uma funcao derivavel qualquer.
d) f(x, y) = (x> + y*) onde ¢ (u) ¢ uma fungio derivavel qualquer.

af _af .
7. fx, ¥) = o(xty), com @(u) definida e derivavel em g, satisfaz a condi¢do 3¢ ~ 5y Determine uma
¢ (u) tal que ¢ (2) =3, ¢ (0) =1 e ¢ (1) =2. Por exemplo, tome ¢ (u) = au® + bu + ¢ e determine

a, b e ¢ para que as condi¢des acima se cumpram.



if . af

f(x,y)=0¢ (2x+y), com ¢ (u) definida e derivavel em , satisfaz a condi¢do 7x ~ 5y Para que
2 1

o grafico de f contenha a imagem de & ¢ preciso que ¢ (3t) = t. Basta entdo tomar ' =75 A

SO,
funcdo f(x,y) =5'=* 7 resolve o problema.

Seja F (x, y) = x> + 2y*. Vamos determinar § de modo que, para todo t, 8' (t) =V F (8 (t)), ou seja,
;=2xe i =4y Assim, x =k €' e y = ko €*. Para que a condigdo inicial § (0) = (1, 2) se
verifique devemos tomar k; = 1 e ky = 2; & (t) = (e*, 2¢™) intercepta ortogonalmente todas as
curvas da familia x* + 2y* = ¢ e passa por (1, 2).

| 5]
Y+ =
adF
: - . = : et = P L -
Seja F (x, v) = xy. A funcio v = v (x) deve ser solucio da equagio — = ——. ou seja,
i i ) Sl ’ ) dx aF -
dx
dy x ; 7 2
— = Assim,V =1 + .
dx ¥ '
a) y=X
e
b) y=+x7+3

1. a) Plano tangente: (2, —6,8) - [(X,y,z) —(1,—1,1)]=0oux—3y+4z=8.

Reta normal: (x,y,2)=(1,-1,1) + ¢ (2,6, 8), ¢ € .
b) Plano tangente: 6x + 3y +z=29.

i

1
Reta normal: (x, v, z) = | =

! 3\]— A(6.3, 1), ACR.

¢) Plano tangente: x —y +4z=4.

Reta normal: (x,y,2)=(2,2, 1) +o (1,—-1,4), ¢ € ;.

1 1
—2=——lx—-1—=0-1Dowx+y+4z=10
4 4~ '
11 11
Ir+yvt+Ii=—mmx+y+i=——.
’ 6 ’ 6
(Sugestio. SejaF(x, v, z) = 4 3_1.'2 +22.0 ponto de tangéncia (xg. ¥g. Zg) deve satisfazer

. 3 3 11 :
as condigdes: x5 + 3y + 22§ = — eV F (xg. ¥p. 2p) = A (1, 1, 1), para algum A.)
SR P ]



4. x+y+.2z=2.
5. xy2=(L1,0)+e(2,1,1),0 € .

6.a) xy2=(,1,D)+o(1,-1,1),0 € 5.
b) v(t)=(y2 cost, /2 sent, 1).

7.2) X,y,2)=0,1,00+0(1,-1,1),¢ € 5.

1 1
b X=_cosl,y=sentez= | —Emsr—scnr.

8.2) F(x,y,2=x+y —y'Z' +8.
b) x—7y—16z=-28.

9. —S5x+16y—9z=0.

10. x—2y+2z=T7oux+2y+2z=7.

13.4

3. o

A.D=1V £, n0=
au '

/R

4. a) %

a4

b) —

.:II-&,'I:_'I




6.2) (1,3)

b) 242
7. x=e"ey=2e"t>0.

8 r@=@ i +3)t=L

9. VI1(1,2)=(2,1).Sejad(t)=(1+2t, 2+t f(1+2t, 2 +1t)). Atangente em d(0) = (1, 2,f(1,2)) éa
reta procurada: (X, y,z) =(1,2,2) +06(2, 1, 5),d € p.

10. (x,3,2)=(1,2,4)+5(1,2,5)

11. Seja P' a projecao de P sobre o plano xy; P' move-se sempre na dire¢ao e sentido de maximo
crescimento de f. Sendo (x (t), y (t)), uma parametrizagdo para a trajetoria de P', o (t) = (x (t), y (t),
z (1)), onde z (t) = £ (x (1), y (t)), sera uma parametriza¢io para a trajetoria de P : § (t) = (t, t, 4t +
).

12. (0, 3).
(Sugestao. Aproveite a solugcao do problema 8.)

13. y(©)=(t, t,5—1,—4t),0<t<1.

(L, 1,00

14.2) x*+2)*=17
b 67-8J
¢) 0,1°C
d) 0,08°C

15. a) é

b) 2.6

S
2

16. a) %m



CAPITULO 14

14.1
¥ y 2
2 52 2 2
1. a) s e 6xy? : —=2x3, g =6xly e ¢ f =6x’y

dx= dy* dxady dvax

2 ¥ =7

"z 5 f L 3_ig “Z

b) it I 2eX =Y (1 +2x%), =—dxve’ ¥ = i
dx? dxdy Adyvax

f?_:‘.’ eE o S, |
— =2 7Y 2y —1)
ay=

¢) i B3t W

_2+22 -2 @2
ax>  (1+xr+y)7 gyt (a+xr+y)? axay
B —dxy B a’z
(1+x2+v1?  avax
2t 52 52 a2
d) 28 _opyt 28 _agxdy? 46y, 28 —ug?y3=28
dx* ay* drdy dydx
7’ 7’
8. 21 wo=-12L 0.0=--1
dxdy yéx
1
11. —-
3
14. a) —4xy sen (x* —)?)?
b) 0
14.2
}3
1. a) 2: [x ¥i+cost : Lr.}'],.t=:3c_'r=scnr
r?x- dvax
b) lr "‘f G120 + 3 2L o +2-2L 31,20
r?!.- ayax
5% 2 32 2
¢) 271 °f (.20 + 2—— it | (. 26) + 5| 3 cos 3t i {sen3r.:}+a{:sen3:.n
dx? gdydx dxady ay-
2. gin=flxvx=5ey=4ng in—‘iafir n+4i‘rn v). Entiio:
iy
52 32 ¢ 2
e0=-52Tcnr02L wy+162Lay.
ax- dxady

ve



9. fay=0,ondey=g [x}:di{ft.r, vi] = 0, dad,
X

af
3 f af dv T
r_—_i.r._ﬂ+—[.r,}'}—'=i} ou —'=—}'r—
o X ady dx dx L (x, v)
ay
;. EdA e ldd OF EL0T
dy dx|ldx " |dy dxdeldy
drl r;'_,l'" 2z
(%)
Pf(ar) _,af a1 81 , 3 (ar)
” axt\ay T dx dyv dxady  ay: | ax
H [.T}=_ 3
(5
ay

10 b) fix, )= @lx + 1)+ #(x — 1), onde @ (v) e & (u) s80 fungdes quaisquer, deriviveis até a
alp

2" ordem. Observe que g (u, v) = ¢ (V) + # (u) satisfaz =,
av du

13. 0

14. 0

CAPITULO 15

15.1
l.a) f(2,3)—f(1, )=V {(1,1)=V 177 - [(2,3)— (1, 1)], com (7, 7) no segmento de extremos (1,

1) e (2, 3). Assim, (%, 7) € sol¢ao do sistema

12 =(4x, 3} - (1, 2)
2x—y=lcoml<x <2

Entiio. (X, V) = (T! 2 )

15.3

1.2) f(x,y)=3x)y"—5x*+y+k
b) f(x, y) =senxy+x’ —xy+)’ +k
©) flx,y)=e: "y +arctgy+k



— 2.3 2 2
2. f(x,y)=xy —x"+y —y—8.
o] ) 1 3
3. fay==hn(l+x e

. 7 3 T .
4.  Nio, pois, ﬂ_:—‘l.r +}-3 L1 %11‘ _}.2 ).
¥ o

I 8
5. ¢y {x, y) = —arcty 3
6. woixy= m'clg% + ar.
7. —am:lgl—; se v=>10
el v = ¥ =
i
arclg—+mx se x <0
X
¥ 2
.a) . ) N ) ® a X
Sim, pos admite fungdo potencial (x,y) =75 ~ 5

b) i AT
)Nao, pois gy W8

¢) ¢(x,y) =xy +)* ¢ uma fun¢do potential, logo, 7 é conservativo.

d) Admite fungiio potencial @ (x, ¥) = ———, logo é conservativo,
1 ¥ 7
yX*+ ¥

e) Nio, pois, 2 4+ i (x2).
av ox

/) Admite fungdo potencial ¢ (x, ) =ex », logo é conservativo.

9. Como 7 ¢ conservativo, existe @ (x, y) definida em 4 tal que VV ¢ (x, y) = 7 (x, y). Pela regra d da
cadeia %h_: (PN =Velyh = F(y(f) - ¥’ I’ﬂ. Portanto

ah  —*

J F iy -y ®di=lelyinE=0.
(¥l

11.a) U(x,y)=3x>+)?

; iF ¥
b) i, yy=———
] 3 5

(=]

L

C) Uix, y)= %

P

A X+ ye

d) Nao ¢ conservativo

12. a)7 (x, y) =—VU = (-4x, ).

b) I=—dx,y=—yx(=Ly@=1x{0=0e¥0)=03 +tdr=0=1=Ajcos X+ B;sen2f;y+y=0=y=A,cost+ Bysent.
Tendo em vista as condi¢des iniciais, y () = (cos 2¢, cos ¢). Como cos 2t =2 cos* t — 1, a



imagem de y esta contida na parabola x = 2)* — 1.

Como y = cos ¢, a imagem de v ¢ arco de pardbolax=2)" -1, -1 <y <1,

13. a)T-'l'.r. W=—1xi-y].

Gl NSNS, ) (e (O o e e, . n e
b) v (f) = (cos t —sen t, cos ¢ + sen £) = V2T 7 sl T T A trajetoria é a circunferéncia de

centro na origem e raio 3.

)

% 1‘1
1 v (1) = (cos t, 2 sen ). A trajetoria é a elipse © * = L.

15.4

l.a) 1+x+5y
by 5+(x—-1)+7(k-1)
c) 3x+4y

2. b) Inferiora 107

A > af
3. flx— Py l=—I= { (. yec =142 ——Hx e — 1= 1+
2 |oy* axdy
g f 1 o -
+ —=— (T, V) (y— 12 ‘ =— 16T -2 (x—D2 + 67 (y =D 1.
dy* 2

Del<x=<2el< ¥y<2sepue

ey =Py [<T (-1 +6 (- 1)

4.2) 4,931
b) 107

T. mFr1 + bhk + 1'#2 =

=

(LA i S LA
a da- da- a

b N\ dac—p?
= (.FJ+—JRJ +#k* = 0 para todo (h, k) # (0, 0).
2 4a*

15.5



l.a) xy

2.

B) 6+8(x—1D+10(—1D+5x—-1P+4Gx-D@-1)+9 -1y

6+8Gx-D+10(p-D+5Gx-12+2Gx-1DG-D+9G-1)P+Gx-1)P++2x- 12—
) +3 - 1)

CAPITULO 16

16.2

[

16.3

(54 22
1. a) |T-__'

f 1%
& ?_J ¢ candidato a ponto de minimo local.

i

| T
Nao admite extremante local | | 15 ]_|

¢ 0 Unico ponto critico e nao pode ser extremamente local,
ﬂ[_L i]=~.~ N (1 i]=_a
pois, ax2 L 137 13) T ay? L 113 )

oY
(0,0)e |fg- _EJ candidatos a ponto de maximo local.

(1 H)
3" 3 ¢ candidato a ponto de minimo local. O ponto critico (0, 0) ndo ¢ extremante local, pois x =
0 ndo ¢ extremante local de g (x) =f(x, 0) = x°.

(= 1,—1) é candidato a ponto de minimo local.

(1, 1) ¢ candidato a ponto de minimo local; (— 1, — 1) é candidato a ponto de maximo local. Os
pontos criticos (1, —1) e (=1, 1) ndo sdo extremantes locais.

7 | ponto de minimo local. (Conforme Exercicio 2, ¢ ponto de minimo global.)

b) (1, 1) ¢ ponto de minimo local, mas ndo global (f (0, y) =3’ — 4y + 5 tende a — oo quando

'\_—r :T:||

] ¢ ponto de sela.

Py = 3
€) (-1, 1) é ponto de sela. '|._;T' _EJ ¢ ponto de minimo local, mas nao global f(x, 0) =x — 5x tende a

—00 para X — — ).

(3 1)
d) |j- ‘EJ ¢ ponto de sela.

(23) (L2 3) .
e) 33)¢(~33)sd0 pontos de sela.

f) Nao admite ponto critico.



g) Os extremantes locais de f coincidem com os extremantes locais de g (x, y) = x> + 2xy + 4y* — 6x
—12y; (2, 1) é ponto de minimo local. (Conforme Exercicio 2, € ponto de minimo global.)

h) (0, 0) ponto de maximo local; (0, 1), (0, —1), (1, 0) e (-1, 0) pontos de sela; (1, 1), (1, 1), (-1,
1) e (-1, -1) pontos de minimo locais (verifique que sao pontos de minimo globais).

i) (1,2) ¢ ponto de minimo local.

j) (=1,-1) é ponto de minimo local.

D) (1,1) ¢ ponto de minimo local; (1,—1) e (-1, 1) pontos de sela; (—1, —1) ponto de maximo local.

3. a) | 2) ponto de minimo global.

) {x,¥), a;'rrxu="-‘La_'r.i.r.1.'3 =2 LIE} ”]
Nao admite extremantes, pois, para todo I ayt O ponto critico | 73" 13/ € de
sela.

c) |l 1) .
1" 1) ponto de maximo global.
2 |E'|

d) |

THTY I ponto de minimo global.

e) Nao admite extremante; (2, —2) € ponto de sela. [Desenhe as imagens das curvas y, (¢) = (¢, -2, f
(t,-2)ev.()=(2-3t,-2+2t,z(¢)) onde z (t) = f (2 — 3t,— 2 + 2¢)].

£ (1,2) ponto de minimo global.
4. (22-3)

3/

i = "

: 3 R "

5 Efla B) = ZI lea; + B — 51 E— .ZI 2a;laa;+ B —ble
e i

i
— = Z 2 [aa; + B— bl (a. B) ¢é asolucdo do sistema
o B

za —,BZ: —Zah

1=1

azcr,- +nff= Zbl
| i=I i=1

5 .
6.a) y- 5% I [Sugerimos desenhar a reta encontrada e marcar os pontos dados.]
B) y= —x+—

0 10



T.aya; | B | & ad; (e, B) € solucdo do sistema
5100 25 500
6| 98 | 36 588 260 + 48 = 38T
T 95| 49 665 ‘_ [ 7da + 268 = 2.505
8 94| o4 752
26 |387 | 174 | 2505 o B0

10 10

b) 89,4

8. (4,24,2)e (u, u 4+ u) sao pontos arbitrarios de e s, respectivamente;

YA — ) + 024 — p)? + 2+ p)?

¢ a distancia entre eles. Basta, entdo, determinar (4, #) que minimiza

(5 7)

) =(—u) +Qh—u) + Q2+ P=(1,-2,2)c 0="3 33

9. (1,2,1).

10. L=pix+py—[x*+2)*+2xy] = 120x + 200y — 3x* — 3y — 2xy. A produgdo que maximiza o lucro
¢x=10ey=30.

11. L=5z-(2x +y). Aproducio z que maximiza o lucro ¢ a correspondente a x = 15,8 ¢ y = 20,4, ou
seja, z = 1576,2.

13 {34 25 l6)

\14° 14" 14 )

14, x+y+z=

£ | tas

15.a) (1,0, 2) ponto de minimo local (verifique que € ponto de maximo global).

b) (1,1, 1) ponto de minimo local: (-1, —1, —1) ponto de maximo local; (1, 1,-1), (1, -1, 1); (1, -1,
-1),(-1,1,1),(-1,1,-1) e (-1, -1, 1) ndo sdo extremantes (veja Exercicio 16).

’?1| , ;e
= | € ponto de minimo local.

5

c) (-1, 1, 2) ndo extremante; 7

-5
E.
d) (3,—2,— 1) ndo ¢ extremante.

16.4

1. @) Valor maximo € 6 e ¢ atingido em (2, 0); valor minimo ¢ -3 e ¢ atingido em (0, 3).
; _— — o p—

A /10 ) 3. 10 )

b) | _% \|I[;.} Jé ponto de maximeo; H%_ “‘IJ{;} JI

é ponto de minimo.



¢) Valor maximo ¢ 0 e ¢ atingido nos pontos (0, y), 0 <y < 1. O valor minimo ¢ —2 e ¢ atingido em
(1, 0).

e e e L. 25 )

) Valor minimo ¢ 0 e ¢ atingido nos pontos (0, ), =¥ =5 (£ 0.0=x== O valor maximo é 5 que ¢

(5 5)
atingido em | 7 g_J'

e) O tnico ponto critico no interior de A ¢ (0, 0) que ndo € extremante. Assim, f assumira os valores
mAximo e minimo na fronteira x* + > =4 de A; g (f) = f (2 cos t, 2 sen ¢) fornece os valores de f
na fronteira. O valor maximo ¢ 4, sendo atingido nos pontos (0, 2) e (0, — 2). O valor minimo ¢ —
4, sendo atingido nos pontos (2, 0) e (— 2, 0).

f) Valor minimo ¢ 0, sendo atingido em (0, 0). Valor maximo ¢ 2, sendo atingido nos pontos (0, 1) e

(0, —1).
[ 4417 17 (.1 35

2' | L : h ‘ l:‘.'iu:_u:‘:l;in, Utilize a funcio glx)=f|x. =/l —x~ L —l=x = I.i|
. 17 34 2 R /

3. (0,2)

4. Valor maximo ¢ 25, sendo atingido em (0, 5).

5. O problema consiste em maximizar o lucro L = 10x + 6y (x ¢ quantidade do produto / ¢ y do
produto /7) com as restri¢do: x <20, y <45, 5x +4y <200, 10x +4y <240, x>0¢ y > 0. O lucro
sera maximo para x = 8 e y = 40.

(0, 1) maximiza; |g 9) | minimiza.

7. Observe que O (at, bt) =t* O (a, b), onde a* + b* = 1.

16.5
1. a) 6 I 3
l T =% _ | J4 y e
‘3 v 13 ¢ ponto de maximo; J3® 38 ) € ponto de minimo.
L - (6 6], o
‘3 /3% | € ponto de maximo; /3% 3% ) € ponto de minimo.
) |’i L) .
19° 19 ) ponto de minimo.
d (22 .
| ponto de minimo.

e) (2,1)e(~2,-1) pontos de maximo; (- 2, 1) e (2, — 1) pontos de minimo.
f (=1,1) ponto de minimo.

2 (L L‘] N el |_L_+]"| ..
|y2" 72 ) ponto de minimo; {3 2 /el 22 ) pontos de maximo.



10.

11.

h)

. [ 1
) (1, 1) ponto de minimo local; |~ 7"

J)| T
V3 ) v3 3 )

! =y
2\-‘1 |

(2
;

(2, 0) ponto de maximo; 3 pontos de maximo.

.

__J| -..J '_.-..l_|r.'1

J onto de maximo local.

1

2 2 l
A ponto de maximo, | & \.-'E] ( H s _E] onto de minimo.

-,

2 B
x + 16y =8; o0 ponto de tangéncia ¢ L" gJ'

[

(2, 4). [Sugestido. Minimize f'(x, y) = (x — 14)* + (y — 1)* com a restri¢do y = x*.]

(L1
43 233 N3 )

32 {8 16 J‘]

S

1
4./

3 | —

I—‘JI
"y

rf—, —, —

g ) gl
g 5 O ponto de tangéncia € (15" 19" 79 /.

Valor maximo ¢ 4, sendo atingido em (1, 1, 1). O valor minimo ¢ — 4, sendo atingido em (-1, —1,

1.

2 4 6 2 2 2
[_? T ?] [Sugestao. Minimize f (x, y,z) =x +y +z comarestrigdox +2y —3z=4.]

M9 5) 2 2 2
[ 1111/ [Sugestdo. Minimize x +y +z comas restriciox +2y+z=1¢

(2—466 1 2+66 )

:.\ 6 '3 6 | maximiza f.

(1, 1) e (-1, —1) sdo os mais proximos da origem; (/3 — ./3) e (— /3. /3) Sa0 os mais afastados.

¥

CNERVEN
¥ U
m\ .
&
(‘\\ \,\{I, 1)
7 3 - X
b
XN s
by

- 1} - |
Observacao. Sejam B ( S22 ]“ =5 [_ Wl ] sejamu ¢ v as componentes de (x, y) na base

(u, v)istoé:(x, \J—uu tyvy ouseja



o1 I
e (Tz T_} v [_ A Tz} Verifique que a mudanga de coordenadas

transforma a equacdo dada na equagdo 5

L1 | o
12. [I’ I} Verifique que a mudanga de coordenadas *~ 7" 7 "7

NG 73 77" transforma a equagio
dada na equacao 2,2 — 2.3 4 + 1 =0 que € uma parabola.

13. (1,3)e (-1,-3). Amudanea de coordenadas

"
3

1
X= ; o — = v

] .- 13 3
{ Vo "o i _w=”[ 8 Ty ﬁ{_ ]
y=—

|!+

- A107 10 ) Y107 410 )
y10 410 = = = )
) v

I'l: 1'3
transforma a equacdo dada na equagdo 75~ 75 | que é uma hipérbole:

= i F'Y 5 3
Observe que " ~ [\-’m W] g (_ 710 W] sd0 os versores de (1, 3) e (- 3, 1).



14. (1,1,1).

15. 12 cada um.

16. Equilatero.

18. Cubo.

19. Cubo de aresta 1 m.

5.2
20. Cubo de aresta 3

21 41
. B

8
Paralelepipedo de arestas B

22. _r=-1._‘.'=2-::=%..

23. Temperatura maxima 200. Temperatura minima: —200.

24 bx + 4y + 32 =123,

25. P=(21)ed= [

t-3 | tn
I\.-Il;.l
i
=

CAPITULO 17

17.1

l.a) —

17.3

b) (1,1); sim



c) 2x+ _'r=%: nio

2. [E 3 23 314

14714714 ] 14
3.a) z=0
b) r=%
17.4
1.a)

< 23
b) y =£_‘r )
350 210

¢) R*=0,86532 (aproximado)

2. a) ::-=%
31
c) R*=0
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Derivagao de fungdo definida implicitamente, 226
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Diferencial, 205
Diferenciavel, fungdo, 190
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de Weibull, 70

exponencial, 67

F de Snedecor, 70

gama, 68

normal ou de Gauss, 55, 56
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qui-quadrado, 69

t de Student, 69
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cinética, 84
potencial, 84
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diferenciavel, 190

energia potencial, 297

gama, 64
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ndo integraveis, 1

polinomial, 149

potencial, 296
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Gradiente, 207, 245
relacdo entre fungdes com mesmo gradiente, 292
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Hessiano, 312
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aplicativo FTT DATA, 396
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Imagem de func¢ao, 116, 147
Imagem ou trajetoria de uma curva, 116, 139
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Integral

de Riemann, 136
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impropria, 28, 36
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Limitada, fungdo, 5, 172
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reta, 201, 253
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eliptico, 154
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Perpendicularismo ou ortogonadismo, 102, 103
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Plano tangente, 201, 253
Polinémio de Taylor, 298, 302, 304, 306
Ponto

critico ou estacionario, 310, 313

de acumulagdo, 114

de fronteira, 310

de maximo (minimo), 156, 307

global ou absoluto, 307
local, 185, 307

de sela, 310

interior, 112, 309, 313
Principio de superposi¢do, 98
Probabilidade, 46, 47
Produto escalar, 102

na HP-48G, 399
Produto vetorial, 107, 107, 122
Pulsacao, 86

R

Raio de curvatura, 144

Regra da cadeia, 212

Relagdo de Euler, 225, 368

Relacdo entre fungdes com mesmo gradiente, 292
Reparametrizacdo de curva pelo comprimento de arco, 144
Ressonancia, 96, 100

Reta dos minimos quadrados, 351

Reta normal, 201
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Seno hiperbdlico, 24

Sistema auxiliar, 346, 350

Solugdo LSQ ou dos minimos quadrados de sistema linear, 341, 343, 346, 390
Solugdo particular, 92-93

Solve System da HP-48G, 386

Soma de Riemann, 136

Superficie de nivel, 161
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Teorema

das fungdes implicitas, 239-240

de Pitagoras, 340

de Schwarz, 276

de Weierstrass, 172, 318

do confronto, 166

do valor médio, 289

para integral, 16

fundamental do calculo, 19

Transformada de Laplace, 44
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esperado de variavel aleatéria, 52-53

maximo, 156, 307

minimo, 156
Variagdo da quantidade de movimento, 139
Variancia, 52-53
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aleatéria continua, 48

aleatoéria discreta, 46
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ABS, 401

BAN, 406

C2NA, 384

C2NX, 383

CST, 391

DOT, 399

FNNA, 385

FNNX, 385

LSQ, 389

MATR, 395

MEAN, 405

NMVA, 382

NMVX, 380

PREDY, 397

RREEF, 390

RSD, 400

TNA, 385

TNX, 384

UTPC, 383

UTPEF, 385

UTPN, 378

UTPT, 384
Versor, 144, 264
Vetor(es)

linearmente independentes, 111
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tangente, 129
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