

逆向 C++

这些年来，逆向工程分析人员一直是凭借着汇编和 C的知识对大多数软件进行逆向工程的，

但是，现在随着越来越多的应用程序和恶意软件转而使用 C++语言进行开发，深入理解 C++

面向对象方式开发的软件的反汇编技术就显得越发的必要。本文试图通过分析在反汇编时如

何手工识别 C++对象，进而讨论如何自动完成这一分析过程最终介绍我们自己开发的自动化

工具，一步一步的帮助读者掌握逆向 C++程序的一些方法。

作者：Paul Vincent Sabanal

Mark Vincent Yason

译者：Hannibal509@gmail.com

逆向C++...1
I.引言和必要性 ..3
II.手工方法 ..3

A. 识别类及其构造函数...3
B. 识别类...10

1） 识别构造函数和析构函数 ...10
2） 利用RTTI识别多态类...12

C. 判别类与类之间的关系...18
1．通过分析构造函数来分析类与类之间的关系 ...18
2．通过RTTI分析类与类之间的关系 ...19

D．辨别类的成员...21
III．自动化 ..21

A． OOP_RE...21
B． 为什么选择静态分析的方式？ ...22
C． 自动化分析的策略...22

通用算法...22
1． 利用RTTI识别多态类...23
2．利用虚函数表识别多态类（不使用RTTI） ...24
3．通过搜索构造/析构函数来识别类 ...25
4．识别类与类之间的继承关系 ...28
5．类的成员的识别...29

D．显示结果...29
1．注释各种结构体...29
2．改进过的调用图表...30

E．分析结果可视化：UML图...30
IV．小结 ..32

I.引言和必要性

对于逆向工程分析人员来说，能从一个二进制可执行文件中识别出 C++程序

的结构，并且能标识出各个主要的类，以及这些类之间的关系（继承、派生等）

是非常重要的。为了能做到这一点，逆向工程分析人员就必须要（1）能识别出

这些类（2）能识别出这些类之间的关系（3）识别出类中的各个成员。本文就是

要教大家能做到上述三点。首先我们先来讨论如何手工的分析一个 C++程序编译

的二进制可执行文件，从中提取出有关的类的信息。然后我们再来讨论如何自动

化这一手工分析的过程。

当然，要做到这一点需要你花上不少的功夫学习很多技巧，但是为什么我们

要学习并掌握这些东西呢？我认为有下面这三点理由要求我们这么做：

1)用 C++开发的恶意软件越来越多了

跟据我们分析恶意软件的经验，现在我们要分析的恶意软件中使用 C++开发

的恶意软件越来越多了。你知道，把这些恶意软件扔到 IDA 里去进行静态分析的

难度会比较大，因为相对于 C中的直接函数调用而言，静态分析 C++中的虚函数

调用就比较困难，因为 C++中的调用虚函数是采用间接调用的方式，有时你甚至

都能难确定某个函数是否被调用过。比如臭名昭著的 Agobot 病毒就是用 C++写

的，另外我自己的蜜罐里最近也捕获了一些新的 C++写的恶意软件。

2)用 C++开发的现代的应用程序也越来越多了。

随着操作系统和应用程序的规模和复杂度的与日俱增，C++越来越受软件开

发人员的青睐。这也导致了在漏洞发掘等逆向工程任务中面对 C++语言编写的软

件的可能性也就越来越大。所以逆向分析人员必须要掌握 C++相关的逆向工程技

术

3)关于 C++的逆向工程资料极少

我们相信把 C++的逆向工程资料整理成册，提供给逆向工程分析人员是一件

功德无量的好事，因为这一方面的资料是在是太少了。（译注：在《黑客反汇编

揭密》一书中有部分讨论）

注意：本文中讨论的 C++可执行文件仅限于使用 Microsoft Visual C++编译器编

译出的 C++可执行文件。

II.手工方法

这一节，主要讨论手工分析 C++可执行文件的方法。主要讨论如何识别类及

其成员（变量，函数以及构造函数和析构函数）以及类与类之间的关系。

A. 识别类及其构造函数

要识别出类的成员及类与类之间的关系，我们首先要把各个类给识别出来，

所以我们先来识别类及其构造函数。我们可以通过下列特征从一个可执行文件中

把类和它的构造函数识别出来：

1）大量的使用 ECX 寄存器（作为 this 指针）。我们应该首先注意到的是在

反汇编代码中会大量出现使用 ECX 寄存器（用来传递 this 指针）的情况。如下

图，我们看到在给 ECX 寄存器赋值之后，马上调用了一个函数。

另外，我们在函数中可能会经常看到 ECX 寄存器还没有初始化就直接被使用

的情况（如下图），这时我们基本上就可以猜出来：这个函数应该就是某个类的

成员函数。

2）调用约定。这一点与 1）有关，类的成员函数在被调用时基本上是把函

数的参数压入栈中，而使用 ECX 传递 this 指针。如下面这个例子，在为类新建

了一个对象之后，new 返回的指针（该指针指向分配给对象的地址）EAX 的值马

上被传给了 ECX，然后就调用了构造函数。

另外，我们有时还会遇到一些间接函数调用，这很可能是调用类的虚函数，

当然，在静态分析的情况下（即不是在调试器中进行动态分析）如果不是事先明

确的知道这个虚函数是哪个类的，要深入跟踪这个虚函数还是很困难的。我们考

虑下面这个例子：

在这个例子里，我们首先要知道 ClassA 的虚函数表（virtual function

table）在哪里，然后才能根据虚函数表来确定虚函数的代码所在的位置。

3）STL（标准模版库 Standard Template Library）中的代码和可执行文件

导入的 DLL。另外，如果我们在检查二进制可执行文件时发现这个可执行文件使

用了 STL 中的代码，这一点可以通过分析可执行文件要求导入的函数或者通过

IDA 的 FLIRT 之类的库签名识别方法来做到：

下面是调用 STL 中的代码的情况：

类的实例

在我们进一步深入讨论之前，逆向工程分析人员还应该熟悉对象（或者说一

个类的实例）在内存中是个什么样子，说的文绉绉一点就是类在内存中的布局情

况。我们先来看一个简单的类：

这个类在内存中是这个样子的：

最后一个类的成员变量后面有 3个字节的填充，这是因为要求 4字节对齐。

在 Visual C++中，类的成员变量是按照其声明的大小依次排列在内存中的。

看 PPT 里的更清楚一点：

那么怎么才能得到上面这张图呢？我们可以使用-d1reportAllClassLayout

这个编译开关，它可以让 MSVC 编译器（译注：至少是 MSVC 6.0 以上的版本）生

成一个.layout 文件，在该文件中包含有大量的极具价值的类的布局信息，包括

基类在派生类中的位置，虚函数表，虚基类表（virtual base class table 我

们下面会深入讨论），类的成员变量等信息（实际上我们这些图表都是从.layout

文件中取出的）。

那么，如果在一个类中含有虚函数呢？

下面是这个类在内存中的存在形式：

注意指向虚函数表的指针（vfptr）是被添加在最前面的，而在虚函数表里

面，各个虚函数是按照其声明的顺序排列的。类 Ex2 的虚函数表如下：

下面这个图是 PPT 里的更清楚一点：

当一个类是继承另一个类的话，情况又会怎么样呢？下面讨论一个简单的单

一继承关系

在内存中这个类的情况是这样的：

还是 PPT 上的图好看：

正如您所看到的，派生类只是简单的把基类嵌入到自己内部就完事了。但是

万一要是有多重继承有会有什么情况发生呢？

内存中的情况会是这样：

看 PPT 上的图更清楚一点：

派生类将每个基类都嵌入了自身，而且每个基类还都保留有自己的虚函数

表。但是请注意，第一个基类的虚函数表是被派生类共享的，派生类的虚函数将

会被例在基类虚函数表的后面。另外要注意的是，因为 Ex5 中也有一个和 Ex4

的虚函数同名的 func1()，所以根据 C++的规则，Ex4 虚函数中的 func1()函数的

指针已经被 Ex5 的 func1()的函数指针给替换掉了。

B. 识别类

我们上面已经讨论了如何判断一个程序是不是用 C++写的，讨论了类的构造

函数以及内存中类的实例的组织形式，这一节我们来讨论 C++的类在可执行文件

中的使用情况。我们先来讨论如何确定内存中哪些部分是类（或者称为对象）下

一节再来讨论如何确定类之间的关系以及类中的成员。

1）识别构造函数和析构函数

为了能从二进制可执行文件中把类识别出来，我们必须先要理解这些类的实

例——对象是怎样被创建的。因为这个创建过程在汇编级别上具体是怎样实

现的会给我们在反汇编时如何识别这些类提供依据

 1）全局对象。全局对象顾名思义就是那些被声明为全局变量的对象。这

些对象的内存空间是在编译时就被分配好了的，它们位于可执行文件的数据

段中。这些对象的构造函数是在这个程序启动之后，main()函数被调用之前

被调用执行的，而它们的析构函数则是在程序退出(exit)时被调用的。

 一般来讲，如果我们发现一个函数调用时，传入的 this 指针（一般是使

用 ecx 寄存器）是指向一个全局变量的话，我们基本可以确定，这是一个全

局对象，而要找到这个全局对象的构造函数和析构函数，我们一般要借助于

交叉引用（cross-references）的功能。我们观察所有使用指向这个全局对

象的函数的位置，如果某个函数位于程序的入口点（entry point）和 main()

函数之间，那么它就很有可能就是这个对象的构造函数。

 PPT 里的图很说明问题：

这是源码：

 这是反汇编以后的代码：

2)局部对象。同全局对象，局部对象就是被生命为局部变量的对象。这

些对象的作用域起始于该对象被声明的地方，结束于声明该对象的模块退出

之时（比如函数结尾或者分支结束的地方，下面例子里就是在一个 if 语句块

结束的地方调用析构函数的）。局部对象在内存中是位于栈（stack）里的。

它们的构造函数在该对象声明的地方被调用，而在对象离开其作用域时调用

对象的析构函数。

局部对象的构造函数还是比较容易识别的，如果你发现一个函数调用，

传递过去的 this 指针竟然是指向了栈中一个未被初始化过的变量的话，你基

本上可以确定这个函数是一个对象的构造函数，同时也就发现了一个对象。

析构函数一般则是与构造函数位于同一个模块（也就是声明该对象的模块）

的最后一个使用指向该对象的 this 指针的函数。

下面是一个简单的例子:

3）动态分配的对象。这种对象是指哪些通过 new 操作符动态创建的对象。

实际上 new 操作符会转变成两个函数调用：一个 new()函数的调用再紧接着

一个构造函数的调用。new()函数是用来在堆中为对象分配空间的（对象的大

小通过参数传递给 new()函数），然后把新分配的地址放在 EAX 寄存器中返回

出来。然后这个地址就被当作 this 指针传递给构造函数。同样 delete 操作

符也会转变成两个函数调用，先调用析构函数，然后接着调用 free()函数回

收空间。

如下面这个简单的例子：

2）利用 RTTI 识别多态类

如果 C++程序在编译时启用了 RTTI 功能，那么恭喜你！你又多了另一种

识别类，特别是对多态类（即包含有虚函数的类），的方法——利用 RTTI（运

行时类型信息 Run-time Type Information）。RTTI 是 C++中提供的一种在运

行时确定对象的类型的机制。在C++中我们一般使用typeid和 dynamic_cast

这两个操作符来实现这一机制。这两个操作符在实现时需要获得相关类的类

名，类的层次等相关信息。在实际使用 VC 的过程中，如果你使用了 typeid

和 dynamic_cast 这两个操作符，却没有打开 RTTI 编译选项，编译器将会给

你一个警告。在默认情况下 MSVC 6.0 是把 RTTI 给关闭掉的。

但是在 MSVC 2005 中，RTTI 默认是打开的。

为了实现 RTTI，编译器在编译完了的二进制可执行文件中加入一些结构体，

这些结构体包含了代码中关于类（特别是多态类）的信息。这些结构体是：

1．RTTICompleteObjectLocator

这个结构体包含了 2个指针，一个指向实际的类信息，另一个指向类的继承

关系信息。

怎么找到这个 RTTICompleteObjectLocator 结构体呢？我们先找虚函数表，

在内存中虚函数表上面一个DWORD就是指向RTTICompleteObjectLocator结构体

的指针，不信？请看下面这两个例子，您上眼：

下面给出的是一个 RTTICompleteObjectLocator 结构体的实例：

2．TypeDescriptor

您想必已经看见了，在RTTICompleteObjectLocator结构体中，第四个DWORD

域里是一个指向本类的 TypeDescriptor 结构体的指针。TypeDescriptor 这个结

构体中记录了这个类的类名，我们逆向的时候一般可以根据类名大致猜出这个类

是干什么的，这个结构体的结构如下图：

下面是 TypeDescriptor 的一个实例：

3．RTTIClassHierarchyDescriptor

RTTIClassHierarchyDescriptor 记录了类的继承信息，包括基类的数量，

以及一个 RTTIBaseClassDescriptor 数组，RTTIBaseClassDescriptor 我们下面

详细讨论，现在我只先说一点，就是 RTTIBaseClassDescriptor 最终将指向当前

各个基类的 TypeDescriptor。

比如说我们声明了一个类 ClassG，它虚继承了类 ClassA 和 ClassE：

那么 ClassG 的 RTTIClassHierarchyDescriptor 就应该是下面这个样子的：

它里面有 3个基类（包括了 ClassG 本身），attribute 是 3 表示这个类是多

继 承 加 上 虚 继 承 。 最 后 有 一 个 pBaseClassArrary 指 针 指 向

RTTIBaseClassDescriptor 指针数组。

4．RTTIBaseClassDescriptor

这个结构体包含了关于基类的有关信息。它包括一个指向基类的

TypeDescriptor的指针和一个指向基类的RTTIClassHierarchyDescriptor的指

针，（译注：在 VC6.0 编译的结果中可能没有 pClassDescriptor）另外它还包含

有一个 PMD 结构体，该结构体中记录了该类中各个基类的位置。

RTTIBaseClassDescriptor 的结构如下图所示：

虚基类表（virtual base class table，vbtable）只会在多重虚继承的情

况下才会出现。因为在多重虚继承的情况下，有时会需要 upclass，（译注：比

如这个 ClassG 这个例子中 ClassA 和 ClassE 都继承自 ClassX，《掀起你的盖头

来——谈 VC++对象模型》一文中第五节虚继承中讲的比较细，我懒一下直接引

用了，呵呵，http://dev.yesky.com/136/2317136_1.shtml）这时就需要精确定

位基类。虚基类表包含了各个基类在派生类中的位置（或者也可以说是各个基类

的虚函数表在派生类中的位置，因为虚函数表是位于类的起始位置的）。

比如我们这个 ClassG，它在内存中是这个样子的：

虚函数表的指针被放在整个类偏移+4 这个位置上，而虚基类表中则记录了

各个基类在派生类中的位置：

我们现在来试试通过虚基类表来确定 ClassE 在 ClassG 中的位置，我们先要

知道虚基类表的偏移，嗯，它是 4，然后我们从虚基类表中读出 ClassE 的偏移，

嗯，它是 16，16+4=20，所以 ClassE 在 ClassG 中位于偏移+20 这个位置上。

下面是 ClassG 中 ClassE 的 BaseClassDescriptor：

我们看到 PMD.pdisp 是 4，这个域表示的是 vbtable（虚函数表）在 ClassG

中的偏移量，而 PMD.vdisp 是 8，表示 ClassE 在 ClassG 中的偏移量，是记录在

虚函数表偏移+8 的位置上的。（也就是第三个 DWORD 域中）。

PPT 里的图实在是清楚啊：

下面这个图是对这一节的一个总结：

C. 判别类与类之间的关系

1．通过分析构造函数来分析类与类之间的关系

构造函数是用来初始化对象的（好像是废话啊，呵呵），所以在构造函数中，

它会调用基类的构造函数（如果有的话）以及设置自己的虚函数表。因此分析类

的构造函数是我们分析类与类之间关系的一个很好的突破口。

下面是一个简单单继承的例子：

假定我们已经知道上面这段代码是某个类的构造函数，我们发现红颜色标出

的这个函数使用了一个由 ecx 传递进来的一个当前对象的 this 指针。问题来了：

这个函数究竟是当前对象的一个成员函数呢，还是当前对象的基类的构造函数

呢？

对不起，我不能 100％的确定。当然在实际的逆向工程里，很有可能这就是

一个基类的构造函数。当然有时我们干脆事先究已经知道了这个函数是另一个类

的构造函数，问题也就迎刃而解了。

接下来说正事，如果我们发现类 A的构造函数在类 B的构造函数中出现，而

且还把当前对象（类 B）的指针当成（类 A 的）this 指针来使用的话，我们基本

上就可以确定，这是类 A是类 B的基类。

在进行人工判别时，我们应该多多利用交叉引用（cross-references）功能，

看看红颜色标出的这个函数有没有被其他类当成构造函数使用。自动判别的有关

技巧我们稍后再进行讨论。

下面我们再来看一个复杂一点的多继承的情况：

一开始还是和刚才那个单继承的情况一样，先有一个函数调用，使用了 ecx

把当前对象的指针当成 this 指针传给了这个函数。嗯，然后好像就有点不一样

了，我们注意到当前对象的指针被加上 4，然后又被当成另一个函数的 this 指

针……呵呵，显然第二个函数是另一个基类的构造函数。

我们现在对这个类做一点解释，让你能比较直观的理解这一小节。上面这段

代码是类 D的构造函数，类 D继承了类 A和 C，这三个类在内存中的布局如下：

我们现在知道了各个基类的构造函数所使用的 this 指针是怎么来的了。基

类的 this 指针是与派生类的 this 指针戚戚相关的，具体说，就是类 A 和 C 的

this 指针是类 D的 this 指针加上类 A和 C各自在类 D中的偏移量得出的。

2．通过 RTTI 分析类与类之间的关系

利用 RTTI 识别类我们在前面已经讨论过了，现在我们来讨论怎样利用 RTTI

来判别类与类之间的关系。现在我们要利用 RTTIClassHierarchyDescriptor 这

个结构体。为了便于大家参考，我把这个结构体的的结构在贴一遍：

我们现在注意最后一个域——pBaseClassArray。这个域里是一个指向

RTTIBaseClassDescriptor(BCD)组成的数组的指针。而而数组中各个 BCD 则是指

向当前类的各个基类的 TypeDescriptor 结构体的指针（关于这一点我们前面已

经讨论过了）。

比如下面这个例子：

下 面 是 根 据 类 C 的 RTTIClassHierarchyDescriptor ，

RTTIBaseClassDescriptor 以及相关基类的 TypeDescriptor 画出的，A、B、C

三个类之间的关系：

仔细的看官可能已经发现一点问题了，在 pBaseClassArray 指向的

BaseClassArray 数组中，甚至列出了类 C的非直接基类——A。这样以来类 A和

B 之 间 的 关 系 就 比 较 模 糊 了 。 当 然 你 可 以 再 去 分 析 类 B 的

RTTIClassHierarchyDescriptor，然后你就能知道类 A实际上是类 B的基类。所

以类 A就不可能再是类 C的基类了。这样你就能正确推出 A、B、C则三个类的关

系了。

D．辨别类的成员

辨别类的成员的这一过程虽然有点枯燥乏味，但是相对而言技术难度却小的

多。一般访问类的成员（读或者写）一般都会使用 this 指针加上该成员在类中

的偏移量的方式实现。所以我们也利用这一特点来辨别类的成员，如下面这个例

子：

一般调用虚函数都是使用读虚函数表中的偏移，然后进行间接调用的方式实

现的，我们也利用这一特点来辨别类的虚函数，比如下面这个例子：

那么类的非虚函数怎么来识别呢？我们可以利用 this 指针来做到这一点，

一般 this 指针要通过 ecx 寄存器来传递给函数，比如下面这个例子：

当然如果你觉得证据还不充分，你还可以进一步检查在被调用的函数中是不

是没有初始化就直接使用了 ecx 寄存器，我们来具体看看 sub_401110 这个函数

的实现代码：

III．自动化

这一节我来介绍我们自动化类的识别过程的方法。我们介绍我们开发的一个

工具，并告诉大家这个工具是这样实现的。

A．OOP_RE

OOP_RE 我们内部开发的一个自动化 C++对象识别的工具的名字。它能够

从一个二进制可执行文件中识别出其中的各个类（如果 RTTI 打开的话甚至

能得到类的名字），类与类之间的关系以及类的成员。总之就是上面讨论的

所有内容。运行这个工具之后，它会用注释的方式把识别出来的东东在反汇

编结果中标识出来。OOP_RE 使用 Ruby 语言写成的，它使用了 Sabre 的

Ida2sql。

B．为什么选择静态分析的方式？

在 OOP_RE 开发之初我们就考虑过到底应该把它开发成一个动态分析工

具还是一个静态分析工具。最终我们选择了把它开发成一个静态分析工具。

为什么呢？因为有些系统，比如 Symbian，大量使用 C++，但是在这些系统

上进行动态分析却十分困难——如果这个工具以后要考虑分析 Symbian 的

应用程序的话。当然，不管怎么说，一个兼备了动态分析和静态分析的方案

可能会更好，它应该可以产生更加准确的分析结果。

C．自动化分析的策略

通用算法

Pointer Flow Graphs

我们使用了一些自动化分析技术要求我们要能够对一些寄存器或者是

变量中的值进行跟踪，为了做到这一点，我们就必须要进行一个恰当的数据

流分析。不过就像很多前辈已经证明了的，数据流分析是一个很难解决的问

题。不过还算好，我们面对的都是一些特定条件下的简单的数据流分析，所

以问题会比较简单。我们的数据流分析只要能够对几个特定的寄存器或者指

针进行分析追踪就可以了。

我下面解释一下几个术语：

Block

正如很多研究数据流分析（data flow analyzer）的大牛已经证明过了

的那样，对一大段指令进行数据流分析是一个很难完成的任务，所以我们在

设计 OOP_RE 的时候，一开始就不准备对大段的反汇编程序进行数据流分析

的想法，代之而来的是我们分析一个一个的小块（block）。这些小块的起始

位置一般由一些特定的分析算法决定（比如寻找构造函数时我们可能会先寻

找 new 函数，找到以后 new 函数下面一条指令就成了一个 block 的起点），

block 的终点由一下几个条件决定：

1）如果我们要分析的变量或者寄存器中的值被其他变量覆盖了，block

就随之结束，因为继续分析已经毫无意义了。

2）如果我们分析的是 eax 寄存器，那么如果遇到一个函数调用（比如：

call 指令），block 就随之结束。（因为我们假定所有的函数返回值都

是通过 eax 寄存器返回的）

3）如果遇到一个函数调用，下一条指令就会变成一个新的 block 的起

点。

4）如果遇到一个条件分支（比如一个 if 语句块），而且我们要跟踪的变

量或者寄存器在两个分支里都会被使用，我们把每个分支都当成一个

新的 block。

5）如果我们要分析的变量或者寄存器的值被复制到了另一个变量中，我

们就开始一个新的block，在新的block中同时跟踪新的和旧的变量。

Pointer Flow Graphs

如果我们事先指定了一个要跟踪的寄存器或者变量，并且给出了一个

block 的起始位置，开始进行分析。我们就说我们构建了一个指针流图

（Pointer Flow Graphs）。

识别成员函数

我们判断一个函数是不是类的成员函数的方法是：

1）从头开始，逐一检查函数反汇编代码中的每一条指令。

2）如果先遇到一条读 ecx 寄存器的指令，那么这个函数就很有可能是一

个类的成员函数

3）如果先遇到一条写 ecx 寄存器的指令，那么这个函数就只是一个普通

的函数

4）如果这个函数中就根本没有使用过 ecx 寄存器（不管是读是写），那

么这个函数就只是一个普通的函数

1．利用 RTTI 识别多态类

OOP_RE 利用 RTTI 可以获取下列信息：

1）各个多态类

2）多态类的类名

3）各个多态类之间的继承关系

4）各个多态类的虚函数和虚函数表

5）各个多态类的构造/析构函数

为了找到 RTTI 相关的结构体，OOP_RE 先要去定位虚函数表。这是因为

RTTICompleteObjectLocator 的指针就在虚函数表上面的一个 DWORD 中。为了找

到虚函数表，OOP_RE 执行下面列出的这个检查：

1）检查是不是一个 DWORD

2）检查这个 DWORD 是不是一个指向代码的指针

3）检查这个 DWORD 是不是被其他代码引用过，如果有，引用这个 DWORD

的指令是不是一条 MOV 指令（假设这条指令是用来分配虚函数表的）

一旦找到了虚函数表，OOP_RE 就开始检查虚函数表上面那个 DWORD 是不是

一 个 RTTICompleteObjectLocator 的 指 针 。 这 一 点 是 通 过 分 析

RTTICompleteObjectLocator 并 检 查

RTTICompleteObjectLocator.pTypeDescriptor 是 不 是 指 向 一 个 有 效 的

TypeDescriptor 来确定的。检查 TypeDescriptor 是否正确的一个办法是检查

TypeDescriptor.name 是不是一个“.?AV”开头的字符串。“.?AV”好像是 VC 给

类 名 加 上 的 前 缀 （ 译 注 ：“ .?AV ” 似 乎 应 该 是 一 个 DWORD 是

TypeDescriptor.Spare）。

下面是一个例子，我们在 004165B4 处找到一个虚函数表：

OOP_RE 接下来就会去检查 RTTICompleteObjectLocator 是否有效。我们看

到 OOP_RE 是去读 RTTICompleteObjectLocator 中指向的 TypeDescriptor 的指

针：

如果 TypeDescriptor 的 name 域指向的字符串是以“.?AV”开头的，那

RTTICompleteObjectLocator 就是有效的，否则 RTTICompleteObjectLocator 就

是无效的。

如 果 上 面 这 个 分 析 能 够 通 过 的 话 ， OOP_RE 就 会 分 析

RTTICompleteObjectLocator 中记录的所有 RTTI 相关的结构体，并且创建一个

新的类，类名就是 TypeDescriptor.name 中记录的那个。下面列出的是所有利用

RTTI 能够提取的信息：

发现新的类

 ——通过 TypeDescriptor 识别

找出新的类的名字

 ——就是 TypeDescriptor.name

找出新的类的虚函数表以及各个虚函数

 ——通过 RTTICompleteObjectLocator 与虚函数表之间的关系

找出新的类的构造函数和析构函数

 ——通过分析设置虚函数表的函数（应该就是那条 MOV 指令）

找出新的类的所有基类

 ——通过分析 RTTICompleteObjectLocator.pClassHierarchyDescriptor

2．利用虚函数表识别多态类（不使用 RTTI）

如果被分析的二进制可执行文件在编译时没有使用 RTTI，我们还可以利用

搜索虚函数表的方法来识别多态类（具体方法我们在 C.2 中已经详细讨论过了）。

这样我们可以：

发现新的类

 ——通过 TypeDescriptor 识别

找出新的类的名字

 ——自动根据虚函数表所在的地址给类命名

找出新的类的虚函数表以及各个虚函数

 ——通过虚函数表获得

找出新的类的构造函数和析构函数

 ——通过分析设置虚函数表的函数（应该就是那条 MOV 指令）

注意这时，多态类的基类还是没办法识别，但是我们还是可以通过分析各个

类的构造函数来分析各个类之间的继承关系，这一点我们下面详细讨论。

3．通过搜索构造/析构函数来识别类

程序中，如果程序员在程序中使用了 new 函数在运行时动态生成某些类的对

象，对于这些类来说，我们还可以通过下列算法进行识别：

1） 寻找 new 函数（比如:“j_??2@YAPAXI@Z”、“??2@ YAPAXI@Z”

或者“operator_new”）

2） 以 new 函数之后的第一条指令为起点，对 new 函数的返回值（在

eax 中）进行追踪分析，看看 eax 的值什么时候传给了 ecx。

3） 然后我们在这个 block 中寻找第一个函数调用，然后跟入这个

函数看看它是不是未初始化就使用了 ecx 寄存器。

4） 如果这是一个类函数（未初始化就使用了 ecx 寄存器），那么这

个函数很有可能就是类的构造函数。

对于局部对象，我们也可以找出它的构造函数，算法如下：

1） 寻找类似“lea ecx,[XXX]”的指令，这里 XXX 应该是当前函数

栈中的一个内存地址。

2） 检查一下函数中“lea ecx,[XXX]”指令之前执行的指令中有没

有向 XXX 地址上写一些的值的指令，如果有，则把找到这条“lea

ecx,[XXX]”指令忽略掉。

3） 从“lea ecx,[XXX]”的下一条指令开始创建一个 pointer flow

graph 跟踪 ecx。

4） 然后我们在这个 block 中寻找第一个函数调用，然后跟入这个函

数看看它是不是未初始化就使用了 ecx 寄存器。

5） 如果这是一个类函数（未初始化就使用了 ecx 寄存器），那么这

个函数很有可能就是类的构造函数。

（译注：下面这段原文实在是语意不清，译者按自己的理解来翻）这样识别

有问题吗？嗯，有一点。比如有些函数使用默认的构造函数，不初始化任何成员

变量。这时，VC 就不提供一个专门的构造函数了，而是代之以一条“mov

dword ptr [eax], offset vftable”的指令。这样 new 之后的第一个被调用的

函数，就不是构造函数了。比如下面这段程序

用 IDA 反汇编这段程序，请注意 main 函数：

你看，如果按上面的识别算法，函数 func()就会被当成 ClassA 的构造函数

了。如果你把源码中的 virtual 去掉，连“mov dword ptr [eax], offset

vftable”这条指令都会被省略掉，更容易把 func()当成 ClassA 的构造函数：

如果 ClassA 的成员函数多一点，每次 new ClassA 之后马上调用的成员函数

又是不同的，这样 ClassA 就会有多个“构造函数”。比如下面这个例子：

IDA 反汇编的结果：

为了避免出现这种情况，OOP_RE 会检查传给 new 函数的对象的大小，如果

传给两个 new 函数的对象的大小是一样的话，OOP_RE 就会认为这是在 new 同一

个类的对象。这样它就会去检查这些“构造函数”是不是类的成员函数。（不过

这样的话，如果 2个类的大小恰好一样大的话……）

4．识别类与类之间的继承关系

就像我们之前讨论过的那样，类与类之间的继承关系可以通过分析构造函数

来获知（派生类的构造函数会调用基类的构造函数）。OOP_RE 中我们通过跟踪构

造函数的当前对象的 this 指针的使用来自动实现这一分析过程。在单继承时，

this 指针会被传递给构造函数中调用的基类的构造函数；而在多基层时，this

指针会被加上其他基类在该派生类中的偏移量，传递给相关基类的构造函数。

OOP_RE 完全能够应付这些情况。

5．类的成员的识别

1）类的成员变量的识别

因为程序中访问类的成员是靠 this 指针加上成员变量在类中的偏

移量的方式实现的，所以 OOP_RE 会跟踪 this 指针的使用，列出所有可

能的成员变量。

 2）类的非虚函数的识别

OOP_RE 通过跟踪分析指向当前对象的 this 指针（一般就是 ECX 寄存

器）的使用情况来做到这一点。

3）类的虚函数的识别

通过分析虚函数表就能得到。

做完了上述工作之后，我们应该能够重构出目标代码中的类的基本情况了。

D．显示结果

1．注释各种结构体

一旦完成了上一节的工作，OOP_RE 将会生成一个 idc 文件，使用 IDB 就可

以用这个文件，把分析结果以注释的形式显示在 IDA 的反汇编结果中。

对于 RTTI 相关的数据，OOP_RE 会重新定义有关结构体，并且把结构体中各

个成员的名字都注释出来。

比如下面这张图是 OOP_RE 没运行之前，IDA 分析的结果：

OOP_RE 运行之后：

下面是一个 RTTICompleteObjectLocator 结构体的实例，OOP_RE 没运行之

前：

OOP_RE 运行之后：

2．改进过的调用图表

OOP_RE 的分析结果是以注释的形式添加到 IDA 里的，当然，程序代码对各

个类的虚函数的调用也能在 IDA 里以交叉引用的方式表示出来。当然，也就能生

成一个更好的调用图标，使之能用于 BinDiff 和 DarunGrim 之类的二进制比较工

具。定位到的虚函数表也能用于有关二进制比较技术（见 Rafal Wojtczuk 的博

客 http://www.avertlabs.com/research/blog/?p=17）

E．分析结果可视化：UML 图

OOP_RE 把一个类画成 UML 图中的一个节点，然后按照继承关系把各个类连

接起来。

下面是 OOP_RE 创建的一个 UML 图：

对应上面这张图的类声明是：

如果目标二进制可执行代码在编译时启用了 RTTI，分析结果会更好些，类

的类名也会被显示出来，如下例：

这张 UML 图把类的结构以及类与类之间的关系以直观的方式显示给逆向分

析人员，这样逆向分析人员在进行逆向分析时就能更加得心应手了。

IV．小结

本文讨论了如何对一个 C++开发的二进制可执行文件进行分析的方法，特别

是分析与类相关的信息以及类与类之间的关系的方法。我们希望能对大家在逆向

C++的代码时提供一些帮助。

	
	
	逆向C++

